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Abstract. Many applications in medical statistics and other fields can be de-
scribed by transitions between multiple states (e.g. from health to disease) expe-
rienced by individuals over time. In this context, multi-state models are a pop-
ular statistical technique, in particular when the exact transition times are not
observed. The key quantities of interest are the transition rates, capturing the
instantaneous risk of moving from one state to another. The main contribution
of this work is to propose a joint semiparametric model for several possibly re-
lated multi-state processes (Seemingly Unrelated Multi-State, SUMS, processes),
assuming a Markov structure for the transitions over time. The dependence be-
tween different processes is captured by specifying a joint prior distribution on
the transition rates of each process. In this case, we assume a flexible distribution,
which allows for clustering of the individuals, overdispersion and outliers. More-
over, we employ a graph structure to describe the dependence among processes,
exploiting tools from the Gaussian Graphical model literature. It is also possible
to include covariate effects. We use our approach to model disease progression
in mental health. Posterior inference is performed through a specially devised
MCMC algorithm.

Keywords: Multi-State Models, Normalised Point Processes, Graphical Models,
Mixture Models, Markov Chain Monte Carlo.

1 Introduction

Biomedical data are characterised by a high number of different variables, in many
cases mostly categorical and recorded on a (nowadays often large) set of subjects. This
is mainly due to the practice in clinical settings to record the absence/presence of
symptoms and/or to use ordinal scales to represent disease markers. Typically, we only
observe clinical variables at fixed time points (usually corresponding to follow up or
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hospital visits), and as such these variables are interval-censored (i.e., panel data). The
objective of clinical studies is often to model a patient’s disease progression, as captured
by the evolution over time of one or more responses of interest, e.g. representing the
disease status and associated clinical markers. A popular approach is to use multi-state
models describing the transition of individuals among multiple states in continuous time
(see, for instance, Cook, 1999; Sung et al., 2007; Jackson et al., 2011; van den Hout et al.,
2015; De Iorio et al., 2018). In this framework, it is straightforward to include time-
homogeneous covariates and time varying continuous covariates (leading to a Markov
regression model).

In this work, we propose a joint modelling approach for several categorical variables
evolving simultaneously through time. More in details, our approach is based on a combi-
nation of ideas from multi-state models, seemingly unrelated regression (SUR) (Zellner,
1963; Wang, 2010), Gaussian Graphical models (GGM) and Product Partition Models
with Covariates (PPMx) (Müller et al., 2011). In a Bayesian framework, we define a
joint model for several multi-state processes, which represent the evolution of, for in-
stance, clinical markers of interest as in the disease progression application of Section 3.
The main idea is that the different markers provide complementary information on the
underlying health status and, as such, they are regarded as stochastic processes defined
on a finite state-space evolving in continuous time according to dependent Markov pro-
cesses. We link the different Markov processes through the specification of a flexible
prior distribution on the instantaneous transition rates, specifically a mixture distribu-
tion with random number of components (Argiento and De Iorio, 2019). In this way,
we build a robust modelling strategy, which leads to covariate-driven clustering of the
subjects and enables the inclusion of different types of covariates/responses in a natural
and efficient way (Barcella et al., 2017). Each multi-state process is then, conditionally
on the vector of instantaneous transition rates, independent from the other processes,
resembling the seemingly unrelated regressions setting of Zellner (1963). Furthermore,
we allow the dependence structure between the transition rates to be encoded into a
random graph, which is also object of posterior inference, as it is done in sparse SUR
models (SSUR, Wang, 2010). Thus, the nature of the dependence is learnt from the data,
spanning from independence to full inter-dependence. As such, we refer to our model
as Seemingly Unrelated Multi-State (SUMS) processes. Briefly, the proposed model al-
lows for: (i) multiple responses; (ii) processes with more than two states; (iii) patient-
and process-specific times of observation; (iv) inclusion of mixed-type covariates; (v)
covariate-driven clustering of the subjects; (vi) missing initial state information.

One of the main advantages of our modelling strategy is that the relationship between
different multi-state processes is encoded into a graph structure. Indeed, if there is an
edge linking two processes, it means that they are conditionally dependent, while the
absence of an edge implies conditional independence. This gives insight into the co-
regulatory mechanisms of the different processes. This is relevant in many applications
as often it is also of interest to identify important factors affecting disease progression, for
better prognosis and therapeutic choices. Moreover, the model allows for the inclusion of
time-homogeneous covariates (of any type) and time-varying continuous covariates in a
regression component, for which standard variable selection techniques (e.g. shrinkage,
spike and slab priors) can be employed.



A. Cremaschi et al. 755

The manuscript is organised as follows: Section 2 introduces the SUMS model, by
presenting how its key components – the joint multi-state model, the mixture prior with
unknown number of components and the graphical structure describing the dependence
among processes – interrelate, as well as the specifically designed Markov Chain Monte
Carlo (MCMC) algorithm. Section 3 presents an application of the model to the analysis
of mental health indicators obtained from the GUSTO cohort study. Section 4 concludes
the work. In Supplementary Material (Cremaschi et al., 2022), we include a detailed
description of the algorithm and of the GUSTO dataset, a sensitivity analysis and a
simulation study, as well as further results from the analysis of the GUSTO data.

