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ABSTRACT Agriculture accounts for approximately 70% of the world’s freshwater consumption.
Furthermore, traditional irrigation practices, which rely on empirical methods, result in excessive water
usage. This, in turn, leads to increased working hours for irrigation pumps and higher electricity
consumption. The main objective of this study is to develop and evaluate periodic model predictive control
structures that explicitly account for on-off irrigation, a characteristic of drip irrigation systems where
watering can be turned on and off, but flow cannot be regulated. While both proposed control structures
incorporate an economic upper layer (Real Time Optimizer, RTO), they differ in the costs associated with the
lower layer. The first structure, called Model Predictive Control for Tracking (MPCT), focuses on tracking
effectiveness, while the second structure, called EconomicModel Predictive Control for Tracking (EMPCT),
incorporates the economic cost into the tracking term. These proposed structures are tested in a realistic case
study, specifically in a strawberry greenhouse, and both show satisfactory performance. The choice of the
best option will depend on specific conditions.

INDEX TERMS Economic model predictive control, non-linear equations, on-off irrigation, periodic MPC,
transient regime.

NOMENCLATURE
A. ABBREVIATIONS
FC Field Capacity.
EMPCT Economic Model Predictive Control

for Tracking.
MPC Model Predictive Control.
MPCT Model Predictive Control for Track-

ing.
NEMPC Non-linear Economic Model Predic-

tive Control.
ODE Ordinary Differential Equation.
PEM Prediction Error Minimization.
PWP Permanent Wilting Point.

The associate editor coordinating the review of this manuscript and

approving it for publication was Guillermo Valencia-Palomo .

RTO Real-Time Optimizer.
VWC Volumetric Water Content.
WDN Water Distribution Networks.

B. SYMBOLS
θi Volumetric Water Content of each layer.
θmax , θmin Maximum and minimum Volumetric Water

Content.
Di Soil thickness.
Pt Precipitation.
I Irrigation flow.
Imax , Imin Maximum and minimum irrigation flow.
Eg Soil evaporation.
Etr Crop transpiration.
Qi,i+1 Water flow between consecutive layers.
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ψ i Matrix potential of each layer.
Ki Hydraulic conductivity of each layer.
Ksat Hydraulic conductivity at saturation.
θsat Volumetric Water Content at saturation.
B Empirical parameter related to soil texture.
xref , uref Optimal states and control action, given by

RTO.
xr , ur States and control action, given by planner.
x̂, û States and control action, given by tracking

MPC.
x, u States and control action, given by real system.
N Prediction horizon of the second stage.
Nr Prediction horizon of the first stage.
m Number of states.
n Number of control actions.
d Number of disturbances.
q Valve’s water flow.
zee Weight of the economic term in the lower layer.

I. INTRODUCTION
AGRICULTURE plays a crucial role in a nation’s economy
as it provides the population’s basic needs and serves as the
foundation for trade in industries, particularly in rural areas
where the population depends on it [1]. Irrigation also plays a
critical role in agriculture, especially in arid regions or areas
with inadequate precipitation patterns [2].

Water is essential for human survival and for the health of
natural ecosystems. Since irrigation uses around 70% of the
world’s freshwater resources to irrigate 25% of the world’s
croplands, agriculture has been recognized as the primary
water user sector [3]. Moreover, since the surface of land
dedicated to growing food is limited and climate change is
reducing available fresh water, agricultural cropping systems
must make optimal use of the available land and water
resources to feed the world’s population in the future [4].

Over the last decade, a significant effort has been made to
study effective irrigationmanagement protocols for vegetable
production and horticulture worldwide [5], [6]. The scientific
community has invested considerable time and resources to
improve irrigation water management. One practical way of
dealing with this overwhelming issue is to properly manage
water resources using different approaches and technologies
to fulfill water application at the right time, in the right
amounts, and at the right spot in the field [7].

Some advanced control strategies in agriculture have
proposed algorithms to save water [8], [9], [10], [11],
and to minimize electricity consumption [12]. However,
these algorithms assume analog/continuous flow irrigation
commands, which do not represent the real situation with
irrigation tapes, where irrigation control is executed by on-
off irrigation. In other words, it is impossible to modulate the
irrigation flow in real implementations with irrigation tapes
(much more efficient than sprinklers).

A suboptimal, approximated approach for this problem has
been employed in Water Distribution Networks (WDN) to

consider on-off pump behavior. In [13], a two-layer Non-
linear Economic Model Predictive Control (NEMPC) is
proposed. The upper layer of the NEMPC obtains analog flow
set points. Then, the lower layer translates these to binary
commands that approximate the water volume resulting from
the upper layer. Furthermore, [14] presents a sensor-based
model-driven control strategy with on-off output applied to
a farm irrigation system in Mexico. The objective is to keep
the soil moisture in a range and reduce water consumption
compared to farmers’ traditional irrigation. However, the
MPC applied does not use the system model in the problem
optimization. Besides, it does not have a guarantee that
the closed-loop system converges asymptotically and does
not include terminal constraints. A comparison table of
the published research about advanced control applied in
agriculture and in WDN in which binary control action was
used are presented in Table 1.

