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Abstract: The objective of this study was to develop a U-net capable of generating highly accurate 3D
models of knee bones, in particular the femur. As part of the approach, a U-net was designed, trained,
and validated. In order to achieve these goals, a novel architecture was proposed, including an
architecture that reduces encoder parameters and incorporates transfer learning, in order to enhance
the attention U-net. Additionally, an extra depth layer was added to extract more salient information.
Moreover, the model includes a classifier unit to reduce false positives, as well as a Tversky focal loss
function, which is an innovative loss function. The proposed architecture achieved a Dice coefficient
of 98.05. By using these enhanced tools, clinicians can visualize and analyze knee structures more
accurately, improve surgical intervention effectiveness, and improve patient care quality overall.
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1. Introduction

Accurate segmentation of the knee from medical images is a critical component in the
diagnosis, treatment, and management of knee-related conditions [1]. This process involves
delineating various anatomical structures within the knee joint, such as bones, cartilage,
and ligaments, which is essential for understanding joint health and pathology [2].

In clinical applications, precise knee segmentation is indispensable for several reasons [3,4].
Firstly, it enables detailed assessment of knee joint integrity, facilitating the diagnosis of
conditions like osteoarthritis, meniscal tears, and ligament injuries. Accurate segmentation
provides critical insights into the extent of damage, guiding clinicians in developing
appropriate treatment plans [5]. Secondly, precise knee segmentation plays a crucial role
in preoperative planning and postoperative evaluation [6]. Surgeons rely on detailed
anatomical maps to plan procedures such as knee replacements, ligament reconstructions,
and meniscal repairs.

Osteoarthritis is the most common form of arthritis. Symptoms include swelling, pain,
and a reduction in range of motion when cartilage in the joints breaks down. The majority
of osteoarthritis cases occur in the hands, feet, spine, and large weight-bearing joints, such
as the hips and knees [7,8]. Joint cartilage deteriorates, causing the bones to rub against
each other, resulting in pain and decreased mobility. The National Institutes of Health
(NIH) [9] warn that OA can lead to permanent disability and deformity. Due to these
changes, the affected area may lose range of motion and become less stable. The inability
to perform everyday tasks, such as walking or carrying objects, can cause difficulty.

Currently, osteoarthritis has no cure, partly due to a lack of comprehensive under-
standing of the pathological mechanism of the initiation and progression of the disease [10].

Radiologists spend considerable time analyzing MRI images in order to diagnose
osteoarthritis accurately [11]. As a result of this significant expenditure of time and energy,
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patients with osteoarthritis incur a high cost of care and treatment. The artificial joint
replacement procedure involves surgically removing the damaged joint and replacing it
with an artificial joint made from metal, plastic, or ceramic [12]. By using an artificial joint,
the function of the joint can be restored and pain can be reduced. Traditionally, this has
been the only treatment option available for osteoarthritis of the knee, which has a lifetime
risk of up to 40 percent [13]. Figure 1 depicts two knee joints; on the left is a normal healthy
knee joint, and on the right is a knee joint with osteoarthritis.

Despite its importance, achieving accurate knee segmentation is challenging, due
to the complex anatomy of the knee and the variability in imaging quality and proto-
cols. Manual segmentation, although accurate, is time-consuming and prone to observer
variability [14]. Automated methods offer a promising solution by providing rapid and
consistent segmentation, with minimal manual intervention.

Figure 1. Healthy knee (left), osteoarthritis (right), [15].

The knee segmentation and marking process is currently performed in three different
ways: manually, automatically, and semi-automatically.

• In the manual procedure, a trained doctor manually draws a specific label on an image
portion—a lengthy and inefficient process.

• The automatic method involves the use of an algorithm that divides the image into
regions with similar characteristics. However, this method does not provide the
accuracy required at the present time.

• The semi-automatic method incorporates both techniques as a compromise, but it is
limited by multiple 3D modelings [16] and has the disadvantages of both methods.

An accurate segmentation of the patient’s knee can enhance the performance of joint
replacement procedures. Nowadays, a high percentage of patients are dissatisfied af-
ter treatment [17], due to various factors, such as implant malalignment and incorrect
implant size. A precise 3D model of the patient’s knee can improve alignment and facil-
itate the design of customized solutions. Therefore, automating the process is essential.
Ghidotti et al. [18] discussed the need to automate modeling procedures in order to reduce
manual intervention and improve patient satisfaction with the reconstruction of a 3D model
of the knee.

