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We arrive at this conclusion by using a new family of models—the Long Memory Dynamic 
Judgmental Protocol (LMDJP)—where robust filtering and fractionally integrated auto-regressions 
are combined in an environment characterized by several players—namely, Forecast Producer, 
Forecast User, and Reality. Namely, we show that if judgment is parametrized as a deformation 
Likelihood function according to Lq-Likelihood methods, such a deformation affects (sometimes 
dramatically) the Power Spectrum, consequently inducing over-rejection in formal tests for no 
LM-effects based on the last. Our simulated and empirical evidence reveals that knowledge of the 
fractional integration parameter matters for the p-values of tests for spurious LM and, secondly, 
that the role of LM in belief formation is ambiguous.

1. Introduction

The systematic tendency of economic agents to over- or under-predict the future value of an economic variable (or forecasting 
bias) is one of the most well-known and puzzling phenomena in modern Macroeconomics and Finance.

For the past couple of decades, economic literature has identified the informational channel as one of the main drivers of this issue. 
Specifically, economic agents may incur costs in data processing, either during the forecasting phase or the evaluation phase (Mankiw 
and Reis, 2002; Sims, 2003). Alternatively, they might have incentives to alter forecast communication due to private information, 
agency costs, or other forms of strategic behavior (Ehrbeck and Waldmann, 1996; Gallo et al., 2002), inter alia.

On the other hand, a purely econometric approach would suggest that any deficiencies in forecasting activity are due to poor 
model specification. Historically, one of the most common sources of dynamic mis-specification in time series analysis has been the 
presence of long-run time series dynamics, identified by the decay of sample auto-covariance or, equivalently, the stability of its 
power spectrum. This feature is known as long-range dependence or long-memory (LM). LM has been well-documented in macroeco-
nomics, at least since the contribution by Diebold and Rudebusch (1989). Decades of econometric and statistical literature provide 
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various explanations for this phenomenon and models that enable researchers to forecast economic variables where this feature is 
relevant.

Here, we introduce a new, micro-founded explanation for the rise of LM: judgment. This is defined (Svensson, 2005) as anything 
outside the scope of an economic or statistical model—or, in econometric terms, as the non-sample information introduced in the 
estimation phase by a forecaster or decision maker. According to this definition, whenever reality does not confirm the prediction, 
judgmental bias (JB) occurs. JB differs considerably from traditional estimation bias: the former results from strategic interactions 
among several economic agents, whereas estimation bias does not necessarily have an economic explanation. Interestingly, JB can 
be significant even in the absence of estimation bias. For this reason, judgment has often been considered outside the purview of 
econometric practice and relegated to behavioral and cognitive sciences. It is not surprising that literature on JB in mainstream 
economic theory-based modeling, such as Dynamic Stochastic General Equilibrium (DSGE)—where judgment can be seen as a by-
product of agents’ heterogeneity—is scarce (Monti, 2010; Gelain and Manganelli, 2020), while literature on the effects of judgment 
on structural Vector AutoRegression (SVAR) modeling is almost nonexistent.2

Despite this literature gap, it is already possible to directly elicit the (unobserved) component of judgment in data using a robust 
signal extraction technique introduced by Zanetti Chini (2023) called the Judgmental (or Deformed Kalman) Filter (JF). This method 
is the solution to a dynamic game between two players: a forecast producer (FP, who is a professional forecaster) and a forecast 
user (FU, such as a central banker). Each player has a subjective utility function dependent on future realizations and available 
information, which causes the other to believe that the genuine forecasts and decisions have not been accurately communicated. The 
evidence from the Survey of Professional Forecasters (SPF) data and judgments estimated through this method is not only significant 
and pervasive but also time-varying and correlated with the business cycle. However, the long-run dynamics and effects of judgment 
remain unexplored.

A simple investigation of the survey data on U.S. real GDP is sufficient to motivate our research. In Fig. 1, real observations are 
compared with OLS (implemented in a dynamic system via the Kalman filter) and judgmental filter-based one-step-ahead estimates, 
either statically via simple scatter plots or dynamically via the autocorrelation function. In all cases, there is a clear divergence (in 
terms of static regression) between judgmental-filter-based forecasts and optimal forecasts: while in real observations the former 
are less dispersed than the latter, the opposite seems to hold when considering one-quarter-ahead forecasts. On the other hand, the 
autocorrelations of real data are quite similar to those of a classical AR(2) model (assumed to be the true GDP), with a cutoff after 
the second lag, while a completely different dynamic appears in professional forecasts. These forecasts decay considerably more 
slowly. Moreover, the path of this slow decay differs according to the initial level of judgment assumed in the estimation phase: if the 
data are assumed to have low judgment in the initial recursion, the autocorrelations of all the series under investigation (real data, 
filter-based estimates, innovations, and their spread) are U-shaped. In contrast, for high initial judgment, a differentiation occurs: 
real observations and filter-based forecasts exhibit permanently non-zero autocorrelations, while the other two display the previously 
seen U-shaped behavior.

This stylized fact aligns with the findings emphasized by Afrouzi et al. (2023): a high AR coefficient regressor of a forecast 
on real data, in addition to results from extensive experiments, indicates persistence in expectations’ overreaction. However, the 
statistical characterization of LM goes far beyond a simple AR coefficient magnitude. Thus, the following questions arise: (i) Are there 
connections between judgment and LM? (ii) If yes, what is the effect of that relationship? Our evidence allows us to answer positively to 
the first question: JB is associated with significant changes in the spectral density of the process. But LM implies, by definition, that 
the process has a stable spectrum. Hence, the association ‘judgment–unstable spectrum’ is symptomatic of spurious LM: the process, 
apparently long-range dependent if looking only at observed data, is in fact a classical stationary time series characterized by a 
significant amount of judgment. This has important consequences for econometric analysis: an improper assessment and modeling 
of judgment may lead econometricians to use an estimator for LM where it is unnecessary, and thus to incorrect inferences. This 
paper aims to bridge these two seemingly separate concepts by introducing a new family of models named Long Memory Dynamic 
Judgmental Protocol (LM-DJP).

The paper is organized as follows: Section 2 provides the contribution and the paper’s status in the literature; Section 3 describes 
the model; estimation methods are summarized in Section 4; Section 5 reports the Monte Carlo exercise; real data applications are 
illustrated in Section 6; and Section 7 concludes. A supplement provides mathematical details, proofs, and further results; finally, 
Table 1 lists the acronyms.

2. Literature

The literature on LM is characterized by multiple definitions and, historically, was often confused with other features like non-
stationarity. Not strangely, it is of the most conspicuous in the field of time series analysis and finds its origins in Natural Sciences 
and Engineering; see, inter alia, Beran et al. (2013) and Hassler (2018) for an updated overview. After seminal contributions by Hurst 
(1951), Granger (1966) and Mandelbrot and Van Ness (1968) in discrete and continuous-time, respectively, as well as the introduction 
of the fractional differentiation by Hosking (1981), the research on the topic in and allowed the econometric literature to enlighten 
several related issues: aggregation (Granger, 1980; Baillie, 1996; Zaffaroni, 2004), conditional heteroskedastic aspects (Baillie et al., 
1996), maximum-likelihood estimation (Sowell, 1992), generalized integration (Granger and Ding, 1996), semi-parametric meth-
ods (Shimotsu and Phillips, 2005, 2006; Abadir et al., 2007; Shimotsu, 2010; Arteche, 2020), relationships with non-linear models 
2

2 To the best of our knowledge, the only exception is Brenna and Budrysb (2024), who use Bayesian inference to model judgmental dynamics.
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NOTE: This figure displays the evidence of existence of a relationship of judgment on LM in Survey of Professional Forecasts. Each panel displays (i) in top left 
sub-panel, the association among levels 𝑦𝑡 and simple OLS (in-sample) estimate 𝑦𝑡 from an AR(2); (ii) in the top-right sub-panel, the analogue association among 
OLS-based out-of-sample forecasts (𝑦̂𝑡+1) obtained via standard Kalman filter and Judgmental-filter based forecasts 𝑦𝐹

𝑡+1 by Zanetti Chini (2023); (iii) in the bottom 
sub-panel, the estimated Autocorrelation Function for data (𝑦𝑡), the judgmental-filtered series (𝑦𝐹

𝑡+1), its innovation component (𝑣𝑡) and the “judgment effects” (these 
last are defined as 𝑦𝐹

𝑡+1 − 𝑣𝑡). We consider two hypothetical scenarios for the initial level of judgment: low (10%, left column) and high (90%, right column). Moreover, 
we consider two kind of data: 𝑦𝑡 (that real data observations, in top rows) and 𝑦̂𝑡+1, that is one-quarter-ahead forecasts (bottom row).

Fig. 1. The Effects of Judgment in Long Memory on US survey data.

(Diebold and Inoue, 2001; Banerjee and Urga, 2005; Davidson and Sibbertsen, 2005), asymptotic analysis (Robinson, 1995; Robinson 
and Hidalgo, 1997), efficient estimation, testing and inference (Robinson, 1994; Dahlhaus, 2006), volatility modeling (Hurvich et al., 
2005; Christensen and Nielsen, 2007; Corsi, 2009; Asai et al., 2012), factor modeling (Ergemen, 2023). This paper takes inspiration 
by the peculiar strand of literature that focuses on the role of economic agents’ learning from their macroeconomic system and how 
this influences the long-run dynamics of economic time series by generating LM (Chevillon and Mavroeidis, 2017); and how the 
network structure of an economic system can be per se sufficient to cause LM without using other explanations (Schennach, 2018).

