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A B S T R A C T

We study the short-run, dynamic employment effects of natural disasters. We exploit monthly data for 70 3-
digits NAICS industries and 78 Puerto Rican counties over the period 1995–2019. Our exogenous measure of
exposure to natural disasters is computed using the maximum wind speed recorded in each county during each
hurricane. Using panel local projections, we find that after the ‘‘average’’ hurricane, employment falls by 0.5%
on average. Across industries, we find substantial heterogeneity in the employment responses. Employment
increases in some industries while in others employment decreases after a hurricane. This heterogeneity can
be partly explained by input–output linkages.
1. Introduction

In 2020, for only the second time in history, the World Meteoro-
logical Organization ran out of letters to name Atlantic tropical storms,
and started using names from the Greek alphabet.1 Moreover, natural
disasters are expected to increase reported direct losses from the current
$195 billion a year to $234 billion a year by 2040. This increase of
$39 billion could reach up to $100 billion per year if we factor in
the indirect costs from supply chain disruptions and other knock-on
economic consequences.2 Given these facts, it is hardly surprising that
studying the economic consequences of climate change and natural
disasters has become a central research topic in several fields of eco-
nomics. However, due to data availability, especially in the context of
less developed regions, there has been far too little evidence coming
from high frequency, detailed industry data. This is relevant, because
detailed data can help uncover the economic mechanisms taking place
in the aftermath of a disaster. As a step towards filling this gap,
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this paper studies the short-run, dynamic employment effects within
detailed industries of a specific type of natural disasters – i.e. hurricanes
– using an ideal laboratory: Puerto Rico.

We exploit a unique feature of Puerto Rico: a frequent and spatially
dispersed exposure to hurricanes, combined with the availability of
high frequency, detailed employment data. This combination allows us
to propose the first estimates of the short-run, dynamic employment
effects of hurricanes. Using geo-coded monthly data for 70 3-digits
NAICS industries and 78 counties over the period 1995–2019, we ex-
amine outcomes up to two years post-hurricane. Another important and
novel aspect of our work is to highlight the importance of input–output
linkages in industrial adjustments.

With the aid of satellite data, we are able to track the position of
the eye of each hurricane and the wind speed within it at six-hour
intervals. We then use the output of physical models to interpolate
location-specific windspeeds at specific points in time. We are therefore
able to measure the intensity of exposure to hurricanes in all of Puerto
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Rico’s counties by using the maximum wind speed recorded in each
county cell during each hurricane. Exploiting information on wind
speed guarantees the absence of any potential endogeneity of our
measure with respect to economic outcomes, which can lead to biased
results, as shown by Felbermayr and Gröschl (2014). Armed with this
exogenous measure, varying over time and at the county level, we
explore the dynamic employment effects of hurricanes using local pro-
jections. This tool, which has now been used in many contexts, consists
of running a sequence of regressions for different prediction horizons.
Operationally, we regress the cumulative change of our variables of
interest (for instance, employment) on our disaster shock variable at
each horizon. The coefficients obtained trace the dynamic responses to
a disaster shock. One advantage of local projections is that, unlike panel
VARs, they do not impose (potentially incorrect) dynamic restrictions.
Moreover, as stressed by Dube et al. (2022), local projections offer a
simple tool to solve the problem of dynamic heterogeneous treatment
effects that can arise in difference-in-difference approaches with multi-
ple treatments. The richness of our data allows us to explore variation
at the county–time, county–industry–time, and industry–time level. In
our regressions, we control for pre-trends and seasonal effects.

At the aggregate level, theory predicts that natural disasters can
have both detrimental and positive effects on the economy. While the
destruction of productive facilities, land, public, and private infras-
tructures has a direct and negative impact on income and household
wealth, the process of reconstruction can trigger positive responses. For
instance, capital may be replaced by more productive vintages and flow
where its marginal product is the highest. Moreover, reconstruction
may take place in better-performing industries, thereby leading to
differential responses across sectors (see e.g. Hornbeck and Keniston,
2017; Pelli and Tschopp, 2017). These differential responses may also
be influenced by disruptions in daily business activities, the necessity
for firms to shut down, changes in demand for certain types of activities
(e.g. leisure, entertainment, and hospitality services), shifts in the sup-
ply of labor, and the potential reallocation of workers across industries.
In the aggregate, the net effect is determined by the dominating force,
which depends on the type of natural disaster, its strength, the income
group of the affected economy, as well as its industrial structure. Hence,
whether natural disasters have a positive or negative impact and how
they affect specific sectors are ultimately empirical questions.

As discussed by Hsiang and Jina (2014), there are four possible
trajectories an economy can follow in the aftermath of natural disasters:
recovery to trend, where after a short period of downturn the economy
reverts to its pre-disaster level; no recovery, where the natural disas-
ter acts as a permanent income shock; creative destruction, where the
economy temporarily grows faster; and the build back better hypothesis,
where the shock triggers negative short-lived effects followed by pos-
itive economic growth. Each of these hypotheses has found empirical
support in the literature (see e.g. Naguib et al., 2022; Cole et al., 2019;
Bertinelli and Strobl, 2013; Strobl, 2012; Cuaresma et al., 2008).

Surprisingly, while it is reasonable to expect local shocks to cause
heterogeneous responses across industries, most of the literature has
focused on the aggregate economic impacts of natural disasters. Per-
haps for this reason, from a theory perspective, there is no off-the-shelf
theoretical framework yielding clear predictions on how specific sec-
ors should respond to natural disasters; hence, we remain agnostic
bout the direction of the effects across industries. Pelli and Tschopp
2017) discuss a potential theoretical framework that highlights why
atural disasters affect industries differentially, but the paper focuses
xclusively on tradable goods and the manufacturing sector. A few
mpirical studies have looked at the impact of natural disasters on
pecific sectors, aggregated at a higher level than in our analysis (see
.g. Roth Tran and Wilson, 2021; Kunze, 2021; Groen et al., 2020; Peri
t al., 2020; Loayza et al., 2012; Hsiang, 2010; Belasen and Polachek,
008). The following patterns emerge: not surprisingly, ‘‘Agriculture,
unting, forestry and fishing’’ and ‘‘Wholesale, retail trade, restaurant
2

nd hotels’’ consistently contract, while ‘‘Construction’’ is always found
to grow, likely due to the need of reconstruction. On the other hand,
the manufacturing sector masks heterogeneities. The nature of our data
allows us to explore this heterogeneity in greater detail.

Our main results are threefold. First, after the ‘‘average’’ hurricane,
employment falls on average by about 0.5% after about six months. We
also find an average increase in the number of unemployed, with no
significant changes to the labor force. Average weekly wages increase
after six months, but the increase is not statistically significant. Second,
we find heterogeneous effects across industries. In some industries,
which we call the ‘‘strengthened industries’’, employment increases
following a natural disaster. Examples of these industries include NAICS
236 (‘‘Construction of Buildings’’) and NAICS 238 (‘‘Specialty trade
contractors’’). In other industries, which we call ‘‘weakened’’ indus-
tries, employment decreases. Examples of weakened industries are
NAICS 721 (‘‘Accommodation’’) and NAICS 487 (‘‘Scenic and Sightsee-
ing Transportation’’). In a third group of industries, employment does
not seem to be directly affected by natural disasters. We call them
‘‘neutral’’ industries. Third, we uncover a potential mechanism that can
explain some of the results at the industry level: input–output linkages.
For the ‘‘strengthened industries’’, we find a positive and statistically
significant relationship between the size of the employment increase
12 months after a disaster shock and the share of output sold to the
construction sector.

Finally, while we do not test this formally, the heterogeneous re-
sponses of employment to hurricanes across different industries suggest
a new concept of resilience: adaptability-driven employment resilience,
defined as the potential opportunity for workers to reallocate from
the contracting industries to the expanding ones in the aftermath of a
natural disaster. This could be an important building block of ‘‘post-
disaster resilience’’, which was included as one of the three pillars
of the ‘‘disaster resilience strategy’’ framework proposed by the IMF
(2019). An increase of the adaptability-driven employment resilience
could be pursued by introducing new and different vocational training
programs, aimed at endowing workers with a set of heterogeneous
skills, which are needed for rapid and temporary reallocations across
different industries.

The remainder of the paper is structured as follows. The next
section discusses the relevant literature. Section 3 presents the data,
particularly our measure of exposure to natural disasters. Section 4
discusses our empirical strategy, and Section 5 contains the results.
Section 6 reports the robustness checks, and Section 7 concludes.

2. Related literature

This paper is linked to the literature exploring the effects of nat-
ural disasters on a variety of different outcomes, such as economic
growth (Hsiang and Jina, 2014; Felbermayr and Gröschl, 2014;
Bertinelli and Strobl, 2013; Cavallo et al., 2013; Strobl, 2011), firm
level outcomes (Pelli et al., 2022; Elliott et al., 2019; Seetharam, 2018;
Vu and Noy, 2018), exports (Pelli and Tschopp, 2017), household
finance (Deryugina et al., 2018; Gallagher and Hartley, 2017), edu-
cation (Sacerdote, 2012), housing (Ortega and Taspinar, 2018) and
migration (Boustan et al., 2020).

Several papers have looked at the labor market effects of hurricanes,
but focusing exclusively on the impacts of the migration caused by
the disaster. For instance, McIntosh (2008), Groen and Polivka (2008)
and De Silva et al. (2010) present difference-in-difference studies of
the local labor market impacts of the migration induced by Hurricane
Katrina. McIntosh (2008) finds that in-migration of Hurricane Katrina
evacuees into Houston had negative, albeit modest, effects on wages
and employment among Houstonians non-evacuees. Similarly, De Silva
et al. (2010) find that in-migration led to a fall in quarterly wages in
Houston. Groen and Polivka (2008) concentrate on evacuees and find
that Katrina caused a decline in both their labor force participation
and employment rate and a rise in their unemployment rate. Peri

et al. (2020) use Hurricane Maria as an exogenous shock originating
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in Puerto Rico to study the impact of migration on the labor market
outcomes of incumbent workers in Orlando. Using a synthetic control
approach, the authors find that aggregate employment increased and
that this increase was particularly marked in construction and retail 12
months after the shock. Earnings fell slightly in the construction sector,
which employs migrant labor to a greater extent. Yet, this fall was offset
by a growth in earnings in retail and hospitality. Finally, Groen et al.
(2020) look at the long-term effects of Hurricanes Katrina and Rita on
earnings outcomes. Using a difference-in-difference approach, they find
that, due to job losses, quarterly earnings in affected regions declined
(although modestly) in the first year following the strike. However,
from 2006 through 2012, wages rose substantially. Consistent with
other studies, results differ by industry and are particularly marked for
construction workers, whereas tourism, health care, and professional
services bear substantial losses.

