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Abstract. This paper outlines a comprehensive and consistent methodology for signal 

processing analysis of vibration response data, applicable for final structural monitoring 

and identification purposes. The methodology combines classical and advanced techniques, 

including, in its pre-processing phase, the adoption of a Time Domain Compression (TDC) 

technique and the application of an AutoRegressive Moving Average (ARMA) modeling 

approach. The TDC technique removes lower-quality subsamples from the full data set, resulting 

in a higher-quality modified signal that may display a weakly stationary character. The ARMA 

modeling approach enhances the understanding of the response signals by modeling unknown 

source inputs; as a peculiarity, the inherent polynomial function applied to a white noise source 

in the model is interpreted as a filtering term that transforms the source into a non-white noise 

configuration, enabling the effective deciphering of the structure transfer function features. The 

research is part of a more comprehensive case study concerning the structural evaluation of a 

historical reinforced concrete arched bridge over the Adda river in Lombardy, Italy. The focus 

of this paper is specifically on the application of the TDC and ARMA techniques to the signal 

response data collected from the bridge under operational conditions. 

 
 

 

 

1. Introduction 

A promising approach to monitor the current structural health of infrastructures, like bridges, 

involves the processing of their response data during regular operation under vehicle traffic. 

The technical literature offers numerous examples dealing with this topic, often utilizing 

modeling procedures such as the well-known Frequency Domain Decomposition (FDD) [1–5] 

or AutoRegressive Moving Average (ARMA) models [6–12]. These models assume that 

the unmeasured operational excitation shall correspond to a White Noise stochastic process. 

However, in many cases, loading is not continuous and the recorded response is a succession 

of transient vibrations. It might therefore be useful to propose approaches for a preceding 
data processing, coming from vibration monitoring systems, to enable the application of sound 

identification methods, such as those above mentioned, even when the excitation shall not be 

assumed as a White Noise process. 

In this paper, strategies based on a Time Domain Compression (TDC) technique and an 

ARMA model are presented, as useful means to achieve such an ambitious goal. They are 

proposed as part of a detailed vibration signal processing analysis approach, which is highly 

mailto:rosalba.ferrari@unibg.it
https://creativecommons.org/licenses/by/4.0/


XII International Conference on Structural Dynamics
Journal of Physics: Conference Series 2647 (2024) 182040

IOP Publishing
doi:10.1088/1742-6596/2647/18/182040

2

 
 

 

 

generalisable and able to provide initial insights on the current state of the structure under 

analysis, without any particular restrictions related to the type of the analyzed signal. The 

approach is based on established notions and methods from signal processing theory and may 

be suitable as a preliminary signal analysis treatment, to be beforehand performed. 

One of the most telling aim of this contribution is to open up a discussion on the importance 
of a first signal processing phase, which is here considered as a fundamental part of the structural 

response interpretation based on data acquisition, as well as representing a field of research whose 

development shall lead to relevant results in the general field of Structural Health Monitoring 

(SHM); in the literature, a signal processing dedicated to a preliminary analysis, which shall serve 
algorithms to pursue structural monitoring and identification goals, is in fact often overshadowed, 

thereby limiting a full sharing of the endowed research experience. 

The vibration signal analysis methodology here proposed was recently initially outlined as 

part of a case study concerning the structural evaluation of a three-span reinforced concrete 

arched bridge over the Adda river, in Lombardy (Italy), built in 1917 (Brivio bridge) [25]. Since 

then, subsequent developments have refined the proposed procedure, particularly in relation to 

the parts concerning the adoption of the TDC technique and the ARMA method, with the above 

described purposes. This paper presents first insights into the use of such elaborations. 

The paper is structured as follows: Section 2 provides a synoptic description of the proposed 

signal processing procedure for the vibration response analysis of civil structures. Section 3 

presents first results obtained by applying the TDC technique and the ARMA models to 

vibrational data collected from Brivio bridge. Some final remarks conclude the paper. 

 

2. Robust signal processing procedure for vibration response analysis of structures 

The procedure within which this study is placed is meant to be developed on the basis of 

experimental measurements under operational conditions and based on the following main 

conceptual steps. 

