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Abstract: When modeling a dynamical system, linear models are always the first choice due to
their simplicity. However, many times the system is too complex so that employing linear models
results in poor performances. In this context, Linear Parameter Varying (LPV) models allow to
represent non-linear input/output relationships while preserving the simple structure of linear
models. The method of Least Squares Support Vector Machines (LS-SVM) is one of the most
common approaches to identify a LPV model in an ARX formulation (LPV-ARX). However,
due to its computational cost, it is difficult to identify a LPV-ARX model using LS-SVM in
online applications, where the model must be updated every time new data are collected. An
efficient update algorithm has been presented for online identification of such models, where the
idea is to update the model only upon certain data that are considered informative. However,
this approach requires the tuning of some hyperparameters and in certain conditions can stop
updating the model even when data are informative. This paper proposes an information-based
algorithm to overcome these drawbacks. Evaluation on simulated and experimental data show
the effectiveness of the proposed approach on both identification and computational sides.
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1. INTRODUCTION the model coefficients functions that depend only on the
current value of p(k).

The Least Squares Support Vector Machines (LS-SVM)
method provides an efficient way to estimate LPV-ARX
models (Toth et al., 2011; Suykens, 2000). LS-SVM solve
a parametric regression problem in a least-squares fashion,
so that its parameters can be estimated in closed form thus
not requiring iterative optimization algorithms. However,
the resolution of the least-squares problem requires the
inversion of an N x N matrix, with N the number of
identification data. This computational complexity may
pose a problem in online applications when a model must

Linear Time Invariant (LTI) models are widely employed
in many control applications due to their analytical sim-
plicity and mature identification approaches (Ljung, 1998;
Overschee and De Moor, 1996). Nonetheless, there are
many situations where the underlying system is not linear.
In this context, Linear Parameter Varying (LPV) models
are a viable alternative, where the model parameters are
not constants but functions of a scheduling variable that
varies over time (Toth, 2010). LPV models can represent
complex systems while maintaining the interpretability
and the intuitive structure proper of linear models (Ca- . .
vanini et al., 2018; Atoui et al., 2022; Norouzi et al., 20(22). be updated every time a new datum is collected.

One way to describe a Single Input Single Output (SISO) To overcome this issue, (Cavanini et al., 2020) presented

. - . an efficient update algorithm for recursive identification
{;II;dVTIgtohdeéol;?)‘ghmugh the LPV-ARX formulation (Piga of LPV-ARX models leveraging the LS-SVM approach.

. - The idea is to update the model only when the new
- , , collected data are considered sufficiently informative to

y(k) + Z ai(p(k))y(k — i) = Z bj(p(k))ulk — j) +e(k) aid the model identification, while non-informative data
=1 =0 are discarded. The notion of what an informative datum

. ) . ) (1) represents is quantified by means of a similarity function,
yvhere k €N 18 the discrete time yanable, u: N - R that evaluates the degree of similarity of a new data point
is the input signal, y : N — R is the output signal, respect to all points in the data set currently available
p: N — P CR" n, €N, is the known scheduling g, jqentification. If the new data point is considered suffi-
variable, e(k) is a white noise and a;,b; : P — R are ciently informative by the similarity function, a recursive
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procedure was proposed to avoid the matrix inversion.
Practical scenarios include, for instance, fault diagnosis
applications where the system behaviour changes with
respect to an operating conditions (Mazzoleni et al., 2017).

While the approach proposed in (Cavanini et al., 2020) is
a significant improvement towards a more efficient online
estimation of LPV-ARX models with LS-SVM, it still
necessitates the definition of which similarity function
to employ, with related hyperparameters that might not
present specific rules for their tuning. Moreover, the model
updating rule proposed in (Cavanini et al., 2020) can, in
certain conditions, never trigger the inclusion of new data
points so that the update of model is stopped.

To overcome these limitations, a new online approach
based on information theory (Shannon, 1948) is proposed,
that we denote as the information-based approach. Infor-
mation theory defines the information of an event that
occurs with a certain probability. These concepts are em-
ployed to quantify the information brought by a new data
point collected online. Since the data space is continuous,
it is impossible to compute the probability (and so the in-
formation) that new collected data assume a certain value.
The problem is solved dividing the data space in folds, and
computing the probability that the each new datum falls
inside a specific fold, using the histogram method (Scott,
1979) . Then, the information of each new data point is
compared to the total information of the data set, to decide
if the new data point should be included or not for model
updating. As a second minor contribution, this work also
presents a modification on the LPV-ARX structure in (1)
to improve the online updating performance of the model
when input/output data have a time-varying mean value.