Our study differs from these papers in several aspects. First and
foremost, we evaluate the average labor market response of directly
affected jurisdictions. In contrast, these studies focus on very different
sub-groups of the population – i.e. evacuees or incumbent workers in
regions that are not directly hit by the hurricane but experienced in-
migration. This is an important distinction as the labor market response
of directly affected regions may differ substantially from neighboring
areas. Relatedly, these studies use migration as a proxy for the disaster
shock, while we use a measure that captures wind exposures and is
exogenous by construction. Importantly, using in-migration implies
that the authors exclusively focus on the labor supply aspect of the
shock in indirectly affected areas. This paper seeks to be more general
and is interested in the labor markets effects associated with disaster
damages, the direct need for rebuilding, and the resulting changes
in the industrial structure. Finally, we consider all of the counties in
Puerto Rico and all of the hurricanes that occurred over the sample
period. This is markedly different than the aforementioned papers,
which limit themselves to one hurricane and a few counties at a time,
making their results less generalizable.

Closer to our paper are Belasen and Polachek (2008, 2009). Using
quarterly data, they explore the employment and wage effects of hur-
ricanes across counties in Florida for the period 1988–2005. Belasen
and Polachek (2008) also perform an additional analysis across five
broad sectors (such as Manufacturing and Services). In both papers,
the authors rely on categorical measures of hurricanes and adopt a
generalized difference-in-difference (GDD) approach. They find that
earnings respond positively and employment falls over time following a
hurricane. In a more recent study, Deryugina (2017) uses a difference-
in-differences method to estimate the fiscal costs of US hurricanes.
Estimates imply that in the ten years following the shock, extra trans-
fers from non-disaster social insurance programs to affected counties
average $780-$1,150 per capita per hurricane in present value. This
result suggests that the fiscal costs of hurricanes are substantial and
underestimated when considering disaster aid alone. To examine the
channels behind this result, Deryugina (2017) also provides estimates
of the impact of US hurricanes on other county-level outcomes and
finds that while average earnings and population remain unchanged,
the employment rate drops temporarily.

The contribution of our work relative to these papers is threefold.
First, we focus on a different geographic area. So far, the literature on
the labor markets impacts of natural disasters has largely focused on the
United States, despite the fact that the lion’s share of natural disasters
is concentrated in developing countries. As pointed out in Hsiang and
Jina (2014), countries that are frequently and perpetually exposed to
hurricanes suffer permanent losses that accumulate over time, result-
ing in larger long-run income penalties. By focusing on Puerto Rico,
we provide novel evidence on the short-run employment effects in a
lower-income setting, which has been understudied.

Second, we use a different measure of storm exposure. Belasen and
Polachek (2008, 2009) both rely on categorical measures of hurri-
3

canes defined by two sub-groups reflecting low and high intensities
according to the Saffir–Simpson scale. Similarly, Deryugina (2017)
measures hurricane exposure with an indicator variable. Instead, we
propose a continuous treatment that allows to account for differences in
storm exposure even within categories of the Saffir–Simpson scale. This
distinction is an important one because the type of damages inflicted
by storms can differ substantially depending on wind intensities and
this is likely to matter for industrial adjustments. For instance, one
might expect the tourism sector to respond already at relatively low
wind intensities while the construction sector may only boom following
havoc. The use of a continuous treatment is even more relevant as
we study adjustments across detailed classification of industries, un-
like Belasen and Polachek (2008), which analyze broad sectors. Our
results highlight that even within narrowly defined sectors, different
industries experience different employment dynamics in the aftermath
of a natural disasters. Moreover, the use of this detailed set of industries
allows us to unveil the importance of input–output linkages as a driving
mechanism of the employment effects of natural disasters.

Third, our empirical approach is different and uses local projections.
Following the seminal work by Jorda (2005), local projections have
been used in the literature to investigate the dynamic effects of shocks
on the economy. Examples of this literature include Auerbach and
Gorodnichenko (2013), Jorda and Taylor (2016), and Leduc and Wilson
(2013), who look at fiscal policy shocks. Ottonello and Winberry (2020)
investigate the effects of monetary shocks, while Barattieri and Caccia-
tore (2020) study trade policy shocks in the presence of network effects.
To the best of our knowledge, this paper is among the first studies to
use local projections to examine the economic impacts of hurricanes.
In a recent paper, Roth Tran and Wilson (2021) also perform local
projections on county-level U.S. data over the period spanning 1980–
2017 to look at the response of local economies following natural
disasters. Impulse response functions indicate that natural disasters,
measured using an indicator variable equaling one in the case of posi-
tive damages, lead to a rise in total and per-capita personal income as of
8 years out. While we share a similar methodology, we concentrate on
a different type of shock, i.e. hurricanes, using a continuous exposure
index to examine employment adjustments across industries. Moreover,
while Roth Tran and Wilson (2021) exclude Puerto Rico, our analysis
provides some evidence of the labor market responses in a lower
income setting.

3. Data

In this Section we introduce our measure of exposure to hurricanes,
obtained using satellite data, and the data on Puerto Rican employment
dynamics taken from the Bureau of Labor Statistics (BLS).

3.1. Wind speed at the county level

We use satellite data from the National Oceanic and Atmospheric
Administration (NOAA) Tropical Prediction Center. We look at the
storms’ best tracks in the Caribbean Sea over the period 1995–2017
to construct the maximum wind speed associated with each hurricane
𝐻 hitting Puerto Rican county 𝑐, i.e. 𝑤𝑐𝐻 . A best track contains the full
history of a hurricane, with information at 6-hour intervals on latitude,
longitude, date, and wind speed at its eye.

First, we linearly interpolate the storms’ best tracks at every kilome-
ter. For each interpolated kilometer, we compute the set of coordinates
for the position of the eye (landmark ℎ) and the wind speed at the eye,
𝑉ℎ. For each county that falls in the vortex associated with a landmark
ℎ, we use the HURRECON model (see Boose et al., 1994, 2001, 2004)
to compute the sustained wind velocity at the county’s centroid, 𝑤𝑐ℎ.3

In order to improve the precision of our measure and obtain a
ood proxy of the impact of hurricanes on economic activity, we do

3 More details about the HURRECON model are provided in Appendix A.
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not use the simple geometrical centroid of each county. Instead, using
population data from the 2010 Census at the block level and the
geometrical centroid of each census block, we construct a population-
weighted centroid for each of the 78 counties of Puerto Rico. This
correction allows us to compute the maximum wind speed affecting
populated areas and to give less weight to strong winds hitting forests
or other areas with no economic activity.

Finally, we obtain one measure of windspeed per county and hur-
ricane by retaining the maximum windspeed to which a county was
exposed:

𝑤𝑐𝐻 = max
ℎ∈𝐻

{𝑤𝑐ℎ}.

.2. Counties exposure to hurricanes

In this section, we describe how we construct 𝑆𝑐𝑡, the index of
xposure to hurricanes for county 𝑐 at time 𝑡 (where time can be at

monthly or quarterly frequency). Following Bernabe et al. (2022), Pelli
et al. (2022), Pelli and Tschopp (2017), and Yang (2008), our index of
exposure is obtained in the following way:

𝑆𝑐𝑡 =
∑

𝐻
𝑥𝑐𝐻𝑡 where 𝑥𝑐𝐻𝑡 =

(

𝑤𝑐𝐻𝑡 − 33
)3

(𝑤𝑚𝑎𝑥 − 33)3
if 𝑤𝑐𝐻𝑡 > 33 (1)

where 𝑥𝑐𝐻𝑡 represents the maximum windspeed affecting county 𝑐
during storm 𝐻 at time 𝑡 relative to the sample maximum (the term
𝑤𝑚𝑎𝑥). We normalize 𝑥𝑐𝐻𝑡 with respect to the maximum wind speed
observed in order to obtain a measure included between zero and one.
The cubic powers account for the force exerted by winds on physical
structures (see the technical HAZUS manual of the Federal Emergency
Management Agency (FEMA) of the US Department of Homeland Se-
curity and Emanuel, 2005).4 We use a threshold of 33 knots, which
defines a tropical storm according to the Simpson and Riehl scale.5,6

Fig. 1 shows examples of our measure of exposure, 𝑆𝑐𝑡, for four
major hurricanes that hit Puerto Rico over the years. Each hurricane
is represented with a different color and within each color, darker
shades reflect stronger exposures. On the left side of the figure, we
show the best track for each of the four hurricanes, while, on the right
side, we show the exposure index, 𝑆𝑐𝑡, for each of the four months
concerned. This figure underlines the large extent of geographical and
time variation at our disposal for identification. Hurricane Jeanne,
for instance, mostly hit the western part of Puerto Rico (the counties
most affected were municipios ‘‘Aguada’’, ‘‘Aguadilla’’ and ‘‘Cabo Rojo’’).
On the contrary, hurricanes Irene and Maria hit the eastern part of
the island much more severely. Municipios ‘‘Vieques’’, ‘‘Yabucoa’’ and
‘‘Culebra’’ were the counties most affected by hurricane Irene, while
municipios ‘‘Culebra’’, ‘‘Fajardo’’ and ‘‘Luquillo’’ were the counties most
affected by hurricane Maria. Finally, hurricane Georges mostly hit the
central part of the island. The counties most affected were municipios
‘‘Catano’’, ‘‘Aibonito’’, and ‘‘Toa Alta’’. In Appendix B, we list the 23
hurricanes and tropical storms that hit Puerto Rico in our sample
period.

Table 1 presents summary statistics of the exposure index, 𝑆𝑐𝑡,
across Puerto Rican counties and for the period 1995–2017 using
monthly (top panel) and quarterly (bottom panel) data. Not surpris-
ingly, when zero exposures are accounted for, monthly exposures ex-
hibit a smaller average. When computed using positive exposures only,
the average monthly and quarterly exposures are similar.

4 In Section 6, we experiment with a variety of alternative specifications of
ounties exposure to hurricanes.

5 In one robustness check, we increase the threshold from 33 knots to 64.
6 By definition, 𝑆𝑐𝑡 ∈ (0,

∑

𝐻 ), with a value of 0 indicating zero county
exposure to hurricanes (i.e. winds in county 𝑐 are below the threshold) and
with ∑

𝐻 indicating the number of storms hitting a county at time 𝑡. This is
because in the cases when more than one hurricane hits Puerto Rican counties
4

at the same time 𝑡, we sum 𝑥𝑐𝐻𝑡 over hurricanes.
Table 1
Summary statistics of hurricane exposures.

