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Abstract: In the context of quantum-inspired machine learning, quantum state discrimination is
a useful tool for classification problems. We implement a local approach combining the k-nearest
neighbors algorithm with some quantum-inspired classifiers. We compare the performance with
respect to well-known classifiers applied to benchmark datasets.
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1. Introduction

Quantum-inspired machine learning is a new branch of machine learning based on
the application of the mathematical formalism of quantum mechanics to devise novel
algorithms. It has revealed how such algorithms have the potential to provide benefits in
spite of lacking the computational power of quantum computers with several qubits. Some
of these binary classifiers have been analyzed from a geometric perspective [1]. In this work,
we implement some algorithms, based on quantum state discrimination, within a local
approach in the feature space by taking into account elements close to the element to be
classified. In particular, we perform multi-class classification directly (without using binary
classifiers) based on Helstrom discrimination following an approach suggested by Blanzieri
and Melgani [2], where an unlabeled data instance is classified by finding its k nearest
training elements before running a support vector machine (SVM) over the k training
elements. This local approach improves the accuracy in classification and motivates the
integration with the quantum-inspired Helstrom classifier since the latter can be interpreted
as a SVM with linear kernel [3]. It has the potential to offer comparable performance using
less complexity because it uses few training points per test point.

The quantum-inspired classifiers require the encoding of the feature vectors into density
operators and methods for estimating the distinguishability of quantum states like the Helstrom
state discrimination and the pretty-good measurement (PGM). Quantum-inspired machine
learning has revealed how relevant benefits for machine learning problems can be obtained using
the quantum information theory even without employing quantum computers [4]. Moreover,
as we will show below, our PGM within our algorithms is more efficient than the one proposed
by these authors in the case of multiple preparations in the same state because it removes
duplicates and null values in encoding. Quantum-inspired methods are used in applications
that solve industry-relevant problems related to finance, optimization and chemistry [5–9].

In the experimental part, we present a comparison of the performances of the local
quantum-inspired classifiers against well-known classical algorithms in order to show that the
local approach can be a valuable tool for increasing the performances of this kind of classifier.

In Section 2, we review the notion of quantum encoding of data vectors into density
operators and quantum-inspired classification based on quantum state discrimination [10–13].
In Section 3, we use the k-nearest neighbors algorithm (kNN) as a procedure to restrict the
training set to the nearest elements around the test elements enabling the local execution of
the quantum-inspired classifiers. In Section 4, we present and discuss some empirical results
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for evaluating the impact of locality in quantum-inspired classification comparing the perfor-
mances of the proposed algorithms to classical methods over benchmark datasets. Furthermore,
we compare quantum-inspired classifiers with SVMs within the local approach. In Section 5,
there are the concluding remarks about the efficiency of local quantum-inspired classifiers.

2. Quantum-Inspired Classification

The first step of quantum-inspired classification is the quantum encoding that is any
procedure to encode classical information into quantum states. In particular, we consider
encoding of data vectors into density matrices on a Hilbert space H whose dimension
depends on the dimension of the input space. Density matrices are positive semidefinite
operators ρ such that trρ = 1 and are the mathematical objects used to describe the physical
states of quantum systems. Pure states are all the density matrices of the form ρ = |ψ〉〈ψ|,
with ‖ ψ ‖= 1, which are the rank-1 projectors that can be directly identified with unit
vectors up to a phase factor. Let ρ be a density operator on a d-dimensional Hilbert space
Cd; it can be written in the following form:

ρ =
1
d

(
Id +

√
d(d− 1)

2

d2−1

∑
j=1

b(ρ)j σj

)
, (1)

where {σj}j=1,. . . ,d2−1 are the standard generators of the special unitary group SU(d),
also called generalized Pauli matrices, and Id is the d × d identity matrix. The vector

b(ρ) = (b(ρ)1 , . . . , b(ρ)d2−1), with b(ρ)j =
√

d
2(d−1) tr(ρ σj) ∈ R, is the Bloch vector associated

with ρ which lies within the hypersphere of radius 1 in Rd2−1. For d = 2, the qubit case,
the density matrices are in bijective correspondence to the points of the Bloch sphere in R3,
where the pure states are in one-to-one correspondence with the points of the spherical sur-
face. For d > 2, the points contained in the unit hypersphere of Rd2−1 are not in bijective
correspondence with density matrices on Cd, so the Bloch vectors do not form a ball but a
complicated convex body. However, any vector within the sphere of radius 2

d gives rise to a
density operator [14].