• Analysis of the signals in the time domain, to evaluate their main features. In particular, 

the evaluation of the possible stationarity of the data is of a main concern. To achieve this, 

a statistical analysis shall be performed, by looking at the distribution of the instantaneous 

values, positive and negative peaks, mean value and root mean square value. 

• Analysis of the signals in the frequency domain, to identify the dominant frequencies of the 

recorded signals in the frequency range of interest, by processing both the whole record and 

peculiar reduced length records, for instance by a Fourier Transform (FT) analysis. 

Depending upon the potential stationarity of the data, two different approaches shall then 

be adopted: being the signals stationary, a conventional analysis may be performed, including 
sound methods for modal analysis finalities or, being the signals non-stationary, a further study 

shall be outlined. In the latter case, the procedure shall continue with the following steps (see 
implemented details in Tables 1-2). 

• Design and employment of a TDC algorithm, to try to make the signals stationary in the 

time domain and then to repeat the statistical and correlation analyses; if then the time- 

compressed signals are not stationary in the frequency domain, further devoted analyses 

should be performed, and the procedure shall continue with the following phases. 

• Wavelet analysis, to identify the frequency contents, by positioning in the time domain the 

components of the signals, thus overcoming the spreading characteristics of the information 

associated with the FT analysis. 

• ARMA modeling, as a further approach to investigate intrinsic structural characteristics, 

which can also be derived from state-space models, within which it is generally easier 

to incorporate insights into the physical mechanisms of the system than by the direct 

application of the ARMA models. 
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Table 1. Synoptic overview of the signal processing procedure for vibrational response analysis 

of structures – Part I. 

Macro-phases Sub-phases 
 

• Identification of possible disturbances on the recorded signal 

• Rough classification of the type of signal 

• Rough correlation between physical events and signal properties 

• Estimate of the signal to noise ratio 

• Determination of the average, rms, positive peaks and negative 
A) Time domain analysis 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
B) Statistical analysis 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
C) Correlation analysis 

valleys values of the full record and of significant sub-records (see, 
e.g., [13]) 

• Rough evaluation of the dominant frequencies 

• Identification of unimportant parts of the signal to be discarded 

and reduction of the signal to the meaningful parts (Time Domain 
Compressed signal) 

• Evaluation of the statistical distribution of the instantaneous 

values of the TDC signal 

• Evaluation of the statistical parameters, first–, second-, third- 

and forth-order moments, on the full TDC signal and on reduced 
length sub-records 

• Identification of the similarity of the above experimental distribu- 

tion with classical statistical distributions having equal statistical 
parameters 

• Rough judgement of the stationarity of the signal, weak stationar- 

ity or strong stationarity, local or general stationarity 

• Correlation between the statistical distribution of the signal and 

the physical events under study 

• Evaluation of the statistical distribution of the positive peaks and 

negative valleys of the TDC signal and possibly of reduced length 

sub-records with reference to the physical events 

• Identification of the similarity of the above experimental distribu- 

tion with classical statistical distributions having equal statistical 
parameters 

• For each single signal evaluation of the auto-correlation function 

on the full TDC signal and on significant sub-records 

• Classification of the type of signal 

• Verification of the correspondence between correlation parameters 
and time domain parameters 

• Rough estimation of possible dominant frequencies 

• Evaluation of the cross-correlation function among the signals of 

different measuring channels 

• Rough estimation of the similarity between different cross- 
correlation functions 

• Estimation of the delays in correspondence of the peak values and 

their interpretation with reference to the physical event 
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Table 2. Synoptic overview of the signal processing procedure for vibrational response analysis 

of structures – Part II. 