Currently, the field of medical engineering has made significant progress due to
advances in fields such as three-dimensional imaging [19], neural networks [1], and additive
manufacturing [20]. Additionally, research has been conducted on various segmentation
techniques [21], as well as on the use of deep learning [22]. It is apparent that further
research is required into various segmentation techniques, with deep learning being the
most prevalent.

In orthopedics, 3D models provide a detailed representation of complex anatomy,
enhancing the precision and personalization of medical interventions. Three-dimensional
models can be used by surgeons to visualize the anatomy of each patient, identify pathology,
and plan surgeries or implant placements in detail. Mercader et al. [23] used patient-specific
3D models to compare femoral rollback before and after total knee arthroplasty (TKA),
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thereby providing knowledge regarding surgical outcomes. Additionally, 3D models
can be integrated with human gait analysis to have a complete view of the patient, as
demonstrated by Kerdvibulvech et al. [24]. Specifically focused on the femur, this study
sought to develop a CNN capable of generating highly accurate 3D models of knee bones.
By providing clinicians with better tools to visualize and analyze knee structures, it aims
to improve the accuracy of diagnoses, the effectiveness of surgical interventions, and the
overall quality of patient care.

2. Related Work

A key challenge in medical segmentation is the high degree of variability in the
appearance of bones in medical images as a result of factors such as anatomy, imaging
mode, and image quality. Thus, many research studies have focused on developing
algorithms for segmentation. A detailed review can be found in [25,26].

One of the first widely used segmentation method was region growing, a type of
segmentation that divides an image into regions and segments the image by the similarity
of pixels within each region [27]. Deformable-model-based is another common approach
to segmentation [28]. The most common models are active shape models (ASMs) [29],
statistical shape models (SSMs) [30], and active appearance models (AAMs) [31]. As an
example, ASM is a statistical model that combines a deformable shape model with a texture
model to represent the shape and appearance of an object. Shape models capture global
structure and variability, while texture models capture local appearance and details. A
graph-based method for knee bone segmentation was developed in the following years.
These models represent knee bones as nodes in a graph connected by edges [32]. Atlas-
based models are another approach, Dam et al. [33] proposed a model that used multi-atlas
registry before KNN based classification of the cartilage and that was manually trained in
different bone combinations.

Machine learning (ML) and deep learning (DL) techniques have been developed in
the last decade for segmenting knee bones [34]. With ML, pixel features are extracted from
the given data, and segmentation labels are assigned to those pixels. Jamshidi et al. [35]
and Klozyk and Matte [36] demonstrated the importance of ML techniques in detecting
knee osteoarthritis at an early stage.

Due to advances in hardware, DL methods have become more powerful, and deeper
learning techniques have been introduced in recent years. The use of automatic segmenta-
tion has been shown to be superior to the use of manual segmentation in some instances [21].
To perform semantic labeling on a two-dimensional knee image, Liu et al. [14] constructed
a 10-layer SegNet framework and removed its completely connected layer after the decoder
network. Using CNN and statistical shape models, Ambellan et al. [37] reported knee
segmentation, but due to the resource-intensive segmentation and the small database it
was trained on, the method struggled to scale to larger databases.

In recent years, the U-net architecture has been the most commonly used for deep
learning segmentation [38]. Many examples can be found on using U-net for knee segmen-
tation. Norman et al. [39] used U-net to segment the cartilage and meiscus compartments
with Dice score results between 0.770 and 0.878 for the cartilage. A three-dimensional U-net
with adversarial loss was researched by Chen et al. [3] to automatically segment the knee
bone in a re-sampled image volume, which could result in the loss of fine details. A study
by Almajalid et al. [40] successfully segmented all knee bones by separating each 3D image
into slices for input to a 2D model. However, the dataset used was very small and had
many false positives. Deniz et al. [41] performed automatic femur segmentation based on
deep convolutional neural networks, achieving a Dice similarity score of 0.95; however,
they did not optimize the learning rate and the number of initial feature maps.

Chen et al. [42] performed automatic femur segmentation using a 3D feature-enhanced
network using edge detection and multi-scale feature fusion, achieving a 0.96 Dice score.
A timeline of DL-based segmentation algorithms for 2D images is found in [43]. In some
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instances, automatic segmentation has proven to outperform manual segmentation [21]. A
detailed review of segmentation methods utilizing DL can be found in [44].