Complex vectors of dimension n can be encoded into density matrices of an (n + 1)-
dimensional Hilbert space H in the following way:

Cn 3 x 7→ |x〉 = 1√
‖ x ‖2 +1

(
n−1

∑
α=0

xα|α〉+ |n〉
)
∈ H, (2)

where {|α〉}α=0,. . . ,n is the computational basis of H, identified as the standard basis of Cn+1.
The map defined in (2), called amplitude encoding, encodes x into the pure state ρx = |x〉〈x|
where the additional component of |x〉 stores the norm of x. Nevertheless the quantum
encoding x 7→ ρx can be realized in terms of the Bloch vectors x 7→ b(ρx) saving space
resources. The improvement of memory occupation within the Bloch representation is
evident when we take multiple tensor products ρ⊗ · · ·⊗ ρ of a density matrix ρ constructing
a feature map to enlarge the dimension of the representation space [1].

Quantum-inspired classifiers are based on quantum encoding of data vectors into
density matrices, calculations of centroids and various criteria of quantum state distin-
guishability such as: the Helstrom state discrimination, the pretty-good measurement [4,11]
and the geometric construction of a minimum-error measurement [12]. Let us briefly recall
the notion of quantum state discrimination. Given a set of arbitrary quantum states with
respective a priori probabilities R = {(ρ1, p1), . . . , (ρN , pN)}, in general there is no measure-
ment process that discriminates the states without errors, i.e., a collection E = {Ei}i=1,...,N
of positive semidefinite operators such that ∑N

i=1 Ei = I, satisfying the following prop-
erty: tr(Eiρj) = 0 when i 6= j for all i, j = 1, . . . , N. The probability of a successful state
discrimination of the states in R performing the measurement E is:
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PE(R) =
N

∑
i=1

pitr(Eiρi). (3)

A complete characterization of the optimal measurement Eopt that maximizes the proba-
bility (3) for R = {(ρ1, p1), (ρ2, p2)} is due to Helstrom [10]. Let Λ := p1ρ1 − p2ρ2 be the
Helstrom observable whose positive and negative eigenvalues are, respectively, collected in
the sets D+ and D−. Consider the two orthogonal projectors:

P± := ∑
λ∈D±

Pλ, (4)

where Pλ projects onto the eigenspace of λ. The measurement Eopt : = {P+, P−}maximizes
the probability (3) that attains the Helstrom bound:

hb(ρ1, ρ2) = p1tr(P+ρ1) + p2tr(P−ρ2). (5)

Helstrom quantum state discrimination can be used to implement a quantum-inspired
binary classifier with promising performances. Let {(x1, y1), . . . , (xM, yM)} be a training
set with xi ∈ Cn, yi ∈ {1, 2} ∀i = 1, . . . , M. Assume that, to encode the data points into
quantum states by means of Cn 3 x 7→ ρx ∈ S(H), one can construct the quantum centroids
ρ1 and ρ2 of the two classes C1,2 = {xi : yi = 1, 2}:

ρ1,2 =
1
|C1,2| ∑

x∈C1,2

ρx (6)

Let {P+, P−} be the Helstrom measurement defined by the set R = {(ρ1, p1), (ρ2, p2)},
where the probabilities attached to the centroids are p1,2 =

|C1,2|
|C1|+|C2|

. The Helstrom classifier
applies the optimal measurement for the discrimination of the two quantum centroids to
assign the label y to a new data instance x, encoded into the state ρx, as follows:

y(x) =
{

1 if tr(P+ρx) ≥ tr(P−ρx)
2 otherwise

(7)

A strategy to increase the accuracy in classification is given by the construction of the tensor
product of q copies of the quantum centroids ρ

⊗q
1,2 enlarging the Hilbert space where data

are encoded. The corresponding Helstrom measurement is {P⊗q
+ , P⊗q

− } and the Helstrom
bound satisfies:

hb(ρ
⊗q
1 , ρ

⊗q
2 ) ≤ hb

(
ρ
⊗(q+1)
1 , ρ

⊗(q+1)
2

)
∀q ∈ N. (8)

Increasing the dimension of the Hilbert space of the quantum encoding, one increases the
Helstrom bound obtaining a more accurate classifier. The corresponding computational
cost is evident; however, in the case of real input vectors, the space can be enlarged saving
time and space by means of encoding into Bloch vectors.