Macro-phases Sub-phases 
 

• Calculation of FS, FT, SP, PSD based upon the type of signal of 

the full TDC record (see, e.g., [14]) 

D) Frequency analysis 

 
 
 
 
 

 
E) Wavelet analysis 

 

 
 
 
 
 
 
 
 
 

 

F) ARMA models 

• Repeat the above frequency analysis on significant sub-records and 

find the relationship with the physical event 

• Identification of the peak frequencies and their correlation with the 
physical properties of the structure and of the physical event 

• Choice of the suitable mother wavelet for the specific type of signal 
to be studied (see, e.g., [15–23]) 

• Performance of the wavelet analysis on the full TDC record for a 
stationary signal and on significant sub-records for non-stationary 

analysis 

• Evaluation of the dominant frequencies at each level of the wavelet 

analysis 

• Based on the results of the previous analysis, evaluate whether the 

unmeasured input to the structure shall be similar to a white noise 

disturbance or not 

• For a white noise unmeasured input, the AR model should be 

adopted, and the parameters of the system should be evaluated by 

minimizing the figure of merit 

• For a non-white noise unmeasured input, the ARMA model should 
be adopted in order to reproduce a sort of filtering of the white 

noise, and the parameters of the system should be evaluated by 
minimizing the figure of merit 

• When the physical structure is already described by a physical 

model with lumped parameters, the ARMA model could be derived 

in the state-space 

• The obtained transfer functions for the disturbance model may be 

used as input for more precise dynamic analysis tools such as the 

Frequency Domain Decomposition (FDD) 
 

 

 

 

3. Brivio bridge case study 

The signal processing procedure for vibrational response analysis of structures herein presented 

has been adopted for a systematic signal processing investigation of collected acceleration 

responses during an experimental campaign performed on Brivio bridge (1917) between 11 and 

13 June 2014 [24]. 

A first stage of the analysis is reported in [25] (following previous and further 

studies concerning Heterogeneous Data Fusion applications [24, 26], algorithmic FEM model 

updating [27, 28], and signal denoising [18, 20, 23]). There, the main aim of the analysis was that 

to produce a "blind test" on the proposed procedure. In particular, the analysis made it possible 

to identify reliable structural features, such as the dominant frequencies of the structure, and 

to provide structural interpretations, like for the influences of specific functioning parts and for 

potential manifestations of a global non-linear behavior. Furthermore, the non-stationarity of 

the response of the bridge in time was highlighted. The analysis then continued, focusing in 

particular on the application of the TDC and the ARMA method, in an attempt to overcome the 

constraints of using sound methods for SHM purposes when the excitation cannot be assumed 
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to correspond to a White Noise process. 

First, a TDC procedure was deemed suitable to try to make the signals stationary in the 

time domain. The adopted criterium was to disregard the parts of the signal having a rms 

value lower than a fixed percentage of the original rms value. Once the compressed signals 

were obtained, the statistical and correlation analyses were performed in the time domain; the 

frequency analysis was then conducted to evaluate the stationarity of the frequency contents. 

With reference to the extensive operational experimental campaigns performed on Brivio 

bridge [24], signals acquired on the upstream side of the central span of the bridge were considered 

for the current processing. As a starting point, it was decided to process the data coming 

from two of the channels of the set-up employed during the experimental acquisition campaing 

(Channel 1 and Channel 2, see [25]). Four cases were in particular studied, by considering 

different percentages of the original rms value considered as the threshold, varying from 10% 

to 64%. 

In this specific case study, focused on Brivio bridge, all of the compression attempts led to 

the same conclusions, as in the following. 

• The TDC algorithm consistently reduced the length of the original data sets, resulting in 
final data strings of up to 42% of the original signal length, as in the case shown in Figure 1, 

where an rms threshold of 64% was set. This represents a beneficial by-product, namely the 

reduction in the amount of data to be processed and the associated gain in computational 
time. 

• There was no successful effect of the TDC procedure on the stationarity of the signals, 

although the effect of the TDC made the signals closer to a Gaussian distribution of their 

instantaneous values (see Figure 2), and their peaks distribution became closer to the 

Rayleigh distribution of a narrow-band random signal. This potentially provides a more 

reliable information about the true statistical distribution during the operating life of the 

bridge, thus allowing a more correct estimation of its fatigue life. The (mere) similarities, 

however, exclude the perfect superposition of the trends, which would be necessary to 

assume linearity in the structural behavior. 

