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Considering dynamical systems, the problem of designing a good filter to estimate a
variable of interest is a key topic in the control system community. Since the 1900s, its
theory and practice has been studied and performed by experts of all fields, starting
from analog frequency-selective filters, spanning to the development of the stochastic
filtering theory of Kolmogorov-Wiener, and culminating into the celebrated Kalman
filter for non-stationary linear systems. In recent years, also statistical methods have
been employed to tackle down the computational burden when deriving approximant
Bayesian solutions in the non-linear case. In all these methods, the key assumption is
that a-priori information about the system under analysis is known, enabling amodel-
based design of the filter. In contrast, approaches that rely on experimental data have
seen an always increasing interest. Nowadays, the standard solution to the filtering
problem is based on a two-step approach: (i) first a data-driven system identification
is performed, (ii) then a filter is designed based on the identified model. In this
case, the main idea is that a model of the system is not available and a data-driven
methodology is used to estimate the system. This thesis aims to further expand the
knowledge about data-drivenmethods to the filtering design problem. In the first part,
a review of the history and the stochastic Kalman filter theory is presented in details.
The second part focuses on personal contributions. Firstly, the new direct data-
driven methodology derived from a parametric-statistical framework is proposed
by means of a work of review and reformulation of the literature. In the direct
solution available data are used to identify directly a model of the filter, skipping
the system identification step and solving the practical problem of estimating the
unknown noise covariance matrices from data. The standard two-step approach
and the new direct one-step paradigm are compared, highlighting the flaws of each.
Then, practical methodologies to implement both solutions with respect to a common
steady-state LTI system framework are explored. The thesis end with experimental
tests performed in simulation applied on an univariate dynamical system with
no exogenous input. The tests are then expanded to a multivariate system with
exogenous input taken from one example of a industrial application.
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time 𝑘, i.e. 𝒙0, 𝒙1,… , 𝒙𝑘

𝒚1∶𝑘 is the sequence of output variables until time 𝑘, i.e. 𝒚1, 𝒚2,… , 𝒚𝑘

𝜇(𝒙0) is the prior of the initial condition 𝒙0 of the system  at time 𝑘 = 0.
𝑓 (𝒙𝑘+1|𝒙𝑘) is the transition probability from the given state 𝒙𝑘 to the state 𝒙𝑘+1,

i.e. the dynamics of the system 
𝑔(𝒚𝑘 |𝒙𝑘) is the observation probability of the output 𝒚𝑘 given the state 𝒙𝑘.
𝜇(𝒙0∶𝑘) is the prior of the system  at time 𝑘.
𝑝(𝒚1∶𝑘 |𝒙0∶𝑘) is the likelihood or data distribution of the system  at time 𝑘.
𝑝(𝒙0∶𝑘 |𝒚1∶𝑘) is the posterior distribution of the system  at time 𝑘.
X𝑘 is a compact notation for 𝒙0∶𝑘

Y𝑘 is a compact notation for 𝒚1∶𝑘
Direct filtering

𝑛𝒛 ∈ N is the number of elements of the desidered variable (its dimension).
Here the assumption 𝑛𝒛 = 𝑛𝒙 is taken.

𝒛𝑘 ∈ R𝑛𝒛×1 is the desired variable of the system at time 𝑘. It is a measurable
variable for a limited amount of time.

𝑪2 ∈ R𝑛𝒛×𝑛𝒙 is the time-invariant desidered variable-state matrix of the system
 . Here the assumption 𝑪2 = 𝑰 is taken.

 is the true model of the direct filter.
 is the hypothesis set of the solution to the direct filter containing

all feasible parameterized models(𝜽DF).
(𝜽DF) is the (generic) feasible model of the direct filter parameterized by

𝜽DF.
𝑮(𝑧−1; 𝜽DF) is the signal model part of the direct filter model(𝜽DF)

𝑯(𝑧−1; 𝜽DF) is the noise model part of the direct filter model(𝜽DF).
𝜣DF ⊂ R𝑑 is the set of feasible parameter vectors of the direct filter solution.

Here R𝑑 is a compact notation for R𝑛𝒙×(𝑛𝒙+𝑛𝒚+𝑛𝒖).
𝜽DF ∈ 𝜣DF is the (generic) parameter vector of the direct filter solution.
𝐽𝑁ID(𝜽DF) is the objective function of the direct filter optimization problem.
̂ is the identified direct filter(�̂�DF).
�̂�DF is the identified parameter vector of the direct filter.
𝑨[0] ∈ R𝑛𝒙×𝑛𝒙 is a notation for 𝑰
𝑨[1] ∈ R𝑛𝒙×𝑛𝒙 is a notation for (𝑰 − 𝑲∞𝑪)𝑨

𝑩[0]
𝒚 ∈ R𝑛𝒙×𝑛𝒚 is a notation for 𝑲∞
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Notation Description

𝑩[0]
𝒖 ∈ R𝑛𝒙×𝑛𝒖 is a notation for 𝟎

𝑩[1]
𝒖 ∈ R𝑛𝒙×𝑛𝒖 is a notation for (𝑰 − 𝑲∞𝑪)𝑩

𝑨(𝑧−1) is a matrix polynomial formed by 𝑨[0] + 𝑨[1]𝑧−1

𝑩𝒚(𝑧
−1) is a matrix polynomial formed by 𝑩[0]

𝒚

𝑩𝒖(𝑧
−1) is a matrix polynomial formed by 𝑩[0]

𝒖 + 𝑩[1]
𝒖 𝑧−1

𝜽0 ∈ R𝑛𝒙×(𝑛𝒙+𝑛𝒚+𝑛𝒖) is a notation for the true parameter vector of the direct filter formed
by [𝑨

[1],𝑩[0]
𝒚 ,𝑩[1]

𝒖 ]
T

𝑮0(𝑧
−1; 𝜽0) is the signal model part of the true direct filter model.

𝑛𝜽0 ∈ N is the number of elements of the (free) true parameter vector of the
direct filter: 𝑛𝒙 ⋅ (𝑛𝒙 + 𝑛𝒚 + 𝑛𝒖).

𝝆𝑘 ∈ R𝑛𝒙 is the noise process 𝜹𝑘 + 𝒆𝑘.
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Introduction

Context of the thesis

The world is full of applications where there is a growing interest in collecting data
and events. In fact, when correctly exploited, data provide some sort of insight on
the process under analysis. Indeed, there is a widespread tendency to take advantage
of this new piece of information in order to derive practical solutions to specific
problems or, more abstractly, to enhance a preexisting knowledge base.

In signal processing theory data that evolve through time are called signals. In many
engineering applications signals can be observed and measured directly by sensors,
thus the related information is accessible. However, practical problems affect sensors
in a way that the provided raw information cannot be relied on. Some examples
include:

1. Sensors are by construction inaccurate. Their particular noisy nature makes
the required piece of information to be hidden by an undesired disturbance.

2. The desired information cannot be collected at all. This happens, for instance,
when sensors or the related data acquisition experiments are too expensive
for the application on hand. Another case is the particular difficult nature of
the experiments, e.g. the devices are exposed by critical environmental condi-
tions that could either damage their functionality or prevent their acquisition
capabilities. Common examples involve corrosion in chemical processes or
deterioration due to thermal conditions in extreme working scenarios.

3. Lastly, there are also times where interesting physical quantities cannot be
accessed directly, recalling the need to estimate them.

In all the mentioned cases, filtering refers to the technique or the algorithm that
resolves the difficulty by estimating the signal of interest. Instead, the filtering design
problem refers to the difficulty of finding the estimator that implements the filtering
process. In general, filtering has been extensively studied over the last ten decades
and, also due to its spread usage, plays a crucial role in control systems and signal
processing communities.
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Research and new contribution of the thesis

This thesis aims to expand the knowledge about data-driven solutions for the filtering
design problem. Given the long history of filtering in the last century, the thesis
first reviews its historical developments, with a focus on the stochastic setting. The
overview includes the derivation of the state-of-the-art filtering solution in a LTI
setting, e.g. the Kalman filter, and a brief overview of key concepts derived from
intuition about the filtering problem in general. Then, the document contains three
different contributions: a) the first one is a contribution of review and reformulation
of the literature. In particular it introduces the standard data-driven approach and
the new “direct” approach, in a common unifying framework, b) the second and third
contributions are more practical, dealing with the derivation of the routines and
related ingredients which implement the mentioned approaches, and c) the third and
larger contribution is experimental, comparing the results of the studied approaches
by means of Monte-Carlo simulations in a LTI univariate and multivariate case. The
aforesaid contributions are now reviewed in more details.

The first contribution deals with framing the classical solutions to the filtering design
problem derived through their history in a model-based paradigm. In more details,
most of the methodologies dealing with the filtering problem take for granted that a
perfect model of the system is available to the designer of the filter, which is used
as ingredient to build the filter from it. This is not the case in practice, allowing
the introduction to the data-driven two-step paradigm in the design of filtering
solutions. In this setting, first a model of the system is identified by informative
data, and, then, a filter is design based on the estimated model. In this context, a
common misconception is that available system identification techniques permit
the access to the full knowledge of the system, i.e. to the deterministic and the
stochastic components of the system by means of estimating a proper state-space
realization. Again, this is a misbelief in standard system identification procedures
where the selection of the stochastic properties of the model of the system, namely
the characteristics of the noise entering the state equation and the noise entering the
measurement equations, is left to the designer of the filter. As a consequence, when
the stochastic properties are not fine-tuned the performance of the filter worsen.
Moreover, theoretical insights derived in the model-based paradigm may fail to
be applied when the practical situation enforces different assumptions. To this
end, an interesting area of research is found in deriving a new “direct” data-driven
solution to the filtering design problem, where the sequential two-step approach
described above is summarized in one-step, i.e. the direct design of the filter from an
informative dataset. It is interesting to note that the direct term resembles in analogy
with the direct design of controllers in the Identification for Control research field.
Anyway, the introduction of the direct solution aims to bypass the identification
of the system, allowing the estimation of the filter directly from data. Within this
context, the questioning of pros and cons when developing the mentioned paradigms
further motivate and fuel the research. For instance, some interesting questions do
include:

• What is the impact w.r.t. filtering performance of the standard data-driven
filtering solution when multiple sequential estimation routines take place?
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• The problem of selecting a proper model structure and model complexity for
the filter is naturally derived from the model of the system in the standard
solution. What about the direct solution? Does the new solution bypass this
difficulty or is the problem shifted to choosing a proper model structure and
model complexity directly for the filter?

• When the real system is (is not) in the hypothesis set of the model family can
the data-driven direct approach driven by data offer a valid alternative w.r.t. a
filtering performance point of view?

The second contribution deals with the development of a practical implementation
of the data-driven solution to the filtering design problem based on the two-step
approach. In the unifying mathematical framework composed by a state-space rep-
resentation of a LTI system, the acquisition of a informative input-output dataset
for the design of the filter contains also measurements of the variable of interested
(the one to be filtered), which are available for a limited amount of time. In other
words, measurements of desirable variable are available for the design of the filter
but not for its use later on. Following this rationale, the available dataset is used
to first estimate a model of the system exploiting the new knowledge encoded in
the samples of the desired variable. In this context, the deterministic components
of the system, matrices 𝑨,𝑪, are estimated by means of instrumental variable least
squares routines derived specifically to this problem. Finally, also the noise com-
ponents of the system, noise covariance matrices 𝑸,𝑹, are estimates as well from
available data by means of a state-of-the-art auto least square solution based on the
autocorrelation function of pseudo-innovations. In the end, a filter is designed from
the estimated deterministic and stochastic components of the system following the
standard Kalman filter theory.

Alongside the previous contribution, also the third contribution investigates with
the practical implementation of the data-driven direct solution to the filtering design
problem. In particular, the solution is based on the one-step approach, hence a
direct solution. In this settings the available informative dataset is exploited in the
design of filter directly, skipping the modeling of the system. In the aforementioned
unifying LTI framework, when considering the steady-state case of the filter, the
problem of choosing directly: i) a proper filter structure, and ii) a proper filter
complexity, is tackled by the author proposing as a reference the same properties of
the well-known best linear unbiased estimator, the Kalman filter. Additionally, it
is observed how the new method does not require the sequential routines needed
for the estimation or tuning of the required ingredients for the identification of the
system components.

To end the thesis, a large part of research time and efforts has been dedicated to
the experimental comparison of the mentioned filtering solutions. In particular,
the LTI and steady-state case is considered when deriving the filters in order to
have an unifying framework where different design paradigms can be compared
in a fair manner. The first example under analysis includes an univariate system
with no exogenous input. Later on, a second example compares the solutions with
different layers of added complexity, namely: i) a multivariate system, e.g. the
desired variable to be filtered is multivariate, and ii) to derive a design of a direct
filter when an exogenous input is considered. Empirical results and insights are
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highlighted, giving attentions to the advantages or flaws of each solution. For
instance, discussions deal with: a) missing constraints in the optimization routines
of different filtering solutions to enforce their assumptions, b) numerical problems
related to the scaling of dimensionality, and c) the role of estimation variance and its
impact when performing multiple sequential estimation. In the end, results indicate
that a direct solution is viable and, in some cases, its filtering performance can be
superior to the standard solution.

Structure of the thesis

The remainder of the thesis is organized in two parts:

• Part I introduces the state of the art found in literature about the filtering
design problem.

• Part II focuses to the research and new contributions developed during the
doctoral study to the filtering design problem.

In particular, the two parts are organized in dedicated sections as follows:

• Chapter 1 reviews the developments of the filtering design problem highlight-
ing the theoretical and technological advancements through its history.

• Chapter 2 tries to build some intuition to the filtering design problem in a
framed academic pattern. The aim is to summarize the core concepts that were
used through the historical developments reviewed in the previous chapter in
order to have a deeper understanding of the problem in hand. The focus in
primary on stochastic filtering and the Bayesian intuition.

• Chapter 3 is dedicated to a a complete derivation of the multivariate Kalman
Filter in discrete-time. The filter serves as a baseline to the researched data-
driven solutions.

• Chapter 4 introduces the first contribution of the thesis by giving context to the
different existing paradigms that can be used to derive solutions to the filtering
design problem. Model-based and data-driven paradigms are compared and
their differences are highlighted. In the end, the new data-driven “direct”
solution is introduced.

• Chapter 5 explains the second contribution of the thesis, that is the standard
solution to the filtering design from data problem. This solution is divided the
system identification step and the filter design step. Then, practical problems
and misconceptions are reviewed and solved by exploiting researched methods.

• Chapter 6 explains the third contribution of the thesis, that is the direct solution
to the filtering design from data problem. In this setting, the focus of the design
is to bypass the common problems of the standard solution.

• Chapter 7 compares the derived data-driven solution in the last two chapters
by means of simulated data in the context of different classes of LTI systems.
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PART I

State of the art on the filtering
design problem
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CHAPTER 1

An historical review of the
filtering problem

The following chapter is dedicated to the overview of the historical developments
of the filtering problem in the last century. In particular, the presentation of the
chapter is divided in:

• Section 1.1 introduces the filtering term and its modern meaning;

• Section 1.2 reviews the first derivation of filters with frequency-selective
properties;

• Section 1.3 gives an overview of the stochastic theory applied to the filtering
theory. Their merging culminates in the well-known Kalman theory.

• Section 1.4 is focused on the Bayesian interpretation of the filtering theory,
born with the research field dedicated to derive approximant solutions in
non-linear and non-Gaussian settings.

1.1 Meaning of the filtering term

Filtering in one form or another has been alongside human history for a very long
time. In [1] a natural example is given: “for many centuries many attempts have
been performed to remove the more visible of the impurities from the water, i.e.
water purification, through a filtering process”. For context, nowadays the Merriam-
Webster online dictionary1 gives a first meaning for the noun filter as:

“a porous article or mass (as of paper or sand) through which a gas
or liquid is passed to separate out matter in suspension”.

In the context of engineering and modern sciences, usage of the word filter is
extended to abstract entities named signals that represent physical quantities, for
instance an electrical voltage. Nevertheless, there is still the notion of something
passing a barrier, in the form perhaps of an electric circuit. In this sense, filtering
can thus be understood by means of signal processing.

1Merriam-Webster is one of the oldest and most trusted English dictionary and thesaurus.

https://www.merriam-webster.com/
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It is easy to think of engineering situations in which filtering of signals might be
desired. For instance, in many control systems the control is derived by feedback,
which involves processing measurements derived from the system. Frequently,
these measurements contain random inaccuracies or are contaminated by unwanted
signals. Following this rationale, filtering is thus necessary in order to make the
control close to that desired.

1.2 Frequency selective filters

Early 1900s As described in the historical review of [1] and here adapted, the first
filters were originally seen as circuits with frequency-selective behavior. Later, this
kind of filtering became known as Classical Filtering. A fundamental example of
these circuits is the series or parallel tuned circuit in electrical engineering, exploited
in practice for the first time in 1900 by the Italian radio pioneer Guglielmo Marconi
[51]. As another example, the “wave trap” was a crucial ingredient in early crystal
sets. More sophisticated versions of this same idea are seen in the IF (intermediate
frequency) strip of most radio receivers; here, tuned circuits, coupled by active
elements such as transformers and amplifiers, are used to shape a pass-band of
frequencies which are amplified, and a stop-band where attenuation occurs.

1920s-1940s More sophisticated collections of tuned circuits are necessary for
many applications, and as an understandable result, caused the maturing of an
extensive body of filter design theory. Some of its landmarks are constant 𝑘 and
𝑚-derived filters invented in the early 1920s respectively by American engineers
Campbell and Zobel [56, 178], and, later in the 1930s, Butterworth filters [55] by
the British physicist Stephen Butterworth, Chebyshev filters, and elliptical filters
by the German mathematician William Cauer and the American engineer Sidney
Darlington [5, 64]. In the following years, there has been an extensive development
of numerical algorithms for filter design. In this context, filters are designed to meet
given specifications on amplitude and phase response. There are also constraints
imposed on the filter structure. For instance, they include impedance levels, types of
components, number of components, etc.

Nonlinear filtering ideas have also started to be applied to different applications for
many years. These include, for example, a) the AM envelope detector, which is a
combination of a diode and a low-pass filter, b) the automatic gain control (AGC)
circuit using a low-pass filter and a nonlinear element, and c) the phase-locked-loop
used for FM reception.

During these years, the notion of a filter as a device processing continuous-time
signals and possessing frequency-selective behavior has been stretched by two major
developments [1].

Among these developments, the first one is digital filtering [12, 22], made possible
by new innovations in integrated circuit technology. Digital circuit components
such as analog-to-digital and digital-to-analog converters, shift registers, read-only
memories, and microprocessors began to appear alongside circuit modules used in
classical filters. Even though the goals of digital and classical filtering are the same,
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how to achive these goals gives space to different solutions. In digital filtering, the
minimization of the active element count, the size of inductors, the dissipation of
the reactive elements, or the termination impedance mismatch is no longer sought.
Instead, new objectives such as the word length, the round-off error, the number of
wiring operations in construction, and the processing delay need to be minimized.
Aside from the possible cost benefits, important advantages are observed by the fact
that filter parameters can now be set and maintained to a high order of precision,
thereby achieving filter characteristics that could not normally be obtained reliably
with classical filtering, and that parameters can be easily reset or made adaptive
with little extra cost. Again, some digital filters, incorporating microprocessors, can
be time-shared to perform many simultaneous tasks effectively.

The second major development to the filtering problem consists in advancement in
the theory. These innovations are extensively explored in Section 1.3.

1.3 Stochastic filtering theory

1940s-1960s A major development to the filtering problem came with the applica-
tion of statistical ideas largely spurred by developments in theory. As described in
the historical review of [1]:

“The classical approaches to filtering postulate, at least implicitly,
that the useful signals lie in one frequency band and unwanted signals,
normally termed noise, lie in another, though on occasions there can
be overlap. The statistical approaches to filtering, on the other hand,
postulate that certain statistical properties are possessed by the useful
signal and unwanted noise. Measurements are available of the sum of
the signal and noise, and the task is still to eliminate by some means as
much of the noise as possible through processing of the measurements
by a filter.”

Stochastic filtering theory finds its roots in the early 1940s due to the pioneering
work done by the American mathematician Norbert Wiener [217, 33], and the Rus-
sian mathematician Andrey Nikolayevich Kolmogorov [103, 212] about stochastic
processes whose statistical properties do not change with time, i.e. stationary pro-
cesses. For these processes it proved possible to relate the statistical properties of the
useful signal and unwanted noise with their frequency domain properties. There is,
thus, a conceptual link with classical filtering of Section 1.2. A significant aspect of
the statistical approach is the definition of a measure of suitability or performance
of a filter. Roughly the best filter is that which, on the average, has its output closest
to the correct or useful signal. By constraining the filter to be linear and formulating
the performance measure in terms of the filter impulse response and the given
statistical properties of the signal and noise, it generally transpires that a unique
impulse response corresponds to the best value of the measure of performance or
suitability.

The statistical development of the theory later proved significant for the great activity
of the next decades in signal estimation [94, 200]. It was also one of the greatest
factor in bridging the gap between different fields such as communication theory
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and control theory due to the innovative statistical point of view, as acknowledged
by Shannon’s own dedication at the end of his magnificent papers [154, 155] in 1948
founding Information Theory:

“Credit must also be given to Professor Norbert Wiener, whose ele-
gant solution of the problems of prediction and filtering has considerably
influenced writer’s thinking in this field.”

As reviewed also in [59], during the late 1940s and early 1950s, many credits should
be also attributed to earlier works that lead the development of the stochastic filtering
theory. These include, for instance, the publications of Bode and Shannon [52], Zadeh
and Ragazzini [172, 173], Levinson [111], Swerling [32], and many others.

1960s As already noted, the stationary assumption for the underlying signal and
noise processes is crucial to the Kolmogorov-Wiener theory. It was not until the late
1950s and early 1960s that a new theory arose that did not require the stationarity
assumption. The theory emerged because of the inadequacy of the Kolmogorov-
Wiener theory for coping with certain applications in which non stationarity of the
signal and/or noise was intrinsic to the problem. The new theory soon acquired the
name Kalman theory due to the publication of the Kalman filter (KF) [98] in 1960 and
the subsequent Kalman-Bucy filter in 1961 [99], which describe the optimal recursive
solution to the linear filtering problem. Under the LQG (Linear-Gaussian-Quadratic)
assumption, Kalman filter was originally derived with the orthogonal projection
method. It is worth noting that one reason for its success is that the Kalman filter
can be understood and applied with very much lighter mathematical machinery
than the Wiener filter.

It is also valuable to mention that the stationary theory was normally developed and
thought of in frequency-domain terms, while the nonstationary theory was naturally
developed and thought of in time-domain terms. Thus, the contact point between
the two theories initially seemed slight. However, there is substantial contact, if for
no other reason than that a stationary process is a particular type of nonstationary
process. Indeed, despite the mathematical simplicity and generality, the Kalman
filter [99] actually contains the Wiener filter as its limiting special case. In other
words, in a stationary situation, the Kalman filter is precisely the Wiener filter for
stationary least-squares smoothing [59], that is a time-variant Wiener filter [41]. At
the present time, rapprochement of the two filtering theories is now easily achieved
[189, 1, 94] through a connection between the computational tools used for each
approach. In brief, the fundamental computational tool used in the Wiener theory is
the study of the spectral factorization [151], while for the Kalman theory, it is the
study of the Riccati equation [190, 191].

As noted above, the Kalman filtering theory was developed at a time when appli-
cations called for it, and the same comment is really true of the Wiener filtering
theory. It is also pertinent to note that the problems of implementing Kalman filters
and the problems of implementing Wiener filters were both consistent with the
technology of their time [1]. Wiener filters were implementable with amplifiers and
time-invariant network elements such as resistors and capacitors, while Kalman
filters could be implemented with digital integrated circuit modules. The point
of contact between the two recent streams of development, digital filtering and
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statistical filtering, comes when one is faced with the problem of implementing a
discrete-time Kalman filter using digital hardware.

Without any exaggeration, it seems fair to say that the Kalman filter (and its nu-
merous variants) have dominated the adaptive filter theory for decades in signal
processing and control areas. Bearing in mind that the Kalman filter is limited by
its assumptions, numerous non-linear filtering methods along its line have been
proposed and developed to overcome its limitation. This fact led ultimately to fruitful
research areas, still active today, of Bayesian derivation or Bayesian interpretation
of filtering, explored in Section 1.4, due to natural way of deriving non-linear and
non-Gaussian filters with optimal performance requirements.

1970s-1980s In the early 1970s, the study of filtering theory and in particular of
the Kalman filter continued. A great contribution was due to Kailath [96], who used
the innovation approach developed by Wold and Kolmogorov to reformulate the
Kalman filter with the tool of martingales theory. This resulted in the rewriting the
Kalman Filter into the well-known innovation representation. In this context, from
an innovations point of view, the Kalman filter can be seen as a whitening filter
or, in other words, the innovations process is defined as a white Gaussian noise
process [96, 16]. Also, the innovations concept can be used straightforwardly in
deriving non-linear filtering solutions, see for instance [37]. In particular, again from
a innovations point of view, one of the criteria to justify the optimality of the solution
to a nonlinear filtering problem is to check how white the pseudo-innovations are,
with the property that the more white the more optimal.

At the same time, in the early 1970s, another interesting area of research was born
due to the practical problems of applying the Kalman filtering theory, namely the
assumptions of knowing the noise covariance matrices. Practical solutions to the
estimation of the unknown parameters in conjunction with the design of a Kalman
filter fall under the term of Adaptive Filtering due to the early works by Raman
Mehra [123, 207] and Pierre Bélanger [47]. Adaptive filtering can also be seen as a
way to adapt for process dynamics which are not modeled in the process model by
means of time-varying parameters, allowing a flexible solution.

1.4 Bayesian filtering

“The probability of any event is the ratio between the value at which
an expectation depending on the happening of the event ought to be
computed, and the value of the thing expected upon its happening.”

— Thomas Bayes (1702-1761), [45]

1.4.1 Bayesian Theory

The historical survey about Bayesian theory is an adaptation from [59]. Bayesian
theory was originally established by the British researcher Thomas Bayes in the
posthumous publication “Essay towards solving a problem in the doctrine of chances”
in 1763 [45]. The well-known Bayes theorem describes the fundamental probability
law governing the process of logical inference. However, Bayesian theory has not
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gained its deserved attention in the early days until its modern formwas rediscovered
by the French mathematician Pierre-Simon de Laplace in “Théorie analytique des
probailités”, see the historical review [7].

Bayesian inference devoted to applying Bayesian statistics to statistical inference, has
become one of the important branches in statistics, and has been applied successfully
in statistical decision, detection and estimation, pattern recognition, and machine
learning. In many scenarios, the solutions gained through Bayesian inference are
viewed as optimal. Not surprisingly, Bayesian theory was also studied in the filtering
literature.

1960s One of the first exploration of iterative Bayesian estimation is found in the
1960s, in the early stages of the history of the Kalman filter [98], by Ho and Lee’
paper [91], where the principle and procedure of Bayesian filtering were specified.
The Kalman filter was soon discovered to belong to the class of Bayesian filters
[91, 92, 14, 19]. The corresponding Bayesian smoothers were soon developed, see
[110, 145, 146]. An interesting historical detail [25] is that while Kalman and Bucy
were formulating the linear theory in the United States, the Russian mathematician
Ruslan Stratonovich was doing the pioneering work on the probabilistic (Bayesian)
approach in Russia [14, 213]. The iterative application of Bayes rule to sequential
parameter estimation was discussed in [161], where it was termed as “Bayesian
learning”. Bayesian approach to optimization of adaptive systems is discussed in [60,
115]. Bucy and Senne [54] also explored the point-mass approximation method in
the Bayesian filtering framework.

1.4.2 Monte-Carlo methods

1990s In recent decades, Monte Carlo techniques have been rediscovered indepen-
dently in statistics, physics, engineering, econometrics, biology, and many others,
see for instance [180]. Originally, the research was started in the 1940s and 1950s
during World World II, in Los Alamos Laboratory by John von Neumann, Stanislaw
Ulam, Niick Metropolis, and others [124]. As explained by the authors:

“The method is essentially, a statistical approach to the study of dif-
ferential equations, or more generally, of integro-differential equations
that occur in various branches of the natural sciences.”

Later, in the 1990s, many new Monte Carlo methodologies (e.g. Bayesian bootstrap,
hybrid Monte Carlo, quasi Monte Carlo) have since been rejuvenated and developed.
Again, this active research field was aided once again by technological advance-
ments, namely to the ever increasing raw computational power in the mid-1990s,
which led to the feasibility of the approach. Indeed, the Monte Carlo technique is a
kind of stochastic sampling approach aiming to tackle the complex systems which
are analytically intractable. The power of Monte Carlo methods is that they can
attack the difficult numerical integration problems. One of the attractive merits of
sequential Monte Carlo approaches lies in the fact that they allow online estimation
by combining the powerful Monte Carlo sampling methods with Bayesian inference,
at an expense of reasonable computational cost. In particular, the sequential Monte
Carlo approach has been used in parameter estimation and state estimation, for
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the latter of which it is sometimes called Particle Filter, a term coined in 1996 by
Del Moral [68]. In particular, the basic idea of particle filter is to use a number of
independent random variables called particles, sampled directly from the state space,
to represent the posterior probability, and update the posterior by involving the
new observations; the “particle system” is properly located, weighted, and propa-
gated recursively according to the Bayesian rule. Thus, there is an intuitive genetic
mutation-selection type mechanism that is generally found in Feynman-Kac models
and their interacting particle interpretation models that can be used, for instance, in
nonlinear filtering [8]. In other words, as stated by Del Moral:

“These stochastic models are increasingly used to sample from com-
plex high-dimensional distributions. They approximate a given target
probability distributions by a large cloud of random samples termed
particles. Practically, the particles evolve randomly around the space
independently and to each particle is associated a positive potential
function. Periodically we duplicate particles with high potentials at the
expense of particles with low potentials which die.”

For these reasons, and because various sampling variations has been developed in
the literature, other terms found in the literature do include, for instance, “bootstrap
filter”, “genetic filter”, and many others. In retrospect, the earliest idea of Monte
Carlo method used in statistical inference can be found in earlier works, but the
formal establishment describing the heuristic of particle filters is found in the journal
article given by Gordon, Salmond and Smith in 1993 [84], who introduced certain
novel resampling technique to the formulation. Instead, the first conference article
presenting the heuristic of particle filters is from Kitagawa in 1996 [102] (a revisited
version of a previous seminar work from 1993). The mathematical foundations, and
the performance analysis of the discrete generation particle models are rather recent.
The first rigorous study in this field seems to be the article published in 1996 on
the applications of particle methods to non-linear estimation problems from De
Moral [68], and later works, see for instance its personal review2. Instead, recent
textbook about Bayesian non-linear filtering such as SMC (Sequential Monte Carlo)
and particle filters can be found in [8, 9, 11, 25], in the tutorial papers [69, 211], and
various review papers [59]. See also the references about SMC and particle filters
from the resources list of Arnaud Doucet3.