Clearly, defining a quantum encoding is equivalent to selecting a feature map to
represent feature vectors into a space of higher dimension. In the case of the considered
quantum amplitude encoding R2 3 (x1, x2) 7→ ρ(x1,x2)

∈ S(C3), the nonlinear explicit
injective function ϕ : R2 → R5 to encode data into Bloch vectors can be defined as follows:

ϕ(x1, x2) :=
1

x2
1 + x2

2 + 1

(
2x1x2, 2x1, 2x2, x2

1 − x2
2,

x2
1 + x2

2 − 2√
3

)
. (9)

The mapped feature vectors are points on the surface of a hyper-hemisphere, with centroids
of the classes, calculated as the means of these feature vectors, inside the hypersphere and
can be rescaled to a Bloch vector as shown below.

In order to make the classification more accurate, one can increase the dimension of the
representation space providing k copies of the quantum states, in terms of a tensor product,
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encoding data instances and centroids into density matrices ρ⊗q. Bloch encoding allows an
efficient implementation of feature maps; by removing null and repeated entries from the
Bloch vector we obtain the following injective function for data encoding. Therefore, the Bloch
representation allows an efficient storing of redundant elements of density matrices ρ⊗q.

Let us consider a training set divided into the classes C1, . . . , CM; assume we have any
training point x encoded into the Bloch vector b(x) of a pure state on Cd. The calculation of
the centroid of the class Ci, within this quantum encoding, must take into account that the
mean of the Bloch vectors b(i) := 1

|Ci | ∑x∈Ci
b(x) does not represent a density operator in

general. In fact, for d > 2 the points contained in the unit hypersphere of Rd2−1 are not in
bijective correspondence with density matrices on Cd. However, since any vector within
the closed ball of radius 2

d gives rise to a density operator, a centroid can be defined in
terms of a meaningful Bloch vector by a rescaling:

b̂
(i)

:=
2

d|Ci| ∑
x∈Ci

b(x). (10)

A method of quantum state discrimination for distinguishing more than two states
{(ρ1, p1), . . . , (ρN , pN)} is the square-root measurement, also known as the pretty-good
measurement, defined by:

Ei = piρ
− 1

2 ρiρ
− 1

2 , (11)

where ρ = ∑i piρi; PGM is the optimal minimum error when states satisfy certain symmetry
properties [11]. Clearly, to distinguish between n centroids we need a measurement with at
most n outcomes. It is sometimes optimal to avoid measurement and simply guess that the
state is the a priori most likely state.

The optimal POVM {Ei}i for minimum-error state discrimination over

R = {(ρ1, p1), . . . , (ρN , pN)}

satisfies the following necessary and sufficient Helstrom conditions [12]:

Γ− piρi ≥ 0 ∀i = 1, . . . , N, (12)

where the Hermitian operator, also known as the Lagrange operator, is defined by
Γ := ∑i piρi Ei. It is also useful to consider the following properties which can be ob-
tained from the above conditions:

Ej(pjρj − piρi)Ei = 0 ∀i, j. (13)

For each i the operator Γ− piρi can have two, one or no zero eigenvalues, corresponding to
the zero operator, a rank-one operator, and a positive-definite operator, respectively. In the
first case, we use the measurement {Ei = I, Ei 6=j = 0} for some i where pi ≥ pj ∀j, i.e., the
state belongs to the a priori most likely class. In the second case, if Ei 6= 0, it is a weighted
projector onto the corresponding eigenstate. In the latter case, it follows that Ei = 0 for
every optimal measurement.