Variable Mean Std. dev. Min. Max. N

Monthly data:
𝑆𝑐𝑡 0.004 0.057 0 1.645 21294
𝑆𝑐𝑡 if 𝑆𝑐𝑡 > 0 0.084 0.242 3.34e−10 1.645 1063

Quarterly data:
𝑆𝑐𝑡 0.013 0.098 0 1.645 7098
𝑆𝑐𝑡 if 𝑆𝑐𝑡 > 0 0.092 0.253 3.34e−10 1.645 961

Notes: 𝑆𝑐𝑡 is our disaster shock measure, computed from Eq. (1). Roughly 5% of our
observations have positive exposures to the disaster shock. This is due to the fact that
our baseline specification includes not only hurricanes but also tropical storms, i.e.
events with windspeeds exceeding 33 knots.

Finally, Fig. 2 presents boxplots of the exposure index. The boxplots
describe 𝑆𝑐𝑡 by county using monthly data for the period 1995–2017.
Counties with 𝑆𝑐𝑡 > 0 between 1995 and 2017 are listed in alphabetical
order. The top (bottom) panels include (exclude) outliers. The white
line is the median. The left edge of the box is the first quartile (𝑄1
or 25th percentile) and the right edge the third quartile (𝑄3 or 75th
percentile). The end of the left (right) whisker is the 1st percentile
(99th percentile). The circles outside of the box capture outliers. The
boxplots highlight the substantial variation in exposures both across
counties and over time.

3.3. Puerto rico employment data

We use employment data from the Quarterly Census of Employment
and Wages (QCEW) by the Bureau of Labor Statistics of the United
States (BLS). The QCEW contains monthly data on employment and
quarterly data on wages at the county and county–industry level. To
the best of our knowledge, this level of detail is impossible to find
in developing countries. We focus our attention on employment in
the private sector. To give a broad idea of the economic structure
of the Puerto Rican economy, during our sample period, the private
sector employed on average 674,800 people. Of those workers, 18.4%
were employed in Retail Trade (NAICS 44-45), 17.2% in Manufacturing
(NAICS 30), 9.7% in Health care and social assistance (NAICS 62),
9.1% in Accommodation and Food Services (NAICS 72), 8.7% in the
Administrative and Waste services (NAICS 46), and 7.1% in Construc-
tion (NAICS 23). In terms of employment dynamics, manufacturing
has witnessed a secular decline. Most services display an increase over
time, while the construction sector seems characterized by an inverted
U-shaped dynamics.

Within the manufacturing sector, the most important industries in
terms of average employment in our sample period are NAICS 325
(‘‘Chemical manufacturing’’), NAICS 311 (‘‘Food manufacturing’’), and
NAICS 315 (‘‘Apparel manufacturing’’). While (unsurprisingly) apparel
manufacturing employment displays a negative trend, chemical man-
ufacturing employment shows an inverted-U shape. We also use the
Local Area Unemployment Statistics from the BLS to get county-level
data at monthly frequency on the number of unemployed and the total
labor force. In Appendix C, we provide tables and graphs with more
details on the structure of the Puerto Rican economy, as well as a table
of summary statistics.

4. Empirical strategy

Armed with the exogenous exposure to hurricanes illustrated in the
previous section, we explore the dynamic employment effects using
local projections. After the seminal contribution by Jorda (2005), local
projections have become a tool used in many settings, as discussed
in the Introduction. The approach consists of running a sequence of
predictive regressions of a variable of interest on a shock for different
prediction horizons. The sequence of regression coefficients traces the

dynamic response of the variable of interest to the shock. The main
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Fig. 1. County exposure to hurricanes — Examples.
Note: The left panels show the best tracks of hurricanes Georges, Jeanne, Irene, and Maria respectively. Each cross represents the position of the eye of the hurricane at 6-hours
intervals. All these four hurricanes made landfall in Puerto Rico. Note however that making landfall is not a necessary condition for the island to be impacted, as some areas
further away from the eye of the hurricane may experience strong winds and thus have positive exposures. The right panels zoom in on the island and show, for each county, the
values taken by the storm index 𝑆𝑐𝑡 during the month the hurricane stroke. Color shades indicate positive exposures, with darker shades displaying stronger exposures.
advantages of this approach are that local projections do not impose
potentially inappropriate dynamic restrictions (as panel VARS do), they
are robust to misspecification of the data-generating process, and they
can be estimated in a simple univariate framework. As argued by Dube
et al. (2022), local projections also offer a simple tool to solve the
problem of dynamic heterogeneous treatment effects that can arise
in difference-in-difference approaches with multiple treatments. More-
over, this method is direct, clear, simple, easy to code and compute, and
is transparent and flexible in its handling of treated and control units.
Finally, it is not specific, but extremely general, including notably its
ability to control for pre-treatment values of the outcome and of other
covariates (Dube et al., 2022).

In our context, we will explore variation at the county–time level,
at the county–industry–time level, and at the industry–time level. First,
we run the following 𝑘-step ahead panel predictive regressions:

𝛥𝑋𝑐,𝑡+𝑘 = 𝛼𝑘 + 𝛾𝑘1𝑆𝑐𝑡 +
∑

𝑝
𝛽𝑝𝛥𝑋𝑐,𝑡−𝑝 + 𝛿𝑡 + 𝜂𝑐 + 𝜖1𝑐,𝑡+𝑘, (2)

where 𝛥𝑋𝑐,𝑡+𝑘 is the cumulative growth of our variable of interest
from time 𝑡 − 1 to time 𝑡 + 𝑘 (that is, 𝛥𝑋𝑐,𝑡+𝑘 ≡ log𝑋𝑐,𝑡+𝑘 − log𝑋𝑐,𝑡−1).
Notice that this definition of our dependent variables implies that our
results are cumulative up to period 𝑘. 𝑋𝑐 represents employment, un-
employment, the labor force (for each county 𝑐 at monthly frequency)
or the average weekly wage (for each county 𝑐 at quarterly frequency).
𝑆 is our measure of disaster shocks, varying at county level for each
5

𝑐𝑡
month (or quarter). Our main object of interest is 𝛾𝑘1 , representing
the average response of 𝑋𝑐 at horizon 𝑘 to a disaster shock at time
𝑡. ∑𝑝 𝛥𝑋𝑐,𝑡−𝑝 controls for past values of the one-period growth of the
variable of interest, which in this context is akin to controlling for
potential pre-trends.7 𝛿𝑡 and 𝜂𝑐 represent time and counties fixed effects.
Our sample period runs from 1995M1 to 2019M11. We have data for
a panel for 78 counties (GEO).

The richness of our data allows us to also exploit the county–
industry–time variation for average employment and wage outcomes.8
Our second specification is therefore the following:

𝛥𝑋𝑖𝑐,𝑡+𝑘 = 𝛼𝑘 + 𝛾𝑘2𝑆𝑐𝑡 +
∑

𝑝
𝛽𝑝𝛥𝑋𝑖𝑐,𝑡−𝑝 + 𝜈𝑖𝑐 + 𝜈𝑖𝑡 + 𝜖2𝑖𝑐,𝑡+𝑘, (3)

𝑋𝑖𝑐 represents employment, (for each county 𝑐 and industry 𝑖 at
monthly frequency) or the average weekly wage (at quarterly fre-
quency). All of the other variables are defined as in Eq. (2). Now, we
can introduce county–industry specific fixed effects (𝜈𝑖𝑐), together with
industry–time fixed effects (𝜈𝑖𝑡). As before, our sample period runs from

7 We selected 𝑝 = 6 for monthly data and 𝑝 = 2 for quarterly data. Notice
that since 𝛥𝑋𝑐,𝑡−𝑝 ≡ log𝑋𝑐,𝑡−𝑝−log𝑋𝑐,𝑡−𝑝−1, we are not inserting in the regression
lagged values of the dependent variable.

8 Unemployment and the labor force are concepts only defined at the
county level.
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Fig. 2. Storm exposure by county for 𝑆𝑐𝑡 > 0, monthly Data,1995–2017.
ote: The top and the bottom panel show disaster shock exposure by county over the period 1995–2017. The top (bottom) panels include (exclude) outliers. The white line within
ach blue box represents the median. The left edge of the box is the first quartile (𝑄1 or 25th percentile) and the right edge the third quartile (𝑄3 or 75th percentile). The end

of the left (right) whisker is the 1st percentile (99th percentile). The circles outside of the box capture outliers.
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1995M1 to 2019M11. We have data for a panel for 78 counties (GEO)

and 70 3-digits industries (NAICS). The advantage of using these more

detailed data is the possibility to control for a richer set of fixed effects.

The main disadvantage is that using county-by-industry level variables

implies dealing with a lot of reported zeros. These observations are

about 40% of the total. This is the reason for which we present first the

county level analysis, where this problem is absent. There is a further

8% of observations where the reported zeros reflect non-disclosure due

to anonymity concerns at this very fine level of disaggregation. We

can detect those instances because they correspond to industry–county–

time observations reporting zero employment or wages but a non-zero

number of establishments. On those 8% of the observations, we apply
6

f

a linear interpolation.9 In the next Section we will present our baseline
results excluding the zeros, both with and without applying the linear
interpolation.10

9 Note that the interpolation is only performed on the 8% of industry–
ounty–time employment and wage observations where the reported zeros
eflect non-disclosure due to anonymity concerns.
10 When we exclude the zeros and do not apply the linear interpolation, we
xclude all the zeros (which amounts to 48% of the original sample). In the
ppendix (Fig. D.2) we also show results obtained when including the zeros.
e essentially include all the zeros in the case where we include the zeros

nd do not perform the linear interpolation. Impulse response functions of
mployment follow a pattern broadly similar to the baseline results. For wages,
lthough the estimates remain imprecise for most of the quarters, including
eros and using non-interpolated data causes the wage responses to flip sign
rom positive to negative. If the data are interpolated, wage results remain
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Finally, we explore the dynamic employment effects across indus-
tries and run the following specification for each industry separately:

𝛥𝑋𝑖,𝑡+𝑘 = 𝛼𝑘 + 𝛾𝑘𝑖 𝑆𝑡 +
∑

𝑝
𝛽𝑝𝛥𝑋𝑖,𝑡−𝑝 + 𝛿𝑚 + 𝜖3𝑖,𝑡+𝑘, (4)

In this case, we do not exploit the variation at the county level,
but only at the industry level.11 𝑋𝑖 represents the employment for each
industry 𝑖 at monthly frequency. Since we run Eq. (4) separately by
industry, the constant term 𝛼𝑘 captures industry fixed effects. 𝑆𝑡 is an
aggregate measure of exposure to disaster, computed as a population-
weighted average of 𝑆𝑐𝑡. Our object of interest is 𝛾𝑘𝑖 , representing the
response of 𝑋𝑖 at horizon 𝑘 to a disaster shock at time 𝑡. We also
insert in the regression controls for pre-trends (∑𝑝 𝛥𝑋𝑖,𝑡−𝑝). While we
cannot use a full set of time fixed effects (which would absorb all
the variation in 𝑆𝑡), we insert monthly dummies (𝛿𝑚), to control for
potential seasonal effects. Finally, since we run Eq. (4) by industry,
controls and seasons may have differential effects across industries.

