
Journal of Productivity Analysis (2024) 61:259–278
https://doi.org/10.1007/s11123-023-00674-3

Persistent and transient productive efficiency in the African airline
industry

Gianmaria Martini1 ● Flavio Porta1 ● Davide Scotti1

Accepted: 31 March 2023 / Published online: 26 May 2023
© The Author(s) 2023

Abstract
Airline efficiency growth is considered one of the key factors for aviation sustainability in Africa and for creating a
successful relationship between aviation activities and economic development in the continent. This paper proposes
estimating the efficiency of African airlines in the period 2010–2019 using a state-of-the-art stochastic frontier model
disentangling persistent efficiency, transient efficiency, and unobserved heterogeneity. We also examine the impact on both
persistent and transient efficiency of (i) ownership structure, (ii) political stability, (iii) airline geographical location, (iv)
airline domicile country’s economic freedom, and (v) airline participation in a global alliance. We find evidence of relatively
low efficiency and decreasing returns to scale, implying that it is important to achieve better utilization of inputs. Our
findings also suggest that protectionism seems still an important driver of efficiency in a context characterized by a lack of
liberalization. However, enhanced economic freedom is found to be more relevant in improving the efficiencies of African
airlines, suggesting that policy interventions aimed at speeding up the liberalization process may help to remove the
conditions that make air carriers operate inefficiently.

Keywords Persistent and transient efficiency ● African airlines ● Stochastic frontier analysis

1 Introduction

It is generally agreed in the literature that the supply-side
transportation infrastructure fosters economic development
and that this effect is greater the more solid and efficient the
airline industry connected to it. Many studies provide evi-
dence of the relationship between air transport services and
regional development. For example, air transport services
proved to positively influence (i) the growth of population and
employment levels (Blonigen and Cristea 2012, Green 2007),
(ii) tourist activities (Graham and Dobruszkes 2019), (iii)
agglomeration economies (Glaeser et al. 1992, Rosenthal and
Strange 2001), (iv) foreign direct investment flows (Fageda
2017), and (v) international trade (Button et al. 2015).

This connection is crucial for Africa, which is the largest
continent on earth, with many landlocked countries, and
poor road and railways infrastructures. Unfortunately,
African airlines, especially in Sub-Saharan Africa,

notoriously suffer from a lack of efficiency due to several
reasons. They are relatively small, enjoy little economies of
density and scope, face market instability and lack of lib-
eralization, are often subject to considerable political
interference, and are characterized by a lack of cooperation
(Button et al. 2017, Button 2022). This explains why airline
efficiency growth is considered one of the main paths ahead
for aviation sustainability in Africa and, in turn, for creating
a successful relationship between aviation activities and
economic development in the continent (ADBG 2019).

A key factor toward economic development, especially in
such a context of an underdeveloped aviation industry, is
represented by policy interventions aimed at removing the
conditions that make airlines operate inefficiently. In this
regard, Africa is lagging behind other regions in the world
like the US and Europe since the deregulation process is still
far from being completed, as discussed in detail in Section 3.

This paper proposes estimating the efficiency of African
airlines in the period 2010-2019 using a recently developed
parametric method (Colombi et al. 2014, 2017) and exam-
ining the impact of a set of possible determinants on the
estimated scores. More knowledge about the efficiency of
the continent’s carriers and its determinants is expected to
provide African governments and policymakers useful
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information in improving the industry and consequently
enjoying the associated wider economic benefits, especially
in the light of the COVID-19 pandemic, whose impact on
African airlines has been severe (UNECA 2020).

The paper is organized as follows: Section 2 revises
previous contributions on airlines efficiency, Section 3
presents the main features of the African airline industry.
Section 4 presents the empirical model, while Section 5
describes the data and provides some descriptive statistics.
Section 6 shows our results, Section 7 performs the diag-
nostic checks on the microeconomic foundations of the
estimated production function, while Section 8 provides
additional evidence coming from alternative model speci-
fications. Section 9 concludes the paper with some policy
implications, while we report an additional figure in the
Appendix at the end of the paper.

2 Literature review

Since the 1980s the transportation economics literature
studies airline performances with a focus mainly on tech-
nical efficiency and total factor productivity (Scotti and
Volta 2017). Heshmati and Kim (2016) and Yu (2016)
provide a detailed review of the methodologies and the
variables used in this kind of studies. Traditionally,
researchers are mainly focused on the factors affecting
efficiency and on how technical efficiency and productivity
evolve over time (Alam and Sickles 1998, Good et al.
1993, 1995, Oum and Yu 1995, Sickles et al. 2002). Some
other benchmarking studies investigate airline cost effi-
ciency (Heshmati et al. 2018, Oum and Yu 1998, Oum and
Zhang 1991), productivity and cost competitiveness (Oum
and Yu 2012, Windle 1991), or airline profitability (Scotti
and Volta 2017).

Looking specifically at studies focused on technical
efficiency (i.e., the subject of our paper), they apply both
Data Envelopment Analysis (DEA) and Stochastic Frontier
Analysis (SFA). The properties of the two approaches are
well known by researchers as well as their advantages and
disadvantages. Coelli et al. (2005) explains in detail that
DEA, as a non-parametric and deterministic approach, does
not require any assumption on the functional form of the
production function, but measurement errors and other
sources of statistical noise are basically ignored. On the
contrary, SFA estimates the frontier parametrically thanks
to the introduction of a random component error term that
captures statistical noise. This requires assumptions (i) on
the functional form of the production function under study,
and (ii) on the statistical distribution of the error term. From
the methodological point of view, our paper belongs to the
group of parametric studies and applies a quite recent SF
model (Colombi et al. 2014, 2017) that, as explained in

detail in the methodology section, has two main advantages:
(i) it avoids confounding time-invariant inefficiency with
unobserved heterogeneity, and (ii) it allows to disentangle
persistent (long-run/time-invariant) from temporary ineffi-
ciency (short-run/time-varying). To the best of our knowl-
edge, the only contribution distinguishing between
persistent and transient efficiency applied to the airline
industry is Heshmati et al. (2018). However, this paper is
focused on international airlines and cost efficiency, and it
applies an estimation method based on Filippini and Greene
(2016) approach, which is a simulated maximum likelihood
estimation method. No African airlines are included in the
data set.1Filippini and Greene (2016) exploits the possibility
to characterize the four random component model as a pair
of two-part disturbances in which each element of the pair
has its own skew-normal distribution, and this is a less
general approach than the method developed by Colombi
et al. (2014, 2017) and adopted here. In a trade-off between
statistical efficiency and estimation time Filippini and
Greene (2016) might be useful when the ML estimation
method becomes computationally demanding, i.e., for a
long time horizon.2

Concerning the variables used in the literature on airline
efficiency, and looking at inputs, it is quite common to
observe studies focusing on labor and capital, sometimes
combined with materials or energy. It is not uncommon also
to find, among the inputs selected, monetary variables such
as operating costs or fuel expenses. In terms of outputs, the
most used variables are passengers, freight, and revenue
passenger kilometers, but also monetary variables such as
revenues. Among the factors affecting efficiency, the most
considered variables are (i) ownership structure, (ii) fleet
characteristics, (iii) network characteristics, and (iv)
business-model-related variables such as alliance member-
ship and being a low-cost carrier.

If we look more specifically at the papers on African
airlines, apart from some contributions that apply bench-
marking analysis to a set of data that includes some of the
world’s major airlines and takes also into account African
carriers (e.g., Aydın et al. 2020, Merkert and Hensher
2011), our work is more connected to papers studying
efficiency using data only for African carriers. Hence, there
are only two previous contributions: Barros and Wanke
(2015) use the Technique for Order Preference by Similarity
to the Ideal Solution (TOPSIS), namely a multiple-criteria
decision-making method, to rank 29 African carriers for the
period 2010–2013. The inputs considered are the number of
employees, the number of aircraft (as a proxy for capital),

1 They find that Asian airlines are more efficient that European and
North American ones.
2 Even if not focused on aviation, another interesting contribution
estimating persistent and transient efficiency in Africa is Adom et al.
(2018), which studies energy efficiency for African countries.
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and the operating costs. The two output variables used are
revenue passenger kilometers and revenue tonne-
kilometers. The authors also perform a second-stage ana-
lysis based on neural network techniques, where they con-
sider as contextual variables some business characteristics
(e.g., the age of the company and the public ownership),
network size (number of domestic, intra-African, and
international destinations), and the fleet mix in terms of
aircraft models. They find on average a low-efficiency level
in African airlines. They also find a positive impact of
public ownership on efficiency scores suggesting a linkage
between performance and protectionist practices adopted by
African governments. Barros and Wanke (2016) adopt
instead a two-stage network DEA approach to analyze the
same data used in Barros and Wanke (2015). The novelty
there is that the production process of African carriers is
decomposed into a first stage, where employees and aircraft
are the input variables used to produce destinations (the
efficiency of this sub-process is called “network effi-
ciency”), and a second stage where destinations are used to
produce financial revenues. The resultant efficiency scores
exhibit little variation over time at the airline level, and the
average efficiency scores are confirmed low, with revenue
efficiency lower than network efficiency. Concerning
environmental factors, public ownership plays a negative
role in network efficiency, but a positive role in revenue
generation. Years in business are found to affect positively
efficiency, while the relevance of airline fleet mix varies
depending on the specific aircraft model considered.