In conclusion, the historical development of filtering solutions in a stochastic frame-
work and, later on, in a Bayesian framework is summarized by the chronological
table in Table 1.1 (see in [59]) where different classes of methods, types of solutions
and some comments on their properties are specified.

2The review of the literature work of De Moral can be found in a dedicated page of the author
at the following link: “https://people.bordeaux.inria.fr/pierre.delmoral/
simulinks.html”.

3The resource list of Arnaud Doucet is available at the following link: “https://www.stats.
ox.ac.uk/~doucet/smc_resources.html”.

https://people.bordeaux.inria.fr/pierre.delmoral/simulinks.html
https://people.bordeaux.inria.fr/pierre.delmoral/simulinks.html
https://www.stats.ox.ac.uk/~doucet/smc_resources.html
https://www.stats.ox.ac.uk/~doucet/smc_resources.html
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CHAPTER 2

Building intuition about filtering

“I learned very early the difference between knowing the name of
something and knowing something.”

— Richard Feymann (1918-1988)

The following chapters tries to aim with the important aspect of developing a sim-
ple and natural intuition about what filtering really is and how to naturally and
historically the filtering design problem was solved. The ideal and desirable result
about the process of forming some intuition would be to ultimately have a deeper
understanding of the few core concepts around filtering. Later on, these highlighted
concepts are shown to be translatable to the design of more complex filters when
using formal mathematical and statistical languages. It is also worth noting that
the goal of forming a filtering intuition goes further than this, wishing that this im-
printing could be also exploited in the derivation of alternate and/or new paradigms
to the filtering design problem. For the understanding of subsequent chapters, this
chapter may be omitted for experts in the field as the intuition discussion is detached
from the expertise.

Returning to the content of the chapter, the main topic are stochastic filters which
can be framed in a Bayesian perspective. Using simple terms, Bayesian refers to the
management of probability knowledge where Bayesian probability determines what
is likely to be true based on past information.

It is respectful to mention that the work herein takes inspiration from [18], where
the original content is modified and adapted in order to make it more suitable for
the current presentation. Nonetheless, the herein discussion is only the starting part
of the full content. Therefore, please refer to [18] for a full reference.

In particular, the discussion of the chapter is divided in:

1. Section 2.1 starts the chapter by introducing some general concepts through a
simple example about scales.

2. Section 2.2 presents a simple Bayesian filter known as the g-h filter. In the end,
this filter is shown to be special case of the classical Kalman filter.
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2.1 A simple example about noisy scales

Imagine a world without scales - the devices people stand on to weigh themselves.
Then, scales are invented and the first time it is tried, for instance on yourself, the
result is announced to be 80 kg. A second measurement, though, may give the result
82 kg. The problem here is that sensors are inaccurate. This is the motivation behind
a huge body of work in filtering which provided solutions that have been developed
over the last century, as seen in Chapter 1. These solutions were developed by asking
very basic, fundamental questions into the nature of what it is know and how it is
known.

The following example is an attempt to follow that journey of discovery, forming an
intuition about filtering.

Another scale In the example above, it is possible to use another scale. Unfortu-
nately, the new scale is inaccurate too: the first scale (A) reads 80kg, the second scale
(B) reads 90kg. What can be concluded about the weight? There are some possible
choices:

• Believe only scale (A), and assign 80kg to the weight estimate.

• Believe only scale (B), and assign 90kg to the weight estimate.

• Assign a new weight estimate less then both scales (A) and (B).

• Assign a new weight estimate greater then both scales (A) and (B).

• Assign a new weight estimate between scales (A) and (B).

The first two choices are plausible, but there is no reason to favor one scale over
the other. In other words, there is no reason to choose to believe (A) instead of
(B). The third and fourth choices are irrational. The scales are admittedly not very
accurate, but there is no reason at all to choose a number outside of the range of
what they both measured. The final choice is the only reasonable one. If both scales
are inaccurate, and as likely to give a result above the actual weight as below it,
more often than not the answer is somewhere between (A) and (B).

In the case of multiple many readings, some of the times both scales will read too
low, sometimes both will read too high, and the rest of the time they will straddle
the actual weight. By choosing a number between (A) and (B) the effect of the worst
measurement is mitigated. For example, suppose the actual weight is 95kg. 80kg is a
big error. Instead, by choosing a weight between 80kg and 90kg the estimate will be
better than 80kg. The same argument holds if both scales returned a value greater
than the actual weight.

For now, it is clear that the best estimate is the average of (A) and (B):

𝐴 + 𝐵

2
=

80 + 90

2
= 75kg

The measurements of (A) and (B) with an assumed error of 8kg are plotted on
Fig. 2.1a. The measurements falls between 80kg and 90kg so the only weight that
makes sense must lie within 80 and 90kg.
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(a) Same error
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(b) Different error
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(c) Different error, limit

Figure 2.1: Measurements of scales (A) and (B) and relatives errors

So 75kg looks like a reasonable estimate, but there is more information to take
advantage of. The only weights that are possible lie in the intersection between
the error bars of (A) and (B). For example, a weight of 81kg is impossible because
scale (B) could not give a reading of 90kg with a maximum error of 8kg. Likewise a
weight of 89kg is impossible because scale (A) could not give a reading of 80kg with
a maximum error of 8kg. In this example the only possible weights lie in the range
of 82kg and 88kg.

First Example In a search of a better weight estimate, consider now the case that
(A) is three times more accurate than (B).

By inspecting again the five possibilities of choosing an estimate, it still makes no
sense to choose a number outside the range of (A) and (B). It perhaps seems more
compelling to choose (A) as estimate — after all, it is known to be more accurate,
why not use it instead of (B)? Can (B) possibly improve knowledge over (A) alone?
The answer, perhaps counter intuitively, is yes, it can.

Second Example First, consider a second example in Fig. 2.1b with the same
measurements of 𝐴 = 80kg and 𝐵 = 90kg, instead the error of (A) is 3kg and the
error of (B) is 3 times as much, 9kg. Again, the overlap of the error bars of (A) and
(B) is the only possible true weight. Notice that this overlap is smaller than the error
in (A) alone. More importantly, in this case it is observable that the overlap does
not include 80kg or 95kg. If only the measurement from (A) was used because it is
more accurate than (B), then the estimate would be 80kg. Instead, if the estimate is
the average between (A) and (B), then the result would be 85kg. Neither of those
weights are possible given the knowledge of the accuracy of the scales. By including
the measurement of B the estimate is somewhere between 81kg and 83kg, the limits
of the intersections of the two error bars.

Third Example As a limit example, consider a third case in Fig. 2.1c, where it is
assumed scale (A) is accurate to 1kg, and scale (B) is accurate to 9kg. Readings from
both scales are taken, again 𝐴 = 80kg, and 𝐵 = 90kg. What should be the estimate
of the weight?

It is shown that the only possible weight is 81kg. This example highlights an
important result: two relatively inaccurate sensors are able to deduce an

extremely accurate result. In other words, the take-home message is to never
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throw information away, no matter how poor it is. The filters in literature were
studied and developed in this way, allowing the inclusion of all possible sources of
information to form the best possible estimate.

Returning to the examples, what if there is only one scale and multiple readings
are taken? In this case it can be shown, in a simulation where sampling of random
measurements is possible, that taking the average of a large number of weights will
be very close to the actual weight.

The simulation makes one assumption that probably is not true — that the scale is as
likely to read 80kg as 85kg for a true weight of 85kg, which in reality almost never
true. Real sensors are more likely to get readings nearer the true value, and are less
and less likely to get readings the further away from the true value it gets. In other
words they can be modeled as being Gaussian distributed.

Consider now the case of measuring the body weight of a person once a day. For
instance, the readings are 85kg, 81kg, and then 84kg. Did the person gain weight,
lose weight, or is this all just noisy measurements?

There are many available explanations. The first measurement was 85kg, and the
last was 84kg, implying a 1kg loss. But if the scale is only accurate to 10kg, that
is explainable by noise. The person could have actually gained weight; maybe the
weight on day one was 82kg, and on day three it was 86kg. It is possible to get those
weight readings with that weight gain. The scale may suggest losing weight, but
in reality one may actually gain weight. In Fig. 2.2, the measurements are plotted
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Figure 2.2: An example of readings of body weight in blue and related plausible
hypotheses in red. Instead, the weight estimate is depicted in black. The variable
notation is a common one when dealing with filters.

along with the error bars, and then some possible weight gain/losses that could be
explained by those measurements in dotted red lines. As shown there is an extreme
range of weight changes that could be explained by these three measurements. In
fact, there are an infinite number of choices. To ease the problem, recall that the
case in hand is about measuring a human’s weight. There is no reasonable way for
a human to weight 90kg on day 1 and 80kg on day 3. It is also impossible to lose
15kg in one day only to gain it back the next (assuming no amputations or other
trauma has happened to the person). In other words, the behavior of the physical
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system under analysis should influence how the measurements are interpreted. In
the case of a rock, all the variance would have been attributed to noise. Instead, in
the case of weighing a cistern fed by rain and used for household chores, there might
be a believe such weight changes are real. Suppose now to take a different scale
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(a) Constant trend hypothesis
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(b) Upward trend hypothesis

Figure 2.3: Example of daily measurements of the weight of a person.

and get a measurement each day as in Fig. 2.3. The idea is to compare two different
hypotheses. The first assumption is that the weight did not change. Figure 2.3a tests
that assumption by agreeing on averaging the measurements: the result does not
look very convincing. In fact, there is no horizontal line that could be drawn that is
inside all of the error bars. The second assumption is of gaining weight. Figure 2.3b
tests that assumption by doing a least square fit: the result looks better. Notice now
the hypothesis lies very close to each measurement, whereas in the previous plot the
hypothesis was often quite far from the measurement. It seems far more likely to be
true that the person gained weight than he did not gain any weight. In particular,
suppose to gain weight about 1kg a day as a result of a high calorie diet, for instance.
The idea is to make use of such information, if it was available.

Following the rationale, the first measurement is around 71.8kg as seen in Fig. 2.4.
Because there is no other information, the information is accepted as an estimate.
Now, if the weight of today is around 71.8kg, what will it be tomorrow? By making
use of the gaining weight diet assumption, 1kg a day, the prediction turns out to
be around 72.8kg. The predictions could go on for the following days but there is
also the information given by the scales, e.g. the measurements of the next days.
Indeed the next day, the scale displays 74.6kg. Notice now that the prediction does
not match the measurement as expected. If the prediction was always exactly the
same as the measurement, it would not be capable of adding any information to the
filter, and there would be no reason to ever measure. If estimates are only formed
from the measurement then the prediction will not affect the result. If estimates are
only formed from the prediction then the measurement will be ignored. In order to
exploit both information there is the need to blend the prediction and measurement
together. Using the same reasoning as before in the scale example, the only thing
that makes sense is to choose a number between the prediction and the measurement.
For example, an estimate of 75kg makes no sense, nor does 71kg. The estimates
should lie between 72.8kg, i.e. the prediction, and 74.6kg, i.e. the measurement. The
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Figure 2.4: An example of readings of body weight in blue and related plausible
hypotheses in red.

important concept is agreeing that when presented two values with errors, the

estimate should be formed part way between the two values. Moreover, it
does not matter how those values were generated. In the start of the examples there
were two measurements, but now there is one measurement and one prediction. In
order words, by replacing an inaccurate scale with an inaccurate weight prediction
based on human physiology makes no difference: the reasoning of having two pieces
of data with a certain amount of noise and how to combine them is the same, and
hence the math is the same in both cases.

Should the estimate be half way between the measurement and prediction? In
general, it seems like there might be known that the prediction is more or less
accurate compared to the measurements. Probably the accuracy of the prediction
differs from the accuracy of the scale. Recalling the scales example, when scale (A)
was much more accurate than scale (B), the solution was to scale the answer to be
closer to (A) than (B) as seen in Fig. 2.4. Without making any assumption, let the
scale factor be random, for instance:

scale factor = 4

10

Then, the estimate will be four tenths the measurement and the rest will be from the
prediction. In other words, a belief is expressed here, a belief that the prediction is
somewhat more likely to be correct than the measurement. The computation is as
follows:

estimate = prediction +
4

10
(measurement − prediction)

The difference between the measurement and prediction is called the residual, which
is depicted by the black vertical line in Fig. 2.4. Smaller residuals imply better
performance.

By coding it, as shown in Algorithm 2.1, the results are depicted in Fig. 2.5a when
tested against the series of weights from above. Note that weight gain has unit of
kg/day, so in this case it is added a time step, which is set to 1 day. The simulated
weight data correspond to a true starting weight of 72.7kg, and a weight gain of 1kg
per day. In other words on the first day (day zero) the true weight is 72.7kg, on the
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(a) A first example when the
weight gain is assumed cor-
rectly as the conclusion.
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(b) A second example when
the weight gain is assumed
wrongly.
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(c) A third example when
also the rate gain is self-
adjusted.

Figure 2.5: Some examples of filter implementations about weighting a person.
Respectively in blue, red, and black, the estimates of the filter starting at day 0 with
the initial guess of 72.7kg, the predictions made from the previous day’s weight, and
in black the actual weight gain of the person being weighted.

second day (day one, the first day of weighing) the true weight is 73.7kg, and so
on. There is also the need to guess for the initial weight. For now it is assumed to
be 72.7kg. Notice in Fig. 2.5a that the estimates on each day is part way between
the related prediction and measurement. The estimates are not a straight line, but

Algorithm 2.1: A first simple example about implementing a filter
Data:

measurement = [71.8, 74.6, 72.9, 72.7, 73.7, 74.8, 77.1, 76.1, 75.6, 77.7, 77.8,
78.5]
Initialization:

1 timeStep = 1
2 scaleFactor = 4/10
3 initialEstimate = 72.7

forall measurement do
Predict step:

1 prediction = estimate + gainRate * timeStep
Correct step:

2 estimate = prediction + scaleFactor * (measurement - prediction)

they are straighter than the measurements and somewhat close to the created trend
line. Also, it seems to get better over time. In this case, the results of the filter may
seem silly: the data look good if it is assumed the conclusion, i.e. that the weight
gain is around 1 kg/day. Consider now the case when the initial guess is bad, that is
when the gain weight is assumed to be -1 kg/day, i.e. a weight loss. The resulting
plot in Fig. 2.5b shows that the estimates quickly divert from the measurements.
The problem is that a filter that requires to correctly guess a rate of change is not
very useful. Even if the initial guess is correct, the filter fails as soon as that rate of
change changes. Thus, instead of leaving the weight gain at the initial guess of 1 kg
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it can be computed from the existing measurements and estimates as follows:

newGain = oldGain + rateScale
(

measurement − prediction
timeStep )

Again, the expression is the the same as before, the one used to combine two values
together. The scale factor in this case is chosen randomly again, for the sake of the
example let it be 1

3
. Note that in the above example, working with a rate (kg/day),

the expression needs to be adjusted to incorporate the time information through the
chosen time step. The result in Fig. 2.5c looks good. Even if the initial guess of the
weight gain is poor, i.e. a weight loss of 1kg/day, it takes the filter several days to
accurately predict the weight, but once it does that it starts to accurately track the
weight. There was no methodology for choosing the scaling factors of the weight
measurement and the gain rate (actually, they are poor choices for this problem),
but otherwise the expression are derived from very reasonable assumptions.

Algorithm 2.2: A second example about implementing a filter with self-
adjusting gain rate
Data:

measurement=[71.8, 74.6, 72.9, 72.7, 73.7, 74.8, 77.1, 76.1, 75.6, 77.7, 77.8, 78.5]
Initialization:

1 timeStep = 1
2 weightScale = 4/10
3 rateScale = 1/3
4 initialWeight = 72.7

forall measurement do
Predict step:

1 weight = weight + gainRate * timeStep
2 gainRate = gainRate

Correct step:

3 residual = measurement - weight
4 gainRate = gainRate + gainScale * residual/timeStep
5 weight = weight + weightScale * residual

2.2 The complementary filter

The algorithm derived in the Section 2.1 is known as the Complementary Filter, or
𝑔-ℎ Filter, or 𝛼-𝛽 Filter. In particular 𝑔 and ℎ refer to the two scaling factors used
in the example, respectively, the scaling used for the measurement (weight in the
example), and the scaling used for the change in measurement over time (kg/day in
the example).

This filter is the basis for a huge number of filters, including the Kalman filter. In
other words, the Kalman filter can be seen as a form of the 𝑔-ℎ filter and viceversa in
special cases. So are other filters, like the Least Squares filter or the Benedict-Bordner
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filter for instance. Each filter has a different way of assigning values to 𝑔 and ℎ,
but otherwise the algorithms are identical. For example, the Benedict-Bordner filter
assigns a constant to both 𝑔 and ℎ, constrained to a certain range of values. Instead,
the Kalman filter will vary 𝑔 and ℎ dynamically at each time step.

To summarize, even if the math may look profoundly different, the algorithm will be
exactly the same. Some key insights from the previous examples are here summa-
rized:

• Multiple data points, even if inaccurate, are more accurate than one data point
— do not throw away information.

• Always choose a number part way between two data points to create a more
accurate estimate.

• Predict the next measurement and rate of change based on the current estimate
and how much it is thought it will change.

• The new estimate is then chosen as part way between the prediction and next
measurement scaled by how accurate each is.

In order to have a better understand of the algorithm different problem domains are
hereafter explored:

1. Consider the problem of trying to track a train on a track. The track constrains
the position of the train to a very specific region. Furthermore, trains are
large and slow. It takes many minutes for them to slow down or speed up
significantly. Following this rationale, it makes sense to suppose that by
knowing the state of the system at a given time instant, e.g. for instance the
position and velocity of the train, it is possible to be confident in predicting
the future state of the system, for instance at the next second. This assumption
is important when related to the scaling versus the measurement. Again, if the
measurement suggests a rapidly change of position and velocity, it makes sense
to suppose that measurement is inaccurate. In other words, when designing a
filter for this problem, the idea is to have very high weighting to the prediction
versus the measurement.

2. Now consider the problem of tracking a thrown ball. It is known that a ballistic
object moves in a parabola in a vacuum when in a gravitational field. But
a ball thrown on Earth is influenced by air drag, so it does not travel in a
perfect parabola. Baseball pitchers, for instance, take advantage of this fact
when they throw curve balls. Consider the case when the tracking of the ball
inside a stadium is performed using computer vision. The accuracy of the
computer vision tracking might be modest, but predicting the ball’s future
positions by assuming that it is moving on a parabola is not accurate either.
In this case, probably the design a filter should give roughly equal weight to
the measurement and the prediction.

3. Now consider trying to track a helium party balloon in a hurricane. There is
no legitimate model that would allow to predict the balloon’s behavior except
over very brief time scales. In this case the design of the filter would emphasize
the measurements over the predictions.
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To summarize, it is possible to tune the parameters of the filter, as done in a quality
manner in the previous examples, to have better filter performance. Moreover, a
particular choice might perform well in one situation, but very poorly in another.
Even when understanding the effect of 𝑔 and ℎ it can be difficult to choose proper
values. In fact, it is extremely unlikely any chosen values will be optimal for any
given problem. Filters are designed, not selected ad hoc. The Kalman filter, as
explained later in Chapter 3 will do this in an optimal way by developing a very
powerful form of probabilistic reasoning about filtering — namely Bayesian Filtering.
This kind of class of filters, also the complementary filter as well as other filters, can
be summarized as in Algorithm 2.3. There is also the case when, for instance, the

Algorithm 2.3: How to implement a complementary filter
Initialization:

1 Initialize the state of the filter
2 Initialize the belief in the state

Predict step:

1 Use system behavior to predict state at the next time step
2 Adjust belief to account for the uncertainty in prediction
Correct step:

3 Get a measurement and associated belief about its accuracy
4 Compute residual between estimated state and measurement
5 New estimate is somewhere on the residual line

model of the system does not take into account something, e.g. the acceleration in
the previous examples. This is called the lag error or systemic error of the system. It
is a fundamental property of 𝑔-ℎ filters. The take-home point is that the filter is
only as good as the mathematical model used to express the system. Anyway,
the fundamental idea is to blend somewhat inaccurate measurements with somewhat
inaccurate models of how the systems behaves to get a filtered estimate that is better
than either information source by itself.



25

CHAPTER 3

The discrete-time multivariate
Kalman Filter

This chapter briefly reviews the literature about Kalman theory applied for the
estimation of a discrete-time LTI multivariate dynamical system. In particular, the
derivation of the filtering equations is proposed by means of a powerful Bayesian
perspective. It is respectful to mention that the herein content and the logical order
of presentation is inspired and adapted from [1]. In conclusion, this chapter is
organized as follow:

1. Section 3.1 introduces the mathematical framework used for the derivation of
the discrete timemultivariate Kalman filter. In this setting, common convention
are used and description of the deterministic and noise components of the
system are provided;

2. Section 3.2 is dedicated to the Bayesian inference applied to the state estimation
problem. A Bayesian filtering approach is derived leading to the well-known
prediction and correction equations.

3.1 Mathematical framework

In the following section the mathematical framework under analysis will be intro-
duced. In particular it consists of:

• A signal model description

• A noise model description

3.1.1 Description of the system model

In the following chapter attention will be given primarily to discrete-time systems,
e.g. systems where the underlying system equations are difference equations. In
particular, the class of discrete-time systems under analysis has the following charac-
teristics: a) Linear, b) Time variant, and c) Finite dimensional , which are described
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by state-space equations:

∶
{
𝒙𝑘+1 = 𝑨𝑘𝒙𝑘 + 𝑩𝑘𝒖𝑘 + 𝑮𝑘𝒘𝑘

𝒚𝑘 = 𝑪𝑘𝒙𝑘 + 𝑫𝑘𝒖𝑘 + 𝒗𝑘

(3.1a)
(3.1b)

Time indexing The subscript 𝑘 is a time argument. The initial time at which the
system starts operating cab be assumed to be finite. Then by shifting of the time
origin, it is assumed that Eq. (3.1) hold for ∀𝑘 s.t. 𝑘 > 0. Additionally, without loss of
generality, successive time instants are denoted by the integer 𝑘.

State, input and output signals The set {(𝒙𝑘, 𝑘) s.t. 𝑘 > 0} is denoted by the
symbol {𝒙𝑘}. Instead, 𝒙𝑘 in Eq. (3.1) is the value of the system state at time 𝑘. Under
ideal circumstances, 𝒚𝑘 = 𝑪𝑘𝒙𝑘 would be the corresponding system output, but in
this case an additive measurement noise process 𝒗𝑘 is added. The input process to
the system is {𝒘𝑘}, and like {𝒗𝑘}, it is a noise process. Further details of {𝒗𝑘} and {𝒘𝑘}

will be given shortly, as will some motivation for introducing the whole model in
Eq. (3.1). Note that, according to the multivariate case under analysis, an appropriate
vector processes notation will be used on processes {𝒙𝑘}, {𝒚𝑘}, {𝒘𝑘}, {𝒗𝑘}.

3.1.2 Description of the noise model

In order to derive a filtering theory it is mandatory to cast a probabilistic structure
on the noise processes affecting the system, i.e. the process noise {𝒘𝑘} and the
measurement noise {𝒗𝑘}. Following this rationale, the assumption related to the
stochastic part of the system are:

Assumption 3.1. {𝒘𝑘} and {𝒗𝑘} are individually white processes, i.e. ∀𝑘, 𝑙
s.t. 𝑘 ≠ 𝑙, 𝒗𝑘 and 𝒗𝑙 are independent random variables, and 𝒘𝑘 and 𝒘𝑙 are
independent random variables.

Assumption 3.2. {𝒘𝑘} and {𝒗𝑘} are individually gaussian processes of zero
mean and known (bounded) auto-covariance, i.e. 𝒗𝑘 ∼  (𝟎,𝑹𝑘) and 𝒘𝑘 ∼

 (𝟎,𝑸𝑘).

Assumption 3.3. {𝒘𝑘} and {𝒗𝑘} are independent processes.

Assumptions 3.1 and 3.2 means that, for instance, the joint pdf of 𝒗1, 𝒗2,… , 𝒗𝑘 for
arbitrary 𝑘 is gaussian. The computation of the joint pdf is simply the product of the
individual densities due to the whiteness of 𝒗𝑘, guaranteed by Asm. 3.1, and can be
carried out by knowing the mean and covariance values since they determine the
joint pdf completely.

In order to fulfill Asms. 3.1 to 3.3 the process mean and the process covariance, that
are respectively the set of values of E[𝒗𝑘] and E[𝒗𝑘𝒗

T
𝑙 ], ∀𝑘, 𝑙, need to be specified. In
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other words, the process mean is:

E[𝒘𝑘] = 𝟎 ∈ R𝑛𝒘 , ∀𝑘 (3.2a)
E[𝒗𝑘] = 𝟎 ∈ R𝑛𝒚 , ∀𝑘 (3.2b)

while the process covariance is:

E[𝒘𝑘𝒘
T
𝑙 ] = 𝑸𝑘𝛿𝑘,𝑙, ∀𝑘, 𝑙 (3.3a)

E[𝒗𝑘𝒗
T
𝑙 ] = 𝑹𝑘𝛿𝑘,𝑙, ∀𝑘, 𝑙 (3.3b)

by noting that:

E[𝒘𝑘𝒘
T
𝑙 ]

3.1

= E[𝒘𝑘]E[𝒘
T
𝑙 ]

3.2

= 𝟎𝑛𝒘×𝑛𝒘 , ∀𝑘, 𝑙 s.t. 𝑘 ≠ 𝑙 (3.4)

E[𝒗𝑘𝒗
T
𝑙 ]

3.1

= E[𝒗𝑘]E[𝒗
T
𝑙 ]

3.2

= 𝟎𝑛𝒚×𝑛𝒚 , ∀𝑘, 𝑙 s.t. 𝑘 ≠ 𝑙 (3.5)

where 𝛿𝑘,𝑙 is the Kronecker’s delta1, E[𝒘𝑘𝒘
T
𝑘] = 𝑸𝑘 and E[𝒗𝑘𝒗T𝑘] = 𝑹𝑘 are non-negative

definite matrices. Instead, the cross-covariance of the processes is:

E[𝒗𝑘𝒘
T
𝑙 ]

3.3

= 𝟎𝑛𝒚×𝑛𝒘 , ∀𝑘, 𝑙 (3.6)

3.1.3 Description of the initial condition

An initial condition for the difference equation in Eq. (3.1) needs to be specified.
From the practical point of view, if it is impossible to measure the state 𝒙𝑘, exactly for
arbitrary 𝑘, it is unlikely that a measure of the initial condition 𝒙0 will be available.
This leads to the adoption of a random initial condition for the system. In particular,
we it is assumed that the uncertainty about the initial condition 𝒙0 is described as
well by a random variable Gaussian distributed:

Assumption 3.4. The initial condition 𝒙0 is a Gaussian random variable with
known mean �̄�0 and known covariance 𝑷0:

𝒙0 ∼  (�̄�0,𝑷0) (3.7)

where

E[𝒙0] = �̄�0 (3.8a)
E[(𝒙0 − �̄�0)(𝒙0 − �̄�0)

T
] = 𝑷0 (3.8b)

Moreover, it is assumed that the initial condition is independent from the noise
processes:

Assumption 3.5. The initial condition 𝒙0 is independent from noise processes

1The Kronecker’s delta 𝛿𝑘,𝑙 is 1 for 𝑘 = 𝑙 and 0 for 𝑘 ≠ 𝑙.
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{𝒘𝑘} and {𝒗𝑘}, that is the causality assumption.

E[(𝒙0 − �̄�0)𝒘
T
𝑘] = 𝟎𝑛𝒙×𝑛𝒘 , ∀𝑘 (3.9)

E[(𝒙0 − �̄�0)𝒗
T
𝑘] = 𝟎𝑛𝒙×𝑛𝒗 , ∀𝑘 (3.10)

Assumption on the noise processes and the initial state are:

⎡
⎢
⎢
⎣

𝒘𝑘

𝒗𝑘

𝒙0

⎤
⎥
⎥
⎦

i.i.d
∼ 

⎛
⎜
⎜
⎝

⎡
⎢
⎢
⎣

𝟎

𝟎

�̄�0

⎤
⎥
⎥
⎦

,

⎡
⎢
⎢
⎣

𝑸 𝟎 𝟎

𝟎 𝑹 𝟎

𝟎 𝟎 𝑷0

⎤
⎥
⎥
⎦

⎞
⎟
⎟
⎠

(3.11)

Without loss of generality, to simplify the analysis the static sub-system is not
considered, i.e. 𝑫 = 𝟎.

3.1.4 Gaussian and Markov properties of the system

Important properties of the random process {𝒙𝑘} are derived considering Asms. 3.1

to 3.5.

The transition equation First, consider the transition equation regarding the
state equation in Eq. (3.1a):

𝒙𝑘 = 𝜱𝑘,0𝒙0 +

𝑘−1

∑

𝑖=0

[𝜱𝑘,𝑖+1(𝑩𝑖𝒖𝑖 + 𝑮𝑖𝒘𝑖)] (3.12a)

= 𝜱𝑘,0𝒙0 +

𝑘−1

∑

𝑖=0

[𝜱𝑘,𝑖+1𝑩𝑖𝒖𝑖 + 𝜱𝑘,𝑖+1𝑮𝑖𝒘𝑖], ∀𝑘 (3.12b)

where 𝜱𝑘,𝑙 is the transition matrix defined as:

𝜱𝑘,𝑙 ≡ 𝑨𝑘−1𝑨𝑘−2 …𝑨𝑙, ∀𝑘, 𝑙 s.t. 𝑘 > 𝑙 (3.13a)
𝜱𝑘,𝑘 ≡ 𝑰 , ∀𝑘 (3.13b)

𝜱𝑘,𝑙𝜱𝑙,𝑚 = 𝜱𝑘,𝑚, ∀𝑘, 𝑙, 𝑚 s.t. 𝑘 ≥ 𝑙 ≥ 𝑚 (3.13c)

Considering Eq. (3.12), the state variable 𝒙𝑘 has the following properties:

Remark 3.1. 𝒙𝑘 is expressed as a linear combination of the jointly gaussian
random vectors 𝒙0 and 𝒘0,… ,𝒘𝑘−1. Note that the fact that the variables are
individually a) gaussian, and b) independent implies their jointly density is
also gaussian. Now since linear transformations of gaussian random variables
preserve their gaussian character, it follows that 𝒙𝑘, ∀𝑘 is a gaussian random
variable.

Remark 3.2. The second property is that {𝒙𝑘}, ∀𝑘 is a gaussian random process.
This property is simply an extension of the first, see Rem. 3.1.
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Remark 3.3. The last property is that {𝒙𝑘}, ∀𝑘 is a Markov random process. In
other words, the probability density of 𝒙𝑘 conditioned on 𝒙1,… , 𝒙𝑘−1 is simply
the probability density of 𝒙𝑘 conditioned on 𝒙𝑘−1:

𝑝(𝒙𝑘 ∣ 𝒙1,… , 𝒙𝑘−1) = 𝑝(𝒙𝑘 ∣ 𝒙𝑘−1) (3.14)

The Markov property is a consequence of these factors: a) the whiteness of
𝒘𝑘, and b) the causality of the system in Eq. (3.1).