For the panel regressions, we cluster the standard errors at the
county level. For the industry-level regressions, we use Newey–West
corrected standard errors to account for the potential presence of
autocorrelation and heteroskedasticity.

5. Results

In this Section, we report impulse responses following a disaster
shock. This means that we plot the coefficients 𝛾𝑘1 , 𝛾𝑘2 or 𝛾𝑘𝑖 at different
horizons 𝑘. We consider a two years horizon. Therefore, at monthly
frequency 𝑘 ranges from 0 to 24, while at quarterly frequency 𝑘 ranges
from 0 to 8.12 We rescale the coefficients so that we report the response
to the ‘‘average’’ hurricane recorded. In order to obtain the response to
an average hurricane, we multiply the coefficients by the value reported
in Table 1 for the mean of 𝑆𝑐𝑡 if 𝑆𝑐𝑡 > 0, i.e. 0.084. We also report 95%
confidence intervals.

Fig. 3 reports our first main results. In the first two rows, we
report the coefficients obtained from Eq. (2). As the Figure shows,
after the ‘‘average’’ hurricane, employment falls on average by about
0.5% after about six months. The effects are statistically significant.
At the same time, we also find a significant increase in the number of
unemployed, suggesting that the drop in employment is partly absorbed
by a rise in unemployment. The labor force, on average, does not
display significant changes in the aftermath of a disaster shock, which
could suggest that, on average, out-migration flows may be offset by
new labor market entrants. The response of average weekly wages is
positive after six months, but it is not statistically significant.

Our results on employment are in line with the existing literature.
For instance, Belasen and Polachek (2008, 2009) show that employ-
ment falls over time, reaching a growth rate of about 4% lower than
that of the control group. While our results also point towards a decline
in employment, effects emerge only at the beginning of the second
quarter, peak after six months and disappear thereafter, indicating
that the employment effects of hurricanes are temporary. Interestingly,
although not entirely comparable, the result that employment effects
are temporary is consistent with Roth Tran and Wilson (2021)’s find-
ings on damages of different kind of disasters. The authors find that,
after a sharp decline and a recovery period of up to one year out,
employment gradually reverts to the no-disaster counterfactual, within
approximately 14 months.

similar to the baseline estimates. Importantly, however, results on wages are
inconclusive whether including or excluding the zeros.

11 We therefore avoid the problem of interpolating the data.
12 This is also the reason why we look at outcome variables data until 2019,

and exposure to hurricane until 2017.
7

Furthermore, our findings indicate that, albeit imprecisely esti-
mated, the average wage response to the hurricane shock is positive
between the first and fourth quarters. Belasen and Polachek (2008,
2009) also find that earnings respond positively within the first quarter
of the strike, yet the effect appears to extend over a longer period
of time; twenty-four months later, earnings end up at a level that is
0.4% above the growth of unaffected counties. Similarly, Roth Tran and
Wilson (2021) find that average weekly wages of workers increase con-
tinuously in the aftermath of natural disasters, which may be consistent
with an increase in hourly wages and/or a rise in weekly hours worked.

In the third and fourth row of Fig. 3, we report the results we
obtain from Eq. (3) for employment and average weekly wages. In
the third row, we report the results obtained without using the linear
interpolation for the 8% of the observations, while in the fourth row we
use the interpolation. As the Figure shows, the results are very similar
to our baseline specification.13

We then move to explore whether these average effects masks
heterogeneous responses across industries. Using specification (4), we
find that industries can be divided into three main groups. A first group
of industries, which we call ‘‘strengthened’’, are the industries that
experience an increase in employment following a disaster shock. We
report a selection of those industries in the first three rows of Fig. 4.

In the first row, the Figure illustrates a clear (and sensible) boom
in construction: in industries NAICS 236 (‘‘Construction of buildings’’),
NAICS 237 (‘‘Heavy and civil engineering constructions’’) and NAICS
238 (‘‘Special trade contractors’’), employment grows by 2%–5% after 6
months following the ‘‘average’’ hurricane. In the second row of Fig. 4,
we report three manufacturing industries that experience an expansion
in employment after a disaster shock: NAICS 331 (‘‘Primary metal man-
ufacturing’’), NAICS 332 (‘‘Fabricated metal product manufacturing’’),
and NAICS 337 (‘‘Furniture Manufacturing’’). Interestingly, the increase
appears delayed in the case of furniture manufacturing. Finally, three
service sector industries that see an increase in employment after a
hurricane are reported in the third row in Fig. 4: NAICS 442 (‘‘Fur-
niture and home furniture stores’’), NAICS 444 (‘‘Building material and
garden supply stores’’), and NAICS 561 (‘‘Administrative and support
services’’).

A second group of industries, which we label ‘‘weakened’’ indus-
tries, instead experience a fall in employment following a disaster
shock. We report a selection of those industries in the last three rows
of Fig. 4. The fourth row reports the results for primary and manu-
facturing weakened industries: NAICS 111 (‘‘Crop production’’), NAICS
112 (‘‘Animal production and aquaculture’’), and NAICS 323 (‘‘Printing
and related support activity’’). In the fifth row, we report the results
obtained from industries in the retail sector: NAICS 448 (‘‘Clothing
stores’’), NAICS 451 (‘‘Sport, book and music stores’’), and NAICS 452
(‘‘General merchandise stores’’). In the sixth row of Fig. 4, we can
also see how transportation and accommodation are negatively affected
by a disaster shock: NAICS 487 (‘‘Scenic and Sightseeing transporta-
tion’’), and NAICS 712 (‘‘Museums, Historical Sites, Zoos and Parks’’),
and NAICS 721 (‘‘Accommodation’’). Employment declines in these
industries are potentially driven by a decline in demand in tourism,
a particularly vulnerable sector that heavily depends on weather and
climatic conditions. In fact, the attractiveness of an area may decline
substantially when damages inflicted by natural disasters extend to its
cultural heritage and landscape.

13 In the appendix, Fig. D.1 shows that the results are similar even if we
alternatively include just county-industry specific fixed effects together with
time fixed effects or industry–time fixed effects together with county fixed
effects. Moreover, Fig. D.2 shows how the results reported in the third and
fourth row of Fig. 3 are qualitatively similar if the zeros are not eliminated,

both using and not using the linear interpolation.
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Fig. 3. Employment effects of natural disasters: Panel results.
Note: First and second row: dynamic effects of hurricanes at time 𝑡 on employment, average weekly wages, unemployed and labor force at different horizons exploiting county–time
variation. Third row: dynamic effects of hurricanes at time 𝑡 on employment, average weekly wages, at different horizons exploiting county–industry–time variation without linear
interpolation. Fourth row: dynamic effects of hurricanes at time 𝑡 on employment, average weekly wages, at different horizons exploiting county–industry–time variation with
linear interpolation. Shaded areas are confidence bands at 95%. The shock used to generate these IRFs is the average hurricane over our sample, with value 0.084.
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Finally, a third group of industries, which we call ‘‘neutral’’, are

industries where the employment does not seem to react in a signif-

icant way to a disaster shock. A synthetic way to have a complete

picture for all of the 70 industries included in our sample is offered

by Table 2, which lists all of the industries and their classification into

‘‘strengthened’’ (S), ‘‘weakened’’ (W) or ‘‘neutral’’ (N) for a particular
8

time horizon (12-months). We also report the size of the coefficient (𝛾𝑖)
nd its standard error.14

As shown by Table 2, the heterogeneity in the employment response
o natural disasters can be found even within 2-digits sectors. We con-
ider the example of Transportation (Sector NAICS 48). Two industries
ithin these sectors are featured among the group of ‘‘strengthened’’

14 As explained in the previous Section, we rescale them to represent the
impact of the ‘‘average’’ hurricane.



Ecological Economics 205 (2023) 107693A. Barattieri et al.

e
0

i
p
‘
t
e
N
e
g

Fig. 4. Employment effects of natural disasters: Selected industries.
Note: Dynamic effects of hurricanes at time 𝑡 on employment at different horizons exploiting industry–time variation. Numbers in parenthesis represent the average industry
mployment over the period 1995–2019. Shaded areas are confidence bands at 95%. The shock used to generate these IRFs is the average hurricane over our sample, with value
.084.
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ndustries: NAICS 484 (‘‘Truck transportation’’) and NAICS 488 (‘‘Sup-
ort activities for transportation’’). Two industries are classified as

‘neutral’’: NAICS 481 (‘‘Air transportation’’) and NAICS 483 (‘‘Water
ransportation’’). Two other industries are instead classified as ‘‘weak-
ned’’: NAICS 485 (‘‘Transit and ground passenger transportation’’)
AICS 487 (‘‘Scenic and sightseeing transportation’’). This particular
xample shows the importance of using detailed industry data to better
auge the employment effects of natural disasters.
9

s

In Appendix E, we propose a Table where we report the classifi-
ation (S, N, or W) also for different time horizons (3, 6, 12, 18, 24
onths) for each industry, thus giving a simple way to better grasp

he dynamic employment effects of disaster shocks in each of the 70
ndustries.

iscussion and Mechanisms. The positive effects in the construction
ector are consistent with other studies and indicate an intense process
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of repairing and rebuilding following the shock. For instance, Strobl
and Walsh (2009) estimate that U.S. county employment in construc-
tion increases by about 25 per cent in the aftermath of hurricanes.
Similarly, for all kinds of disasters, Roth Tran and Wilson (2021)
find that after a short decline at the time of the event, construction
employment recovers and rises sharply within one year, reaching levels
about 1.2% higher than in the absence of the disaster. Thereafter,
construction employment keeps rising. Belasen and Polachek (2008)
also find positive employment and earning responses in the construc-
tion sector, although their estimates of the employment response are
imprecisely estimated. In the specific context of Hurricanes Katrina
and Rita, Groen et al. (2020) find positive earnings responses in the
construction sector, both in the short and the long run.