The literature on judgment is not systematic and spreads across several disciplines; see, for example, Goodwin and Fildes (2022). 
The Bayesian approach to Probability and Statistics (foundational in this framework) investigates how better collecting and summa-
rizing opinions through opinion pooling or forecast combination; see, among many others, Genest and Schervish (1985); DeGroot 
and Mortera (1991); Geweke and Amisano (2011); Garratt et al. (2023). Game-theoretic literature also deals with judgment, but 
exclusively in theoretical aspects or centered on Bayesian calibration and claim validation; see Olszewski (2015). The most successful 
methods in frequentist Econometrics—see Hall and Mitchell (2007); Kapetanios et al. (2015) inter alia—connect elderly Bayesian 
3

intuitions with modern econometric modeling. However, this literature only partially addresses the generic research question of how 
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Table 1

List of Acronyms.

Acronym Explanation Acronym Explanation

LM long-memory JB judgmental bias
DSGE dynamic stochastic general equilibrium SVAR structural vector autoregression
JF judgmental filter DKF deformed Kalman Filter
FP forecast producer FU forecast user
R reality FED Federal Reserve Bank
SPF survey of professional forecasters OLS ordinary least-squares
RGDP real gross domestic product JP judgmental protocol
AR(p) autoregression of order p LM-DJP long-memory dynamic judgmental protocol
DJP dynamic judgmental protocol ARFIMA autoregressive fractionally integrated moving-average
ARMA autoregressive moving-average MLqE maximum 𝐿𝑞 -likelihood estimator
MLE maximum likelihood estimator AVAS additivity and variance stabilization
ACE alternating conditional expectation LW local Whittle likelihood estimator
SU-LMDJP seemingly-unrelated LMDJP ELW2 modified Whittle Likelihood Estimator
ELW exact local Whittle likelihood estimator GNP gross national product
2SFEWL two-step feasible Whittle likelihood estimator DGP data generating process

NOTE: This table reports the list of acronyms used in this paper in order of appearance in text.

to treat opinions, as it does not go into detail about the characterization of structural relationships or discuss long-term/strategic be-
havior effects. Operation Research-oriented literature (Lawrence et al., 2006; Lamont, 2002; Phillips et al., 2004; Clark and Friesen, 
2009; DellaVigna, 2009; Cipriani and Guarino, 2014) provides some intuitions and evidence of the multiplicity of dangers associated 
with judgmental forecasting, such as motivational and strategic biases—mainly herding and (anti-)contrarianism—as well as on the 
inner nature of judgment, considering heuristics like representativeness, availability, anchoring, and adjustment as potential bias 
sources. In this literature, however, there is no unifying perspective on the rise of JB; an exception is represented by Clements (2018). 
Several strategies can enhance and/or mitigate judgmental bias. In particular, we follow the intuition by Manganelli (2009) to use a 
combination of statistical and judgmental factors in phase of estimation. However, this paper differs from the latter reference for the 
fact that judgment is the endogenous product of a dynamic system.

This paper provides a link among these two strands of literature for the first time, to the best of our knowledge. This link is ensured 
by two key ideas: a dynamic game among three agents (Forecast Producer, Forecast Users and Reality) that generalizes the static 
model by Vovk and Shafer (2005) and a robust estimation approach by Ferrari and Yang (2010). The economic intuition relies on the 
established literature on rational inattention; see Coibion and Gorodnichenko (2012, 2015); Bordalo et al. (2020); Ilut and Valchev 
(2023) inter alia. Finally, our modeling technique is based on a linear model. However, the literature that studies the connections 
among LM and nonlinear models is large and the degree of LM by Threshold ARMA, see Li et al. (2012) among others.

3. Theoretical framework

This section explains how to model judgment and long memory (LM) in time series. We adopt the idea that JB distorts any statistical 
functional based on the data available to the investigator. Theoretically, we need to verify a proportional relationship between JB 
and the degree of deformation: a low judgment should be associated with minor deformation of the functional under consideration, 
while a high judgment should produce significant distortion.

Definition 1. Let 𝑦 ∈ℝ and 𝑞 be the tuning parameter of an 𝐿𝑞 -transform defined as follows:

𝐿𝑞(𝑦) =

{
log(𝑦) if 𝑞 = 1,
𝑦1−𝑞

1−𝑞 otherwise.
(1)

We define data deformation as any realization of 𝐿𝑞(⋅) with 𝑞 ≠ 1, and judgment as the realization of 1 − 𝑞 given 𝐿𝑞(⋅).

Example 1. In 𝐿𝑞(𝑦), 𝑞 represents the deformation of log(𝑦), and 1 − 𝑞 represents the judgment on 𝑦.

The way in which 𝑞 distorts the “true” values of log(𝑦) can be observed in Fig. 2. One of the most universally adopted functions 
linking data (i.e., 𝑦) to an unknown parameter is the Likelihood. Notably, a small deviation can significantly distort the log function. 
Moreover, if 𝑞 > 1, the deformed function becomes discontinuous.

According to this definition, 𝑞 is responsible for any contamination of a logarithmic-based transform of 𝑦—for example, the 
Likelihood—so it can be viewed as a proxy for judgment in the sense of Svensson (2005). Thus, the 𝐿𝑞 -Likelihood (or Deformed 
Likelihood) estimator (MLqE) naturally arises from (1). In its original formulation, this estimator assumes 𝑞 as given. The estimation 
of 𝑞 is discussed in the Supplement.

The 𝐿𝑞 -transform defined in (1) is a reparametrization of the classical Box-Cox transform. The Box-Cox transform is fundamental 
to the theory of generalized linear models, originally designed to handle potentially nonlinear or non-stationary datasets and is thus 
4

widely adopted in Statistics and Applied Sciences. Specifically, the Box-Cox transform generates a response for which the disturbance’s 
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NOTE: This figure displays the Lq-function applied to the numerical sequence 𝑎 = [−4; 4] for different values of 𝑞 and compares it with the natural logarithm function.
Fig. 2. The Deformed Logarithm function.
5
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NOTE: This figure displays the Lq-function applied to an DJS-AR(2) in US real data on GDP.

Fig. 3. The Deformed Likelihood in data.

variance is constant and approximately normally distributed. This feature can be limiting in datasets characterized by high time-
varying conditional means and/or variances and non-normal distributions. In particular, the response of the 𝐿𝑞 -functional is quite 
sensitive to different values of 𝑞 at extreme observations. As shown in Fig. 3, the last two observations in the sample (2020:Q1–Q2) are 
approximately -35 and +20, respectively. When applying the 𝐿𝑞 functional with 𝑞 = 0.9 (low judgment), the response is around -10 
for both observations, while it is -1 if 𝑞 = 0.1 (high judgment). Conversely, the downturns in the rest of the sample are considerably 
lower in magnitude, and the estimated function with 𝑞 = 0.9 tends to overestimate them, while the high-judgment estimating function 
remains stable around -1. This extreme oscillation of the 𝐿𝑞 transform raises questions about the feasibility of using the Box-Cox 
transform. Various alternative functions have been developed to address this problem; see Atkinson et al. (2021) for a discussion.

To evaluate the effectiveness of our 𝐿𝑞 -functional approach, we compare it with two alternative functionals: the alternating 
conditional expectation (ACE) and the additivity and variance stabilization (AVAS) methods by Breiman and Friedman (1985) and 
Tibshirani (1988), respectively. These are two of the most commonly used nonparametric methods for estimating a linear model with 
transformations applied to both the response variable and the explanatory variables:

𝑔(𝑦𝑡, 𝑘) = 𝑓 (𝑋𝑡, 𝛽) + 𝜖𝑡, (2)

where 𝑘 is a parameter vector defining a spline transform and disturbances 𝜖𝑡 are not necessarily normally distributed. As shown in 
Fig. 4, the effect of the transform on response variables and covariates (a set of four variables: industrial production, consumer price 
index of inflation, money velocity, and house prices) does not vary considerably between the two methods. The estimated transform 
on the covariate is linear, and applying ACE/AVAS to judgmental-filtered series (discussed in later sections of the paper) does not 
alleviate the overestimation issue observed with 𝐿𝑞 -type functionals. Specifically, the “judgment effect” (i.e., the difference between 
judgmental-filtered series and the innovation part of the process) systematically overestimates the cyclical pattern of the data.

Ferrari and Yang (2010) shows that the Likelihood estimator based on the 𝐿𝑞 -functional (see the Supplement for a summary) 
can be represented as a weighted mean where weights are proportional to the judgment: the lower the 𝑞, the more distorted the 
Likelihood becomes. This characteristic supports our confidence in using the 𝐿𝑞 -type transform.