Finally, some papers focus on South Africa only, namely
Mhlanga (2019, 2020), Mhlanga et al. (2018). Despite the
reduced sample, in terms of both geographical focus and
size (few airlines and a limited number of years), these
papers highlight once again the relevance of the ownership
structure as a driver of efficiency. More specifically,
Mhlanga et al. (2018) and Mhlanga (2019) benchmark ten
airlines in Southern Africa (period 2012–2016). They
combine DEA to a second stage analysis based on a two-
way random effects GLS and also Tobit regression, and
show that public ownership negatively affects technical
efficiency as a result of government veto power over the
airlines’ commercial choices. Also, LCCs are found more
efficient as well as airlines with bigger aircraft and higher
load factors. Mhlanga (2020) analyze a sample of nine
South African airlines in the period 2015–2018 with a
bootstrapped meta-frontier approach. The paper confirms
that airline ownership (together with aircraft size and airline
cost structure) significantly affects technical efficiency.
More specifically, public ownership is found to be negative
for efficiency, in line with the previous contribution on
South African airlines.

Taking into account that the African airline industry is
under-investigated in comparison to more advanced

industries like the US and the European ones, and this is
especially true for efficiency studies, the main contributions
of our paper are as follows: (i) to analyze African airline
efficiency and some of its determinants through a quite
advanced methodological parametric approach, never
applied before to the African airline industry, and (ii) to
extend the period of analysis to a longer time interval.
Hence, our empirical findings may have interesting man-
agerial and policy implications contributing to the sustain-
ability of African aviation and reinforcing the relationship
between airline services and economic development in
African countries.

3 The African airline industry

It is generally recognized that Africa has great potential for the
development of air services. The continent represents a sig-
nificant portion (about 15%) of the world’s population, spread
in more than 50 countries, and its geography is characterized
by huge distances and increasingly by large urban con-
centrations (Button et al. 2015, Lubbe and Shornikova 2017).
Despite that, African continental airline markets are quite
small (only about 2% of global traffic) and concentrated in a
few countries, with most of the airlines that are locally
oriented (Button et al. 2022). More specifically, African air-
lines are small, especially in Sub-Saharan Africa, and, on top
of that, are often subject to considerable political interference.
As a result, market instability is an issue in an industry that
regularly observes airlines entering and exiting the market.
Ssamula and Venter (2013) point out that the enormous size
of the continent, its relatively low overall population density,
the artificiality of many national borders, and the rapid spread
of urbanization make the development of efficient transpor-
tation networks a challenge; specifically, it is difficult to
develop Hub and Spoke (H&S) networks that are essential for
airline profitability. A H&S network contributes to economies
of density by concentrating passengers with different origins
in a hub airport, to reach the same destination with a con-
necting flight. This generates larger volumes for the airlines
(Bilotkach 2017).

The COVID-19 pandemic has made things even worse,
with Africa constantly lagging behind other regions in terms
of vaccine rates, and, in turn, large reductions in aviation
activities (Andreana et al. 2021). As highlighted by IATA
(2021), the pandemic (i) affected tourism and business
travel volumes bringing an increase in airlines’ losses from
−2.7 $/passenger in 2019 to −44.6 $/passenger in 2020,
and slowing down the recovery (current IATA predictions
for 2022 indicate a −21.8 $/passenger).

Apart from the COVID-19 pandemic, there are many
reasons that may explain the bad economic performance of
African airlines. First, the lack of liberalization. Globally,
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the liberalization of air passenger services began in the US
(Airline Deregulation Act., 1978), followed by Europe
(about a decade later). With a little delay, also in Africa,
some efforts were made over the last 25 years toward the
creation of a multilateral air transportation common market:
the Yamoussoukro Decision (YD) in 1999 was the most
significant agreement in this direction (Scotti et al. 2017).
YD aimed at liberalizing international air travel
within Africa, but it did not prove very successful (Lubbe
and Shornikova 2017, Njoya 2016), mainly for political
reasons. As a result, new efforts were required, and, in
2018, they materialized in the foundation of a Single Afri-
can Air Transport Market (SAATM) aimed at accelerating
the full implementation of YD (Button et al. 2022).
SAATM is currently under implementation, even if it is still
hindered by factors such as the culture of non-prioritization
of aviation, and protectionist policies (InterVISTAS 2021).
Other traditional reasons behind the poor performances of
African airlines are high costs (compared to the rest of the
world) of both fuel and airport charges, old aircraft fleets,
the lack of a skilled labor force, and the competition from
extra-African carriers (European and Gulf airlines). Button
et al. (2022) identify also in the limited participation to a
strategic global alliance by African airlines a potentially
important reason of the latter’s underdevelopment. Joining
an alliance can indeed bring advantages to airlines with
regard, for example, to network coordination, scale econo-
mies, and, in the long run, access to new markets. Despite
this, airline participation in global alliances is, in fact,
limited to five carriers, i.e., Egyptair, Ethiopian Airlines,
and South African Airlines (Star Alliance), Kenya Airways
(Skyteam), and Royal Air Maroc (oneworld, but only as
of 2020).

The difficulties of the aviation sector are a factor
explaining the gap in economic growth between African
countries and more developed economies; the existing lit-
erature (Antunes et al. 2020, Manello et al. 2022) indeed
agrees on the positive impact exerted on economic growth
by aviation development, with benefits observable in terms
of trade volumes, income, employment, firm localization,
and industrial relations.

The issue of airline efficiency is therefore extremely
important in the African context, and this is even more
important in the current context of recovery from the
COVID-19 crisis. African governments appear more and
more aware of the wider economic benefits associated with
an efficient aviation industry and have now more than ever
an important opportunity to rethink the future of their
inefficient/unprofitable carriers. Indeed, only the most effi-
cient and profitable airlines have a chance to withstand the
current tide of passenger restrictions (Thomas 2020).
Hence, it is crucial to identify efficient airlines and to
understand the drivers of efficiency.

4 Empirical model for African airline
efficiency

Our aim is to estimate a production function for African
airlines using an SFA model with transient efficiency, per-
sistent efficiencies, and unobserved heterogeneity, as in
Colombi et al. (2014), and in Colombi et al. (2017). We
present now our baseline model, while alternative specifi-
cations are discussed in subsection 4.1. We consider the
following airline production frontier model:

yit ¼ β0 þ x0itβþ f 0itθþ bi � uit � ui þ eit; ð1Þ
where the index i (i= 1, 2,…,N), denotes the N African
airlines in the sample, and t (t= 1, 2,…, T, ) the T periods at
which each airline is observed. The dependent variable yit in
our baseline framework is the logarithm of airline i’s annual
number of passengers in period t (PAX); x0it is a row vector of
p inputs involved in airline i’s production process (in our
base model labor L and capital K) and β is a column vector of
p unknown parameters. f 0it is a vector of production shifters:
as mentioned before, since the implementation of a H&S
network may increase volumes, we will consider as a
production shifter the centralization of airline i’s route
network in period t. The adopted index of centralization is
betweenness centralization (BETWEEN). The latter might
capture how close an airline network is to a H&S structure;
hence it may have an impact on traffic. Indeed, a H&S
system serves more destinations than any alternative network
system, being equal to the number of routes operated, and has
implications in terms of market size (Button 2002, Cook and
Goodwin 2008). For these reasons, we believe it has to be
incorporated into the analysis as a potential shifter of the
output level. How to compute betweenness centralization will
be explained in Section 5. θ is a column vector of coefficients
related to production shifter: since we only consider
BETWEEN, in our empirical investigation is a scalar.

The random-airline effect bi captures unobserved hetero-
geneity, uit is a non-negative random variable for transient
inefficiency of airline i at period t, ui is a non-negative ran-
dom variable for persistent inefficiency of airline i, and eit is a
normal random variable representing the exogenous shock
affecting airline i’s output in period t. We assume that:

(1) for i= 1, 2,…,N, and t= 1, 2,…, T the 2(T+ 1)
random variables ui, bi, uit, and eit are independent in
probability. This means that, for each airline, the
random components in the model (1) are independent.