As discussed above, our results highlight the importance of analyz-
ing the employment response to hurricanes across detailed industries.
This is particularly true for the transport and the manufacturing sectors,
which both account for a large share of employment, and, as indicated
in Table 2, exhibit differential responses across industries.15 Hence, our
results suggest that a sectoral analysis may lead to an aggregation bias,
which may, to some extent, explain why Belasen and Polachek (2008)
find statistically insignificant employment effects in the manufacturing
sector. Moreover, the authors estimate negative employment effects in
the transport sector. Our findings imply that this result could be driven
by two industries, Transit and ground passenger transportation and Scenic
and sightseeing transportation.

Some of the heterogeneity we found across industries, witnessed
in Fig. 4 and Table 2, appears very sensible and almost self-evident:
a disaster shock generates a construction boom and negatively affects
retail, transport, and accommodation industries. To shed more lights
on our results, we investigate a potential transmission mechanism of
natural disaster shocks to employment at detailed industry level: input–
output linkages. The construction boom, for instance, could trigger the
increase in employment in some of its important suppliers, such as
the manufacturing of metals and of furniture. The same construction
boom might also explain the increase in employment in furniture stores
and garden supply stores, which materializes only after a few months.
To formally test this hypothesis, we downloaded the 2020 BEA Input–
Output table for the US at NAICS-3 digits, and for each industry we
computed the share of output sold to the construction sectors. We
concentrate on the strengthened industries that we could match with
the Input–Output data (excluding the construction sectors).16 Fig. 5
illustrates a plot of the coefficients from Table 2 against the share of
construction sectors as buyers of the industry output. The relation is
starkly positive and statistically significant. The univariate regression
has an 𝑅2 = 0.61. Using data from the NBER-CES Manufacturing
Industry Database, we verified that this correlation is robust also after
controlling for the industry’s labor share and the skill composition of
its labor force.17 We conclude that input–output linkages are likely to
play a key role in the transmission of disaster shocks to employment
across different industries.

Finally, we notice that the lack of impact of hurricanes on the
employment in many important manufacturing sectors (which might

15 For example, Table 2 clearly indicates that not all industries in the
anufacturing sector respond in a similar way. Fabricated metal product man-

ufacturing is classified as a strengthened industry while Plastics and rubber
products manufacturing and Beverage and tobacco product manufacturing appear
to be neutral and weakened industries, respectively.

16 We also omit the industries 323, ‘‘Printing and related support activity’’
and 512, ‘‘Motion picture and sound recording industries’’, which are classified
as ‘‘strengthened’’ only at the 12-months horizon, as shown in Appendix E.

17 For each of the 9 manufacturing industries in Fig. 5, we computed the
labor share as the average share of wage payments in the value added over
the period 1995–2018. The composition of the labor force is measured using
the average share of non-production workers to total workers over our sample
period.
10
at first appear surprising) is consistent with what Pelli et al. (2022)
find using firm-level data for India, where hurricanes appear to have a
large impact on manufacturing firms’ capital, but no significant effects
on employment.

6. Robustness

In order to check the robustness of our results, we experiment both
with the use of different measures of exposure to natural disasters and
with a different specification of the local projection. First, we increase
the threshold from 33 to 64 knots in Eq. (1). Second, we use a different
way of computing the wind speed, based on the classic formula of Dep-
permann (1947). Third, we substitute the population-weighted centroid
with the geographical centroid of each county when computing the
maximum windspeed affecting county 𝑐 during hurricane 𝐻 . Fourth,
or the industry-level results, we build a measure of exposure that is
ndustry-specific. Lastly, we control both for past hurricanes and for
he hurricanes occurring between period 𝑡 and horizon ℎ in the local
rojections.

4 Knots Threshold A storm officially becomes a hurricane only
hen its windspeed crosses the threshold of 64 knots. Yet, the liter-
ture agrees that, especially in low and middle income countries, even
inds below 64 knots already generate significant destruction (see for

nstance Pelli et al., 2022; Pelli and Tschopp, 2017; Yang, 2008). For
his reason, in our baseline results we consider winds starting at 33
nots. In this first robustness test, we limit ourself to hurricanes and
xclude tropical storms by changing the threshold used in Eq. (1) from
3 to 64 knots, which defines a category 1 hurricanes according to
he Simpson and Riehl scale. Figs. F.1 and F.2 in Appendix F report
he equivalent of the analysis presented in Figs. 3 and 4. The results
re qualitatively similar to the baseline. Not surprisingly, however, the
ffect found are larger, since we focus now only on the most powerful
urricanes.

epperman Formula The meteorological literature proposes several
ays in which to calculate the wind field of a hurricane. They differ
n the number of parameters used and on how they intervene in the
ormula. In this robustness test, we use an alternative model to generate
he wind field, i.e. to compute 𝑤𝑐ℎ, the wind speed at each county 𝑐 for
ach landmark ℎ. Here, we use the classical Depperman formula instead
f the HURRECON model (Deppermann, 1947).

The Depperman formula describes sustained wind velocity at any
oint in the specific case of each population-weighted centroid in the
ollowing way:

𝑐ℎ = 𝑉ℎ ⋅
(

𝐷𝑐ℎ
26.9978

)

if 𝐷𝑐ℎ ≤ 26.9978

𝑤𝑐ℎ = 𝑉ℎ ⋅
(

26.9978
𝐷𝑐ℎ

)0.5
if 𝐷𝑐ℎ > 26.9978.

𝐷𝑐ℎ is the radial distance of each county centroid from the landmark ℎ
and 𝑉ℎ the wind speed at the landmark ℎ. The number 26.9978 (50 km)
corresponds to Simpson and Riehl radius of maximum wind speed. In
general, the radius of maximum wind speed is computed using the gap
between the barometric pressure between the center and the outskirts
of the storm. Given the high number of missing measures of barometric
pressure in the data, we follow Simpson and Riehl (1981) and Hsu and
Zhongde (1998) and use the average radius of maximum windspeed
(50 km) for all hurricanes. Figs. F.3 and F.4 in Appendix F report the
equivalent of the analysis presented in the Figs. 3 and 4. The results
are very similar to the baseline.

Geographical Centroids In the baseline specification, we weigh the
centroid of each county by population. One could argue that there is no
guarantee that economic activity is located close to population centers.
For this reason, in this robustness check, we use the simple geograph-
ical centroid of each county instead of the population weighted one.
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Table 2
Industry results: 12-months horizon.

NAICS Industry name 12-months 12-months Average 12-months
coefficient standard error employment classification

Strengthened industries

236 Construction of buildings 3.67 0.31 26567 S
237 Heavy and civil engineering construction 2.54 0.32 7673 S
238 Specialty trade contractors 1.30 0.25 15971 S
321 Wood product manufacturing 1.45 0.21 392 S
322 Paper manufacturing 0.39 0.16 1678 S
323 Printing and related support activities 0.30 0.15 2354 S
324 Petroleum and coal products manufacturing 0.81 0.37 1115 S
325 Chemical manufacturing 0.34 0.10 25624 S
331 Primary metal manufacturing 0.78 0.30 632 S
332 Fabricated metal product manufacturing 2.00 0.19 5146 S
333 Machinery manufacturing 0.46 0.21 2387 S
334 Computer and electronic product manufacturing 0.72 0.24 10088 S
337 Furniture and related product manufacturing 1.68 0.27 2190 S
423 Merchant wholesalers, durable goods 0.34 0.12 12792 S
442 Furniture and home furnishings stores 1.24 0.18 3296 S
444 Building material and garden supply stores 0.94 0.13 9724 S
445 Food and beverage stores 0.18 0.07 26557 S
484 Truck transportation 0.63 0.14 3337 S
488 Support activities for transportation 0.58 0.16 4651 S
492 Couriers and messengers 2.19 0.19 1166 S
512 Motion picture and sound recording industries 2.02 0.57 2234 S
561 Administrative and support services 0.78 0.15 60060 S

Neutral industries

221 Utilities −0.58 0.42 262 N
311 Food manufacturing 0.15 0.14 14054 N
315 Apparel manufacturing 0.84 0.55 11792 N
326 Plastics and rubber products manufacturing 0.32 0.20 2682 N
327 Nonmetallic mineral product manufacturing 0.27 0.33 3355 N
335 Electrical equipment and appliance mfg. −0.16 0.17 6494 N
336 Transportation equipment manufacturing 0.08 0.19 1698 N
339 Miscellaneous manufacturing 0.14 0.14 11822 N
424 Merchant wholesalers, nondurable goods 0.09 0.10 17488 N
441 Motor vehicle and parts dealers 0.08 0.15 12582 N
443 Electronics and appliance stores 0.25 0.36 3971 N
447 Gasoline stations −0.06 0.08 5285 N
452 General merchandise stores −0.11 0.09 23461 N
454 Nonstore retailers −0.32 0.18 1195 N
481 Air transportation −0.04 0.36 2757 N
483 Water transportation 0.57 1.00 887 N
493 Warehousing and storage 0.45 0.24 1876 N
517 Telecommunications 0.15 1.57 8812 N
524 Insurance carriers and related activities −0.04 0.11 12069 N
531 Real estate 0.00 0.19 9410 N
562 Waste management and remediation services −0.01 0.22 3153 N
622 Hospitals −0.04 0.12 27872 N
711 Performing arts and spectator sports −0.55 0.31 1026 N
722 Food services and drinking places −0.08 0.17 51870 N
811 Repair and maintenance 0.29 0.16 5614 N
813 Membership associations and organizations 0.11 0.13 4286 N

