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Abstract: Unprecedented socioeconomic conditions during the COVID-19 pandemic impacted ship-
ping. We combined ferry CO2 emissions in Europe (from the EU-MRV) with port call data and vessel
parameters, and analysed them using mixed-effects linear models with interactions. We found a
generalized reduction in unitary emissions in 2020, confirming its causal relation with COVID-19.
Furthermore, for larger ferries, additional and COVID-19-related reductions between 14% and 31%
occurred, with the larger reductions for those built before 1999. Ferries operating in the Baltic and
Mediterranean Seas experienced comparable reductions in their unitary emissions, but in the North
Sea per-ship emissions decreased by an additional 18%. Per-ship emissions at berth, while showing
increases or decreases depending on ferry type, did not significantly change at the fleet level. We
believe that our methodology may help assess the progress of shipping toward decarbonisation in
the presence of external shocks.

Keywords: EU-MRV; mixed-effects; lockdown

1. Introduction

The COVID-19 pandemic (hereafter: “COVID”) imposed a global shock on people’s
mobility [1], energy consumption [2], and airborne emissions [3,4]. The restrictions in both
short-range mobility and traveling enforced by governments to safeguard the public health
had the side effect of triggering an unprecedented economic downturn, with most countries
experiencing a deep recession and long-lasting disruptions to the global supply chain [5].

The maritime sector has been affected in multiple ways by this shock. In the early
stages of the pandemic, outbreaks on cruise ships made headlines because clusters of the
virus were highly lethal in confined spaces [6]. Later, as the demand for goods shrank due
to the restrictions put in place, maritime trade was also affected. A reduction in port calls
followed which, according to the United Nations Conference on Trade and Development
(UNCTAD), was particularly relevant for the break-bulk, container, and dry-bulk ship
segments [7]. However, according to the European Maritime Safety Agency (EMSA), the
greatest effects in terms of ship activity were on cruise ships and ferries, at least in Europe.
These shipping segments conducted 85% and 19% fewer port calls in 2020, respectively [8].

Maritime emissions of carbon dioxide (CO2) from ships have been monitored in
Europe since before COVID, due to the EU-MRV (monitoring, reporting, verification)
regulation [9]. Information regarding annually aggregated CO2 emissions have been made
available from all ships above a given size threshold that call at European ports. The fact
that the EU-MRV system had already been operational for two full years before the COVID
outbreak represents an unparalleled opportunity. Like other cases where data collection
systems continued to operate during the anthropause imposed by COVID [10,11], this
provides a unique chance to conduct a natural experiment [12] into maritime transport.

Among the various ships monitored through the EU-MRV, ferries are likely to increase
and perhaps distort any COVID-related anomalies, due to their hybrid services in which
they carry both (rolling) vehicles and passengers (hence their technical name of “Ro-Pax”
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ships) [13,14]. The transport of people via ferries may have suffered specific and amplified
shocks or adjustments, which in part may differ from those of freights. These can include
a specific geographical and temporal pattern, following the restrictions put in place in
specific countries during the various surges of the pandemic [15,16].

We therefore use the EU-MRV data to address the question of whether COVID led to
statistically significant changes in ferry CO2 emissions, how they were distributed across
the fleet and the various European sea domains, and if they could reveal any insights into
the functioning of the ferry industry during this macroeconomic shock. This investigation
required additional information about ferry characteristics and their port calls, and we
also developed an advanced statistical modelling framework. We considered the panel
structure of the ferry activity and CO2 emission data and based our inference on linear
mixed-effects models with interactions to handle COVID effects while accounting for the
high heterogeneity of the dataset and its temporal correlation.

This work presents three novelties. The first one lies in the data used: a bespoke vessel
characteristics and mobility dataset was combined with an emission dataset derived from
the EU-MRV regulation, leading to a joint and open access dataset. The second novelty is
the analysis method: that is, the use of linear mixed-effects models for representing both
vessel-specific effects and terms related to the way of operating the ferry fleet on various
European seas. Another novelty is the results: to our knowledge, the impact of COVID
on CO2 emissions had not yet been assessed in relation to the various ferry types, also
distinguishing between total and at-berth emissions.

The remainder of this manuscript is organized as follows. Section 2 provides a review
of the literature regarding (i) maritime transportation during the first two years of COVID,
(ii) major policies regarding maritime greenhouse gases (GHG) emissions, and (iii) some
of the statistical analysis methods used for assessing the impact of COVID. In Section 2.1,
the effects of COVID are examined through three specific research questions. We then
introduce the datasets used and the preprocessing approach in Section 3. The preliminary
data analysis in Section 4 is followed by Section 5, which provides a description of the
statistical methods. In Section 6, we examine the results for both total emission and emission
at berth, and answer the three research questions. Section 7 provides a discussion based on
the results obtained, and we present the conclusions of the paper in Section 8. Appendix A
provides additional information for reproducing the results of this work.

2. Literature Review and Research Questions

Several studies have investigated the changes to shipping during the pandemic by
analysing ship activity data. For example, a global reduction was found in the expected
number of navigated miles and port calls occurring in the first half of 2020, particularly for
passenger (−43%) and container ships (−14%), with an increase in the proportion of idle
passenger ships (from about 10% in 2019 to over 45% in 2020) [17]. Another study based
on global data from the Automatic Identification System (AIS) found a statistically signifi-
cant relationship between ship traffic, an index of the stringency of COVID containment
measures, and a country’s income [15]. Both of these studies noted that any comparison
with 2019 may lead to an underestimation of the impact of COVID due to the increasing
trend in the prepandemic period. According to an UNCTAD report [18], shipping (i.e.,
cargo-carrying ships) first reacted to the pandemic-triggered macroeconomic framework
with blank sailings, i.e., the cancellation of part or all of the port calls of a voyage. This
continued until mid-2020, when the demand again increased, and both the blank sailings
and the proportion of idle ships in the fleet decreased. In addition, slow-steaming was not
found to be an option for the container shipping fleet during the pandemic, as this had
already been in place since the 2008–2009 financial crisis [19].