(2) The random vectors (bi, ui, ui1, ui2,…, uiT, ei1, ei2,…, e

iT), i= 1, 2,…,N, are independent in probability, i.e.,
the random components are independent among
airlines.

(3) For each i, ui is a normal random variable, with mean
μ and variance σ2ui, left-truncated at zero, and bi is a
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normal random variable with null expected value and
variance σ2b.

(4) For each i and t, uit is a normal random variable, with
mean λ and variance σ2uit, left-truncated at zero, and eit
is a normal random variable that has null expected
value and variance σ2e .

(5) x0it are vectors of exogenous variables.

Hence, we assume that eit � Nð0; σ2eÞ; ui � Nþðμ; σ2uiÞ;
uit � Nþðλ; σ2uit Þ; bi � Nð0; σ2bÞ. The deterministic compo-

nent given by the terms β0 þ x0itβ is the production function
mapping the inputs transformed by each airline to move
passengers (in our baseline model), with the level of pas-
senger traffic affected also by the shifter. The components

uit have expected values λ ¼
ffiffiffiffiffiffiffiffiffi

2
π
σ2uit

q

that depend on a set of

variables (exogenous determinants of the transient ineffi-
ciency) through the linear model:

log σ2uit

� �

¼ γ0 þ z0itγ; ð2Þ

where logðσ2uitÞ is the logarithm of the transient inefficiency
variance, z0it is a row vector of q exogenous determinants of
transient inefficiency and γ is a column vector of q unknown
parameters. Moreover, the persistent inefficiency components
ui have expected value μi ¼

ffiffiffiffiffiffiffiffi

2
π
σ2ui

q

that depends on
exogenous determinants through the following linear model:

log σ2ui

� �

¼ δ0 þ w0
iδ; ð3Þ

where logðσ2uiÞ is the logarithm of the persistent inefficiency
variance, w0

i is a row vector of q0 exogenous determinants of
persistent inefficiency and δ a column vector of q0

parameters.3

We fit model (1) with the additional equations (2)–(3) for
the determinants of efficiencies under two functional spe-
cifications (if convergence in ML estimation is achieved,
that might not occur if the number of independent variables
is too large): (1) Cobb-Douglas; (2) translog.4 The equation

representing the translog airline production function is:

lnðyitÞ ¼ β0 þ
X

p

k¼1

βk lnðxitÞ þ
1
2

X

p

k¼1

X

p

j¼1

βkj lnðxkitÞ

lnðxjitÞ þ θf it þ bi � uit � ui þ eit

ð4Þ

where βkj= βjk. The translog production function collapses
to the Cobb-Douglas production function if βkj= 0, j= 1,
2,…, p, k= 1, 2, 3,…p. One of the main assumptions of
the model (1) is that unobserved heterogeneity is uncorre-
lated with the frontier regressors. In order to have control
over this assumption, we implement the Mundlak (1978)
approach. We add to Eq. (4) the means over time of the
time-varying input variables: xi ¼ 1

T

PT
t¼1 ln xit , so that we

can rewrite Eq. (4) as follows:

lnðyitÞ ¼ β0 þ
P

p

k¼1
βk lnðxitÞ þ 1

2

P

p

k¼1

P

p

j¼1
βkj lnðxkitÞ lnðxjitÞ

þ P

p

k¼1
ηkxki þ θf it þ bi � uit � ui þ eit

ð5Þ

We test the joint significance of the Mundlak terms on the
basis of a likelihood ratio test. The Cobb-Douglas
production function has output-input elasticities given by
the first-order coefficients, i.e., ϵy,k= βk. In the translog
production function, these elasticities depend instead on the
level of the inputs, i.e., ϵy;k ¼ βk þ

Pp
j¼1 βkj lnðxjitÞ.

Other popular SF models for panel data are nested in the
model (1). For instance, the time-invariant Pitt and Lee
(1981) model is obtained by dropping the random compo-
nents uit, and bi from model (1). Since Colombi et al. (2014)
persistent and transient inefficiency SF model is based on
random components, we will compare its estimates with
those obtained with a true random effect (TRE) SF model
(Greene 2005a, b), which is obtained by dropping the ran-
dom term ui from model (1).

As already anticipated, in our baseline framework each
airline uses two inputs, labor, and capital; labor is given by
the annual number of employees (pilots, flight attendances,
ground, and others); capital is related to maximum pas-
senger transport capacity, i.e., the seats available in the
airline’s fleet. This measure of capital incorporates the size
of the aircraft in the airline fleet, information that is instead
ignored by contributions using simply the number of planes.
Regarding the possible determinants of the two inefficiency
terms in (2)–(3), we investigate the impact on airlines
efficiency of the following factors: airline public ownership,
the political stability of the country where the airline
headquarters is located, and whether the airline’s head-
quarter is located in a sub-Saharan country. Public owner-
ship (PUB) is a dummy variable equal to 1 if the local
government has more than 50% of the airline shares: in this

3 As shown by Colombi et al. (2014), Proposition 1, under assump-
tions (A1)–(A5), the vectors of outputs yi ¼ ðyi1; yi2 ¼ ; yiT Þ0; i ¼
1; 2; ¼ ; n; are independent and have a Closed Skew Normal (CSN)
density. The maximization of the log-likelihood of the model (1) and
ML estimators are discussed in Colombi et al. (2014), Proposition 2,
which also showed (Proposition 3) how to compute the efficiency
scores E½expð�uiÞjyiÞ� and E½expð�uitÞjyiÞ� for each airline i and
period t.
4 The Cobb-Douglas production function is popular and easier to
estimate (fewer parameters involved). However, it has low flexibility
since the input elasticity of substitution (i.e., the ratio between two
input and their marginal products) is fixed. On the contrary, the
translog production function is flexible and does not have a constant
elasticity of substitution, but it might have problems of convergence in
the ML estimation because it has a larger number of independent
variables.
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case, we classify the airline as one with public ownership.
Despite general evidence suggesting an association between
public ownership and inefficiency, the implication of gov-
ernment control are not clear a priori in a context like the
African aviation market. Indeed, government involvement
may favour stability in a volatile and not fully liberalized
market environment, supporting travel demand.

The country’s level of political stability (POLSTAB) is a
continuous variable given by a World Bank index (see
Section 5 for details). Africa is a continent where coups
d’état frequently occur, and where political systems are
often very fragile, not guaranteeing stability for government
formations. Political stability and economic growth are
generally considered as interconnected factors (Dalyop
2019). However, political stability is not necessarily good,
especially in less developed countries, since it may give rise
to an entrenched government where incentives towards
efficiency are rather low, in favor of different forms of
opportunistic behavior (Hussain 2014).5

SUBSAHARA is a dummy variable equal to one if the
reference country for the airline is located South of the Sahara
desert. Sub-Saharan countries differ from Egypt, Libya,
Algeria, Tunisia, and Morocco, which are on the Mediterra-
nean sea, and benefit from greater possibilities of exchange
with the European countries, especially those of Southern
Europe. This could have an effect on airlines in this African
region seeking efficiency. Button et al. (2022) confirm that
there is an important geographical separation in air transpor-
tation between Mediterranean countries and those South of
the Sahara desert, many of which are landlocked.

The econometric model (1) of the production frontier and
the efficiency of African airlines is estimated with ML as
follows:

log ðPAXÞit ¼ β0 þ β1 � log ðKÞit þ β2 � log ðLÞit
þ θ � BETWEENit þ bi � uit � ui þ eit

ð6Þ
logðσuiÞ ¼ δ0 þ δ1 � PUBit þ δ2

�POLSTABit þ δ3 � SUBSAHARAi
ð7Þ

logðσuit Þ ¼ γ0 þ γ1 � PUBit þ γ2
�POLSTABit þ γ3 � SUBSAHARAi

ð8Þ

where (6) is the Cobb-Douglas production frontier, which
can be augmented by including the Mundlax correction
terms log ðKÞit; log ðLÞit, and by adding the quadratic and

interaction terms for the translog specification (i.e.,
ðlog ðKÞitÞ2), ðlog ðLÞitÞ2Þ; log ðKÞit � log ðLÞit).