Given the following Bloch representations:

Γ =
1
d

(
a Id +

√
d(d− 1)

2

d2−1

∑
j=1

bjσj

)
, ρi =

1
d

(
Id +

√
d(d− 1)

2

d2−1

∑
j=1

b(i)j σj

)
, (14)

in order to determine the Lagrange operator in Cd we need d2 independent linear constraints:

2pi

(
a− b̂

(i) · b− pi
2
(1− |b̂(i)|2)

)
= a2 − |b|2. (15)
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A measurement with more than d2 outcomes can always be decomposed as a proba-
bilistic mixture of measurements with at most d2 outcomes. Therefore, if the number of
classes is greater than or equal to d2 and we get d2 linearly independent equations, we
construct the Lagrange operator and derive the optimal measurements. From the geo-
metric point of view, we obtain the unit vectors corresponding to the rank-1 projectors

Ei =
1
d

(
Id +

√
d(d−1)

2 ∑d2−1
j=1 n(i)

j σj

)
where n(i) = b̂

(i)−ab

|b̂(i)−ab|
∈ Rd2−1 giving the POVM of

the measurement. It is also possible to further partition the classes in order to increase
the number of centroids and of the corresponding equations. The classification is car-
ried out in this way: an unlabeled point x̂ is associated with the first label y such that
b(x̂) · n(y) = maxi b(x̂) · n(i), where d = d

√
length(x) + 2e.

3. Local Quantum-Inspired Classifiers

In the implementation, we consider the execution of the classifiers described above after
a selection of the k training elements that are closest to a considered unclassified instance.

The k-nearest neighbors algorithm (kNN) is a simple classification algorithm which
consists of the following steps:

1. The computation of the chosen distance metric between the test element and the
training elements;

2. The extraction of the k elements closest to the test instance;
3. The assignment of the class label through a majority voting based on the labels of the

k nearest neighbors.

In the following, we apply the kNN for the extraction of the closest elements to the
test element then the classification is performed by a quantum-inspired algorithm instead
of majority voting. On the one hand, given a test element, the kNN can be executed
over the data vectors in the input space, e.g., considering the Euclidean distance, then
the k neighbors can be encoded into density matrices and used for a quantum-inspired
classification. On the other hand, the entire dataset can be encoded into density matrices
and the kNN selects the k neighbors evaluating an operator distance among quantum
states. In the latter case, we consider the Bures distance that is a quantum generalization of
the Fisher information and a distance derived by the super-fidelity. The Bures distance is
defined by:

dB(ρ1, ρ2) =

√
2
(

1−
√
F (ρ1, ρ2)

)
, (16)

where the fidelity between density operators is given by F (ρ1, ρ2) =
(
tr
√√

ρ1ρ2
√

ρ1
)2. Let

us note that the fidelity reduces to F (ρ1, ρ2) = 〈ψ1|ρ2|ψ1〉 when ρ1 = |ψ1〉〈ψ1|. Therefore
the Bures distance between the pure state ρ1 and the arbitrary state ρ2 can be expressed in
term of the Bloch representation as follows:

dB(ρ1, ρ2) =

√√√√2

(
1−

√
1
d

(
1 + (d− 1)b(1) · b(2)

))
≡ DB

(
b(1), b(2)

)
, (17)

where b(1) and b(2) are the Bloch vectors of ρ1 and ρ2, respectively, and d is the dimension
of the Hilbert space of the quantum encoding. The special form (17) of the Bures distance,
expressed in terms of Bloch vectors, is relevant for our purpose because data vectors can be
encoded into pure states and in general quantum centroids are mixed states.

An alternative distance can be defined via super-fidelity [15]

dG(ρ1, ρ2) =
√

1− G(ρ1, ρ2), (18)
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where the super-fidelity between density operators is given by

G(ρ1, ρ2) = trρ1ρ2 +
√
(1− trρ2

1)(1− trρ2
2).

Notice that the super-fidelity reduces to G(ρ1, ρ2) = 〈ψ1|ρ2|ψ1〉 when ρ1 = |ψ1〉〈ψ1|. This
distance can be expressed in term of the Bloch representation as follows:

DG

(
b(1), b(2)

)
=

√
1− 1

d

(
1 + (d− 1)(b(1) · b(2) +

√
(1− |b(1)|2)(1− |b(2)|2))

)
, (19)

where b(1) and b(2) are the Bloch vectors of ρ1 and ρ2, respectively, and d is the dimension of
the Hilbert space of the quantum encoding. The inner distance between the corresponding

Bloch vectors represents the angle θ between the unit vectors (b(1),
√

1− |b(1)|2) and

(b(2),
√

1− |b(2)|2), which is normalized to be 1:

D̂G

(
b(1), b(2)

)
=

arccos
(

b(1) · b(2) +
√
(1− |b(1)|2)(1− |b(2)|2)

)
π

. (20)

For pure states the inner distance corresponds to the Fubini-Study distance.
In Algorithm 1, the locality is imposed by running the kNN on the input space finding

the training vectors that are closest to the test element; then there is the quantum encoding
into pure states and a quantum-inspired classifier (Helstrom, PGM or geometric Helstrom)
is locally executed over the restricted training set. In Algorithm 2, the test element and all
the training elements are encoded into Bloch vectors of pure states then a kNN is run w.r.t.
the Bures distance to find the nearest neighbors in the space of the quantum representation;
then a quantum-inspired classifier is executed with the training instances corresponding to
the closest quantum states.

Algorithm 1 Local quantum-inspired classification based on kNN in the input space before
the quantum encoding. The distance can be: Euclidean, Manhattan, Chessboard, Canberra
or Bray–Curtis.
Require: Dataset X of labeled instances, unlabeled point x̂
Ensure: Label of x̂

find the k nearest neighbors x1, . . . , xk to x̂ in X w.r.t. the Euclidean distance
encode x̂ into a pure state ρx̂
for j = 1, . . . , k do

encode xj into a pure state ρxj

end for
run the quantum-inspired classifier with training points encoded into {ρxj}j=1,. . . ,k.

Algorithm 2 Local quantum-inspired classification based on kNN in the Bloch representa-
tion after quantum encoding. The distance can be: Bures, Super-Fidelity or Inner.
Require: Dataset X of labeled instances, unlabeled point x̂
Ensure: Label of x̂

encode x̂ into a Bloch vector b(x̂) of a pure state
for x ∈ X do

encode x into a Bloch vector b(x) of a pure state
end for
find the k nearest neighbors to b(x̂) in {b(x)}x∈X w.r.t. the distance DB
run the quantum-inspired classifier over the k nearest neighbors.

A local quantum-inspired classifier can be defined without quantum state discrimina-
tion but considering a nearest mean classification such as the following: after the quantum
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encoding we perform a kNN selection and calculate the centroid of each class considering
only the nearest neighbors to the test element, finally we assign the label according to the
nearest centroid as schematized in Algorithm 3.

Algorithm 3 Local quantum-inspired nearest mean classifier.
Require: Training set X divided into n classes Ci, unlabeled point x̂
Ensure: Label of x̂

encode x̂ into a Bloch vector b(x̂) of a pure state
for x ∈ X do

encode x into a Bloch vector b(x) of a pure state
end for
find the neighborhood K = {b(x1), . . . , b(xk)} of b(x̂) w.r.t. the distance DB
for i = 1, . . . , n do

construct the centroid b̂
(i)

= 2
d|Ck

i |
∑x∈Ck

i
b(x) where Ck

i := {x ∈ Ci : b(x) ∈ K}
end for
find the closest centroid b̂

(l)
to 2

d b(x̂) w.r.t. the distance DB
return label of the class Cl

4. Results and Discussion

In this section, we present some numerical results obtained by the implementation of
the local quantum-inspired classifiers with several distances compared to well-known
classical algorithms. In particular, we consider the SVM with different kernels: lin-
ear, radial basis function and sigmoid. Then, we run a random forest, a naive Bayes
classifier and the logistic regression. In order to compare the results with previous pa-
pers, we take into account the following benchmark datasets from the PMLB public
repository [16]: analcatdata_aids, analcatdata_asbestos, analcatdata_bankruptcy, analcat-
data_boxing1, analcatdata_cyyoung9302, analcatdata_dmft, analcatdata_happiness, anal-
catdata_japansolvent, analcatdata_lawsuit, appendicitis, biomed, breast_cancer, iris, labor,
new_thyroid, phoneme, prnn_fglass, prnn_synth, tae and wine_recognition. For each
dataset we randomly select 80% of the data to create a training set and use the residual
20% for the evaluation. We repeated the same procedure 10 times and calculated the
average accuracy in Table 1. Certainly, it is possible to compare the performances based
on different statistic indices including Matthews correlation coefficient, F-measure and
Cohen’s parameter.