The main contribution of this work is the development and
testing of periodic model predictive control structures that
explicitly consider binary irrigation signals in conjunction
with an accurate agro-hydrological model that describes the
evolution of the Volumetric Water Content (VWC) per soil
layer in the crop field. Each controller has a two-layer optimal
control strategy, with the upper layer consisting of the Real
Time Optimizer (RTO) and the lower layer composed of
two stages. The two different proposed controllers differ in
the costs associated with the last layer. On the one hand,
the first version is a pure Model Predictive Control for
Tracking (MPCT). On the other hand, the second version
incorporates a combination of tracking economic costs in the
last layer, resulting in an Economic Model Predictive Control
for Tracking (EMPCT).

The proposed controllers with different structures are
tested in a strawberry greenhouse, considering the economic
cost associated with the water and electricity consumption.
Both structures show adequate performance, and the best
option can be selected depending on specific conditions.

The manuscript is organized as follows: Section II explains
the agro-hydrological model and the respective physical
constraints used in the control strategy. Section III presents
the general scheme of the proposed control structures
and details it with their respective cost functions of the
control strategy lower layer. Also, this section presents
the controller’s feasibility and stability proof. Section IV
explains the case study with the results of the proposed
control structures, and finally, Section V comments on the
manuscript’s findings.

II. PRELIMINARIES
This section introduces the simulation model for the crop
field system used in the manuscript, detailing the system’s
agronomic concepts and physical constraints.

A. MODEL DESCRIPTION
The main variable to take into account in irrigation control
is the so-called volumetric water content (VWC), i.e., the
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TABLE 1. Comparison table of the previous published research.

soil moisture measured as the volume of water per volume
of soil, which can be monitored at different locations and
depths of the crop field.1 This parameter is determinant due
to its profound impacts on crop growth and water resource
management, and its adequate control enables high irrigation
efficiencies [15].

The dynamic model used here is based on the non-
linear Ordinary Differential Equations (ODEs) tested in [12]
and [16], which characterize the agro-hydrological interac-
tions between soil, crops, and the atmosphere. The soil is
divided into L + 1 layers that work as water buffers, with
inflows and outflows in every layer, where L is the soil layer
from the first down to the last layer of the crop root. The
first is the surface layer, the last is the drainage zone, and
finally, the intermediate layers correspond to the zone where
the crops have their roots. The dynamical model, whose
variables and parameters are summarized in the nomenclature
section -B, is described as follows:

θ̇1 :=
1
D1

(
Pt (t) + I (t) − Q1,2 (θ1, θ2)− Eg(t)

)
,

θ̇j :=
1
Dj

(
Qj−1,j

(
θj−1, θj

)
− Qj,j+1

(
θj, θj+1

)
−Etr(t)

)
, j ∈ {2, . . . ,L}

θ̇L+1 :=
1

DL+1

(
QL,L+1 (θL , θL+1)− KL+1 (θL+1)

)
. (1)

The water flows between layers, Qj,j+1, are characterized as
follows:

Qj,j+1 :=

(
ψj+1 − ψi

Dj
+ 1

)(
Hj − Hj+1

ψj+1 − ψj

)
B

B+ 3
, (2)

where:

Kj (θi) := Ksat

(
θj

θsat

)2B+3

,

ψj
(
θj
)

:= ψsat

(
θj

θsat

)−B

,

1There are also alternative variables to characterize soil moisture, for
example, the matrix potential of the soil, usually referred as 9.

Hj (θi) := Kj
(
θj
)
ψj
(
θj
)

= Ksatψsat

(
θi

θsat

)B+3

,

Dj :=
Dj + Dj+1

2
,

B. PHYSICAL/MODEL CONSTRAINTS
Furthermore, to characterize the physics of this agro-
hydrological model, two parameters need to be considered:
the Field Capacity (FC) and the Wilting Point (WP). The
FC, which depends on the soil composition and compaction,
is the VWC level that is held in soil after the excess
of water has drained away by gravitational effects [17].
Below this point, and depending on the nature of the
crops, the roots encounter water scarcity and start to
absorb (transpire) an amount of water that compromises
the crop growth. Finally, the Wilting Point is the VWC
level at which the crop cannot absorb enough water to
live [18]. An excessive VWC can also compromise crop
growth.

With this in mind, the following constraint should be taken
into account in the controller design:

• VWC constraints: The VWC level in the root zone
must remain within certain limits to prevent crop yield
decline. These constraints can be expressed as:

θmax ≥ θj(t) ≥ θmin, j ∈ 2..L (3)

where j represents the jth soil layer and θmax and θmin
define the VWC range in which crop yield is not
compromised.

• Irrigation flow constraints: on efficient drip irrigation
systems, irrigation is controlled through an ON/OFF
valve, and thus the irrigation flow can take only two
values:

Imax = q

Imin = 0 (4)

where Imax = q is the nominal irrigation flow with
the irrigation valve open (ON), whereas Imin = 0
corresponds to the OFF state of the valve.
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TABLE 2. Control considerations.