After defining the notions of deformation and judgment, we need to characterize their relationship and formation according to a 
simple microeconomic model. This can be formalized as follows:

Assumption 1. (i) There exists an Economy  ∶= {𝐹𝑃 , 𝐹𝑈, 𝑅}, where FP and FU are defined previously, and R represents Reality.
(ii) Let 𝑍 = [𝑦𝐹𝑃 , 𝑦𝐹𝑈 , 𝑦𝑅] be the set of possible outputs of FP, FU, and R. Let Θ = [𝜃𝐹𝑃 , 𝜃𝐹𝑈 ] denote the parameter space containing 
the relevant information explaining the deliberations of FP and FU. Additionally, let 𝑚Θ(𝑅, 𝑍) denote the “true” model relating 𝑍 to 
𝑅. Finally, let 𝑎 denote a Bayesian action defined over a quadratic loss function derived from 𝑚Θ(⋅). Then, there exists an 𝑎 such that

𝜕𝑚Θ(⋅)
𝜕𝑎

= 0,
𝜕𝑚Θ(⋅)
𝜕𝜃𝐹𝑈

= 0, and
𝜕𝑚Θ(⋅)
𝜕𝜃𝐹𝑃

= 0. (3)

(iii) Let 𝐾𝐹𝑈 and 𝐾𝐹𝑃 denote the capital owned by FU and FP, respectively. Additionally, let 𝑈𝑖(𝑅, 𝑍) for 𝑖 = {𝐹𝑈, 𝐹𝑃 } be the 
utility function associated with 𝑚Θ(𝑅, 𝑍), and 𝑈𝑖(𝑅, 𝑅) be the utility function associated with the trivial model 𝑚Θ(𝑅, 𝑅) (i.e., a 
6

model with no judgment or differences in estimation among agents). Let 𝑑𝐾 =𝐾𝐹𝑃 −𝐾𝐹𝑈 denote the difference between the values 
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NOTE: This figure displays alternative transformations (ACE and AVAS) applied to the same DJS-AR(2) model used in Fig. 1 to US real data on GDP. Each panel display 
(i) in top left sub-panel, the association among levels 𝑦𝑡 and ACE-transform of same 𝑦𝑡; (ii) in the top-right sub-panel, the analogue association among covariate 𝑋𝑡

and ACE-transform of 𝑋𝑡; (iii) in the bottom sub-panel, the estimated ACE/AVAS function of the judgmental-filtered series 𝑦𝐹
𝑡+1, its innovation component 𝑣𝑡 and the 

“judgment effects” defined as 𝑦𝐹
𝑡+1 − 𝑣𝑡. We consider two hypothetical scenarios for the initial level of judgment: low (10%, left column) and high (90%, right column).

Fig. 4. Alternative transformations.

of 𝑍 and 𝑅, and 𝐷(𝑍, 𝑅) = 𝑈 (𝑅, 𝑅) − 𝑈 (𝑅, 𝑍) denote the discrepancy function (i.e., the difference between the actual utility and 
the maximum possible utility in the system ). Then, there exists 𝐾𝑖 > 0 such that

𝐾𝑖
𝑡
=𝐾𝑖

𝑡−1 +𝐷(𝑍,𝑅). (4)

(iv) Let 𝑐(Θ, 𝐾𝑖) be the cost functions for each agent, respectively. Then

𝜕𝑐𝐹𝑈 (Θ,𝐾)
𝜕𝐾𝐹𝑈

𝑡

= 𝜕𝑐𝐹𝑃 (Θ,𝐾)
𝜕𝐾𝐹𝑃

𝑡

and

{
𝑑𝐾

𝐷(𝑍,𝑅)

}𝑇

𝑡=1
= 𝑜𝑝(1). (5)

In part (i), FP may represent external experts or internal officers of the Central Bank, though the latter have no role in the final 
decision. Part (ii) implies that FU’s choice does not affect Reality when the process repeats, nor does FP respond to FU throughout the 
process, assuming no strategic behavior by the agents. Part (iii) indicates that each player can increase their capital if the discrepancy 
𝐷 is properly designed. Part (iv) means that Reality is impartial to the judgments of FU and FP. In other words, while both players 
7

face the same marginal cost, as the game progresses, Reality is always able to nullify the relative capital gain of the players.
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Remark 1. A special case of 𝐷(⋅) is 𝐻(𝑅) ∶= 𝐷(𝑅, 𝑅) (i.e., no divergence between players’ utility outputs and 𝑅), known as the 
entropy function. This function describes how the loss of each agent is minimized (or equivalently, their utility is maximized) for all 
possible convex functions and all players in  . The form of 𝐷(⋅) and 𝐻(⋅) characterizes the dynamics of the system; see Zanetti Chini 
(2023) for details.

Definition 2. Let 𝑦𝑡 be a time series to be analyzed; 𝑋𝑡 ∈ℝ𝑘 be a set of explanatory variables; Ψ and Ξ be the parameters of FU and FP, 
respectively; 𝑈 (⋅) be the utility function that depends on Ψ or Ξ; (𝑋, 𝑌 ) be the Bregman-type divergence between 𝑋 and 𝑌 ; (⋅, ⋅)
be the entropy measured in the system for the same variables; 𝑑 be the order of fractional differencing; and 𝑞 be the deformation 
parameter. Then we define the Long-Memory Judgmental Protocol (LMJP) as the n-tuple  ∶= {𝑦𝑡, 𝑋𝑡, Ψ, Ξ, 𝑈, 𝐷, 𝐻, 𝑞, 𝑑}, 
which operates according to the following steps: for 𝑡 = 1, … , 𝑇 ,

1. FU and FP acquire, evaluate, and interpret data from a collection of explanatory variables (𝑋𝑡) to conduct out-of-sample inference 
on a target variable (𝑦𝑡) using parameters Ψ and Ξ, respectively, while forming their own utility functions (𝑈 (Ψ) and 𝑈 (Ξ)).

2. FP makes (possibly biased) projections 𝑦̂𝑡 of the objective variable under alternative assumptions about the explanatory factors 
and/or scenarios.

3. FU receives the projection sets, adds judgment ̃̂𝑦𝑡 to them, and selects the best projection based on their objectives and informa-
tion.

4. FU releases the official prediction for the next period, 𝑦̂𝑡+1|𝑡.
5. Reality reveals itself and is characterized by a fractional differencing parameter 𝑑.

Remark 2. A more restrictive version of the LMJP can be established by omitting 𝑋 (i.e., any explanatory variables) from step 1 in 
Definition 2. In this case, the judgmental protocol consists of FU/FP forecasts on possible values of 𝑦𝑡 in 𝑡 + 1 with no relation to 
any measurable knowledge apart from 𝑦𝑡. This implies that any deviations from the optimal forecasts 𝑦𝑡+1|𝑡 are attributed solely to 
judgment rather than additional information. Consequently, the n-tuple {𝑦𝑡, 𝑋𝑡, Ψ, Ξ, 𝑈, 𝐷, 𝐻, 𝑞, 𝑑} defines a seemingly unrelated LMJP

(SU-LMJP).

Special attention must be given to the initial value of 𝑞, denoted 𝑞0 , since it is generally assumed that 𝑞0 ≠ 𝑞. Specifically, we rely 
on the following assumptions:

Assumption 2. (i) 𝑞 ∈ (0, 1];
(ii) The value of 𝑞0 is independent of subsequent realizations of 𝑞𝑡.

Assumption 1 part (i), combined with Definition 1, implies that 0 represents pure judgment and 1 represents no judgment. As-
sumption 2 part (ii) is necessary to ensure ease of statistical treatment. Without this assumption, we would implicitly assume the 
existence of strategic behavior among the players in the judgmental protocol, which is left for future research.

Assumption 3. (i) 𝑑 is the fractional integration parameter of a fractionally integrated autoregressive moving average (ARFIMA) 
model:

Φ(𝐿)(1 −𝐿)𝑑𝑦𝑡 =Θ(𝐿)𝑢𝑡, 𝑢𝑡 ∼ i.i.d.(0, 𝜎2
𝑢
),

(1 −𝐿)𝑑 =
∞∑
𝑗=0

Γ(𝑗 − 𝑑)
Γ(𝑗 + 1)Γ(−𝑑)

𝐿𝑗,
(6)

where Γ(⋅) is the Gamma function, 𝐿 is the lag operator; Φ(𝐿) = 1 − 𝜙1𝐿 − ⋯ − 𝜙𝑝𝐿
𝑝 and Θ(𝐿) = 1 + 𝜃1𝐿 + ⋯ + 𝜃𝑟𝐿

𝑟 are the 
autoregressive and moving-average polynomials with all their roots outside the unit circle and no common factors; and (1 − 𝐿)𝑑 is 
the fractional differencing operator characterizing long memory (LM).
(ii) 𝑑 ∈ (0, 1∕2).
(iii) There exists an auto-covariance function 𝛾 such that: (a) 𝛾(0) = 0; (b) ||𝛾𝑘|| ≤ 𝛾(0) for all integers 𝑘; (c) 𝛾(⋅) is an Hermitian 
function.

Assumption 3 part (i) allows us to focus on a well-known and feasible econometric framework where judgmental issues are nested. 
We restrict our attention to this family of models primarily for ease of statistical treatment (i.e., a known state-space representation) 
and for comparison with the economic literature. However, the ARFIMA(p, d, r) model is not the only family of models capable of 
efficiently handling long memory. Corsi (2009) introduces an alternative model that allows econometricians to capture long memory 
without using fractional operators and high numbers of lags. However, the mixed nature of this model would require a revision of the 
entire state-space representation and associated statistical inference, which is left for future research. Assumption 3 part (ii) ensures 
stationarity of the ARFIMA(p, d, r) model. Assumption 3 part (iii) is a standard assumption on the dynamics of the process that allows 
the Herglotz theorem to hold. Remarkably, if 𝑑 > 0, the autocorrelations decay at a hyperbolic rate (and are therefore no longer 
8

absolutely summable), so the process is considered to exhibit long memory as opposed to the considerably quicker exponential rate 
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in the case of weak dependency. If 𝑑 = 0, the spectral density is bounded at the origin, and the process is an AR process with minimal 
dependency (short memory).