We observe that the performances of the local quantum-inspired classifiers turn out
to be definitely more accurate, where the hyperparameter k is set equal to the num-
ber of classes in the dataset. This value is reasonable to construct the centroids of the
classes. In particular, Algorithm 1 with the Euclidean distance is the most accurate clas-
sifier for the datasets analcatdata_boxing1, analcatdata_happiness, biomed, prnn_fglass
and wine_recognition, while the Manhattan distance is best for analcatdata_aids, anal-
catdata_japansolvent, breast_cancer, iris and tae, the Chessboard distance is best for anal-
catdata_cyyoung9302 and analcatdata_lawsuit, and the Bray–Curtis distance is best for
analcatdata_bankruptcy and appendicitis. Algorithm 2 with the Bures distance outper-
forms Algorithm 1 and 3 for analcatdata_dmft and produces the same accuracy for labor.
Algorithm 3 with the Bures distance is the most accurate classifier for analcatdata_asbestos,
new_thyroid, phoneme and prnn_synth. Algorithm 1 uses a k-d tree in the training set,
while the other two use a k-d tree in the corresponding Bloch vector space. The time
complexity to construct the k-d tree is usually O(dn log n), where n is the cardinality of the
training set and d the length of each vector, while the space complexity is O(dn). The query
to find the k nearest neighbors takes O(k log n). The time complexity of PGM is O(cd3) and
is O(dm) for the classification of the m elements of the test set in c classes. Our algorithm is
more efficient than the one presented in [4] in the presence of multiple copies because it
remove nulls and duplicates. In particular, we consider only 20 values instead of 81 matrix
elements of ρ(x1,x2)

⊗ ρ(x1,x2)
, 51 values instead of 729 for ρ(x1,x2)

⊗ ρ(x1,x2)
⊗ ρ(x1,x2)

and so
on. In a future paper, we will analyze in detail the complexity of such algorithms in the
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average case and in the worst case. For instance, one can construct the ball tree for clustered
data instead of the k-d tree and consider different search techniques.

In Table 2, we show the methods that provided the best accuracy, with the respective
execution times, compared with the classical method. These experimental results are
promising and show that the methods are efficient when run on classical computers.
Algorithm 3 with the Bures distance is not efficient for phoneme, but Algorithm 1 with the
Euclidean distance is: 1.951 s with an average accuracy of 0.897. We will study in a future
work how to also apply the local methods in implementations on quantum computers.

Let us focus on multi-class datasets for the comparison with the kNNSVM method
proposed by Blanzieri and Melgani [2]. This method requires the choice of the hyperparam-
eter k, and as is well known from the standard kNN algorithm, there is no general strategy
to choose k a priori. In Table 3, the results obtained for some k values of the kNNSVM
are shown. For analcatdata_dmft, kNNSVM presents an average accuracy that is only 2%
lower than Algorithm 2 but requires 17 elements per test element instead of 6. For analcat-
data_happiness, kNNSVM yields an average accuracy that is 10% lower than Algorithm 1
and requires 14 elements per test element instead of 3. However, kNNSVM outperforms
local quantum-inspired classifiers for iris and tae, but only for the latter requires fewer
elements, while for wine_recognition they are comparable. For new_thyroid and prnn_fglass,
the best results are obtained with the nearest neighbor method, but with lower accuracy
than Algorithms 1 and 3, respectively.

Table 1. Classification comparison, in terms of test average accuracy for 10 runs, for bench-
mark datasets.

Dataset/Method Euclidean Manhattan Chessboard Canberra Bray–Curtis Bures Nearest Mean