2 SUMS: Seemingly Unrelated Multi-State Processes

2.1 Modelling of Multi-State Processes

Multi-state models can be used to describe how an individual moves between a set
of states in continuous time. In this work, we focus on multi-state processes for panel
data, where the states of several processes are observed only at certain time points, and
their exact transition times are not known. For each h = 1, . . . , p, let {Y (h)(t), t ∈ R

+}
be a continuous time Markov process, where Y (h)(t) represents the state of the h-
th process over time, with state-space S(h) = {1, . . . , d(h)} of dimension d(h), i.e.
Y (h)(t) ∈ S(h). The elements of S(h) represent the states that the h-th process can
visit between transitions. The exact times of transition of the processes Y (h)(t) are not
known, but in applications the processes are observed on a discrete set of time points,
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sponding to the h-process and whose distribution is the finite-dimensional law of the pro-
cess Y (h)(t) at the times of observation. The probability law of the h-th process Y (h)(t)
is assigned via the matrix of instantaneous transition rates Q(h) = [λ(h)(r, s)]r,s. The in-
stantaneous transition rates λ(h)(r, s), with r, s ∈ S(h), represent the instantaneous risk
of moving from one state to the other. The vector λ(h) = {λ(h)(r, s) : r, s ∈ S(h), r �= s},
of dimension d(h)

(
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)
, corresponds to the off-diagonal transition rates of the ma-

trix Q(h), concatenated by row from top to bottom.
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ij−1 indicate the length of the j-th time interval, for j = 2, . . . , n
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i ,

subject i and process h. Chapman-Kolmogorov equations can be solved to obtain the

transition probabilities p
(h)
ij (λ(h), ε

(h)
ij ) = {p(h)ij (r, s;λ(h), ε

(h)
ij ) : r, s ∈ S(h)}, where λ(h)

denotes the vector of transition rates for the h-process (see Ross et al., 1996). When
d(h) = 2, closed-form solutions are readily available (Cox and Miller, 1977), while
problems involving more than three states are usually tackled numerically (Moler and
Van Loan, 2003). It can be shown that for each process h a unique stationary distri-
bution exists (Grimmet and Stirzaker, 2001). The stationary distribution can be used
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as marginal distribution for modelling the state of the processes at time j = 1, given
the vectors of instantaneous transition rates λ(h), in contrast to the general practice in
multi-state modelling of specifying the model conditionally on the initial state. This is
important, as it allows Bayesian imputation of missing observations at time one, since
they are treated as unknown parameters in the model. This aspect is particularly useful
in our application, where the initial time presents a non-negligible missing rate. For each
process, we assume that the Markov property holds, i.e. conditionally on current and
past events, future transitions only depend on the current state. Moreover, we assume
that the transition rates are also subject specific and can vary with time, as discussed

in Section 2.2. To highlight time and subject dependence, we use the notation λ
(h)
ij .

This implies that the transition probabilities p
(h)
ij (λ

(h)
ij , ε

(h)
ij ) as well as the stationary
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(h)
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ij ), with k ∈ S(h), are functions of the time- and subject-specific

instantaneous transition rates (see Ross et al., 1996, for details) and the law of Y
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The aim of this work is to jointly model the processes Y (h)(t), capturing their time
evolution and possible dependencies. In what follows, for simplicity, we indicate a tran-
sition of the h-th process between different states of S(h) with the notation r → s. The

joint likelihood for the vector of observed states Y
(h)
i , for i = 1, . . . , N and h = 1, . . . , p,

is then:

p
(
Y | λY

)
=

N∏
i=1

p∏
h=1

n
(h)
i∏

j=2

(
p
(h)
ij

(
Y

(h)
ij−1, Y

(h)
ij ;λ

(h)
ij , ε

(h)
ij

))
π
(h)
i1

(
Y

(h)
i1 ;λ

(h)
i1

)
, (1)

where Y and λY indicate the multi-dimensional arrays containing the observation vec-

tors Y
(h)
i and the instantaneous transition rate vectors λ

(h)
ij , while p

(h)
ij denotes the

transition probabilities and π
(h)
i1 is the (stationary) distribution at time one. Depen-

dence across processes is captured through the specification of a joint distribution on

the vectors of transition intensities λ
(h)
ij .

2.2 Model for Transition Intensities

The instantaneous transition rates λ
(h)
ij (r, s) can be made covariate-dependent by speci-

fying a Cox proportional hazard model. This allows the inclusion of both time-homoge-
neous covariates as well as time-varying continuous covariates. Alternatively, a semi-
proportional intensity model can be easily specified for the covariates as in Kim et al.
(2012). Note that the decision of including either type of covariates is process-specific.
The time-homogeneous covariates are straightforwardly incorporated in the model, and

we denote them here by X
(h)
i = (X

(h)
i1 , . . . , X

(h)

ig(h)), for the i-th individual and h-th

process. On the other hand, the time-varying continuous ones, denoted by Z
(h)
i (t) =
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(Z
(h)
i1 (t), . . . , Z

(h)

iq(h)(t)), require additional assumptions. They are usually included via

a piece-wise constant effect over each interval of observations (Andersen et al., 2012),
or by modelling them as longitudinal processes, linking their distribution to the ones
of the multi-state processes via the inclusion of suitable random effects (Ferrer et al.,
2016). The first option has a clear computational advantage, while the latter has the
potential to yield better inference on the overall disease progression. The code provided
with this manuscript allows for the implementation of the first method. This assump-

tion leads to a piecewise constant model for the instantaneous transition rates λ
(h)
ij (r, s),

with r, s ∈ S(h), and consequently for the matrix of transition intensities. The model
for the instantaneous log-transition rates is then:

log
(
λ
(h)
ij (r, s)

)
= φ

(h)
i (r, s) +X

(h)
i β(h)

rs +Z
(h)
ij γ(h)

rs , j = 1, . . . , n
(h)
i , h = 1, . . . , p, (2)

where φ
(h)
i (r, s) represents the baseline transition rate (on log scale) of transition r → s.

The parameters β
(h)
rs ∈ R

g(h)

and γ
(h)
rs ∈ R

q(h)

are the vectors of regression coefficients
for the h-th process and the r → s transition.