III. MODEL PREDITIVE CONTROL STRUCTURES
This section introduces the general two-layer control strategy
used in the study and describes the proposed control
structures, including theMPCT and EMPCT, along with their
respective cost functionals for the lower layer of the control
strategy. Additionally, the stability proof for the proposed
controller is provided.

A. GENERAL SCHEME OF THE PROPOSED CONTROL
STRUCTURES
The irrigation control problem consists of computing and
applying optimal irrigation commands based on the measure-
ments of the VWC of each layer of the cultivated soil. This
problem presents specific features that make it highly com-
plex. First, optimality entails minimizing the use of resources,
mainly water and energy, due to irrigation. Secondly, the
non-linear nature of the system dynamics (see equations (1)-
(2)) challenges the control design. Furthermore, the on-off
operation of the irrigation system (4) forces the design of a
control strategy with binary control inputs. Lastly, constraints
in (3) should be considered to maintain crop yield.

Model Predictive Control (MPC) [19] is a family of
advanced controllers that, among other features, makes it
possible to deal with constraints and optimal considerations.
The control strategy formulated in this paper is based on
an economic, periodic MPC. Economic MPC allows intro-
ducing economic considerations in the cost function(s) [20].
Moreover, periodic MPC appears naturally in significant
control problems [21], [22] and, in the context of irrigation
control, it is possible to take advantage of the quasi-periodic
behavior of the agro-hydrological variables, such as the
crops’ transpiration, the soil’s evaporation, or the electricity
prices, which are related to the pumping of water for
irrigation.

However, the complexities introduced above would lead
to a complex optimization problem. To avoid this, we resort
to a two-layer MPC control strategy [23], which structure is
shown in Figure 1. Table 2 shows the author’s considerations
for the proposed control strategy.

Next, the different variables involved in the control
structure are defined and linked to the physical system. First
of all, in the crop field, x is a state vector containing the
VWC of each layer of the crop field (1), and the control
action u is the applied irrigation (Irrigation, I ). Furthermore,
in Figure 2, the upper layer is in charge of producing optimal,
periodic reference trajectories for the VWC of each soil layer

FIGURE 1. Two-layer optimal control strategy for irrigation.

and the irrigation, i.e. the decision variable (xref , uref ), using
a Real-Time Optimizer (RTO) that considers the non-linear
dynamics in (1). In this layer, irrigation is regarded as a
constrained analog decision variable.

Besides, the lower layer goal is to steer the real VWC of
each soil layer to the optimal trajectory given by the RTO.
This lower layer is further divided into two stages or sub-
layers. The first one is called Planner, and its function is
to compute optimal, periodic trajectories (xr , ur ) that are
reachable for the last sub-layer, the MPC for tracking. This
last sub-layer has to compute the real irrigation commands to
be applied (x̂, û). The system dynamic is linearized in both
sub-layers, but in the last sub-layer the irrigation is assumed
to be an on-off (binary signal).

The separation of the optimization problem into two layers
presents two essential advantages. First, it allows working
with a non-linear system and economic functions while
guaranteeing recursive feasibility (constraint satisfaction as
the system evolves, see [23]). Furthermore, the optimization
problem to be solved is divided into two different problems:
the first with non-linear dynamics but analog decision vari-
ables and the second with a linear model and binary decision
variables. This makes it possible to use different, specific
solvers for each problem and reduces the computational
burden.

1) UPPER LAYER DESCRIPTION
The objective of the RTO is to provide the best economic
trajectory, considering analog control actions, economic
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costs, and constraints. To this aim, it must use the best
approximation of the crop field system, so a discrete-time
version of the agro-hydrological equations (1) is used. The
ODE model F can be written as follows 2:

xref (k + 1) = F(xref (k), uref (k),w(k)), (5)

where xref ∈ Rm is a state vector with the VWC of each
soil layer, uref ∈ Rn represents the control action vector
(the manipulated irrigation flow), w ∈ Rd denotes the vector
of the non-manipulated input, such that the evaporation and
transpiration.

Note that units of all the variables need to be consistent.
In this paper, the unit of the soil VWC is cm3

cm3 that means
a given cm3 of water contained in a given cm3 of soil,
and the irrigation flow is selected as cm

min , centimeter per
minute, per unit area. The evaporation and transpiration units
are kg

min·cm2 .
The economic criteria are the operational goals which can

be separated into two terms:
• Electricity consumption: This term penalizes the elec-
tricity consumption according to a possibly time-varying
electricity cost Celec(k).

f1(uref ) =

Nr−1∑
k=0

Celec(k)uref (k) (6)

where Nr is the periodic horizon, Celec is the electricity
tariff that changes per hour.

• Water consumption: This term penalizes the water
consumption, which unitary cost Cwater is typically
constant.

f2(uref ) =

Nr−1∑
k=0

Cwateruref (k) (7)

where Cwater is the water cost and always is the same
price.