4.1 Alternative model specifications

In this Section the alternative specifications of our model
are presented. First, a different output variable is considered
in the analysis, i.e., revenue per passenger kilometers
(RPK). RPK is a typical measure of traffic used in the
aviation industry and is computed as the sum of the product
between the number of revenue-paying passengers on each
flight and the distance flown. As a result, RPK allows to
take into account not only the passenger volumes, but also
the distance flown. Flying longer distances implies that,
ceteris paribus, more of the inputs are used, especially fuel.
Therefore, using RPK as an alternative output measure
requires, for consistency, the inclusion of fuel consumption
(F) among the input variables of the production process.
Hence, the second main novelty consists in the inclusion of
fuel consumption as an additional input variable. This is in
line with many previous studies on airline technical effi-
ciency (Scotti and Volta 2017, 2018). How fuel consump-
tion is proxied is explained in Section 5.

The above mentioned changes transform our production
function in Eq. (9):

log ðRPKÞit ¼ β0 þ β1 � log ðKÞit þ β2 � log ðLÞit þ β3
� log ðFÞit þ θ � BETWEENit þ bi � uit � ui þ eit

ð9Þ

As discussed extensively in Section 8, we note that the
inclusion of fuel consumption, which certainly is of interest
for the analysis, can be done only at the cost of renouncing
flexible functional forms (i.e., the translog in our case)
because the number of parameters to be estimated increases
significantly in relation to the limited size of the sample.

The other major change made to our base model regards
the determinants of the two inefficiency terms in (2)–(3).
Two additional factors are incorporated in the analysis, i.e.,
the degree of the country’s economic freedom and the
membership to one of the three global airline alliances.

The country’s level of Economic Freedom provides
insights about the overall economic environment as the
level of government intervention in the economy,
the strength of property rights, the level of corruption, and
the effectiveness of the legal system, among others. In
Africa, some countries in the region have made progress in
reducing government intervention, improving property
rights, and tackling corruption, but many still face sig-
nificant challenges in these areas. More details on the
variable characteristics are provided in Section 5. By
introducing a measure of economic freedom our purpose is
to get insight into the effect of openness to competition that

5 While political stability in developed countries has a positive impact
on economic growth, because it allows implementing unpopular
reforms aimed at market efficiency and elimination of rents, in African
countries it may be the outcome of dictatorship or some form of
monopoly in the political system, giving rise to favoritism and accu-
mulation of rents.
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may, in turn, indicate the implication of fostering dereg-
ulation in the African aviation markets.

Also alliance membership can play a role given the
potential consequent operational benefits discussed in Sec-
tion 3 (e.g., better optimization of the schedules and
improved efficiency of the networks). Indeed, Button et al.
(2022) provide evidence of the positive impact of joining an
alliance both in terms of passengers and load factors for
African carriers.

These determinants of inefficiencies are tested in differ-
ent combinations taking into account, on the one hand, the
willingness to grasp some additional insights on the drivers
of efficiency in the African airline industry and, on the other
hand, the already mentioned greater difficulties in achieving
convergence in the estimation. Again, the limitations of
these alternative specifications are discussed in Section 8.
More specifically, we estimate (i) a model with the same
efficiency determinants of our base model, i.e., PUB,
POLSTAB, and SUBSAHARA, (ii) a model with only
ECONFREE, (iii) a model with only ALLIANCE, (iv) a
model with PUB and ALLIANCE, (v) a model with PUB
and ECONFREE, and (vi) a model with POLSTAB and
ECONFREE.

5 The data

Data on the African aviation market are less comprehensive
than the information available for the US, Europe, and
Asian markets. To estimate the model presented in Eq. (1)
we build a new data set regarding carriers members of the
African Airlines Association (AFRAA) for the period
2010–19, i.e., 10 years.6 The data set relates to the major
African airlines and is constructed from different sources.
Much of the data used here are taken from the AFRAA
annual reports and integrated with other official and website
sources.7

The data mining process results in a balanced panel data
set including airline-year data of 17 major African carriers
in 10 years (i.e., 170 observations). We download all the
annual reports released by AFRAA from 2011 to 2020 in
order to get the number of passengers, employees, owner-
ship, and fleet details.8 Then we matched the fleet with the
capacity of each aircraft from OAG to express the size of
the fleet (Kit) in terms of available seats. This measure
provides a better estimate than simply counting the number
of aircraft because it takes into account also their size.

The betweenness centralization variable (BETWEEN) is
an index capturing the airline network structure. Network
measures are important indicators to describe the char-
acteristics of air networks and are currently used in different
contributions (e.g., Ciliberto et al. 2019, Roucolle et al.
2020). In particular, centralization is a measure at the net-
work level that is built by aggregating in a unique index the
centrality measures of all the nodes (airports) of an airline
network. While centrality captures the importance of a
single airport in a network, centralization measures how
much important is the most relevant airport compared to all
the other airports belonging to the same network - namely
how much a given air network is centralized in its most
relevant airport. More specifically, in the case of between-
ness, an airport centrality is greater the higher the propor-
tion of shortest routes between pairs of airports on which
the airport of interest acts as an intermediate stop. For an
airport a in the network of airline i, betweenness centrality
at time t;Ci

at, is computed as shown in Eq. (10)

Ci
at ¼

X

j≠a≠k

ψa
jk

ψ jk
ð10Þ

where ψa is the number of shortest paths between airports j
and k on which a acts as an intermediate stop; ψjk is the total
number of shortest paths between j and k. A network
betweenness centralization (BETWEEN) measures, as
anticipated in Section 4, how close is a specific network
to a pure (star) H&S and it is computed as shown in Eq.
(11), where the numerator is the sum of the differences
between the betweenness centrality of the most central
airport in airline i’s network (Ci�

at) and the betweenness
centrality of all the other airports in the network, while the
denominator is the maximum theoretical value of such
difference in a network with N nodes, namely the one of a
H&S network where the hub airport operates as the center
of a star, and all the spokes are directly connected to it.9

BETWEENit ¼
PN

i¼1 C
i�
at � Ci

at

max
PN

i¼1 C
i�
at � Ci

at

ð11Þ

POLSTABit is the World Bank indicator that indicates
Political Stability and Absence of Violence/Terrorism and
measures perceptions of the likelihood of political
instability and/or politically motivated violence, including
terrorism. The variable is re-scaled to be positive and
greater than one, since it is subject to a logarithmic trans-
formation. PUBit is a dummy variable that takes value one if6 The Association members represent over 85% of total international

traffic carried by African airlines (AFRAA 2020).
7 In case of missing data gaps are filled by interpolating the values of
previous and following years and integrating data from the Official
Airline Guide (OAG).
8 Each report refers to the previous year’s data.

9 BETWEENit is computed using the information on each carrier’s
airport pairs extracted from the OAG schedule analyzer. We consider
routes having, on average, at least one flight per week in a year.
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the majority of the ownership is public, and 0 otherwise.
SUBSAHARAi is a dummy variable equal to 1 if the carrier
is located in a Sub-Saharan country, and 0 otherwise.

Table 1 presents the descriptive statistics of our sample.
According to AFRAA, on average African carriers moved
2.8 million passengers per year (PAXit), ranging from
46,851 carried by Asky Airlines in 2011 to almost 13 million
by Ethiopian Airlines in 2019. The standard deviation
higher than the mean indicates that there is a relevant var-
iation in size among African carriers. The representative
airline fleet consists of 4,592 seats (Kit), with a minimum of
185 seats and a maximum of 23,855. Average employment
is 4,148 people (Lit); again standard deviation is rather high,
the minimum is only 157 employees, and the maximum is
32,805. In the estimates, PAXit,Kit, and Lit are mean scaled
using the geometric mean to standardize the variables and
reduce the impact of possible outliers.

Betweenness centralization (BETWEENit) has an average
equal to 0.83, it ranges from 0.34 of LAM Mozambique to 1
of Air Seychelles.10 POLSTABit has a mean equal to 3, with
a minimum equal to 1.62 (Ethiopia) and a maximum equal
to 4.41 (Botswana). In our sample, 82% of observations are
related to a public ownership airline (PUBit). About 76% of
African airlines in our sample are located in sub-Saharan
Africa.

5.1 Additional variables for alternative
specifications

We now discuss the definitions and the descriptive statistics
of the set of additional variables included in the alternative
specifications of our baseline model, i.e., model (1). As
explained in Section 4, these variables are revenue-
passenger-kilometers (RPK), fuel consumption (F), coun-
tries’ economic freedom (ECONFREE), and alliance
membership (ALLIANCE).