Let φ
(h)
i = {φ(h)

i (r, s) : r → s} be the vector of baseline log-transition rates for
process h and subject i. A key component of our modelling strategy is the specification

of the distribution of the vector φi = (φ
(1)
i , . . . ,φ

(p)
i ), containing the baseline log-

transition rates of all the p processes for each subject i. To this end, we borrow ideas
from the SUR framework of Zellner (1963), where p different regression models are
linked by specifying a joint error distribution, usually multivariate normal. The SUR
methodology is one of the main techniques for handling multiple responses and offers
a way to share information between models which are seemingly unrelated, since they
describe different data-generating processes. However, since these are observed for the
same set of subjects and measurements are taken on often related processes, the study
of their interdependency is of great interest in most applications. For this reason SUR-
type models have gained vast popularity in different fields, such as Phenomics (Houle
et al., 2010; Banterle et al., 2018). In our application, for instance, where we deal with
several processes associated to different aspects of maternal mental health (depression,
anxiety, sleep quality), it is important to understand the relationships between such
processes in order to have a comprehensive view of the phenomenon under study. As
in the SUR framework, in our context each process is modelled by its own seemingly
unrelated multi-state Markov process, but then they are related through the joint prior
distribution on φ = (φ1, . . . ,φN ). Motivated by this parallelism, we name the proposed
model Seemingly Unrelated Multi-State (SUMS) processes.

To capture the inter-individual heterogeneity and allow for clustering of the subjects,
we choose as prior distribution for φ1, . . . ,φN a mixture prior with random number of
components, where the distribution of the weights is given by the normalisation of a
finite point process, as proposed by Argiento and De Iorio (2019). Finite mixture mod-
els with random number of components have been extensively studied in the literature,
with a particular interest towards computational aspects (Richardson and Green, 1997;
Stephens, 2000; Nobile, 2004) as they involve trans-dimensional moves. Recently, Miller
and Harrison (2018) discussed the analogies between a finite mixture with random
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number of components and a Dirichlet process mixture model (Lo, 1984), proposing a
marginal algorithm for posterior inference for a model equipped with Dirichlet weights.
The approach adopted in this paper and firstly proposed by Argiento and De Iorio
(2019) is more general, as it allows the specification of different distributions for the
unnormalised weights as well as a conditional algorithm to speed up inference. Argiento
and De Iorio (2019) show that a finite mixture model is simply a realisation of a stochas-
tic process whose dimension is random and has an infinite dimensional support. This
leads to flexible distributions for the weights of the mixture, which is given by the
normalisation of a finite point process. They refer to their construction as normalised
independent finite point process. This approach has several advantages, allowing for flex-
ible modelling of the weights in the mixture as well as efficient posterior computations
(e.g. as compared to traditional reversible jump algorithms for mixture models). In more
details, we assume the following mixture prior:

φi = φ�
ci , i = 1, . . . , N,

φ�
1, . . . ,φ

�
M | M iid∼ P0 (φ

� | θ) ,
P(ci = m) ∝ Sm, i = 1, . . . , N, (3)

S1, . . . , SM | M iid∼ Gamma (γS , 1) ,

M ∼ Poi1 (Λ) ,

where we denote by Gamma(a, b) the Gamma distribution with mean a/b, and by
Poi1(Λ) the Poisson distribution shifted by one unit with parameter Λ. Note that in the
work of Argiento and De Iorio (2019) different distributions for the unnormalised weights
S = (S1, . . . , SM ) are considered. Here, we opt for the Gamma distribution as it leads
to the standard mixture model with Dirichlet weights. The variables c = (c1, . . . , cN )
indicate the component allocation of the subjects and their corresponding prior proba-
bilities are proportional to the unnormalised weights S. Finally, the vectors φ�

1, . . . ,φ
�
M

are a finite sequence of locations for the mixture distribution and are, conditionally on
the number of components M , i.i.d. from the base measure P0. As shown by Argiento
and De Iorio (2019), posterior computations in this setting are greatly simplified via the
introduction of a latent variable, conditionally on which the unnormalised weights of the
mixture in (3) become independent. The specification of a joint prior distribution for
φ1, . . . ,φN in model (3) and the choice of P0 are crucial in our modelling strategy, as it
will be shown in Section 2.3, since this allows inference on the shared dependence struc-
ture among the components of the vectors φ�

m, for m = 1, . . . ,M and, consequently, on
the dependence structure among the p different processes. As an alternative, we could
have opted for a Bayesian nonparametric prior, such as the Dirichlet process (De Iorio
et al., 2018) and the beta-Dirichlet process prior (Kim et al., 2012), or, taking a com-
plete different approach, flexible modelling of the baseline transition intensities can be
achieved using penalised splines (Kneib and Hennerfeind, 2008).

2.3 Gaussian Graphical model

We use tools from the Gaussian Graphical models literature to describe the dependence

among the p processes. Referring to model (3), we assume that φ�
1, . . . ,φ

�
M | M iid∼ P0 =
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N (μ,ΩG), where the key modelling feature is the specification of the prior on the pre-
cision matrix ΩG conditional on a graph G, which captures the conditional dependence
structure among the baseline log-transition rates. The novelty of our modelling strategy
is that G is modelled conditionally on another random graph G0, which describes the
dependence structure among processes and is one of the main objects of our inference.