Only a few studies have focussed on the changes to ferries in 2020. In the seas of the
Strait of Gibraltar, the emissions of six Ro-Pax ferries propelled by water jet systems were
estimated to have been reduced by nearly 95% over a 90-day period that corresponded to
the national lockdown [20]. AIS data were used to estimate the changes in CO2 emissions



Sustainability 2022, 14, 5287 3 of 19

from various ship types in the Western Singapore Straits [21], and the Ro-Pax CO2 emissions
were found to be reduced by more than 75% (2020 to 2019), with a drop to nearly zero
emissions from April 2020 until the end of the year. Changes in ferry activity at the port
of Oslo were quantified by applying dynamic time warping on AIS data of 2017–2020. It
was found that the changes were related to a stringency index of COVID restrictions [22].
Making use of a national database (https://www.havbase.no/, accessed on 3 March 2022),
the monthly resolved evolution of ferry emissions in Norway in 2020 was described in [23],
finding in particular that several of the international ferries were canceled due to COVID,
whereas domestic ferries continued operating, albeit at lower intensity than before the
pandemic. In [24], AIS data for Danish waters were used to prove a statistically significant
drop in average draught of Ro-Pax ships between 2020 and 2019. However, their number
and average speed did not change significantly.

In 2020, global GHG emissions dropped by 7% on a year-to-year basis for the first
time [2,25]. These estimations are based on energy consumption, but they do not account
for the contribution from shipping. The estimation regarding shipping in [25] was based on
the assumption that the emissions are linearly proportional to the transported volumes, and
a not verifiable data source for the volume contraction in only the second quarter of 2020
was used. More recent estimates, including the contribution from shipping, could assess a
drop of just 5.4% in 2020 relative to 2019, corresponding to a 1.9 Gton CO2 decrease [26].
Also, a year-to-year rebound for 2021 in the range of 4.2% [27] to 4.9% [26] is projected.

Thus, GHG emissions from the maritime sector are worthy of attention, as they
exacerbate climate problems [28] and also in view of the regulations implemented in the
sector over the last few years. The GHG emissions from shipping are considered hard-to-
abate because of the long lifespans of the assets, the high level of energy dependency, and
the inherent limits to any potential electrification. Reducing the absolute GHG emissions
from ships would require technical innovations in terms of energy-saving devices [29],
operational improvements [30], market-based measures [31], or scalable zero-emission
fuels [32]. In 2018, the International Maritime Organization (IMO) set its ambition to halve
shipping GHG emissions by mid-century [33]. In 2021, the first mandatory measures were
approved; starting from 2023, all ships will be required to reduce their carbon intensity,
following a ship-type-specific reference line [34].

The EU-MRV regulation is a piece of regional policy requiring the monitoring of CO2
emissions or their proxies (fuel consumption or bunkering sales) from all ships above
5,000 gross tonnes (GT) that call at ports in the European Economic Area (EEA) [35]. The
EU-MRV uses “top-down” estimates rather than “bottom-up” approaches, which would
involve identifying ship activity and colour emissions (such as in [20,21]). A legislative
proposal by the EU Commission, as part of the “fit for 55” package (https://ec.europa.eu/
commission/presscorner/detail/en/IP_21_3541, last accessed on 3 March 2022), suggested
that shipping GHG emissions should be included in the EU Emission Trading Scheme
(ETS). This implies that the maritime polluter would have to surrender an allowance to
compensate for its own CO2 emissions (As of 9 March 2022, the unit price was above 81
EUR/t CO2, https://tradingeconomics.com/commodity/carbon, last accessed on 3 March
2022) The emissions would be assessed on the basis of the EU-MRV data, again highlighting
the value of this dataset.

Therefore, the decarbonisation of maritime transportation is now clearly on the agenda
for policy makers. However, systemic stresses and crises such as the COVID pandemic
may hinder a clear assessment of the progress in this industry. To analyse time-series
data, statistical panel data methods are required. Such methods have traditionally been
applied in econometrics [36], biostatistics [37] and environmental statistics [38]. The most
accepted approach is based on linear mixed-effects (LME) models. Essentially, these extend
regression models and analysis of variance to consider correlations among observations at
different time points. Spatial correlations can also be handled. Such correlations render
traditional multivariate regressions unreliable. LME models enable heterogeneity due to
unobserved covariates being filtered, and thus more precise inferences can be made. The

https://www.havbase.no/
https://ec.europa.eu/commission/presscorner/detail/en/IP_21_3541
https://ec.europa.eu/commission/presscorner/detail/en/IP_21_3541
https://tradingeconomics.com/commodity/carbon
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importance of panel data in transportation research was highlighted by [39]. Ref. [40] used
ordinary least squares regression to examine transport energy consumption. The COVID
impact on the shipping trade using monthly resolution data was studied by [41] using the
seemingly unrelated regression model. Changes in linkages between variables, including
a port connectivity index, trade variables, and COVID were investigated by [42]. They
assessed both direction and strength of causality links, with maritime connectivity more
affected by the number of COVID cases than deaths.

2.1. Research Questions

In most of these works on maritime CO2 emissions (exceptions include [15,41]), a
descriptive statistical approach was taken in which the time series of the observed data
were aggregated on a specific time scale, usually monthly or yearly, and then, year-to-
year comparisons were conducted. However, this approach cannot attribute the changes
directly to COVID or distinguish them from any pre-COVID trends. In addition, it cannot
identify signals of change smaller than the internal variability of the datasets or assess the
associated uncertainty.

However, the feasibility of an advanced statistical analysis is limited by the actual
data available. Figure 1 illustrates the connection between the level of data availability
and a causal graph of ferry CO2 emissions. The arrows indicate the causal relationships,
while the colour shadings represent the level of data availability. The number of passengers
and the vehicle mobility via ferries are influenced by the combined effect of the pandemic,
the ferry fleet characteristics (engine power, vessel length, etc.), and the specific European
sea basin. Some data for these three factors are available. The level of mobility affects the
number of port calls due to the strategic planning of shipowners who aim to operate their
vessels optimally [43]. The port calls affect the timing of the voyages and, together with
the sea basin dependent meteo-oceanographic (meteocean) conditions, the voyage profiles,
i.e., the time evolution of kinematic and energetic aspects [44]. In particular, each port call
implies an acceleration (either a speed increase or decrease) for the vessel, which leads to
CO2 rates higher than those during a steady state in navigation [45]. In conclusion, each
voyage profile provides the values of the CO2 emissions for that voyage.

COVID-19

MobilityFleet parameters Sea basin

Port calls

Voyages Metocean

CO2 emissions

Figure 1. Data availability and causal graph of the CO2 ferry emissions. Blue boxes represent
data available at the yearly level; brown elliptical nodes denote voyage-level data not available for
this study; the green box represents available data resolved at the level of individual voyages; the
transparent box refers to constant parameters. The arrows link causes (tail) and effects (head).