Instead, regarding the output variable 𝒚𝑘 it can be said that:

Remark 3.4. {𝒚𝑘} is a gaussian process as well, for the same reasons as {𝒙𝑘}.
Also, {𝒙𝑘} and {𝒚𝑘} are jointly gaussian. Instead, {𝒚𝑘} is no longer a Markov
process, due to the fact that {𝒚𝑘} is not white. In other words, the correlation
between two measurements 𝒚𝑘1 and 𝒚𝑘2 with |𝑘2 − 𝑘1| > 1 is not equal to zero,
e.g. the two measurements convey more information jointly about 𝒚𝑘.

3.1.5 Propagation of the statistics

As seen in Section 3.1.4, {𝒙𝑘} and {𝒚𝑘} are jointly gaussian processes. Therefore, their
probabilistic properties are entirely determined by their means and covariances. In
particular propagation of these statistics can be derived directly from the difference
equations in Eq. (3.1), considering 1-step ahead propagation, or more in general, by
using the transition equation in Eq. (3.12). Without loss of generality, to simplify the
following computations, the deterministic sub-system is not considered, i.e. 𝑩𝑘 = 𝟎.
If not, the following calculations can easily be extended with the presence of an
exogenous deterministic input. In the end, the propagation of the statistics of the
stochastic part of the system is as follows.

From the difference equations Regarding {𝒙𝑘}, the computation of the mean is
as follows:

E[𝒙𝑘+1]
(3.1a)
= E[𝑨𝑘𝒙𝑘 + 𝑮𝑘𝒘𝑘] (3.15a)

(3.2a)
= 𝑨𝑘E[𝒙𝑘] + 𝑮𝑘����E[𝒘𝑘] (3.15b)
= 𝑨𝑘E[𝒙𝑘] (3.15c)

Regarding {𝒚𝑘}, the computation of the mean is as follows:

E[𝒚𝑘]
(3.1b)
= E[𝑪𝑘𝒙𝑘 + 𝒗𝑘] (3.16a)

(3.2b)
= 𝑪𝑘E[𝒙𝑘] +���E[𝒗𝑘] (3.16b)
= 𝑪𝑘E[𝒙𝑘] (3.16c)

For ease of notation, set E[𝒙𝑘] = �̄�𝑘 Then, the computation of the covariance of 𝒙𝑘

can be noted as:
E[(𝒙𝑘 − �̄�𝑘)(𝒙𝑘 − �̄�𝑘)

T
] = 𝑷𝑘 (3.17)
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Observe that the notation is consistent with the use of 𝑷0 in Eq. (3.8b). Regarding
{𝒙𝑘}, the computation of the covariance is as follows:

𝑷𝑘+1

(3.17)
= E[(𝒙𝑘+1 − �̄�𝑘+1)(𝒙𝑘+1 − �̄�𝑘+1)

T
] (3.18a)

(3.1a)
= E[(𝑨𝑘𝒙𝑘 + 𝑮𝑘𝒘𝑘 − 𝑨𝑘�̄�𝑘)(𝑨𝑘𝒙𝑘 + 𝑮𝑘𝒘𝑘 − 𝑨𝑘�̄�𝑘)

T
] (3.18b)

(3.2a)
= 𝑨𝑘E[(𝒙𝑘 − �̄�𝑘)(𝒙𝑘 − �̄�𝑘)

T
]𝑨

T
𝑘 + 𝑮𝑘E[𝒘𝑘𝒘

T
𝑘]𝑮

T
𝑘

+ 𝑨𝑘E[𝒙𝑘𝒘
T
𝑘]𝑮

T
𝑘 + 𝑮𝑘E[𝒘𝑘𝒙

T
𝑘 ]𝑨

T
𝑘 − 𝑨𝑘�̄�𝑘��

��
E[𝒘T

𝑘]𝑮
T
𝑘 − 𝑮𝑘����E[𝒘𝑘]�̄�

T
𝑘𝑨

T
𝑘

3.3

= 𝑨𝑘E[(𝒙𝑘 − �̄�𝑘)(𝒙𝑘 − �̄�𝑘)
T
]𝑨

T
𝑘 + 𝑮𝑘E[𝒘𝑘𝒘

T
𝑘]𝑮

T
𝑘

+ 𝑨𝑘�����
E[𝒙𝑘𝒘

T
𝑘]𝑮

T
𝑘 + 𝑮𝑘�����

E[𝒘𝑘𝒙
T
𝑘 ]𝑨

T
𝑘

(3.18c)

(3.3a) and (3.17)
= 𝑨𝑘𝑷𝑘𝑨

T
𝑘 + 𝑮𝑘𝑸𝑘𝑮

T
𝑘 (3.18d)

Regarding {𝒚𝑘}, the computation of the covariance is as follows:

V [𝒚𝑘, 𝒚𝑘] ≡ E[(𝒚𝑘 − �̄�𝑘)(𝒚𝑘 − �̄�𝑘)
T
] (3.19a)

(3.1b),(3.16)
= E[(𝑪𝒙𝑘 + 𝒗𝑘 − 𝑪�̄�𝑘)(𝑪𝒙𝑘 + 𝒗𝑘 − 𝑪�̄�𝑘)

T
] (3.19b)

(3.2b)
= 𝑪𝑘E[(𝒙𝑘 − �̄�𝑘)(𝒙𝑘 − �̄�𝑘)

T
]𝑪

T
𝑘 + E[𝒗𝑘𝒗

T
𝑘]

+ 𝑪𝑘E[𝒙𝑘𝒗
T
𝑘] + E[𝒗𝑘𝒙

T
𝑘 ]𝑪

T
𝑘 − 𝑪𝑘�̄�𝑘���

E[𝒗T𝑘] −���E[𝒗𝑘]�̄�
T
𝑘𝑪

T
𝑘

3.3,3.5
= 𝑪𝑘E[(𝒙𝑘 − �̄�𝑘)(𝒙𝑘 − �̄�𝑘)

T
]𝑪

T
𝑘 + E[𝒗𝑘𝒗

T
𝑘]

+ 𝑪𝑘����
E[𝒙𝑘𝒗

T
𝑘] +����

E[𝒗𝑘𝒙
T
𝑘 ]𝑪

T
𝑘

(3.19c)

(3.17),(3.3a)
= 𝑪𝑘𝑷𝑘𝑪

T
𝑘 + 𝑹𝑘 (3.19d)

From the transition equation It can be shown that, using the transition equation
in Eq. (3.12), that mean and covariance statistics of {𝒙𝑘} and {𝒚𝑘} are as follows:

E[𝒙𝑘+1] = E[𝜱𝑘,0𝒙0] (3.20a)
= 𝜱𝑘,0�̄�0 (3.20b)

E[𝒚𝑘] = E[𝑪𝑘𝒙𝑘] (3.21a)
= 𝑪𝑘𝜱𝑘−1,0�̄�0 (3.21b)

𝑷𝑘,𝑙 = E[(𝒙𝑘 − �̄�𝑘)(𝒙𝑙 − �̄�𝑙)
T
] (3.22a)

= 𝜱𝑘,𝑙𝑷𝑙, 𝑘 ≥ 𝑙 (3.22b)
= 𝑷𝑘𝜱

T
𝑙,𝑘, 𝑘 ≤ 𝑙 (3.22c)
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V [𝒚𝑘, 𝒚𝑙] ≡ E[(𝒚𝑘 − �̄�𝑘)(𝒚𝑙 − �̄�𝑙)
T
] (3.23a)

= 𝑪𝑘𝜱𝑘,𝑙𝑷𝑙𝑪
T
𝑙 + 𝑹𝑘𝛿𝑘,𝑙, 𝑘 ≥ 𝑙 (3.23b)

= 𝑪𝑘𝑷𝑘𝜱
T
𝑙,𝑘𝑪

T
𝑙 + 𝑹𝑘𝛿𝑘,𝑙, 𝑘 ≤ 𝑙 (3.23c)

Remark 3.5 (Dropping the gaussian assumption). Until now, 𝒙0, 𝒘𝑘, and 𝒗𝑘

have been assumed gaussian. If this is not the case, but they remain described
by their first order and second order statistics, then all the calculations still
carry through in the sense that formulas for the mean and covariance of the
{𝒙𝑘}, and {𝒚𝑘} sequences are precisely as before. In other words:

• In the gaussian case, knowledge of the mean and covariance is sufficient
to deduce pdfs of any order.

• In the non-gaussian case, knowledge of the mean and covariance does
not provide other than incomplete information about higher order mo-
ments, let alone pdfs.

3.1.6 Estimation criteria

In this section, it is briefly illustrated how knowledge of the value taken by one
random variable can give information about the value taken by a second random
variable. Please refer to [1] for a full reference. In particular, it is noted how an
estimate can bemade of the value taken by this second random variable. The goal is to
present an overview of the different estimation criteria. However, the introduction
of the Kalman filter equations will be derived from a Bayesian interpretation in
Section 3.2. To this end, please refer also to Appendix A where computation details
are explored.

In the remainder of this section an upper-case letter is used to denote a random
variable, and a lower-case letter to denote a value taken by that variable. In other
words, if the random variable is 𝑿 and the underlying probability space 𝜴 has
elements 𝝎, the symbol 𝒙 will in effect be used in place of 𝑿(𝝎) and the symbol 𝑿
in place of 𝑿(⋅), or the set of pairs {𝝎,𝑿(𝝎)} as 𝝎 ranges over 𝜴.

For arbitrary densities

For arbitrary densities, the following concepts hold:

The conditional pdf

Given two vector random variables 𝑿 and 𝒀 , the knowledge that 𝒀 = 𝒚

modifies the a-priori information 𝑝𝑿(𝒙) about 𝑿 through the concept of
conditional pdf:

𝑝𝑿 ∣𝒀 (𝒙 ∣ 𝒚) ≡
𝑝𝑿 ,𝒀 (𝒙, 𝒚)

𝑝𝒀 (𝒚)
(3.24)

where it is assumed that 𝑝𝒀 (𝒚) ≠ 0.
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The conditional pdf 𝑝𝑿 ∣𝒀 (𝒙 ∣ 𝒚) with a particular value substituted for 𝒚 and with
𝒙 regarded as a variable sums up all the information which knowledge that 𝒀 = 𝒚

conveys about 𝑿 .

Since it is a function rather than a single vector of real numbers, it makes sense to
seek a simpler entity in order to form an estimate. For example, one estimate would
be the value of 𝒙 maximizing 𝑝𝑿 ∣𝒀 (𝒙 ∣ 𝒚), that is the maximum a posteriori estimate
(MAP).

However, it is helpful to introduce a different kind of estimate, namely the mini-
mum variance estimate, more properly the conditional minimum variance estimate.
Sometimes other names are used, such as least-square estimate, and minimum mean
square estimate (MMSE).

The conditional mean estimate

The conditional mean estimate �̂� is:

�̂� = E[𝑿 |𝒀 = 𝒚] ≡ ∫

+∞

−∞

𝒙𝑝𝑿 ∣𝒀 (𝒙 ∣ 𝒚) d𝒙 (3.25)

It can be shown that the conditional mean estimate in Eq. (3.25) is also the
conditional minimum variance estimate:

E[‖𝑿 − �̂�‖
2
|𝒀 = 𝒚] ≤ E[‖𝑿 − 𝒛(𝒚)‖

2
|𝒀 = 𝒚] (3.26)

for all functions 𝒛 of 𝒚.

In particular, if the two variables are gaussian and independent, they are jointly gaus-
sian. Moreover, another general implication is that since they are jointly gaussian,
also their conditional pdf is gaussian.

Example 3.1: Conditional pdf of two jointly gaussian variables

Consider the relationship:
𝒀 = 𝑿 + 𝑵 (3.27)

with 𝑿 ∼  (𝟎,𝜮𝒙) and 𝒀 ∼  (𝟎,𝜮𝒚). Suppose also that 𝒀 = 𝒚, e.g. a
measurement is available. It can be shown that the conditional pdf can be
derived as:

𝑝𝑿 |𝒀 (𝒙|𝒚) ≡
𝑝𝑿 ,𝒀 (𝒙, 𝒚)

𝑝𝒀 (𝒚)
(3.28a)

=
𝑝𝒀 |𝑿(𝒚|𝒙)𝑝𝑿(𝒙)

𝑝𝒀 (𝒚)
(3.28b)

(3.28c)
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For gaussian densities

Let 𝑿 and 𝒀 be vector independent gaussian variables. The joint pdf is gaussian, i.e.
𝒁 = [𝑿T 𝒀 T]T ∼  (𝝁𝒁 ,𝜮𝒁) with statistics:

𝝁𝒁 =
[

�̄�

�̄�]
, 𝜮𝒁 =

[

𝜮𝒙𝒙 𝜮𝒙𝒚

𝜮𝒚𝒙 𝜮𝒚𝒚]
(3.29)

3.2 Bayesian derivation of the Kalman filter

The following section introduces the concepts of Bayesian inference in dynamical
models. Specialized dynamical models term as Hidden Markov Models are intro-
duced, where their constitutive properties help deriving efficient solutions to the
filtering problem by means of a recursive Bayesian estimation. The concepts adhere
introduced are taken from various references, for instance see [4, 59, 69, 25, 211,
31].

3.2.1 Hidden Markov Model

The general State Space Model in Eq. (3.1) has a compatible description using an
Hidden Markov Model:

𝒙0 ∼ 𝜇(𝒙0) (3.30a)
𝒙𝑘+1|𝒙𝑘 ∼ 𝑓 (𝒙𝑘+1|𝒙𝑘) (3.30b)
𝒚𝑘 |𝒙𝑘 ∼ 𝑔(𝒚𝑘 |𝒙𝑘) (3.30c)

where three main assumptions are made, that are:

1. (time) Causality;

2. Markov property on process {𝒙𝑘};

3. Conditional independence of the measurements;

In particular, the Markov property states that:

Markov property on process {𝒙𝑘}

The process {𝒙𝑘}, e.g. the set of states, form a Markov sequence. The Markov
property means that 𝒙𝑘 (and actually the whole future 𝒙𝑘+1, 𝒙𝑘+2…) given 𝒙𝑘−1

is independent of anything that has happened before the time step 𝑘 − 1:

𝑝(𝒙𝑘 |𝒙0∶𝑘−1, 𝒚1∶𝑘−1) = 𝑓 (𝒙𝑘 |𝒙𝑘−1) (3.31)

Also the past is independent of the future given the present:

𝑝(𝒙𝑘−1|𝒙𝑘∶𝑇 , 𝒚𝑘∶𝑇 ) = 𝑓 (𝒙𝑘−1|𝒙𝑘), 𝑇 > 𝑘 (3.32)

Instead, the conditional independence of the measurements property can be formu-
lated as follows:
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The conditional independence of the measurements property:

The herein property states that the current measurement 𝒚𝑘 given the current
state 𝒙𝑘 is conditionally independent of the measurement and state histories.
In other words:

𝑝(𝒚𝑘 |𝒙0∶𝑘, 𝒚1∶𝑘−1) = 𝑔(𝒚𝑘 |𝒙𝑘) (3.33)

An equivalent graphical description of the Hidden Markov Model in Eq. (3.30) is
given by the Bayesian network as shown in Fig. 3.1 where the properties of causality,
Markov, and conditional independence of the measurements can be easily checked.

𝑋0 𝑋1 𝑋2 𝑋3 𝑋𝑘

𝑌1 𝑌2 𝑌3 𝑌𝑘

Figure 3.1: The Bayesian network used as a graphical model for the SSM in Eq. (3.30).
Each random variable is encoded using a node, where the nodes that are filled (gray)
corresponds to variables that are observed and nodes that are not filled (white) are
hidden/latent/unobserved variables. The arrows encode the dependence among the
variables.

3.2.2 Bayesian inference aim

Equations (3.30b) and (3.30c) define a Bayesian model in which Eq. (3.30b) defines
the prior distribution 𝑝(𝒙0∶𝑘) of the process of interest {𝒙𝑘}, that is:

𝑝(𝒙0∶𝑘) = 𝜇(𝒙0)

𝑘

∏

𝑖=0

𝑝(𝒙𝑖+1|𝒙0∶𝑖) by chain rule (3.34a)

= 𝜇(𝒙0)
⏟⏞⏞⏞⏟⏞⏞⏞⏟
initial

𝑘

∏

𝑖=0

𝑓 (𝒙𝑖+1|𝒙𝑖)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
dynamics

by Markov on {𝒙𝑘} (3.34b)

The Markov property is highly desirable since it provides a memory efficient way
of keeping track of the evolution of a dynamic phenomenon. Rather than keeping
track of the growing full history of the process {𝒙𝑘}, it is sufficient to keep track of
the present state 𝒙𝑘 of the process. Hence, in a Markov process the current state
contains everything all the information about the past and the present in order to
predict the future. As a matter of fact, the prior (joint) distribution of all states can
be written as in Eq. (3.34).
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Instead, Eq. (3.30c) defines the likelihood or data distribution 𝑝(𝒚1∶𝑘 |𝒙0∶𝑘) as:

𝑝(𝒚1∶𝑘 |𝒙0∶𝑘) =

𝑘

∏

𝑖=1

𝑝(𝒚𝑖|𝒚1∶𝑖−1, 𝒙0∶𝑖) by chain rule (3.35a)

=

𝑘

∏

𝑖=1

𝑔(𝒚𝑖|𝒙𝑖)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
observation

by conditionally independence (3.35b)

In such a Bayesian context, inference about 𝒙0∶𝑘 given a realization of the observa-
tions 𝒚1∶𝑘 relies upon the posterior distribution 𝑝(𝒙0∶𝑘 |𝒚1∶𝑘), that is:

𝑝(𝒙0∶𝑘 |𝒚1∶𝑘) ≡
𝑝(𝒙0∶𝑘, 𝒚1∶𝑘)

𝑝(𝒚1∶𝑘)
by definition (3.36a)

=

likelihood

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑝(𝒚1∶𝑘 |𝒙0∶𝑘)

prior

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝑝(𝒙0∶𝑘)

𝑝(𝒚1∶𝑘)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
evidence

by Bayes’ rule (3.36b)

=
𝑝(𝒚1∶𝑘 |𝒙0∶𝑘)𝑝(𝒙0∶𝑘)

∫ 𝑝(𝒚1∶𝑘 |𝒙0∶𝑘)𝑝(𝒙0∶𝑘) d𝒙0∶𝑘

by marginalization (3.36c)

For most non-linear non-Gaussian models, it is not possible to compute the distribu-
tions in Eq. (3.36) in closed-form and numerical methods are needed. In particular,
the full posterior formulation has the serious disadvantage that each time a new
measurement is obtained, the full posterior distribution would have to be recom-
puted. The problem arises particularly in the context of dynamic estimation, where
measurements are typically obtained one at a time, and the the best possible estimate
have to be recomputed after each measurement. When the number of time steps
increases, the dimensionality of the full posterior distribution also increases, and
in turns, the computational complexity of a single time step increases. Eventually,
the computations becomes intractable and additional information or restrictive ap-
proximations are needed. For instance, by relaxing some conditions, e.g. by being
satisfied with selected marginal distributions of the states, the computations become
an order of magnitude lighter. Another useful relaxation is to restrict the class of
dynamic models to probabilistic Markov sequences, as already shown in Eq. (3.30)
where the Markov property ensures a memory efficient way to keep track of the
available information. In this way, the computational complexity of a single time
step is fixed, and optimal Bayesian filters can be implemented. The most favorable
case is a linear Gaussian model as described in Eq. (3.1), where it will be shown that
the full posterior 𝑝(𝒙0∶𝑘 |𝒚0∶𝑘) is a gaussian distribution whose mean and covariance
can be computed using Kalman techniques.

3.2.3 Filtering as a recursive Bayesian estimation

Filtering is a problem of characterizing the distribution of the state of the hidden
Markov model at the present time, given the information provided by all of the
observations received up to the present time. This can be thought of as a “tracking”
problem: keeping track of the current “location” of the system given noisy obser-



36 The discrete-time multivariate Kalman Filter

vations. The term is sometimes also used to refer to the practice of estimating the
full trajectory of the state sequence up to the present time given the observations
received up to this time.

Regarding the filtering of the full trajectory of the hidden states, the problem of its
estimation is solved through the unnormalized posterior distribution 𝑝(𝒙0∶𝑘, 𝒚1∶𝑘) in
Eq. (3.36a), for which:

𝑝(𝒙0∶𝑘 |𝒚1∶𝑘) ≡
𝑝(𝒙0∶𝑘, 𝒚1∶𝑘)

𝑝(𝒚1∶𝑘)
(3.37a)

∝ 𝑝(𝒙0∶𝑘, 𝒚1∶𝑘) (3.37b)

up to some normalization constant. Equation (3.37) is particularly useful when
the computation of the evidence model 𝑝(𝒚1∶𝑘) = ∫ 𝑝(𝒚1∶𝑘 |𝒙0∶𝑘)𝑝(𝒙0∶𝑘) d𝒙0∶𝑘 is in-
tractable.

Instead, for Bayesian networks as in Eq. (3.30) the unnormalized posterior distribution
𝑝(𝒙0∶𝑘, 𝒚1∶𝑘) in Eq. (3.36a) satisfies:

𝑝(𝒙0∶𝑘, 𝒚1∶𝑘) = 𝑝(𝒚1∶𝑘 |𝒙0∶𝑘)𝑝(𝒙0∶𝑘) (3.38a)

=
(

𝑘

∏

𝑖=1

𝑔(𝒚𝑖|𝒙𝑖)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
observation

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
likelihood

(

𝑘

∏

𝑖=0

𝑓 (𝒙𝑖+1|𝒙𝑖)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
dynamics

)
𝜇(𝒙0)
⏟⏞⏞⏞⏟⏞⏞⏞⏟
initial

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
prior

(3.38b)

Equation (3.38) can also be written in a recursive pattern by making use of the
notation X𝑘 = 𝒙0∶𝑘 and Y𝑘 = 𝒚1∶𝑘. Then Eq. (3.38) becomes:

𝑝(X𝑘,Y𝑘) = 𝑝(X𝑘−1,Y𝑘−1)𝑓 (𝒙𝑘 |𝒙𝑘−1)𝑔(𝒚𝑘 |𝒙𝑘) (3.39)

Consequently, the posterior 𝑝(X𝑘 |Y𝑘) in Eq. (3.36) satisfies the following recursion:

𝑝(X𝑘 |Y𝑘) ≡
𝑝(X𝑘,Y𝑘)

𝑝(Y𝑘)
(3.40a)

=
𝑝(X𝑘−1,Y𝑘−1)

𝑝(Y𝑘)
𝑓 (𝒙𝑘 |𝒙𝑘−1)𝑔(𝒚𝑘 |𝒙𝑘) (3.40b)

=
𝑝(X𝑘−1|Y𝑘−1)

𝑝(Y𝑘−1)

𝑝(Y𝑘−1)

𝑝(𝒚𝑘 |Y𝑘−1)
𝑓 (𝒙𝑘 |𝒙𝑘−1)𝑔(𝒚𝑘 |𝒙𝑘) (3.40c)

=
𝑝(X𝑘−1|Y𝑘−1)

𝑝(𝒚𝑘 |Y𝑘−1)
𝑓 (𝒙𝑘 |𝒙𝑘−1)𝑔(𝒚𝑘 |𝒙𝑘) (3.40d)
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where

𝑝(𝒚𝑘 |Y𝑘−1) = ∫ 𝑝(𝒚𝑘 |𝒙𝑘,Y𝑘−1)𝑝(𝒙𝑘 |Y𝑘−1) d𝒙𝑘 (3.41a)

= ∫ 𝑝(𝒚𝑘 |𝒙𝑘,Y𝑘−1)
(∫

𝑝(𝒙𝑘 |𝒙𝑘−1,Y𝑘−1)𝑝(𝒙𝑘−1|Y𝑘−1) d𝒙𝑘−1
)
d𝒙𝑘 (3.41b)

= ∫ 𝑔(𝒚𝑘 |𝒙𝑘)
(∫

𝑓 (𝒙𝑘 |𝒙𝑘−1)𝑝(𝒙𝑘−1|Y𝑘−1) d𝒙𝑘−1
)
d𝒙𝑘 (3.41c)

= ∫ 𝑝(𝒙𝑘−1|Y𝑘−1)𝑓 (𝒙𝑘 |𝒙𝑘−1)𝑔(𝒚𝑘 |𝒙𝑘) d𝒙𝑘−1∶𝑘 (3.41d)

In the literature, the recursion satisfied by the marginal posterior distribution
𝑝(𝒙𝑘 |Y𝑘) is often presented instead of the joint posterior distribution 𝑝(X𝑘 |Y𝑘) of
Eq. (3.40). By means of a straightforward marginalization, e.g. by integrating out
X𝑘−1, the marginal posterior distribution 𝑝(𝒙𝑘 |Y𝑘) can be easily derived as:

𝑝(𝒙𝑘 |Y𝑘) = ∫
𝑝(X𝑘−1|Y𝑘−1)

𝑝(𝒚𝑘 |Y𝑘−1)
𝑓 (𝒙𝑘 |𝒙𝑘−1)𝑔(𝒚𝑘 |𝒙𝑘) dX𝑘−1 (3.42a)

=
𝑔(𝒚𝑘 |𝒙𝑘)

𝑝(𝒚𝑘 |Y𝑘−1)
∫ 𝑓 (𝒙𝑘 |𝒙𝑘−1)𝑝(X𝑘−1|Y𝑘−1) dX𝑘−1 (3.42b)

=
𝑔(𝒚𝑘 |𝒙𝑘)

𝑝(𝒚𝑘 |Y𝑘−1)
∫ 𝑓 (𝒙𝑘 |𝒙𝑘−1)𝑝(𝒙𝑘−1|Y𝑘−1) d𝒙𝑘−1 (3.42c)

= 𝑝(𝒙𝑘 |Y𝑘−1)
𝑔(𝒚𝑘 |𝒙𝑘)

𝑝(𝒚𝑘 |Y𝑘−1)
(3.42d)

where
𝑝(𝒙𝑘 |Y𝑘−1) = ∫ 𝑓 (𝒙𝑘 |𝒙𝑘−1)𝑝(𝒙𝑘−1|Y𝑘−1) d𝒙𝑘−1 (3.43)

Equation (3.42) is usually known as correction step while Eq. (3.43) as prediction
step.

3.2.4 Evolution of the marginal posterior distribution

As seen previously, the marginal posterior distributions are chained by the constitu-
tive relationship of the dynamic of the state and by the new available information in
the measurement in a recursive relationship. Thus, the filtering problem is solved by
a recursive computation of the densities of interest by means of a forward computa-
tion, e.g. sequentially in time for from 𝑘 = 0 to 𝑘 = 𝑛𝑘. Other densities of interest
may be computed in a similar manner, for instance densities regarding the prediction
or smoothing problem, see Table 3.1. In general also backward computations, e.g.
from 𝑘 = 𝑛𝑘 to 𝑘 = 0, or a composition of forward and backward computations may
be used instead. At time 𝑘+1, the a-priori pdf 𝑝(𝒙𝑘+1|Y𝑘) relates to the distribution of
the state at time 𝑘 + 1 from the past observations Y𝑘 before the current observation
𝒚𝑘+1 is made available. In other words, it should be considered as the time update
from the a-posteriori pdf from the previous time sample using the evolution of the
state. Assuming that the a-posteriori pdf 𝑝(𝒙𝑘 |Y𝑘) is known, the evolution of the
marginal posterior distribution is based on a two-step procedure:

1. The prediction step (estimation of the a-priori pdf at time 𝑘), that is the time
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Table 3.1: Prediction, filtering, and smoothing densities of particular interest.

Aim PDF
Marginal filtering 𝑝(𝒙𝑘 |Y𝑘)

Joint filtering 𝑝(𝒙0∶𝑘 |Y𝑘)

Prediction 𝑝(𝒙𝑘+1|Y𝑘)

Fixed-step prediction 𝑝(𝒙𝑘+𝑇 |Y𝑘), 𝑇 > 𝑘

Marginal smoothing 𝑝(𝒙𝑘 |Y𝑁 ), 𝑁 > 𝑘

Joint smoothing 𝑝(𝒙0∶𝑘 |Y𝑁 ), 𝑁 > 𝑘

Fixed-lag smoothing 𝑝(𝒙𝑘−𝑙+1∶𝑘 |Y𝑘), 𝑙 < 𝑘

update;

2. The correction step (estimation of a-posteriori pdf at time 𝑘), that is the obser-
vation update;

A graphical description of the evolution of the marginal posterior is shown in Fig. 3.2.
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Figure 3.2: The evolution of the marginal posterior 𝑝(𝒙𝑘 |Y𝑘) through time as a
composition of the sequential prediction and correction steps.

3.2.5 The prediction step

Given the a-posteriori pdf at time 𝑘, i.e. 𝑝(𝒙𝑘 |Y𝑘), the prediction makes use of the
dynamic model of state evolution in Eq. (3.1a) to derive the a-priori pdf 𝑝(𝒙𝑘+1|Y𝑘).
In other words, the prediction step implements the following transition:

𝑝(𝒙𝑘 |Y𝑘) → 𝑝(𝒙𝑘+1|Y𝑘) (3.44)

In practice, the the a-priori pdf 𝑝(𝒙𝑘+1|Y𝑘) at time step 𝑘 + 1 is derived by the
a-posteriori pdf 𝑝(𝒙𝑘 |Y𝑘) at the previous time step 𝑘 by means of the Chapman-
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Kolmogorov equation:

𝑝(𝒙𝑘+1|Y𝑘) = ∫ 𝑓 (𝒙𝑘+1|𝒙𝑘)𝑝(𝒙𝑘 |Y𝑘) d𝒙𝑘 (3.45)

i.e. a straightforward marginalization over the nuisance variable 𝒙𝑘.

3.2.6 The correction step

The correction step takes care of the measurement update, i.e. update the a-priori
information with the new available information conveyed by the measurement
in order to get the a-posteriori information. In terms of pdf, the correction step
implements the following transition:

𝑝(𝒙𝑘 |Y𝑘−1) → 𝑝(𝒙𝑘 |Y𝑘) (3.46)

In particular, the a-posteriori pdf can be derived when a new observation is made
available to confirm or modify the a-priori pdf evaluated from all the observations
up to time 𝑘 − 1. The observation 𝒚𝑘 is accounted for using the Bayes relationship to
derive the a-posteriori pdf:

𝑝(𝒙𝑘 |Y𝑘−1) =
𝑔(𝒚𝑘 |𝒙𝑘)𝑝(𝒙𝑘 |Y𝑘−1)

𝑝(𝒚𝑘 |Y𝑘−1)
(3.47)

Once again, there is no guarantee that there is a closed form relationship of the
a-posteriori pdf, except for the special case of linear Gaussian models.