Therefore, considering the equations (6) and (7) the
economic cost function is:

V ∗
p (u

ref ) = f1(uref ) + f2(uref ) (8)

The RTO problem is solved once a day, providing the
best economic trajectory. The constraints in irrigation or
VWC are typically constant, while other variables, such as
water/electricity costs or crop needs, can be slightly different
from one day to the next.

The optimal solution can be obtained from the solution of
the following optimization problem:

min
xref (0),uref

Nr−1∑
k=0

V ∗
p (u

ref ) (9a)

s.t. xref (k + 1) = F(xref (0), uref (k),w(k)) (9b)

xmax ≥ xrefj (k) ≥ xmin, j ∈ {1, . . . ,L + 1} , (9c)

2The ref superscript letter denotes trajectories of signals of the RTO.

umax ≥ uref (k) ≥ umin, (9d)

xref (0) = xref (Nr ) (9e)

The equation (9a) represents the discretized version of
the non-linear equation (1), where the initial state is a free
variable xref (0). The equations (9c)-(9d) are the constraints
presented in equations (3) and (4) corresponding to the
VWC and irrigation physical constraints of the system. The
equation (9e) is the terminal constraint, where Nr is a fixed
periodwithwhich a periodic trajectory is obtained. The quasi-
periodic of the crop transpiration and electricity tariff allows
us to use a periodic upper layer and lower layer. This helps
the controller reach stability since the system does not have
to stabilize at an operation point but at a periodic trajectory.
Remark 1: The RTO obtains the best trajectory with the

best approximation of the real system, which is discretized
of the non-linear ODE model (1). To solve the optimization
problem (9a)-(9e), it can be used a variety of optimizers for
non-linear equations, to name a few: fmincon, CasADi, and
GAMS.

2) LOWER LAYER DESCRIPTION
The optimal trajectory computed by the RTO is sent to the
lower layer presented in Figure 1. The goal of this layer is
twofold: to compute a feasible trajectory from the current
VWC of the soil to the optimal trajectory (Planner stage)
and to track this feasible trajectory considering binary control
actions, that is, on/off irrigation signals (MPC for tracking
stage).

This part of the control strategy is executed each sampling
time, receiving feedback of the states x from the crop field
system and using a linearized version of the non-linear model
(1) around an operation point x0, which can be chosen around
the FC values. The linearized discrete-time state-space model
is expressed as:

x(k + 1) = Ax(k) + Bqu(k) + Bdw(k) (10a)

y(k) = Cx(k) (10b)

where A,B,Bd ,C are the system, control, disturbance, and
output matrices, respectively. The x(k) ∈ Rm−1 denotes
the model’s states (VWC at each soil layer), where y(k) is
the output system, the u(k) ∈ Rn is the control action, q is the
valve’s flow and the w(k) ∈ Rd disturbances associated with
this model.

The control objective of this layer is to steer the state x and
control action u as close as possible to a periodic reference
(xref , uref ) given by the RTO with the periodic horizon Nr .

Standard tracking schemes are usually based on a hierar-
chical architecture because, if the reference is unreachable,
the controller cannot steer the output signal to the (xref , uref ).

Considering this, the soal of the Planner stage is to compute
a reachable periodic trajectory (xr , ur ) that is as close as
possible to the optimal trajectory (xref , uref ) (see [24]). The
MPC for tracking stage (x̂, û), follows a reachable periodic

VOLUME 11, 2023 51989



G. B. Cáceres et al.: Model Predictive Control Structures for Periodic ON–OFF Irrigation

trajectory (xr , ur ) considering a possibly different prediction
horizon N [25].
The Planner stage cost function, also known as the offset

cost function, is chosen to minimize the sum of the weighted
squared error concerning the trajectory computed by the
RTO:

V t
T (x

ref , uref ; xr0, u
r ) =

Nr−1∑
i=0

∥xr (i) − xref (i)∥2W

+ ∥ur (i) − uref (i)∥2S
(11)

The term V t
T penalizes the error between the planned

reachable trajectory and the optimal reference to be tracked
for one period Nr . Where (xref , xr ) ∈ Rm−1 and
(uref , ur ) ∈ Rn, theW , S are the respective cost weights.
The MPC for tracking stage cost function, is chosen to

minimize the sum of the weighted squared error of the
tracking trajectory (x̂, û) and the optimal reachable trajectory
(xr , ur ) in a period N , and it is formulated as:

V t
S (x, u; u

r , xr ) =

N−1∑
i=0

∥x̂(i) − xr (i)∥2Q

+∥û(i) − ur (i)∥2R
(12)

The term V t
S penalizes the error between the tracking

and the planned reachable reference throughout a prediction
horizon Nr ≥ N , where (x̂, xr ) ∈ Rm−1, ur ∈ Rn, û ∈ {0, 1}
are binary control actions (on/off irrigation commands), and
Q,R are the respective weighting matrices.

