XVII International Scientific Conference of Environmental and Climate Technologies

BOOK OF ABSTRACTS

15–17 May 2024 | Riga, Latvia
Scientific Committee

Dagnija Blumberga
Riga Technical University, Latvia

Ivars Veidenbergs
Riga Technical University, Latvia

Gatis Bazbauers
Riga Technical University, Latvia

Andra Blumberga
Riga Technical University, Latvia

Karlis Valters
Riga Technical University, Latvia

Silvija Nora Kalnins
Riga Technical University, Latvia

Timo Laukkanen
Aalto University, Finland

Adam Cenian
Polish Academy of Sciences Institute of Fluid-Flow Machinery, Poland

Stelios Rozakis
Technical University of Crete, Greece

Raimondas Grubliauskas
Vilnius Gediminas Technical University, Lithuania

Vytautas Martinaitis
Vilnius Gediminas Technical University, Lithuania

Uli Jakob
Hochschule für Technik Stuttgart, Germany

Maris Klavins
University of Latvia, Latvia

Sylvestre Njakou
Djomo University of Hasselt, Belgium

Marika Rosa
Riga Technical University, Latvia

Valeria Mezzanotte
University of Milano-Bicocca, Italy

Francesco Romagnoli
Riga Technical University, Latvia

Fosca Conti
University of Padova, Italy

Zaneta Stasiskiene
Kaunas University of Technology, Lithuania

Ingo Weidlich
HafenCity Universität Hamburg, Germany

Anna Volkova
Tallinn University of Technology, Estonia

Edmunds Teirumnieks
Rezekne Academy of Technologies, Latvia

Julija Gusca
Riga Technical University, Latvia

Pal Davidsen
Riga Technical University, Latvia
CONECT 2024

XVII International Scientific Conference of Environmental and Climate Technologies

Welcome to CONECT 2024 – an international scientific conference that has been held since 2008 and annually brings together scientists, researchers, PhD students and professionals from all over the world.

The conference’s purpose is to acquaint with achievements in the area of energy systems and environmental engineering and to give an opportunity to exchange and share experiences and publish research results.

The three-day event will feature an impressive line-up of speakers from around the world in Plenary and Panel sessions on the following topics:

- Bioresources
- Biotechnologies
- District Heating
- Energy Efficiency
- Environmental and Energy Policies and Frameworks
- Low Carbon Development and Bioeconomy
- Renewable Energy Technologies
- Sustainability and Resilience
The conference papers are published in the international scientific journal “Environmental and Climate Technologies” (ISSN: 2255-8837) indexed in SCOPUS and Web of Science.

The conference is organized by the Institute of Energy Systems and Environment (IESE) of Riga Technical University.

WE WISH YOU ALL A FRUITFUL CONFERENCE!
CONECT 2024 Conference Organising Committee

FIND MORE INFORMATION ABOUT THE CONECT CONFERENCE HERE:
www.conect.rtu.lv
RTU IESE

IESE is gradually becoming a leader in Environmental Science and engineering science in Latvia.

This is testified by our partners’ unwavering interest in cooperation with us both in research sectors well-balanced in climate technologies and resilience, energy and environmental policy, environmental governance and energy management and resolution of engineering-technical issues in industrial, agricultural, energy and waste management companies.

IESE commitment to sustainability fosters innovation and subsequently supports future projects.

The balanced advancement in the IESE scientific research capacities is made sustainable through cooperation with partners in Latvia, the European Union member states, Norway, the USA, Colombia, Canada, Taiwan, India, and other countries. We participate in joint projects within the Baltic Sea Region, HORIZON and the Nordic Energy Research programmes. Our commitment to collaboration and our international focus has been the key factors in attracting investment and facilitated the resolution of several environmental and engineering issues.
JOURNAL OF ENVIRONMENTAL AND CLIMATE TECHNOLOGIES

The Journal of Environmental and Climate Technologies, published by RTU IESE, is an international scientific journal that offers global exposure for original research and innovations.