In this work, three contributions are made. First, a novel attention U-net was devel-
oped to solve the problem of segmentation in extreme visual performances of MRI images
resulting in the elimination of false positive cases. In addition, the use of transfer learning
as part of the training process of the U-net allows for less time and data consumption,
thereby improving the constraints of the developed system. Finally, the use of different
loss functions contributes to the accuracy.

3. Proposed Approach

An architecture that extends U-net is proposed in this paper, through which new
modules are introduced and added to the attention unit [45]. Figure 2 illustrates the
multiple operations carried out to construct the proposed U-net.

Figure 2. Proposed Approach.

In the following paragraphs, the added modules will be discussed and their contribu-
tion to the final extended network will be described.

3.1. Data Pre-Processing

In this study, the dataset comprises MRI scans of patients that showcase various views
of the knee, in DICOM file format, accompanied by a corresponding segmentation of the
patient’s knee bones. The images are represented as gray scale images, with each slice
containing 512 × 512 pixels, as seen in Figure 3.

Figure 3. Dataset Examples of the knee bones images.

Based on the data processing methodology used, 12,984 image slices were used during
the training process, with 3246 image slices for validation using a 25% split for validation.
In order to train, each image was reduced to 256 × 256 pixels, and pixels in the image were
represented using a continuous representation, so that each pixel value fell within the range
of [0,1]. The image was also normalized using the Housefield unit. It was determined that
bone had the highest density, while non-bone had the lowest density [46].

Considering the three-dimensional nature of each patient view, each slice could orig-
inate from an x, y, or z axis. As part of the training phase, only images from the x and z
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axes were used. With this strategy, a frontal view of the knee was rendered, resulting in
a smoother training process and avoiding the possibility of confusion between the tibia
and femur. MRI scans of the knee contained 1024 images along the x and z axes; however,
less than half of these images indicate the presence of bone. Consequently, our model
was primarily trained with black images or images without bones and therefore lacked
segmentation data, resulting in underfitting. Due to this predicament, the initial model was
prone to producing false segmentation outputs. Therefore, we introduced a supplementary
method for segregating our training data. During training, the image was retained if at
least five percent of the pixels were white (indicating segmentation). In this procedure,
any part of the image that does not contain the necessary data for the U-net to be trained
is eliminated, as depicted in Figure 4. Although it is standard to shuffle your training set
images, in our scenario, the model benefits from seeing the slices of the MRI in sequence, in
order to learn a complete segmentation for each patient. To maintain the sequential order
of images within each patient’s MRI, we shuffled the order of patients in the training set.

(a) Input Image (b) True Mask

Figure 4. Example of full segmentation data, MRI scan (a) segmentation results (b).

3.2. Attention U-Net

Attention U-Net has been successfully employed for pancreas segmentation [47]. The
foregoing network was optimized in order to improve the accuracy of segmentation.

The attention U-net combines the strength of U-nets with attention gate mechanisms
(AG). It enables the network to concentrate on the most important parts of the input
image by reducing noise and ambiguity, thus highlighting the most prominent features.
Oktay et al. [47] added an AG before the U-net, joining the encoder and decoder’s corre-
sponding features, and readjusted the encoder’s output features. As part of an analysis of
an image, this refers to how much attention is given to different parts of the image, while
indirectly learning to suppress uninteresting areas. The AG mechanism is seen in Figure 5.

Figure 5. Attention date mechanisms (AG).

The AG is added to each skip connection that receives input from both the encoder
feature map and the lower network feature map. The modifications proposed in this work
are intended to enhance the existing attention U-net architecture, as can be seen in Figure 6.
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Figure 6. An attention gate is added to each skip connection layer, with input x from the feature map
on the left and g from the lower network, the output is then concatenated to the decoder block.

3.3. Transfer Learning

Transfer learning (TL) is used in this work in two different architectures and modules:
the first, in the U-net (encoder and decoder) and the second, in the classifier unit, as detailed
in Section 3.4.

Bilal et al. [48] introduced TL for U-net networks using the VGG16 architecture, which
focuses primarily on transferring encoder functionalities. In order to reduce the number of
parameters, transfer learning was applied to both the encoder and decoder of this work
using the ResNet50 architecture. ResNet50 has fewer parameters than VGG16, making
it more efficient in terms of computation time and complexity. A significant reduction in
parameters was achieved using ResNet50. Furthermore, ResNet50 was able to overcome
the problem of vanishing gradients.