3.2.7 The Kalman filter equations

The Kalman filter [98] is the closed form solution to the Bayesian filtering equations
for the filtering model, where the dynamic and measurement models are linear
Gaussian:

𝒙0 ∼ 𝜇(𝒙0) =  (𝒙0; �̄�0,𝑷0) (3.48a)
𝒙𝑘+1|𝒙𝑘 ∼ 𝑓 (𝒙𝑘+1|𝒙𝑘) =  (𝒙𝑘+1;𝑨𝑘𝒙𝑘,𝑮𝑘𝑸𝑘𝑮

T
𝑘) (3.48b)

𝒚𝑘 |𝒙𝑘 ∼ 𝑔(𝒚𝑘 |𝒙𝑘) =  (𝒙𝑘;𝑪𝑘𝒙𝑘,𝑹𝑘) (3.48c)

In particular, the Kalman filter can be seen as a special case of the relationships for
prediction and correction in Sections 3.2.5 and 3.2.6 where the pdfs are represented
by the first and second order central moments, and there is a closed form for the
statistical evolution of the state from the observations. More specifically, since at
every step the pdfs are Gaussian, it is enough to derive the prediction and update
equations for the statistics that completely characterize the distributions, e.g. the
mean and the covariance. For instance, the scheme of prediction-correction relation-
ship w.r.t. the estimate statistics is available in Fig. 3.3. As a matter of fact, there is
the following pairing of the pdfs and their properties:

𝑝(𝒙𝑘 |Y𝑘) ≡  (𝒙𝑘∣𝑘; �̂�𝑘∣𝑘,𝑷𝑘∣𝑘) (3.49)
𝑝(𝒙𝑘+1|Y𝑘) ≡  (𝒙𝑘+1∣𝑘; �̂�𝑘+1∣𝑘,𝑷𝑘+1∣𝑘) (3.50)



40 The discrete-time multivariate Kalman Filter

ෝ𝒙𝑘|𝑘−1

𝒚𝑘

ෝ𝒙𝑘|𝑘

𝒚𝑘+1

ෝ𝒙𝑘+1|𝑘

ෝ𝒙𝑘+1|𝑘+1

Prediction

Correction

Prediction

Correction

Prediction

Figure 3.3: A scheme of the iterative prediction-correction relationship that takes
place in the Kalman filtering theory.

The Bayesian filtering equations for the linear filtering model can be evaluated in
closed form and the resulting distributions are Gaussian. Consider the following
joint distribution:

𝑝(𝒙𝑘+1, 𝒙𝑘 |Y𝑘) = 𝑓 (𝒙𝑘+1|𝒙𝑘)𝑝(𝒙𝑘 |Y𝑘) (3.51a)
=  (𝒙𝑘+1;𝑨𝑘𝒙𝑘,𝑮𝑘𝑸𝑘𝑮

T
𝑘) (𝒙𝑘∣𝑘; �̂�𝑘∣𝑘,𝑷𝑘∣𝑘) (3.51b)

= 
([

𝒙𝑘

𝒙𝑘+1]
;
[

�̂�𝑘|𝑘

𝑨𝑘�̂�𝑘|𝑘 + 𝑩𝑘𝒖𝑘]
,
[

𝑷𝑘|𝑘 𝑷𝑘|𝑘𝑨
T
𝑘

𝑨𝑘𝑷𝑘|𝑘 𝑨𝑘𝑷𝑘|𝑘𝑨
T
𝑘 + 𝑮𝑘𝑸𝑘𝑮

T
𝑘])

(3.51c)

Correction equations

The correction equation is given by:

𝑝(𝒙𝑘 |Y𝑘) =  (𝒙𝑘; �̂�𝑘|𝑘−1 + 𝑲𝑘(𝒚𝑘 − 𝑪𝑘�̂�𝑘|𝑘−1 − 𝑫𝑘𝒖𝑘),𝑷𝑘|𝑘−1 − 𝑲𝑘𝑺𝑘𝑲
T
𝑘 ) (3.52a)

≡  (𝒙𝑘∣𝑘; �̂�𝑘∣𝑘,𝑷𝑘∣𝑘) (3.52b)

where 𝑲𝑘 is known as the Kalman gain:

𝑲𝑘 = 𝑷𝑘|𝑘−1𝑪
T
𝑘 (𝑪𝑘𝑷𝑘|𝑘−1𝑪

T
𝑘 + 𝑹𝑘) (3.53a)

= 𝑷𝑘|𝑘−1𝑪
T
𝑘𝑺𝑘 (3.53b)
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with:
𝑺𝑘 = 𝑪𝑘𝑷𝑘|𝑘−1𝑪

T
𝑘 + 𝑹𝑘 (3.54)

where the statistics values for the mean and covariance are:

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝑲𝑘(𝒚𝑘 − 𝑪𝑘�̂�𝑘|𝑘−1 − 𝑫𝑘𝒖𝑘) (3.55a)
𝑷𝑘|𝑘 = 𝑷𝑘|𝑘−1 − 𝑲𝑘𝑺𝑘𝑲

T
𝑘 (3.55b)

= 𝑷𝑘|𝑘−1 − 𝑲𝑘𝑺𝑘𝑲
T
𝑘 (3.55c)

Prediction equations

The prediction equation is given by marginalization of 𝒙𝑘 in Eq. (3.51). The com-
putation of the integral has a closed form solution and is given by Eq. (A.5), which
yields:

𝑝(𝒙𝑘+1|Y𝑘) =  (𝒙𝑘+1;𝑨𝑘�̂�𝑘|𝑘 + 𝑩𝑘𝒖𝑘,𝑨𝑘𝑷𝑘|𝑘𝑨
T
𝑘 + 𝑮𝑘𝑸𝑘𝑮

T
𝑘) (3.56a)

≡  (𝒙𝑘+1; �̂�𝑘+1∣𝑘,𝑷𝑘+1∣𝑘) (3.56b)

where the statistics values for the mean and covariance are:

�̂�𝑘+1|𝑘 = 𝑨𝑘�̂�𝑘|𝑘 + 𝑩𝑘𝒖𝑘 (3.57a)
𝑷𝑘+1|𝑘 = 𝑨𝑘𝑷𝑘|𝑘𝑨

T
𝑘 + 𝑮𝑘𝑸𝑘𝑮

T
𝑘 (3.57b)
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PART II

Contributions to the filtering
design problem
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CHAPTER 4

The model-based and data-driven
paradigms to the filtering design

problem

The following chapter contains a brief introduction to personal contributions and
new research to the topic of the filtering design problem. It was written to present
the standard design paradigm commonly found in the historical development of the
filtering design problem in the overview in Chapter 1 as well as the new “direct”
paradigm. As a consequence, it can be thought of as an extension of the already
mentioned historical development. The chapter contains also trace of studies in
other communities, such as the control community and the system identification
community. For a deeper technical understanding, please refer also to the dedicated
Chapter 5 that gives a detailed overview of the implementation of the standard
solution and to the dedicated Chapter 6 that gives a detailed overview of the imple-
mentation of the direct solution.

This chapter is organized as follow:

1. Section 4.1 highlights the nature of the classical solutions to the filtering design
problem, i.e. a model-based paradigm.

2. Section 4.2 introduces instead the data-driven paradigm to derive solutions to
the filtering design problem. This is required in practice when the historical
assumptions do not hold true. The section is mainly dedicated to two tech-
niques, highlighting their differences: a) the standard solution, and b) the new
“direct” solution.

4.1 Model-based paradigm to the filtering

problem

So far in Chapter 1, solutions to the filtering design problem have been discussed in
the case where the system under analysis is given. In order to have a better under-
standing, it is now considered the general mathematical framework in Eq. (4.1) that
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summarized the historical solutions derived in Chapter 1. In particular, considering
the stochastic filtering theory, the framework involves a stochastic dynamical system
 referred in discrete-time domain and described in state-space form. In general,
the system is non-linear, non-stationary, and is corrupted by noise signals, see [14]:

∶
𝒙𝑘+1 = 𝒇(𝒙𝑘, 𝒖𝑘,𝒘𝑘; 𝑘)

𝒚𝑘 = 𝒉𝒚(𝒙𝑘, 𝒖𝑘, 𝒗𝑘; 𝑘)

(4.1a)
(4.1b)

As already mentioned, in the derived solutions, the transition equation 𝒇(⋅) (also
known as diffusion equation, state equation) and the measurement equation 𝒉𝒚(⋅)

are thought to be known a-priori, i.e. they are fixed. In this context, the class of
filtering design solutions can be categorized as model-based: once a model of the
system is given, a filter is designed based only on the fixed model of the system. This
kind of paradigm is, thus, referred to as the model-based paradigm to the Filtering
Design (FD) problem.

4.2 Data-driven paradigm to the filtering

problem

However, in most practical situations, this is not the case. As a matter of fact, this led
to an alternative branch of research, still active nowadays, related to the so-called
data-driven design solutions to the filtering problem. The main two solutions are
further explored in the following sections: i) the so-called standard solution used in
many applications nowadays, and ii) the direct solution, a new branch of research
studied and developed in more details in this dissertation. A summarizing schematic
of the two paradigms is given in Fig. 4.1 where high-level differences, namely the
different steps taken and the intermediate ingredients, are highlighted.

4.2.1 The standard solution: a two-step approach

At the time of the writing of this dissertation, the standard solution to the data-
driven design is based on an a two-steps approach, where the sequential steps to be
performed are as follows:

1. First, a model of the system is estimated from available input-output data
(measured through some experiments) using the best techniques. This step is
known as the Data-driven System Identification, see [20, 30];

2. Secondly, a filter is designed from the identified model. This step is known as
the Model-based filter design.

Note that, as suggested by its name, the filter design step is model-based,
founded on the “certainty equivalence principle”, i.e. the identified model
̂ = (�̂�𝑁 ), parameterized by �̂�𝑁 , is treated as if it represents the true system
 . Following this rationale, solutions to the FD problem are applied on ̂ ;

The described methodology is a sequential two-steps procedure known as the stan-
dard solution to the Filter Design from Data (FD2) problem. In particular, this solution
is categorized as data-driven due to the fact that experimental data are used in the
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Figure 4.1: A scheme of the data-driven filtering solution. On the left, the standard
solution based on a two-step approach. On the right the direct solution based on a
one-step approach.

system identification step even if the whole procedure is indeed hybrid, i.e. half data-
driven and half model-based, because of the model-based filter design step. Therefore,
it is interesting to study a pure data-driven paradigm, labeled as the “direct” solution,
that is researched as the main contribution in this dissertation.

However, before attempting this journey, the standard methodology is analyzed
in more detailed with the aim to highlight its flaws and its common misconcep-
tions.

The data-driven system identification step It is now explored in more details
the methodology of the first step of the standard solution to the data-driven filtering
design problem, namely the data-driven system identification step. In this context,
the desired idea is to obtain a model of the system. Again, this branch of research is
known in literature as System Identification and was developed including different
classes of methods depending on the made assumption for the domain of expertise.
The most common approach, for instance, and the one that is used in this disserta-
tion — hence the “data-driven” attached term — is to perform the modeling from
experiments. In other words, the system is excited with some inputs and the outputs
are observed; then, these data are used to identify the process that links inputs and
outputs. This particular approach is known as black-box modeling, as it refers to a
procedure that does not go into many details of what is actually happening inside the
system. To summarize, first an optimal design experiment is performed in order to
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sample informative input and output data on the running system. Then, the collected
data are exploited as ingredients in statistical methods to build mathematical models
of the dynamical system. In the end, the unknown parameters of the system’s model
are estimated by means of statistical learning data-driven methods.

However, black-box system identification is not the only possible way to do modeling.
Its opposite, when no experiments are performed and only the knowledge of experts
in the field is used for the estimation of the model, i.e. modeling by “first principles”,
is instead termed white-box modeling. This is the case, for instance, when the system
is not very complex or the physical laws that governs the analyzed process are well
known and understood. In other applications, the two approaches are often used
together (grey-box modeling): the physical approach is used to define a model from
first principles, and the identification approach is used to fit its parameters, so that
the model agrees with what it is observed [184].

The model-based filter design step Once the data-driven system identification
step is performed, a model ̂ of the system  is available. Following this rationale
and applying the “certainty equivalence principle” the identified model ̂ = (�̂�𝑁 )

is treated as if it represents the true system  . Founding on this principle, common
solutions to the filtering design (FD) problem as described in Chapter 1 can be, and
are, applied on ̂ . In the case of LTI systems and filters, with a LQG setting, Chapter 3
presents the BLUE (Best Linear Unbiased Estimator) solution to the filtering design
problem, namely the Kalman Filter, under the assumption that the system is known,
or it has been estimated from a a-priori system identification step following the
rationale.

4.2.2 A brief historical review of system identification

The following section tries to present a brief overview of the system identification
history from its roots to present days to complement the data-driven standard
solution to the filtering design problem. It is interesting to note the developed and
the expected to-be developing historical and technical entanglements between the
control problems, the system identification problems, and the filtering problems in
the community related to the analysis of dynamical systems. The herein references
are taken mainly from different source of historical references, see [82, 153] and the
mentioned authors’ works.

Before 1965, parameter estimation techniques had been applied for some time to the
control of systems with known structure but unknown (or poorly known) parame-
ters.

1960s The roots of black-box identification in the control community were devel-
oped independently by Ho and Kalman, Silverman, and others, starting from the
deterministic realization theory from 1965, see for instances [90, 188]. The theory
tackle the problem to solve how to determine a finite-dimensional state-space realiza-
tion from the infinite-dimensional representation of an LTI dynamical system fully
described by its Markovian parameters (also known as impulse response parameters).
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In other words, given the input-output (IO) model:

𝑦𝑘 =

∞

∑

𝑖=1

𝑯𝑖𝑢𝑘−𝑖 (4.2)

described by its impulse response matrices 𝑯𝑘 ∈ R𝑛𝑦×𝑛𝑢 . The problem is to find a
replacement for the infinite description:

𝐻 (𝑧) =

∞

∑

𝑖=1

𝑯𝑖𝑧
−𝑖 (4.3)

with a finite description 𝑨 ∈ R𝑛𝑥×𝑛𝑥 ,𝑩 ∈ R𝑛𝑥×𝑛𝑢 ,𝑪 ∈ R𝑛𝑦×𝑛𝑥 so that

𝐻 (𝑧) = 𝑪(𝑧𝑰 − 𝑨)
−1

− 𝑩 (4.4)

and 𝑨 has minimal dimension.

This problem can be divided into two parts, i.e. find the McMillan degree of the
impulse response transfer function 𝑯(𝑧), which is then the minimal dimension of 𝑨,
and compute the matrices𝑨,𝑩,𝑪. The key observation used for solving this problem
was that the Hankel matrix  when properly dimensioned versus the order of the
LTI system, can be factorized through an SVD procedure into the product of an
infinite observability matrix and infinite controllability matrix:

 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑯1 𝑯2 𝑯3 …

𝑯2 𝑯3 𝑯4 …

𝑯3 𝑯4 𝑯5 …

⋮ ⋮ ⋮

⎤
⎥
⎥
⎥
⎥
⎦

(4.5)

=

⎡
⎢
⎢
⎢
⎢
⎣

𝑪

𝑪𝑨

𝑪𝑨2

⋮

⎤
⎥
⎥
⎥
⎥
⎦

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Observability matrix

[𝑩 𝑨𝑩 𝑨2𝑩 …]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Controllability matrix

(4.6)

Again, the SVD of the Hankel matrix provides a basis of the column space observ-
ability matrix and row space of the controllability matrix of the LTI system. The
knowledge of these spaces enable the estimation of a realization of the system ma-
trices. Indeed, the Ho-Kalman realization method [90] is based on the following
properties: if the McMillan degree of 𝐻 (𝑧) is 𝑛𝑥 , then:

1. rank() = 𝑛𝑥

2. ∃𝑨 ∈ R𝑛𝑥×𝑛𝑥 ,𝑩 ∈ R𝑛𝑥×𝑛𝑢 ,𝑪 ∈ R𝑛𝑦×𝑛𝑥 ∣ 𝑯𝑘 = 𝑪𝑨𝑘−1𝑩, ∀𝑘 ≥ 1;

At the same time of the state-space formulation, Åstrom and Bohlin [43] introduced
the maximum likelihood framework for estimating the parameters of input-output
models in ARMAX form, e.g. the following SISO model:

𝐴(𝑧
−1
)𝑦𝑧 = 𝐵(𝑧

−1
)𝑢𝑧 + 𝜆𝐶(𝑧

−1
)𝑒𝑧 (4.7)
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where 𝑒𝑡 is a sequence of independent identically distributed zero-mean, unit-variance
Gaussian random variables. The concepts and notation introduced in [43] have been
with the System Identification theory for almost 60 years now. Some examples of
household notation of the community found in are as follows:

• the residuals as 𝐶(𝑧−1)𝜖𝑧 = 𝐴(𝑧−1)𝑦𝑧 − 𝐵(𝑧−1)𝑢𝑧;

• the cost criterion as 𝑉 (𝜃) = 1

2
∑

𝑁

𝑖=0 𝜖
2
𝑖 ;

• the parameter estimate as �̂�𝑁 = arg min 𝑉 (𝜃);

• the white noise variance estimate as �̂�2 = 2

𝑁
𝑉 (�̂�𝑁 );

The publication of [43] gave rise to activity in parametric identification and estab-
lished the basis for the prediction-error framework. As stated in [82]:

“The step from maximum likelihood to prediction error essentially
consists of observing that, under the assumption of white Gaussian
noise in the ARMAX model, maximization of the likelihood function
of the observations is equivalent to minimizing the sum of the squared
prediction errors. The prediction-error framework consists of adopting
the minimization of a norm of the prediction errors as the criterion for
parameter estimation, even when the probability distribution for the
observations is unknown.”

1970s In the early 1970s, the combination of deterministic realization theory
based on the factorization of the Hankel matrix, with the theory of Markovian and
innovations representations, gave rise to the stochastic theory ofminimal realizations.
The stochastic realization problem was studied intensively in in connection with
innovations theory and spectral factorization theory [35, 196, 81].

1970s-1980s The years 1975—1985 saw frantic activity in system identification
in the engineering community. The methods based on a prediction-error criterion
together with input-output models completely took over the field, at the expense
of methods based on realization theory. Their theoretical superiority over stochas-
tic realization methods was based on the statistical properties of the parametric
estimates: a) prediction-error methods are asymptotically efficient (since their co-
variance achieves the Cramér-Rao bound), and b) the asymptotic accuracy can also
be evaluated. The main reason for the growing appeal of prediction-error methods,
however, was that increased computer speed and the development of special purpose
identification software made it more feasible to iteratively minimize a cost criterion
over a range of possible model structures.

During this period, new “methods”, i.e. new combinations of model structures and
methods, appeared constantly in the scientific journals with claims about their
supremacy over existing methods. To solve this problem, Ljung contributed in the
field by doing a major clean-up task that was felt needed by means of separating two
independent concepts: a) the choice of a parametric model structure, which provided
a vehicle for computing predictions and hence parameter-dependent prediction
errors, and b) and the choice of an identification criterion, which was a non-negative
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function of the prediction errors and hence of the parameter vector [116]. In this
setup, all existing parametric identification methods could then be seen as particular
cases of this prediction-error framework. In [116], the generic true SISO input-output
model structure was introduced, i.e. the data-generation model:

 ∶ 𝑦𝑘 = 𝐺0(𝑧)𝑢𝑘 + 𝐻0(𝑧)𝜂𝑘 (4.8)

and its parameterized model:

(𝜃) ∶ 𝑦𝑘 = 𝐺(𝑧, 𝜃)𝑢𝑘 + 𝐻 (𝑧, 𝜃)𝑒𝑘 (4.9)

where 𝐺(𝑧, 𝜃) and 𝐻 (𝑧, 𝜃) are parameterized rational transfer functions and 𝑒𝑘 and
𝜂𝑘 are white noises. In particular, the parameter 𝜃 lives in the parameterized model
set:

 =
{
𝐺(𝑧, 𝜃), 𝐻 (𝑧, 𝜃), 𝜃 ∈ 𝛩 ⊂ R𝑑

}
(4.10)

where  denotes the model family as a whole by defining both the model structure
(the model structural form, i.e. the model class) and themodel complexity (the number
of its parameters, i.e. the order). The particular problem of selecting a model family is
termed model selection. Instead (𝜃) ∈  acts as a particular model or hypothesis
given the parameter 𝜃 which belongs to the hypothesis space. In this framework,
all commonly used model structures were special cases of the generic structure
in Eq. (4.9). Ingredients for the estimation of the parameter 𝜃 are the parameter-
dependent one-step-ahead prediction:

�̂�𝑘|𝑘−1(𝜃) = 𝐻
−1
(𝑧, 𝜃)𝐺(𝑧, 𝜃)𝑢𝑘 + [1 − 𝐻

−1
(𝑧, 𝜃)]𝑦𝑘 (4.11)

and hence the one-step-ahead prediction error:

𝜖(𝜃) = 𝑦𝑘 − �̂�𝑘|𝑘−1(𝜃) = 𝐻
−1
(𝑧, 𝜃)

[(
𝐺0(𝑧) − 𝐺(𝑧, 𝜃))𝑢𝑘 + 𝐻0(𝑧, 𝜃)𝑒𝑘]

(4.12)

Next, given an input-output set  = {𝒖𝑖, 𝒚𝑖}
𝑁
𝑖=1 of 𝑁 data and hence of 𝑁 prediction

errors, the criterion to be minimized can be defined as:

𝑉𝑁 (𝜃,) =
1

𝑁

𝑁

∑

𝑖=1

𝑙(𝜖𝑖(𝜃)) (4.13)

where 𝑙(⋅) is a non-negative scalar-valued function. Minimizing 𝑉 (𝜃,) with respect
to 𝜃 over its domain 𝛩 then yields the parameter estimate:

�̂�𝑁 = arg min
𝜃∈𝛩

𝑉𝑁 (𝜃,) (4.14)

Under some mild assumptions, the asymptotic case results in:

�̂�𝑁 → 𝜃
∗as 𝑁 → ∞ (4.15)

where
𝜃
∗
= arg min

𝜃∈𝛩
E
[
𝑙(𝜖𝑘(𝜃))]

(4.16)

In other words, the procedure is shown to converge to the best approximation of the
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true system contained in the chosen family of models for large datasets.

This work culminated in the publication of the book [20] in 1987 by Ljung, which
has become the standard reference on system identification, both as a theoretical
basis and as a guide for applications. Its usefulness for applications has been greatly
enhanced by the simultaneous production by Ljung in 1987 of the MATLAB System
Identification Toolbox [206]. At the same time, Stoica and Sodestrom complemented
the work by Ljung with [30], a book which adopted the same clear distinction
between choice of model structure and choice of criterion; their contribution focused
less on design issues but more on analysis and on alternative criteria, in particular
criteria based on correlation methods and instrumental variables. In the end, under
this unifying framework known as Prediction Error Minimization methods (PEM)
different kind of models were grouped together. These included, for instance, time
series and dynamical models expressed in their regression representation both having
linear and non-linear characteristic: Auto-Regressive models (AR), Auto-Regressive
models with eXogenous input (ARX), Output-Error models (OE), Auto-Regressive
Moving Average models (ARMA), Auto-Regressive Moving Average with eXogenous
input models (ARMAX), and non-linear variants, e.g. Non-linear Auto-Regressive
Moving Average with eXogenous input models (NARMAX).

1990s-2000s The reasons for the emergence of subspace identification are to be
found in the state of the art of identification of multivariable systems in the 1980s.
Even though the manifold structure of MIMO systems had been extensively studied
in the late 1970s, there were still open problem related to the practical identification
of MIMO systems. The main concern was the parameterizations of multivariable
systems through structure indices which resulted in ill-conditioned numerical pro-
cedures. On the other hand, other techniques such as singular value decomposition
and least squares, which bypassed the need for estimating structure indices, were
numerically stable and consequently more interesting. The development of sub-
space-based identification methods rose in this context, also thanks to the fact that
in that framework the handling of MIMO systems causes no additional difficulty.
In the early 1990s, several research pioneers contributed to breakthroughs in the
mentioned problems, for instance Van Overschee and De Moor — introducing the
N4SID approach [139], Verhaegen — introducing the MOESP approach [165, 166]
and Larimore — presenting subspace techniques (ST) in the framework of Canonical
Variate Analysis (CVA) [202]. Other studies include, for instance, references [61,
194, 62, 101, 143]. See also the valuable textbooks and reviews available in [183, 21,
142].

2010s-2020s In the present days, a revival of the bias-variance tradeoff concept
and of the regularization term and its functioning in the system identification was
made available by the growing interested in machine-learning. At the same time,
novel system identification approaches, based on the kernel-methods, are also being
studied in details. For a complete overview of both lines of active research, please
refer to [184, 186].



Data-driven paradigm to the filtering problem 53

4.2.3 A brief historical review of noise covariance matrices

estimation

The following section presents a brief overview of the noise covariance matrices
(CMs) estimation history from its roots to present days to complement the data-
driven design solutions to the filtering problem. It is interesting to note the developed
and the expected to-be developing historical and technical entanglements between
the control problems, the system identification problems, and the filtering problems
in the community related to the analysis of dynamical systems. The adhere references
are taken mainly from different source of historical references, see [70, 72] and the
mentioned authors’ works.

As stated in the historical review and comparison of estimationmethods in [72]:

“Knowledge of a system model is a key prerequisite for many state
estimation, signal processing, fault detection, and optimal control prob-
lems. The model is often designed to be consistent with random be-
haviour of the system quantities and properties of the measurements.
While the deterministic part of the model often arises frommathematical
modelling on the basis of physical, chemical, or biological laws govern-
ing the behaviour of the system, the statistics of the stochastic part are
often difficult to find by the modelling and have to be identified using the
measured data. Incorrect description of the noise statistics may result
in significant worsening of estimation, signal processing, detection, or
control quality or even in a failure of the underlying algorithms.”

In this sense, in the last five decades, a great research interest has been focused on
a design of the methods for the estimation of the properties of the stochastic part
of the model. In particular, the following review focuses on state-space models in
discrete-time even though attention has been devoted also to input-output models,
both with recursive and batch processing methods. It is also important to highlight
the interest of the methods estimating the covariance matrices (CMs) of noises in
the state and measurement equation from a sequence of measured data, conforming
to the framework of the data-driven paradigm of the filtering design problem.

In the literature, an extensive number of various noise CM estimation methods can be
found, see for instance industrial applications with components of adaptive control
and signal processing systems [40, 75, 136, 147]. The methods differ in assumptions
related to the considered model, underlying ideas and principles, properties of the
estimates, and number and essence of the design parameters. Traditionally, four
groups are related to the noise CMs estimation methods, namely:

1. The correlation methods, see [47, 207, 136, 177] and many more publications
[34, 36, 38, 39, 49, 192, 66, 70, 195, 71, 76, 78, 80, 109, 113, 114, 204, 117, 132,
141, 144, 148, 157, 218, 174, 176] extracted from the detailed review [72].

2. The maximum-likelihood methods (MLMs), see [179, 44, 46, 79, 197, 100, 152,
156, 28, 164, 167];

3. The covariance matching methods (CMMs), see [63, 67, 73, 85, 182, 108, 121,
122, 130, 131, 187, 160, 215, 168];
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4. The Bayesian methods, see [39, 192, 77, 78, 87, 107, 203, 112, 205, 118–120, 140,
148, 150, 158, 159, 163, 169–171]

In the literature, several papers characterize the methods by their properties, ad-
vantages, and disadvantages. In particular, the mentioned four groups of available
methods differ for their estimation approach, which ultimately can be:

• Feedback methods, where the unknown parameters of the noise CMs are es-
timated simultaneously with the unknown state by joint or dual estimation
techniques. In this case, the augmented state vector enforces that a technique
of nonlinear state estimation has to be applied since a relatively simple es-
timator with a linear structure with respect to the measurement, providing
only two conditional moments of the state estimate, fails: the reason can be
found in a missing (linear) correlation between the elements of the extended
state. Following this rationale, the feedback noise CM estimation methods are
covered mostly by the Bayesian methods and the CMMs. Two approaches can
be identified within the Bayesian methods: (i) the joint estimation of the state
and noise CMs using a nonlinear filter [77, 107, 205, 118, 119, 140, 150, 163,
169–171] and (ii) a multiple model approach [39, 192, 78, 87, 107, 203, 112, 205,
120, 148, 150, 158, 171] which provides CM estimates as a mixture of basis CMs.
The CMMs utilize a (non)linear filter for the estimation of the state and aim
for making the noise CM estimates and the state and measurement estimate
errors consistent [63, 67, 73, 85, 182, 108, 121, 122, 130, 131, 187, 160, 215, 168];
An example of the architecture of these methods is available in Fig. 4.2.

• Feedback-free methods, where the state and statistics of the measurement
prediction are estimated by a (nonoptimal) estimator for all time instants and
then themeasurement prediction error and its statistics are used to estimate the
noise CMs. In particular, this alternative approach decomposes an inherently
nonlinear task into two coupled simpler tasks: i) non-optimal estimation of the
state and computation of the measurement prediction error sequence (i.e. the
innovation), ii) noise CM estimation by a statistical analysis of the innovation
sequence. The estimate of the noise CMs is thus not needed for the state
estimate, hence the name feedback-free methods. The architecture of these
methods is depicted in Fig. 4.3. The feedback-free noise CM estimationmethods
cover the correlation methods and the MLMs. The correlation methods are
based on an analysis of the innovation sequence properties of a suboptimal
linear filter, see [34, 36, 38, 39, 49, 192, 66, 70, 195, 71, 76, 78, 80, 109, 113,
114, 204, 117, 132, 141, 144, 148, 157, 218, 174, 176]. Instead, the MLMs are
based on optimization techniques from the system identification designed for
input-output models, see for instance [179, 44, 46, 79, 197, 100, 152, 156, 28, 164,
167]. The feedback-free methods for linear models are based on the system
observability assumption. The methods can typically estimate all elements of
the CM 𝑹 and no more than 𝑛𝑥 ⋅ 𝑛𝑦 elements of the CM 𝑸 if an LTI model is
considered.
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Figure 4.2: Illustration of the feedback architecture for noise CM estimation.

4.2.4 The correlation techniques for noise covariance matrices

estimation

Estimation of the noise CMs was pioneered by Mehra in [123, 207] and is denoted
as the Indirect Correlation Method following the proposition of the review [72].
The method is based on an analysis of the Auto Correlation Function (ACF) of the
innovation of a linear predictor, which may not be optimal in the mean square error
(MSE) sense. Correlation techniques are based on the idea that once the deterministic
part of a plant is modelled accurately, the residuals from the deterministic part
then carry information about the noises entering the plant. These residuals (or
innovations) can then be correlated with each other to extract information about
the covariance of the disturbances entering the plant. The introduced basic idea
gave rise to a group of methods commonly denoted as the correlation methods. For
the sake of simplicity, in this small review are covered only the basic ideas of the
pioneering ICM method and later, of the newest research of correlation methods,
the so-called Direct Correlation Method (DCM) presented by Odelson et al., see [136],
which will be exploited for the implementation of a working estimation routine in
Chapter 5. The DCM method, also known as Auto Least-Square (ALS) technique,
offers significant advantages over other techniques in the literature, for instance the
basic indirect approach. In particular, the ALS procedure solves a single least-squares
problem while the other techniques estimate the covariances in two steps. Solving a
single least-squares problem leads to smaller variance in the estimates as opposed to
using two steps.
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Figure 4.3: Illustration of the feedback-free architecture for noise CM estimation.