Weakened industries

111 Crop production −0.94 0.13 8428 W
112 Animal production and aquaculture −0.51 0.09 3066 W
312 Beverage and tobacco product manufacturing −0.69 0.16 3276 W
425 Electronic markets and agents and brokers −1.40 0.18 1156 W
446 Health and personal care stores −0.57 0.11 15237 W
448 Clothing and clothing accessories stores −0.52 0.21 19480 W
451 Sporting goods, hobby, book and music stores −1.73 0.45 2791 W
453 Miscellaneous store retailers −2.54 0.29 4784 W
485 Transit and ground passenger transportation −0.59 0.23 1503 W
487 Scenic and sightseeing transportation −3.79 0.83 213 W
511 Publishing industries, except internet −1.46 0.18 3346 W
515 Broadcasting, except internet −0.99 0.19 2220 W
518 Data processing, hosting and related services −0.86 0.32 1830 W
522 Credit intermediation and related activities −0.45 0.13 17650 W
611 Educational services −0.54 0.17 24942 W
621 Ambulatory health care services −0.60 0.08 28825 W
623 Nursing and residential care facilities −0.74 0.12 4552 W
624 Social assistance −0.53 0.21 9457 W
712 Museums, historical sites, zoos, and parks −1.01 0.28 344 W

(continued on next page)
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Table 2 (continued).
NAICS Industry name 12-months 12-months Average 12-months

coefficient standard error employment classification

713 Amusements, gambling, and recreation −1.30 0.27 2160 W
721 Accommodation −2.39 0.16 13935 W
812 Personal and laundry services −0.70 0.19 5620 W

Notes: We show strengthened (with a positive and statistically significant coefficient), neutral (with a coefficient not statistically significant)
and weakened (with a negative and statistically significant coefficient) industries at the 12-months horizon.
Fig. 5. Employment effects of natural disasters: Mechanism.
Note: The figure plots the coefficients from Table 2 against the share of the construction sector as buyer of each industry output. The figure also show the equation of the fitted
line. The relation is positive and statistically significant, with an 𝑅2 = 0.61.
Figs. F.5 and F.6 in Appendix F report the equivalent of the analysis
presented in Figs. 3 and 4. The results are again very similar to those
reported in the baseline.

Industry-Specific Measure of Exposure to Hurricanes While in-
dustries may not be located close to population centers (as we saw
in the previous robustness check), they may also be concentrated in
specific counties. Fig. F.7 in Appendix F reports the equivalent of the
analysis presented in Fig. 4. In this case, though, we do not build
the aggregate exposure to hurricanes as a population-weighted aver-
age (which, in Eq. (4), is by definition identical for each industry).
Instead, we compute here an industry-specific measure of exposure
to hurricanes that for each industry takes a weighted average of the
county-level measure of exposure 𝑆𝑐𝑡 using as weights the average

eights of employment in each county for each industry. This results
n a measure of exposure that varies by industry. In practice, these
easures are all very correlated. Therefore, not surprisingly, the results
resented in Fig. F.7 are very close to those of Fig. 4.

ifferent Specification of the Local Projection Our baseline specifi-
ation may be affected by the possibility of having several subsequent
urricanes. Figs. F.8 and F.9 in Appendix F report the equivalent of the
nalysis presented in Figs. 3 and 4, now using a different specification
or the local projections. In order to capture the effect of hurricanes
appening at time 𝑡 on the outcome variables at horizon 𝑘, we now

control for both the past values of the measure of exposure and the
leads of the measure from period 1 to period k. This guarantees
that the results we found are not confounding previous or subsequent
hurricanes relative to the one happening at time 𝑡.

7. Conclusion

In this paper, we study the short-run, dynamic employment effects
12

of natural disasters. Using monthly data for 70 3-digits NAICS industries
and 78 Puerto Rican counties over the period 1995–2019, we find
an average decline in employment following a disaster shock, which
masks an extensive heterogeneity at the industry level. A part of
this heterogeneity can be explained by input–output linkages. We are
persuaded that the key qualitative insights we provide are valid also
for other contexts, such as developing countries, where data limitations
make impossible the type of analysis performed in this paper.

Moreover, the fact that some industries contract and some others
expand following natural disasters suggests a new potential concept
of resilience: adaptability-driven employment resilience, defined as the
potential opportunity for workers to reallocate from the contracting
industries to the expanding ones in the aftermath of a natural disaster.
Greater mobility can be achieved by enhancing the transferability of
workers’ skills across jobs. Concretely, this would entail educating
workers in acquiring the set of skills that are typically needed in the
industries that expand post-disaster. This does not mean training people
to switch across two distant industries such as retail and construction.
Rather, this means preparing them to switch between jobs that involve
similar tasks or relatively close skills.

To see this, consider for example the six industries related to trans-
port - i.e. Truck transportation (484), Support activities for transporta-
tion (488), Transit and ground passenger transportation (485), Scenic
and sightseeing transportation (487), Air transportation (481), and
Water transportation (483). Our results indicate that not all of these
industries are affected in the same way by a hurricane (see Fig. 6):
employment in ‘‘Truck transportation’’, ‘‘Support activities for trans-
portation’’ and ‘‘Water transportation’’ expand; employment in ‘‘Transit
and passenger transportation’’ and ‘‘Scenic and sightseeing transporta-
tion’’ are affected negatively, while ‘‘Air transportation’’ seems unre-
sponsive. Adaptability-driven employment resilience would prepare people
involved in passenger transportation to be able to quickly switch to

truck transportation through specific courses during their vocational
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training. Unfortunately, while these types of switches may already be
happening, our data do not allow us to trace individual movements.
Yet, facilitating them would help reduce people’s unemployment spells
and speed up recovery in the aftermath of a hurricane.

The importance of these potential reallocations (or especially lack
thereof) is witnessed by Sathyendrakajan et al. (2012), who surveyed
construction firms in Sri Lanka. The lack of skilled workers was cited
as the most important challenge faced by these firms during the post-
disaster reconstruction efforts.

The IMF (2019) proposed a three-pillar ‘‘disaster resilience strat-
egy’’ based on structural, financial, and post-disaster (and social) re-
silience. Adaptability-driven employment resilience could be an im-
portant building block of the post-disaster (and social) resilience. It
could be achieved by introducing new and different vocational training
programs, aimed at endowing workers with a set of heterogeneous
skills needed for quick and potentially temporary reallocations across
different industries. As explained by the OECD (2010): ‘‘Vocational
Education and Training (VET) can play a central role in preparing
young people for work, developing skills of adults, and responding to
the labour market needs of the economy’’.
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Appendix A. HURRECON model

The HURRECON model (see Boose et al., 1994, 2001, 2004) de-
scribes sustained wind velocity at any point within a hurricane’s vortex
using information on the track, size, intensity, and cover type (land or
water) of a hurricane. In the case of this paper, we use this model to
13
compute sustained wind velocity at each population-weighted county
centroid18:

𝑤𝑐ℎ = 𝐹
[

𝑉ℎ − 𝑆(1 − sin 𝑇 )
𝑉𝑓
2

]

[(

𝑅𝑚
𝑅

𝐵
𝑒1−

[

𝑅𝑚
𝑅

]𝐵
)]1∕2

where 𝐹 is a scaling parameter for the effect of friction set at 0.8,
since all the point of interest to us are situated on land (this parameter
is usually set equal to 1 for points over water and to 0.8 for points
over land); 𝑉ℎ is the wind velocity at the eye at landmark ℎ, which we
linearly interpolate from the best track data; 𝑆 is a scaling parameter
for the asymmetry due to the forward motion of the storm, set to
1 (i.e. peak wind speed on the right side minus peak wind speed on
the left side equals the forward velocity of the hurricane – 𝑉𝑓 , as
defined in Boose et al. (2001)); 𝑇 is the clockwise angle between the
forward path of the hurricane and a radial line connecting the eye of
the hurricane to the population-weighted centroid of a county; 𝑉𝑓 is the
forward velocity of the hurricane, i.e. the speed at which the hurricane
is moving forward; 𝑅𝑚 is the radius of maximum winds, obtained from
the best track data; 𝑅 is the radial (or Euclidean) distance from the
center of the hurricane to the population-weighted centroid of a county;
and 𝐵 is a scaling parameter controlling for the shape of the wind
profile curve (usually included between 1.2 and 1.5, and set at 1.35).

The parameters of this equation, adapted from Holland’s equation
for the cyclostrophic wind (Holland, 1980), have been set follow-
ing Boose et al. (2004) that parameterized and validated the model for
Puerto Rico.

Appendix B. Hurricanes list

We report below the names of the 23 hurricanes and storms we use
in our baseline specification, together with the year and month when
they hit Puerto Rico and the maximum category they reached according
to the Simpson and Riehl scale. We also report the number of people
that these hurricanes have affected overall, the number of fatalities
and the estimated damages. Blanks correspond to missing values (see
Table B.1).

Appendix C. Puerto Rico employment and labor force

In this Section, we report summary statistics of both monthly and
quarterly Puerto Rico employment data (Table C.1), as well as the struc-
ture of Puerto Rico private employment using NAICS 2-digits industries
(Table C.2) and the structure of Puerto Rican private manufacturing
employment using NAICS 3-digits industries (Table C.3). We present
average figures across our sample period. In Table C.4 we show the
labor force for each county in Puerto Rico in 1995, its share in the total
labor force, and the percentage change of labor force in each county
over the period 1995–2019. Finally, in Figs. C.1 and C.2 we report
instead the dynamics over time of employment in selected industries.

Appendix D. Alternative specifications

See Figs. D.1 and D.2.

Appendix E. Industry heterogeneous dynamics

Table E.1 reports for each of the 70 NAICS industries included in
our analysis the classification into Strengthened (‘‘S’’), Neutral (‘‘N’’), or
Weakened (‘‘W’’) for different time horizons (3, 6, 12, 18, 24 months).

Appendix F. Robustness figures

See Figs. F.1–F.9.

18 Velocity and wind direction are measured relative to the surface of the
Earth, and angles are measured in degrees.
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Fig. 6. Employment Effects of hurricanes: Transport Industries.
Note: Industry results for selected Transport Industries. Dynamic effects of hurricanes at time 𝑡 on employment at different horizons exploiting industry–time variation. Numbers
n parenthesis represent the average industry employment over the period 1995–2017. Shaded areas are confidence bands at 95%.
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Table B.1
Hurricanes.

Name Year Month Category People Total Total
affected fatalities damages

Luis 1995 9 4 98,000 339,684,000
Marilyn 1995 9 4 1 169,842,000
Bertha 1996 7 2–3
Hortense 1996 9 4 57,315 18 825,028,000
Georges 1998 9 3 2,778,505,000
José 1999 10 TS
Lenny 1999 11 4 1 233,058,000
Debby 2000 8 1
Keith 2000 10 3
Dean 2001 8 1
Jeanne 2004 9 3 3,500 2 137,022,000
Frances 2004 9 4
Dean 2007 5 5
Olga 2007 12 TS
Omar 2008 10 4 1
Earl 2010 8 4
Irene 2011 8 3 2,271 1 575,291,000
Karen 2013 10 TS
Gonzalo 2014 10 4
Danny 2015 8 3
Erika 2015 8 TS
Irma 2017 9 5 2
Maria 2017 9 5 750,000 64 71,798,241,000

Note: Category refers to the category corresponding to the maximum windspeed reached by the hurricane according to the
Saffir–Simpson wind scale. TS stands for tropical storm. Data on People affected, Total fatalities, and Total damages come from
the EM-DAT database (https://public.emdat.be).
15
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Table C.1
Summary statistics of Puerto Rico employment data.