3.4. Classifier Unit

A substantial portion of volumetric images do not contain any segmentation infor-
mation, as indicated in Section 3.1. Initially, we trained our network exclusively using
segmented data. However, the model produced a significant number of false positive
segmentations when it was asked to predict an entire volume consisting of only images
without bone structure. Therefore, when we attempted to train the model using all slices of
the volume, the segmentation accuracy decreased.

The second enhancement involved adding a new component to the U-net model. This
component is called a classification module and functions as a binary classifier, as shown
in Figure 7. Using binary cross-entropy, we trained our classifier to identify whether an
image contains a femur representation. Once it has been determined that there is no femur
in the image, a corrective measure is applied.

As depicted in Figure 8, the segmentation result is multiplied by the classifier result. If
the classifier result is 0, indicating the image has no visible femur, the segmentation output
is multiplied by zero, resulting in a black image. If the classifier result is 1, indicating
the presence of a femur, the segmentation output is multiplied by one, leaving the U-Net
model’s output unchanged. It is important to note that in the case of a false-positive
segmentation, this multiplication will result in a final image that lacks any discernible
segmentation, appearing as a black image with no discernible regions of interest.

Segmentation problems inherently involve classification. For example, a model must
learn to detect the presence of a femur bone in an image and, if present, identify its location
before segmenting the bone. This task of classification and localization can be challenging,
often leading to many false positives where the model segments a bone even when none
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exists. In the medical field, such errors can be disastrous. To address this, we propose
using a classification model to determine whether the segmentation model should process
the image. Since binary classification tasks are typically easier to train and achieve high
accuracy, we can rely on our classification model to make more accurate decisions about
the presence of a bone in the image. This approach reduces the risk of false positives and
enhances the overall reliability of the segmentation process. CNL does not add a significant
number of parameters to the network, since it is based on a pre-trained VGG16 network
that has been fine-tuned. It can be easily integrated into any existing network with little
impact on training times, since it is trained concurrently with the segmentation network.

Figure 7. The architecture of the classifier, which takes two inputs, one using transfer learning from
VGG16 and one from the bottom layer of the encoder, and produces the classification output.

Figure 8. The proposed architecture with the addition of the classifier.

Due to the fact that VGG16 is a network that is trained specifically on the task of
classification, our classifier uses it as a base, which should result in a more accurate
classification. We further enhance the classification process by concatenating the feature
maps from the final block of the VGG16 with the feature maps from the middle block of
the U-net decoder. Then, a 3 × 3 convolution with a Relu activation function is performed,
followed by a 1 × 1 convolution with a global average pooling and a Sigmoid activation
function. The classifier output is multiplied by the attention output.

3.5. Deeper U-Net Levels

This work explores the possibility of increasing the network’s depth by adding addi-
tional layers to the encoder and decoder, as shown in Figure 9. This enables capturing finer
details and improves the overall segmentation accuracy. It is important to note that adding
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an additional layer resulted in an increase in network parameters, from 35 M to over 90 M .
To accommodate an extra layer, the convolution operations use the same number of features
as the layer before, rather than increasing the number by two. Adding transfer learning
from ResNet50, a lighter network, to the entire decoder further reduces the number of
parameters.

Figure 9. Proposed architecture with an additional layer added.

Defining the extra layer as such increased the network’s parameters from 35 M to
49 M, a substantial reduction from the original 90 M parameters required by an extra layer.

3.6. Loss Functions

The primary objective of semantic segmentation is to anticipate the class labels for each
pixel within an input image. In this context, we aim to identify a distinct area of interest,
the bone, from MRI scans. This simplifies the task into a binary classification problem
for individual pixels. However, our area of interest is typically confined to a relatively
small portion of the image. In that scenario, the utilization of binary cross-entropy loss
or similar metrics can deceive the model into exhibiting a false sense of superiority, for
example classifying only foreground pixels and not the actual segmentation. Hence, we
require a loss function that precisely represents our priorities. One such solution is the Dice
coefficient loss, which quantifies the degree of overlap between the predicted segmentation
and the ground truth. It is calculated as the ratio of the intersection of the two sets to the
union of the two sets. The Dice loss between the prediction samples p and the ground truth
and annotation g is defined by the following Equation (1).