In details, consider the graph G0 = (V0, E0), defined over the set of nodes V0 =
{1, . . . , p}, i.e. each node in the graph corresponds to a multi-state process Y (h)(t).
The edge set E0 is formed of the pairs E0 ⊆ {(h, k) ∈ V0 × V0 : h < k}. We consider
only simple graphs, i.e. undirected graphs, without self-loops nor multiple edges. It is
important to highlight that G0 describes the dependence structure at process level (but
not at observation level), which then needs to be translated in dependence among the

components of the vector φ�
m = (φ

�,(1)
m , . . . ,φ

�,(p)
m ), with φ

�,(h)
m = {φ�,(h)

m (r, s) : r →
s; r, s ∈ S(h)} for h = 1, . . . , p. To this end, we define a second graph G whose structure
is determined by G0. In particular, we let G = (V,E) be the graph whose nodes are the
indices of the vector φ�

m, i.e. V = {1, . . . , Dp}, with Dp =
∑

h∈V0
d(h)(d(h) − 1). G is a

deterministic function of G0 specified as follows. First, we assume there exists an edge

in G between transition rates of the same process, i.e. between the components of φ
�,(h)
m .

Therefore, an empty graph G0 (with no edges) corresponds to a graph G with p cliques,
one for each process. Second, if there is an edge between nodes h and k in G0 (i.e.,
(h, k) ∈ E0), then there is and edge between all the possible pairs formed by an element

of φ
�,(h)
m and one of φ

�,(k)
m . An illustration for the case of three processes, which can

assume only two possible states, is given in Figure 1. We write G = f(G0), f being the
deterministic transformation described above. Note that f is bijective and, as such, the
specification of a prior on G0 implies a prior on G. This construction is advantageous in
terms of dimension reduction, as the dimension of the graph space where G0 is defined
can be significantly smaller than the one of G, leading to more efficient exploration of
the posterior space. Note that G0 has p nodes, while G has Dp nodes.

Following the literature on GGMs, the conditional independence structure of the
multivariate Gaussian vectors φ�

m ∼ N(μ,ΩG), for m = 1, . . . ,M , is described by
constraining the elements of the precision matrix ΩG (Dempster, 1972). Namely, two
elements of the vector φ�

m are, conditionally on the others, independent if and only
if there is a zero in the corresponding entry of the precision matrix ΩG. Since G is a
deterministic function of G0, it is the latter that encodes the conditional independence
structure of the vectors φ�

m, for m = 1, . . . ,M (see Figure 1), i.e. an edge in G0 implies
a set of edges/cliques in G as described above. The standard conjugate prior for the
precision matrix ΩG is the G-Wishart distribution, specified conditionally on the graph
structure G (Roverato, 2002). The last component needed to fully specify this part of
the model is the prior distribution for the graph G, which is simply implied, through
the bijection f , by the prior on the graph G0:

π (G0 | η) ∝ η|E0| (1− η)(
p
2)−|E0| , η ∈ (0, 1),

where |E0| is the number of edges in graph G0 (i.e., the size of E0), while
(
p
2

)
is the

number of possible graphs with nodes V0 = {1, . . . , p}. This prior is equivalent to as-
suming a Bernoulli prior with probability of success (here inclusion) η on each edge
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Figure 1: Example with three processes, which can assume only two possible states
{1, 2}. The graph G0 describes the conditional independence between the processes in
V0 = {P (1), P (2), P (3)}, with P (1) and P (2) conditionally dependent. The graph G is
obtained as a deterministic function f from G0. The graph G models the dependence
among the baseline log-transition rates φ� (solid lines). These, together with available
covariates, contribute to determine the distribution of the transition rates λ. Finally,
the λs determine the transition probabilities of the three processes, which govern the
model for the observed transitions between states.
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of the graph G0, independently across edges. Small values of η favour sparser graphs
(Armstrong et al., 2009). Finally, we point out that, while the prior for the graph G0

is defined over all possible graphs, including the non-decomposable ones, the resulting
prior distribution on G is defined on a restricted space due to the clique constraints
imposed on the transitions of the same process which need to be fully connected.

2.4 Full Model Specification

Here we combine the strategies described above and present the full SUMS model:

Y
(1)
i , . . . ,Y

(p)
i |

{
λ
(h)
i ,β(h), h = 1, . . . , p

}
ind∼

p∏
h=1

p
(
Y

(h)
i | λ(h)

i ,β(h)
)
, i = 1, . . . , N,

log
(
λ
(h)
i (r, s)

)
= φ�,(h)

ci (r, s) +X
(h)
i β(h)

rs , r → s, r, s ∈ S(h), h = 1, . . . , p, i = 1, . . . , N,

β(h) | Uβ(h) ,Vβ(h) ∼ MNg(h)×d(h)(d(h)−1)

(
0,Uβ(h) ,Vβ(h)

)
, h = 1, . . . , p,

φ�
m = (φ�,(1)

m , . . . ,φ�,(p)
m ) | M,μ,ΩG ∼ P0 = NDp (μ,ΩG) , m = 1, . . . ,M,

μ,ΩG | G,mμ, k0, ν,Ψ ∼ NDp (μ | mμ, k0ΩG)G-WishartG (ΩG | ν,Ψ) , (4)

k0 | ak0 , bk0 ∼ Gamma (ak0 , bk0) ,

P (ci = m | Sm) ∝ Sm, m = 1, . . . ,M, i = 1, . . . , N,

S1, . . . , SM | M,γS
iid∼ Gamma (γS , 1) ,

M | Λ ∼ Poi1(Λ),

G = f (G0) , p (G0 | η) ∝ η|E0| (1− η)(
p
2)−|E0| ,

where we indicate with φ�
m the vectors of unique baseline log-transition rates for the

m-th component in the model and M is the unknown number of components in the
mixture. Note that we do not include in the expression for the log-transition rates

the term containing the time-varying continuous covariates Z
(h)
ij (see (2)) as they are

not available in the main application. Their inclusion is straightforward by specifying a

prior distribution on the regression coefficients γ
(h)
rs similar to the one used for β