Variable Mean Std. dev. Min. Max. N

Monthly data:
𝛥𝐸𝑀𝑃𝐿𝑐𝑡 −0.00018 0.046 −1.177 0.973 21,175
𝛥𝑈𝑁𝐸𝑀𝑃𝐿𝑐𝑡 −0.00075 0.092 −0.536 0.693 21,175
𝛥𝐿𝐴𝐵_𝐹𝑂𝑅𝐶𝐸𝑐𝑡 −0.00021 0.025 −0.333 0.400 21,175
𝛥𝐸𝑀𝑃𝐿𝑐𝑖𝑡 0.00019 0.110 −3.951 4.357 441,050
𝛥𝐸𝑀𝑃𝐿𝑖𝑡 0.00010 0.050 −0.931 1.069 25,087

Quarterly data:
𝛥𝑊 𝐴𝐺𝐸𝑐𝑡 0.00410 0.105 −0.580 0.613 6,982
𝛥𝑊 𝐴𝐺𝐸𝑐𝑖𝑡 0.00503 0.132 −2.377 1.490 142,817

Notes: 𝛥𝐸𝑀𝑃𝐿𝑐𝑡 is the employment growth at county level, 𝛥𝑈𝑁𝐸𝑀𝑃𝐿𝑐𝑡 the growth of unemployed
at county level, 𝛥𝐿𝐴𝐵_𝐹𝑂𝑅𝐶𝐸𝑐𝑡 is the labor force growth at county level, 𝛥𝑊 𝐴𝐺𝐸𝑐𝑡 is the average
wage growth at county level. 𝛥𝐸𝑀𝑃𝐿𝑐𝑖𝑡 and 𝛥𝑊 𝐴𝐺𝐸𝑐𝑖𝑡 are the employment and average wage growth
at county–industry level. 𝛥𝐸𝑀𝑃𝐿𝑖𝑡 is the average employment growth at industry level.
Table C.2
Private employment structure.

NAICS2 Sector name Av. employment (count) Empl. share

11 Agriculture, forestry, fishing and hunting 12,560 1.86%
21 Mining, quarrying, and oil and gas extraction 1000 0.15%
22 Utilities 240 0.04%
23 Construction 48,130 7.13%
30 Manufacturing 116,020 17.20%
42 Wholesale trade 30,420 4.51%
44–45 Retail trade 123,740 18.34%
48–49 Transportation and warehousing 16.58 2.46%
51 Information 16,810 2.49%
52 Finance and insurance 29,570 4.38%
53 Real estate and rental and leasing 13,040 1.93%
54 Professional and technical services 24,880 3.69%
55 Management of companies and enterprises 12,230 1.81%
56 Administrative and waste services 59.11 8.76%
61 Educational services 23,900 3.54%
62 Health care and social assistance 65.83 9.76%
71 Arts, entertainment, and recreation 3,360 0.50%
72 Accommodation and food services 61.40 9.10%
81 Other services, except public administration 15,220 2.26%
99 Unclassified 690 0.10%

TOTAL 674,800 100.00%

Notes: Av. Employment (count) reports average employment over our study period (1995–2019).
Table C.3
Manufacturing employment structure.

NAICS3 Industry name Av. employment (count) Empl. share

325 Chemical manufacturing 25,360 21.9%
311 Food manufacturing 14,840 12.8%
315 Apparel manufacturing 14,820 12.8%
339 Miscellaneous manufacturing 12,280 10.6%
334 Computer and electronic product manufacturing 10,430 9.0%
335 Electrical equipment and appliance mfg. 6,700 5.8%
332 Fabricated metal product manufacturing 5,070 4.4%
327 Nonmetallic mineral product manufacturing 3,390 2.9%
312 Beverage and tobacco product manufacturing 3,250 2.8%
316 Leather and allied product manufacturing 3,020 2.6%
326 Plastics and rubber products manufacturing 2,930 2.5%
323 Printing and related support activities 2,320 2.0%
333 Machinery manufacturing 2,310 2.0%
337 Furniture and related product manufacturing 2,200 1.9%
336 Transportation equipment manufacturing 1,820 1.6%
322 Paper manufacturing 1,780 1.5%
324 Petroleum and coal products manufacturing 1,210 1.0%
314 Textile product mills 960 0.8%
331 Primary metal manufacturing 650 0.6%
321 Wood product manufacturing 420 0.4%
313 Textile mills 230 0.2%

TOTAL 116,020 100.0%

Notes: Av. Employment (count) reports average employment over our study period (1995–2019).
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Table C.4
Labor force, by county.

County name Labor force 1995 Labor force share 𝛥labor force 1995–2019

San Juan Municipio 155752 12.70% −14.87%
Bayamun Municipio 82662 6.74% −23.86%
Carolina Municipio 74477 6.07% −19.28%
Ponce Municipio 57516 4.69% −23.38%
Caguas Municipio 53565 4.37% −11.16%
Guaynabo Municipio 39202 3.20% −5.66%
Mayagez Municipio 35054 2.86% −45.33%
Toa Baja Municipio 32573 2.66% −10.85%
Arecibo Municipio 30831 2.51% −26.92%
Trujillo Alto Municipio 26903 2.19% −0.85%
Aguadilla Municipio 21250 1.73% −36.09%
Humacao Municipio 19350 1.58% −10.70%
Vega Baja Municipio 18018 1.47% −30.23%
Toa Alta Municipio 17819 1.45% 40.25%
Rio Grande Municipio 16599 1.35% 3.13%
Cayey Municipio 15825 1.29% 1.99%
Canuvanas Municipio 15594 1.27% 2.72%
Cabo Rojo Municipio 15133 1.23% −9.44%
Cidra Municipio 14295 1.17% 6.68%
Aguada Municipio 14134 1.15% −18.04%
Isabela Municipio 14118 1.15% −11.96%
San Sebastian Municipio 13541 1.10% −26.33%
San German Municipio 13417 1.09% −32.17%
Fajardo Municipio 13102 1.07% −13.43%
Juana Diaz Municipio 12901 1.05% 14.93%
Yauco Municipio 12774 1.04% −24.31%
Manati Municipio 12763 1.04% −9.14%
Moca Municipio 12375 1.01% −16.04%
Yabucoa Municipio 11830 0.96% −27.20%
Juncos Municipio 11605 0.95% 6.79%
San Lorenzo Municipio 11105 0.91% 6.96%
Guayama Municipio 10985 0.90% 4.75%
Hatillo Municipio 10960 0.89% 18.48%
Vega Alta Municipio 10791 0.88% −9.94%
Aibonito Municipio 10685 0.87% −46.35%
Gurabo Municipio 10338 0.84% 53.70%
Aoasco Municipio 10236 0.83% −15.13%
Las Piedras Municipio 9780 0.80% 14.57%
Dorado Municipio 9763 0.80% 27.56%
Catano Municipio 9490 0.77% −19.59%
Camuy Municipio 9477 0.77% −0.87%
Corozal Municipio 9308 0.76% −2.76%
Coamo Municipio 9184 0.75% 8.99%
Morovis Municipio 9173 0.75% −13.56%
Lajas Municipio 8779 0.72% −48.87%
Aguas Buenas Municipio 8373 0.68% −23.54%
Sabana Grande Municipio 8363 0.68% −30.23%
Salinas Municipio 8363 0.68% −14.19%
Loiza Municipio 8133 0.66% 3.09%
Utuado Municipio 8115 0.66% −19.10%
Lares Municipio 8083 0.66% −12.60%
Quebradillas Municipio 7579 0.62% −22.58%
Barranquitas Municipio 7439 0.61% 0.84%
Barceloneta Municipio 7408 0.60% −22.96%
Guayanilla Municipio 7342 0.60% −39.62%
Naranjito Municipio 7030 0.57% 1.43%
Pequelas Municipio 7009 0.57% −18.66%
Hormigueros Municipio 6791 0.55% −21.16%
Naguabo Municipio 6528 0.53% 22.00%
Luquillo Municipio 6163 0.50% 3.29%
Santa Isabel Municipio 6029 0.49% 47.95%
Orocovis Municipio 5801 0.47% −12.25%
Gunica Municipio 5738 0.47% −35.09%
Villalba Municipio 5715 0.47% 25.96%
Rincon Municipio 5630 0.46% −18.59%
Ceiba Municipio 5584 0.46% −37.13%
Patillas Municipio 5559 0.45% −20.01%
Adjuntas Municipio 5501 0.45% −22.17%
Arroyo Municipio 5208 0.42% −7.76%
Comerlo Municipio 5147 0.42% −4.90%
Ciales Municipio 4889 0.40% −24.96%
Jayuya Municipio 3834 0.31% 13.43%
Maunabo Municipio 3100 0.25% −8.02%
Las Marias Municipio 3043 0.25% −10.85%
Vieques Municipio 2609 0.21% 4.86%

(continued on next page)
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Table C.4 (continued).
County name Labor force 1995 Labor force share 𝛥labor force 1995–2019

Florida Municipio 2573 0.21% 25.70%
Maricao Municipio 2143 0.17% −9.44%
Culebra Municipio 746 0.06% 13.64%

TOTAL 1226600 100.00% −11.1%

Fig. C.1. Private employment dynamics (in thousands).

Fig. C.2. Manufacturing employment dynamics (in thousands).
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Fig. D.1. Alternative set of fixed effects.
Note: Panel results controlling for alternative sets of fixed effects. First and second row: dynamic effects of hurricanes at time 𝑡 on employment, average weekly wages, at different
horizons exploiting county–industry–time variation without and with linear interpolation using county*industry and time fixed effects. Third and fourth row: dynamic effects of
hurricanes at time 𝑡 on employment, average weekly wages, at different horizons exploiting county–industry–time variation without and with linear interpolation using county and
industry*time fixed effects. Shaded areas are confidence bands at 95%.
19
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Fig. D.2. Including Zeros.
Note: Panel results including zeros. First row: dynamic effects of hurricane at time 𝑡 on employment, average weekly wages, at different horizons exploiting count-y-industry–time
variation without linear interpolation using county*industry and industry*time fixed effects. Second row: dynamic effects of hurricanes at time 𝑡 on employment, average weekly
wages, at different horizons exploiting county–industry–time variation with linear interpolation using county*industry and industry*time fixed effects. Shaded areas are confidence
bands at 95%.
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Table E.1
Classification of industries at different horizons.