An alternative definition based on the frequency domain is provided by Beran et al. (2013); see the next section for details.
Then we are going to verify the following

Proposition 1. Let Assumptions 1–3 hold and 𝑦 ∼ 𝐴𝑅𝐹𝐼𝑀𝐴(𝑝, 𝑑, 0)–that is a pure (fractionally integrated) autoregression for ease of 
treatment and with no loss of generality. Then:

(a) The LMJP can be represented as the following dynamic system, named (Long-Memory) Dynamic Judgmental Protocol ((LM)DJP, 
henceforth):

𝑦𝑡 =𝑍𝑡𝛼 +𝑋𝑡𝛽 +𝐺𝑡𝜖𝑡, 𝜖𝑡 ∼ 𝑖𝑖𝑑(0, 𝜎2
𝜖
)

𝛼𝑡+1 = 𝑇𝑡𝛼𝑡 +𝑊 𝛽 +𝐻𝑡𝜂𝑡, 𝜂𝑡 ∼ 𝑖𝑖𝑑(0, 𝜎2
𝜂
);

𝑍 = [1, 𝟎𝑚−1]; 𝑋 = [1, 𝟎𝑘−1]; 𝐻 = 𝝓′

𝐺 =
[
𝑰𝑚−1
𝟎𝑚−1

]
; 𝑇 =

[
𝝓′

𝐺

]
; 𝑊 = [𝝓′, 𝐺]′,

(7)

where 𝑍𝑡 is a (𝑚 × 1) vector of fixed effects, 𝑋𝑡 a (1 × 𝑘) vector of covariates, 𝛽 a (𝑘 × 1) vector of parameters, 𝛼𝑡 an (𝑚 × 1) vector of 
states, 𝑇 an (𝑚 × 𝑚) matrix of fixed coefficients, 𝐺 an (𝑚 × 𝑔) matrix, 𝜂𝑡 a (𝑔 × 1) vector of disturbances and 𝝓 a (𝑝 + 1) vector of AR 
parameters. The initial conditions are:

𝛼0 = [𝟎𝑚]; 𝛽0 = [𝟎𝑘]; 𝑰𝑚2 = 𝑰 ⊗ [𝑇 , 𝑇 ];

𝐻2 =𝐻𝐻 ′; 𝑣𝑒𝑐(𝑃 ) = 𝑰−1
𝑚
𝐻2.

(8)

Moreover, (7) can be modeled via ARFIMA(p, d, r) models.

(b) The estimation by Deformed Kalman Filter (DKF, henceforth) has the following properties: (i) isomorphism: it is isomorphic to a linear 
state-space system; (ii)q-dependency: its recursions depend on 𝑞 parameter.

Proof. See the Supplement. □

Proposition 2. The judgmental parameter 𝑞 affects the Power Spectrum close to the origin on top of 𝑑.

Proof. See the Supplement. □

A direct consequence of part (i) in Proposition 2 is that the state-space system representing the LMJP does not require any nonlinear 
over-parametrization for estimation using the DKF.

Proposition 2 provides a testable hypothesis. To this end, we consider the following hypothesis test:

𝐻0 ∶ 𝑑 = 0 versus 𝐻1 ∶ 𝑑 > 0, (9)

which can be tested via non-standard inference—see the next Section.

4. Estimation and modeling strategy

This section is dedicated to the estimation methods. Subsections 4.1 and 4.2 outline the main properties of Long Memory (LM) 
and M𝐿𝑞 -Likelihood (MLqE) estimators, respectively, summarizing the works of Ferrari and Yang (2010) and Grassi and Santucci de 
Magistris (2014). Finally, subsection 4.3 describes the modeling strategy for the LMDJP previously introduced.

4.1. Estimating long memory

The spectral density of the process can be represented as

𝑓Φ(𝜆) ∼𝐺|𝜆|−2𝑑 as 𝜆→ 0, (10)

where 𝐺 corresponds to the spectral density (at the origin) of an AR(p) process. The following standard assumptions are necessary 
to ensure the effectiveness of the spectral representation theorem for any real-valued stationary process:

Assumption 4. (i) 𝑓 (𝜆) = 𝑓 (−𝜆); (ii) 𝑓 (𝜆) ≥ 0; (iii) ∫ 𝜋

−𝜋 𝑓 (𝜆) 𝑑𝜆 <∞; (iv) 𝐺(𝜆) exists for all 𝜆.
9

See Brockwell and Davis (1991, Ch 4) for details.
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Such a function can be estimated using the Local Whittle Likelihood (LW):

𝑚∑
𝑗=1

log𝑓Φ(𝜆𝑗 ) +
𝑚∑
𝑗=1

𝐼Φ(𝜆𝑗 )
𝑓Φ(𝜆𝑗 )

,

𝐼(𝜆) = |𝑤(𝜆)|2,
𝑤(𝜆) = (2𝜋𝑛)−1∕2

𝑇∑
𝑡=1

𝑦𝑡𝑒
𝑖𝑡𝜆,

𝜆𝑗 =
2𝜋𝑗
𝑛

,

(11)

where 𝑤(𝜆), 𝐼(𝜆), and 𝜆𝑗 are the discrete Fourier transform, the periodogram, and the frequency of 𝑦𝑡 , respectively, and 𝑚 is the 
truncation parameter. The choice of 𝑚 is a non-trivial issue. Several strategies can be employed, including information criteria or 
simulation. In our application, we used the Bayesian Information Criterion (BIC) for this purpose; however, further investigation is 
needed to better understand the influence of this parameter on 𝑞 and the overall modeling strategy.

Fig. 5 provides a simple illustration of the form of the DJP specified as AR(1). We consider four different Maximum Likelihood 
estimators of 𝑑: the Local Whittle Likelihood estimator (LW), the Exact Whittle Likelihood (ELW), the Modified Whittle Likelihood 
(ELW2), and the Two-Step Feasible Whittle Likelihood (2SFEWL). For details, see Robinson (1995); Shimotsu and Phillips (2005, 
2006); Shimotsu (2010).

4.2. Estimating judgment

Let 𝑦1, … , 𝑦𝑇 be an i.i.d. sample from 𝑝(𝑦𝑖, 𝜃0), where 𝜃0 ∈ Θ, and all elements of Θ are part of the LMDJP defined in Section 3. 
The maximum 𝐿𝑞 -estimator (MLqE) of 𝜃0 is given by

𝜃̂𝑇 ≐max
𝜃∈Θ

𝑇∑
𝑡=1

𝐿𝑞[𝑝(𝑦𝑡;𝜃)], 𝑞 > 0, (12)

where 𝐿𝑞(𝑥) is a 𝐿𝑞 -transform. If 𝑝(⋅) is Gaussian, its Deformed Likelihood is:

𝑞(𝜃;𝑦𝑡) = −0.5
[
𝑞0𝑇 log(2𝜋) + (log𝑝(𝑦𝑡) + 𝑢2

𝑡
)𝑞
]
, (13)

where 𝜃 = [𝜇, 𝜎2], 𝑢𝑡 = (𝑦𝑡 − 𝜇)∕𝜎, and 𝜋 is the usual Archimedean constant. The estimated version uses 𝑞 and 𝑢̂𝑡 instead of 𝑞 and 𝑢𝑡. 
Moreover, (12) results from the maximization of:

𝑇∑
𝑡=1

𝑤𝑡𝑈 (𝑦𝑡, 𝜃) = 0, (14)

which is a weighted version of the likelihood equation with 𝑈 (𝑦𝑡, 𝜃) =
𝜕𝑝(𝑦𝑡;𝜃)

𝜕𝜃
∕𝑝(𝑦𝑡; 𝜃) and weights 𝑤𝑡 = 𝑝(𝑦𝑡; 𝜃)1−𝑞 . When 𝑞 < 1, data 

points with high likelihoods are assigned larger weights. As 𝑞 approaches 1, the MLqE converges to the standard Maximum Likelihood 
estimator. Typically, outliers are associated with very small weights. According to Fig. 2, a small deviation from 1 can drastically alter 
the log-likelihood. However, such contamination is not uniform. For instance, analytic results from Ferrari and Yang (2010) show 
that if 𝑝(⋅, ⋅) is Gaussian, the estimated mean 𝜃̂ does not depend on 𝑞. The parameter 𝑞 measures judgmental bias in the estimated 
model due to FP (or FU) individually.

Finally, it can be proven that the 𝑞-Entropy coincides with the 𝐻 -function corresponding to the DJP.
In this setting, 𝑞 effectively affects the variance of the process, as confirmed by the behavior of the Power Spectrum, see Section 5. 

The following assumption ensures that the spectral representation theorem holds for 𝑍𝑡 (from which 𝑞 is estimated) and that the 
existence of 𝑞 ≠ 1 does not impede inference on the power spectrum:

Assumption 5. Let 𝑎 and 𝑏 be two linear combination coefficients 3 × 1 vectors applied to 𝑍𝑡 and 𝑒𝑖𝑡. Then:

1. There exists an orthogonal increment process (𝜆)𝑡 , 𝜆 ∈ [−𝜋, 𝜋], associated with 𝑍𝑡.
2. There exists a mapping  that provides an isomorphism between 𝑍𝑡 and 𝑒𝑖𝑡𝜆.

3. ‖‖‖∑𝑇

𝑗=1𝑍
′
𝑡𝑗
𝑎𝑗 −

∑𝑘

𝑘=1𝑍
′
𝑡𝑘
𝑏𝑘
‖‖‖ = 0 for 𝑗 ≠ 𝑘.

Point (i) is necessary to identify an equivalent process for 𝑍𝑡 in the frequency domain. Point (ii) ensures that existing spectral 
methods can be applied to the LMDJP. Point (iii) is necessary to establish an equivalent finite second moment condition for linear 
combinations of 𝑍𝑡 and forms the basis for proving the isomorphism in point (ii). We can now ensure the feasibility of spectral 
estimation with the following:
10

Proposition 3. Under Assumptions 2–5, the LMDJP is stationary and has spectral density 𝑓Ψ(𝜆).
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NOTE: This figure displays an example of simulated DJP-AR(1) process (left panels) and estimated periodograms (right panels) for two different values of 𝑞0 = 1 (upper 
panels) and 𝑞0 = 0.1 (lower panels). In all the cases the process is: 𝑦𝑡 = 𝜙 = 0.5𝑦𝑡−1 + 𝜖𝑡, 𝜖𝑡 ∼𝑁(0, 1) and T=50.