analcatdata_aids 0.6 0.62 0.53 0.55 0.51 0.46 0.46
analcatdata_asbestos 0.794 0.794 0.794 0.782 0.794 0.794 0.8
analcatdata_bankruptcy 0.87 0.87 0.83 0.85 0.88 0.87 0.87
analcatdata_boxing1 0.725 0.721 0.696 0.688 0.721 0.688 0.646
analcatdata_cyyoung9302 0.811 0.794 0.844 0.789 0.811 0.817 0.833
analcatdata_dmft 0.201 0.199 0.198 0.191 0.202 0.209 0.18
analcatdata_happiness 0.475 0.458 0.383 0.433 0.475 0.45 0.325
analcatdata_japansolvent 0.79 0.82 0.8 0.74 0.81 0.77 0.74
analcatdata_lawsuit 0.979 0.974 0.981 0.968 0.974 0.972 0.976
appendicitis 0.866 0.811 0.867 0.876 0.886 0.838 0.857
biomed 0.917 0.91 0.9 0.898 0.91 0.91 0.91
breast_cancer 0.698 0.707 0.696 0.674 0.695 0.691 0.704
iris 0.943 0.957 0.95 0.947 0.947 0.943 0.937
labor 0.927 0.927 0.836 0.909 0.936 0.936 0.936
new_thyroid 0.974 0.981 0.96 0.956 0.977 0.97 0.984
phoneme 0.897 0.897 0.895 0.893 0.897 0.898 0.903
prnn_fglass 0.746 0.693 0.7 0.685 0.671 0.72 0.724
prnn_synth 0.874 0.864 0.896 0.856 0.878 0.894 0.9
tae 0.58 0.583 0.573 0.543 0.577 0.58 0.56
wine_recognition 0.989 0.983 0.975 0.967 0.972 0.981 0.981

Dataset/Method Linear Radial Basis Function Polynomial Sigmoid Random Forest Naive Bayes Logistic Regression

analcatdata_aids 0.45 0.45 0.49 0.45 0.42 0.49 0.56
analcatdata_asbestos 0.7 0.724 0.694 0.735 0.694 0.735 0.724
analcatdata_bankruptcy 0.79 0.79 0.81 0.7 0.78 0.77 0.81
analcatdata_boxing1 0.621 0.654 0.65 0.629 0.713 0.658 0.654
analcatdata_cyyoung9302 0.778 0.756 0.767 0.7 0.778 0.75 0.817
analcatdata_dmft 0.175 0.175 0.17 0.168 0.18 0.182 0.191
analcatdata_happiness 0.35 0.3 0.325 0.283 0.358 0.35 0.442
analcatdata_japansolvent 0.77 0.77 0.76 0.72 0.75 0.8 0.75
analcatdata_lawsuit 0.955 0.953 0.955 0.904 0.955 0.945 0.964
appendicitis 0.852 0.857 0.842 0.743 0.867 0.848 0.867
biomed 0.857 0.857 0.864 0.838 0.857 0.881 0.857
breast_cancer 0.656 0.656 0.668 0.651 0.675 0.672 0.66
iris 0.94 0.927 0.93 0.87 0.933 0.923 0.937
labor 0.782 0.854 0.827 0.636 0.827 0.855 0.845
new_thyroid 0.963 0.958 0.947 0.958 0.949 0.947 0.96
phoneme 0.75 0.821 0.829 0.746 0.883 0.766 0.745
prnn_fglass 0.541 0.51 0.559 0.483 0.666 0.629 0.568
prnn_synth 0.85 0.85 0.844 0.848 0.846 0.844 0.86
tae 0.446 0.403 0.43 0.273 0.45 0.477 0.457
wine_recognition 0.978 0.978 0.978 0.947 0.975 0.975 0.983
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Table 2. Classification comparison, in terms of test average accuracy for 10 runs, for benchmark
datasets. For quantum-inspired methods we show the average execution time in seconds on an Intel
i7-9750H CPU @ 2.60GHz 6-core with 32 GB RAM, and for classical methods the training time and
evaluation time per test set element.

Dataset Method Accuracy Execution time Method Accuracy Training time Evaluation Time

analcatdata_aids Manhattan 0.62 0.013 LogisticRegression 0.56 0.942 0.0018
analcatdata_asbestos NearestMean 0.8 0.018 Sigmoid 0.735 1.244 0.0015

analcatdata_bankruptcy BrayCurtis 0.88 0.019 Polynomial 0.81 0.893 0.0015
analcatdata_boxing1 Euclidean 0.725 0.021 RandomForest 0.713 0.351 0.0054

analcatdata_cyyoung9302 Chessboard 0.844 0.074 LogisticRegression 0.817 1.201 0.0014
analcatdata_dmft Bures 0.209 0.013 LogisticRegression 0.191 3.103 0.0018

analcatdata_happiness Euclidean 0.475 0.021 LogisticRegression 0.442 1.416 0.0024
analcatdata_japansolvent Manhattan 0.82 0.06 NaiveBayes 0.8 0.636 0.0045