RPK is sourced from AFRAA reports, while aircraft fuel
consumption is difficult to compute because it depends on
several factors (e.g., aircraft and engine models, distance

flown, load factor). In the case of African airlines, it is even
harder to collect all the necessary information given the
already-mentioned data scarcity. Our approach consists of
computing a proxy of airline fuel consumption starting from
the available information. More specifically, the airline’s
yearly fuel consumption is computed on the basis of three
parameters, i.e., (1) the age of the fleet, (2) the distance flown,
and (3) the number of passengers. OAG provides the aircraft
model and the distance flown associated with each flight.
Furthermore, for each aircraft model m we identify the age as
the difference between the year of observation and the year of
the first flight of that model.11 Then, we compute a “relative”
fuel consumption in gallons according to the following
equation: Fit ¼

PA
a2i

SEATSmit�DISTANCEmit�ð1þ0:0288ÞAGEmt
100 , where

0.0288 is an annual penalization for each additional age year.
Indeed, Chèze et al. (2011) show that energy efficiency
improvements have been equal to 2.88% per year during the
1983–2006 period. The fraction SEATS/100 is taken from
OpenAirlines (2022), stating that fuel consumption in com-
mercial air transportation is around 1 gallon of kerosene per
passenger per 100 kilometers flown.12 In this case, we use
seats as a proxy for passengers.

The country’s level of economic freedom is a con-
tinuous variable measured by the Heritage Foundation
Economic Freedom Index. It assesses the degree of eco-
nomic freedom in each country based on 12 quantitative
and qualitative factors grouped into four broad categories:
(i) rule of law, (ii) government size, (iv) regulatory effi-
ciency, and (iv) open markets. These components are used
to assign a score on a scale between 0 and 100, with 100
representing the highest level of economic freedom. It
provides insights into the overall economic environment of
the country that may impact the African air carriers. In
Africa, some countries in the region have made progress in
reducing government intervention, improving property
rights, and tackling corruption, but many still face sig-
nificant challenges in these areas.

Table 1 Descriptive statistics
Variable Mean S.d. Min Max Unit Description

PAXit 2772 2907 47 12,631 000 Annual passengers

Kit 4592 4951 185 23,855 number Available seats fleet size

Lit 4148 6800 157 32,805 number Flight and ground personnel

BETWEENit 0.83 0.18 0.34 1 index Centralization of airline network

PUBit 0.82 0 1 dummy Public control

POLSTABit 3.00 0.79 1.62 4.41 index Country political stability

SUBSAHARAi 0.76 0 1 dummy Sub-Saharan country

10 Almost all flights of Air Seychelles originate or land in Seychelles
International Airport.

11 The year of the first flight is taken from different sources, mainly
information available in the aircraft manufacturer website and on data
available in internet.
12 See the website https://blog.openairlines.com/how-much-fuel-per-
passenger-an-aircraft-is-consuming, access 8th February 2023.
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ALLIANCE is a dichotomous variable that represents the
status of an airline as a full member of one of the three main
global alliances. The variable takes the value of 1 if the
carrier is an alliance member, and 0 otherwise. If a carrier
joins an alliance in a given year, the variable is equal to 1
the following year, as it takes time for the carrier to become
a full member and fully integrate into the alliance network.
This is the case of Ethiopian Airlines and Kenya Airways
that joined Star Alliance and Skyteam respectively in
December 2011 and June 2010. Table 2 presents the
descriptive statistics of the additional variables.

On average African carriers moved 6.9 billion RPK per
year (RPKit), ranging from 103 million to about 45 billion in
2019. The standard deviation is higher than the mean and
this confirms the high dispersion in passenger volumes
among African carriers. The fuel consumption of the
representative airline fleet consists of about 185 million
gallons, while only 22% of the observations in our sample
are related to members of a global alliance. The average
index of economic freedom is 58.4, with a small standard
deviation, and a maximum equal to 77, quite far from 100,
indicating full economic freedom.

6 Empirical results

The estimates of African airlines’ production frontier and
determinants of inefficiency in our baseline model shown in
Eqn. (6)–(8) are reported in Table 3, which is split into two
parts. The top rows display the estimated coefficients of the
inputs K and L and of the production shifter (BETWEEN).
The heading, in this case, is given by the dependent variable
of the baseline model, i.e., logðPAXÞ. The bottom rows show
instead the estimated coefficients of the factors affecting
inefficiency. Columns (1)–(4) present the results of Greene
(2005a, b) TRE model. In this case, only time-varying inef-
ficiency is included, and the estimated coefficients of PUB,
POLSTAB, SUBSAHARA are reported at the bottom rows of
Table 3. Columns (5)–(8) show the estimates of Colombi
et al. (2014, 2017) four random components SF model, that
considers both time-varying and time-invariant inefficiencies.
The impacts of the factors affecting time-invariant ineffi-
ciency are displayed above those related to time-varying
inefficiencies. Table 3 presents estimates both for the Cobb-

Douglas production function (columns (1)–(2), and (5)–(6))
and for the translog one (columns (3)–(4), and (7)–(8)). The
difference in each pair of columns is given by the inclusion in
the estimated model of the Mundlak correction variables (
logðKÞ; logðLÞ). The likelihood-ratio test shows that the
Mundlak correction variables are an important improvement
in the model fit under the translog functional form (the sta-
tistics are 19.1, and the p-value is 0.0001), but not for the
Cobb-Douglas specification.

The results on the deterministic part of the estimated
translog SF models (column (8)) confirm that the four-random
components approach provides better results. The estimated
coefficients are almost all statistically significant. First-order
input coefficients logK; logL are both positive and statisti-
cally significant, as well as those related to the Mundlak
correction variables logK; log L. The second-order estimated
coefficient for labor input is negative (-0.2045) and sig-
nificant, while that of the input interaction variable logK �
log L is positive (0.0871) and significant. First-order input
coefficients are positive and significant also with the TRE
Cobb-Douglas model (columns (1)–(2)), with the TRE
translog model (columns (3)–(4), weakly significant log L in
column (4)), with the Cobb-Douglas four random components
model (columns (5)–(6)), and with the four random compo-
nents model without Mundlak corrections.

Interestingly, the estimated coefficient of the production
function shifter BETWEEN is positive and significant in the
baseline model only with the Colombi et al. (2014, 2017)
SFA (column (8)), and equal to +0.2082. This confirms that
airlines with higher network centralization are associated
with higher passenger traffic. A positive estimated coeffi-
cient for the network centralization is also obtained with the
four-random component SFA in the case of the Cobb-
Douglas production function without Mundlak corrections.

By splitting airlines’ inefficiency into persistent (ui) and
transient (uit), and by separating unobserved heterogeneity
from them, we obtain better results also regarding the fac-
tors affecting the different inefficiency types, as shown in
columns (5)–(8) of Table 3, bottom rows. The TRE model
identifies only one determinant, i.e., if the airline has public
ownership the transient inefficiency is lower. Limited to the
translog production function with Mundlak corrections, the
TRE model also identifies sub-Sahara as a negative deter-
minant of transient efficiency.

Table 2 Descriptive statistics for
variables used in alternative
specifications

Variable Mean S.d. Min Max Unit Description

RPKit 6,960,037 8,508,729 103,261 45,289,320 000 # of annual RPK

FUELit 184,799,015 223,395,655 3,319,606 1,134,108,806 number Gallons of fuel
consumed

ALLIANCEit 0.22 0 1 dummy Member of an alliance

ECONFREEit 58.4 7.5 44.7 77 index Country economic
freedom

Journal of Productivity Analysis (2024) 61:259–278 267



The four random component model identifies instead the
following results. Public ownership (PUB) always decreases
inefficiency, both persistent and transient. This finding
confirms previous evidence on African airlines, differently
from what is observed in more developed air transport
markets, where there is more evidence that private airlines
are more efficient (e.g., Yu et al. (2019)). Our evidence is
even stronger than that provided in the existing literature

because it shows that both persistent and transient effi-
ciencies are positively affected by public ownership.
However, this result must be interpreted carefully, espe-
cially from a policy perspective. In line with Barros and
Wanke (2015), we believe that this condition is linked to
protectionism.