(h)
rs . Here

c = (c1, . . . , cN ) represents the allocation vector, i.e. it specifies to which component
the i-th observation is assigned to, with φi = φ�

ci . The probability of ci being equal to
the m-th component of the mixture is proportional to the unnormalised weight Sm, for
m = 1, . . . ,M . Therefore, due to the discreteness of the mixing measure, the parameters
φi are assigned to KN different clusters, with KN ≤ M . In Section 3, we discuss prior
choices for the application under study. We refer to Argiento and De Iorio (2019) for a
thorough discussion on prior specification in mixture models with unknown number of
components. However, we point out that the mixture component of the model is specified
conditionally on the graph structure G, and the graph is common to the components
of the mixture. Finally, MNn×p(0,U ,V ) is the matrix-variate Normal distribution of
dimension n × p centred on the null matrix 0 and with covariance matrices U and V
of dimensions n× n and p× p, respectively. Note that if some processes have the same
covariates, depending on the application, we could easily assume a dependent prior
for the regression coefficients, or we could cluster individuals also on covariate effects,
including the regression coefficients in the mixture prior.
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2.5 Relationship with PPMx Models

The SUMS model has wide applicability in biomedical research as some processes can be
regarded as responses and some as covariates. Indeed, time-varying categorical covari-
ates, usually representing symptoms, are very common in the field of medical research,
for instance in association with the monitoring of a patient’s disease status over time.
In the application to disease progression in Section 3, some processes represent mental
health outcomes of interest, while others correspond to categorical clinical markers (e.g.
sleep quality), and the goal of the analysis is to model the joint evolution of outcomes
and clinical predictors. Handling of time-varying multivariate categorical information
can be problematic in several applications. In a Bayesian framework, De Iorio et al.
(2018) discuss possible solutions and propose an approach based on a latent health func-
tion borrowing ideas from Item Response Theory (Thissen and Steinberg, 2009). This
approach, although computationally efficient, does not allow for a direct quantification
of the covariate effect on the clinical response of interest and it may lead to identifiability
problems. A simpler and more common approach to deal with time-varying categori-
cal covariates is to introduce appropriate dummy variables, considerably increasing the
number of parameters to be estimated, resulting in slower computations and lower ef-
fectiveness in high dimensional problems. Another computational effective solution is
to summarise the covariates into an often arbitrary time-varying score, but at the cost
of losing information and interpretability. Here, we propose the SUMS model, which
overcomes the above problems, as simply some of the processes Y (h) can correspond to
responses of interests and some others to clinical markers.

When some of the multi-state processes are interpreted as covariates, the SUMS
model has interesting connections with Product Partition Models with Covariates
(PPMx), a popular class of models in the Bayesian nonparametric literature (Müller
et al., 1996, 2011). Analogously, our approach induces a covariate-driven clustering
structure on the subjects and enables the inclusion of different types of covariates/re-
sponses in a natural and efficient way (Barcella et al., 2017). We now give details
about the relationship between SUMS and PPMx. The main modelling idea behind
the PPMx is to include covariates into the partition model (e.g., into a Dirichlet Pro-
cess Mixture model framework) by modifying the prior on the partition induced by the
mixture model via a similarity function summarising the covariate information. In this
work, building upon Müller et al. (1996), we specify the PPMx model by modelling
the covariates and the responses jointly, thus treating also the covariates as random
variables. In this framework, inference is performed on an augmented probability space,
i.e. the joint space of covariates and responses. Specifically, let (Y (1)(t), . . . , Y (pY )(t))
be the response processes and denote by (H(1)(t), . . . , H(pH)(t)) the explanatory fac-
tors (covariate processes). Then we can rewrite the model in (4) for the processes
{(Y (h)(t), H(l)(t));h = 1, . . . , pY ; l = 1, . . . , pH ; t ∈ R

+}, with pY + pH = p. Simpli-
fying the notation for ease of explanation:

Y
(1)
i , . . . ,Y

(pY )
i ,H

(1)
i , . . . ,H

(pH)
i |

{
φ

Y,(h)
i ,φ

H,(l)
i , h = 1, . . . , pY , l = 1, . . . , pH

}
ind∼

pY∏
h=1

p
(
Y

(h)
i | φY,(h)

i

) pH∏
l=1

p
(
H

(l)
i | φH,(l)

i

)
, i = 1, . . . , N.
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Let c be the vector of allocation variables introduced in (3), and let ρN be the partition of
the indices {1, . . . , N} induced by c. We indicate by Cj the set of indices belonging to the
j-th cluster, i.e. Cj = {i ∈ {1, . . . , N} | ci = j}, and by nj = |Cj | its numerosity. Thus
a partition with KN clusters corresponds to ρN = {C1, . . . , CKN

}. Marginalising with
respect to S1, . . . , SM in (3), we obtain the following exchangeable partition probability
function for ρN (Argiento and De Iorio, 2019):

p (ρN ) = V (N,KN )

KN∏
j=1

Γ(γS + nj)

Γ(γS)
, (5)

where V (N,KN ) is a constant depending only on the sample size N and the number
of clusters KN .