It covers a variety of topics for all aspects of Environmental science:
- Renewable Energy Technologies,
- Cleaner Production and Industrial Symbiosis,
- Ecodesign and Life Cycle Assessment,
- Climate Technologies,
- Climate Change and Resilience,
- Circular Economy,
- Environmental Monitoring and Remediation.

The electronic version of the journal is published by De Gruyter Open (formerly Versita). The papers are indexed in Scopus and Web of Science data bases.

You can easily find a journal paper on your topic in Thematic Distribution of Articles section on https://conect.rtu.lv/ect-journal/
SUPPORTERS

We express gratitude to the sponsors for their support towards this year’s conference.

The French Institute in Latvia is a structural unit of the French Embassy in Latvia and, together with other services of the Embassy, is actively involved in the diplomacy of French influence. Its aim is to present French excellence in various fields (new technologies, cultural and creative industries, digital sphere, cultural heritage, climate for debate on societal issues, etc.) to a wide range of stakeholders through an innovative and interdisciplinary approach. It also offers French language courses and internationally recognised French proficiency tests. To achieve its objectives, the French Institute in Latvia works closely with the French Institute in Paris, the implementing agency for French cultural diplomacy abroad.

The Embassy of Italy in Riga primarily facilitates diplomatic relations between Latvia and Italy by promoting trade and investment, stimulating the exchange and cooperation of research Institutes and Universities, and providing assistance to home country citizens living or travelling abroad. The Embassy of Italy in Riga actively promotes economic ties between Latvia and Italy by organizing trade missions, business and scientific conferences, and other events to connect businesses, entrepreneurs, and scientists from both countries. At the same time, the Embassy promotes cultural and educational exchanges between the two countries by facilitating study-abroad programs, hosting exhibitions, and encouraging other cultural and educational events.

Latvian-Italian Cooperation Centre of Riga Technical University (RTU) promotes EU common values, inclusive education, the European dimension of teaching, as well as provides a sense of community for the Italian students and scientists at RTU. The Centre fosters the cultural and scientific relations between Italy and Latvia, with particular regard to the teaching of the Italian language and the coordination of RTU activities with Italian higher education institutions, research centres, institutions and business companies.

The accommodation of CONECT 2024 participants is taken care of by the Mogotel hotel group.
TABLE OF CONTENTS

01

ENERGY EFFICIENCY, ENERGY SYSTEMS (DISTRICT HEATING)
15

- Electric Vehicle Charging Infrastructure Study for Apartment Buildings
- Robust Design of 5th Generation District Heating and Cooling (5GDHC) Systems with Seasonal Thermal Energy Storage via GIS Assessment
- Main Principles and Solutions for Acceleration of Energy Efficient Renovation in Latvia
- Numerical Analysis of Harmful Environmental Impact of Accidental Explosion at a Hydrogen Filling Station
- Comparing Numerical and Analytical Methods for Heat Loss Determination of District Heating Systems
- Future of District Heating Systems – Investigation of Various Technologies in the Danish Context
- Design and Performance Assessment of District Heating Systems in the Latvian Region
- A Showcase for Resilient and Sustainable District Heating in Denmark
- Attracting Customers to District Heat Supply: The Case of Riga
- Assessment of the Potential for Increasing the Energy Efficiency in the Cooling Sector
- Are BSR Municipalities on Track for Energy Transition?
- Energy Efficiency Improvement for Manufacturing Companies in Latvia
- Integrating Sustainable Energy Technologies into District Cooling Systems: A Review of Modelling and Optimisation Approaches
- Measuring the Decarbonisation Progress of Buildings Based on European Open Big Data
- Exploring the Efficacy of Random Linear Parameter Models for Forecasting Heating Demand in District Heating Networks
- Techno-Economic Model of District Heating Energy Hub: The Case of Latvia
- Integrating Low Temperature Waste Heat in District Heating Systems: Legal Framework and Pricing
- Enhancing the Evaluation of District Heating System Resilience: A Literature Review
- Adaptive Building Envelope Structures
- Air Flow Analysis for Triply Periodic Minimal Surface Heat Exchangers
- Safe Insulation from the Inside as a Solution to the Energy and Climate Crisis