We also find that higher political stability (POLSTAB)
improves time-varying inefficiency, while it increases

Table 3 African airlines production frontier and determinants of transient and permanent inefficiency

Dependent variable: logðPAXÞ
Independent variables (1) (2) (3) (4) (5) (6) (7) (8)

logðKÞ 0.6184*** 0.5906*** 0.5542*** 0.4960*** 0.6332*** 0.5275*** 0.6241*** 0.5056***

(0.0501) (0.0733) (0.0593) (0.0536) (0.0147) (0.0531) (0.0188) (0.0522)

logðLÞ 0.1795*** 0.1423* 0.2458*** 0.0971′ 0.1723*** 0.1408*** 0.1325*** 0.0676***

(0.0404) (0.0602) (0.0418) (0.0521) (0.0249) (0.0425) (0.0701) (0.0185)

BETWEEN 0.1929 0.1670 0.1611 0.1911′ 0.1831*** 0.1688 0.2012 0.2082***

(0.1544) (0.1503) (0.1383) (0.1109) (0.0311) (0.1075) (0.2567) (0.0560)

logðKÞ 0.0099 0.0974 0.1513*** 0.0806***

(0.0996) (0.0753) (0.0698) (0.0210)

logðLÞ 0.0840 0.2517*** 0.0609 0.2203***

(0.0798) (0.0720) (0.0457) (0.0277)

logðKÞð Þ2 0.0521 0.1251 0.0712 0.0264

(0.1162) (0.0914) (0.0570) (0.0256)

ðlogðLÞÞ2 −0.0860 −0.2178*** −0.0490′ −0.2045***

(0.1024) (0.0747) (0.0256) (0.0295)

logðKÞ � logðLÞ 0.0746 0.0119 −0.0714) 0.0871***

(0.1906) (0.1624) (0.0547) (0.0210)

Constant 0.0625 0.0842 0.0629 0.2716** 0.1343*** 0.1846*** 0.6470 0.6029***

(0.1433) (0.1267) (0.1383) (0.1049) (0.0233) (0.0348) (0.1571) (0.0474)

Factors affecting inefficiency

Time invariant inefficiency

Determinants of inefficiency

PUB −5.7111*** −2.0045*** −2.0844*** −1.5571***

(0.0210) (0.0581) (0.0663) (0.0224)

POLSTAB 4.9012*** 1.5376*** 1.9592*** 1.4785***

(0.0285) (0.1427) (0.1524) (0.0342)

SUBSAHARA −5.5309*** −3.3612*** 2.3659*** 1.4037***

(0.0247) (0.1089) (0.0585) (0.0463)

Constant −14.8287*** −14.1103*** −3.5270*** −2.8551***

(0.0404) (0.0605) (0.1569) (0.0456)

Time-varying inefficiency

PUB −1.3531*** −1.3199*** −1.2298*** −0.8132* −1.3291*** −1.1088*** −0.9654*** −0.8918***

(0.3903) (0.3780) (0.3949) (0.3223) (0.0388) (0.1292) (0.1115) (0.0360)

POLSTAB 0.5786 0.2889 0.6885 −0.3701 0.4828*** −0.5984*** −0.7775*** −1.6218***

(0.8457) (0.8588) (1.1045) (0.5784) (0.0192) (0.0873) (0.2202) (0.0415)

SUBSAHARA 32.1002 35.9882 1.6258′ 1.9565*** 4.1870*** 1.7461*** 1.8896*** 2.3723***

(676.9505) (1178.701) (0.9111) (0.3850) (0.0141) (0.0725) (0.0214) (0.0168)

Constant −33.7183 −37.2849 −3.4391* −2.5153*** −2.0726*** 0.3770*** 4.1430*** −5.8795***

(676.9487) (1178.702) (1.6796) (0.6110) (0.0292) (0.0370) (0.1761) (0.0333)

log-likelihood 1.0426 1.7039 −0.7545 8.7949 −0.2585 2.2373 4.7007 6.8082

variables with overbar are Mundlak correction

***0.1% significance level, **1% significance level, *5% significance level, ′10% significance level
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persistent inefficiency. This result may appear surprising
in a way. As pointed out by Colombi et al. (2017), per-
sistent inefficiency is mainly due to long-run moral
hazard, e.g., obsolete equipment that is not substituted.
In air transportation may be due to an aircraft fleet in
excess compared to the demand, for which often the
available seats are in excess, leading to low load factors;
or too many personnel. Since political stability is an
indicator linked to the absence of government violent
overturns, and since it is not rare in Africa the presence
of political power concentrated in the hands of a single
person, and for a long time, this may lead to
political interference in airline employment levels and
lower incentives in the efficient use of capital. In this
sense, POLSTAB may capture a negative side of gov-
ernment control (and protectionism) in terms of long-run
effect on efficiency. On the contrary political stability
decreases short-run inefficiency, providing incentives to
limit short-run moral hazard behavior, e.g., inefficient
supplier selection and sub-optimal resource allocation, or
trial-and-error processes in unknown situations. Another
possible interpretation may be connected to
political practices aimed at “buying political stability in
the short run”, but not necessarily favorable to the
development in the long run of the economy and con-
sequently also of the airline industry. However, the
evidence on POLSTAB has to be interpreted carefully
and further arguments will be provided when we will
discuss the evidence obtained with the alternative spe-
cifications of our baseline model.

Last, column (8) of Table 3 shows that airlines located
in sub-Saharan countries have both higher persistent and
transient inefficiencies. As expected, airlines closer to
Europe benefit from higher influences and transactions
with European countries, they are also operating under an
open sky agreement (e.g., Morocco and Tunisia signed
agreements under the European Neighborhood Policy,
that aims to increase economic integration between Eur-
opean Union members and surrounding countries; Ber-
nardo and Fageda 2017), and this higher level of
competition provides incentives toward lower ineffi-
ciency levels.

From the estimated frontier we can compute the effi-
ciency scores of each African airline. More specifically, we
calculate the efficiency scores according to Colombi et al.
(2014) from the estimated coefficients shown in column (8)
of Table 3. Figure 1 shows the details and the dynamics of
each airline’s efficiency scores during the period 2010-
2019, separated by persistent (red) and transient (blu)
efficiency.

Some interesting insights are derived from the analysis of
efficiency scores. At least four African airlines (i.e., Egyp-
tair (MS), Precision Air (PW), Air Algérie (AH), and Royal

Air Maroc (AT)) have persistent efficiency always higher
than transient efficiency, while six airlines have persistent
efficiency always lower than transient efficiency (i.e., Air
Namibia (SW), Air Seychelles (HM), Air Madagascar
(MD), Air Mauritius (MK), Taag Angola (DT), and
Ethiopian Airlines (ET)). The other 7 airlines have years
where persistent efficiency is higher than transient one, and
vice-versa. Regarding transient efficiency, some airlines are
improving it during the observed period, as shown by an
upward trend in Fig. 1: RwandAir (WB), Air Seychelles
(HM), Asky Airline (KP), Kenya Airways (KQ), Air Maur-
itius (MK), Air Algérie (AH), Royal Air Maroc (AT), and
Ethiopian Airlines (ET). Air Namibia (SW), and Air
Madagascar (MD) have instead decreased their transient
efficiency levels over the observed period, while all other
African airlines have at the end of the period about the same
transient efficiency they had at the beginning.

Table 4 provides the details of the distribution of the
efficiency scores by efficiency types and by different levels
of the factors affecting airlines’ technical performances. The
first two rows of Table 4 show the descriptive statistics of
persistent and transient efficiency scores: the latter has a
mean equal to 80%, higher than the mean of the former
(72%). Transient efficiency, on average, is about 73% at the
beginning of the observed decade (2010), goes up to 85% in
2017, and stays more or less at that level until the end of the
period (0.86% in 2019). These are of course relative levels
of efficiency, but indicate that diffused technical ineffi-
ciency is an issue that should be addressed by proper policy
interventions in the industry.

Based on the 1st and 3rd quartiles of the distribution we
identify three categories of airlines’ technical performances:
inefficient airlines if the score is lower than the median,
moderately inefficient airlines if the efficiency score is
between the median and the 3rd quartile, and efficient air-
lines if the score is higher than the 3rd quartile. Regarding
persistent efficiency, out of 170 observations, 46% are in
the inefficient group and are related to public airlines, while
18% are in the efficient group and are also with public
ownership. Private airlines have more observations in the
inefficient group. Observations where countries with low
political stability (the raw index is below 0) are associated
with airlines belonging to the inefficient group are 21% of
the sample, while 21% and 28% of observations combine
low stable countries to moderately efficient airlines and
efficient airlines respectively. Observations of countries
with high political stability and with airlines in the ineffi-
cient group are 26.5% of the sample, while only 2% and 1%
exhibit low political stability combined with airlines
respectively in the moderate and efficient categories.
Observations of sub-Saharan airlines in the inefficient group
are 46% of the sample, 18% are those in the moderate
category, and only 12% are in the efficient one.
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Observations of airlines belonging to countries on the
Mediterranean sea in the efficient group are 18% of the
sample, while those in the moderate category are only 6%.

Regarding transient efficiency, 22% of the observations
regard public airlines in the efficient group. The same
applies to the moderate category, while private airlines are
found mostly inefficient (12% of the sample, against 5% in
each of the other two categories). Airlines facing low
political stability in the inefficient group are 35% of the
sample (18% those in the moderate category, and 17% in
the efficient one). Observations combining countries with
high political stability and airlines in the inefficient group
are instead 15% of the sample, 7% those with airlines in the
moderate category, and 8% in the efficient one. Last,

observations referring to sub-Saharan inefficient airlines
represent 44% of the sample, 14% to moderately efficient
sub-Saharan carriers, and 18% to efficient ones.