Ldice = 1 − 2 ∑N
i=1 pigi + ϵ

∑N
i=1 pi + ∑N

i=1 gi + ϵ
(1)

where

• N is the total number of pixels in the image.
• pi is the predicted probability for the i-th pixel belonging to the bone (foreground).
• gi is the ground truth label for the i-th pixel (1 if it belongs to the bone, 0 otherwise).
• ϵ is a small constant added to prevent division by zero.

In spite of the fact that Dice loss is a common function, it has the limitation of weighing
false positives and false negatives equally. In segmentation tasks, it struggles when dealing
with unbalanced data where the number of bone pixels is much lower than the number of
non-bone pixels. Abrham et al. [49] and Salehi at al. [50] suggested using the focal Tversky
loss function (FTL), which can help mitigate the imbalance problem and effectively train
deep neural networks.

The FTL is similar to the Dice loss in that it measures the overlap between the predicted
segmentation and the ground truth. It introduces two additional hyperparameters, α and β,
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which allow for more fine-grained control over the trade-off between precision and recall.
The FTL is defined as

TI(α, β) =
∑N

i=1 picgic + ϵ

∑N
i=1 picgic + α ∑N

i=1 picgiĉ + β ∑N
i=1 pîcgic + ϵ

(2)

where

• N is the total number of pixels in the image.
• pic is the predicted probability of the i-th pixel belonging to class c, in our case the

femur.
• gic is the ground truth label for the i-th pixel belonging to class c (1 if it belongs to the

femur, 0 otherwise).
• piĉ is the predicted probability of the i-th pixel belonging to the complement of class c

(not the femur).
• giĉ is the ground truth label for the i-th pixel belonging to the complement of class c

(not the femur).
• α and β are hyperparameters that control the weighting of false positives and false

negatives, respectively.
• ϵ is a small constant added to avoid division by zero.

∑N
i=1 picgic—represents the sum of the product of the predicted values and the ground

truth labels for each pixel belonging to the femur. It effectively counts the number of pixels
correctly predicted as the femur (true positives).

α ∑N
i=1 picgiĉ—represents the sum of the predicted values for pixels that are incorrectly

predicted as the femur when they are not (false positives), weighted by α.
β ∑N

i=1 pîcgic—represents the sum of the ground truth labels for pixels that are in-
correctly predicted as not the femur when they are actually the femur (false negatives),
weighted by β.

To define it as a loss function, we use the focal Tversky loss as mentioned by
Abraham et al. [49]:

FTLc(α, β) = ∑
c
(1 − TIc)

1/γ (3)

γ is a hyperparameter that increases the emphasis on harder-to-classify pixels. In our case,
we set γ = 4

3 as recommended by Abraham et al. [49], allowing the loss function to focus
more on less accurate predictions that have been misclassified.

3.7. Complexity

The U-Net architecture contains 70 million parameters. The model’s ability to learn
intricate features from medical images is encoded by these parameters. It should be noted,
however, that they also impose computational demands throughout both the training and
inference processes. As part of the training process, we used a GPU configuration of A100
with 40 GB of RAM on Google Collab. It took approximately thirty minutes to complete
each epoch. A basic GPU is sufficient to sample from the model and produce a complete
3D segmentation within a minute following training. The model can be further improved
by increasing the input image size from 256 × 256 to 512 × 512. To support the increase
in parameters, however, it is necessary to have a stronger GPU and more RAM. Similarly,
one can train the model with smaller image sizes with a less powerful GPU, at the cost of
some accuracy.

4. Results

A common evaluation metric for neural networks involves comparing the predicted
output with a ground truth. In segmentation, one way to achieve this is by using the Dice
similarity coefficient (DSC), which is a measure of similarity or overlap between two sets.
It is measured with four categories: true positive(TP), false positive(FP), false negative(FN),
and true negative(TN). In essence, it gives a quantifiable measurement ranging between
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0 and 1 that summarizes the quality of segmentation, with higher values being more
accurate. In our case, the ground truth is a segmentation that a doctor has performed and
the predicted output is our model’s segmentation. In the previous section, we discussed
the Dice coefficient loss function described in Equation (1), the Dice coefficient DSC can be
described as follows:

Dsc =
2TP

2TP + FP + FN
(4)

Or by subtracting one from our Dice loss function, as they are a compliment to each other.