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geospatial analysis of energy poverty and accessibility to district</td>
<td>38</td>
</tr>
<tr>
<td>heating systems</td>
<td></td>
</tr>
<tr>
<td>The creation of a new model of a gas-turbine electric</td>
<td>39</td>
</tr>
<tr>
<td>power-generating device</td>
<td></td>
</tr>
<tr>
<td>Validating ANSYS heat transfer models using experimental data</td>
<td>40</td>
</tr>
<tr>
<td>Analysis of two phase change materials with differing melting</td>
<td></td>
</tr>
<tr>
<td>temperatures</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td></td>
</tr>
<tr>
<td>Energy and environmental modelling</td>
<td>41</td>
</tr>
<tr>
<td>Life cycle assessment framework for diagnostic imaging</td>
<td>42</td>
</tr>
<tr>
<td>Surgical procedures for a greener future: an approach to assess</td>
<td>43</td>
</tr>
<tr>
<td>the environmental impact</td>
<td></td>
</tr>
<tr>
<td>Challenges in standardizing global emission factors for peatlands</td>
<td>44</td>
</tr>
<tr>
<td>Vertical halophonics: sustainable and resilient productions using</td>
<td>46</td>
</tr>
<tr>
<td>brackish water</td>
<td></td>
</tr>
<tr>
<td>Proportioning of oil shale ash for sustainable 3D printable mortars</td>
<td>47</td>
</tr>
<tr>
<td>Assessing environmental impact: organosolv extraction of cellulose</td>
<td>48</td>
</tr>
<tr>
<td>pulp from wood waste</td>
<td></td>
</tr>
<tr>
<td>Climate conscious communities: navigating transformation through</td>
<td>50</td>
</tr>
<tr>
<td>simulation games and creative engagement</td>
<td></td>
</tr>
<tr>
<td>Incorporating life cycle assessment in the green metric ranking:</td>
<td>51</td>
</tr>
<tr>
<td>a conceptual approach</td>
<td></td>
</tr>
<tr>
<td>Will changing habits ensure sustainable mobility: system dynamics</td>
<td>52</td>
</tr>
<tr>
<td>modelling examples from municipalities in four countries</td>
<td></td>
</tr>
<tr>
<td>Sustainable fish feed: a comprehensive life cycle analysis</td>
<td>53</td>
</tr>
<tr>
<td>Replacing traditional materials with more sustainable ones: the use</td>
<td>54</td>
</tr>
<tr>
<td>of Phragmites australis (Cav.) Trin. ex Steud. as bio-building</td>
<td></td>
</tr>
<tr>
<td>material and pellet</td>
<td></td>
</tr>
<tr>
<td>Life cycle analysis of a battery energy storage system</td>