To evaluate the MPC for tracking stage, the following
optimization problem VN is solved at each sampling time:

min
xr ,ur ,x̂,û

VN (x̂(0), û, xr , ur )

s.t. xr (i+ 1) = Axr (i) + qBur (i) + Bdw(i) (13a)

xmax ≥ xrj (i) ≥ xmin, j ∈ {1, . . . ,L + 1} , (13b)

umax ≥ û(i) ≥ umin i ∈ Z[0,N−1] (13c)

xr (0) = xr (Nr ) (13d)

x̂(0) = x (13e)

x̂(i+ 1) = Ax̂(i) + qBû(i) + Bdw(i) (13f)

xmax ≥ x̂j(i) ≥ xmin, j ∈ {1, . . . ,L + 1} , (13g)

û(i) ∈ {0, 1} , i ∈ Z[0,N−1] (13h)

x̂(N ) = xr (N ) (13i)

The constraints of this optimization problem can be divided
into those corresponding to the planner and tracking stages.
The constraints of the planner stage are (13a-13d), where
(13a) gives the predicted states trajectories; (13b-13c) are
the constraints over the state and control input (VWCs and
continuous irrigation signal); and (13d) imposes periodicity.
Furthermore, the constraints of the tracking sub-layer are

(13e-13i), where (13e) imposes that the initial state of the
tracking is equal to the current real system state (crop field
system); the VWC constraints and the real on/off irrigation
are in (13g-13h), and a terminal equality constraint is added
in (13i). For more details, see [24].
Remark 2: The separation of the problem into two dif-

ferent layers reduces computational complexity and makes
it possible to combine efficient, specialized solvers at each
of them. In the lower layer, which runs every sampling
time, a linearized model is employed, but control actions are
restricted to binary. Thus, solvers such as Gurobi, intended for
linear constraints and mixed continuous-binary optimization
variables, are a good option. On the contrary, a more approx-
imate non-linear model is used in the upper layer, which
runs once a day, translating into an optimization problem
with only continuous variables but non-linear constraints.
In this case, solvers such as CPLEX can be a suitable
alternative.

B. MPCT CONTROL STRUCTURE
Considering the above, we propose two different cost
functionals for the lower layer. The MPCT cost functional
considers pure tracking, on the one hand, penalizes the
difference between the optimal solution of the RTO and the
planner, on the other hand, penalizes the difference between
the planner and the tracking:

V t
N (x̂(0), x

ref , uref ; xr , ur , x̂, û) = V t
T (x

ref , uref ; xr , ur )

+ V t
S (x

r , ur ; x̂, û)

where V t
T and V t

S are described in (11) and (12), respectively.

C. EMPCT CONTROL STRUCTURE
The EMPCT cost functional also considers economic terms
in the second stage of the last layer of the control
strategy.

The EMPCT cost functional V f
N is composed of the same

tracking terms mentioned above plus an economic term in the
stage cost function V f

S to consider the electricity and water
consumption also in the lower layer. The cost functional V f

N
is expressed as follows:

V f
N (x̂(0), x

ref , uref ; xr , ur , x̂, û) = V f
T (x

ref , uref ; xr , ur )

+ V f
S (x

r , ur ; x̂, û)

where:

V f
T (x

ref , uref ; xr , ur ) = V t
T (x

ref , uref ; xr0, u
r ) (14a)

V f
S (x̂(0), x

r , ur ; x̂, û) = V t
S (x, u; u

r , xr )

+ zeeû(i)(Celec(i) + Cwater )

(14b)

where zee weighs the economic term in the stage cost
function.
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D. FEASIBILITY AND STABILITY PROOF
In this section, we study the closed-loop properties of the
proposed control laws. In particular, we prove stability and
that the controller maintains recursively feasibility. To this
end, we use three assumptions and the following slightly
modified lemmas from [24]. Previous proofs that support this
demonstration are [24], [26].

Some specified notation aspects in this section: letters in
bold are trajectories, sequences of control actions or states
with N elements in the case of (û, x̂) and T elements in
the case of the planner (ur,ur); the notation a(k) and ak
is considered equivalent. x|ki is the state predicted at time i
applying ûk from the initial state xk ; xr |ki is the state of the
reachable trajectory (planner) at time i applying urk from
the initial state xrk ; x

◦
|
k
i is the state of the optimal reachable

trajectory at time i applying u◦

k from the initial state x◦
k . z(k)

or zk is the error between the state of the reachable optimal
trajectory and the closed-loop trajectory of the system, that
is,

z(k) = zk = x̂k − x◦
k

Assumption 3.1: The pair (A, [B,Bd ]) of the linear sys-
tem is assumed to be controllable. Following assumption
2.23 from [27] (weak controllability), it is assumed that there
exists a K∞ function α(·) such that

V ∗
N (z(k)) ≤ α(|z(k)|) ∀z(k) ∈ Z

where Z is a complex convex polyhedron.
The previous assumption 3.1 is weaker because it bounds

the cost of moving the state x̂ to �, a compact and positive
invariant set including the origin. It confines attention to those
initial states x̂0 that can be steered to� in N steps holding the
problem constraint, i.e., following a feasible evolution, and
the only condition is that the cost is not excessive.

Due to the control actions being quantized {0, 1}, a finite
number of trajectories (2N ) steer the initial state x̂ to the
invariant set �. Considering it, it can be guaranteed that,
at least, a bounded trajectory steers the initial state to that
invariant set �.