We draw on annually aggregated emission data in this study, and thus cannot capture
the detailed dynamic impact of the heterogeneous restrictions on passenger mobility
imposed by various countries at different times to combat the COVID outbreak [15]. Instead,
we consider the whole of 2020 as the COVID-related factor, although the various pandemic
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waves did not span the whole year in Europe, and the timing and quality of the restrictions
to passenger mobility varied extensively in time and space [16].

This work aims to address the following main question: “How did the Ro-Pax CO2
emissions change in Europe in the aftermath of the COVID outbreak of 2020”? As a
quantitative answer is sought, the initial expectation that COVID led to a generalised
reduction in CO2 emissions can be questioned. For instance: What part of the emission
reduction was due to COVID and what had to do with an internal variability of the ferry
fleet? Was there a geographic pattern in the emission changes? If the total emissions
decreased, did the same happen to the emissions at berth? Could we expect that, for some
vessels, emissions at berth increased due to the longer time spent at harbours? Or did they
decrease because of idle vessels switching off their engines? Therefore, we believe that the
investigation should focus on the following three research questions:

Q1. Did the heterogeneity of the ferry fleet influence the outcome and how?
Q2. Was there any specific geographical pattern across the European sea basins?
Q3. Was the change related to the way the vessels were operated, in particular their

number of port calls?

These questions are considered in terms of both total emissions and emissions at berth.
This distinction can inform about the functioning of the ferry industry in Europe during
the pandemic.

3. Data and Preprocessing

In this section we describe the datasets and the relevant variables used and discuss
the data preprocessing phase.

3.1. Datasets and Variables

Two main datasets were used in this study: THETIS-MRV (or “THETIS”) and IHS
Markit (“IHS”).

THETIS corresponds to the data collected through the EU-MRV system and published
(https://mrv.emsa.europa.eu/, last accessed on 3 March 2022) by EMSA. This vessel-
specific information is reported as annually aggregated data. These data are self-reported by
shipping companies but subject to third-party verification. The official FAQs clarifying the
details of the collected information are available (https://ec.europa.eu/clima/eu-action/
transport-emissions/reducing-emissions-shipping-sector_en, last accessed on 3 March
2022) Of the several variables reported for each ship, we focussed on two measurements:
the total CO2 emissions per ship, Etot, and the CO2 emitted while the ship is at berth at
ports under an EU member state’s jurisdiction, Eber, cf. Table 1. Throughout the paper, the
terms “per-ship” or “unitary” are used interchangeably with reference to emissions.

IHS here refers to two commercial (https://ihsmarkit.com/products/ship-and-port-
data.html, last accessed on 3 March 2022) and bespoke databases purchased by CMCC
including: (i) ship parameters (hull, machinery, and capacity) and (ii) port calls of all Ro-Pax
vessels above 5000 GT calling at ports of the EEA in 2018–2020. The IHS dataset was built
by CMCC in cooperation with the data provider by selecting ports and vessels matching
the THETIS information. The variables obtained from IHS are also reported in Table 1 and
represent the minimal set of information needed for answering the research questions of
Section 2.1.

https://mrv.emsa.europa.eu/
https://ec.europa.eu/clima/eu-action/transport-emissions/reducing-emissions-shipping-sector_en
https://ec.europa.eu/clima/eu-action/transport-emissions/reducing-emissions-shipping-sector_en
https://ihsmarkit.com/products/ship-and-port-data.html
https://ihsmarkit.com/products/ship-and-port-data.html
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Table 1. Input datasets variables and additional variables used in this work.

Dataset Source Variable Acronym Description Units/Type

THETIS

IMO number IMOn Vessel unique identifier -
Total CO2 emissions Etot Per-ship total CO2 emissions [ton]

CO2 emissions which
occurred within ports under

a MS jurisdiction at berth
Eber Per-ship CO2 emissions at berth [ton]

IHS

Speedservice maxV Service speed [kts]
ConsumptionValue1 FuelC Fuel consumption rate [ton/h]
TotalKilowattsofMainEngines Pme Total power of main engines [kW]
TotalPowerOfAuxiliaryEngines Paux Power of auxiliary engines [kW]
PassengerCapacity nPax Passenger carrying capacity -
LengthOverallLOA LOA Length over all [m]
YearOfBuild yearB Year of building -

IHS-derived
several VType Vessel type of Equation (2) [categorical]
Port Latitude/Longitude Decimal Dom Sea basin (BAL, MED, NOR) [categorical]
Call ID nCalls Per-ship number of port calls -

- COVID Dummy variable for year 2020 [categorical]

3.2. Preprocessing of THETIS

Information about unitary CO2 emissions was extracted from the THETIS dataset.
According to the EU-MRV regulation, the annual emission reports of each ship in the
previous calendar year are published by EMSA from 30 June. However, information for all
ships is not always provided by this date. Furthermore, already published data for some
ships may be reviewed by the companies. In either case (ships added or data reviewed), a
new version of the dataset for that specific monitoring year is generated by THETIS and
then published. We therefore considered the latest version available at the time we began
our research for each monitoring year. The THETIS versions selected for our study are
reported in Table 2.

Table 2. CO2 emissions in the THETIS dataset. The Σ in front of the variables indicates that they
are integrated across the fleet. The changes in emissions ∆ refer to the previous year. Units are Mt.
The number N of vessels in each dataset and the number of obvious outliers (cf. Section 3.2) are
also given.

Subset All Non-HSC

ΣEtot ΣEber N ΣEtot ∆ ΣEber ∆ ΣnCalls ∆ N Pruned

2018-v217 142.19 8.71 12,059 13.03 0.96 231,332 321 4

2019-v191 146.3 9.21 12,336 13.53 0.5 1.01 0.05 265,193 33,861 345 8

2020-v62 125.83 8.09 11,676 10.95 −2.58 0.94 −0.07 230,626 −34,567 325 4

Four CO2 monitoring methods were available to companies according to the EU-MRV
regulation. We assumed that any changes in the method for a given ship over the years do
not negatively affect the consistency of the emission dataset. Verifying this assumption is
beyond the scope of the present paper.