<td>56</td>
</tr>
<tr>
<td>Carbon footprint of a nearly zero energy building in Accra (Ghana):</td>
<td>57</td>
</tr>
<tr>
<td>an LCA-based model</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td></td>
</tr>
<tr>
<td>Biotechnologies, bioresources</td>
<td>58</td>
</tr>
<tr>
<td>Creation of single cell protein-producing mutants of Phaffia</td>
<td>59</td>
</tr>
<tr>
<td>Rhodozyma</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td></td>
</tr>
<tr>
<td>Renewable energy technologies</td>
<td>60</td>
</tr>
<tr>
<td>A hybrid experimental modelling approach to solar photovoltaic cell</td>
<td>61</td>
</tr>
<tr>
<td>temperature prediction</td>
<td></td>
</tr>
</tbody>
</table>
WATER-ENERGY-FOOD NEXUS FOR CLIMATE CHANGE MITIGATION IN JORDAN
WASTE-HEAT RENEWABLE GASIFIER DESIGN THROUGH TAGUCHI’S METHOD AND MANFIS
THE IMPACT OF RED III DIRECTIVE ON THE USE OF RENEWABLE FUELS IN TRANSPORT ON THE EXAMPLE OF ESTONIA
ANALYTIC HIERARCHY PROCESS ASSESSMENT FRAMEWORK FOR BLOCKCHAIN IN RENEWABLE ENERGY
UNVEILING FUTURE OFFSHORE WIND POTENTIAL: A MULTICRITERIA FRAMEWORK FOR SUSTAINABLE DEVELOPMENT
REMOTE SOLAR PARKS FOR BUILDING DECARBONISATION: A LITHUANIAN CASE STUDY ON VIRTUAL PROSUMERS
ENZYMATIC ACTIVITY OF FUNGI FOR HYDROLYSIS OF WHEAT BRAN AND CULTIVATION OF OLEAGINOUS YEASTS
ASSessING THE FEASIBILITY OF CLIMATE POLICIES OF JAPAN, LATVIA AND LITHUANIA TO REACH THE TARGETS OF THE PARIS AGREEMENT
USE OF SOLAR ENERGY TO INCREASE THE SUSTAINABILITY OF SHARED MICROMOBILITY
A PRELIMINARY EVALUATION OF ALTERNATIVE RAW MATERIALS FOR PELLET PRODUCTION
NATURE-INSPIRED WIND FARM LAYOUT OPTIMIZATION: HARNESSING SMART PATTERNS FOR SUSTAINABLE ENERGY
EXPLORING THE POTENTIAL OF RENEWABLE ENERGY TO ENABLE GREEN HYDROGEN PRODUCTION FOR A SUSTAINABLE FUTURE
CURRENT TRENDS AND SOLUTIONS FOR PORT DECARBONISATION: A SYSTEMATIC LITERATURE REVIEW
CHALLENGES OF UNDULAR JUMP MODELLING
ELUCIDATING STAKEHOLDER PRIORITIZATION FOR SUSTAINABLE OFF-GRID RENEWABLE ELECTRIFICATION USING THE FUZZY AHP-GPESTLE FRAMEWORK: A COMPREHENSIVE ANALYSIS
PH-OPTIMIZED BIOMETHANE PRODUCTION: EVALUATING CARRIER MATERIALS FOR EX-SITU BIOMETHANATION
SUITABLE SOFTWARE FOR THE STUDY OF COMBUSTION PROCESSES IN BOILERS
ASSessING THE APPLICABILITY OF SOLAR THERMAL TECHNOLOGIES FOR INDUSTRIAL TEA DRYING