Let φ�
j be the location parameter corresponding to cluster Cj , for j = 1, . . . ,KN . We

can partition the vector φ�
j = (φ�,Y

j ,φ�,H
j ) = (φ

�,(1)
j , . . . ,φ

�,(pY )
j ,φ

�,(pY +1)
j , . . . ,φ

�,(p)
j ),

i.e. in a sub-vector corresponding to the location parameters of the response processes
and one corresponding to the parameters of the covariate processes. In Supplementary
Material Section 1 we show that, starting with the joint model on (Y ,H ,φ�,Y ,φ�,H ,
ρN ,M) (see Section 2.4), conditioning first on the partition ρN and H and then

marginalising with respect to φ�,H
j (and other parameters), we obtain the PPMx rep-

resentation of the SUMS model:

Y
(1)
i , . . . ,Y

(pY )
i | φ�,Y

1 , . . . ,φ�,Y
KN

, ρN
ind∼

pY∏
h=1

p
(
Y

(h)
i | φ�,(h)

ci

)
, i = 1, . . . , N,

p
(
ρN | H�

1 , . . . ,H
�
KN

)
∝ V (N,KN )

KN∏
j=1

Γ(γS + nj)

Γ(γS)
G(H�

j ), (6)

φ�,Y
j | KN ,∼ PY

0 , j = 1, . . . ,KN ,

where PY
0 is the marginal distribution of φ�,Y

j obtained from P0. In model (6),
Γ(γS+nj)

Γ(γS)

is referred to as cohesion, while G(H�
j ) is the similarity, i.e. a function of the array of

covariates corresponding to the subjects in cluster j, denoted as H�
j := {Hi : i ∈ Cj},

for j = 1, . . . ,KN . The cohesion expresses prior information about the partition, such as
the average size of a cluster, while the similarity function G captures the contribution of
the covariates to the clustering structure. The term G in (6) allows subjects with similar
covariates to be assigned to the same cluster with higher probability, and is obtained
by marginalising the law of the processes H with respect to the corresponding cluster-
specific parameters φ�,H

j (see Supplementary Material Section 1 for a proof). Note that
the prior on the partition in (5) belongs to the class of Gibbs-type priors (De Blasi et al.,
2013), and presents a product partition structure (Quintana and Iglesias, 2003), which
allows to derive model (6) starting from (4). We point out that the similarity function
G is not known in closed form (see (5) in Supplementary Material), differently from
the common PPMx specification, where the similarity function is usually obtained from
a conjugate model for the covariate vector to simplify computations. In the proposed
approach, the evaluation of G would require an expensive numerical approximation. For
this reason, we resort to a conditional MCMC algorithm analogous to the one proposed
by Argiento and De Iorio (2019), not requiring the evaluation of the integral in (6).
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2.6 MCMC Algorithm

Posterior inference is performed through a MCMC algorithm, described in detail in
Supplementary Material Section 2. The numerous non-conjugate updates required by
the proposed model are tackled using adaptive Metropolis-Hastings sampling schemes
(Haario et al., 2001; Atchadé et al., 2005), which need an additional short burn-in pe-
riod. Additionally, inference under the proposed model is challenging given the presence
of the graphs G and G0. We adopt the birth-and-death approach of Mohammadi et al.
(2015), and extend their algorithm to accommodate for MCMC moves on cliques instead
of single edges, recalling that each edge in G0 corresponds to a clique in G through the
map f . Indeed, the original algorithm of Mohammadi et al. (2015) is based on theoret-
ical results from the GGM literature (see Wang et al., 2012), which can be extended
to our modelling settings. In Supplementary Material Section 4, we also compare the
performance of our model with the approach of De Iorio et al. (2018) and with two
alternative versions of the proposed model (i.e., Dirichlet Process (DP) and parametric
versions). The results of the comparison show that the proposed model outperforms the
parametric approach, as well as the nonparametric competitors in terms of clustering,
leading to comparable results with respect to the estimation of regression coefficients.

3 Application to the GUSTO Study

The GUSTO study (Growing Up in Singapore Towards healthy Outcomes, Soh et al.,
2014) is a longitudinal birth cohort study started in 2009 and involving Singaporean
mothers and their children. The study is one of the most carefully phenotyped parent-
offspring cohorts, focusing on the roles of foetal, developmental and epigenetic factors
involved in early body composition as well as neuro-development. In this work we con-
sider data on N = 301 mothers, followed during pre- and post-natal periods, starting
from three months before childbirth. The main focus of the analysis is understanding the
relationship among five psychometric indicators obtained from specific questionnaires:
the Beck’s Depression Inventory II (BDI II, Beck et al., 1961); the Edinburgh Postna-
tal Depression Scale (EPDS, Matthey et al., 2006); the State-Trait Anxiety Inventory
(STAI, Spielberger et al., 1983) that can be decomposed into two different scores describ-
ing the anxious states (STAI-s), reflecting characteristics that can vary with time, and
the anxiety traits (STAI-t), reflecting more stable characteristics; and the Pittsburgh
Sleep Quality Index (PSQI, Buysse et al., 1989). Following the literature (Beck et al.,
1961; Matthey et al., 2006; Meaney, 2018; Spielberger et al., 1983; Buysse et al., 1989),
the score ranges of these questionnaires are discretised to obtain clinically relevant cat-
egories. The scores are recorded at different time points, as reported in Supplementary
Material Table 3. These five processes represent time-varying categorical observations
and are modelled jointly via SUMS, to capture significant relationships between them
(see also Meaney et al., 2018). In our setting, the four mental health indicators (BDI,
EPDS, STAI-s, STAI-t) represent the main clinical responses of interest, while the sleep
quality indicator (PSQI) can be considered as a time-varying categorical covariate. For
all processes, we assume missingness at random and impute missing values at the first
time of observation from their full conditionals (see Section 2.2 of Supplementary Ma-
terial). We are also provided with information regarding socio-demographic and clinical
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markers, as well as scoring obtained from additional questionnaires measuring person-
ality traits. In particular, we have individual scores for the Big Five Inventory (BFI,
John et al., 1999) (including the scores for Extraversion, Agreeableness, Conscientious-
ness, Neuroticism, Openness, and Liking) and for the Maternal Childhood Adversity
(MCA, Bouvette-Turcot et al., 2015). Many of the remaining covariates are time-
homogeneous categorical, while no time-varying continuous covariates are available. The
time-homogeneous continuous covariates are centred and scaled so that each column has
null mean and unitary standard deviation, thus estimating the corresponding regression
coefficients β(h) on the same scale across processes. The full set of covariates (which is
17-dimensional, including dummy coding for the categorical ones) is described in more
details in Supplementary Material Table 4, and is included in the specification of the
instantaneous transition rates of the four psychometric processes, but not of PSQI.