We first removed a few obvious outliers (Etot < Eber; Etot lower than emissions
from all voyages between ports under a member state’s jurisdiction; an annual total time
spent at sea that exceeded the number of hours in a year). Then, only ships of the “Ro-pax”
type were selected, thus matching the IHS dataset. This class also includes high-speed craft
(HSC), which exhibit very different speed and propulsion characteristics than displacement
vessels. In terms of their GHG emissions, it has been proposed that HSC should be assessed
separately from other ferries [46]. We therefore removed them from the “Ro-Pax ship”. To
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this end, a condition suggested by [47] on a scaled service speed (the Froude number Fn)
was applied:

Fn =
maxV√
g0 · LOA

< 0.4 (1)

The service speed maxV and ship length LOA used for evaluating Equation (1) were
taken from specific variables in the IHS dataset as reported in Table 1. The gravity accelera-
tion was g0 = 9.8 m/s2.

The subset of ships resulting from the above filtering was kept as the reference fleet
for all subsequent analyses. As Table 2 shows, although the non-HSC vessels represent less
than 3% of the THETIS fleet, their share of emissions is around 9% of the EEA total.

3.3. Preprocessing of IHS

The IHS databases provided: (i) the vessel characteristics, (ii) approximate georefer-
ences for their emissions, and (iii) the number of their port calls. This corresponds to the
three research questions in Section 2.1.

(i) A categorical variable VType was introduced to describe the vessel type. This was
coded as an integer value of between 0 and 15, as given by

VType =
3

∑
k=0

2k · H(ϕk − ϕk0) (2)

where H is the Heaviside function, and ϕk are the vessels’ variables listed in Table 3
together with their threshold values ϕk0. These thresholds were selected as the medians of
the distributions of ϕk. The VType = 0 therefore consists of low main-engine power, low
passenger-carrying capacity, short length and old ferries. This is the reference class for
the subsequent inferential analysis conducted in Section 6. Other classification criteria
would in principle be possible, depending on ferry data availability. E.g., annual revenues,
lane-meter capacity, or bed capacity could also be considered [14].

Table 3. Threshold values for the predictors in VType, i.e., arguments of the Heaviside function in
Equation (2).

k ϕk ϕk0 Units

0 Pme 21,600 kW
1 nPax 1250 -
2 LOA 174 m
3 yearB 1999 -

In Figure 2a, the Ro-Pax fleet (including HSC) is illustrated in terms of main engine
power and service speed and taking into account the dichotomous components of VType.

(ii) Vessels are assigned to one of the three European basins of Figure 3a (Dom categorical
variable with the values of Baltic, Mediterranean, or North Sea) based on the location of
its ports of call. These were obtained from the corresponding IHS database. A vessel was
assigned to the domain where it made most of its calls in a specific year. The Black Sea and
Atlantic Ocean were discarded due to a limited number of vessels sailing in those domains.

(iii) The port calls of each vessel for each of the three years 2018–2020 were added up
into the nCalls variable.
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Figure 2. Main engine power Pme of the EEA Ro-Pax ships: (a) vs. Froude number, with vessel type
Equation (2) portrayed as marker feature (see inset), and the Pme threshold of Table 3 is given as a
horizontal dashed line (HSC lay in the region to the right of the vertical dashed line); (b) vs. auxiliary
engine power Paux, only for non-HSC, with marker colours indicating fuel consumption rates. Both
panels are at the log-log scale and the slant dashed line is identified via least-square fits.

a) b)
Figure 3. (a) Ports called at by ferries in 2018–2020 (markers) and the geographical regions considered
(coloured areas); (b) Violin plots of Eber and Etot during the three years. The black cord at the edge
of each half-violin spans the 95% confidence interval of the median, which is represented by the
white dot.

4. Preliminary Analysis

This section provides a preliminary overview of the fleet’s characteristics and the
impact of COVID on their CO2 emissions

The whole Ro-Pax fleet operating in the EEA is represented in Figure 2 and includes
key propulsion and size parameters.

First, Figure 2a shows that the threshold at Fn = 0.4 suggested by [47] is effective in
identifying the HSC cluster. For non-HSC vessels, the main engine power Pme involves a
power–law dependence on the Froude number Fn. However, for any given Fn, Pme tends to
increase with VType as defined by Equation (2). Thus, newer and larger vessels (tendency
toward “jumboizing”, [14]) are generally powered by larger main engines. In addition, for
a given Pme, newer vessels can sail at a larger Fn.

Figure 2b suggests that the power of the auxiliary engines Paux on average scales as√
Pme. The fuel consumption rate (i.e., the mass of fuel burned per hour, FuelC), however,

is only weakly related to either Pme or Paux. This is likely due to the role played by the
mass of fuel burned per work unit or a specific fuel consumption [48]. The CO2 emission
rate is then proportional to the fuel consumption.

Table 2 shows fleet-level aggregated figures. The non-HSC fleet accounts for around
11–13 Mton CO2 of annual emissions. This would currently cost about EUR one billion in
allowances when including shipping in the EU-ETS (see Section 2).

Table 2 shows that the CO2 emissions at berth represent a minor proportion (less than
one-tenth) of the total. However, these emissions occurred in ports, sometimes close to
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densely inhabited areas. CO2 is not directly harmful to human health but could be a proxy
for other noxious emissions such as particulate matter, sulfur oxides, and to some extent
nitrates [20]. Thus, emissions at berth, although clearly smaller, are kept at the same level
of detail of the total emissions throughout this paper.

The inter-annual changes of aggregated values can provide a preliminary sense of the
impact of COVID. The total emissions from all non-HSC ferries of the EEA decreased by
2.6 Mton from 2019 to 2020, and corresponding emissions at berth were 74 kton lower, as
also shown in Table 2.

The distributions of the per-ship emissions in 2018–2020 are provided in Figure 3b. A
change in shape can be observed, particularly for the distribution of Etot in 2020, which is
broader than in previous years and includes a fatter low-emissions tail.

A reduction is observed for both emission variables at the transition from 2018 to 2019,
but this was only statistically significant from 2019 to 2020, with Etot falling by nearly
15% and Eber by 6% (Table 4). The number nCalls of per-ship annual port calls was stable
from 2018 to 2019 but then decreased by about 7% in 2020, which is highly significant. The
values from Table 4 are per-ship median figures for non-HSC only, in contrast with those
reported in [8], which is likely an average value at the Ro-Pax fleet level.

All subsequent observations and findings in this paper refer to per-ship figures of the
non-HSC fleet.