Fig. 5. Examples of DJP-AR(1) and associated power-spectra for several 𝑞0 and 𝑑0 .

Proof. See Supplement. □

4.3. Modeling strategy

Two modeling strategies are possible: a ‘Judgment-First’ (J-First) approach consists in estimating the autoregressive order gov-
erning the DJP; alternatively, a ‘LM-First’ approach involves estimation of 𝑞𝑡 via DKF explained in Supplement and using it as initial 
value to fit (6) via spectral density estimation exposed in Appendix. These two approaches are defined as follows:

Definition 3.

1. LM-First

(i) Specify a linear ARFIMA(p, d, r) model for LMDJP; eventually, if some part of the structure is missed (for example, no Xs are 
observed), specify a linear ARFIMA(p, d, r) model for the existing parts of the LMDJP.
(ii) Test the hypothesis of 𝑑 = 0 in the specified ARFIMA(p, d, r) model.
11

(iii) If the test is rejected, estimate the model 𝑦̂𝐴𝑅𝐹𝐼𝑀𝐴
𝑡

.
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(iv) Run the DKF on 𝑦̂𝐴𝑅𝐹𝐼𝑀𝐴
𝑡

and get 𝑦̂𝑓
𝐴𝑅𝐹𝐼𝑀𝐴

.

(v) Use the filtered 𝑦̂𝑓
𝐴𝑅𝐹𝐼𝑀𝐴

to perform some diagnostic on 𝑑 by computing the Power Spectrum of the estimated process.
2. J-First

(i*) Specify a linear ARFIMA(p, d, r) model for LMDJP; eventually, if some part of the structure is missed (for example, no 𝑋 are 
observed), specify a linear ARFIMA(p, d, r) model for the existing parts of the LMDJP.
(ii*) Run the DKF on the LMDJP in step (i*) and get 𝑦̂𝑓

𝑡
.

(iii*) Test the hypothesis of 𝑑 = 0 in 𝑦̂𝑓
𝑡

.
(iv*) If the test is rejected, estimate the model 𝑦̂𝐴𝑅𝐹𝐼𝑀𝐴

𝑡
corresponding to the LMDJP.

(v*) Use the estimated 𝑦̂𝐴𝑅𝐹𝐼𝑀𝐴
𝑡

to perform some diagnostic on 𝑑 by computing the Power Spectrum of the estimated process.

5. Monte Carlo simulation

In this section, we apply the LMDJP to Monte Carlo simulated data to verify the effectiveness of Proposition 1. We consider two 
different data generating processes (DGPs) for ease of comparison with Zanetti Chini (2023):

𝑦1,𝑡 = 0.5𝑦1,𝑡−1 + 𝜖1,𝑡, 𝜖1,𝑡 ∼𝑁(0,1) (15)

and

𝑦2,𝑡 = 0.5𝑦2,𝑡−1 − 0.88𝑥𝑡,2 + 𝜖2,𝑡, 𝜖2,𝑡 ∼𝑁(0,1), (16)

where, in both (15) and (16), the total number of draws is 5,000. Both DGPs are run with a set of starting 𝑞-values (𝑞0 = {0.1, 0.5, 1.0}) 
corresponding to extreme, medium, and no amount of judgmental bias (JB), and 𝑑-values (𝑑0 = {0.1, 0.5, 1.0}) corresponding to long-
memory, moderate memory, and differenced processes.

It is crucial to note the perspective of the analysis: (15) represents what the forecaster (FP) observes and analyzes, as the autore-
gressive model is her subjective choice. Specifically, 𝑦(𝑖)1,𝑡 is a linear autoregressive model with essentially stationary behavior, focusing 
on the impacts of the starting value of 𝑞0 . This could be seen as a macroeconomic indicator evaluated with a specific quantity of JB 
to mitigate the risk of loss in the next period. Conversely, 𝑦(𝑖)2,𝑡 presents a more comprehensive scenario: the autoregression includes 
an explanatory variable 𝑋𝑡 alongside the initial judgment 𝑞0. If 𝑦𝑡 represents a time series of final announcements from a forecasting 
unit (FU), the entire DJP can be interpreted as a dynamic system where the FP’s output (in this case, 𝑥𝑡) is an input that coexists with 
reality. The difference between them forms the basis for an ex-post evaluation of FU through a utility function, integrated into the 
estimation step via the 𝐿𝑞 -Likelihood. Thus, 𝑞0 reflects an a priori belief of FU concerning which FP adjusts her projections.

Tables 2 and 3 present the bias and empirical power of the test for spurious long-memory (LM) across all estimators mentioned 
in Section 4.1, using sample sizes 𝑇 = 100 and 𝑇 = 1000, respectively. Two notable observations arise: (i) the progressive reduction 
in bias with increasing 𝑑0 and 𝑞0; and (ii) the sensitivity of the test to the algorithmic design, evidenced by significant differences in 
empirical power between the J-First and LM-First approaches. Specifically, all estimators perform similarly, with a slight advantage for 
ELW and ELW2 over LW and 2SFELW, which are the most effective in both approaches. The LW estimator tends to be underpowered, 
particularly in the “LM-First” approach when the initial 𝑞0 is low. Additionally, with a small sample size, variations in power due to 
different initial amounts of judgment are considerable within the same modeling strategy, while these differences decrease in longer 
samples. The variation in 𝑑0 values shows minimal impact within the same 𝑞0 . The average 𝑞 varies notably between estimation 
methodologies and sample sizes. However, this does not necessarily indicate a flaw in the estimation approach per se, as 𝑞0 is not the 
true judgmental level but merely an initial value.

Fig. 5 illustrates the average Power Spectrum resulting from the DGP with 𝑑0 = 0 fixed. Unlike the pure autoregressive case with 
no judgment, the spectra exhibit a shift whose magnitude depends on the presence of exogenous regressors (more than 100% for pure 
AR, around 60% in the ARX case).

Why do the two modeling strategies produce different power levels for the LM test? Figs. 6 and 7 offer an explanation: when 𝑞0
is not 1 (i.e., when there is an initial judgment level), it significantly increases the power spectral densities of the filtered processes 
in most cases.

Another important result, detailed further in the Supplement, is that the relationship between judgment and LM is bidirectional: 
parameterizing long-memory leads to an underestimation of judgment effects. The weighting function 𝑤𝑡 changes significantly if 𝑑
is not correctly included in the model.

6. Empirical applications

This section applies the LMDJP to several real datasets relevant for macroeconomists and financial economists. Subsection 6.1
illustrates the application to Nelson and Plosser data and Subsection 6.2 reports the results for Federal Reserve Bank’s survey data.

6.1. Nelson-Plosser data

The LMDJP is applied to three real-world case studies. The first case is a purely autoregressive SU-LMDJP on macroeconomic 
12

data using the Nelson and Plosser dataset Nelson and Plosser (1982), a standard reference in macroeconometrics and time series 
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Table 2

Simulation results for the Long Memory estimators and tests in LMDJP for T=100.

LMDJP-AR(1), “Judgment First”

𝑞0 𝑑0 Mean 𝑞 Mean 𝑑 (bias) Empirical Power (× 100)

LW ELW ELW2 2SFELW LW ELW ELW2 2SFELW

0.10
0

0.20 0.22 0.21 0.21 0.19 30.5 31.2 36.1 31.6
0.50 0.56 0.17 0.15 0.16 0.18 40.8 42.4 40.4 44.1
1.00 0.79 0.10 0.09 0.10 0.14 51.9 62.7 61.4 65.4

0.10
0.5

0.30 0.22 0.15 0.15 0.18 42.2 43.2 40.5 40.1
0.50 0.67 0.19 0.17 0.12 0.15 64.8 66.4 63.4 63.1
1.00 0.70 0.13 0.15 0.14 0.10 55.4 52.7 52.2 50.8

0.10
1

0.31 0.14 0.15 0.13 0.15 54.5 54.5 47.3 42.9
0.50 0.67 0.11 0.10 0.08 0.11 55.1 54.9 49.2 53.0
1.00 0.78 0.12 0.13 0.05 0.08 70.4 70.3 63.4 63.5

LMDJP-ARX(1), “Judgment First”,
0.10

0
0.21 0.19 0.21 0.23 0.19 30.8 41.7 38.1 31.0

0.50 0.77 0.16 0.16 0.17 0.18 41.2 42.9 43.0 41.0
1.00 0.70 0.11 0.12 0.14 0.15 84.4 63.6 66.1 61.6

0.10
0.5

0.25 0.23 0.23 0.18 0.20 44.2 43.2 46.4 43.2
0.50 0.65 0.17 0.15 0.15 0.15 60.6 63.0 58.3 58.3
1.00 0.72 0.18 0.17 0.13 0.13 64.5 64.0 61.3 63.5

0.10
1

0.25 0.21 0.20 0.15 0.18 48.9 48.5 45.8 51.4
0.50 0.57 0.14 0.18 0.12 0.16 66.1 66.4 65.3 61.7
1.00 0.80 0.09 0.10 0.08 0.11 79.4 74.2 76.1 81.9

LMDJP-AR(1), “LM First”

𝑞0 𝑑0 Mean 𝑞 Mean 𝑑 (bias) Empirical Power (× 100)

LW ELW ELW2 2SFELW LW ELW ELW2 2SFELW

0.10
0

0.39 0.26 0.27 0.25 0.25 17.9 22.6 39.4 31.3
0.50 0.55 0.22 0.23 0.21 0.22 29.2 25.9 40.6 32.0
1.00 0.59 0.10 0.14 0.15 0.11 32.4 36.8 45.6 32.4

0.10
0.5

0.42 0.22 0.22 0.23 0.25 29.0 27.6 28.0 25.4
0.50 0.64 0.22 0.20 0.21 0.18 26.3 27.6 28.9 25.8
1.00 0.70 0.20 0.12 0.13 0.11 20.3 28.6 27.3 26.7