analcatdata_lawsuit Chessboard 0.981 0.074 LogisticRegression 0.964 2.243 0.0022
appendicitis BrayCurtis 0.886 0.094 RandomForest 0.867 0.657 0.0087

biomed Euclidean 0.917 0.194 NaiveBayes 0.881 0.682 0.0045
breast_cancer Manhattan 0.707 0.339 RandomForest 0.675 0.832 0.009

iris Manhattan 0.957 0.029 Linear 0.94 0.904 0.0015
labor BrayCurtis 0.936 0.013 NaiveBayes 0.855 0.318 0.0038

new_thyroid NearestMean 0.984 0.099 Linear 0.963 1.452 0.0015
phoneme NearestMean 0.903 39.204 RandomForest 0.883 2.157 0.0093

prnn_fglass Euclidean 0.746 0.378 RandomForest 0.666 1.646 0.01
prnn_synth NearestMean 0.9 0.12 LogisticRegression 0.86 2.323 0.0024

tae Manhattan 0.583 0.148 NaiveBayes 0.477 3.801 0.0065
wine_recognition Euclidean 0.989 0.394 LogisticRegression 0.983 2.426 0.003

Table 3. kNNSVM comparison, in terms of test average accuracy for 10 runs, for benchmark multi-
class datasets.

Dataset/Method 1NNSVM 2NNSVM 3NNSVM 4NNSVM 5NNSVM 6NNSVM 7NNSVM 8NNSVM 9NNSVM

analcatdata_dmft 0.186 0.198 0.198 0.15 0.177 0.187 0.187 0.187 0.196
analcatdata_happiness 0.242 0.317 0.325 0.375 0.383 0.383 0.375 0.375 0.35
iris 0.937 0.943 0.943 0.95 0.943 0.957 0.937 0.95 0.96
new_thyroid 0.974 0.965 0.958 0.96 0.958 0.965 0.949 0.951 0.96
prnn_fglass 0.72 0.71 0.658 0.678 0.683 0.678 0.666 0.673 0.676
tae 0.57 0.593 0.557 0.55 0.553 0.543 0.53 0.53 0.493
wine_recognition 0.986 0.981 0.986 0.989 0.989 0.989 0.983 0.983 0.986

Dataset/Method 10NNSVM 11NNSVM 12NNSVM 13NNSVM 14NNSVM 15NNSVM 16NNSVM 17NNSVM 18NNSVM

analcatdata_dmft 0.197 0.196 0.2 0.202 0.193 0.185 0.197 0.204 0.204
analcatdata_happiness 0.358 0.4 0.317 0.408 0.433 0.425 0.35 0.375 0.4
iris 0.95 0.95 0.95 0.957 0.95 0.953 0.943 0.937 0.943
new_thyroid 0.951 0.937 0.963 0.944 0.944 0.949 0.96 0.953 0.955
prnn_fglass 0.676 0.641 0.685 0.659 0.663 0.654 0.693 0.678 0.685
tae 0.49 0.433 0.52 0.48 0.43 0.427 0.48 0.467 0.487
wine_recognition 0.983 0.972 0.983 0.972 0.964 0.967 0.989 0.969 0.975

5. Conclusions

The present paper focuses on the implementation of classification algorithms based
on quantum state discrimination. A novel contribution is the local approach adopted to
execute the classifier, not over the entire training set, but in a neighborhood of the test
element. Once partitioned, for the training set the k nearest data elements are encoded into
Bloch vectors and used to define the quantum centroid of each class.

The local quantum-inspired classifier considered, for reasonable values of the hyperpa-
rameters, was found to be a method with performance comparable to classical algorithms
for multi-class classification. We performed some experiments using benchmark datasets
and found that local quantum-inspired classifiers were even more accurate than SVM
with different kernels, a random forest, a naive Bayes classifier and the logistic regression
classification algorithm.

The present proposal offers a family of classifiers. In fact, several strategies to impose
a notion of locality over a training set, and several procedures of quantum state discrimina-
tion, can be applied. Both the local approach to classification and the quantum-inspired
data encoding/processing deserve further investigation to clarify the impact of these ideas
on machine learning, but the results achieved clearly indicate that both approaches to
machine learning are promising.
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