The Indirect Correlation Method

The ICM is designed for an LTI model and is based on the definition of an asymptot-
ically stable linear predictor (or filter):

�̂�𝑘 = �̂�
−
𝑘 + 𝑳(𝒚𝑘 − 𝑪�̂�

−
𝑘 ) (4.17a)

�̂�
−
𝑘+1 = 𝑨�̂�𝑘 + 𝑩𝒖𝑘 (4.17b)

using the notation �̂�𝑘 ≡ �̂�𝑘|𝑘 and �̂�−
𝑘 ≡ �̂�𝑘|𝑘−1, and with an arbitrary initial condition

�̂�−
0 , where the predictor gain 𝑳 is selected such that the matrix �̄� ≡ 𝑨−𝑨𝑳𝑪 is stable.

Then, the state prediction error �̂�−
𝑘 ≡ 𝒙𝑘 − �̂�−

𝑘 and the measurement prediction error
(i.e. innovation) �̂�−𝑘 ≡ 𝒚𝑘 − �̂�−

𝑘 evolve according to the error-state model as follows:

�̂�
−
𝑘+1 = �̄��̂�

−
𝑘 + 𝜞�̄�𝑘 (4.18a)

�̂�
−
𝑘 = 𝑪�̂�

−
𝑘 + 𝒗𝑘 (4.18b)

where the measurement prediction is the usual �̂�−
𝑘 = 𝑪�̂�−

𝑘 , and with 𝜞 = [𝑰𝑛𝒙 ,−𝑨𝑪],
�̄�𝑘 = [𝒘T

𝑘, 𝒗
T
𝑘]

T, and 𝑰𝑛𝒙 is the identity matrix of dimension 𝑛𝒙 .

In the asymptotic case, the innovation is a zero-mean stochastic process whose Auto
Correlation Function (ACF) is defined by:

𝑷𝝐(𝜏) ≡ E[𝝐𝑘𝝐
T
𝑘−𝜏] =

{

𝑪𝑷𝑪T + 𝑹 if 𝜏 = 0

𝑪�̄�𝜏−1𝑨(𝑷𝑪
T − 𝑳𝑷𝝐(0)) if 𝜏 ≠ 0

(4.19)

where the CM of the steady-state innovation (measurement prediction error) 𝑷 =

E[𝝐𝑘𝝐
T
𝑘], when 𝑘 → ∞ is given by the solution of the Lyapunov equation of the

form:
𝑷 = �̄�𝑷�̄�

T
+ 𝑨𝑳𝑹𝑳

T
𝑨

T
+ 𝑸 (4.20)
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It is worth noting that ACF in Eq. (4.19) is a function of the known matrices 𝑨, 𝑪,
and 𝑳 and the unknown matrices 𝑸, 𝑹, and 𝑷𝝐(𝜏), ∀𝜏.

In Algorithm 4.1 it is presented the ICM algorithm for the noise CMs estimation.
It is shown that the ICM method is based on several intermediate steps prior the
computation of the estimates of the noise CMs, hence the name indirect.

Algorithm 4.1: The indirect correlation method algorithm for noise co-
variance matrices estimation.
Estimation of the ACF:

1 Design an asymptotically stable linear filter, see Eq. (4.17)
2 Compute the innovation sequence {𝝐𝑘}𝑖𝑘=0
3 Estimation of the ACF defined by Eq. (4.19) according to:

�̂�𝝐(𝜏) =
1

𝑖 − 𝜏

𝑖

∑

𝑘=𝜏

𝝐𝑘𝝐𝑘−𝜏 , 𝜏 = 0, 1,… , 𝑁 − 1 (4.21)

where 𝑁 is the number of the computed terms of the ACF in Eq. (4.21)
Noise CMs estimation:

Based on the system of 𝑁 linear matrix equations, see Eq. (4.19), the noise
CMs are estimated using three subsequent steps:

4 Substitute �̂�𝝐(𝜏) for 𝑷𝝐(𝜏) in Eq. (4.19) for 𝜏 = 0, 1,… , 𝑁 − 1, solve the
system of equations with 𝑷𝝐(0) = �̂�𝝐(0) and finally compute the Least
Square (LS) estimate 𝑷𝑪T of the term 𝑷𝑪T

5 Substitute 𝑷𝑪T for 𝑷𝑪T in Eq. (4.19) and compute the estimate �̂� of the
measurement noise CM 𝑹

6 Multiply and post-multiply both sides of Eq. (4.20) by 𝑪 and 𝑪T, respectively.
Substitute 𝑷𝑪T for 𝑷𝑪T. Finally compute the estimate �̂� of the state noise
CM 𝑸 using the LS method

The Direct Correlation Method

An upgrade of the ICM is proposed by the method from the work by Odelson [136],
which reformulates the problem so that the noise CMs are estimated in a single step.
Therefore, the method is referred to as the DCM. In the mentioned work, the DCM
was first designed for the Gaussian LTI models.

Similarly to the previous correlation methods, the DCM computes and estimates the
CMs of the innovation sequence of a stable linear predictor. The derived innovation
sequence CMs are, in principle, the same as those used in the ICM, see Eq. (4.19).
They are reformulated as follows:

𝑷𝝐(𝜏) ≡ E[𝝐𝑘𝝐
T
𝑘−𝜏] =

{

𝑪𝑷𝑪T + 𝑹 if 𝜏 = 0

𝑪�̄�𝜏𝑨𝑷𝑪T − 𝑪�̄�𝜏−1𝑨𝑳𝑹 if 𝜏 ≠ 0
(4.22)

where 𝜏 = 0, 1,… , 𝑁 − 1. Again, the steady-state CM of the state prediction error is
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given by the solution to the following extended Lyapunov equation:

𝑷 = �̄�𝑷�̄�
T
+ 𝜞

[

𝑸 𝟎𝑛𝒙×𝑛𝒚
𝟎𝑛𝒚×𝑛𝒙 𝑹 ]

𝜞
T (4.23)

Using the notation ⊗ for the Kronecker product and 𝑷𝑠 for the column-wise stacking
of matrix 𝑷 into a vector [53], the solution of Eq. (4.23) can be explicitly written as
follows:

𝑷𝑠 = (𝑰𝑛2𝒙 − �̄� ⊗ �̄�)
−1
(𝜞 ⊗ 𝜞 )

[

𝑸 𝟎𝑛𝒙×𝑛𝒚
𝟎𝑛𝒚×𝑛𝒙 𝑹 ]

𝑠

(4.24)

Substituting Eq. (4.24) into Eq. (4.22) results in a system of linear equations for the
elements of 𝑸 and 𝑹. As already seen for the ICM, the DCM algorithm is presented
in Algorithm 4.2.

Algorithm 4.2: The direct correlation method algorithm for noise covari-
ance matrices estimation.
Estimation of the ACF:

1 Design an asymptotically stable linear filter, see Eq. (4.17)
2 Compute the innovation sequence {𝝐𝑘}𝑖𝑘=0
3 Estimation of the ACF defined by Eq. (4.22) according to:

�̂�𝝐(𝜏) =
1

𝑖 − 𝜏

𝑖

∑

𝑘=𝜏

𝝐𝑘𝝐𝑘−𝜏 , 𝜏 = 0, 1,… , 𝑁 − 1 (4.25)

where 𝑁 is the number of the computed terms of the ACF in Eq. (4.21)
Noise CMs estimation:

Based on the system of 𝑁 linear matrix equations, see Eq. (4.22), the noise
CMs are estimated directly using a single step:

4 Compute the estimates �̂� and �̂� of the state noise CMs using the LS method
with respect to Eq. (4.24)

The DCM in Algorithm 4.2 provides asymptotically unbiased estimates. In the
work by Rajamani and Rawlings[144] the estimation of the structural properties
of the state noise within the concept of the DCM was discussed. Instead, in the
work by Duník et al. [70] the impact of the user-defined parameters, namely, the
gain matrix 𝑳 and the number of equations 𝑁 , was discussed and a method for
their optimal setting was proposed as well. The method can be understood as a
compensation for the effect of nonoptimal weighting matrix (typically, the identity
matrix) used in the LSM solution of the DCM. The method was originally designed
for the LTI models and later was extended for: (i) LTI models with correlated state
and measurement noises [36, 117] providing asymptotically unbiased estimates, (ii)
linear periodic models providing asymptotically unbiased estimates [157], (iii) linear
models with time-correlated noises providing asymptotically unbiased estimates
[195, 204], (iv) nonlinear models (based on a linearization of the model) at the cost of
losing the property of the asymptotically unbiased estimates [34, 80, 113, 114], and (v)
systems with LTI state equation and LTV or nonlinear measurement equation with



Data-driven paradigm to the filtering problem 59

a possibility to provide asymptotically unbiased estimates [71]. The computational
efficiency of the method for high-dimensional models was discussed in the work
by Zagrobelny and Rawlings [174]. Theoretical insights into the estimation of the
unique elements of the noise CMs can be found in the work by Kost et al. [104]. For
a general review and introduction see also the Ph.D. thesis of Rajamani [185].

4.2.5 The direct solution: a one-step approach

In opposition with the standard solution presented in Section 4.2.1, here is now
explored the direct solution to the filtering design problem. This kind of paradigm,
as the name suggests, relies on a direct approach which is based on a single step
instead of two as in the standard solution. It also interesting to mention that the
terminology is in analogy with the term Direct Control coined in the Identification
for Control (I4C) research field, see [57, 181, 83, 88, 89, 201]. The development of
the direct paradigm started when the practical problems of the standard solutions
emerged in many applications, which are:

1. Only an approximated model ̂ ≈  can be identified from the available
dataset = {𝒖𝑘, 𝒚𝑘, 𝒛𝑘} containing also samples of the variable of interest 𝒛𝑘 to
be filtered. For this reason, a filter which is optimal designed for the estimated
model ̂ may, instead, display a large estimation error when applied to the
real system  .

2. In a non-linear system, designing a computationally tractable optimal filter is
very difficult and often only approximate filters can be derived, whose stability
is not even guaranteed.

Evaluating how these sources of approximation affect the filter estimation accu-
racy is still an open problem. For these reasons, the alternative approach of Direct
Filtering (DF) is investigated in 2006, see [208], which is introduced to overcome
the highlighted issues. Again, as the name suggests, this methodology makes use
of the available dataset  for the direct design of the filter. As a consequence, the
intermediate system identification step, which is a core step in the standard solution,
is now skipped entirely. Following this rationale, the data are not used for the esti-
mation of a model of the system but instead for the direct estimation of a model of
the filter. The DF approach thus represents a paradigm shift in filter design, allowing
the design of optimal filters and overcoming the mentioned problems.

2000s In the early 2000s pioneering contributions and ideas to Direct Filtering
have been developed within a Set-Membership (SM) framework by Milanese et al.
[125, 126, 129]. In these works the additive noises affecting the system are assumed
unknown but bounded, and no parametric filter structure is used. Thus, they can be
thought of as a deterministic solution to develop the DF paradigm. In the late 2000s,
other contributions followed: i) a work by Novara for linear time-invariant (LTI)
systems [133], ii) a work by Ruiz for linear parameter-varying (LPV) systems [149],
and iii) a work by Milanese for non-linear systems [128]. Practical applications,
mainly in the automotive field, can be also found in the literature developed in these
years in [193, 209, 210].

In particular, it is now presented a reproduction of the simulated example of the
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work in [208], where the term "direct" was coined for the first time. Also, in the
mentioned work it is also made available a founding comparison between the new
direct filtering paradigm and the standard solution based on the two-step approach.
In the example, it is considered the case of a direct filtering design for the analysis of
a non-liner system. In particular, the deterministic non-linear system under analysis
is the Lorenz Attractor, which consists of a three-dimensional dynamical system
derived from the simplified equations of convection rolls arising in the dynamical
equations of the atmosphere. For a certain set of parameters the system exhibits
chaotic behavior and displays what is called a strange attractor, as displayed for
instance by the parametric solution in phase space in Fig. 4.4. The main features
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Figure 4.4: The graphical solution displays the chaotic behavior of the Lorenz attrac-
tor problem for the particular choice of parameters: 𝜏 = 0.01, 𝜎 = 10, 𝜌 = 28, 𝛽 = 8

3
.

of a chaotic system are high sensitivity to initial conditions and unstable solutions.
In particular, the discretization in time of the differential equations of the Lorenz
system results in the following discrete-time system:

𝑥
1
𝑘+1 = (1 − 𝜏𝜎)𝑥

1
𝑘 + 𝜏𝜎𝑥

2
𝑘 (4.26a)

𝑥
2
𝑘+1 = (1 − 𝜏)𝑥

2
𝑘 − 𝜏𝑥

1
𝑘𝑥

3
𝑘 + 𝜏𝜌𝑥

1
𝑘 (4.26b)

𝑥
3
𝑘+1 = (1 − 𝜏𝛽)𝑥

3
𝑘 + 𝜏𝑥

1
𝑘𝑥

2
𝑘 (4.26c)

𝑦𝑘 = 𝑥
1
𝑘 + 𝑣𝑘 (4.26d)

𝑧𝑘 = 𝑥
2
𝑘𝑥

3
𝑘 + 𝑒𝑘 (4.26e)

where in this example the notation with the exponent 𝑥 𝑖
𝑘 stands for the 𝑖-th compo-

nent of the state variable at the 𝑘-th time instant, normally encoded in the compacted
vector form as 𝒙𝑘 in previous examples. The variables 𝜏, 𝜎, 𝜌, and 𝛽 are positive
parameters of the system. The noises 𝑣𝑘 and 𝑒𝑘 are i.i.d. Gaussian processes with the
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following statistics:

𝑣𝑘 ∼  (0, 0.022) (4.27)
𝑒𝑘 ∼  (0, 202) (4.28)

Following the reproduction of the example, the system in Eq. (4.26) has been sampled
to collect a dataset consisting of 8000 samples. In particular, the key idea for the
direct filtering paradigm is found in Eq. (4.26e), that shows that a dedicated equation
is available to collect some samples of the desired variable, here labeled as 𝑧𝑘, to
be estimated. The desired variable equation reflects the idea that for the designer
of the filter, the variable can be measured for a limited amount of time. This is the
case, for instance, of real world applications when industrial prototyping enable
this possibility. On the other hand, after the filter is designed and ready to be used,
the desired variable equation is no longer available, and the idea is that the filter
must work without that knowledge. In other words, the information encoded in the
desired variable equation is exploited ex-ante, only for the a-priori design of the filter.
Instead, the designed direct filters works with just the knowledge of input-output
data collected from the operation of the dynamical system.

To this end, returning to the example, the dataset simulated from the example has
been partitioned in two sets:

ID =
{
(𝑢𝑘, 𝑦𝑘, 𝑧𝑘), 𝑘 = 1,… , 𝑁ID

}
(4.29)

VL =
{
(𝑢𝑘, 𝑦𝑘), 𝑘 = 𝑁ID+1,… , 𝑁VL

}
(4.30)

with 𝑁ID = 6000 and 𝑁VL = 8000.

Then, in a parameterized stochastic setting, the dataset formed for the design of the
filter, labeled as ID, is used for the identification of the parameters of the following
filter:

�̂�𝑘 = 𝑓DF(𝜽DF, 𝒀𝑘,𝑼𝑘,𝒁𝑘) (4.31)

where 𝒀𝑘 and 𝒀𝑘 in general are formed from Lem. 4.1 whose proof is also contained
in [208]. The idea of this lemma is to have the existence of a desirable function that
depends on available input and output data collected from the dynamical system.
In other words it proves the existence of a function that can be used for the direct
filtering paradigm.

Lemma 4.1. Consider the general system in Eq. (4.1). If (𝑓 , ℎ𝒚) is observable, then ∃𝑓0

and integers 𝑛1, 𝑛2 ≤ 𝑛𝒙 such that:

𝑧𝑘 = 𝑓0(𝒀𝑘,𝑼𝑘) (4.32)
𝒀𝑘 = [𝒚𝑘, 𝒚𝑘−1,⋯ , 𝒚𝑘−𝑛1+1] (4.33)
𝑼𝑘 = [𝒖𝑘, 𝒖𝑘−1,⋯ , 𝒖𝑘−𝑛2+1] (4.34)

In particular, the regression function in Eq. (4.31) used for the filter structure is a
neural network categorized as having a one hidden layer with 𝑟 neurons (the simplest
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feedforward neural network):

𝑓DF(𝜽DF, 𝒀𝑘,𝑼𝑘,𝒁𝑘) =

𝑟

∑

𝑖=1

𝛼𝑖𝜎[𝛽𝑖(𝒀𝑘,𝑼𝑘,𝒁𝑘) − 𝜆𝑖] + 𝜁 (4.35)

where 𝜽DF = {𝛼𝑖, 𝜆𝑖, 𝜁 , 𝛽𝑖, 𝑖 = 1,⋯ , 𝑟} is the set of parameters and 𝜎(𝑥) is the sigmoidal
function used as the activation function of the neural network:

𝜎(𝑥) =
2

1 + 𝑒−2𝑥
(4.36)

To conclude the design of the filter, several neural networks of the form in Eq. (4.35)
with different number of neurons (from 𝑟 = 2 to 𝑟 = 15) have been trained on the
identification set ID. In the end, the neural network showing the lowest estimation
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Figure 4.5: A comparison of the Lorenz attractor solution on the validation set VL:
in black the true data 𝒛𝑘 simulated from the system in Eq. (4.26) and in red the
estimated data �̂�𝑘 after applying the direct filtering idea.

error on the validation dataset VL in a MSE (Mean Square Error) sense has been
chosen. Results are displayed in Fig. 4.5 where it is possible to compare the filtered
states using the available input and output data for 𝑘 = 𝑁ID + 1,⋯ , 𝑁VL with the
actual values simulated from the system. In other words, after the identified filter
has been applied to the validation set VL, the filter performance turned out to be
quite satisfactory. Indeed, the resulting Root Mean Square Estimation Error (RMSEE)
is 24, which is close to the standard deviation of the noise affecting the desirable
variable 𝑧𝑘.

An example related to the Lorenz attractor is presented to demonstrate the effective-
ness of the presented approach.

To conclude, the results of the reproduction of the example in [208] shows that a
direct filtering paradigm is indeed interesting and demonstrates its effectiveness.
Moreover, the work contributes also with theoretical insights showing that the
two-step procedure found in the classical solution is proved to perform, in the case
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of exact modeling, no better than the direct approach. In the presence of modeling
errors, the directly identified filter is proved to be anyway the minimum variance
estimator, among the selected approximating filter class. A similar result is not
assured by the two-step design, whose performance deterioration due to modeling
errors may be significantly larger. Another relevant point is that minimum variance
filters for nonlinear systems are in general difficult to derive and/or to implement,
and widely used approximate solutions quite often exhibit poor performance. On
the contrary, the recent progresses in nonlinear identification methods may allow
the direct filter identification.

Further work in a more structured parametric-stochastic setting has been introduced
also in the early 2010s by Novara et al. in [135], and it is one of the focus of the present
dissertation to be further investigated. To this end, Chapter 6 will be dedicated to
formulate the parametric-stochastic setting for the direct filtering idea for steady-
state filters derived from LTI systems. The aim of the contribution is to propose
a direct solution to the filtering design problem where both an appropriate model
structure and a model order complexity for the parametric estimation of the filter is
derived. Then, a fair comparison of filtering performance between the direct and
classical solutions will be analyzed in different experimental settings in Chapter 7.
The results of the comparison aims to validate whether the direct solution gives
better or no-worse filtering performance than the classical solution when critical
practical problems are taken into account, i.e. estimation of noise covariance matrices
𝑸 and 𝑹, as highlighted in the classical solution.
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CHAPTER 5

The standard solution to the
filtering design from data problem

As already seen in Chapter 4, the derivation of data-driven solutions, namely the stan-
dard one and the direct one, to the filtering design problem is carried out considering
the following general description of a discrete-time LTI system  :

∶
𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝒖𝑘 + 𝑮𝒘𝑘

𝒚𝑘 = 𝑪𝒙𝑘 + 𝑫𝒖𝑘 + 𝒗𝑘

𝒛𝑘 = 𝑪2𝒙𝑘 + 𝒆𝑘

(5.1a)
(5.1b)
(5.1c)

where the new Eq. (5.1c) describes the possibility to measure the desired variable
𝒛𝑘 to be filtered, for a limited amount of time, i.e. for 𝑘 = 1,… , 𝑁ID. In Eq. (5.1c), 𝒆𝑘
denotes the measurement noise affecting the equation.

For the derivation of filtering solutions, the general framework in Eq. (5.1) is further
simplified as follows:

∶
𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝒘𝑘

𝒚𝑘 = 𝑪𝒙𝑘 + 𝒗𝑘

𝒛𝑘 = 𝒙𝑘 + 𝒆𝑘

(5.2a)
(5.2b)
(5.2c)

by considering only the stochastic component of the sub-system, i.e. 𝑩 = 𝑫 = 𝟎,
the process noise shaping matrix is the identity matrix for the sake of simplicity, i.e.
𝑮 = 𝑰 , and the measurement matrix of the desired variable is the identity matrix, i.e.
𝑪2 = 𝑰 .

Later, the assumption that 𝑩 = 𝟎 is relaxed in the presence of a deterministic
exogenous input, i.e. 𝑩 ≠ 𝟎, in Chapter 7 when performing experimental tests.

Considering the the standard solution to the filtering design from data problem,
in general, assuming that 𝑩 ≠ 𝟎 and 𝑪2 ≠ 𝑰 requires to identify a model for those
unknown matrices by exploiting the available measurements. For instance, consid-
ering the case of estimating the matrices 𝑨,𝑩,𝑪,𝑫, a subspace system identification
method could be applied. These case studies are not the main focus of the research
to be presented in this dissertation and have therefore not been explored further.
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However, it remains interesting to evaluate the potential of these studies in future
research projects dealing with same filtering context.

Nonetheless, as seen in Section 4.2, the standard solution to the filtering design from
data problem is derived considering a two-step approach:

1. First, a data-driven system identification step is performed.

2. Then, a filter design step is performed on the identified system.

Following this scheme, the chapter is organized as follow:

1. Section 5.1 introduces sequential steps that need to be performed in order to
estimate the deterministic components of the system, matrice 𝑨 and 𝑪. In
other words, the undertaken system identification routine is introduced.

2. Section 5.2 introduces sequential steps that need to be performed in order to
estimate the stochastic components of the system, matrice 𝑸 and 𝑹, required
for the design of the filter. In other words, the undertaken filter design routine
is introduced.

5.1 The system identification step

Considering the system identification step, instead of using classical techniques
as described in the brief historical review in Section 4.2.2, in this section the new
Eq. (5.1c) is exploited in order to estimate the deterministic component of the system
 . This idea is important since the new available equation encodes new knowledge
that could not be used in the classical solutions but can be exploited now. This is also
in accordance with the fact that the same knowledge will be used in the development
of the direct solution methodology in Chapter 6, thus enabling a fair comparison of
framework and (available and used) "ingredients".

In the next sections, it will be shown how the standard solution makes use of the
available data of the system in order to estimate matrices 𝑨 and 𝑪.

5.1.1 Estimation of the state matrix

Since system  is LTI and regressor data 𝒛1∶𝑁ID are available, the state matrix 𝑨

can be estimated considering Eq. (5.1c) substituted in (5.1a) giving the following
regression model:

𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝒘𝑘 (5.3a)
𝒛𝑘+1 − 𝒆𝑘+1 = 𝑨(𝒛𝑘 − 𝒆𝑘) + 𝒘𝑘 (5.3b)

𝒛𝑘+1 = 𝑨𝒛𝑘 + 𝒆𝑘+1 − 𝑨𝒆𝑘 + 𝒘𝑘 (5.3c)
𝒛𝑘+1 = 𝑨𝒛𝑘 + 𝜼𝑘 (5.3d)

where 𝜼𝑘 ≡ 𝒆𝑘+1 − 𝑨𝒆𝑘 + 𝒘𝑘.

Statistics of the noise 𝜼𝑘 can be computed as follows:

𝝁𝜼 ≡ E[𝜼𝑘] = E[𝒆𝑘+1 − 𝑨𝒆𝑘 + 𝒘𝑘] =����E[𝒆𝑘+1] − 𝑨�
��E[𝒆𝑘] +����E[𝒘𝑘] = 𝟎, ∀𝑘 (5.4)
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𝜮𝜼 ≡ E[(𝜼𝑘 − 𝝁𝜼)(𝜼𝑘 − 𝝁𝜼)
T
] = E[𝜼𝑘𝜼

T
𝑘] (5.5a)

= E[(𝒆𝑘+1 − 𝑨𝒆𝑘 + 𝒘𝑘)(𝒆𝑘+1 − 𝑨𝒆𝑘 + 𝒘𝑘)
T
] (5.5b)

= E[𝒆𝑘+1𝒆
T
𝑘+1] −�����E[𝒆𝑘+1𝒆

T
𝑘]𝑨

T
+�����
E[𝒆𝑘+1𝒘

T
𝑘] − 𝑨�����E[𝒆𝑘𝒆

T
𝑘+1] + 𝑨E[𝒆𝑘𝒆

T
𝑘]𝑨

T

− 𝑨�����
E[𝒆𝑘𝒘

T
𝑘] +�����

E[𝒘𝑘𝒆
T
𝑘+1] −�����

E[𝒘𝑘𝒆
T
𝑘]𝑨

T
+ E[𝒘𝑘𝒘

T
𝑘]

(5.5c)

= 𝜮𝒆 + 𝑨𝜮𝒆𝑨
T
+ 𝑸, ∀𝑘 (5.5d)

By computing the cross-covariance function 𝜮𝒛𝜼 it turns out that the regressor 𝒛𝑘 is
correlated with the noise 𝜼𝑘:

𝜮𝒛𝜼 = E[(𝒛𝑘 − 𝝁𝒛)(𝜼𝑘 − 𝝁𝜼)
T
] = E[𝒛𝑘𝜼

T
𝑘] (5.6a)

= E[(𝒙𝑘 + 𝒆𝑘)(𝒆𝑘+1 − 𝑨𝒆𝑘 + 𝒘𝑘)
T
] (5.6b)

= E[𝒙𝑘𝒆
T
𝑘+1 − 𝒙𝑘𝒆

T
𝑘𝑨

T
+ 𝒙𝑘𝒘

T
𝑘 + 𝒆𝑘𝒆

T
𝑘+1 − 𝒆𝑘𝒆

T
𝑘𝑨

T
+ 𝒆𝑘𝒘

T
𝑘] (5.6c)

= E[����
𝒙𝑘𝒆

T
𝑘+1] −����

E[𝒙𝑘𝒆
T
𝑘]𝑨

T
+�����
E[𝒙𝑘𝒘

T
𝑘] +�����E[𝒆𝑘𝒆

T
𝑘+1] − E[𝒆𝑘𝒆

T
𝑘]𝑨

T
+�����
E[𝒆𝑘𝒘

T
𝑘] (5.6d)

= −𝜮𝒆𝑨
T (5.6e)

𝜮𝜼𝒛 ≡ 𝜮
T
𝒛𝜼 = −(𝑨

T
)
T
𝜮

T
𝒆 = −𝑨𝜮𝒆 (5.7)

Finally, the system matrix estimate �̂�LS is:

�̂�LS = 𝒛𝑘+1𝒛
T
𝑘(𝒛𝑘𝒛

T
𝑘)

−1 (5.8a)
= (𝑨𝒛𝑘 + 𝜼𝑘)𝒛

T
𝑘(𝒛𝑘𝒛

T
𝑘)

−1 (5.8b)
= 𝑨𝒛𝑘𝒛

T
𝑘(𝒛𝑘𝒛

T
𝑘)

−1
+ 𝜼𝑘𝒛

T
𝑘(𝒛𝑘𝒛

T
𝑘)

−1 (5.8c)
= 𝑨 + 𝜼𝑘𝒛

T
𝑘(𝒛𝑘𝒛

T
𝑘)

−1 (5.8d)

where estimate �̂�LS is biased due to regressor 𝒛𝑘 being endogenous, i.e. 𝜮𝜼𝒛 = −𝑨𝜮𝒆 ≠

𝟎, see Eq. (5.7).

In order to compute an unbiased estimate, an instrumental variable approach might
be considered. To this end, the following instrumental variable is considered:

𝝓𝑘 = 𝒛𝑘−1 (5.9)

By computing the cross-covariance function 𝜮𝜼𝝓 it turns out that the instrument 𝝓𝑘

is uncorrelated with the noise 𝜼𝑘:

𝜮𝜼𝝓 = E[(𝜼𝑘 − 𝝁𝜼)(𝝓𝑘 − 𝝁𝝓)
T
] = E[𝜼𝑘𝝓

T
𝑘] (5.10a)

= E[(𝒆𝑘+1 − 𝑨𝒆𝑘 + 𝒘𝑘)(𝒙𝑘−1 + 𝒆𝑘−1)
T
] (5.10b)

= E[𝒆𝑘+1𝒙
T
𝑘−1 + 𝒆𝑘+1𝒆

T
𝑘−1 − 𝑨𝒆𝑘𝒙

T
𝑘−1 − 𝑨𝒆𝑘𝒆

T
𝑘−1 + 𝒘𝑘𝒙

T
𝑘−1 + 𝒘𝑘𝒆

T
𝑘−1] (5.10c)

=������
E[𝒆𝑘+1𝒙

T
𝑘−1] +������

E[𝒆𝑘+1𝒆
T
𝑘−1] − 𝑨�����

E[𝒆𝑘𝒙
T
𝑘−1] − 𝑨�����E[𝒆𝑘𝒆

T
𝑘−1]

+������
E[𝒘𝑘𝒙

T
𝑘−1] +�����

E[𝒘𝑘𝒆
T
𝑘−1]

(5.10d)

= 𝟎 (5.10e)
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Then, the unbiased estimate �̂�IV is given by:

�̂�IV = 𝒛𝑘+1𝝓
T
𝑘(𝒛𝑘𝝓

T
𝑘)

−1 (5.11a)
= (𝑨𝒛𝑘 + 𝜼𝑘)𝝓

T
𝑘(𝒛𝑘𝝓

T
𝑘)

−1 (5.11b)
= 𝑨𝒛𝑘𝝓

T
𝑘(𝒛𝑘𝝓

T
𝑘)

−1
+ 𝜼𝑘𝝓

T
𝑘(𝒛𝑘𝝓

T
𝑘)

−1 (5.11c)
= 𝑨 +�������

𝜼𝑘𝝓
T
𝑘(𝒛𝑘𝝓

T
𝑘)

−1 (5.11d)

where now 𝝓𝑘 is exogenous, i.e. 𝜮𝜼𝝓 = 𝟎.