• The frequency distribution of the original signals and the compressed ones turned out quite 

similar in shape, except for the absolute value, as it could be expected due to the reduction 

of the low-magnitude parts of the signals (cfr. Figure 3(a) vs. Figure 3(b)). The fact that 

the TDC procedure did not alter the frequency content of the original signal is reassuring 

and expected. It is important to note that, regardless of the specific case study results, 

it is recommended to always perform this comparison alongside TDC operations to ensure 

that the acquired signal information content is not altered. This is crucial for accurately 

interpreting the structural behavior, regardless of the specific case study results. 

Since the signal non-stationary character persists even after processing with the TDC 

technique, the ARMA method was employed for a suitable further signal processing. 

ARMA models constitute a very powerful tool for the identification of a system through the 

determination of the parameters of a black box. Beyond the signal analysis, ARMA models 
can be seen as a first stage for the identification of the physical parameters of a structure, 

starting from its response to known, but not necessarily measured, inputs. In the general 
formulation of the AutoRegressive Moving Average process with eXogenous input (ARMAX) 
models, response y(t) and input u(t) are both measured, while there are also unmeasured inputs 

e(t). However, when both the input and output are measured, there are many other direct 

modeling procedures and mathematical tools that can be used besides ARMAX models. ARMA 

models are particularly useful when only the response of the structure is measured, and all inputs 

are considered as unmeasured term e(t), which is taken into account in the Moving Average part 

of the model. The general theory is developed by considering that e(t) is represented by a white 
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(a) Original signal. (b) Compressed signal. 

 

Figure 1. Record of signals acquired on Span 2, upstream side, Channel 2, before (a) and 

after (b) application of Time Domain Compression to the original record; from the abscissa it 

is possible to appreciate the reduction of the time-lenght of the signal. 

 

 

  

(a) Original signal, kurtosis = 18.33. (b) Compressed signal, kurtosis = 6.7. 

 

Figure 2. Distribution of instantaneous values of the records acquired on Span 2, upstream side, 

Channel 2 vs. Gaussian (normal) distribution. After application of Time Domain Compression 

to the original record the experimental distribution remains leptokurtic, although there is an 

evidence of a reduction in kurtosis. 

 

 

(a) Original signal. (b) Compressed signal. 

 

Figure 3. FT plot of signals acquired on Span 2, upstream side, Channel 2. The frequency 

content of the signal is displayed not to be altered by the application of the Time Domain 

Compression. 

  

2 2 
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noise, but in practice this is a rare case. As it is well known by definition, a white noise process 

may follow any kind of probability distribution, not necessarily a Gaussian distribution, thus 
from this point of view e(t) is suitable to represent the excitation of vehicle traffic or any other 

kind of excitation of a structure. Nevertheless, one of the properties of white noise, from where 
the name, is that the frequency distribution of the signal is flat all over the frequency field, but 

in many cases the dynamic excitation displays a frequency distribution in a limited range with 
peaks and valleys. 

To overcome this problem, in the ARMA model A(z)y(t) = C(z)e(t), the Moving Average 

part of the model may be seen as a filtered white noise representing the unmeasured inputs to 

the system v(t)= C(z)e(t), where A(z) is the polynomial of the Auto-Regressive part and C(z) 

is the polynomial of the Moving Average part of the ARMA model in the Z–transform space. 

Therefore, the theory of the ARMA models can be adapted to the case where the unmeasured 

inputs are neither white noise nor stationary processes, as in the case at hand, and consistently 

the term 1/A(z) can be interpreted as the model transfer function. 

In the present work, a Matlab environment [29] is adopted for delivering a self-implementation 
of the numerical analyses with the ARMA models. When dealing with real structures, the 
physical system is well approximated by a multi-variable output system, but the fit of the model 

gets worse when more outputs are included. If there are difficulties obtaining good models for a 

multi-output system, it might be wise to model one output at a time. Generally speaking, it is 
thus preferable to work with state-space models in the multi-variable case, since it is easier to 
deal with the model structure complexity. An ARMA model configured in the state space was 

therefore considered, for the intended purposes. 

The application of the ARMA model was performed on several sub-records of the time- 

compressed bridge response signals, selected according to appropriate criteria, e.g. based on 

high peak values, high rms values or local stationarity. 

From the results of the ARMA processing, the following main remarks hold. 