This work is organized as follows. Section 2 reviews the
LPV-ARX identification problem with LS-SVM and the
efficient online update using the similarity function ap-
proach of (Cavanini et al., 2020). Section 3 presents the
new information-based approach along with a motiva-
tional example. Section 4 compares the performance of the
information-based approach with respect to the similarity
function approach, both on a real and simulated data.
Section 5 provides conclusions and future directions.

2. RELATED WORKS

This section reviews the batch and online identification
of a SISO LPV-ARX model using LS-SVM (Toth et al.,
2011; Piga and T6th, 2013; Cavanini et al., 2020).

2.1 LPV-ARX identification with LS-SVM

A parameterized description of (1) is given by

B =S w! g (k)ek
=1

where ng = ng +np + 1, ¢; : R = R™ ny € (0,+00),
represents an unknown feature map, w; € R™>1 { €
{1,...,n4}, are parameters vectors and

pilk) =ylk—1), i=1,..,n
pu(k) =ulk—3), j=0,..,m,
such that

) +e(k), (2)

t=7+ng+1,

ai(p(k)) = wfqbi(k), (4a)

bi(p(k)) = w/ ¢, (k). (4Db)
The model identification using LS-SVM approach consists
in solving the following optimization problem

IBlgjwe Zw w; + /YZ

st e(k) = y(k) —Zwmi(k)ap (k), (5b)

where N is the number of data used for the identification
and v € Ry is a regularization parameter. Problem (5)
can be solved with the Lagrange multiplier method (Boyd
and Vandenberghe (2004)).The Lagrangian function is

L(w,e, a) = J(w,e)—

> o (Sl o

with o € R, k € {1,..,N} being the Lagrangian
multipliers. The optimal solution of (5) is obtained when
the following conditions are satisfied

(5a)

(k) +e(k) - y(k)> (6)

oL Al
o, =0 00 = L k) (7a)
oL
Belh) 0 — ap = ve(k), (7b)
oL
Par =0—e( Z w] ¢;(k)pi(k).  (7c)
Then, from (7a) it follows that
Z <Z akpi(k )) b (k)pi(k)+7 . (8)
i=1 =
Defining the matrix € such that is (j, k)-th element is
Z% 6:(WeiE) Jk=1,,N (9)
and the vectors Y = [y(1),...,y(N)]T, a = [ay,...,an] T,
(8) can be rewritten as
Y =(Q+~y) a=Q-a, (10)

with In being the N dimensional identity matrix. Al-
though each ¢, is unknown, the matrix €2 can be computed
using the so called kernel trick (Gedam and Shikalpure
(2017)) such that (9) can be rewritten as

Ki(p(j), p(K)) == ¢ ()pi(k), i€{l,...,n,} (1la)
:Z%(j)K ), p(k)) @i(k), (11b)

where (11a) are positive definite kernel functions. In this
work, the radial basis function (RBF) kernel is considered
for each ¢ € {1,...,n4} in (11a) so that

Ky (o). p(1) = enp (1D PBIE) )

with || - ||2 being the [y norm. Then, a in (10) can be
computed as
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a=0"Y, (13)
and the LPV-ARX coeflicients are computed from (4), (7a)
and (11b) as

N
)= areiB)Ki(p(k). ), (14)
k;l
=3 arp(B)K(p(k), ). (14b)
k=1

2.2 Similarity function online update rule

An efficient method to perform the online update of an
LS-SVM LPV-ARX is proposed in (Cavanini et al., 2020),
where new data are used for model updating only if they
are sufficiently informative. The idea is to evaluate the
novelty brought by a new datum with respect to all the
data present in the identification data set. This is done
using a similarity function P :R" — R defined as

Zex EECUE e

where (k) = [<p1(k:), s n, (K)]T € R™X1 02 € Ry
is an hyperparameter that should be tuned for each
application, and z defines the time instant when the new
datum arrives, so that z > k. The model is updated with
the new data point ¢(z) if

N N
k=1 k=1

N
The update of the model is performed by augmenting the
matrix € in (10) such that

Q-i- = |:,lfz 2]7 (17)
where w == [u(1) ... uw(N)]" € RV*L and
k) = Z%‘(’f)K p(2)pi(2), k€ {L,.... N},

a=>Y @i(2)K p(2))ei(z) +77"

i=1
The inverse of (17) can be computed efficiently using the
bordering method (Householder (1953))

- T=-1 ~—1
o Q uu iKY Q9 u
oo —t T, )

1
q q
~—1
withg=a—u'Q "wu. To keep the dimension of the data
set constant, when a new datum is considered for model

updating, the oldest one is discarded using a First In First
Out (FIFO) rule, i.e.