0.10
1

0.44 0.20 0.22 0.22 0.23 50.0 48.2 36.7 39.6
0.50 0.65 0.16 0.20 0.15 0.18 54.3 49.3 38.9 31.3
1.00 0.67 0.12 0.18 0.14 0.13 58.8 49.6 38.5 33.0

LMDJP-ARX(1) “LM First”
0.10

0
0.45 0.27 0.28 0.23 0.36 20.2 25.3 31.8 24.9

0.50 0.66 0.35 0.24 0.26 0.18 19.5 25.1 38.1 25.8
1.00 0.69 0.22 0.16 0.16 0.15 23.9 35.5 29.0 26.9

0.10
0.5

0.45 0.35 0.23 0.28 0.33 20.5 21.2 21.1 15.9
0.50 0.60 0.33 0.26 0.26 0.38 20.9 33.8 39.3 26.7
1.00 0.70 0.18 0.13 0.24 0.31 22.6 34.6 30.7 36.5

0.10
1

0.46 0.28 0.31 0.25 0.25 60.0 33.4 58.5 21.0
0.50 0.61 0.28 0.27 0.27 0.22 31.0 31.5 29.9 30.2
1.00 0.70 0.20 0.22 0.21 0.20 28.8 44.4 42.5 40.2

NOTES: This table reports the MonteCarlo average estimates of the strategic judgmental parameter (column 
3) and bias of the four estimators of long memory parameters, jointly with their empirical powers (columns 
from 4 to the end) for different initial values of strategic judgment and memory. The upper part displays the 
results where 𝑑 is estimated before applying Judgmental Filter, while the lower half reports the results for 
the case that 𝑑 is estimated after that Judgmental Filter is run on data. The DGP is explained in Section 6.

analysis. This dataset includes 14 macroeconomic variables for the U.S. economy, such as GNP and its deflator, employment, industrial 
production, and money velocity, collected annually up to 1970.

The model structure is simplified: the forecaster (FP) is represented by an AR(p) model, while the forecast updater (FU) is repre-
sented by an AR(𝑝∗), with 𝑝 ≠ 𝑝∗—indicating that the two agents differ only in their autoregressive order. Any differences between FU 
and FP outputs should be attributed to dynamic misspecification. Thus, the judgmental parameter 𝑞 is assumed to be approximately 
1 everywhere, and the DKF is assumed to function as a standard (robust) Kalman Filter. Additionally, 𝑑 is expected to vary across 
13

time series, independent of the estimation strategy (i.e., 𝑑 should vary due to process characteristics).
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Table 3

Simulation results for the Long-Memory estimators and tests in DJP for T=1000.

LMDJP-AR(1), “Judgment First”

𝑞0 𝑑0 Mean 𝑞 Mean 𝑑 Empirical Power (× 100)

LW ELW ELW2 2SFELW LW ELW ELW2 2SFELW

0.10
0

0.53 0.14 0.15 0.14 0.14 55.7 60.0 60.5 65.5
0.50 0.76 0.16 0.14 0.13 0.10 45.6 56.5 59.5 65.6
1.00 0.90 0.02 0.03 0.03 0.02 60.5 60.4 67.1 65.5

0.10
0.5

0.53 0.11 0.12 0.11 0.10 59.5 59.5 58.2 58.7
0.50 0.75 0.12 0.08 0.06 0.05 86.6 83.4 78.1 85.6
1.00 0.99 0.02 0.01 0.02 0.01 84.2 83.3 78.7 85.6

0.10
1

0.42 0.12 0.10 0.14 0.11 80.2 81.2 74.5 75.5
0.50 0.75 0.10 0.08 0.07 0.05 85.9 85.0 80.5 85.6
1.00 1.00 0.00 0.01 0.01 0.00 95.8 96.0 95.8 95.6

LMDJP-ARX(1), “Judgment First”
0.10

0
0.53 0.05 0.13 0.17 0.11 99.5 99.6 64.5 65.8

0.50 0.78 0.04 0.09 0.14 0.12 100 100 62.1 65.8
1.00 0.90 0.06 0.06 0.12 0.03 100 100 63.5 65.8

0.10
0.5

0.65 0.13 0.13 0.12 0.15 56.1 65.7 48.1 49.8
0.50 0.78 0.08 0.09 0.09 0.08 66.7 65.4 56.7 57.7
1.00 . 0.90 0.03 0.04 0.03 0.02 95.3 99.6 94.6 58.7

0.10
1

0.66 0.11 0.08 0.06 0.08 66.3 65.1 68.6 65.6
0.50 0.78 0.09 0.09 0.10 0.09 66.2 70.4 70.6 65.6
1.00 0.90 0.01 0.02 0.02 0.01 99.4 99.3 89.3 75.7

LMDJP-AR(1), “LM First”

𝑞0 𝑑0 Mean 𝑞 Mean 𝑑 Empirical Power (× 100)

LW ELW ELW2 2SFELW LW ELW ELW2 2SFELW

0.10
0

0.53 0.18 0.16 0.17 0.18 48.4 41.7 39.2 41.4
0.50 0.95 0.16 0.15 0.13 0.15 49.0 41.8 40.5 41.4
1.00 0.99 0.09 0.05 0.08 0.07 49.5 41.4 39.2 42.3

0.10
0.5

0.53 0.13 0.14 0.18 0.12 68.0 61.5 57.8 51.5
0.50 0.95 0.08 0.10 0.12 0.12 68.4 61.3 58.5 51.3
1.00 0.99 0.05 0.09 0.08 0.10 68.1 61.3 59.6 51.5

0.10
1

0.53 0.13 0.12 0.15 0.12 57.4 63.9 57.9 61.5
0.50 0.95 0.12 0.10 0.13 0.10 66.1 65.6 57.5 61.0
1.00 1.00 0.10 0.07 0.08 0.08 68.3 66.3 68.2 61.5

LMDJP-ARX(1) with 𝑑, “LM First”
0.10

0
0.65 0.15 0.15 0.13 0.16 39.5 38.5 40.9 45.7

0.50 0.98 0.12 0.14 0.15 0.14 42.1 45.2 49.5 45.8
1.00 1.00 0.10 0.12 0.11 0.09 56.3 57.2 51.3 55.8

0.10
0.5

0.65 0.17 0.14 0.15 0.16 37.8 41.3 57.8 52.3
0.50 0.98 0.12 0.11 0.12 0.11 50.4 51.9 52.4 53.0
1.00 1.00 0.10 0.07 0.07 0.09 52.4 53.9 52.4 54.0

0.10
1

0.65 0.12 0.14 0.13 0.13 68.5 68.4 68.8 64.4
0.50 0.98 0.10 0.10 0.10 0.10 68.3 68.6 64.8 62.2
1.00 1.00 0.05 0.07 0.05 0.18 69.2 69.5 67.6 63.0

NOTES: This table reports the MonteCarlo average estimates of the strategic judgmental parameter (column 3) and bias of the four 
estimators of long memory parameters (exposed in Appendix), jointly with their empirical powers (columns from 4 to the end) for 
different initial values of strategic judgment and memory. The upper part displays the results where 𝑑 is estimated before applying 
Judgmental Filter, while the lower half reports the results for the case that 𝑑 is estimated after that Judgmental Filter is run on 
data. The DGP is explained in Section 6.

According to Table 4, the average 𝑞 is nearly zero for almost all series, and the estimated 𝑑 varies significantly across time series 
and estimation strategies. Notably, nearly all series fail the test for no long-memory (LM) in the “LM-First” approach, whereas only 
a few do in the “Judgment-First” approach.

6.2. FED’s survey data

The second case study examines the role of explanatory variables in a more general LMDJP with an AR-X(p) specification using 
14

survey data on Real GDP, Inflation, and Unemployment Rate for the U.S. economy from 1970:Q1 to 2020:Q4, provided by the 
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NOTE: This figure displays the average of a Monte Carlo simulated periodograms of the DJP-AR(1) and ARX(1) (in higher and lower panel, respectively) for 𝑞0 = 1
(left panels) and 𝑞0 = 0.1 (right panels) using the DGP illustrated in Section 6.

Fig. 6. MonteCarlo average of 1-order DJP-AR(X) Power spectra under different 𝑞0 and assuming 𝑑0=0.

Federal Reserve Bank of Philadelphia. We use all available measurements: real data, nowcasts, and forecasts up to one year ahead. 
The data source includes Reality (Real data) and FP outputs (nowcasts and forecasts up to one year ahead from the Survey of 
Professional Forecasters), while the Federal Open Market Committee (FOMC), which periodically publishes its projections, serves 
as FU. Explanatory variables include production, consumption, money velocity, and house prices—all available from FRED. Table 5
shows that the estimates and tests are qualitatively similar to those for Nelson-Plosser data.

The erroneous over-rejection of the null hypothesis for the LM-First strategy is evident in two of the three case studies, while 
the Unemployment Rate case is largely immune to this issue. Two economic arguments can explain this observation. First, the 
judgmental protocol’s design mechanism implies that while FP and FU interact, data are not free from judgmental bias. Instead, 
Reality is unaffected by who wins the game, meaning the winner is the agent whose utility gain does not increase significantly due 
to a large spread between FP forecasts and Reality outcomes—measured by 𝐷(⋅). This notion aligns with Vovk and Shafer (2005), 
who discuss modeling and testing such scenarios. Consequently, long-term strategic behavior based on judgment tends to exaggerate 
persistence, often mistaken for long-memory, though it results from recurrent games among agents.