05
LOW CARBON DEVELOPMENT AND BIOECONOMY
A NOVEL GE-MACKINSEY MARKET APPROACH: INVESTMENT OPPORTUNITY FOR THE BIOPOLYMER PACKAGING MATERIALS
CURRENT CHALLENGES AND FUTURE OUTLOOK: TRENDS AND FORECASTS IN THE MARICULTURE SECTOR
GREEN WHEELS, GREENER Wallets: Economic Viability of last-mile delivery fleet electrification in case of Latvia
ENVIRONMENTALLY FRIENDLY PROCESSING OF FORESTRY BIOMASS SIDE STREAMS – CONIFEROUS NEEDLES AND GREENERY 88
CARBON FARMING: A SYSTEMATIC LITERATURE REVIEW ON SUSTAINABLE PRACTICES 89
IMPACT OF EU FUNDING ON LATVIAN AQUACULTURE: PRODUCTIVITY, COMPETITIVENESS AND PERSPECTIVES 90
ORGANIC OR NON-ORGANIC AGRICULTURE: COMPARISON OF ORGANIC AND CONVENTIONAL FARMING SUSTAINABILITY 91

06
ENVIRONMENTAL AND ENERGY POLICIES AND FRAMEWORKS 92
USE OF THE NATIONAL CLIMATE AND ENERGY POLICY SIMULATION TOOL IN THE POLICY MAKING PROCESS 93
WHAT TO DO WITH CROSS-BORDER ENVIRONMENTAL POLLUTION: LEGISLATIVE ASPECTS 94

07
ENVIRONMENT, HEALTH, POLLUTION PREVENTION 95
DESIGN OF A FERTILIZING ROBOT APPLICATION WITH REGARD TO ENERGY CONSUMPTION 96
OPTIMIZING THE BATTERY MANAGEMENT ALGORITHM OF THE AGRICULTURAL ROBOT BASED ON THE WORKLOAD 97
ENVIRONMENTAL PERFORMANCE OF A POLYAMIDE-BASED THERMOPLASTIC COMPOUND WITH BROMINATED FLAME RETARDANTS 98
METHODS FOR MEASURING THE IMPACT OF SUSTAINABLE TOURISM DEVELOPMENT ON CLIMATE AND ENVIRONMENT 99
VULNERABILITY OF THE INFRASTRUCTURE: RISK MANAGEMENT AND IMPLEMENTATION OF THE INFORMATION SYSTEMS 100
JUSTIFICATION OF THE USE OF CONTAINER TECHNOLOGY IN DUMPING 101
STEPLESS TRANSMISSION OPTIMIZATION FOR GREEN MICROMOBILITY 102
ANALYZING VNO AIRPORT TRAFFIC DATA OF 2023: SPECIFIC AIRCRAFT NOISE MEASUREMENT AND MITIGATION RECOMMENDATIONS 104

08
WASTE. WASTE TO PRODUCT, VALUE ADDED PRODUCTS 105
INTEGRATION OF ACOUSTIC METAMATERIALS MADE OF PLASTIC TO IMPROVE BUILDING ACOUSTICS 106
INVESTIGATION ON PFAS SOURCES AND REMOVAL IN A MUNICIPAL WASTEWATER TREATMENT PLANT 107
CHITOSAN/GRAPHENE OXIDE/SiO₂ NANOADSORBENTS FOR THE REMOVAL OF Cr(VI) FROM WASTEWATERS 108
ANALYSIS AND ASSESSMENT OF H_2S SORPTION CAPACITY OF THE SELECTED BIOFILTRATION MATERIALS 110

SUSTAINABLE END-OF-LIFE TYRE MANAGEMENT: A COMPREHENSIVE ANALYSIS OF ENVIRONMENTAL IMPACTS AND CRUMB RUBBER INTEGRATION IN COMPOSITE CONCRETES 111

DEVELOPMENT OF GREEN ALKALI-ACTIVATED MORTAR BASED ON BIOMASS WOOD AS 112

ANALYSIS OF INTRODUCING PLASTIC WASTE ENZYMATIC RECYCLING FOR SUSTAINABLE WASTE MANAGEMENT IN LATVIA 114

HOW DOES A DECISION-MAKING TOOL ENHANCE SPENT MUSHROOM SUBSTRATE VALORIZATION INTO POLYSACCHARIDES? 115

DEVELOPMENT OF SUSTAINABLE 3D PRINTABLE TERNARY COMPOSITE 116

SUSTAINABILITY OF BLENDED TEXTILE. LIFE CYCLE ANALYSIS 118

END-OF-LIFE MANAGEMENT OF PHOTOVOLTAIC PANELS: A MODEL FOR FORECASTING AND ECONOMIC EVALUATION 119

SOUND ABSORPTION EVALUATION AND ANALYSIS OF DIFFERENT HEMP FIBER TYPES 120

WET EXTRACTION OF BY-PRODUCT SAMPLES AND FRACTIONATION OF VALUABLE COMPOUNDS USING SUPERCRITICAL CO$_2$ EXTRACTION: AN INNOVATIVE APPROACH FOR SUSTAINABLE RESOURCE UTILIZATION 121