;= [p;(2: N);0i(2)],
p=[p(2:N); (),

and the matrix I is reduced accordingly such that

Y = [Y2: N)iy(z), (19)

(19b)

Q0 ) = (i+1,5+1) — Q4 (1+1,1)9:(1,j +1)
Q4(1,1)

(20)

~ ~—1
with Q71(i, ) the (i,7)-th element of £ . In this way,
the new value of v in (13) can be computed with the new

data set (19) and the new aQ computed using (20).

The next section describes the proposed improvements for
online identification of LPV-ARX models using LS-SVM.

3. PROPOSED METHODOLOGIES

This section presents two methodological improvements
with respect to (Cavanini et al., 2020). The main con-
tribution is an alternative update rule to (16). A second
minor contribution includes the modeling of the possible
time-varying mean of output data through a time-varying
intercept term of the model.

8.1 Information-based online update rule

As discussed in the introduction, the method of (Cavanini
et al., 2020) presented in Section 2.2 requires the user
to employ a similarity function (15) that depends of an
hyperparameter 02 which value has to be set based on
the specific application. Moreover, the next example shows
how the approach presented in Section 2.2, under some
circumstances, might interrupt the model updating upon
new data, thus resulting in bad identification performance.
In this particular case, the problem can be mltlgated by
increasing the value of the hyperparameter o2 1n (15).
However, it is not certain if the new value of o2 in (15)
would be a good value also for the kernel function in (12).

Example 1. Consider the noiseless LPV-ARX system

y(k) = (0.7 4+ cos p(k))y(t — 1) — (0.4 + sin p(k))y(t — 2)
+ (0.4 +sinp(k))u(t — 1), (21)
with scheduling variable

p(k) = Bo(k — 1) + <= 1)

)

To measure the goodness of the model, define the Best Fit

Ratio (BFR) as
[Y — ¥
1Y —ginlz )

where Y is the N x 1 vector of outputs estimated by the
model, § = mean(Y) with mean(-) the average function
operating on the elements of the vector Y, and 1 a N x1
vector of all ones. To identify the model, N = 1000 data
points are simulated with § = 0.8 and the input signal in
Figure 1. The kernel function and similarity function are
chosen as the RBF in (12) with o2 = 100, while model
orders in (1) to ng = 2, np, = 1 (the correct orders), and
v = 0.1 in (5). The BFR on identification data is 98%.
Then, 15000 data points are simulated to test the online
update algorithm of Section 2.2, using the input signal in
Figure 1 and

BFR := 100 x max (O, 1-— (23)

0.8 k<3750
B=1{0.75 3750 <k < 7500 (24)
0.7 k> 7500
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so that at the time stamp k = 3750 the scheduling
variable (22) changes behaviour, while at time stamp
k = 7500 both the input and the scheduling variable
change behaviour. However, as shown in the bottom plot
of Figure 2, the algorithm based on (16) stops updating
the model at the time stamp k& = 4506, as the right
side of (16) becomes negative while the left side of (16)
is always positive. Thus, the online identification scheme
of Section 2.2 loses the capability to update the model,
and this results in a loss of performance (BFR = 84%) as
the system changes its behaviour. The figure also shows
the results of the proposed update rule scheme based on
information theory, and it will be discussed next.

g
.S
-+~
o]
(&}
=
=
j_.a L L L
= 0 200 400 600 800 1000
20
=
2,
%
& 10F

0 5000 10000
Time stamps

15000

Fig. 1. Identification and test input signals of Example 1.
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Fig. 2. Comparison between the similarity based approach
(16) and the information-based one (40) on Example
1. Top: Estimated output of the online identified
models. (Red) Updated rule (16); (Green) Proposed
update rule (40); (Black) real output. Bottom: time
stamps when the update rules (40) and (16) choose
to update the model, respectively.

To overcome these limitations, a new information-based
updating rule is proposed in place of (16).