The second argument relates to Bullard et al. (2008)’s concept of near-exuberance equilibria. These equilibria arise when (i) agents 
face rational expectations with limited information; (ii) each agent rationally includes judgment in their forecasting model, assuming 
others do the same; and (iii) the forecasting model remains stable and converges to rational expectations under recursive estimation. 
15

Our LMDJP framework meets these criteria.
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NOTE: This figure displays the average of a Monte Carlo simulated periodograms of the LMDJP-AR(1) and LMDJP-ARX(1) several memory and judgmental parameters 
using the DGP illustrated in Section 6.
16

Fig. 7. MonteCarlo average of 1-order-DJP-AR(X) Power spectra under different 𝑞0 and 𝑑0 .
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Table 4

Application of the SULMDJP-AR model to Nelson-Plosser’s data.

DJP-AR(p), “Judgment First” DJP-AR(p), “LM First”

Series T 𝑝̂ Mean 𝑞 Mean 𝑑 Mean 𝑞 Mean 𝑑

LW ELW ELW2 2SFELW LW ELW ELW2 2SFELW

Real GNP 62 1 0.00 1.11 1.25 1.20 1.99 0.00 1.64 1.35 1.28 1.19
(0.04) (0.23) (0.25) (0.23) (1.02) (0.05) (0.45) (0.41) (0.39) (0.38)

Nominal GNP 62 1 0.00 1.19 1.68 1.70 1.70 0.00 1.00 1.78 1.81 1.70
(0.05) (0.14) (0.35) (0.25) (0.41) (0.06) (0.16) (0.21) (0.23) (0.22)

Real per capita GNP 62 1 0.00 0.84 0.94 0.92 0.92 0.00 0.64 1.03 0.99 0.92
(0.04) (0.19) (0.09) (0.09) (0.58) (0.05) (0.12) (0.17) (0.15) (0.14)

Industrial production 111 2 0.03 1.01 1.26 1.19 1.19 0.03 1.72 1.38 1.31 1.21
(0.02) (0.23) (0.21) (0.17) (0.74) (0.04) (0.29) (0.34) (0.30) (0.33)

Employment 81 2 0.00 0.57 0.66 0.66 0.67 0.00 0.67 0.76 0.77 0.77
(0.04) (0.22) (0.21) (0.18) (0.52) (0.06) (0.08) (0.12) (0.12) (0.09)

Unemployment rate 81 2 0.07 0.74 0.77 0.80 0.80 0.07 1.01 0.80 0.64 0.64
(0.05) (0.10) (0.10) (0.21) (0.43) (0.03) (0.11) (0.14) (0.13) (0.12)

GNP deflator 82 2 0.00 1.17 1.17 1.32 1.32 0.00 1.41 1.27 1.32 1.32
(0.03) (0.23) (0.25) (0.20) (0.73) (0.03) (0.37) (0.30) (0.34) (0.41)

CPI 111 2 0.00 0.97 1.32 1.24 1.23 0.00 1.27 1.42 1.33 1.23
(0.03) (0.23) (0.21) (0.24) (0.71) (0.06) (0.14) (0.39) (0.40) (0.23)

Nominal wage 71 2 0.00 1.27 1.38 1.54 1.54 0.00 1.68 1.48 1.64 1.54
(0.02) (0.26) (0.27) (0.27) (0.98) (0.05) (0.41) (0.45) (0.39) (0.42)

Real wage 71 2 0.00 0.98 1.02 1.04 1.04 0.00 1.50 1.12 1.11 1.04
(0.03) (0.07) (0.11) (0.24) (0.53) (0.04) (0.23) (0.24) (0.28) (0.27)

Money stock 71 2 0.00 1.20 1.71 1.78 1.78 0.00 1.46 1.80 1.92 1.78
(0.04) (0.22) (0.25) (0.41) (1.01) (0.05) (0.28) (0.31) (0.44) (0.45)

Velocity of money 102 2 0.00 0.99 1.02 1.06 1.06 0.00 0.07 1.12 1.12 1.06
(0.04) (0.13) (0.18) (0.14) (0.46) (0.05) (0.05) (0.20) (0.18) (0.20)

Bond yield 71 2 0.00 0.77 1.66 1.66 1.66 0.00 0.05 1.76 1.76 1.66
(0.01) (0.09) (0.31) (0.30) (0.67) (0.4) (0.41) (0.44) (0.45) (0.45)

Stock prices 100 2 0.03 1.15 1.22 1.12 1.12 0.03 1.47 1.35 1.25 1.43
(0.02) (0.17) (0.20) (0.21) (0.38) (0.03) (0.28) (0.29) (0.18) (0.28)

Test for no Long Memory (p-values)

Real GNP 0.058 0.067 0.064 0.012 0.065 0.078 0.069 0.069
Nominal GNP 0.063 0.093 0.094 0.012 0.062 0.099 0.100 0.094
Real per capita GNP 0.042 0.048 0.063 0.012 0.046 0.054 0.051 0.046
Industrial production 0.054 0.064 0.060 0.012 0.056 0.073 0.068 0.062
Employment 0.029 0.036 0.036 0.012 0.034 0.042 0.041 0.036
Unemployment rate 0.037 0.039 0.039 0.012 0.040 0.042 0.042 0.036
GNP deflator 0.061 0.064 0.070 0.012 0.065 0.068 0.071 0.076
CPI 0.048 0.071 0.063 0.012 0.051 0.077 0.072 0.066
Nominal wage 0.068 0.075 0.084 0.012 0.069 0.081 0.090 0.085
Real wage 0.050 0.052 0.054 0.012 0.056 0.059 0.058 0.054
Money stock 0.060 0.094 0.099 0.012 0.059 0.100 0.107 0.098
Velocity of money 0.050 0.052 0.055 0.012 0.056 0.059 0.059 0.055
Bond yield 0.038 0.092 0.092 0.012 0.041 0.097 0.092 0.098
Stock prices 0.061 0.064 0.058 0.012 0.061 0.072 0.066 0.060

NOTES: This table reports the result of the application of the LMDJP-AR model to Nelson-Plosser data on US economic variables. In the upper panel, the first three 
columns describe the variable names, the sample size and the estimated autoregressive orders; columns from fourth to eighth display the estimated 𝑞 and the estimates 
of 𝑑 for the “Judgment-First” modeling strategy for the four estimator here considered (and exposed in Appendix), while the equivalent estimates for “LM-First” are 
reported in the remaining columns. Standard errors are in parentheses below the parameter estimate. The lower panel displays the p-values of the test corresponding 
to (9), still for each of the four estimators. In both the modeling strategies we assume 𝑞0 = 0.1.

The LMDJP is compared with the specification from Zanetti Chini (2023), which uses FRED survey data on 𝑦𝑡 with four explanatory 
variables (industrial production, personal consumption, money velocity, and house prices)

The empirical comparison follows these steps:

(i*) We re-run the original DJP-AR(X) model from Zanetti Chini (2023), which corresponds to an AR(X)FIMA(2,0,0) model, with 
𝑑 = 0 indicating no long memory. Results are shown in the left column of Fig. 8.

(ii*) We then apply the 𝑑-operator to the same model, transforming it into an ARFIMA(2, d,0) model with 𝑑 = 0.5. Results are shown 
in the right column of Fig. 8.

(iii*) We compare the estimated density of the LMDJP with an equivalent model estimated using traditional MLE (instead of M𝐿𝑞E).
(iv*) We use the results to assess the forecasting properties of the LMDJP model.

The differences in dynamics and judgment are evident. The filtered time series and judgmental effects display increased noise and 
17

variations. Specifically, there is a noticeable inversion in the weighting function, with 𝑤𝑡 = 0 (indicating no judgment) frequently 



Journal of Economic Dynamics and Control 170 (2025) 105005E. Zanetti Chini

Table 5

Application of the ARX-LMDJP model to SPF data.
RGDP

DJS-AR(p), “Judgment First” DJS-AR(p), “LM First”

Series Mean 𝑞 Mean 𝑑 Mean 𝑑

LW ELW ELW2 2SFELW LW ELW ELW2 2SFELW

Real data . 0.87 0.81 0.83 0.86 0.86 1.20 0.05 0.05 0.45
(0.09) (0.21) (0.17) (0.22) (0.22) (0.34) (0.02) (0.01) (0.08)

Nowcasts 0.08 0.17 0.21 0.21 0.21 0.22 0.22 0.12 0.22
(0.02) (0.04) (0.06) (0.06) (0.07) (0.07) (0.02) (0.07) (0.05)

1-q-ahead 0.75 1.11 1.11 1.14 1.14 0.45 0.49 0.39 0.50
(0.06) (0.10) (0.12) (0.14) (0.11) (0.15) (0.16) (0.16) (0.15)

2-q-ahead 0.72 1.12 1.16 1.16 1.16 0.45 0.53 0.54 0.43
(0.08) (0.14) (0.12) (0.10) (0.11) (0.11) (0.19) (0.18) (0.17)

3-q-ahead 0.70 1.16 1.17 1.18 1.18 0.48 0.57 0.61 0.57
(0.10) (0.14) (0.13) (0.14) (0.27) (0.12) (0.14) (0.10) (0.11)

1-y-ahead 0.57 1.22 1.04 1.08 1.09 0.29 0.58 0.75 0.70
(0.05) (0.13) (0.14) (0.20) (0.13) (0.12) (0.13) (0.13) (0.11)

Test for no Long Memory (p-values)

Real data . 0.04 0.04 0.04 0.04 0.00 0.00 0.00 0.00
Nowcasts 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00
1-q-ahead 0.06 0.06 0.06 0.06 0.02 0.02 0.02 0.02
2-q-ahead 0.06 0.06 0.06 0.06 0.02 0.02 0.02 0.02
3-q-ahead 0.06 0.06 0.06 0.01 0.02 0.03 0.03 0.02
1-y-ahead 0.06 0.05 0.06 0.06 0.04 0.03 0.04 0.04