The statistical processing and significance testing of this section were performed in
python, making use of the scipy.stats python library.

Table 4. Per-ship values of emissions and number of port calls. The first three lines report the
medians and the following two the median changes. The levels of significance of unidirectional
tests are expressed via symbols in Table 5 in the “SignL” column. Wilkoxon’s unilateral tests were
also conducted.

Etot nCalls Eber
[ton] [%] SignL [# per Ship] [%] SignL [ton] [%] SignL

2018 37,482 467 2779
2019 37,432 475 2621
2020 30,182 402 2474

2019 vs. 2018 −480 −1.7 ◦ 0 0 −30 −1.4
2020 vs. 2019 −4,418 −15.4 • • • −33 −6.8 • • • −104 −5.9 ◦

Table 5. Upper threshold p-values for either bi- or unidirectional tests, with corresponding symbols
and predicates.

Symbol p Predicate
bi uni

◦ 0.08 0.04 Nearly significant
• 0.05 0.0025 Slightly significant
•• 0.01 0.005 Significant
• • • 0.001 0.0005 Highly significant

5. Methods

In this section, we describe the statistical modelling approach used for assessing the
relationships between CO2 emission variables and factors related to vessel type, domain,
and activity.

A standard multiple regression is not adequate in this case due to the high temporal
correlation of the residuals. In fact, the Pearson’s correlation coefficient of Etot over the
three years 2018–2020 is about 0.9. Such a high correlation would make both standard
errors (SE) and p-values unreliable. Therefore, a panel data approach using LME models
was adopted [36,41], which can handle both ship-specific effects and interactions among
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predictors [37,38]. LME models not only allow us to address the time correlation of the data
but also to reduce the residual variability, while accounting for the large heterogeneity of
the fleet. Moreover, considering interaction terms in the LME models, we take advantage
of the detailed description of the fleet structure given by the IHS dataset and can assess the
impact of COVID from the perspective of research questions Q1–Q3 of Section 2.1.

To introduce the general form of the LME models for either Etot or Eber, let yi,t denote
the generic CO2 emissions of ship i = 1, . . . , nt in year t = 2018, 2019, 2020. Thus, the model
setup is given by:

yi,t = ai + β′xi,t + εi,t (3)

where xi,t is the design vector including both categorical and numerical variables (COVID,
VType, Dom, nCalls) and their interactions. The vector β contains the corresponding fixed
effects, which are estimated using maximum likelihood. In addition, ai, i = 1, . . . , nt are the
vessel-specific random intercepts given by independent, normal random variables with
zero mean and a common variance. They account for the unobserved heterogeneity of the
fleet and the correlation among the three years we consider. The residual error ε is assumed
to be a Gaussian white noise with zero mean and constant variance independent of the
random intercepts. This is checked later in Section 6.1.

To understand the optimality of models used in the results section, we considered 40
candidate models of Equation (3) type characterized by different x vectors, i.e., different
subsets of predictors and their interactions. The complete list of models with their estimated
terms and statistics is provided in the Supplementary Materials (S1 and S2). The 40 models
are characterised by an increasing level of complexity, with the first 20 containing fixed
effect models only and the remaining 20 also including a ship-specific random intercept
term. In each of the two subsets, the first five models do not include VType as a predictor.

The LME model in Equation (3) could be extended to have one or more random slopes
at the cost of simplicity of the model. A discussion of the effect of random slope on the
selected model is deferred to Section 6.1.

Although prediction is not the main aim of this paper, we followed a modern data
analysis approach ([49], Chapter 2) and considered the models’ prediction capability for a
validation set in our model selection. According to this approach, the coefficients of each
model were estimated using a training set, and the model forecast performance is assessed
in a validation set.

We used the conditional root mean square error in the validation set (RMSEvC), i.e.,
the RMSE of the forecast obtained by conditioning on all data available. To obtain a more
complete picture, we also used Akaike’s information criterion (AIC). According to the
equifinality concept, [50], we considered a set of acceptable models instead of a single best
one. Thus, we avoided automatic model selection and focussed on nearly best models, in
which the above scores are very close to best. We then chose the model that most closely
addressed the three research questions in Section 2.1.

Following the standard approach of ([49], Chapter 5) we conducted a k-fold cross-
validation (k = 10) to compute the RMSEvC. Figure 4 depicts the behaviour of AIC and
RMSEvC for both emission types and shows that the random intercept reduces both scores.
The presence of VType further improves these scores.

In terms of handling categorical variables, the LME models are based on the reference
category, which throughout the paper corresponds to the VType = 0 vessels of the Baltic Sea
in pre-COVID years (i.e., 2018 and 2019). This follows from the fact that, by default, the R
language uses the alpha-numerically first category as a reference, which can be changed, as
shown in the code in Appendix A.2.

The ∆z relative changes due to COVID for a categorical predictor z (i.e., a specific
value of either VType or Dom) can be computed as

∆z =
β̂C + β̂C:z

ȳz
(4)
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where β̂’s are the estimated coefficients of the corresponding model terms, ȳz is the mean
value of the emission variable in the z category before COVID, and C denotes COVID = 1.
The uncertainties of the coefficients can be estimated through the SE. It is a quadratic form
of the variance–covariance matrix of β:

SE2 = JTVar[β] J (5)

where J is a vector of zeros with one at the position of both the COVID and COVID:z terms.
The uncertainty on ∆z is thus expressed as SE/ȳz.

6. Results

We discuss the results for the colour approach of Section 5 in this section. First, one of
the 40 LME models is chosen (Section 6.1), and then we address its implications in terms of
our research questions (Section 6.2).

6.1. Selected Model

The performance of the 40 models in terms of both the conditional RMSE in the
validation set and AIC is provided in Figure 4.

b)a)

Figure 4. Scores of the 40 candidate models for: (a) Etot; and (b) Eber. The chosen model (#30) is
highlighted with a vertical dashed line. The conditional RMSE in the validation set and the AIC are
shown as diamonds and circles, respectively. Their minimum values are indicated by filled markers.

Here we focus on model #30, which when using Wilkinson’s notation (https://it.
mathworks.com/help/stats/wilkinson-notation.html, last accessed on 3 March 2022) reads:

y ∼ (1|IMOn) + COVID ∗ VType+ COVID ∗ Dom+ COVID ∗ nCalls (6)

with y being either Etot or Eber. The first term denotes the vessel-specific random intercept.
The remaining three summands represent linear terms in each of the predictors and in the
COVID dummy variable and all interactions between COVID and the other predictors.