The planner’s trajectories are considered reachable, fol-
lowing definition 1 in [26]. Remember that the control
objective is to steer the state x(k) as close as possible to an
exogenous periodic reference r(k) with period Td introducing
some economic aspects in any of the cases. T would be the
number of discrete elements of reachable trajectories and
references (given by RTO) in a period.
Assumption 3.2: The proposed cost function V f

S is strictly
convex.
Theorem 3.1: Assume that system satisfies Assump-

tions 3.1and 3.2, the weighting matrix Q is positive definite,
and the prediction horizon is such that N ≥ nc. The
system controlled by the proposed control law is recursively
feasible.

Proof: This theorem is proved by demonstrating that
it always exits a feasible solution for the optimization prob-
lem (13). Assuming an optimal solution for the optimization

problem (13) at time k , a possible feasible solution in k +

1 can be obtained from the previous one. A simple way to
obtain such a viable solution is to use the periodic constraint
(13d) of the achievable solution and the terminal constraint
x(N ) = xr (N ) to construct it. Bearing that the model is
linear and there are no disturbances, the new solution can
be built by shifting the terms of the solution obtained at
time k . The new solution in k + 1 must cost less than the
initial k .

Consider the following shifted sequences (ūk , x̄rk and ūrk )
at time k + 1 obtained from the solution in k:

ūk+1 = {û∗
|
k
1, · · · , û

∗
|
k
N−1, u

r∗
|
k
N } (15a)

x̄rk+1 = {xr∗|k1, · · · , x
r∗

|
k
T−1, x

r∗
|
k
0} (15b)

ūrk+1 = {ur∗|k1, · · · , u
r∗

|
k
T−1, u

r∗
|
k
0} (15c)

where û∗
|
k
j ∀j = 1, · · · ,N − 1 is the second element of the

previous shifted optimal solution obtained in k , ur∗|kN is the
reachable control input at time N . This control action can be
taken thanks to the constraint (13i), that is, x̂(N ) = xr (N ).
xr∗|k0 and u

r∗
|
k
0 can be taken thanks to the periodic constraint

(13d), that is xr (0) = xr (T ). And hence, if the solution is
feasible at time k , the shifted sequences are also feasible at
time k+1, and this process can be repeated from k+1 to the
infinite. Summing up, if x̂k is feasible (x̂k ∈ XN ) then x̂k+1
will also be feasible (x̂k+1 ∈ XN ). Hence, XN is a positive
invariant set.

The stability of the optimal trajectory will be proved from
Theorem 2 and 3 in [26], and by demonstrating that even
when control actions are binary, the error zk is bounded in
the worst case and converges to zero if it is possible to
achieve the reachable trajectory with these type of control
actions.

From lemma 1 in [26] we propose the following modified
lemma
Lemma 3.2: Let xk be such that the solution of the

optimization problem 13 satisfies x̂0 = xr0 solved at time k ,
then

x̂ = xr + ex

and

û = ur + eu

.
The error between control actions in the reachable

trajectory can be easily bounded by 1 (|eu| ≤ 1), considering
the maximum values of the control actions in both stages.
Therefore, this error (eu) can be considered a bounded
disturbance in the nominal system. Hence, if the nominal
system proposed in [26] is stable, this new optimization
problem (13) holds this property.

Remember that even when the control actions (û) are
binary, the cost hold

V ∗
N (k + 1) − V ∗

N (k) ≤ −∥x̂k − xr |k0∥Q − ∥ûk − ur |k0∥R
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TABLE 3. Soil hydraulic parameters.

TABLE 4. Electricity tariff and crop transpiration values each time.

and the previous error is reduced or held each step.
This demonstration is focused on two objectives: first,
prove the recursive feasibility, and second, prove that the
system outputs are bounded in the worse case and, in the
best case, hold the properties of the previous nominal
controller [26].

IV. CASE STUDY: APPLICATION TO STRAWBERRY CROPS
In this section, we perform a realistic simulation case study
based on a specific farm, using the specific data (soil, crop
needs, etc.) of strawberry exploitation in the city of Huelva
(Spain), with their respective soil and crop needs. It should
be noted that this crop is carried out inside a greenhouse, and
the precipitation value is not considered. Table 3 and Table 4
present the soil agro-hydrological parameters explained in the
section II. Finally, Table 4 displays the hourly electricity tariff
Celec used for the cost function:

TABLE 5. Constraints and weights values.

A. NON-LINEAR OPTIMIZATION FOR THE UPPER LAYER
The RTO problem (upper layer in Figure 1) has been solved
with an open-source tool called CasADI [28]. This tool
uses a symbolic framework for non-linear optimization and
algorithmic differentiation. In this layer, since the non-linear
equations (1) are used, we can solve the optimization using
the IPOPT (Interior Point Optimizer) for large-scale non-
linear optimization.

The number of statesm, control actions n, and disturbances
d , as well as the constraints’ values with the cost function
weights used in this layer, are presented in Table 5.