Inflation

DJS-AR(p), “Judgment First” DJS-AR(p), “LM First”

Series Mean 𝑞 Mean 𝑑 Mean 𝑑

LW ELW ELW2 2SFELW LW ELW ELW2 2SFELW

Real data 0.91 0.85 0.89 0.91 0.92 1.08 0.69 0.69 0.65
(0.08) (0.08) (0.07) (0.09) (0.09) (0.10) (0.00) (0.10) (0.09)

Nowcasts 0.12 0.86 0.89 0.96 0.95 1.04 0.38 0.46 0.45
(0.02) (0.10) (0.09) (0.11) (0.12) (0.14) (0.21) (0.23) (0.22)

1-q-ahead 0.64 1.35 1.34 1.37 1.38 0.56 0.45 0.51 0.52
(0.05) (0.18) (0.21) (0.20) (0.08) (0.11) (0.20) (0.31) (0.32)

2-q-ahead 0.58 1.26 1.26 1.30 1.29 0.97 0.67 0.67 0.65
(0.07) (0.30) (0.26) (0.24) (0.26) (0.10) (0.14) (0.13) (0.11)

3-q-ahead 0.55 1.30 1.30 1.31 1.32 1.06 0.73 0.72 0.72
(0.08) (0.24) (0.21) (0.20) (0.21) (0.25) (0.25) (0.30) (0.31)

1-y-ahead 0.49 1.38 1.39 1.39 1.40 0.67 0.70 0.72 0.69
(0.07) (0.31) (0.24) (0.23) (0.24) (0.20) (0.25) (0.28) (0.22)

Test for no Long Memory (p-values)

Real data 0.04 0.05 0.05 0.04 0.00 0.01 0.01 0.01
Nowcasts 0.04 0.05 0.05 0.05 0.01 0.01 0.01 0.01
1-q-ahead 0.05 0.05 0.05 0.05 0.01 0.02 0.02 0.02
2-q-ahead 0.05 0.05 0.05 0.05 0.02 0.02 0.02 0.02
3-q-ahead 0.05 0.05 0.05 0.05 0.02 0.02 0.02 0.02
1-y-ahead 0.05 0.05 0.05 0.05 0.01 0.02 0.03 0.02

Unemployment

DJS-AR(p), “Judgment First” DJS-AR(p), “LM First”

Series Mean 𝑞 Mean 𝑑 Mean 𝑑

LW ELW ELW2 2SFELW LW ELW ELW2 2SFELW

Real data 0.93 0.94 0.96 0.97 0.97 1.13 1.04 1.03 1.20
(0.09) (0.11) (0.12) (0.10) (0.14) (0.31) (0.24) (0.30) (0.21)

Nowcasts 0.17 0.95 0.97 0.98 0.98 1.24 1.24 1.24 1.25
(0.04) (0.13) (0.11) (0.12) (0.13) (0.28) (0.33) (0.35) (0.32)

1-q-ahead 0.73 1.05 1.08 1.08 1.08 1.02 1.02 1.09 1.01
(0.09) (0.10) (0.13) (0.16) (0.13) (0.35) (0.15) (0.16) (0.12)

2-q-ahead 0.67 1.18 1.15 1.14 1.15 0.86 0.85 0.86 0.87
(0.07) (0.13) (0.12) (0.13) (0.12) (0.20) (0.17) (0.16) (0.15)

3-q-ahead 0.52 1.23 1.22 1.24 1.18 0.90 0.94 0.90 0.83
(0.06) (0.13) (0.20) (0.14) (0.09) (0.25) (0.21) (0.20) (0.16)

1-y-ahead 0.39 1.19 1.21 1.22 1.21 0.85 0.78 0.84 0.82
(0.10) (0.15) (0.14) (0.20) (0.12) (0.12) (0.08) (0.11) (0.10)

Test for no Long Memory (p-values)

Real data 0.06 0.06 0.07 0.06 0.04 0.05 0.05 0.05
Nowcasts 0.07 0.07 0.07 0.07 0.05 0.05 0.05 0.05
1-q-ahead 0.06 0.07 0.07 0.07 0.05 0.05 0.05 0.05
2-q-ahead 0.07 0.07 0.07 0.07 0.05 0.05 0.06 0.06
3-q-ahead 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06
1-y-ahead 0.07 0.07 0.07 0.07 0.06 0.06 0.65 0.06

NOTES: This table reports the result of the application of the LMDJP-ARX model to SPF data on US Real GDP, PCE Inflation and Unemployment rates for several 
forecasting horizons; see citezc:2023 for exact labeling and information on data informations. In the upper panel, the first three columns describe the variable names; 
columns from second to sixth display the estimated 𝑞 and the estimates of 𝑑 for the “Judgment-First” modeling strategy for the four estimator here considered (exposed 
in Appendix), while the equivalent estimates for “LM-First” are reported in the remaining columns. Standard errors are in parentheses below the parameter estimate. 
The lower panel displays the p-values of the test corresponding to (9), still for each of the four estimators. In both the modeling strategies we assume 𝑞 = 0.1 and an 
18

0
autoregressive order 𝑝 = 2.
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NOTE: This figure displays a comparison of LM-DJP-ARX(2) and DJP-ARX(2) using one-quarter-ahead forecasts of US-SPF. Left column corresponds to Zanetti Chini 
(2023) parametrization, while right column illustrates the behavior of the LMDJP proposed in this paper.

Fig. 8. Comparison of LM-DJP model with equivalent model by Zanetti Chini (2023) in U.S. RGDP forecasts.

observed in the bottom sub-panel (d) and 𝑤𝑡 = 1 (indicating pure judgment) in the bottom sub-panel (c). Other forecasts not shown 
here confirm these findings, emphasizing that long memory can lead to an underestimation of judgment in economic forecasts.

Fig. 9 compares the two models’ density estimations using the example from Zanetti Chini (2023, Fig. 5). Although both models’ 
estimated densities are similar, filtered estimates in cases of high initial judgment (𝑞0 = 0.1) tend to be more skewed in the LMDJP 
model.

In summary, while there are similarities in the estimated densities, the LMDJP model demonstrates a moderate improvement in 
forecasting capability over traditional ARFIMA models, as shown in Table 6. This indicates a trade-off between the out-of-sample 
performance of long-memory modeling and the in-sample estimation of judgment.

7. Conclusions

Long memory and judgment are systematically interrelated. Efficiently modeling this relationship can be achieved using the novel 
and flexible approach known as LMDJP. This method integrates various established econometric techniques—including spectral 
analysis, signal extraction, and time series modeling—re-evaluated through a robust estimation framework. Such an approach enables 
econometricians to replicate and build upon numerous novel findings in the macro-financial literature.

We consistently observe that environments with a significant degree of judgment tend to erroneously reject the null hypothesis 
19

of spurious long memory. This issue is particularly pronounced when the long-memory parameter is estimated in advance. Con-
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NOTE: This figure displays a comparison of LMDJP-ARX(2) and DJP-ARX(2) using one-quarter-ahead forecasts of US-SPF. Left panel corresponds to Zanetti Chini 
(2023) parametrization, while right panel illustrates the behavior of the LMDJP proposed in this paper. Upper panels show that estimated model assuming low initial 
q (that is high judgment), while lower panels display the same model under high initial q (low judgment). Inside each panel, the upper sub-panel display univariate 
probability density functions of data and the DKF-estimates of system with one-year-ahed RGDP forecasts as dependent variables and IIP and PCE indexes as explanatory 
variables; in the central sub-panel, the univariate density functions of IIP and PCE as well as their joint density function by MLqE; and, in the lower sub-panel, the 
univariate density functions of IIP and PCE as well as their joint density function by MLE.

Fig. 9. Comparison of LM-DJP model with equivalent Zanetti Chini (2023) in density estimation using real data.

versely, including the long-memory parameter in judgment models often leads to an underestimation of the influence of non-sample 
information. Thus, we recommend identifying judgmental bias before assessing long-run dependence. The underlying microeconomic 
mechanisms responsible for these outcomes require further investigation. One possible explanation for this spuriousness could be the 
strategic application of judgment by economic agents.

Further research is needed to accurately detect, estimate, and evaluate the effects of agents’ strategic behavior using empirical 
data. The structural treatment of judgment remains an open question, particularly regarding the causal links between economic 
variables and judgment, as well as the impact of shocks on judgment within dynamic systems.

Appendix A. Supplementary material
20

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jedc .2024 .105005.
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Table 6

In-sample and out-of-sample goodness-of-fit of LMDJS.

Model Maximum Likelihood Estimation

Reality Nowcasts 1-q-ahead 2-q-ahead 3-q-ahead 1-yr-ahead

RMSE 2.16 3.37 0.16 0.20 0.26 0.66
“In-sample RMSE” 1.22 1.13 0.08 0.12 0.13 0.34
“Out-of-sample RMSE” 1.23 1.70 0.06 0.11 0.12 0.33

Maximum 𝐿𝑞Likelihood Estimation

RMSE 1.90 2.76 0.15 0.21 0.25 0.64
“In-sample” RMSE 1.18 1.02 0.05 0.08 0.13 0.33
“Out-of-sample RMSE” 1.20 1.67 0.05 0.10 0.12 0.33

NOTE: This table reports the RMSE of the AR(2)-LMDJS estimated using standard Kalman Filter (upper part) 
and the DKF (lower part) for the case of the whole sample as well as for the case of pseudo-out-of-sample 
exercise with fixed window; in this last case, the estimation part (“in-sample”) is 1970:Q2–1990:Q1, while the 
evaluation part (“out-of-sample”) is 1990:Q2–2020:Q1.
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