5.1.2 Estimation of the output matrix

Similar reasoning can be applied to the estimation of the output matrix 𝑪, where
the regression model is given by Eq. (5.1c) substituted in (5.1b):

𝒚𝑘 = 𝑪𝒙𝑘 + 𝒗𝑘 (5.12a)
𝒚𝑘 = 𝑪(𝒛𝑘 − 𝒆𝑘) + 𝒗𝑘 (5.12b)
𝒚𝑘 = 𝑪𝒛𝑘 + 𝜿𝑘, 𝜿𝑘 ∼  (𝝁𝜿,𝜮𝜿) (5.12c)

where 𝜿𝑘 ≡ 𝒗𝑘 − 𝑪𝒆𝑘.

Statistics of the noise 𝜿𝑘 can be computed as follows:

𝝁𝜿 ≡ E[𝜿𝑘] = E[𝒗𝑘 − 𝑪𝒆𝑘] =���E[𝒗𝑘] − 𝑪���E[𝒆𝑘] = 𝟎, ∀𝑘 (5.13)

𝜮𝜿 ≡ E[(𝜿𝑘 − 𝝁𝜿)(𝜿𝑘 − 𝝁𝜿)
T
] = E[𝜿𝑘𝜿

T
𝑘] (5.14a)

= E[(𝒗𝑘 − 𝑪𝒆𝑘)(𝒗𝑘 − 𝑪𝒆𝑘)
T
] (5.14b)

= E[𝒗𝑘𝒗
T
𝑘] − 𝑪����

E[𝒗𝑘𝒆
T
𝑘] − 𝑪����

E[𝒆𝑘𝒗
T
𝑘] + 𝑪E[𝒆𝑘𝒆

T
𝑘]𝑪

T (5.14c)
= 𝑪𝜮𝒆𝑪

T
+ 𝑹, ∀𝑘 (5.14d)

By computing the cross-covariance function 𝜮𝜿𝒛 it turns out that the regressor 𝒛𝑘 is
correlated with the noise 𝜿𝑘:

𝜮𝜿𝒛 = E[(𝜿𝑘 − 𝝁𝜿)(𝒛𝑘 − 𝝁𝒛)
T
] = E[𝜿𝑘𝒛

T
𝑘] (5.15a)

= E[(𝒗𝑘 − 𝑪𝒆𝑘)(𝒙𝑘 + 𝒆𝑘)
T
] (5.15b)

= E[𝒗𝑘𝒙
T
𝑘 + 𝒗𝑘𝒆

T
𝑘 − 𝑪𝒆𝑘𝒙

T
𝑘 − 𝑪𝒆𝑘𝒆

T
𝑘] (5.15c)

=����
E[𝒗𝑘𝒙

T
𝑘 ] +����

E[𝒗𝑘𝒆
T
𝑘] − 𝑪����

E[𝒆𝑘𝒙
T
𝑘 ] − 𝑪E[𝒆𝑘𝒆

T
𝑘] (5.15d)

= −𝑪𝜮𝒆, ∀𝑘 (5.15e)

Finally, the system matrix estimate �̂�LS is:

�̂�LS = 𝒚𝑘𝒛
T
𝑘(𝒛𝑘𝒛

T
𝑘)

−1 (5.16a)
= (𝑪𝒛𝑘 + 𝜿𝑘)𝒛

T
𝑘(𝒛𝑘𝒛

T
𝑘)

−1 (5.16b)
= 𝑪𝒛𝑘𝒛

T
𝑘(𝒛𝑘𝒛

T
𝑘)

−1
+ 𝜿𝑘𝒛

T
𝑘(𝒛𝑘𝒛

T
𝑘)

−1 (5.16c)
= 𝑪 + 𝜿𝑘𝒛

T
𝑘(𝒛𝑘𝒛

T
𝑘)

−1 (5.16d)
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where estimate �̂�LS is biased due to regressor 𝒛𝑘 being endogenous, i.e. 𝜮𝜿𝒛 = −𝑪𝜮𝒆 ≠

𝟎, see Eq. (5.15a).

In order to compute an unbiased estimate, an instrumental variable approach might
be considered. To this end, the following instrumental variable is considered:

𝝓𝑘 = 𝒛𝑘−1 (5.17)

By computing the cross-covariance function 𝜮𝜿𝝓 it turns out that the instrument 𝝓𝑘

is uncorrelated with the noise 𝜿𝑘:

𝜮𝜿𝝓 = E[(𝜿𝑘 − 𝝁𝜿)(𝝓𝑘 − 𝝁𝝓)
T
] = E[𝜿𝑘𝝓

T
𝑘] (5.18a)

= E[(𝒗𝑘 − 𝑪𝒆𝑘)(𝒙𝑘−1 + 𝒆𝑘−1)
T
] (5.18b)

= E[𝒗𝑘𝒙
T
𝑘−1 + 𝒗𝑘𝒆

T
𝑘−1 − 𝑪𝒆𝑘𝒙

T
𝑘−1 − 𝑪𝒆𝑘𝒆

T
𝑘−1] (5.18c)

=�����
E[𝒗𝑘𝒙

T
𝑘−1] +�����E[𝒗𝑘𝒆

T
𝑘−1] − 𝑪�����

E[𝒆𝑘𝒙
T
𝑘−1] − 𝑪�����E[𝒆𝑘𝒆

T
𝑘−1] (5.18d)

= 𝟎, ∀𝑘 (5.18e)

Then, the unbiased estimate �̂�IV is given by:

�̂�IV = 𝒚𝑘𝝓
T
𝑘(𝒛𝑘𝝓

T
𝑘)

−1 (5.19a)
= (𝑪𝒛𝑘 + 𝜿𝑘)𝝓

T
𝑘(𝒛𝑘𝝓

T
𝑘)

−1 (5.19b)
= 𝑪𝒛𝑘𝝓

T
𝑘(𝒛𝑘𝝓

T
𝑘)

−1
+ 𝜿𝑘𝝓

T
𝑘(𝒛𝑘𝝓

T
𝑘)

−1 (5.19c)
= 𝑪 +�������

𝜿𝑘𝝓
T
𝑘(𝒛𝑘𝝓

T
𝑘)

−1 (5.19d)

where now 𝝓𝑘 is exogenous, i.e. 𝜮𝜿𝝓 = 𝟎.

5.1.3 Last notes about the system identification step

Note that, in the remaining chapter it is considered that:

𝑨 = �̂�IV, 𝑪 = �̂�IV (5.20)

In the case of using other identification techniques, for instance subspace methods,
the resulting estimates are used as if they were the real matrices of the system:

𝑨 = �̂�SS, 𝑩 = �̂�SS, 𝑪 = �̂�SS, 𝑫 = �̂�SS (5.21)

5.2 The filter design step

Once the system is identified it is possible to design the optimal filter by using the
KF theory. Note that in this section Eq. (5.1c) is not used since the desired variable
can be measured only for a limited amount of time. The solution to the KF consists
of an iterative prediction-correction process. In particular, in the prediction step, the
time-update maps the state one-step ahead:

�̂�
−
𝑘 = 𝑨�̂�𝑘−1 + 𝑩𝒖𝑘−1 (5.22)

𝑷
−
𝑘 = 𝑨𝑷𝑘−1𝑨

T
+ 𝑸 (5.23)
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Note that, in this step, it is also possible to predict the output from Eq. (5.1b) as
�̂�−
𝑘 = 𝑪�̂�−

𝑘 and to compute the time-variant KF gain 𝑲𝑘 as follows:

𝑲𝑘 = 𝑷
−
𝑘 𝑪

T
(𝑪𝑷

−
𝑘 𝑪

T
+ 𝑹) (5.24)

Instead, in the correction step, the previous prediction is updated with the new
available measurement 𝒚𝑘:

�̂�𝑘 = �̂�
−
𝑘 + 𝑲𝑘𝝐

−
𝑘 (5.25)

𝑷𝑘 = (𝑰 − 𝑲𝑘𝑪)𝑷
−
𝑘 (5.26)

where the (output) innovation is defined as the one-step ahead prediction error
𝝐−𝑘 ≡ 𝒚𝑘 − �̂�−

𝑘 .

Steady-state considerations and the offline design of the filter

If steady-state is considered, the KF gain 𝑲∞ can be computed off-line [29] from
Eq. (5.24) by solving the DARE:

𝑷∞ = 𝑨𝑷∞𝑨
T
+ 𝑸 − 𝑨𝑷∞𝑪

T
(𝑪𝑷∞𝑪

T
+ 𝑹)

−1
𝑪𝑷∞𝑨

T (5.27)

5.2.1 Estimation of the noise covariance matrices

Note that the derivation of previous KF equations require also complete knowledge
of statistics of the noises affecting the system, i.e. the noise Covariance Matrices
(CMs) 𝑸 and 𝑹. The assumption is, however, questionable in many cases and an
incorrect description can cause worsening of estimation quality. Therefore, since
the 1970s research interest has been focused on identifying noise CMs [47, 123,
207] through different identification methods, namely Bayesian methods, covariance
matching methods, maximum likelihood methods, and correlation methods [137].
Among them, the class of the correlation methods is the most studied as it can be
derived analytically with minimal assumptions on the model and provides consistent
and unbiased estimates, as reviewed in [72]. The Autocovariance Least-Square (ALS)
method adhere summarized is taken from [70] and is just one of the existing formu-
lations [36, 137, 144]. All of these formulations refer to the Direct Correlation Method
class, as seen previously in Section 4.2.4. In particular, these methods are based on
an analysis of the second-order statistics of the state (one-step ahead) prediction
error 𝜹𝑘 ≡ 𝒙𝑘 − �̂�−

𝑘 produced by the linear state predictor derived from Eq. (5.25)
substituted in Eq. (5.22):

�̂�
−
𝑘+1 = 𝑨(�̂�

−
𝑘 + 𝑳𝝐

−
𝑘 ) (5.28)

where the user-defined parameter 𝑳 ≠ 𝑲∞ is a steady-state, stabilizing, and not
optimal filter gain and, without loss of generality, the deterministic sub-system is
not considered, i.e. 𝑩 = 𝟎.

The evolution 𝜹𝑘+1 is written by subtracting recursive Eq. (5.28) from Eq. (5.1a) and
substituting Eq. (5.1b):

𝜹𝑘+1 = (𝑨 − 𝑨𝑳𝑪)𝜹𝑘 + [𝑰𝑛𝒙 , −𝑨𝑪][𝒘
T
𝑘, 𝒗

T
𝑘]

T (5.29)
= �̄�𝜹𝑘 + �̄��̄�𝑘 (5.30)
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where matrices �̄� and �̄� are defined as follows:

�̄� ≡ 𝑨 − 𝑨𝑳𝑪 (5.31)
�̄� ≡ [𝑰𝑛𝒙 , −𝑨𝑪] (5.32)

Considering the steady-state covariance matrix of the state innovation described by
the Lyapunov equation:

𝑷𝜹 = �̄�𝑷𝜹�̄�
T
+ �̄�

[

𝑸 𝟎

𝟎 𝑹]
�̄�

T (5.33)

The covariance of the output innovation sequence is described by:

𝑷𝝐(0) = 𝑪𝑷𝜹𝑪
T
+ 𝑹 (5.34)

𝑷𝝐(𝜏) = 𝑪�̄�
𝜏
𝑷𝜹𝑪

T
− 𝑪�̄�

𝜏−1
𝑨𝑳𝑹 (5.35)

where 𝜏 = 1,… , 𝑚 − 1 is the time delay and the user-defined parameter 𝑚 is the
maximum lag.

Solution to Eq. (5.33) and its substitution into Eq. (5.34) and Eq. (5.35) gives the linear
system = 𝝑𝒃, where the design matrix is defined as:

 = [, (𝑨𝑳 ⊗ 𝑨𝑳) + (𝑰𝑛𝒚 ⊗ 𝜞 )] (5.36)
 = (𝑪 ⊗ )(𝑰𝑛2𝒙 − �̄� ⊗ �̄�)

−1 (5.37)

 = [𝑪
T
, (𝑪�̄�)

T
, … , (𝑪�̄�

𝑚−1
)
T
]
T (5.38)

𝜞 = [𝑰𝑛𝒚 , −(𝑪𝑨𝑳)
T
, … , −(𝑪�̄�

𝑚−2
𝑨𝑳)

T
]
T (5.39)

The unknown parameter vector is composed by the noise CMs𝝑 = [𝑸T
𝑠 , 𝑹

T
𝑠 ]

T. Instead,
the known variable is given by the innovation covariance matrix as:

𝒃 = 𝑠(𝑚) (5.40)
(𝑚) = [𝑷𝝐(0)

T
, 𝑷𝝐(1)

T
, … , 𝑷𝝐(𝑚 − 1)

T
]
T (5.41)

where the symbol ⊗ stands for the Kronecker product and the notation 𝑨𝑠 means
the column-wise stacking of the matrix 𝑨 into a vector [53, 27].

The estimate �̂� in the least-squares sense is given by:

�̂� = (T)
−1T

�̂� = †
�̂� (5.42)

where, due to the ergodicity process assumption, the estimate �̂� = ̂𝑠(𝑚) is computed
from Eq. (5.41) with:

�̂�𝝐(𝜏) =
1

𝑁 − 𝜏

𝑁−𝜏

∑

𝑖=1

𝝐𝑖+𝜏𝝐
T
𝑖 (5.43)

The ALS estimator is proven to be unbiased and consistent [137]. The efficiency of
the estimator is studied in [144] by a weighted LS, although the optimal weighting
is impractical using current computational techniques. Also, the case of a given
process noise shaping matrix 𝑮 ≠ 𝑰 is studied in [144]. Identifiability conditions of
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the unique elements of the CMs are recently studied in [104].

In some cases, the noise CMs formed by the ALS estimate may not be positive
semidefinite, i.e. they are physically meaningless. Few contributions in literature
do address this issue, see [50, 137, 144]. In these cases, a practical solution is to use
Semi-Definite Programming (SDP) to enforce the constraints:

�̂� = arg min
𝝑

‖𝝑 − �̂�‖
2
2 (5.44a)

s.t. 𝑸 ≥ 𝟎,𝑹 ≥ 𝟎 (5.44b)
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CHAPTER 6

The direct solution to the
filtering design from data problem

As already seen in Chapter 4, the derivation of data-driven solutions, namely the stan-
dard one and the direct one, to the filtering design problem is carried out considering
the following description of a discrete-time LTI system  :

∶
𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝒖𝑘 + 𝑮𝒘𝑘

𝒚𝑘 = 𝑪𝒙𝑘 + 𝑫𝒖𝑘 + 𝒗𝑘

𝒛𝑘 = 𝑪2𝒙𝑘 + 𝒆𝑘

(6.1a)
(6.1b)
(6.1c)

where the new Eq. (6.1c) describes the possibility to measure the desired variable
𝒛𝑘 to be filtered, for a limited amount of time, i.e. for 𝑘 = 1,… , 𝑁ID. In Eq. (6.1c),
𝒆𝑘 denotes the measurement noise affecting the equation, which by construction,
is a white noise process uncorrelated with the other noise process affecting the
system.

For the derivation of filtering solutions, the general framework in Eq. (5.1) is further
simplified as follows:

∶
𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝒘𝑘

𝒚𝑘 = 𝑪𝒙𝑘 + 𝒗𝑘

𝒛𝑘 = 𝒙𝑘 + 𝒆𝑘

(6.2a)
(6.2b)
(6.2c)

by considering only the stochastic component of the sub-system, i.e. 𝑩 = 𝑫 = 𝟎,
the process noise shaping matrix is the identity matrix for the sake of simplicity, i.e.
𝑮 = 𝑰 , and the measurement matrix of the desired variable is the identity matrix, i.e.
𝑪2 = 𝑰 .

Later, the assumption that 𝑩 = 𝟎 is relaxed in the presence of a deterministic
exogenous input, i.e. 𝑩 ≠ 𝟎, in Chapter 7 when performing experimental tests. For
this reason in this chapter, the derivation of the data-driven direct solution to the
filtering design problem considers the simplified Eq. (6.2) with 𝑩 ≠ 𝟎, so that the
derivation is generalized when needed and be easily reduced to the case 𝑩 = 𝟎.

Under this premise, this chapter reviews the contribution in the development of the
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data-driven direct solution to the filtering design problem. In particular, this chapter
is organized as follow:

1. Section 6.1 introduces the mathematical framework and a set of assump-
tions that must be undertaken in order to define exactly what is the problem
statement of the filtering design problem in the direct paradigm based on a
single-step approach.

2. Section 6.2 is dedicated to briefly formulate the methodology for the design of
the filter, which consists in a optimization routine to estimate the parametric-
stochastic structure of the filter.

6.1 Assumptions and problem statement

Next, in order to develop the data-driven direct solution for the filtering design
problem for LTI systems, let suppose the following basic assumptions:

Assumption 6.1. The assumptions are:
• The system functions (matrices) 𝑨, 𝑩, 𝑪, and 𝑫 defining the system 
to be filtered are unknown.

• The couple (𝑨,𝑪) is observable.
• A set of data (the identification dataset) is available for the design of the
filter:

ID =
{
(𝑢𝑘, 𝑦𝑘, 𝑧𝑘), 𝑘 = 1,… , 𝑁ID

}
(6.3)

• The noises 𝒘𝑘, 𝒗𝑘, and 𝒆𝑘 are unmeasured stochastic variables.

Then, the filter design problem is defined as follows:

The filtering design problem

Design a causal filter using the identification dataset ID that, operating on
the input-output data

{
(𝑢𝑘, 𝑦𝑘), 𝑘 = 1,… , 𝑁ID

}
gives an estimate �̂�𝑘 of the

desired variable 𝒛𝑘, having the minimum estimation error variance property
E[𝒛𝑘 − �̂�𝑘] for any 𝑘.

From the observability assumption in Asm. 6.1 due to Lem. 4.1 there exists a
function 𝑓0 that operating on the input-output data as required by the filtering
design problem statement can be used for the estimation of the desired variable, let
this function be termed as filter:

�̂�𝑘|𝑘 = 𝑓0(𝒖𝑘, 𝒖𝑘−1,⋯ , 𝒖𝑘−𝑛2+1, 𝒚𝑘, 𝒚𝑘−1,⋯ , 𝒚𝑘−𝑛1+1, �̂�0|0) (6.4)

Moreover, note that since the system  under analysis is linear, also function 𝑓0 is
expected to be linear.

Remark 6.1. Note also that, differently from the classical solution where the
filter structure is not chosen in the two-step procedure and it just depends on
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the structure of the identified model, now, defining the methodology for the
direct solution there is the need to select a parametric structure for the filter
to be designed. In other words, compared to the Prediction Error Minimization
(PEM) methodology [20, 30] in the System Identification theory, the problem
of choosing one particular model structure with a suitable order complexity
is shifted from the estimation of a model of the system to the estimation of a
model of the filter.

6.2 The direct filter design methodology

Once the mathematical framework and the assumptions are defined, it is time to de-
fine the methodology to develop the direct data-driven solution to the filtering design
problem. Recalling from Chapter 4, where the one-step approach was introduced,
there is the interest to develop a methodology for a parametric-stochastic framework.
By means of the terminology developed and involved with the prediction-error (PE)
framework, let then the true filter notation to be  .

It is now possible to define the filter by the general parametric model structure:

(𝜽DF) (6.5)

where 𝜽DF is the unknown parameter to be estimated.

As usual, the model structure then defines the hypothesis set  containing all
the feasible models that can result from the estimation considering its possible
constraints:

 =
{
(𝜽DF) ∣ 𝜽DF ∈ 𝜣DF ⊂ R𝑑

}
(6.6)

Then, under the assumption that the filter is contained in the hypothesis set, i.e.
 ∈ , the best approximating (thus feasible) filter model ̂ = (�̂�DF) is searched
for in  by means of solving the following optimization problem:

�̂�DF = arg min
𝜽DF∈𝜣DF

𝐽𝑁ID(𝜽DF) (6.7)

with 𝐽𝑁ID(𝜽DF) =
1

𝑁ID

𝑁ID

∑

𝑖=1

‖
‖𝜺𝑖(𝜽DF)

‖
‖
2

2

where
{
𝜺𝑖(𝜽DF) ≡ 𝒛𝑖 − �̂�𝑖(𝜽DF)

}𝑁

𝑖=1
is the estimation error sequence of the model

𝑀(𝜽DF), and ‖⋅‖ is a scalar-valued norm function, for instance the 𝑙2 norm, see
[20].

It is worth mentioning that the estimation error sequence
{
𝜺𝑖(𝜽DF) ≡ 𝒛𝑖− �̂�𝑖(𝜽DF)

}𝑁

𝑖=1

relies on the estimate �̂�𝑘 which could potentially both the predicted or the filtered
variable. As for now, when considering that the direct data-driven paradigm theory
is not mature enough, this is a open question still not resolved. However some
considerations can be made:

• By considering the prediction as the estimate, the designer could potentially
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exploit some theoretical insights derived from the well-known Prediction Error
Minimization methodology.

• Instead, if considering filtering performance and goodness of estimation (i.e.
closeness of the estimated parameter with the best optimal one, the true pa-
rameter), it is also interesting to know whether there is a difference developing
the direct data-driven methodology by considering the filtered variable as the
estimate.

In the following methodology the second way was chosen in the direct data-driven
strategy.

6.3 Selection of the filter model structure and filter

model complexity

Returning to the methodology, when considering the interest in developing a
parametric-stochastic framework for the data-driven direct filter design problem,
recall the difficulty highlighted in Rem. 6.1.

The natural question that arises, that is also very interesting to be answered, is:
whether there is some benefit to pick a particular model structure with a

defined model complexity directly in the filtering design process or if it

possible at all to have some insights.

It is known that, when considering the classical solution based on the two-step
approach, the filter model structure is defined automatically by means of applying
the optimal filtering theory on the system. In other words the system structure
naturally defines the filter model structure and model complexity. Instead, in the
direct paradigm theory there could be a benefit in choosing a particular structure for
the identification of a good filter. To this end, considering only the type of system
under analysis, see again Eq. (6.1), i.e. a dynamical discrete-time LTI system, there
are some potential insights on the optimal model structure and model complexity
by exploiting the BLUE solution derived in Chapter 3 for this type of systems. In
particular, the idea is to derive a filtering solution to the LTI case that depends only
on the available dataset, that is, in the direct paradigm, on the identification dataset
ID. To this end, recap from Chapter 3 the correction and prediction equations
derived from the Bayesian approach. Note that the equations are modified to take
care of the time-invariant property of the system matrices. In other words, let the
general time-variant system matrices to be fixed with respect to time:

𝑨𝑘 = 𝑨, ∀𝑘 (6.8a)
𝑩𝑘 = 𝑩, ∀𝑘 (6.8b)
𝑪𝑘 = 𝑪, ∀𝑘 (6.8c)
𝑫𝑘 = 𝑫, ∀𝑘 (6.8d)
𝑮𝑘 = 𝑮, ∀𝑘 (6.8e)
𝑸𝑘 = 𝑸, ∀𝑘 (6.8f)
𝑹𝑘 = 𝑹, ∀𝑘 (6.8g)
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Then, the statistics values for the mean and covariance for the correction step are as
follows:

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝑲𝑘(𝒚𝑘 − 𝑪�̂�𝑘|𝑘−1 − 𝑫𝒖𝑘) (6.9a)
𝑷𝑘|𝑘 = 𝑷𝑘|𝑘−1 − 𝑲𝑘𝑺𝑘𝑲

T
𝑘 (6.9b)

= 𝑷𝑘|𝑘−1 − 𝑲𝑘𝑺𝑘𝑲
T
𝑘 (6.9c)

where 𝑲𝑘 is known as the Kalman gain:

𝑲𝑘 = 𝑷𝑘|𝑘−1𝑪
T
(𝑪𝑷𝑘|𝑘−1𝑪

T
+ 𝑹) (6.10a)

= 𝑷𝑘|𝑘−1𝑪
T
𝑺𝑘 (6.10b)

with:
𝑺𝑘 = 𝑪𝑷𝑘|𝑘−1𝑪

T
+ 𝑹 (6.11)

Instead, the statistics values for the mean and covariance for the prediction step are
as follows:

�̂�𝑘+1|𝑘 = 𝑨�̂�𝑘|𝑘 + 𝑩𝒖𝑘 (6.12a)
𝑷𝑘+1|𝑘 = 𝑨𝑷𝑘|𝑘𝑨

T
+ 𝑮𝑸𝑮

T (6.12b)

Next, consider the prediction equation for the mean statistics in Eq. (6.12a) and shift
it one time instant in the past as follows:

�̂�𝑘|𝑘−1 = 𝑨�̂�𝑘−1|𝑘−1 + 𝑩𝒖𝑘−1 (6.13)

Then, it possible to substitute Eq. (6.13) into Eq. (6.9a), yielding:

�̂�𝑘|𝑘 = �̂�𝑘|𝑘−1 + 𝑲𝑘(𝒚𝑘 − 𝑪�̂�𝑘|𝑘−1 − 𝑫𝒖𝑘) (6.14)

�̂�𝑘|𝑘

(6.13)
= 𝑨�̂�𝑘−1|𝑘−1 + 𝑩𝒖𝑘−1 + 𝑲𝑘(𝒚𝑘 − 𝑪(𝑨�̂�𝑘−1|𝑘−1 + 𝑩𝒖𝑘−1) − 𝑫𝒖𝑘) (6.15)

�̂�𝑘|𝑘 = (𝑰 − 𝑲𝑘𝑪)𝑨�̂�𝑘−1|𝑘−1 + 𝑲𝑘𝒚𝑘 + (𝑰 − 𝑲𝑘𝑪)𝑩𝒖𝑘−1 − 𝑲𝑘𝑫𝒖𝑘 (6.16)

Note that Eq. (6.16) is composed by the required ingredients, namely the left side of
the equation has the filtered estimate explicated, while the right side of the equation is
based on past and present available data. Anyway, in order to reduce the complexity
of the methodology, two more assumptions are made:

• First, Eq. (6.16) suffers from being based on time-variant parameters. This
can be observed when analyzing the Kalman gain 𝑲𝑘. In other words, even if
the system  is time-invariant, the derived filter may as well be time-variant.
In order to solve this difficulty, the steady-state behavior of the filter is
assumed from now on. To this end, when considering the steady-state
behavior, it is well-known that the KF gain 𝑲∞ can be computed off-line, see
for instance [29], from Eq. (5.24) by solving the DARE (Discrete Arithmetic
Riccati Equation), that is:

𝑷∞ = 𝑨𝑷∞𝑨
T
+ 𝑸 − 𝑨𝑷∞𝑪

T
(𝑪𝑷∞𝑪

T
+ 𝑹)

−1
𝑪𝑷∞𝑨

T (6.17)

using the assumption (made in the beginning) that 𝑮 = 𝑰 .
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• Second, often the feedthrough matrix is assumed null, i.e. 𝑫 = 𝟎. This is
the case when there is no static input-output component from the dynamical
system, as it often already filtered out when dealing with dynamical models.
Following this rationale, for the sake of simplicity, from now on it also assumed
that the feedthrough matrix is 𝑫 = 𝟎.

By applying the mentioned assumptions, Eq. (6.16) can be reduced even more
to:

�̂�𝑘|𝑘 = (𝑰 − 𝑲∞𝑪)𝑨�̂�𝑘−1|𝑘−1 + 𝑲∞𝒚𝑘 + (𝑰 − 𝑲𝑘𝑪)𝑩𝒖𝑘−1 (6.18)

where Eq. (6.18) is considered as the reference equation to derive an appropriate
model structure for the design of the filter.

To this end, using matrix polynomials, Eq. (6.18) turns in:

𝑨(𝑧
−1
)�̂�𝑘|𝑘 = 𝑩𝒚(𝑧

−1
)𝒚𝑘 + 𝑩𝒖(𝑧

−1
)𝒖𝑘 (6.19)

where the matrix polynomials are defined as follows:

𝑨(𝑧
−1
) = 𝑨

[0]
+ 𝑨

[1]
𝑧
−1 (6.20a)

𝑩𝒚(𝑧
−1
) = 𝑩

[0]
𝒚 (6.20b)

𝑩𝒖(𝑧
−1
) = 𝑩

[0]
𝒖 + 𝑩

[1]
𝒖 𝑧

−1 (6.20c)

with the following values:

𝑨
[0]

= 𝑰 (6.21a)
𝑨

[1]
= (𝑰 − 𝑲∞𝑪)𝑨 (6.21b)

𝑩
[0]
𝒚 = 𝑲∞ (6.21c)

𝑩
[0]
𝒖 = 𝟎 (6.21d)

𝑩
[1]
𝒖 = (𝑰 − 𝑲∞𝑪)𝑩 (6.21e)

Using matrix fraction descriptions (MFD) [15], Eq. (6.19) can be seen as a model of
the form:

�̂�𝑘|𝑘 =
𝑩𝒚(𝑧

−1)

𝑨(𝑧−1)
𝒚𝑘 +

𝑩𝒖(𝑧
−1)

𝑨(𝑧−1)
𝒖𝑘 (6.22)

Then, by defining the true filter model 𝑮0(𝑧
−1; 𝜽0) as:

𝑮0(𝑧
−1
; 𝜽0) =

[

𝑩𝒚(𝑧
−1)

𝑨(𝑧−1)
,
𝑩𝒖(𝑧

−1)

𝑨(𝑧−1) ]
(6.23)

it is possible to rewrite Eq. (6.22) into a compact form as follows:

�̂�𝑘|𝑘 = 𝑮0(𝑧
−1
; 𝜽0)[𝒚

T
𝑘 , 𝒖

T
𝑘]

T (6.24)

with the (free) true parameter 𝜽0 defined by the free known values:

𝜽0 = [𝑨
[1]
,𝑩

[0]
𝒚 ,𝑩

[1]
𝒖 ]

T (6.25)
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with the number of elements of the parameter calculated as:

𝑛𝜽0 =

𝑨[1]

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑛𝒙 × 𝑛𝒙 +

𝑩
[0]
𝒚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑛𝒙 × 𝑛𝒚 +

𝑩
[1]
𝒖

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑛𝒙 × 𝑛𝒖 (6.26a)

= 𝑛𝒙 × (𝑛𝒙 + 𝑛𝒚 + 𝑛𝒖) (6.26b)

Note that the fixed matrices 𝑨[0] = 𝑰 and 𝑩[0]
𝒖 = 𝟎 were left out. Otherwise, the (full)

true parameter would be defined as:

𝜽0 = [𝑨
[0]
,𝑨

[1]
,𝑩

[0]
𝒚 ,𝑩

[0]
𝒖 ,𝑩

[1]
𝒖 ]

T (6.27)

with the number of elements of the parameter calculated as:

𝑛𝜽0 =

𝑨[0]

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑛𝒙 × 𝑛𝒙 +

𝑨[1]

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑛𝒙 × 𝑛𝒙 +

𝑩
[0]
𝒚

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑛𝒙 × 𝑛𝒚 +

𝑩
[0]
𝒖

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑛𝒙 × 𝑛𝒖 +

𝑩
[1]
𝒖

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑛𝒙 × 𝑛𝒖 (6.28a)

= 𝑛𝒙 × (2 ⋅ 𝑛𝒙 + 𝑛𝒚 + 2 ⋅ 𝑛𝒖) (6.28b)

In order to rewrite Eq. (6.24) in terms of the desired variable 𝒛𝑘, consider the availabil-
ity in the design step, i.e. 𝑘 ≤ 𝑁ID, of Eq. (6.1c) and the state filtering error equation
related to the KF theory:

𝜹𝑘 = 𝒙𝑘 − �̂�𝑘|𝑘 (6.29)

then, by substitution, Eq. (6.22) can be reformed as:

𝒛𝑘 = 𝑮0(𝑧
−1
; 𝜽0)[𝒚

T
𝑘 , 𝒖

T
𝑘]

T
+ 𝝆𝑘 (6.30)

where the new stochastic noise 𝝆𝑘 is defined as follows:

𝝆𝑘 ≡ 𝜹𝑘 + 𝒆𝑘 (6.31)

Note that Eq. (6.30) can be used as the reference model for the direct filtering
estimation since the input of the reference model are the input/output data of the
system, and the output of the reference model is the desired variable to be estimated,
for which some samples are available during the design step. Following this rationale,
the signal model structure of the direct filter is given by Eq. (6.23) whereas the filter
model complexity is given, respectively, by the polynomials and the known quantities
in Eqs. (6.20) and (6.21).