In Table 6, the estimates of model #30 for all the interaction terms with COVID are
provided for both Etot and Eber. This table covers Q1-Q2-Q3 research questions by means
of impact estimates and p-values as discussed below in Section 6.2. The table also shows
that VType = 1 and 14 are only weakly represented due to conflicting parameters (such as
low power and large hull). Full details of model #30, inclusive of the terms that do not
interact with COVID, are provided in the Supplementary Materials (S3).

Model #30 is a quasi-optimal model in terms of AIC and RMSEvC. When considering
Etot, it leads to an AIC of less than 0.1% off the minimum of all of the 40 tested models
and a RMSEvC of less than 1.5% off the minimum. In addition, considering Eber, model
#30 is less than 0.1% off the minimum AIC among all the 40 tested models and less than 2%
off the minimum RMSEvC.

In Table 7, statistics of the residuals of model #30 are reported. Consistent with the
heterogeneity of the spatio-temporal changes in ferry activity during the pandemic, their
standard deviation in 2020 is larger than before for both Etot and Eber. In addition, the

https://it.mathworks.com/help/stats/wilkinson-notation.html
https://it.mathworks.com/help/stats/wilkinson-notation.html
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skewness is mildly different from zero, particularly for Eber, and the kurtosis is larger than
three before COVID. Thus, a moderate non-normality and a moderate heteroskedasticity
characterize the residuals. Nevertheless, we believe the sample size is large enough for
an approximated asymptotic normality of the estimates and a correct interpretation of
p-values.

From Table 7, one could also observe that the difference in residual variances before
and during COVID may hint at a random slope in model #30, given by (1 + COVID|IMOn).
We considered this case, not reported here for brevity. The resulting model is similar to
model #30 and does not affect its quasi-optimality. As expected, the residual variance is
smaller, being captured by the random slope variance, but a level of heteroskedasticity close
to that in Table 7 is still present, being only slightly alleviated by the additional random
component. Also, fixed effect estimates and their p-values are approximately the same as
model #30, and the conclusions are substantially unchanged.

Table 6. Model #30: Fixed effects estimates for the interaction terms with COVID. For VType, the >

symbol indicates that the corresponding variable is above the threshold of Table 3 and thus different
from that in the reference category (VType = 0). The n20 column gives the non-HSC counts in 2020.
Full details of model #30 are reported in the Supplementary Materials (S3).

Etot n20
Eber

β̂ [t] SE [t] signL β̂ [t] SE [t] signL
−4169 1620 • COVID 308 −180 216

COVID : VType
β̂ [t] SE [t] signL VType Pme nPax LOA yearB β̂ [t] SE [t] signL

- - - 0 - - - - 56 - - -
4214 7526 1 > - - - 2 −37.4 1,010
−3514 1955 ◦ 2 - > - - 38 458.2 261
−9698 3249 •• 3 > > - - 9 382.7 433
−552 3057 4 - - > - 11 97.9 409
1568 2976 5 > - > - 11 481.3 399
−8165 4139 • 6 - > > - 6 −827.4 553
−9602 2296 • • • 7 > > > - 22 220.7 308
1450 2565 8 - - - > 17 98.4 343
−5116 3413 9 > - - > 9 275.1 457
−919 3210 10 - > - > 10 255.5 429
−5513 3624 11 > > - > 7 −1199 484 •
−2956 2342 12 - - > > 23 55.3 313
2843 2147 13 > - > > 27 228.3 288

14 - > > > 0
−6143 1719 • • • 15 > > > > 60 447.5 230 ◦

Total 308

β̂ [t] SE [t] signL COVID : Dom β̂ [t] SE [t] signL
- - - BAL 91 - - -
−666 1327 MED 145 −332 178 ◦
−3514 1590 • NOR 72 181 212

β̂ [t] SE [t] signL β̂ [t] SE [t] signL
1.1 0.6 COVID : nCalls 308 0 0.1

Table 7. Statistics of the conditional residuals of the LME model #30 of Section 6 for vessels sailing
during either 2018–2019 (ref.) or 2020 (COVID). The full dataset is used as learning data.

Etot Eber
units ref. COVID ref. COVID

nsamples - 648 308 648 308
std [ton] 5667 6672 793 896

skewness - 0.2 −0.3 1 0.7
kurtosis - 5.0 2.0 6.2 2.1
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6.2. Research Questions Answered

As the COVID term in Table 6 shows, an overall reduction of CO2 emissions in 2020
for all vessels is confirmed by LME model #30. A statistically significant change of −4169
(1620) t per ship is estimated for Etot, and a change is also observed for Eber, but this is not
statistically significant. The specific changes in vessel type, sea domains, and ship activity
(port calls) due to COVID are presented in the following three subsections.

6.2.1. Role of Vessel Type (Q1)

During the COVID year (2020), some ferry types showed statistically significant
additional reductions of Etot with respect to the reference category, i.e., VType = 2, 3, 6, 7,
and 15. In addition to the reference (VType = 0), the categories 15, 2, and 7 included the
greatest number of ships. These are all high-passenger capacity ferries. Two ferry types
(7 and 15) experienced highly significant emission reductions. Using Equations (4) and
(5), we found (cf. the Supplementary Materials, S3) that their total changes exceeded −31
(5)% (VType = 7, ships built up to 1999) and −14 (2)% (VType = 15, new builds) compared
to pre-COVID mean values.

However, for Eber, Table 6 shows that only VType= 11 (large power, high capacity,
short hull, new builds) deviated significantly with respect to the reference category, which
represented a reduction of 1199 (484) t in unitary CO2 emissions. A slightly significant
increase with respect to the reference occurred for VType = 15, which differs from the
previous class only in terms of longer hulls. The unitary emission changes of these two
ferry types were −34 (12) and +6 (5)%, respectively. Most of the other types of ferries
increased their unitary emissions at berth.

For both Etot and Eber, the relative changes with respect to the reference category are
reported in Figure 5. The changes are associated to the vessel types via radarplots. We can
also observe how the uncertainty in the statistical estimates relates to the number of vessels
in each class.