Regarding Fig. 1, it is interesting to analyze whether
the variation in transient efficiency may be explained by
some variability of its determinants at the airline level.13

In Fig. 5 in Appendix, panel (a) presents the variability of
POLSTAB by airline. In the observed period, there is no
variation in PUB, as well as in SUBSAHARA which is
time-invariant by definition. POLSTAB improved for
some airlines, i.e., Air Madagascar, MD, Ethiopian Air-
lines, ET, Air Botswana, BP, and Air Mauritius, MK.
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13 We are grateful to an anonymous referee for suggesting this point.
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Among these airlines, we find improvements in transient
efficiency for ET and MK. A worsening in POLSTAB is
instead observed for ASKY Airlines, KP, Egyptair, MS,
Precision Air, PW, South African Airways, SA, Air
Namibia, SW, LAM Mozambique Airlines, TM, and
Tunisair, TU. Among these airlines, we observed a
reduction in transient efficiency for MS, PW, SA,
and SW.

7 Micro-foundations of estimated
production function

In this Section, we check to what extent the estimated
production function of African airlines fulfills the well-
known properties of Microeconomics production theory. To
do this, we use the estimates derived from our baseline

model. We also draw some consequences in terms of output
elasticities, inputs substitutability, and production scale.

Fig. 2 presents the distribution of the estimated output
elasticities of K and L for African airlines, using the results
from column (8) of Table 3, i.e., the SF model with two
inefficiency types and latent heterogeneity. Regarding the
output elasticity of capital, all observations fulfill the
monotonicity condition between inputs and passengers. As
shown in the right panel of Fig. 2, 103 observations out of
170 (61%), have positive output elasticity of labor, while
37% of observations have negative estimates. Regarding
input quasi-concavity of the estimated production function,
it is necessary to compute the Hessian matrix of second
derivatives with respect to K and L, and check, for each
observation, that such matrix is negative semi-definite. A
sufficient condition, in this case, is that the principal minor
of the Hessian matrix is non-positive and all the following

Table 4 African airlines’
efficiency scores by efficiency
types and exogenous factors in
the baseline model

Efficiency Min 1st quartile Median Mean 3rd quartile Max

Persistent 0.43 0.52 0.78 0.72 0.86 0.97

Transient 0.12 0.77 0.84 0.80 0.89 0.96

Dynamics of transient average efficiency

2010 2011 2012 2015 2017 2018 2019

0.73 0.72 0.82 0.78 0.85 0.86 0.86

Number of persistent efficiency scores in different categories

Public Private

Inefficient 80 (46%) 0 (0%)

Moderate 30 (18%) 10 (6%)

Efficient 30 (18%) 20 (12%)

Low POLSTAB High POLSTAB

Inefficient 36 (21%) 44 (26.5%)

Moderate 36 (21%) 4 (2.5%)

Efficient 48 (28%) 2 (1%)

SUBSAHARA= 0 SUBSAHARA= 1

Inefficient 0 (0%) 80 (46%)

Moderate 10 (6%) 30 (18%)

Efficient 30 (18%) 20 (12%)

Number of transient efficiency scores in different categories

Public Private

Inefficient 65 (38%) 20 (12%)

Moderate 37 (22%) 5 (3%)

Efficient 38 (22%) 5 (3%)

Low POLSTAB High POLSTAB

Inefficient 60 (35%) 25 (15%)

Moderate 31 (18%) 11 (7%)

Efficient 29 (17%) 14 (8%)

SUBSAHARA= 0 SUBSAHARA= 1

Inefficient 11 (7%) 74 (44%)

Moderate 16 (9%) 26 (14%)

Efficient 13 (8%) 30 (18%)
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minors alternate in sign. This condition is fulfilled in 154
observations out of 170 (about 91% of the full sample).
Hence we may argue that for a rather high proportion of
observations, the estimated African airlines’ production
frontier shows robust microeconomic foundations.

Being the output and inputs of the estimated production
function mean scaled, the first-order estimated coefficients
logðKÞ; logðLÞ represent the overall output elasticity of
capital and labor respectively. This implies that a +1% in
the capital (i.e., fleet capacity) gives rise to +0.51% of
passengers, while the same percentage increase in the labor
force generates an upward shift in annual passengers equal
to +0.07%. Figure 3 displays the distribution of the mar-
ginal product of K and L in African airlines computed for
each observation in our sample. While the marginal product
of capital is always positive, for some observations we have
a negative marginal product of labor (a similar pattern to
that observed for output elasticity of labor). This evidence
may be explained by the inefficient use of personnel, maybe
due to political reasons.

Figure 4 left panel presents the distribution of the esti-
mated scale elasticity. On average it is equal to 0.57, and its
maximum estimated value is equal to 0.78. This implies that
African airlines are operating under decreasing returns to

scale, i.e., there is an amount of extra capacity and additional
use of labor in this continent’s air transportation sector.

From the estimated production function we can get the
marginal rate of technical substitution (MRTSKL) between
labor and capital in the African airlines. The right panel of
Fig. 4 displays the distribution of the marginal rate of
technical substitution between capital and labor in our
sample. The average MRTSKL is equal to −0.39, while the
relative MRTSKL is equal to −0.20. These averages imply
that if an airline wants to increase the use of labor by one
unit, it has to reduce the use of capital by 0.39 units. The
relative marginal rate of technical substitution is the nega-
tive ratio between the two output elasticities, in this case
with the labor elasticity at the numerator. It means that if an
airline aims at increasing labor by 1% it should reduce
capital by 0.2%. The estimated MRTSKL is positive for 103
out of 170 observations (61%). The remaining observations
are not efficiently using the inputs, given that they exhibit
inputs’ complementarity rather than substitutability.

Last, from the estimated production frontier we compute
the direct elasticity of substitution.14 The average value in

Fig. 2 Production function
monotonicity condition in
African airlines

Fig. 3 Marginal products of K
and L in African airlines

14 In the two inputs case the direct elasticity of substitution coincides
with the Allen elasticity of substitution.
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the observed sample is equal to 1.15; hence we observe, in
the representative African airline, that capital and labor are
substitutes.

8 Results from alternative specifications of
the African airlines efficiency model

As discussed in Section 4 it is interesting to analyze some
alternative specifications of our baseline model of the
African airlines’ production function. In this way it is
possible, on the one hand, to test whether the results con-
cerning the determinants of inefficiencies of our baseline
model are confirmed also in the case of a different output
measure and an additional input. On the other hand, the
inclusion of new determinants of inefficiencies allows get-
ting more insights into the factors affecting efficiency as
well as verifying whether some of the effects previously
identified and peculiar to Africa (e.g., the positive impact on
the efficiency of public ownership) are robust. In this
regard, of particular interest is the role played by the degree
of economic freedom of the country where a given airline is
based. This factor can highlight how much relevant the
development of economies more oriented towards the free
market (and therefore less protected by the government
umbrella) is to the efficiency of African airlines.15

As a first alternative specification we test our previous
findings by changing the output variable (i.e., RPK in place
of PAX), and by adding a third input (i.e., fuel consumption
F). Both variables are expressed in logarithms. Then,
keeping RPK and F in the production function model, we
incorporate in the analysis new determinants of ineffi-
ciencies, i.e., the degree of economic freedom in an airline
domicile country (ECONFREE, expressed in logarithm),
and being a global alliance member (ALLIANCE). These

new determinants are tested alone and in combination with
public ownership and/or political stability. Since we add a
third input in the production function and given the limited
size of our data set, we can provide evidence only for the
Cobb-Douglas model, given that the translog function does
not achieve convergence. We underline that only the results
for the Colombi et al. (2014) model, with both persistent
and transient efficiency, are presented in this Section.16

Table 5 reports the results for the different alternative
specifications.