Define X = {x1,xa,...,xp} as a set of events and p(zs),
zs € X the probability mass function (pmf) associated
to X. The information brought by the occurrence of the
event z; is (Shannon, 1948)
1
I(z,) =log ——. 25
() gp(xs) ( )
In this context, X is called the source. The average
information brought by a source is called the entropy

M
H(X) =) pla,)I(,), (26)
while the information varia_nce reads as
M
V(X) =) plas)I(xs) — HX)P (27)

The rationale of the proposed information-based approach,
as a building block for a new update rule, is to divide
the data samples into bins, and compute the probability
that a data point falls into that bin. This pmf can be
used to compute the information brought by a new datum
collected online, and, based on this information, select or
not the datum for model updating.

This pmf can be estimated by the histogram method
(Scott, 1979). Defining f(z), = € R, a probability density
function (pdf), the histogram method is an efficient way
to estimate f(z) from a data sample as
~ Ng

f(x§nsahsvrs) = Nhs,

where r; and hg are, respectively, the starting point and
the bin width of the histogram bar such that x € S, 4,
with S,, n, = [rs,rs + hs), and ng is the number of data
points that fall in S,_j_. Despite the method is designed
to estimate a pdf, in this work it is used to obtain a pmf
representing the probability that x € S, _ 5, as

(28)

rs+hs N
p(s) = /T flxyng, hg,rs) de = R

s

(29)

In this way, a new collected data point will be associated
with the event of falling in a certain bin of the histogram,
and its information will be computed using the estimated
pmf in (29). The choice of each hy is crucial to estimate
a precise histogram. In (Scott, 1979) it is proposed to
use equally spaced histograms (ESH), i.e. hy = h Vs. To
measure the error made by the histogram approximating
the real pdf (28), the mean squared error in a single point
x is defined as

MSE(z) = E[(f(x) — f(=))?). (30)
A global measure of the error of the histogram approximat-
ing the pdf (28) is given by the integrated mean squared

error
+oo
IMSE =

+o0 R
E[(f(z) - f(2))?] dz.
(31)
It can be shown in (Scott, 1979) that the IMSE for an ESH
can be defined as
1 1 of

1
IMSE(h) = — + Eh% <8x> +0 (n + h3> . (32)

of to r9F\?
)= fL(G) e

0
As a—f is almost always unknown, (Scott, 1979) suggests

MSE(z) dz = /

— 00 — 00

where

(33)

x
to use the normal reference rule, i.e. assuming that f(z)
is Gaussian (even if it is not). This results in

R (gi) _ ﬁ (34)
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where A is the standard deviation of the data. The op-
timal bin width h* is computed by minimizing (32) and
considering (34), leading to

3\ 3 )
h* = (24\{;?)\> ~ 3.49\n" 3.

Note that (32) does not depend on any rs but only on
h. This means that the starting point r¢ of the histogram
can be decided arbitrarily, and then the start of each bin
can be obtained as rs = rg + s - h*. The pmf can be now
computed using (29).

(35)

The idea of the proposed information-based approach is
to use the histogram method to estimate a total of n,
probability mass functions (pfms) p;(s), i = {1,...,n4},
using as data sample the features vector

i = [@i(l)""’gpi(N)]T7 (36)
defined based on the currently available identification data
set. Each ¢, in (36) is used to compute the respective h;
using (35) and r = min(yp;) — h;/2. Then, using (26) and
(27), the entropy and the information variance of each ¢;
can be computed as

Mi-1 1
p(S) IOg N
; ' pi(s)
Mi-1 1 2
Vi = ps(lo—H:) ,
' SZ:% i(s) gpz‘(s) L
with M" = [(max(yp;) — r§)/h;| being the number of bins
that contain all data points starting from rj. Note that,
when p;(s) = 0, the expression inside the log(-) does not
make sense, but since it is multiplied by 0, then we assume
in the implementation that the whole product is null.

(37b)

The information brought by the i-th feature ¢;(z) of new
data point ¢(z) is defined as

I; =log , 38
= ) (38)

where s ; is defined such that
pi(2) €[ry, 75, Th) (39)

Then, the new data point ¢(z) is employed to updated the
model if

Ji=1,..,ng st. I;>H +3V, (40)
i.e. if there is at least a feature in the new data point that
brings more information than the average information in
the data set, plus three times its standard deviation. If
any pi(s.,:) = 0, i.e. if the data set does not contain any
data point similar to the new one, then I; is assumed to
be infinite, since it can be useful to update the model with
a datum that was never seen until that moment. Once the
data point is selected to be included in the model according
to (40), the update procedure is the same as in (17)-(20).