In particular, observe that the model of the DF is:

(𝑧
−1
; 𝜽DF) = 𝑮0(𝑧

−1
; 𝜽0) (6.32)

where the model structure of the direct filter can be decomposed into the well-known
signal model 𝑮(𝑧−1; 𝜽DF) and noise model 𝑯(𝑧−1; 𝜽DF) from the system identification
theory [20]:

(𝑧
−1
; 𝜽DF) =

{
𝑮(𝑧

−1
; 𝜽DF), 𝑯(𝑧

−1
; 𝜽DF) ∣ 𝜽DF ∈ 𝜣DF

}
(6.33)

where it is now clear that the aim of the direct filtering design step following the
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estimation methodology in Section 6.2 is to estimate the direct signal model as close
as possible to the one derived from the optimal KF theory. In other words, it is
desirable that:

𝑮(𝑧
−1
; 𝜽DF) → 𝑮0(𝑧

−1
; 𝜽0) (6.34a)

𝜽DF → 𝜽0 (6.34b)

It is worth considering the general structure of the direct filtering by explicating
also the filter noise model in Eq. (6.30), yielding:

𝒛𝑘 = 𝑮(𝑧
−1
; 𝜽DF)[𝒚

T
𝑘 , 𝒖

T
𝑘]

T
+ 𝑯(𝑧

−1
; 𝜽DF)𝝆𝑘 (6.35)

where the problem of selecting the model structure and model order of the noise
model 𝑯(𝑧−1; 𝜽DF) can be tackle down by considering the innovations point of view
[94, 96]:

“one criterium to justify the optimality of the solution to a filtering
problem is to check how white the pseudo-innovations are, the whiter
the more optimal, see [59]”.

Following this rationale, under the belief that the KF assumptions hold true in the
derivation of the reference model in the steady-state case, it is expected that the
state filtering error 𝜹𝑘 in Eq. (6.29) is a white process, otherwise losing the optimality
condition of the theory. Moreover, also the measurement noise of the desire variable
𝒆𝑘 is, by construction, a white process. Then in general, the linear combination of
these noises in Eq. (6.31) forms the colored noise process 𝝆𝑘. Moreover, the colored
noise 𝝆𝑘 can be modeled by a dynamical system, here the noise model, with a white
noise process as input, here termed again for simplicity as 𝝆𝑘. Using post-estimation
model validation techniques such as residual analysis, a proper structure for the
noise model can be validated.

If it is expected that the noise model for the filter has no dynamic component, then
the model structure can be fixed to the the unitary matrix as in the Output-Error
(OE) model, i.e.

𝑯(𝑧
−1
; 𝜽DF) = 𝑰 (6.36)

If that is not the case, other linear model structures could be used, such as the
AutoRegressive with eXogenous inputs (ARX) model structure. In the end, once the
filter design step is finished, the resulting parameter estimate �̂�DF can be used to
operate with the identified filter as in the Linear In Parameter (LIP) regression in
Eq. (6.16) to obtain filtered estimates of the desired variable as follows:

�̂�𝑘|𝑘 = �̂�DF ⋅ 𝜱𝑘 (6.37)

with a user-selected starting condition parameter �̂�0|0.

In particular, the regressor variable 𝜱𝑘 is defined as follows:

𝜱𝑘 = [�̂�
T
𝑘−1|𝑘−1

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
1×𝑛𝒙

, 𝒚
T
𝑘

⏟⏟⏟
1×𝑛𝒚

, 𝒖
T
𝑘−1

⏟⏞⏞⏟⏞⏞⏟
1×𝑛𝒖

]
T
∈ R(𝑛𝒙+𝑛𝒚+𝑛𝒖)×1 (6.38)
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and the estimated parameter �̂�DF has the following structure:

�̂�DF = [�̂�
[1]
, �̂�

[0]
𝒚 , �̂�

[1]
𝒖 ]

T
∈ R𝑛𝒙×(𝑛𝒙+𝑛𝒚+𝑛𝒖) (6.39a)

=

⎡
⎢
⎢
⎢
⎣

�̂�11 ⋯ �̂�1□

⋮ ⋱ ⋮

�̂�△1 ⋯ �̂�△□

⎤
⎥
⎥
⎥
⎦

∈ R△×□ (6.39b)

where the symbols △ and □ denotes, respectively, the quantities 𝑛𝒙 and 𝑛𝒙 + 𝑛𝒚 +

𝑛𝒖.
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CHAPTER 7

Comparison between the standard
and direct solutions

This chapter reviews the experimental results about the developed data-driven solu-
tions to the filtering design problem. Two different paradigm, as seen in Chapter 4,
are compared through the derived solutions, respectively the standard solution based
on a two-step approach derived in Chapter 5 and the direct solution based on a
one-step approach derived in Chapter 6. In particular, this chapter is organized as
follow:

1. Section 7.1 introduces the results for a simplified univariate example, with
no exogenous inputs. In this example, different experimental settings are
simulated and both the parameter estimates of the filter model as well as its
filtering performance are analyzed.

2. Section 7.2 introduces briefly a discussion about the difficulties to expand the
developed filtering solutions and the practical experimental comparison to a
multivariate system with exogenous input. In particular, the system under
analysis is taken from an example of an aerospace industrial application about
flight control.

As already seen in Chapter 5 and Chapter 6, the derived data-driven solutions to the
filtering design problem are carried out considering the following general description
of a discrete-time LTI system  :

∶
𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝒖𝑘 + 𝒘𝑘

𝒚𝑘 = 𝑪𝒙𝑘 + 𝑫𝒖𝑘 + 𝒗𝑘

𝒛𝑘 = 𝒙𝑘 + 𝒆𝑘

(7.1a)
(7.1b)
(7.1c)

7.1 A simple univariate academic example

First, for the sake of easiness in the comparison of the derived data-driven solutions,
the discrete-time LTI system  in Eq. (7.1) is simplified further by considering an
univariate SISO (Single Input, Single Output) with no exogenous inputs. In particular,
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Table 7.1: Different experimental settings regarding the SNR and the number of
available samples for identification purposes. Each combination of settings define
an experiment 𝐸𝑖, 𝑖 = 1,… , 6 for the case of the univariate with no exogenous inputs
example.

Experiment 𝐸1 𝐸2 𝐸3 𝐸4 𝐸5 𝐸6

SNR

100
𝑸 = 1.000 ⋅ 10−1

𝑹 = 4.999 ⋅ 10−2

𝜮𝒆 = 1.666 ⋅ 10−2

10
𝑸 = 1.000 ⋅ 10−1

𝑹 = 1.580 ⋅ 10−1

𝜮𝒆 = 5.265 ⋅ 10−2

3
𝑸 = 1.000 ⋅ 10−1

𝑹 = 2.883 ⋅ 10−1

𝜮𝒆 = 9.610 ⋅ 10−2

𝑁VL
4000

𝑁 ID 6000 200 6000 200 6000 200

the highlighted example is one of the simplest and thus, can be considered a tutorial
and academic example adhere. Finally, the system matrices take the following values:

𝑨 = 0.8 (7.2a)
𝑩 = 0 (7.2b)
𝑪 = 3 (7.2c)
𝑫 = 0 (7.2d)

and the considered system  is reduced as follows:

∶
𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝒘𝑘

𝒚𝑘 = 𝑪𝒙𝑘 + 𝒗𝑘

𝒛𝑘 = 𝒙𝑘 + 𝒆𝑘

(7.3a)
(7.3b)
(7.3c)

7.1.1 Experimental settings

Considering the stochastic part of the system, different noise CMs 𝑸,𝑹,𝜮𝒆 related,
respectively, to the noise processes 𝒘𝑘, 𝒗𝑘, and 𝒆𝑘 are tested in experimental settings
summarized in Tab. 7.1. In particular, the experimental settings differ in terms of the
SNR (Single to Noise Ration) of the noise processes affecting the system, defined, for
instance, as follows:

𝑆𝑁𝑅[𝒚] =
E[(𝑪𝒙𝑘)

2]

E[𝒗2
𝑘
]

=
∑

𝑁VL
𝑘=1(𝑪𝒙𝑖)

2

���𝑁VL

���𝑁VL

∑
𝑁VL
𝑘=1 𝒗

2
𝑖

(7.4a)

𝑆𝑁𝑅[𝒛] =
E[𝒙2

𝑘]

E[𝒆2
𝑘
]
=

∑
𝑁VL
𝑘=1 𝒙

2
𝑖

���𝑁VL

���𝑁VL

∑
𝑁VL
𝑘=1 𝒆

2
𝑖

(7.4b)

where the computation can be carried out thanks to the fact that experiments are
performed in simulation, thus noise processes data and their statistics (the mean of
its squares) are available to the designer.
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It is worth mentioning that only the measured variables were considered in this
sense, namely the output of the system 𝒚𝑘 and the desired variable to be estimated
𝒛𝑘, which is considered to be measured for a limited amount of time. On the other
hand, the process noise variable 𝒘𝑘 and thus the system state 𝒙𝑘 were neglected, as
the process noise reflects the idea of errors in the modeling part of the system, which
in practical cases cannot be considered to be measurable, else the better modeling.
In the end, the following values of SNR were evaluated:

Experimental settings: the SNR of the measurable variables

• High 𝑆𝑁𝑅 = 100: in this case the signal, even if affected by disturbance
noise, is acquired without losing much information;

• Medium 𝑆𝑁𝑅 = 10;
• Low 𝑆𝑁𝑅 = 3: in this case the noise affecting the signal disturbs the
acquisition resulting in inaccurate measurements;

Note that the values are in a decimal scale and not in a logarithmic scale.

The experimental settings also differ in the number of data samples actually used for
identification purpose, i.e. data used for the estimation of the system and/or filter
models. In particular, the following values were considered:

Experimental settings: the number of samples for the identification

The number of samples used for the identification dataset in the experiments
is as follows:

• 𝑁ID = 200 samples (considered as a low number);
• 𝑁ID = 6000 samples (considered a high number);

Experimental settings: the number of samples for the validation

The number of samples used for the validation dataset in the experiments is
as follows:

• 𝑁VD = 4000 samples (always the same);

The number of samples jointly with the SNR settings define a combinational dis-
crete grid of six experimental settings, each one termed as Experiment and labeled
accordingly as 𝐸𝑖, 𝑖 = 1,… , 6, see again Table 7.1.

For instance, for the sake of completeness, Experiment 𝐸1 is implemented as follows:

∶
𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝒘𝑘, 𝑘 = 1,… , 𝑁 = 10000

𝒚𝑘 = 𝑪𝒙𝑘 + 𝒗𝑘, 𝑘 = 1,… , 𝑁 = 10000

𝒛𝑘 = 𝒙𝑘 + 𝒆𝑘, 𝑘 = 1,… , 𝑁ID = 6000

(7.5a)
(7.5b)
(7.5c)

with 𝒘𝑘 ∼  (0, 1.0 ⋅ 10−1), 𝒗𝑘 ∼  (0, 4.999 ⋅ 10−2), and 𝒆𝑘 ∼  (0, 1.666 ⋅ 10−2).
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Instead, for instance, Experiment 𝐸4 is implemented as follows:

∶
𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝒘𝑘, 𝑘 = 1,… , 𝑁 = 4200

𝒚𝑘 = 𝑪𝒙𝑘 + 𝒗𝑘, 𝑘 = 1,… , 𝑁 = 4200

𝒛𝑘 = 𝒙𝑘 + 𝒆𝑘, 𝑘 = 1,… , 𝑁ID = 200

(7.6a)
(7.6b)
(7.6c)

with 𝒘𝑘 ∼  (0, 1.0 ⋅ 10−1), 𝒗𝑘 ∼  (0, 1.580 ⋅ 10−1), and 𝒆𝑘 ∼  (0, 5.265 ⋅ 10−2).

7.1.2 MC simulations and collected datasets

Moreover, each experiment is made of 𝑁MC = 1000 Monte-Carlo simulations in
order not to consider potential outline cases. Following this rationale, the results
were observed and computed on the empirical distribution of the MC simulation, or
summarized by some of its statistics such as the mean value.

In the end, for each MC simulation, the realization collects 𝑘 = 1,… , 𝑁 samples,
where 𝑁 = 𝑁 ID + 𝑁 VL, divided into two dataset, one for identification purpose and
one for validation purpose as already partly mentioned in Asm. 6.1. The following
datasets are thus available:

• ID = (𝒚1∶𝑁ID , 𝒛1∶𝑁ID) for the filter identification;

• VL = (𝒚𝑁ID+1∶𝑁 ) for the validation and evaluation of filtering performance;

7.1.3 The filtering solutions and related parameter estimates

In the following section are presented in details the different kind of solutions that
will be compared specifically on the mentioned univariate framework in Section 7.1.
The analyzed solutions will be also used in the comparison of the multivariate
example in Section 7.2 with an appropriate extension of the highlighted ingredients.
These filtering solutions are as follows:

1. Baseline refers to the filtering solution based on the KF theory in the classi-
cal model-based approach. In other words, the deterministic and stochastic
components of the system are known, i.e. the system matrices 𝑨,𝑪,𝑸,𝑹 are
available. Then, the filter design is derived by applying the KF theory on the
system, see Chapter 3. In particular, the filter estimator that will be considered
is the recursive equation given by Eq. (6.24). Since all quantities of interested
are known and the filtering theory is optimal, this solution is termed as baseline
as it will serve as the grounding example to compare other solutions against it.

2. Standard �̂��̂� refers to the filtering solution based on the standard data-driven
two-step approach. Firstly, the available identification dataset is used to esti-
mate the determinist components of the systems using the ad-hoc instrumental
variable least squares solution implemented in Chapter 5. Then, the state-of-
the-art correlation method for noise covariance matrices estimation is applied
to identify also the stochastic components of the systems, namely the unknown
noise covariance matrices 𝑸 and 𝑹, again see Chapter 5. The filter estimator
for this solution is given again by Eq. (6.24), substituting the unknown ma-
trices 𝑨,𝑪,𝑸,𝑹 with their appropriate estimates, respectively �̂�, �̂�, �̂�, �̂�. The
resulting unknown parameter vector is termed �̂�KF.
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3. Standard 𝑸𝑹 refers to the same filtering solution based on the standard data-
driven two-step approach as in the Standard �̂��̂�. The only difference is that
in this case, the noise covariance matrices are not estimated but are given as if
they were known. This example is very interesting since it serves for a couple
of reasons:

(a) First, the ad-hoc instrumental variable least-square method used for
the identification of the deterministic component of the system can be
checked whether its use deteriorate the filtering performance. In other
words, Standard �̂��̂� suffers from having sequential estimation routines
in other to estimate all the required ingredients for the KF to be applied.
By getting rid of the noise covariance matrices estimation the designer
can see the effects of the system identification techniques.

(b) Second, it shows how the practical problem of noise covariance matrices
estimation left to the filter designer is not trivial at all. As a consequence,
when the stochastic properties are not fine-tuned the performance of the
filter worsen. Moreover, theoretical insights derived in the model-based
paradigm may fail to be applied when the practical situation enforces dif-
ferent assumptions. This motivates further the search for a new paradigm
found in the direct solution. The filter estimator for this solution is given
again by Eq. (6.24), substituting the unknown matrices𝑨,𝑪 with their ap-
propriate estimates, respectively �̂�, �̂�, and exploiting the known matrices
𝑸,𝑹. The resulting unknown parameter vector is termed �̂�KF.

4. Direct refers to the filtering solution based on the new direct data-driven
one-step approach developed in this thesis. The filter is estimated by Eq. (6.7)
following the developed methodology in Chapter 6 using a linear model struc-
ture defined by Eq. (6.35), where both an OE and an ARX model structure were
tested.

Once the filter design step is finished, whatever the filtering solution is considered,
since the common unifying framework is linear and its built on being statistical-
parametric, the identified model of the filter can be represented by the estimated
parameter �̂�. Thus, let the identified filter model be defined as:

̂ = (�̂�) (7.7)

For instance, for the baseline solution, the �̂� is given by the true value in Eq. (6.25):

�̂� = 𝜽0 (7.8a)

= [𝑨
[1]
,𝑩

[0]
𝒚 ,𝑩

[1]
𝒖 ]

T (7.8b)

= [(𝑰 − 𝑲∞𝑪)𝑨,𝑲∞]
T (7.8c)

where:

• from Eq. (7.8b) to Eq. (7.8c) the element 𝑩[1]
𝒖 was not considered since the
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univariate example does not have an exogenous input, i.e.

𝑛𝒖 = 0 (7.9)

• in Eq. (7.8c) the (remaining) first two elements reduce to scalar values, again
due to the univariate examples, i.e.

𝑛𝒙 = 𝑛𝒚 = 1 (7.10)

Instead, for instance, for the standard �̂��̂� solution, the �̂� is given by the estimated
values from the algorithm in Chapter 5:

�̂� = 𝜽KF (7.11a)

= [�̂�
[1]
, �̂�

[0]
𝒚 , �̂�

[1]
𝒖 ]

T (7.11b)

= [(𝑰 − �̂�∞�̂�)�̂�, �̂�∞]
T (7.11c)

where:

• from Eq. (7.11b) to Eq. (7.11c) the element 𝑩[1]
𝒖 was not considered since the

univariate example does not have an exogenous input, i.e.

𝑛𝒖 = 0 (7.12)

• in Eq. (7.11c) the (remaining) first two elements reduce to scalar values, again
due to the univariate examples, i.e.

𝑛𝒙 = 𝑛𝒚 = 1 (7.13)

• in Eq. (7.11c) the estimates �̂� and �̂� are given by the ad-hoc instrumental
variable least square algorithm given by, respectively, Eq. (5.11) and Eq. (5.19).
The other estimate �̂�∞ is given by estimates �̂� and �̂� identified from Eq. (5.44)
required for the calculation of the DARE in Eq. (6.17).

Instead, for instance, for the direct solution, the �̂� is given by the optimization
problem defined in the methodology of the direct solution in Eq. (6.7):

�̂� = 𝜽DF (7.14a)

= [�̂�1, �̂�2]
T (7.14b)

where:

• in Eq. (7.14b) the two elements are scalar values, due to the univariate examples,
i.e.

𝑛𝒖 = 0 (7.15)
𝑛𝒙 = 𝑛𝒚 = 1 (7.16)
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7.1.4 System identification and noise covariance matrices estimates in the

standard solution
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Figure 7.1: The deterministic and stochastic components of the identified system
�̂�, �̂�, �̂�, �̂� in the univariate case for worst-case scenario experiments 𝐸5 and 𝐸6. In
blu the Baseline solution and in yellow the Standard �̂��̂� solution.
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Figure 7.2: The deterministic and stochastic components of the identified system
�̂�, �̂�, �̂�, �̂� in the univariate case for all experiments. In blu the Baseline solution
and in yellow the Standard �̂��̂� solution.

For the sake of completeness, the two-step approach of the Standard �̂��̂� solution
is explored in more details. In particular, the results of the system identification
estimates, namely matrices �̂� and �̂� identified through the ad-hoc instrumental
variable least square method of Section 5.1.1 and the noise covariance matrices �̂�
and �̂� identified through the Direct Correlation Method (DCM) of Section 5.2.1 are
shown by means of their empirical distributions through boxplots in Fig. 7.1 for the
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univariate example for the worst-case scenario, i.e. experiments 𝐸5 and 𝐸6. Instead,
the same figure containing all the experiments is available in Fig. 7.2.

From Fig. 7.2 is possible to observe that inter-experiments:

• with a decreasing SNR setting from experiments 𝐸1 to experiments 𝐸6, see
Table 7.1, the variance of the estimates increases as expected from a standard
bias-variance tradeoff discussion regarding estimation techniques.

On the other hand, from Fig. 7.1 is possible to observe that intra-experiments:

• the worst-case scenario experiments 𝐸5 with a limited number of available
identification samples fails to return unbiased estimates. The reason is found
from the standard instrumental variable least square theory used to estimate
the deterministic components of the system, namelymatrice �̂�, �̂�, but also from
the DCM method used to estimate the stochastic components of the system,
namely matrices �̂�, �̂�. Indeed both methods are founded on the asymptotic
case theory, when the number of samples available for the estimation tend
to infinity. Since the setting under analysis is to have a limited number of
available data, in exact contrast with the required assumption, the result of
having biased estimates could be expected.

7.1.5 Parameter estimates of the identified filter solutions
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Figure 7.3: The empirical distribution of the identified filter parameter �̂� in the
univariate case for the worst-case scenario of experiments 𝐸5 and 𝐸6. Different
filtering solutions are compared: in blu the Baseline solution, in red the Standard
𝑸𝑹 solution, in yellow the Standard �̂��̂� solution, and finally in purple the Direct
solution solution.

For the sake of completeness, results about the identified parameter �̂� of the discussed
filtering solutions are displayed by means of their empirical distribution through box-
plots in Fig. 7.3, where worst-case scenario settings are emphasized by experiments
𝐸5 and 𝐸6, and in Fig. 7.4 instead for a general overview of all experiments.
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Figure 7.4: The empirical distribution of the identified filter parameter �̂� in the
univariate case for all the experiments. Different filtering solutions are compared: in
blu the Baseline solution, in red the Standard 𝑸𝑹 solution, in yellow the Standard
�̂��̂� solution, and finally in purple the Direct solution solution.

In particular, considering the univariate example under analysis, whatever the
filtering solution is considered, from the unified framework the signal model of the
filter is expected to be as follows:

�̂� = 𝐺(�̂�) =
�̂�2

1 + �̂�1𝑧
−1

(7.17)

thus, the general form of the estimated parameter �̂� consists of two scalar elements
as follows:

�̂� =
[

𝜃1

𝜃2]
(7.18)

By observing Figs. 7.3 and 7.4 it is interesting to note that:

• In general, the empirical distributions of the identified parameter for all so-
lutions seem to have the property of unbiasness, thus estimating accurately
the expected filter parameters. The only exception is for experiments 𝐸1, 𝐸3,
and 𝐸5 for which the Standard �̂��̂� solution suffers from having the property
of unbiasness estimates. This problematic may be explained by noting that
all those experiments share the same settings of having a limited number of
available identification samples, see Table 7.1. Following this rationale, the
consideration is that Standard �̂��̂� solution is built on sequential estimation
routines, see Chapter 5, that are based on the asymptotic case scenario. For
this reason, since the setting under analysis is to have a limited number of
available data, in exact contrast with the required assumption, the result of
having biased estimates could be expected.

• It is also worth noting that the goal of a filtering design process is to design a
filter which ultimately is successful in its reconstruction of the desired estimate.
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Following this rationale, the focus should be posed on the filtering performance
and not on the identified filter model. Then, the issues found from observing
the empirical distribution of the identified parameter �̂� may be overlooked.

Remark 7.1. Note that in Figs. 7.3 and 7.4 the values of the identified param-
eter �̂� for the Baseline solution is a straight line since no estimation occurs.
Indeed, in Baseline solution, as already seen in Section 7.1.3, the identified
parameter �̂� is given by the true value 𝜽0 that can be computed by substitution
of the known values of the system deterministic and stochastic matrices.

7.1.6 Model validation and model structure determination for the direct

solution
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Figure 7.5: Results for the residual analysis test to validate the OE model structure
of the direct filtering solution in the univariate example. On the left the white
test showing the residual auto-covariance �̂�𝜖(𝜏), on the right the independence test
showing the (filter) input-residual cross-covariance �̂�𝜖𝑢(𝜏).

Limited to the worst-case scenario of experiment 𝐸5, considering the Direct solution
to the filtering design problem, the difficulty of selecting a proper noise model
structure for the filter is still a open question not answered from the developed
methodology. For these reasons, there is still room for more theoretical research.
Anyway, in general, when searching for the correct model order different questions
are raised, such as:

• Is a given model flexible enough?

• Is a given model too complex? (relevant also to model reduction)

• Which model structure between different candidates should be chosen?

To this end, statistical tests based on the empirical estimation error 𝜖𝑘(�̂�) can be used
to give some insights. In particular they are based on some assumptions [30]:

• Assumption 1: 𝜖𝑘(�̂�) is a zero-mean white noise;
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Figure 7.6: Results for the residual analysis test to validate the ARX model structure
of the direct filtering solution in the univariate example. On the left the white
test showing the residual auto-covariance �̂�𝜖(𝜏), on the right the independence test
showing the (filter) input-residual cross-covariance �̂�𝜖𝑢(𝜏).

• Assumption 2: 𝜖𝑘(�̂�) has a symmetric distribution;

• Assumption 3: 𝜖𝑘(�̂�) is independent of past inputs;

• Assumption 4: 𝜖𝑘(�̂�) is independent of all inputs (applicable when the system
is operating in open-loop);

Among these statistical tests that check for the mentioned assumptions, one of the
most used thanks to its spread use in the system identification field [20, 30], is the
Residual Analysis test which was performed on two particular model structure for
the direct filter:

• An Output-Error (OE) model structure for the filter. The residual analysis after
the estimation of the filtering parameters is shown in Fig. 7.5.

• An AutoRegressive with eXogenous input (ARX) model structure for the filter.
The residual analysis after the estimation of the filtering parameters is shown
in Fig. 7.6.

For the univariate case, the results suggest that the OE model structure is superior
to the ARX model structure since:

• For the white test which tests the whiteness of the residuals, the sample auto-
covariance �̂�𝜖(𝜏) of the residuals is bounded properly for every lags except
zero, i.e. ∀𝜏 ≠ 0, for the OE model structure. Instead, for the model structure
ARX there is one violation at lags |𝜏| = 1, suggesting an inaccurate model
structure.

• For the independence test which tests the uncorrelated assumption between
inputs and residuals, the sample cross-covariance �̂�𝜖𝑢(𝜏) of the residuals is
bounded properly for lags ∀𝜏 ≠ 0, for the OE model structure.
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In particular, this is the desirable output of the test for OE models, since the
focus is on the independence of residuals and inputs and, not on results of the
whiteness of the residuals due to the fact that the modeling focus is on the
dynamics of the signal model 𝐺(�̂�DF) and not on the disturbance properties
of the noise model 𝐻 (�̂�DF). Instead, for the model structure ARX there is one
violation for the negative lag 𝜏 = −1, which is not particularly significant
since cross-correlation between residuals and inputs for negative lags is not
necessarily an indication of an inaccurate model. In particular, in this type of
test the focus is concentrated on the positive lags in the cross-correlation plot
during model validation (when current residuals affect future input values)
which may suggest the presence of feedback in the system under analysis.

7.1.7 Operational use and filtering performance

Once the filter design step is finished, the unifying statistical-parametric framework
returns the estimate �̂� as seen in previous section. Then, from the recursive filtering
equation in Eq. (6.16) shared by all the solutions, substituting its appropriate estimate
�̂�, the filtered variable is returned. In other words, the desired filtered variable is
given by means of following linear combination:

�̂�𝑘|𝑘 = (𝑰 − 𝑲𝑘𝑪)𝑨�̂�𝑘−1|𝑘−1 + 𝑲𝑘𝒚𝑘 (7.19a)
�̂�𝑘|𝑘 = �̂�𝜱𝑘, ∀𝑘 = 𝑁ID,⋯ , 𝑁 (7.19b)

where:

• �̂�𝑘|𝑘 is considered as �̂�𝑘|𝑘 since �̂�𝑘|𝑘 = 𝑪2�̂�𝑘|𝑘 considering the assumption 𝑪2 = 𝑰 .

• Regression data 𝝓𝑘 = [�̂�T𝑘−1|𝑘−1, 𝒚
T
𝑘]

T are taken from the validation dataset VL
ad denoted in Eq. (7.19b).

• Equation (6.16) is reduced to Eq. (7.19a) considering the assumption that there
is no exogenous input: 𝑩 = 𝑫 = 𝟎 and 𝑛𝒖 = 0.

In order to evaluate filtering performance using the validation dataset a performance
fitness criterium is needed. To this end, the Normalized Root Mean Square Error
fitness indicator, expressed in percentage, was selected as follows:

(
1 −

‖𝒛𝑘 − �̂�𝑘|𝑘‖2

‖𝒛𝑘 − �̄�‖2 )
⋅ 100 (7.20)

where:

• 𝒛𝑘 denotes the true desired variable, in other words the ground truth. Note that
in practice this knowledge is not available, but considering that the univariate
example is performed in simulation this knowledge is easily accessible.

• �̄� denotes the sample mean of the true state 𝒛𝑘.

In particular, for the sake of compactness, the discussion about filtering performance
is focused just on experiments 𝐸5 and 𝐸6 since comparison differences are more
emphasized in these scenarios. In details, experiments 𝐸5 and 𝐸6 deal with the
worst-case scenario when the SNR of the measured data is the lowest among the
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experiments, see again Table 7.1. In particular, experiment 𝐸5 has also the lowest
number of available identification samples setting. To the end of comparison, results
are depicted graphically in Fig. 7.7 where the filtering performance is expressed
through the mentioned NRMSR fitness criterium. From Fig. 7.7 the following
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Figure 7.7: Filtering performance in the univariate case for worst-case scenario
experiments 𝐸5 and 𝐸6. Different solutions are compared by means of the NRMSE
fitness criterium: in blu the Baseline solution, in red the Standard 𝑸𝑹 solution, in
yellow the Standard �̂��̂� solution, and finally in purple the Direct solution solution.
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Figure 7.8: Filtering performance in the univariate case for all experiments. Different
solutions are compared bymeans of the NRMSE fitness criterium: in blu theBaseline
solution, in red the Standard 𝑸𝑹 solution, in yellow the Standard �̂��̂� solution, and
finally in purple the Direct solution solution.

considerations can be observed when considering intra-experiments, namely when
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comparing the different solutions in the same experiment. In this case, the focus is
on the worst-case scenario of experiment 𝐸5:

• The Baseline solution shows the best performance, having always the best
empirical distribution, as shown from the boxplot with the highest median
and the lowest variance and few outliers. Since it was defined as the baseline
solution due to the fact that the optimal filtering theory is applied when all
the required ingredients are known, this result is as expected.