Hyper-Prior Elicitation We fit the model described in Section 2.4 to the GUSTO data.
We need to specify the hyperparameters for the priors in the three components of the
model: the transition rates, the mixture model with random number of components and
the graphical model.

In order to induce sparsity in the graph structure and identify meaningful rela-
tionship between the SUMS processes, we set the a-priori probability of edge inclu-
sion to η = 0.1. The hyperparameters of the centring measure P0 are: mμ = 0,
k0 ∼ Gamma(1, 1), ν = Dp + 2 and Ψ = IDp/ν, where Ip is the identity matrix of
size p. In the case of a full graph G, the latter corresponds to E(ΩG | G) = IDp .

The regression coefficients β(h) are a-priori independent and identically distributed, i.e.
Uβ(h) = Vβ(h) = Ig(h)d(h)(d(h)−1), for h = 1, . . . , 4. Recall that covariates are not included
in the model of the transition intensities corresponding to PSQI. The mixture prior for
the baseline log-transition rates φ�

1, . . . ,φ
�
M is controlled by the hyperparameters Λ and

γS . These parameters determine the distribution of the number of components and the
corresponding allocation of the subjects, and are the object of an extensive sensitivity
analysis presented in Supplementary Material Section 3. In this application we fix these
parameters to Λ = 0.01 and γS = 0.1.

Posterior Inference We run the MCMC algorithm described in Section 2.6 for 50000
iterations, after an initial burn-in period of 1000 iterations used to initialise the adap-
tive Metropolis-Hastings, discarding 40000 iterations as burn-in and thinning every 2,
obtaining a final sample of 5000. The algorithm is run on a Dell workstation with Intel
Xeon W-2223 Processor (base frequency 3.60GHz) and takes approximately 2.5 hours.
The computational time employed by this MCMC scales reasonably well with the di-
mension of the problem, as shown in the simulation study in Supplementary Material
Section 4.1.

We explore the relationship between the multi-state processes as captured by a graph
(see Section 2.3). Inference on the posterior distribution of the graphical structure G0 is
obtained by reporting the posterior edge inclusion probability for each pair of nodes. In
Figure 2 we report the posterior median graph, obtained by including only those edges
with posterior edge inclusion probability greater than 0.5 (Barbieri et al., 2004). The four
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Figure 2: GUSTO study. Posterior median graph of G0, each edge included in the graph
has posterior edge inclusion probability greater than 0.5.

clinical mental health indicators BDI, EPDS, STAI-s and STAI-t are strongly associated,
presenting a clique in the posterior median graph. Interestingly, the sleep quality index
PSQI is only related to the anxiety indices STAI-s and STAI-t, forming a clique as well.
Links between probable anxiety and sleeping quality have been reported in previous
studies (Swanson et al., 2011; Ibrahim and Foldvary-Schaefer, 2012), and it is confirmed
by our findings. Moreover, as previously reported, poor sleep quality may feed into poor
emotional and mental health states (Ruiz-Robledillo et al., 2015; Osnes et al., 2019).

Another important aspect of the proposed model is the possibility of including co-
variates in the specification of the transition rates via (2). Posterior inference on the
coefficient β(h), for h = 1, . . . , 4 is not trivial, due to the high number of parameters
involved. The importance of each covariate can be assessed through Bayes Factors (BF),
defined as the ratio of the marginal contributions derived from the model with the corre-
sponding regression coefficient set to zero versus the full model (Kass and Raftery, 1995).
Closed form expressions for the Bayes Factor under the SUMS model are not available,
and thus we use the Savage-Dickey density ratio method (Wagenmakers et al., 2010;
Verdinelli and Wasserman, 1995). The applicability of this method is guaranteed by
the component-wise assumption of independence a-priori for the regression coefficients
β(h), for h = 1, . . . , 4 (see the full model specification in (4)). For each process h, the

values of − log10(BF
(h)
jk ) are reported in the heatmap of Figure 3, for j = 1, . . . , g(h)

and k = 1, . . . , d(h)(d(h) − 1). The magnitude of − log10(BF
(h)
jk ) measures the evidence

in favour of the full model (Kass and Raftery, 1995). The majority of the coefficients

is characterised by a low value of − log10(BF
(h)
jk ), supporting the hypothesis of no asso-

ciation, particularly in the case of the STAI processes. However, some coefficients are
characterised by − log10(BF ) values above 1 or 2, indicating strong evidence in support
of the inclusion of the corresponding covariate in the specific process. Of particular
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Figure 3: GUSTO study. Heatmap of Bayes Factors (− log10(BF
(h)
jk )) for the individual

regression coefficients β
(h)
jk , for j = 1, . . . , g(h), k = 1, . . . , d(h)(d(h)−1) and h = 1, . . . , 4.

Each row refers to a different covariate included in the model. Each column is associated
with a possible transition for each process, excluding PSQI which is modelled as an
explanatory factor.

interest are the coefficients relative to the BFI and MCA scores, representing different
traits of personality, trauma and parental relationship. We present the posterior mean
and 95% credible intervals of the regression coefficients relative to BFI and MCA in
detail in Figure 12 of Supplementary Material Section 6.