OPTIMISATION OF THE PRODUCTION OF BIO-BASED BASIC CHEMICALS FROM BIODEGRADABLE WASTE THROUGH DISPERSION 122

BIODEGRADABLE WASTE MANAGEMENT IN GEORGIA: PROBLEMS OF THE COMPOSTING SYSTEM INTRODUCTION 124

STEARATE FROM STEEL WIRE DRAWING PROCESSES AS A RESOURCE 126

FACTORS AFFECTING WASTE RECYCLING HABITS IN LATVIA – RESULTS FROM AN ONLINE SURVEY 127

UNDERSTANDING MUNICIPAL GREEN INITIATIVES AND CITIZEN HABITS IN FOUR BALTIc SEA REGION COUNTRIES: SURVEY RESULTS 128

HOW TO NOT WASTE GLASS WASTE 129

RECYCLING POSSIBILITIES OF WOOD-CEMENT PARTICLE BOARD MANUFACTURING WASTE 130

ADVANCING SUSTAINABLE ACOUSTIC SOLUTION: EXPLORING THE SOUND ABSORPTION CHARACTERISTICS OF BIODEGRADABLE AGRICULTURAL WASTES, COCONUT FIBER, GOURNDBNUT SHELL, AND SUGARCANE FIBER 131

BRINE VALORISATION USING MECHANICAL VAPOR COMPRESSION DESALINATION: APPROACHES TO CONSIDER 132

QUANTIFICATION OF LOST RESOURCE POTENTIAL OF UNSORTED TEXTILE WASTE 134

WHAT HAVE WE LEARNT SO FAR ABOUT THE EXTENDED PRODUCER RESPONSIBILITY – RESULTS OF BIBLIOGRAPHIC REVIEW 135

MOVING WASTE SECTOR TOWARDS CLIMATE NEUTRALITY. SCENARIO ANALYSIS 136

EFFICIENT LOW-TEMPERATURE NUTRIENT REMOVAL FROM AGRICULTURAL DIGESTATE USING MICROALGAE 138
ATTRACTING CUSTOMERS TO DISTRICT HEAT SUPPLY: THE CASE OF RIGA

Madara RIEKSTA*, Emils ZARINS², Giovanni BRUMANA³, Gatis BAZBAUERS⁴

1, 2, 4 Institute of Energy Systems and Environment, Riga Technical University, Āzenes iela 12/1, Riga, LV-1048, Latvia
1 JSC Rigas Siltums, Čēsu iela 3A, LV-1012, Latvia
3 Department of Engineering and Applied Sciences, University of Bergamo, 5 Marconi Street, Dalmine 24044, Italy

* Corresponding author. Email address: madara.rieksta@rs.lv

Abstract – District heating is important in achieving future climate goals. Possibilities of using waste heat from different sources, e.g. subways, hospitals, shops, data centers, rivers are often discussed. Many district heating companies face the challenge of sufficient coverage of connected consumers in a city or region. To expand the operating area, companies should initially attract objects which are close to heat networks to lower the connection costs. The research question is how to attract existing buildings under construction to the district heating system. The present work uses system dynamics modeling for studying the possibilities of the Riga district heat supply company to increase consumer network. Modeling is based on historical data of residential buildings. The results show that old buildings choose to connect to the district heat supply when these are being renovated, or the individual heat supply equipment is out of order. The older the buildings, the more likely these will be connected to the district heating, however, this decision may take at least 70 years. Renovation increases the probability of connection to the district heating, so the impact of subsidies for renovation is important. Regulation that requires connection to the district heating as a priority choice in case of renovation is also important.

Keywords – Buildings; energy efficiency; district heating; system dynamics