NAICS Industry Baseline model 64-Knots threshold Deppe formula Non-weighted centroids
Classification at month Classification at month Classification at month Classification at month
3,6,12,18,24 3,6,12,18,24 3,6,12,18,24 3,6,12,18,24

111 Crop production WWWWW WWWWW WWWWW WWWWW
112 Animal production and aquaculture WWWWW WWWWW WWWWW WWWWW
221 Utilities WNNWN WNWWW WNNWN WNNWN
236 Construction of buildings SSSSS SSSSS SSSSS SSSSS
237 Heavy and civil engineering construction SSSSS SSSSS SSSSS SSSSS
238 Specialty trade contractors SSSSS SSSSS SSSSS SSSSS
311 Food manufacturing WNNNN WNNSS WNNNN WNNNN
312 Beverage and tobacco product manufacturing NNWNN NNWNN NNWNN NNWNN
315 Apparel manufacturing NNNSS NNSSS NNNSS NNNSS
321 Wood product manufacturing WWSSS WWSSS WNSSS WWSSS
322 Paper manufacturing NNSSN NSSSN NNSSN NNSSN
323 Printing and related support activities WWSNN WWSNN WWNNN WWSNN
324 Petroleum and coal products manufacturing NNSSS NNSSS NNSSS NNSSS
325 Chemical manufacturing NSSSN NSSSN NSSSN NSSSN
326 Plastics and rubber products manufacturing SNNSS SNNSS SNNSS SNNSS
327 Nonmetallic mineral product manufacturing NNNNN NNNNN NNNNN NNNNN
331 Primary metal manufacturing WNSSS WNSSS WNSSS WNSSS
332 Fabricated metal product manufacturing SSSSS SSSSS SSSSS SSSSS
333 Machinery manufacturing NNSSS NNSSS NNNNS NNSSS
334 Computer and electronic product manufacturing NNSSS WNSSS NNSSS NNSSS
335 Electrical equipment and appliance mfg. NWNNN NWNNN NWNNN NWNNN
336 Transportation equipment manufacturing WWNSS WWNSS WWNSS WWNSS
337 Furniture and related product manufacturing WSSSS WSSSS WSSSS WSSSS
339 Miscellaneous manufacturing NNNNN NNNNS NNNNN NNNNN
423 Merchant wholesalers, durable goods WNSSS WWSSS WNSSS WNSSS
424 Merchant wholesalers, nondurable goods WNNNS WNNNS WNNNS WNNNS
425 Electronic markets and agents and brokers WWWWW WWWWW WWWWW WWWWW
441 Motor vehicle and parts dealers WWNSS WWNSS WNNNS WWNSS
442 Furniture and home furnishings stores NSSSS NSSSS NSSSS NSSSS
443 Electronics and appliance stores WNNNN WWNNS WNNNN WNNNN
444 Building material and garden supply stores NSSSS NSSSS NSSSS NSSSS
445 Food and beverage stores WWSSN WWSSN WWSSN WWSSN
446 Health and personal care stores WWWWW WWWWW WWWNN WWWWW
447 Gasoline stations WWNNN WWNSS WWNNN WWNNN
448 Clothing and clothing accessories stores WWWNW WWWWW WWNNN WWWNW
451 Sporting goods, hobby, book and music stores WWWWN WWWWW WWWWN WWWWN
452 General merchandise stores WWNWW WWNWW WWNWW WWNWW
453 Miscellaneous store retailers WWWWW WWWWW WWWWW WWWWW
454 Nonstore retailers WWNSS WWWSS WWNSS WWNSS
481 Air transportation NWNNN WWNNN NWNNN NWNNN
483 Water transportation NNNNS WNNNS NNNNS NNNNS
484 Truck transportation NNSSN SSSSS NNSSN NNSSN
485 Transit and ground passenger transportation WWWNS WWWNS WWWNN WWWNS
487 Scenic and sightseeing transportation WWWNN WWWNN WWWNN WWWNN
488 Support activities for transportation SSSSS SSSSS NSSSS SSSSS
492 Couriers and messengers NSSSS WSSSS NSSSS NSSSS
493 Warehousing and storage SNNSS SNSSS SNNSS SNNSS
511 Publishing industries, except internet WNWWS WNWWS WNWWS WNWWS
512 Motion picture and sound recording industries WNSWW WNSWW WNSWW WNSWW
515 Broadcasting, except internet WWWNW WWWWW WWWNN WWWNW
517 Telecommunications WWNNN WWWWW WWNNN WWNNN
518 Data processing, hosting and related services WNWNN WWWNN NNWNN WNWNN
522 Credit intermediation and related activities WWWWW WWWWW NWWWW WWWWW
524 Insurance carriers and related activities WNNSS WNNSS WNNNN WNNSS
531 Real estate NNNNN NWNNS NNNNN NNNNN
561 Administrative and support services SSSSN SSSSN SSSSN SSSSN
562 Waste management and remediation services SSNNN SSNNN SSNNN SSNNN
611 Educational services WWWWW WWWWW WWWWW WWWWW
621 Ambulatory health care services WWWWW WWWWW WWWWW WWWWW
622 Hospitals NWNNN SWNNN NWNNN NWNNN
623 Nursing and residential care facilities WWWWN WWWWW WWWWN WWWWN
624 Social assistance WWWNN WWWNN WWNNN WWWNN
711 Performing arts and spectator sports WWNNN WWWNN WWNNN WWNNN
712 Museums, historical sites, zoos, and parks WWWWN WWWWW WWWWN WWWWN
713 Amusements, gambling, and recreation WWWWN WWWWN WWWWN WWWWN
721 Accommodation WWWWW WWWWW WWWWW WWWWW
722 Food services and drinking places WWNNN WWWNN WWNNN WWNNN
811 Repair and maintenance WNNSS WNNSS WNNSS WNNSS
812 Personal and laundry services WWWNN WWWWN WWWNN WWWNN
813 Membership associations and organizations WWNNN WWNNN WWNNN WWNNN
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Fig. F.1. Panel results, 64-knots.
Note: Panel results with a different threshold (64-knots). First and second row: dynamic effects of hurricanes at time 𝑡 on employment, average weekly wages, unemployed and
abor force at different horizons exploiting county–time variation. Third row: dynamic effects of hurricanes at time 𝑡 on employment, average weekly wages, at different horizons
xploiting county–industry–time variation without linear interpolation. Fourth row: dynamic effects of hurricanes at time 𝑡 on employment, average weekly wages, at different
orizons exploiting county–industry–time variation with linear interpolation. Shaded areas are confidence bands at 95%.
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Fig. F.2. Selected industries, 64-knots.
Note: Industry results with a different threshold (64-knots). Dynamic effects of hurricanes at time 𝑡 on employment at different horizons exploiting industry–time variation. Numbers
n parenthesis represent the average industry employment over the period 1995–2017. Shaded areas are confidence bands at 95%.
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Fig. F.3. Panel results, Depperman.
Note: Panel results with a formula for the wind speed (Depperman). First and second row: dynamic effects of hurricanes at time 𝑡 on employment, average weekly wages,
unemployed and labor force at different horizons exploiting county–time variation. Third row: dynamic effects of hurricanes at time 𝑡 on employment, average weekly wages,
at different horizons exploiting county–industry–time variation without linear interpolation. Fourth row: dynamic effects of hurricanes at time 𝑡 on employment, average weekly
wages, at different horizons exploiting county–industry–time variation with linear interpolation. Shaded areas are confidence bands at 95%.
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Fig. F.4. Selected industries, Depperman.
Note: Industry results with a formula for the wind speed (Depperman). Dynamic effects of hurricanes at time 𝑡 on employment at different horizons exploiting industry–time
variation. Numbers in parenthesis represent the average industry employment over the period 1995–2017. Shaded areas are confidence bands at 95%.
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Fig. F.5. Panel results, unweighted centroids.
Note: Panel results with distance from geographical centroids (Unweighted). First and second row: dynamic effects of hurricanes at time 𝑡 on employment, average weekly wages,
unemployed and labor force at different horizons exploiting county–time variation. Third row: dynamic effects of hurricanes at time 𝑡 on employment, average weekly wages,
at different horizons exploiting county–industry–time variation without linear interpolation. Fourth row: dynamic effects of hurricanes at time 𝑡 on employment, average weekly
wages, at different horizons exploiting county–industry–time variation with linear interpolation. Shaded areas are confidence bands at 95%.
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Fig. F.6. Selected industries, unweighted centroids.
Note: Industry results with distance from geographical centroids (Unweighted). Dynamic effects of hurricanes at time 𝑡 on employment at different horizons exploiting industry–time
variation. Numbers in parenthesis represent the average industry employment over the period 1995–2017. Shaded areas are confidence bands at 95%.
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Fig. F.7. Selected industries, industry-specific storm measure.
Note: Industry results with industry-specific exposure measure. Dynamic effects of hurricanes at time 𝑡 on employment at different horizons exploiting industry–time variation.

umbers in parenthesis represent the average industry employment over the period 1995–2017. Shaded areas are confidence bands at 95%.
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Fig. F.8. Panel results, different controls.
Note: Panel results controlling for lags and leads of exposure measure (Different Controls). First and second row: dynamic effects of hurricanes at time 𝑡 on employment, average
weekly wages, unemployed and labor force at different horizons exploiting county–time variation. Third row: dynamic effects of hurricanes at time 𝑡 on employment, average
weekly wages, at different horizons exploiting county–industry–time variation without linear interpolation. Fourth row: dynamic effects of hurricanes at time 𝑡 on employment,
average weekly wages, at different horizons exploiting county–industry–time variation with linear interpolation. Shaded areas are confidence bands at 95%.
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Fig. F.9. Selected industries, different controls.
Note: Industry results controlling for lags and leads of exposure measure (Different Controls). Dynamic effects of hurricanes at time 𝑡 on employment at different horizons exploiting
industry–time variation. Numbers in parenthesis represent the average industry employment over the period 1995–2017. Shaded areas are confidence bands at 95%.
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