𝑃𝑚𝑒

𝑛𝑃𝑎𝑥𝑦𝑒𝑎𝑟𝐵

𝐿𝑂𝐴

0
1

a)       

b)

Figure 5. Per-ship emission changes due to COVID with respect to the reference category (which
includes VType = 0) for model #30: (a) Etot and Eber shown as dark and empty bars, respectively,
with the lines centered at the top of the columns representing the 95% confidence intervals, and level
of significance of β̂VType represented as symbols (cf. Table 5); (b) number of vessels in each class (light
grey bars), with VType decoded by the radar plots. Their legend is provided in the top-right corner
of (a).
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6.2.2. Role of Sea Basin (Q2)

During the COVID year, only the North Sea ferries displayed an additional and
statistically significant reduction of Etot with respect to the reference category, reaching a
total change ∆C:NOR of −18 (5)%.

When we consider Eber, Mediterranean and North Sea ferries behaved differently
from the reference category of the Baltic Sea (i.e., VType = 0 ferries of pre-COVID years). In
the North Sea, emissions slightly increased, but this was not statistically significant, while
in the Mediterranean Sea the unitary emissions changed by −17 (6)%, which was slightly
significant. This drop can mainly be ascribed to the emission reductions from vessels of
VType = 11 (cf. Section 6.2.1), which were all sailing in the Mediterranean Sea.

The greater significance of the reduction of Etot in the North Sea compared to the
reduction of Eber in the Mediterranean is mirrored by the size of the uncertainties as
illustrated in Figure 6.

BAL MED NOR
Dom

-40

-20

0

20

40

 [%
]

Etot Eber n signL

0

100

200

n

Figure 6. Per-ship emission changes due to COVID by Dom, for model #30. MED and NOR refer to
the Mediterranean and North Sea, respectively, while the Baltic Sea (BAL) is part of the reference
category. The shadings, lines, and symbols are as in Figure 5.

6.2.3. Role of Port Calls (Q3)

The estimate of the COVID : nCalls model term represents the ∂Etot/∂nCalls partial
derivative. For this, model #30 identifies a value that was close to zero before COVID,
within the confidence interval of 0.7 (0.8) ton per call, see the Supplementary Materials (S3).
During 2020, the value increased to 1.1 (0.6) ton per port call, although this was below the
threshold of statistical significance.

This additional contribution from the maneuvering operations next to ports can be
compared to the CO2 emissions during one hour of navigation of the smaller ferries. In fact,
the hourly emissions of the non-HSC ranged between about 2 and 25 ton for the values in
Figure 2b and for typical hydrocarbon fuels (This implies an emission factor ∼3 g/g, [51]).
However, more data regarding ship movements and emissions on a voyage basis will be
required to gain a deeper understanding of the effects of port calls on the total emissions
during COVID.

Emissions at berth, Eber, do not by definition include the port call operations. Their
dependence on nCalls is consistently found to be null within the uncertainty.

7. Discussion
7.1. Data Availability

As anticipated in Section 2.1, data availability defined the scope of this work. It
enabled a top-down study of the regional impact of COVID on CO2 emissions from
ferries, i.e., a study based on direct emission estimates through one of the four monitoring
methods of THETIS. In contrast, bottom-up studies, such as for example [20,21,52], rely
on an inventory of ship movements when colour their emissions. A top-down analysis of
CO2 maritime emissions is not possible for previous global shocks such as the 2008–2009
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financial crisis [19]. At that time neither EU-MRV nor any other legislative framework
for the collection of maritime emissions was in force anywhere in the world. COVID is
therefore the first global shock in which both types of analysis can be conducted for ship
emissions. This has the potential to lead to higher quality findings when assessing the role
of COVID on maritime transport.

However, while the EU-MRV regulation requires a per-voyage monitoring, the pub-
lished data are aggregated on a yearly basis. This fact makes it difficult to assess how the
CO2 emissions were influenced, e.g., by the actual stringency of the COVID containment
measures [15,22] or by the actual meteocean conditions along the voyages. Apart from
commercial considerations, the route decided by the shipmaster may also be determined
by the avoidance of rough seas or adverse currents [30,43,44]. Even if the actual voyage
profiles are used (as in [15,17]), comparing them to voyage-level CO2 emission data would
not be possible, as they are not published by THETIS. In an opposite scenario, with full
availability of sub-voyage resolution data, it was even possible to state if the emissions
were in line with the observed meteocean conditions [53,54]. The lack of per-voyage basis
resolution in the published THETIS dataset may prevent an independent verification of
the progress of shipping toward higher carbon efficiency. We note that in the EU-MRV
regulation, emission monitoring is the first required step in view of subsequent mitigation
policies [9]. The present work provides a deeper understanding of the monitored emission
data and their relationship with an external shock such as COVID.

7.2. Emissions at Berth

The observation of an opposite trend for the emissions at berth among new vessels
with large power and high-passenger capacity, depending on their hull length, may be
somewhat surprising. The unitary emissions of shorter vessels (VType = 11) decreased by
34%, while in longer vessels (VType = 15) they increased by 6% compared to the reference
category. In our analysis, these two categories are only differentiated by LOA/ nPax, which
can be regarded as a proxy of the space available per passenger.

These findings may be related to different practices of managing the idle time at
berth during the restrictions due to the pandemic. The two main options available are
(https://bit.ly/DNVlayup, last accessed on 3 March 2022) first, keeping a vessel and its
machinery at a reduced but still operational level (hot lay-up), or second, switching it off
completely and leaving it without a crew onboard (cold lay-up). Hot lay-up is suitable for
vessels kept out of service for short times (3–12 months), while cold lay-up is an exceptional
measure that only applies to assets likely to be out of service for an extended period, for
example with a view to upgrading or dry-docking them.

Thus, the observation that the low LOA/ nPax ferries (VType = 11) underwent a decrease
of emissions at berth is consistent with a cold lay-up. These ferries could have had less of
a commercial appeal due to inferior services (less space available per person) and higher
operational costs (high fuel consumption). Thus, their owners may have decided to lay
them up cold to mitigate their economic losses during the pandemic. More data are needed
to confirm this hypothesis, though.

8. Conclusions

We conducted a statistical analysis of CO2 emissions from ferries sailing in the EEA
during the 2018–2020 period. This includes the first year that the restriction on mobility put
in place to address the COVID pandemic had an impact. By using both publicly available,
yearly aggregated emission data and two commercial databases of vessel features and
activity, we addressed the question of characterising the impact of the pandemic on ferry
CO2 emissions.