The RTO works once daily, with a sample time Tm = 15
min and the horizon Nr = 96 steps.

B. LINEARIZED MODEL FOR THE CONTROL STRATEGY
LOWER LAYER
A linearized model is needed to implement the lower layer
of the proposed economic model predictive structures. The
non-linear equations (1) were linearized at the equilibrium
point xeq, which are the initials VWC control values of each
soil layer x(0) = xeq.The equilibrium points are commonly
chosen as the operating point, in this case, are the specific
soil FC values xeq = [0.154, 0.153, 0.152, 0.151] cm3

cm3 , the
irrigation to reach the FC point ueq = 0 cm

min , the crop
transpiration and soil evaporation weq = [0, 0] kg

min∗cm2 .
The cost matrices are chosen as Q = 5Im−1,R = 5In,

W = 20Im−1, S = 20In, where I is the identity matrix with
a dimension of states and control actions.

The model was linearized with the System Identification
Toolbox from Matlab using the Prediction Error Minimiza-
tion (PEM) algorithm. The linearized model presented in the
state space equations (10b) used in the control strategy results
in the matrices presented in (16a-16c).

A =


−0.0875 0.0040 0.0078 0.0197
−0.0039 0.0043 −0.0134 2.433e− 04
−0.0930 0.0161 −0.0189 0.0191
0.0244 −0.0177 0.0358 −0.0030

 (16a)

B =


−0.4741 −421.0621 −6.4749e− 11
−0.0144 13.4946 −2.2406e− 11
−0.4202 112.5933 −3.2192e− 12
0.3239 −1.6388e03 5.6790e− 14

 (16b)
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C =


−0.9916 −0.1844 0.4443 0.2994
−0.1997 −0.2148 0.3577 0.1282
0.0517 0.0459 −0.0281 0.0403
0.0673 0.1914 −0.0637 0.0247

 (16c)

The terms’ values used in the cost functional of the
lower layer are presented in Table 5, the prediction horizon
N = 24 steps and the prediction horizon Nr = 96 steps that
are 24 hours.

In this layer, the output (û) is a binary control action and is
presented in Table 5.

C. PERFORMANCE CRITERIA
In order to evaluate the performance of the proposed model
predictive control structures, MPCT and EMPCT, two criteria
are considered: the economic cost of each control structure
and the interlayer error that is the tracking error between
the upper layer and lower layer of the optimal control
strategy presented in Figure 1. The economic cost is an
important criterion to evaluate because it minimizes the cost
of electricity and water consumption. The interlayer error
corresponds to the difference between the upper layer output
(xref , uref ) and the one obtained by the lower layer (x̂, û), that
is, the convergence to the optimal trajectories computed by
the RTO.

Considering the above, it is possible to determine each
criterion quantitatively. For that, the MPCT and EMPCT
were simulated fifty days. The first criterion, the economic
cost average of each model predictive control structure, can
be calculated through equation (17a). The summation of
the interlayer error over time is considered for the second
performance criterion, as shown in equation (17b).

Ceco =
1

days

Nt−1∑
t=0

Celec(t)û(t) + Cwater û(t) (17a)

Elayers =
1

days

Nt−1∑
t=0

∥x̂(t) − xref (t)∥2

+ ∥û(t) − uref (t)∥2 (17b)

In addition to a quantitative comparison, a qualitative one
was conducted in the transient regime to observe the different
behaviors of the MPCT and EMPCT, considering the VWC
per soil layer. Also, for the cost-effectiveness of each control
structure, comparisons were made in terms of water and
electricity consumption, as well as irrigation efficiency in one
hectare (10000 m2).

D. RESULTS AND DISCUSSION
For the qualitative comparison of the proposed model
predictive control structures, in Figure (2) and Figure (3),
the variables were scaled to be able to analyze them better.
The real values are presented in Table 4 and Table 5.

Figure 2 presents the MPCT and EMPCT states, which
are VWC of four soil layers considering the equation (1),

FIGURE 2. Comparison between the VWC of each soil layer of the crop
field system using the two economic model predictive structures in the
transient regime. (a) MPCT structure with pure tracking cost functional
and (b) EMPCT structure with tracking plus economic term in the cost
functional.

in which the first layer corresponds to the surface and
the successive layers to the root zone. It should be noted
that the last layer of the root zone has the same dynamics
as the drainage zone, which is why just four layers are
presented here. The RTO (control strategy upper layer) gives
the optimal trajectory xref considering the non-linear model,
as explained in previous sections. For the control strategy
lower layer, the Planner stage computes a reachable periodic
trajectory xr , and the MPC for tracking stage x̂ follows a
reachable periodic trajectory but considers binary control
actions.