• The suspected non-stationarity of the recorded data looks confirmed and the resulting 

Frequency Response Functions (FRFs) turn out to be strongly dependent upon both time 
location and length of the processed record. 

• For a non-stationary signal the use of the FRFs produced by the ARMA models is more 
suitable than the FRFs obtained by the averaging process of the full original record through 
the computation of the Power Spectral Densities. This is because the ARMA model permits 
the identification of parameters that accurately represent the time domain response of the 

system, resulting in a better fit for subsequent modal analysis algorithms, also on very short 

time-length samples (as in the case of single recorded transients). 

• The FRFs obtained by the ARMA models can be fed as input to the sound algorithms for 

the subsequent modal analysis, such as the FDD. 

Figure 4 depicts the FRFs achieved by the present ARMA implementation on two sub-records 
of the time compressed signals of the data recorded from Channel 2 in the central upstream side 
span of Brivio bridge [25]. When observing them, the difference between the FRFs is clearly 

visible. Specifically, Table 3 shows the peaks frequencies from Figure 4, where differences are 

similarly visible depending upon the processed part of the record. 

In situations where the signals, such as those obtained from Brivio bridge, are highly non- 

stationary, it is recommended to apply the illustrated procedure to each individual transient 

signal. This approach allows for a more refined frequency analysis, resulting in the acquisition 

of Frequency Response Functions that can be used for a more accurate modal analysis. 
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(a) (b) 

 

Figure 4. Magnitude plot of transfer function (1/A(z)) for ARMA in the subspace model, 
Channel 2, Span 2, upstream side: (a) first half of the signal (750 seconds); (b) second half of 

the signal (750 seconds). 
 

 
Table 3. Peaks frequencies of the transfer function (1/A(z)) for ARMA in the subspace model, 
Channel 2, Span 2, upstream side, for the first half of the signal (Figure 4(a)) and the second 

half of the signal (Figure 4(b)). 

[Hz] 1 2 3 4 5 6 7 8 9 10 11 12 

Fig. 4(a) 3.83 4.23 6.07 7.53 8.78 9.57 10.62 11.49 13.55 17.35 19.08 19.78 

Fig. 4(b) 3.48 4.18 6.13 7.02 8.87 – 10.00 11.20 – – – – 

 4. Conclusions 

The combination of consolidated statistical signal processing analyses with advanced techniques 

herein presented provides a devoted methodological procedure to extract reliable structural 

properties of current condition assessment toward Structural Health Monitoring and intervention 

purposes, outlining a robust and efficient management monitoring platform. 

The considered approaches and whole methodology are validated on the specific case study of 
Brivio bridge (1917), as discussed in contribution [25] and in this paper. The presented results 

allowed to derive effective observations regarding the current structural behavior of the bridge, 

while the study of the devised methodology shall highlight its general applicability with reference 

to other structural configurations as well. 

The current research on such a specific case study has recently focused on the application 
of the TDC method and the ARMA method in an attempt to enable the employment of 

identification methods regardless of whether the excitation may be assumed to be a White 

Noise process or not. Specifically, in the first attempt here reported, the application of TDC to 

original acceleration acquisitions did not alter the signals, neither in terms of frequency content 

nor from a statistical point of view. The benefit of data compression is confirmed, although it 

does not seem to have altered the non-stationary characteristics of the signal, at least in this 

application to the Brivio bridge case study. The application of the ARMA method has confirmed 

the non-stationarity of the recorded data, as the resulting Frequency Response Functions (FRFs) 

turn out to be strongly dependent upon both time location and length of the processed record. 

Nonetheless, this approach yields FRFs that are more suitable for post-processing the acquired 

signals, compared to those obtained by averaging the entire original recording through the 

computation of the Power Spectral Densities. These improved FRFs are proposed as an optimal 

solution, from a theoretical standpoint, in the case of non-stationary input signals, making them 

highly applicable even when working with short-duration samples such as single transients. 
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Applications of the ARMA models are currently envisaged, as described above, toward the 

above mentioned specific scopes, and more generally for the investigation and interpretation of 

the behavior of civil structures via signal processing analysis. 
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