• The Standard 𝑸𝑹 solution and the Direct solution perform visually the same,
having similar boxplots statistics. This result suggests multiple points:

– If the practical problem of having to estimate somehow the unknown
stochastic components of the system, namely the noise covariance matri-
ces 𝑸 and 𝑹, was not realistic, then the Standard 𝑸𝑹 solution could be -
de facto - the standard viable solution, showing not problem whatsoever.

– In the worst case scenario for the Direct solution, i.e. when there is no
need to estimate the noise covariance matrices 𝑸 and 𝑹 that is one of the
reasons that fueled its development, the solution performs the same as
the standard solution, with respect to filtering performance.

• The Standard �̂��̂� solution, instead, shows the worst filtering performance
just in experiment 𝐸5, that is the one with the smallest number of available
identification samples. In particular, the median is graphically few percentage
points lower than the other solutions and both the lower inter-quantile value is
much deeper than the other solutions. Moreover it shows many outlier realiza-
tions with poor filtering performance. This could be expected if observing that
the Standard �̂��̂� solution is implemented by means of multiple estimation
routines needed to estimate the required ingredients. Following this rationale
it is expected that the overall filtering performance is deteriorated from the
uncertainty imparted from the various sequential estimation routines, even
when state-of-art solution are employed (see for instance the one-step DCM
technique used to estimate the noise CMs in Chapter 5).

Instead, from Fig. 7.7 the following considerations can be observed when consid-
ering inter-experiments, namely when comparing the solutions among different
experiments. In this case the focus is on experiments 𝐸5 and 𝐸6:

• The different filtering solutions show comparable filtering performance as
denoted graphically in experiment 𝐸6. The result suggests that the mentioned
inter-experiment considerations are emphasized only when worst-case sce-
nario settings are considered. In particular, in this case, the difference between
experiments 𝐸5 and 𝐸6 is related to the number of available identification
samples that can be used in the filter design step of the different solutions.
This suggests that:

– The Direct solution may prove to be more viable and effective in terms
of filtering performance in the case of critical few available samples.

– The Standard �̂��̂� performs poorly as could be expected since its solu-
tion suffers from exploiting estimation routines which are derived from
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the asymptotic case scenario, that is in exact contrast when consider-
ing limited data in practice. The questioning of how much estimation
variance of this solution based on the two-step approach is carried over
from the sequential steps is still not answered. Anyway, insights in the
inter-experiments considerations suggest that the noise CMs estimation
routines are the main actor in this sense when noting the difference
between the Standard �̂��̂� solution and the Standard �̂��̂� solution.

7.2 A multivariate example with exogenous

input

The aim of the following section is to extend the experimental framework and the
comparison of the filtering solutions from the univariate example in Section 7.1 to
more complex example. In particular, the focus is on:

1. Incorporate a multivariate example, i.e. 𝑛𝒙 > 1

2. Incorporate an example with exogenous input, i.e. 𝑛𝒖 ≥ 1,𝑩 ≠ 𝟎

To this end, a secondmultivariate casewith exogenous input, taken from an aerospace
example of an identified system related to the longitudinal flight control, is considered
as follows:

𝑨 =

⎡
⎢
⎢
⎣

0.9944 −0.1203 −0.4302

0.0017 0.9902 −0.0747

0 0.8187 0

⎤
⎥
⎥
⎦

, 𝑩 =

⎡
⎢
⎢
⎣

1

1

1

⎤
⎥
⎥
⎦

𝑪 = [0 3 0] , 𝑫 = 𝟎

𝑸 =

⎡
⎢
⎢
⎣

0.01 0 0

0 0.01 0

0 0 0.01

⎤
⎥
⎥
⎦

, 𝑹 = 0.01 (7.21)

Using the same reasoning of the univariate example in Section 7.1, the considered
system  is reduced as follows:

∶
𝒙𝑘+1 = 𝑨𝒙𝑘 + 𝑩𝒖𝑘 + 𝒘𝑘

𝒚𝑘 = 𝑪𝒙𝑘 + 𝒗𝑘

𝒛𝑘 = 𝒙𝑘 + 𝒆𝑘

(7.22a)
(7.22b)
(7.22c)

where the measurement noise 𝒆𝑘 affecting Eq. (7.22c) is a zero-mean white process
with noise covariance matrix 𝜮𝒆 as follows:

𝒆𝑘 ∼ 
(
𝝁𝒆 =

⎡
⎢
⎢
⎣

0

0

0

⎤
⎥
⎥
⎦

,𝜮𝒆 =

⎡
⎢
⎢
⎣

0.04 0 0

0 0.04 0

0 0 0.04

⎤
⎥
⎥
⎦
)

(7.23)

Note that, for the sake of simplicity, experiments settings defined for the univariate
example in Table 7.1 are no more considered. Following this rationale, the tested
noise covariance matrices values are the ones in Eqs. (7.21) and (7.23). Regarding
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the identification dataset, just the worst-case scenario is considered, defined as
follows:

• 𝑁ID = 200 samples (considered as a low number);

• 𝑁VL = 4000 samples;

• 𝑁 = 𝑁ID + 𝑁ID = 4200 samples;

These samples form the identification dataset and the validation dataset defined in
the same manner as in the univariate example in Section 7.1.2.

Moreover the control input 𝒖𝑘 was selected to be a multisine signal1 for its property
of being exciting in a wide range of frequencies, thus allowing a nice-to-have input
excitation for the estimation routines [116][30]. In particular the selected multisine
signal has:

• A period equals to its length, i.e. 𝑁 = 4200 samples

• A range limited by [−0.1, 0.1], i.e. −0.1 ≤ 𝒖𝑘 ≤ 0.1, ∀𝑘

7.2.1 System identification and noise covariance matrices estimates in the

standard solution
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Figure 7.9: The empirical distribution of the identified system matrices �̂�, �̂�, �̂�, and
�̂� expressed by scalar values by means of the spectral norm (2-norm) ‖⋅‖2, in the
multivariate case with exogenous input for the Standard �̂��̂� and Standard 𝑸𝑹

solutions.

For the sake of completeness, the two-step approach of the Standard �̂��̂� solution
is explored in more details. In particular, the results of the system identification
estimates, namely matrices �̂� and �̂� identified through the ad-hoc instrumental
variable least square method of Section 5.1.1 and the noise covariance matrices �̂�

1A multi-sine signal is a sum of a number of harmonically related sinusoids with freely adjustable
amplitudes and phases. This control input signal is often used in System Identification.

https://www.mathworks.com/help/ident/ref/idinput.html
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Figure 7.10: The empirical distribution of all the elements forming the identified
system matrix �̂�, with 𝑛𝒙 = 3, in the multivariate case with exogenous input for the
Standard �̂��̂� and Standard 𝑸𝑹 solutions.
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Figure 7.11: The empirical distribution of all the elements forming the identified
system matrix �̂�, with 𝑛𝒚 = 1, in the multivariate case with exogenous input for the
Standard �̂��̂� and Standard 𝑸𝑹 solutions.

and �̂� identified through the Direct Correlation Method (DCM) of Section 5.2.1 are
shown by means of their empirical distributions through histograms in Fig. 7.9 for
the multivariate example using the spectral norm to reduce matrices to scalar values.
Instead, the empirical histograms of every elements of identified matrices �̂�, �̂�, �̂�,
and �̂� is available, respectively, in Figs. 7.10 to 7.13.

In particular, few difficulties arise when dealing with the multivariate case:

• The deterministic component brought by the extension with the exogenous
input, namely matrix 𝑩 was no estimated in the multivariate case but was
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Figure 7.12: The empirical distribution of all the elements forming the identified
system matrix �̂�, with 𝑛𝒙 = 3, in the multivariate case with exogenous input for the
Standard �̂��̂� solution.
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Figure 7.13: The empirical distribution of all the elements forming the identified
system matrix �̂�, with 𝑛𝒚 = 1, in the multivariate case with exogenous input for the
Standard �̂��̂� solution.

used as if its value was known. The rationale is that in general estimation
framework are focused on the identification of the stochastic component of
the system. On the other hand, the developed ad-hoc instrumental variable
least square routine used to estimate matrices 𝑨 and 𝑪, could not be extended
easily. In this sense, a fertile field of research would be to incorporate other
methods to perform system identification, with the suggestion to incorporate
also sub-space method for their advantage with estimating all the system
matrices in multivariate case examples.

• In general, the histogram are visualized as peaks due to the fact that there
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are many bad realization with outliner values, thus distorting the figure scale
limits. The effect can be appreciate more on the estimates for the noise co-
variance matrices �̂�, and �̂� suggesting that the (DCM) method used for their
estimation suffers in the multivariate case. The insights was researched briskly
in the literature, leading to theoretical considerations about the identifiability
property for the DCM method and the number of unique elements of the noise
covariance matrices that can be estimated properly. For a full reference, please
refer to the recent dissertation in [104]. In the considered example, the effect
was not studied further, leaving fertile room for improvement both in theory
and practice.

• It also possible to observe another effect more emphasized on the estimates
for the noise covariance matrices �̂�, and �̂�. In particular, the effect consists of
having their empirical distributionmore skewed toward the zero, as if therewas
amode value around it. The insights lead to implementation detail, as discussed
in Chapter 5, about the SDP constraints added to the optimization routine
in order to enforce the positive semi-definite property on the covariance
estimates. Following this rationale, it is believed that in the multivariate case
the bound is hit more often due to the burden of having to deal with higher
dimensionalities.

7.2.2 Model validation and model structure determination for the direct

solution
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Results of the residual analysis test for the OE model structure of the direct filtering
solution in the multivariate with exogenous input example. On the left column the
white test showing the residual auto-covariance �̂�𝜖(𝜏). On the middle column the
independence test showing the first (output 𝒚𝑘) input-residual cross-covariance
�̂�𝜖𝑢(𝜏). On the right column the independence test showing the second (input 𝒖𝑘)

input-residual cross-covariance �̂�𝜖𝑢(𝜏).

Considering themultivariate case, for the sake of simplicity, only the followingmodel-
structure was tested in the Direct solution to the filtering design problem:
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• An Output-Error (OE) model structure for the filter. The residual analysis after
the estimation of the filtering parameters is shown in Section 7.2.2.

The choice of this structure is simple given by the fact that in the univariate example
it gave better validation result when doing the residual analysis. In particular, in
Section 7.2.2 are shown three columns:

• For the white test which tests the whiteness of the residuals, the sample auto-
covariance �̂�𝜖(𝜏) of the residuals is shown on the first column. For the model
structure OE there are some violations at lags |𝜏| = 1 with respect to the first
and third component of the residual vector. Since the desirable output of
the test for OE models is to have independence of residuals and inputs, the
observed results on the whiteness of the residuals can be overlooked due to
the fact that the modeling focus is on the dynamics of the signal model 𝐺(�̂�DF)
and not on the disturbance properties of the noise model 𝐻 (�̂�DF).

• For the independence test which tests the uncorrelated assumption between
inputs and residuals, the sample cross-covariance �̂�𝜖𝑢(𝜏) of the residuals is
shown in the second column, when testing the first input 𝑢1 of the filter, that
is the output of the system 𝒚𝑘, and in the third column, when testing the
second input 𝑢2 of the filter, that is the exogenous input of the system 𝒖𝑘. More
concerning is the observation of positive lags in the cross-correlation plot
during model validation (when current residuals affect future input values)
which may suggest the presence of feedback in the system under analysis.

7.2.3 Operational use and filtering performance

Once the filter design step is finished, the unifying statistical-parametric framework
returns the estimate �̂� as seen in previous section. Then, from the recursive filtering
equation in Eq. (6.16) shared by all the solutions, substituting its appropriate estimate
�̂�, the filtered variable is returned. In other words, the desired filtered variable is
given by means of following linear combination:

�̂�𝑘|𝑘 = (𝑰 − 𝑲𝑘𝑪)𝑨�̂�𝑘−1|𝑘−1 + 𝑲𝑘𝒚𝑘 + (𝑰 − 𝑲𝑘𝑪)𝑩𝒖𝑘−1 (7.24a)
�̂�𝑘|𝑘 = �̂�𝜱𝑘, ∀𝑘 = 𝑁ID,⋯ , 𝑁 (7.24b)

where:

• �̂�𝑘|𝑘 is considered as �̂�𝑘|𝑘 since �̂�𝑘|𝑘 = 𝑪2�̂�𝑘|𝑘 considering the assumption 𝑪2 = 𝑰 .

• Regression data 𝝓𝑘 = [�̂�T𝑘−1|𝑘−1, 𝒚
T
𝑘 , 𝒚

T
𝑘−1]

T are taken from the validation dataset
VL ad denoted in Eq. (7.24b).

• Equation (6.16) is reduced to Eq. (7.24a) considering the assumption that there
is a exogenous input: 𝑩 ≠ 𝟎 and 𝑛𝒖 = 1, also 𝑫 = 𝟎.

In order to evaluate filtering performance using the validation dataset a performance
fitness criterium is needed. To this end, again the Normalized Root Mean Square Error
fitness indicator, expressed in percentage, was selected as follows:

(
1 −

‖𝒛𝑘 − �̂�𝑘|𝑘‖2

‖𝒛𝑘 − �̄�‖2 )
⋅ 100 (7.25)
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where:

• 𝒛𝑘 denotes the true desired variable, in other words the ground truth. Note that
in practice this knowledge is not available, but considering that themultivariate
example is performed in simulation this knowledge is easily accessible.

• �̄� denotes the sample mean of the true state 𝒛𝑘.

In order to compare filtering performance, results are depicted graphically in Fig. 7.14
through the mentioned NRMSR fitness criterium. From Fig. 7.14 the following
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Figure 7.14: Filtering performance in the multivariate case with exogenous input.
Different solutions are compared by means of the NRMSE fitness criterium: in blu
the Baseline solution, in red the Standard 𝑸𝑹 solution, in yellow the Standard
�̂��̂� solution, and finally in purple the Direct solution solution.

considerations can be observed when considering inter-experiments, namely when
comparing the different solutions in the same experiment. In this case, the focus is
on the worst-case scenario of experiment 𝐸5:

• In general in the multivariate case the fitting performance worsen in all the
filtering solutions. Anyway, with respect to the Direct solution, the Standard
�̂��̂� has a greater decrease in performance, emphasized by the boxplots out
of the scale. Moreover, also the Standard 𝑸𝑹, which in univariate case was
comparable with the Direct solution in terms of performance, has now worse
performance. This is interesting since it suggests that in the multivariate case
the simplification brought by the Direct solution pays off more and has a
greater advantage than in the univariate case.

• Another consideration is that the Direct solution, the Standard �̂��̂�, and the
Standard 𝑸𝑹 suffer all from scaling with the dimensionality. In particular,
both Standard �̂��̂� and the Standard 𝑸𝑹 solutions have problems, as already
mentioned in Section 7.2.1, in the system identification step when system
matrices 𝑨 and 𝑪 are estimated but also when applying the DCM method in
order to estimate the stochastic components 𝑸 and 𝑹 due to the numerical
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problems of the routine and mentioned theoretical identifiability property
difficulties. Instead, the Direct solution suffers when the estimation routines
used to identify the chosen OE model structure (the oe and tfestMATLAB
functions) has no ability to enforce a common matrix polynomial denominator
in the optimization problem. To solve this problematic, the empirical tests
were carried out by a different implementation of the direct filter estimation.
In particular, the optimization problem in Eq. (6.7) was solved by means of the
powerful fmincon routine which permits the specification of the required
constraints.
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Conclusion

This thesis proposed four different contributions to the research field of data-driven
filtering design problem.

To begin with, an introduction of the standard solution based on the two-step ap-
proach is given in Chapter 4. Of this solution, the practical difficulties in estimating
the noise covariance matrices, needed to properly apply the optimal Kalman filter
theory, are highlighted during the system identification stage. Next, a first contri-
bution concerns the reformulation of the solution idea into one that is developed
directly, based on one-step approach, namely, the methodology of direct identifica-
tion of the desired filter. Finally, the mix of these two initial works results in the
introduction of a new unifying working framework limited, here, to LTI systems
and their steady-state LTI filters. The special feature of the new working framework
is the introduction of a new measurement equation, expressive of the fact that it is
assumed possible to sample the variable of interest to be filtered for a given limited
amount of time. Following this rationale, the hardships of defining a common set
of settings in the unifying framework are paid off by being able to develop the
mentioned direct methodology, and to compare the researched data-driven filtering
solutions in a fair and common manner through experimental tests.

It is precisely in this common framework, that a second practical contribution is
developed in Chapter 5. Here, the sequential steps with their requirements needed
to implement the standard solution to the filtering design problem are explored in
details. First, to the end of identifying the deterministic components of the system, ad-
hoc instrumental variable least square routines are derived from scratch by exploiting
the knowledge of the innovative measurement equation of the desired variable. The
outputs of this identification task are the unbiased estimates of the deterministic
components of the system, namely the matrices 𝑨 and 𝑪. Second, regarding the
stochastic components of the system, the state-of-the-art Direct Correlation Method
(DCM) is implemented with a slightly modification of the original implementation
in order to enforce the SDP constraints on the identified covariance matrices. The
results of this second estimation routine are the unbiased estimates of the stochastic
components of the system, namely the matrices 𝑸 and 𝑹. The combination of the
above algorithms allows the derivation of the standard solution to the filtering design
problem based on a two-step approach: first the identification of a model of the
system, then the optimal Kalman theory can be applied on the identified system to
derive a filter for the variable of interest.



106 Conclusion

Following the development of the second contribution, a third practical contribution
is developed in Chapter 6. Here, the sequential steps and the required ingredients
to implement the direct solution to the filtering design problem are explored in
details. First, a recursive filter equation, termed as reference equation, which makes
use of input and output data samples up to the current time, is derived from the
steady-state LTI Kalman filter theory. This equation is then manipulated in order
to define a proper signal and noise model by exploiting the new measurement
equation of the desired variable, thus exploiting the available information for a
limited amount of time in the design of the filter. The design is carried out by casting
a statistical-parametric optimization problem, resulting in the estimation of a linear
model structure of the filter as close as possible to the derived reference equation,
similar to how data-driven transfer functions are identified do date. Here the correct
choice of the noise model remains an open theoretical question which is tackled
down in practice by exploiting the residual analysis theory of system identification
in the experimental comparison tests.

The final contribution in Chapter 7 is the natural ending of the previous commitments,
that is the development of an experimental comparison to the derived data-driven
filtering solutions, the standard and the direct ones, in a common LTI framework.
Here, first a simple univariate example with no exogenous input is explored in details.
The purpose of this example is to present a use-case where experimental insights can
be observed in a simple way, thus serving as an academic tutorial or guideline. Later
on, the example is extended to a more general multivariate with exogenous input
case. Regarding the implementation of the routines, difficulties related to the scaling
of dimensionality and to numerical problems are highlighted in various scenarios.
Nonetheless, estimates of the desired variable are inferred from the identified filters
and performance are evaluated by means of the NRMSE fitness criterium. In the end,
results indicate that the direct data-driven solution to the filter design problem is
viable and, in some cases, its filtering performance can be superior to the standard
solution.

Future developments After presenting the results of each contribution, it is
worth exploring also future developments in more details:

1. The first future development concerns the estimation of matrix 𝑩 in the case
of an exogenous input as in the mentioned multivariate example. Do date,
the matrix 𝑩 is not estimated but is considering known due to lack of time
in investigating system identification routines that could output a proper
stochastic realization of the system or extend the ad-hoc instrumental variable
least-squares routines. To this end, it is suggested to investigate methods from
the sub-space identification theory to check if they are a proper match, see
[21, 142], and how the new measurement equation could be exploited in those
frameworks.

2. More theoretical efforts and, in general, a greater theoretical background are
needed in the formulation of the new direct paradigm in order to:

(a) Refine the to-be-taken assumptions in the unifying framework and sup-
port their importance with theoretical insights.

(b) Evaluate whether the new methodology of the direct solution can be
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extended by relaxing some assumptions. For instance, assuming one of
the following: 𝑪2 ≠ 𝑰 , 𝑮 ≠ 𝑰 , and 𝑫 ≠ 𝟎.

(c) Evaluate whether the new methodology of the direct solution can be
extended by considering generic filters beyond steady-state filters.

(d) Evaluate whether the new methodology of the direct solution can be
extended to dynamical systems beyond LTI systems.

(e) Derive more fruitful considerations for a potential guided choice of the
linear model structure and model complexity of the direct filter with
respect to the noise model.

3. Practical and theoretical contributions to the direct solution could be investi-
gated in order to evaluate the possibility of developing an ad-hoc dedicated
estimation routine when considering the multivariate case. These efforts are
needed to:

(a) tackle down the implementation burden of enforcing the constraints of
the common denominator in the model structure of the filter (to date,
MATLAB routinesoe andtfest do not permit to cast these constraints)

(b) carry out the estimation routine for the design of the filter efficiently
from a numerical point of view. To date, the dedicated routine to estimate
the direct filter in the multivariate case uses the fmincon MATLAB
function without fine-tuning its configurable parameters. A scouting of
other available optimization routines is recommended.

4. Moreover, it is clear that the standard solution is a grouping of different kind
of routines developed from different theoretical frameworks. In other words,
the work of implementing the standard solution and, at the same time, solve
for its many practical problems is far from being answered. Thus, a fertile
field of study is found in the state-of-the-art noise CMs estimation routines
where both practical and theoretical results should be researched more. To
this end, the author suggest the reference in [104] and the review in [72] as
starting points. In particular, in [104] theoretical insights are explored: the
identifiability property and the difficulty of estimating all unique elements of
the covariance matrices in multivariate example. On the other hand, practical
efforts on enforcing a PSD programming to the DCM method is analyzed in
[50, 137, 144]

5. Finally, the experimental comparison could be enhanced by validating the
empirical results and insights on different set of examples. Also, in hindsight,
a more careful choice of experimental settings should be wanted, in order to
simplify the computation and focus on the interesting. To this end, the author
suggests to drop the discrete grid of SNR and number of available samples for
the design of the filter and work only with a mono-dimensional continuous
grid related to the number of available samples.
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APPENDIX A

Random variables

The following appendix summarized important results on the study of random
variables. The herein discussion is inspired from the works in [211, 31]. Please refer
to them for a full reference. In particular, the chapter is organized as follow:

• Appendix A.1 introduces in general random variables sampled from a Gaussian
distribution in a real-valued domain.

• Appendix A.2 introduces specifically results for the conditioning and marginal-
ization of the partitioning of two or more random variables sampled from a
Gaussian distribution in a real-valued domain.

• Appendix A.3 introduces specifically results for the conditioning and marginal-
ization of affine transformations of random variables sampled from a Gaussian
distribution in a real-valued domain.

A.1 Real-valued gaussian random variables

The following section introduces in general the concept of random variables with the
properties of being sampled from a Gaussian distribution and having a real-valued
domain. Specifically, results will be given directly working with multivariate random
variables.

A.1.1 Multivariate gaussian

The multivariate gaussian distribution is the joint pdf for a set of RVs 𝑥1, 𝑥2,… , 𝑥𝑛𝒙
with gaussian pdfs, and arbitrary correlation. Given 𝒙 = [𝑥1, 𝑥2,… , 𝑥𝑛𝒙 ]

T a vector of
𝑛𝒙 real Gaussian RVs, the joint pdf is:

𝑝(𝒙) =
1

(2𝜋)
𝑁
2 |𝜮𝒙𝒙 |

exp
(
−
1

2
(𝒙 − �̄�)

T
𝜮

−1
𝒙𝒙(𝒙 − �̄�)

)
(A.1)

with mean �̄�:
�̄� = E[𝒙] = [�̄�1, �̄�2,… , �̄�𝑛𝒙 ]

T (A.2)
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and covariance 𝜮𝒙𝒙 :
𝜮𝒙𝒙 = E[(𝒙 − �̄�)(𝒙 − �̄�)

T
] (A.3)

In a compact form it is customary to use the following notation to denote that the
RV 𝒙 is multivariate gaussian with mean value �̄� and covariance 𝜮𝒙𝒙 :

𝒙 ∼  (�̄�,𝜮𝒙𝒙) (A.4)

while the joint pdf in Eq. (A.1) can be compactly described using the notation:

 (𝒙; �̄�,𝜮𝒙𝒙) =
1

(2𝜋)
𝑁
2 |𝜮𝒙𝒙 |

exp
(
−
1

2
(𝒙 − �̄�)

T
𝜮

−1
𝒙𝒙(𝒙 − �̄�)

)
(A.5)

A.1.2 Linear transformation of a multivariate gaussian

A multivariate gaussian RV 𝒙 can be linearly transformed as:

𝒚 = 𝑨𝒙 + 𝒃 (A.6)

the resulting multivariate RV 𝒚 is still gaussian:

𝒚 ∼  (�̄�,𝜮𝒚𝒚) (A.7)

with mean �̄�:

�̄� = E[𝒚] (A.8a)
= E[𝑨𝒙 + 𝒃] = 𝑨E[𝒙] + 𝒃 (A.8b)
= 𝑨�̄� + 𝒃 (A.8c)

and covariance 𝜮𝒚𝒚:

𝜮𝒚𝒚 = E[(𝒚 − �̄�)(𝒚 − �̄�)
T
] (A.9a)

= E[(𝑨𝒙 + 𝒃 − 𝑨�̄� − 𝒃)(𝑨𝒙 + 𝒃 − 𝑨�̄� − 𝒃)
T
] (A.9b)

= 𝑨E[(𝒙 − �̄�)(𝒙 − �̄�)
T
]𝑨

T (A.9c)
= 𝑨𝜮𝒙𝒙𝑨

T (A.9d)

A.2 Partitioning of a multivariate gaussian pdf

Given two multivariate gaussian RVs, 𝒙 = [𝑥1,… , 𝑥𝑛𝒙 ]
T and 𝒚 = [𝑦1,… , 𝑦𝑛𝒚]

T:

𝒙 ∼  (�̄�,𝜮𝒙𝒙) (A.10)
𝒚 ∼  (�̄�,𝜮𝒚𝒚) (A.11)

Let the vector 𝒛 be obtained through the concatenation of 𝒙 and 𝒚:

𝒛 =
[

𝒙

𝒚]
∈ R𝑛𝒙+𝑛𝒚 (A.12)
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It is jointly Gaussian:
𝒛 ∼  (𝒛; �̄�,𝜮𝒛𝒛) (A.13)

where mean and covariances are block-partitioned matrices collecting the two mul-
tivariate RVs 𝒙 and 𝒚, respectively:

�̄� = E[𝒛] =
[

�̄�

�̄�]
(A.14)

and
𝜮𝒛𝒛 = E[(𝒛 − �̄�)(𝒛 − �̄�)

T
] =

[

𝜮𝒙𝒙 𝜮𝒙𝒚

𝜮𝒚𝒙 𝜮𝒚𝒚]
(A.15)

Marginalization and conditioning of partitioned Gaussian pdfs are now stated.

A.2.1 Marginalization of gaussian pdfs

Let the random vector 𝒙 be Gaussian distributed according to Eq. (A.5) and let it be
partitioned according to Eq. (A.13), then the marginal pdf 𝑝(𝒙) is given by:

𝑝(𝒙) =  (𝒙; �̄�,𝜮𝒙𝒙) (A.16)

A.2.2 Conditioning of gaussian pdfs

The conditional pdf of the Gaussian distribution is Gaussian, and conditioning
(i.e. slicing the pdf) might change the mean and covariance of the resulting pdf.
Derivation of conditional pdfs is particularly important in some estimation methods.
The conditional pdf 𝑝(𝒙|𝒚) can be evaluated from the joint pdf 𝑝(𝒙, 𝒚). In particular,
let the random vector 𝒙 be Gaussian distributed according to Eq. (A.5) and let it be
partitioned according to Eq. (A.13), then the conditional pdf 𝑝(𝒙|𝒚) is given by the
Bayes’ rule:

𝑝(𝒙|𝒚) =
𝑝(𝒙, 𝒚)

𝑝(𝒚)
=

𝑝(𝒛)

𝑝(𝒚)
(A.17a)

=
 (𝒛; �̄�,𝜮𝒛𝒛)

 (𝒚; �̄�,𝜮𝒚𝒚)
(A.17b)

=  (𝒙; �̄� + 𝜮𝒙𝒚𝜮
−1
𝒚𝒚 (𝒚 − �̄�),𝜮𝒙𝒙 − 𝜮𝒙𝒚𝜮

−1
𝒚𝒚𝜮𝒚𝒙) (A.17c)

with mean:
E[𝒙|𝒚] = �̄� + 𝜮𝒙𝒚𝜮

−1
𝒚𝒚 (𝒚 − �̄�) (A.18)

and covariance
C[𝒙|𝒚] = 𝜮𝒙𝒙 − 𝜮𝒙𝒚𝜮

−1
𝒚𝒚𝜮𝒚𝒙 (A.19)

A.3 Affine transformation of gaussian pdfs

In the previous section the expressions for the marginal and conditional pdfs ex-
pressed in terms of the parameters of the joint pdf are derived in the case of a
partitioned Gaussian pdf. A different starting point is now considered, namely that
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the marginal density 𝑝(𝒙) and the conditional density 𝑝(𝒚|𝒙) are given, and expres-
sions for the joint density 𝑝(𝒙, 𝒚), the marginal density 𝑝(𝒚), and the conditional
density 𝑝(𝒙|𝒚) are derived.

Assume that the random vector 𝒙, as well as 𝒚 conditioned on 𝒙, i.e. 𝒚|𝒙, be Gaussian
distributed:

𝑝(𝒙) =  (𝒙; �̄�,𝜮𝒙𝒙) (A.20a)
𝑝(𝒚|𝒙) =  (𝒚;𝑨𝒙 + 𝒃,𝜮𝒚|𝒙) (A.20b)

where 𝑨 is a matrix (of appropriate dimension) and 𝒃 is a constant vector. The joint
distribution of 𝒙 and 𝒚 is then given by:

𝑝(𝒙, 𝒚) = 
([

𝒙

𝒚]
;
[

�̄�

𝑨�̄� + 𝒃]
,
[

𝜮𝒙𝒙 𝜮𝒙𝒙𝑨
T

𝑨𝜮𝒙𝒙 𝑨𝜮𝒙𝒙𝑨
T + 𝜮𝒚|𝒙])

(A.21)

Combining the results of Appendices A.2.1 and A.2.2 the marginal and conditional
pdf are derived as well. In particular, the marginal 𝑝(𝒚) is given by:

𝑝(𝒚) =  (𝒚; �̄�,𝜮𝒚𝒚) (A.22)

with mean
�̄� = 𝑨�̄� + 𝒃 (A.23)

and covariance
𝜮𝒚𝒚 = 𝑨𝜮𝒙𝒙𝑨

T
+ 𝜮𝒚|𝒙 (A.24)

Instead, the conditional pdf 𝑝(𝒙|𝒚) is given by:

𝑝(𝒙|𝒚) =  (𝒙; �̄� + 𝜮𝒙𝒙𝑨
T
𝜮

−1
𝒚𝒚 (𝒚 − 𝑨�̄� − 𝒃),𝜮𝒙𝒙 − 𝜮𝒙𝒙𝑨

T
𝜮

−1
𝒚𝒚𝜮𝒙𝒙𝑨) (A.25)
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