The proposed method solves the two main problems of the
similarity function algorithm, since there are no functions
or parameter to tune (as the bin width of the histogram is
automatically obtained with (35)), and there are no risks
that the algorithm stops updating (as unseen data have
infinite information and so they are always included).

3.2 Time varying intercept

Model (1) assumes that output data have a constant
mean (usually zero). However, in practical applications,
the online identification of the model must deal also with
a time-varying average behaviour of the input/output
signals. To deal with these situations, the LPV-ARX
formulation in (1) is extended by adding a time-varying
intercept term m(p(k)) as

y() + Y a9yl — i) =
> by(pt)ull — )+ m(p(k) + (k). (41)

Considering (2), ng is redefined such that ng = nq+ny+2,
i.e. a new parameter is added to the model. Then, (3) is
extended such that

on, (k) =1, (42)
and in a similar way (4) is extended such that
m(p(k)) = w; b, (k). (43)

At each time k, the new coeflicient can be estimated as

N
() = arKn, (p(k),). (44)
k=1
The new coeflicient behaves like an intercept that varies
with time, and helps to capture the variation of the mean
of the data during the online identification of the model.

4. EXPERIMENTAL RESULTS

The presented methodologies are tested on the data col-
lected from a Spark-Ignite (SI) engine, typically used in
aircraft applications (Cavanini et al., 2020). The input
signal u is the throttle angle, while the output y is the en-
gine speed. The nonlinear mathematical model is present
in (Weeks and Moskwa, 1995). The scheduling variable
p is set as p(k) = y(k — 1). Two different data sets are
provided: one is used for model identification while the
second for evaluation. Identification and test input signals
are reported in Figure 3. The sampling time is Ts = 0.015s.
The RBF in (12) is chosen as kernel function and the se-
lected values for the hyperparameters are o = 20, v = 0.1,
ng, = 2 and n, = 1 as in (Cavanini et al., 2020). Note
that the system is set to be strictly proper so that y(k)
does not depend on u(k) but only on u(k — 1). The model
(1) is compared to the one with the intercept term in
(41), without and with the online update rule based on
the similarity function (16) and the proposed information-
based one (40). Figure 4 and Table 1 show the test per-
formance, and, only for the online identified models, the
computational time and the number of data points used
to update the model. It can be seen that the model (41)
has higher performances than the classical one in (1). The
performances of (41) are the same to (1) if an update
algorithm is employed. However, the computational time
is way smaller with the proposed update rule (40). This is
due to the fact that the update condition (16) has O(N?)
as its computational cost, while the computation of (40)
is only O(N), as the highest computation is done for (29)
that counts the number of data points that falls in each
bin of the histogram.
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Fig. 4. Models comparison on the aircraft evaluation data

set. Top: Estimated output. (Magenta) model (1)
without online update, (Blue) model (41) without on-
line update, (Red) model (41) without online update
based on (16),(Green) model (41) without online up-
date based on (40), (Black) measured output. Bottom:
time stamps when update rules (40) and (16) choose
to update the model, respectively.

Model BFR Time Data
Model (1) no update 70.73%
Model (41) no update 81.34%
Model (41) online updated (16)  96.75% 76s 334
Model (41) online updated (40) 97.05% 7s 319

Table 1. Test performance on the aircraft eval-
uation data set.

The online updating rules (16) and (40) are also compared
on Example 1 in Section 3.1, by considering the model (1).
The estimated outputs of the two approaches are presented
in Figure 2. From Table 2, it can be seen that the proposed
information-based approach (40) performs better in terms
of BFR as it does not stop updating the model with respect
to the similarity function approach (16).

Model BFR Time Data
Model (1) online updated (16)  83.85% 19s 79
Model (1) online updated (40) 99.25% 9s 288

Table 2. Test performance on Example 1.

5. CONCLUSION

In this paper, a new rule based on information theory for
the online update of LS-SVM LPV-ARX models has been
introduced. The proposed approach has been tested on an
experimental aircraft data set and on a simulated example.
In contrast to the existing approach, the new algorithm
is computationally more efficient and does not suffer of
stall problems. Also, it does not require any tuning of
hyperparameters or functions, so that it can be employed
without any previous analysis. An improvement of the
standard LPV-ARX model formulation is proposed to face
a time-varying mean value during online model updating.
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