Figure 3 presents the MPCT and EMPCT control actions,
considering the respective characteristics according to control
strategy layers. The RTO obtains analog control action
uref , and the MPC for tracking obtains binary control
actions û.
Considering Figure 2(a) for the MPCT structure and

Figure 2(b) for the EMPCT structure, both attempt to follow
the RTO trajectory, but due to differences in the model in the
control strategy upper layer (non-linear equations) and the
control strategy lower layer (linearized model), as presented
in Figure 1, some differences occur between the RTO and
the MPC for tracking; one significant difference can better
be seen in the last soil layers (Layer 3 and Layer 4) of the
VWC of the MPCT and EMPCT.
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Moreover, the differences in the EMPCT are more
noticeable because, besides the control actions (analog for
the RTO and Planner stage; and binary for the MPC
for tracking stage), the controller has to minimize the
water and electricity consumption as shown in the equation
(14b) and also fulfill the terminal constraints (13d) (13i).
Figure 3(a) and Figure 3(b) present the control actions
corresponding to each structure.

Regarding Figure 3(a) and 2(a), which correspond to the
control actions and states of the MPCT structure, it can be
seen that the MPC for tracking also tries to follow the RTO
trajectory. However, it must irrigate at an additional time at
the optimal trajectory. Since the cost functional of the lower
layer penalizes the difference between the planner and RTO
trajectories in the Planner stage and the planner and the MPC
for tracking trajectories in the MPC for tracking stage, in this
last stage, it does not have an economic term. Therefore this
extra irrigation command is given without considering the
electricity tariff. In this structure, convergence is fast, and
periodicity is achieved.

On the other hand, Figure 3(b) and 2(b), which correspond
to the EMPCT, the cost functional considers the economic
term, so in the transient regime irrigates complying with the
constraints and also considering when the electricity tariff
is lower. Besides, the VWC of the MPC for tracking stage
is different from the RTO trajectory. From this, it can be
seen that irrigation occurs when electricity prices are lower,
which causes a VWC to deviate from the optimal state
trajectory. This difference between the RTO and the last layer
occurs because it considers the close loop of the real system
every 15 minutes. Despite this, Figure 4 can achieve the
same periodicity as the MPCT in a permanent regime after
approximately ten days.

For the quantitative comparison between each structure
presented in Table 6, the equations 17(a) and 17(b) were
used. The RTO average economic cost is 3.3763e− 05 e per
unit crop area. Comparing the two model predictive control
structures, the EMPCT is the most economical one. However,
as expected, the MPCT has the lower interlayer error
since it explicitly minimizes this error without considering
the economic cost, whose relevance is more evident in
the transitory regime. According to the observations in
Figure 2(a) and 2(b), the difference is in the transient
regime.

Finally, for the cost effectiveness of each model predictive
control structures, Table 7, presents the results of the
comparison in terms of water cost, electricity, and irrigation
efficiency for each hectare of crop. It can be observed that
the EMPCT structure gets more irrigation efficiency by 91%
compared to the MPCT, which obtains 88%.
Remark 3: Regarding the simulation results, the differ-

ence between the two structures is in the transient regime.
The MPCT’s convergence is faster (between one or two
days) since its goal is only to minimize the tracking cost.
In the EMPCT, since it has both tracking and economic
term, the use of electricity and water is minimized. However,

TABLE 6. Performance criteria results.

TABLE 7. Cost effectiveness of each model predictive control structure.

FIGURE 3. Comparison between the two economic model predictive
structures in the transient regime in terms of control action considering
the disturbances (Electricity tariff and crop transpiration) each time.
(a) MPCT and (b) EMPCT.

FIGURE 4. VWC at each soil layer of the crop field system using the two
economic model predictive structures in the transient and permanent
regime. (a) MPCT structure with pure tracking cost functional and
(b) EMPCT structure with tracking plus economic term in the cost
functional.

in terms of economic criteria, the convergence to the optimal
RTO trajectory is slower (approximately ten days) but more
efficient.
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The simulations were conducted considering a case where
the radiation and, therefore, the Etr are similar daily. The
MPCT is the best solution when the transpiration and
electricity tariff is similar every day, in summer, for example.
In cases where the disturbances change almost every day,
such as in the fall, the EMPCT is still the best option because
the MPCT will never have time to reach the permanent
regime.

V. CONCLUSION
This paper proposed periodic model predictive control
structures for on-off irrigation, considering a two-layer
control strategy, the upper layer composed of the RTO and the
lower layer composed of two stages, the Planner andMPC for
tracking. Additionally, it presented the controller’s feasibility
and stability proof.

The use of a two-layer control is very important in this
specific case because the first layer works with non-linear
dynamics but analog decision variables, and the secondwith a
linearized model and binary decision variables. This makes it
possible to use specific solvers for each problem and reduces
the computational burden.

Two cost functions were proposed for the lower layer of
the control strategy, resulting in the MPCT and EMPCT
structures. Both structures performed well in a simulation
scenario with real data from a strawberry farm in Huelva
(Spain). Their suitability depends mainly on the farm
conditions. Under stable conditions (weather, precipitation,
transpiration, electricity costs, etc.), the MPCT converges
faster to the optimal (periodic) permanent regime given by
the RTO so that it would be the best solution. However, under
conditions that vary daily, it is not possible to reach a periodic
permanent regimen, and thus the controller will operate in
a transient regime. In these situations, the best option is the
EMPCT, for economic costs are included in the decision layer
(lower layer).
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