Columns (1)–(2) show that input coefficients are as
expected and that the coefficient of fuel is positive and
significant. Interestingly, using RPK as the output variable,
BETWEEN has a positive and significant coefficient (with
the exception of the results shown in columns (11)–(12)).
This implies that, when the output variable gives different
weights to short-haul and long-haul flights, the association
between H&S network structure and higher output volume
is stronger. Regarding the determinants of inefficiency,
these are, in columns (1)–(2), the same as our baseline
model, i.e., PUB, POLSTAB, and SUBSAHARA. Looking at
their estimated coefficients, and comparing them with the
results for the Cobb-Douglas function shown in Column
(5)–(6) of Table 3, we observe that PUB is confirmed as a
factor decreasing both persistent and transient inefficiency,
while political stability drives persistent inefficiency down
and transient inefficiency up. SUBSAHARA is mainly con-
firmed as a driver of inefficiencies with the only exception
of persistent inefficiency in column (2) of Table 5. In
summary, the results in columns (1)–(2) of Table 5 provide
a further confirmation (i) of the role of PUB, and (ii) of the
fact that political stability has to be treated with care, since it

Fig. 4 Scale efficiency and
MRTSit in African airlines

15 We are grateful to an anonymous referee for this suggestion.

16 We had also to reduce the number of determinants of efficiencies
compared to the baseline model presented in Table 3. Due to these
limitations, we do not use these estimations as our main results.
However, we believe that some of the new insights obtained can be of
interest and may complement the findings discussed in Section 6.
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may have different effects on transient efficiency, probably
also due to the already discussed impossibility to dis-
criminate between “good" and “bad" stability.

As discussed in Section 6, the results on PUB and
POLSTAB may be driven by a general lack of competition,
creating a favorable ground to protectionist practices (cap-
tured by PUB) and entrenched government (potentially
incorporated in POLSTAB). It is therefore of interest to see
the impact on the efficiency of a measure of a country’s
economic freedom. This allows us to understand whether (i)
the openness of an economy is a factor fostering airline
efficiency also in the current African context, and (ii) if
protectionism may have less predictive power as a deter-
minant of inefficiencies when a measure of a country’s
economic freedom is also incorporated in the analysis.17

Columns (3)–(4) of Table 5 present the estimated Cobb-
Douglas production functions with ECONFREE as the only
determinant of inefficiencies. There is strong enough evi-
dence, and this is a first signal of the importance of this
factor for the overall efficiency of African airlines, that
economic freedom decreases both persistent and transient
inefficiencies. The results shown in Columns (9)–(12)
reinforce this insight. In columns (9)–(10) ECONFREE is
confronted with PUB as determinant of inefficiencies.
Interestingly, PUB is now either increasing persistent inef-
ficiency, or it has no impact on it when we include the
Mundlak correction in the Cobb-Douglas production func-
tion. On the contrary, there is strong evidence that ECON-
FREE decreases both persistent and transient inefficiencies.
Hence, the degree of economic freedom seems more rele-
vant in improving the African airlines’ efficiencies than the
protectionism granted by the public umbrella.18

The same evidence is obtained if ECONFREE is con-
fronted with a measure of entrenched government, a role (at
least in part) played by political stability in our sample. The
results in columns (11)–(12) of Table 5 confirm that the
degree of economic freedom is decreasing both types of
inefficiency, while POLSTAB is mainly a factor increasing
inefficiencies, albeit the effect on persistent inefficiency is
confirmed ambiguous. We, therefore, gather some evidence
that, despite the peculiarity of the African context,
improving competition may be the way forward for the
development of an efficient air transportation system, at
least for what concerns the airlines. This result has poten-
tially noticeable implications in terms of future policy
directions.

Columns (5)–(8) present the estimated Cobb-Douglas
production functions (with and without Mundlak

correction) when we include the participation in a global
alliance as a determinant of inefficiencies. Columns
(5)–(6) display that ALLIANCE, when it is the single factor
affecting inefficiency, increases both persistent and tran-
sient efficiency. Columns (7)–(8) show instead that, when
confronted with PUB, ALLIANCE increases persistent
inefficiency while decreases transient inefficiency (with
PUB exhibiting a positive impact on both efficiency
types). Hence, on the one hand, ALLIANCE seems to have
a weaker effect than economic freedom. While the latter is
the main factor decreasing inefficiencies when it is con-
fronted with PUB, the same relation is not observed with
ALLIANCE. Indeed, the positive effect of ALLIANCE in
providing enough incentives to improve short-run effi-
ciency is robust to the inclusion of a factor capturing
protectionism, while this does not happen for its effect on
persistent efficiency.

Last, Fig. 5 in Appendix shows the variability of ALLI-
ANCE (panel (b)), and ECONFREE (panel (c)) by airline.
Their trends may explain the pattern of transient efficiency
in Fig. 1. For instance, ET (Ethiopian) and KQ (Kenya)
became a member of global alliances at the beginning of the
observed period and they registered an improvement in
transient efficiency later. Similarly, ECONFREE went up in
Morocco, and Royal Air Maroc improved transient effi-
ciency. The same is true for Air Seychelles, HM, and for
TAAG Angola Airways, DT.

In summary, these additional insights suggest that the
African air transportation system might benefit from being
more open to the global market.

9 Conclusions

In this paper, we estimate the technical efficiency of 17
African airlines during the period 2010-2019, i.e., before
the crisis due to the COVID-19 outbreak. The production
frontier is identified by implementing a state-of-the-art
stochastic frontier model (Colombi et al. 2014, 2017) that
has the error term decomposed into four random effect
components: time-invariant persistent inefficiency, time-
varying transient inefficiency, time-invariant airline’s
unobserved heterogeneity, and random shocks. This
model is compared with a nested model, defined by
Greene (2005a, b) as a true random effect model, in order
to appreciate the additional insights regarding the eva-
luation of technical efficiency obtained when unobserved
heterogeneity is not confounded with time-invariant per-
sistent inefficiency. To the best of our knowledge, this is
the first paper that investigates African airline technical
efficiency using the four random components stochastic
frontier model. From the estimated production frontier
each airline’s efficiency scores are computed, separated

17 We are grateful to an anonymous referee for this suggestion.
18 These results also suggest that despite protectionism may result in
short-term advantages (it decreases transient inefficiency), they may
disappear in the long run.
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between persistent and transient efficiency, and analyzed
according to some possible determinants of efficiency
levels.

Based on this advanced stochastic frontier model we first
estimate a baseline model with passengers as output and
capital and labor as inputs; then we consider an alternative
output variable, i.e., RPK that gives to passengers different
weights according to the flown distance, and an additional
input, i.e., fuel, that has to be included once that distance is
taken into account. In the alternative specifications, we also
compare different determinants of persistent and transient
efficiencies. Using this empirical strategy we obtain some
interesting results.

First, in the baseline model we find that as in Barros
and Wanke (2015), public ownership is a factor improv-
ing both persistent and transient efficiency differently
from what found in studies regarding non-African airlines
(e.g., Yu et al. 2019). In our view, this highlights the
importance in the African context of the protection
granted by the public umbrella. However, in an alter-
native specification, where also economic freedom is
taken into account and confronted with public ownership,
it turns out that economic freedom is a more robust and
important driver of airline efficiency than protectionism,
whose positive effect on persistent efficiency disappears.
Hence, we gather some evidence that, despite the pecu-
liarity of the African context, improving competition may
be the way forward for the development of an efficient air
transportation system, at least for what concerns the air-
lines. This result has potentially noticeable implications
in terms of future policy directions. Second, in our
baseline model we find that a country’s political stability
may lead to higher transient efficiency but to lower per-
sistent efficiency. As discussed in the paper, political
stability in Africa is not always a condition leading to
reforms that may shape the economy toward market
efficiency: it may instead be linked to the existence of
entrenched governments. Indeed, in the alternative spe-
cifications of our model, where we confront political
stability with economic freedom, we find that the latter
has a more clear and positive effect on efficiency than the
former, suggesting, again, the importance of reforms
implementing an effective competition in the African air
transportation sector.

Third, we find that Mediterranean countries have more
efficient airlines than those with headquarters located in
sub-Sahara, and this finding is reasonably due to both open
sky agreements with Europe (e.g., Morocco), and more
intense competition coming from major European airlines.
Fourth, concerning the importance of inputs in the esti-
mated production, we find that the output elasticity of

capital (i.e., total seats available in the airline fleet) is
higher than that of labor (+0.51% versus +0.07%). This,
combined with evidence that the marginal product of
capital is always positive for all observations in our data
set, confirms the importance of the optimal use of durable
capital inputs for African airlines. Last, we find evidence
of decreasing returns to scale, of an average persistent
efficiency equal to 78%, and of a mean of transient effi-
ciency of 80%. This combined evidence implies that effi-
ciency in African airlines is low and that it is important to
remove the conditions that make air carriers operate
inefficiently.

In summary, this paper provides an empirical base,
obtained with advanced econometric methods, for sup-
porting the completion of the liberalization of air transpor-
tation in Africa. The first step in this process may be the full
implementation of SAATM (and YD), as well as more open
sky agreements, especially with Europe.

There are some possible extensions to the analysis per-
formed in this paper: increase the number of African air-
lines, increase both the output and the input variables, and
compare African and non-African airlines. They are left for
future research.
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