We focussed on two outcome variables: total emissions and emissions at berth, both
at a per-ship level, and we used the sea basin, the number of port calls, and a compound
indicator of the vessel type as predictor variables. The statistical analysis was based on

https://bit.ly/DNVlayup
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mixed-effects linear modelling, which was able to identify the influence of COVID on both
the predictors and the outcome variables.

A generalized and statistically significant reduction of total emissions at ship level
was found in 2020. In addition, specific variations for 16 ferry subtypes and three sea
domains were identified, with some of them experiencing a statistically significant reduction
compared to a specific reference category.

In particular, we found that the emissions from large ferries with main engine power
above 22 MW, more than 1250 passengers, and hulls longer than 174 m significantly differed
from the general trend of reduction. Out of these, ferries built after 1999 had an additional
per-ship reduction of 14%, while the older ferries were 31% below the reference category.

In terms of the unitary emissions at berth, significant differences were only found for
high-power, high-passenger capacity new ferries. Those shorter than 174 m experienced a
COVID-related variation of −31%, while longer vessels increased by 6%. We guess that
these opposite outcomes are related to different lay-up practices.

Ferries operating in either the Baltic or the Mediterranean Seas experienced compara-
ble reductions of their unitary emissions, but those from ferries of the North Sea decreased
significantly more, reaching −18% of the total change in per-ship total emissions. Ferries at
berth in the Mediterranean Sea reduced their unit emissions by 17%.

The absolute number of port calls decreased, but each accounted for a proportion
of CO2 emissions (about 1 ton per call) that in 2020 was larger than during the pre-
COVID years.

These results based on LME models might be compared with other approaches on the
same dataset made available in Appendix A.1 through this paper. In addition, provided
the required people mobility and economic data, the present framework might be useful
for assessing the impacts of COVID on the part of the touristic industry relying on ferries.

Our contribution makes use of data collected from the EU-MRV regulation to dis-
tinguish the role of COVID in the observed emission reductions. If and when shipping
emissions will be part of a market-based measure such as the EU-ETS, it might be important
to have a capacity of distinguishing emission reductions from sustainable technology and
operational choices from those induced by macroeconomic shocks. A framework such as
the one developed in this manuscript may help in this task.

In addition to CO2 emissions, the emissions per mile and other Carbon Intensity Indi-
cators (CIIs) are important metrics too, being embedded into a measure recently adopted
by the IMO for decarbonisation of shipping in the short term [34,48]. The Fourth IMO
GHG study indicated a slow reduction trend for CIIs of the global ferry fleet in the years
2012–2018 [34]. The THETIS dataset includes, also for the Ro-Pax ships, several types of
CIIs. The initial guess would be that these variables, being scaled to ferry transport work,
do not carry a specific signature of COVID. However, the CIIs might reveal unexpected
information when investigated via the current modelling framework, and this is also left
for future work.

The total emissions of the non-HSC fleet decreased by 2.6 Mton CO2 from those of
2019, which is a 19% reduction on a year-to-year basis. This came at the cost of great human
suffering and an economic downturn. These reductions are not even expected to contribute
to pushing shipping toward a different emission trajectory in the medium term, as signals
of rebound are already emerging (http://emsa.europa.eu/csn-menu/items.html?cid=14
&id=4436, last accessed on 3 March 2022) [26,55]. Rather, the observed emission reductions
are due to a combination of multiple variables that affect ferry operations (vessel type, sea
domain, port calls) and their interactions with the changes in activity resulting from the
restrictions put in place to address the first waves of the pandemic.

In our study, we use the interaction terms in linear mixed-effects models to provide a
rigorous methodological framework for assessing any causal relationship between COVID
and CO2 emissions. The method is general and could be used in combination with other
ferry classification criteria (e.g., annual revenues, lane-meter capacity, or bed capacity), or
for investigating the impact of COVID on different emission variables (such as the carbon

http://emsa.europa.eu/csn-menu/items.html?cid=14&id=4436
http://emsa.europa.eu/csn-menu/items.html?cid=14&id=4436
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intensity indicators). The approach of this paper can also be applied to identifying the
trends of maritime emissions after future unpredictable shocks, such as new pandemics,
recession periods, financial crises, political instabilities and conflicts, technological changes
in the energy supply chain, or extreme events triggered by climate change.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/su14095287/s1: S1, The 40 LME models for Etot; S2, The 40 LME
models for Eber; S3, Featured results for just LME model #30, for both Etot Eber.
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The following abbreviations were used in this manuscript:

AIC Akaike’s information criterium
AIS Automatic Identification System
CO2 carbon dioxide
COVID coronavirus disease of 2019
EMSA European Maritime Safety Agency
EU European Union
EU-MRV EU Monitoring Reporting Verification
GHG greenhouse gas(es)
GT Gross Tonnes (a vessel’s size metric)
HSC high speed craft
IMO International Maritime Organization
LME linear-mixed effects
RMSEvC conditional root mean square error of the validation set
Ro-Pax roll-on/roll-off passenger ship
SE standard error

Appendix A

Appendix A.1. Input Dataset

The “COVID-CO2-ferries” dataset (created from both THETIS and IHS sources de-
scribed in Section 3) which was used as an input for the processing of Section 5, is published
at https://doi.org/10.5281/zenodo.6473158, (last accessed on 3 March 2022).

Appendix A.2. Source Code

The results in Section 5 refer to LME models without and with random intercept.
The computations without the random intercept were performed through the statsmod-
els python library (https://www.statsmodels.org/dev/generated/statsmodels.regression.
linear_model.OLS.html, last accessed on 3 March 2022). The computations with random
intercept were performed in R through the pymer4 wrapper for python [56] making use
of R-CRAN libraries (https://cran.r-project.org/web/packages/lme4/index.html, last
accessed on 3 March 2022). For both, the source code is published as a Jupyter notebook at
https://github.com/hybrs/COVID-CO2-ferries (last accessed on 3 March 2022).

https://www.mdpi.com/article/10.3390/su14095287/s1
https://www.mdpi.com/article/10.3390/su14095287/s1
https://doi.org/10.5281/zenodo.6473158
https://www.statsmodels.org/dev/generated/statsmodels.regression.linear_model.OLS.html
https://www.statsmodels.org/dev/generated/statsmodels.regression.linear_model.OLS.html
https://cran.r-project.org/web/packages/lme4/index.html
https://github.com/hybrs/COVID-CO2-ferries
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