The personality traits of the mothers as described by the BFI scores have been
previously associated with increased likelihood for both antenatal and postnatal mood
disorder traits (Ritter et al., 2000; Leigh and Milgrom, 2008). Our analysis supports
this as BFI traits have a relevant impact on both BDI and EPDS (95% credible interval
does not contain zero). An interesting result appears through the estimates of the BFI’s
Neuroticism dimension, which characterises transitions 1 → 3 (deterioration, positive
regression coefficient) and 2/3 → 1 (improvement, negative regression coefficient) in
both BDI and EPDS scores, indicating that higher Neuroticism scores are associated
with higher depressive symptoms during the peripartum period (Kitamura et al., 1993;
O’hara and Swain, 1996). A similar result holds for the STAI-t process with respect
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to Neuroticism. We also notice the effects of BFI’s Extraversion and Agreeableness
differ for BDI and EPDS’s transitions. This could be explained by the fact that the
social behaviours associated with Extraversion and Agreeableness are distinct (Tobin
et al., 2000; Jensen-Campbell and Graziano, 2001). Extraverts tend to actively seek
out social interactions, whereas people scoring high on Agreeableness prefer harmonious
relationships. Maternal history of developmental adversity is linked to increased risk
for depression (Leigh and Milgrom, 2008), of which childhood abuse is a strong risk
factor (Seng et al., 2014), as highlighted by the importance of the MCA covariate for
the transition 3 → 2 (improvement) in BDI and EPDS (see Figure 3 and Supplementary
Material Figure 12). This result is also confirmed by Mandelli et al. (2015), who reports
that women who are victims of childhood neglect or abuse are at least twice as likely
to suffer from depression. The quality of the relationship with their parents may also
contribute to maternal developmental adversity. Mothers who received low parental care
and high control during childhood are at risk for peripartum anxiety (Grant et al., 2012)
and depression (McMahon et al., 2005).

The choice of the mixture model (3) as prior distribution for the vector of log-
transition rates φ1, . . . ,φN allows for clustering of the subjects. Inference on the random
partition is shown in Supplementary Material Figure 13, where the posterior distribu-
tions of the number of clusters, components and of the co-clustering probabilities are
reported. An estimate of the random partition induced on the subjects under study
is obtained by minimizing Binder’s loss function (Binder, 1978) with equal costs. We
obtain a partition with three clusters, which also corresponds to the posterior mode
of the number of clusters. The three clusters contain 135, 135 and 31 subjects, respec-
tively, and are labelled according to their size in decreasing order. In Figure 4 we report
the posterior distribution of φ(h)(r, s) conditional on the Binder’s partition, for r → s
and h = 1, . . . , p. Cluster-specific estimates of transition rates differ among clusters (see
Supplementary Material Section 7 for a discussion). For instance, transition rates cor-
responding to improvement in the BDI or EPDS scores are higher in Clusters 1 and 2
rather than Cluster 3. The two-states processes (STAI-s, STAI-t and PSQI) also seem
to present differences between clusters in the same direction, identifying Cluster 3 as
the one most prone to a deterioration in mental health status of its subjects. A sim-
ilar behaviour can be observed in Supplementary Material Figure 14, where we show
posterior inference on transition probabilities, as well as predictive distributions.

4 Conclusions

Observations on time-evolving related processes are very common in biomedical appli-
cations and beyond. In this work we present a Bayesian semiparametric approach for
joint modelling of several multi-state Markov processes, describing an individual’s tran-
sitions between different states in continuous time. The proposed model builds on the
multi-state Markov models, GGM and PPMx literature. The different multi-state pro-
cesses are linked by imposing a flexible prior distribution for the instantaneous transition
rates, which allows for data-driven clustering of the subjects. The dependence among
the processes is captured by a graph and posterior inference is performed through a
tailored MCMC algorithm.
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Figure 4: GUSTO study. Posterior means and 95% credible intervals of the instantaneous
log-transition rates φ(h)(r, s) for each process h = 1, . . . , p0. The vertical dashed lines
represent the value 0, while the horizontal continuous lines divide the estimates for the
five processes. The estimates are obtained by fixing the partition of the subjects to
the Binder’s partition, and re-running the algorithm for the conditional model. Each
sub-plot refers to one of the clusters in the fixed partition.

The proposed model finds wide applicability, due to its flexibility, interpretability
and relative ease of computations. In this work, we analyse data from the GUSTO
cohort study with the aim of understanding the evolution and relationship between
mental health indicators over time. Our findings are in agreement with existing medical
literature and shed more light on the influence of childhood and parental factors on
mental health progression. Potential extensions include higher order Markov dependency
and joint modelling of multi-state processes and continuous longitudinal trajectories.



770 SUMS

A possible alternative to our approach is to represent the categorical covariates with
continuous Gaussian latent variables linked to the categorical outcome by threshold-
ing (Albert and Chib, 1993), allowing for the inclusion of a time component through
auto-regressive terms in the likelihood (e.g. Barcella et al., 2018). To the best of our
knowledge, this strategy has not been employed in the context of multi-state models,
and it represents an interesting direction for future developments. However, this formu-
lation could suffer from limited interpretability (Garćıa-Zattera et al., 2007) and could
induce further computational challenges (Zhang et al., 2006).

Supplementary Material

Seemingly Unrelated Multi-State processes: a Bayesian semiparametric approach. Sup-
plementary Material (DOI: 10.1214/22-BA1326SUPP; .pdf). Supplementary Material
file referenced throughout the manuscript. R/C++ package and simulated example
available at the GitHub repository https://github.com/AndCre87/SUMS.
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