Dsc = 1 − Ldice (5)

The Hausdorff distance is a metric used to assess the similarity or dissimilarity between
two sets of points or shapes within a given metric space. It gauges the extent to which one
set can approximate the other by considering the maximum distance between points in one
set and their closest points in the other set. It is defined as follows:

H(A, B) = max

(
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

)
(6)

where A and B are two surfaces, sup and inf denote the least upper bound and greatest
lower bound, respectively.

A 3D slicer [51], known for its ability to visualize and analyze segments, was used
to assess the accuracy of a segmentation. For calculating the model’s final accuracy, the
test stage was carried out on 10 patients. The knee was segmented using the entire MRI
scan volumetric image, resulting in a complete 3D model. In order to determine the
accuracy of the segmentation, we overlapped the ground truth segmentation with our
predicted segmentation and used the SlicerRT add-on inside 3D slicer open source. Segment
comparison is a module provided by SlicerRT. Using two 3D knee models, this module
calculates the Dice score between them. Accordingly, we computed the Dice scores for each
of the 10 patients based on the ground truth segmentation of the entire volumetric image.

Attention U-Net yielded accurate results, owing to the effective functioning of attention
gates that focused specifically on the knee bones, while diminishing the surrounding
background. This precise attention mechanism led to an enhanced segmentation accuracy.
The final output demonstrated an elevated level of smoothness, highlighting the advantage
of attention U-Net in producing more refined segmentation outcomes.

Figure 10 illustrates the training and validation process throughout the epochs. Through
iteration, the graph facilitates learning and performance. The results clearly indicate that no
overfitting occurred during the learning processes. In addition, the data were well-adapted
and the system was generalized efficiently.

Upon examining Table 1, we can observe the following results: In some instances, such
as the first and fifth rows, the automatic segmentation outperformed the ground truth by
producing more homogeneous bone contours. In the second row, the algorithm successfully
detected a small black point near the lateral epicondyle. A small portion of the bone in
the lateral compartment was incorrectly classified by the algorithm in the third row. In the
fourth row, the algorithm accurately identified the absence of femoral bone in the selected
MR slice. Comparing the proposed approach with the ground truth in the third and fifth
rows revealed that the proposed method achieved a segmentation more consistent with the
original image.

The addition of the classifier to the U-net made it more robust to false positives. As a
result, the CNL output was prioritized for early classification of segmentation necessity.
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Figure 10. Model accuracy graph.

Table 1. Comparison between tested models.

Original Image Ground Truth U-Net Attention
U-Net Our Approach
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It is also clear that the CNL effectively increased the models accuracy and Hausdorff
distance, as seen in Tables 2 and 3. The increase in both metrics confirmed the reduction in
false positives, since the CNL unit had no bearing on the quality of the segmentation and
only on reducing errors caused by segmentation in the wrong areas. The Dice score results
are averages of the Dice scores of ten different patients and their corresponding ground
truths. As can be seen in Table 2, some additions contributed to the Dice score, while others,
such as focal Tversky (FT) [49], actually decreased it. However, when we combined all
the models together, we found that FT added to the overall accuracy of the model. The
Hausdorff distance (HD) was calculated by first calculating the average Hausdorff distance
for each patient, followed by averaging these distances across all patients. A smaller HD
indicates that two sets are similar, while a larger HD indicates that they are dissimilar.
Therefore, we aimed to achieve the smallest possible HD.

Table 2. Performance comparison using Dice coefficient score between our proposed enhancements.

Model Dice Coefficient Scores

AU 96.19%
AU + TL 97.59%

AU + TL + LAYER 95.95%
AU + CLS 97.42%

AU + Focal TV 94.43%
Proposed approach with all modules 98.05%

Table 3. Performance comparison using Hausdorff distance between our proposed enhancements.

Model Hausdorff Distance

AU 0.59 mm
AU + TL 0.47 mm

AU + TL + LAYER 0.6 mm
AU + CLS 0.5 mm

AU + Focal TV 1.3 mm
Proposed approach with all modules 0.38 mm

In Table 3, our proposed approach managed to yield an impressive 0.38 mm distance
between the ground truth and our prediction.

Three-Dimensional Reconstruction

Figure 11 illustrates how the distance between the ground truth and predicted labels
was calculated using a 3D slicer extension. As can be seen from this visualization, the
different colors indicate the distance in millimeters between each pixel in the two models.
In the case of a small overlap between the models, the distance was closer to zero, and when
the absolute value of the distance exceeds 0, this indicates a larger deviation from the ground
truth. With the use of this technique, we were able to identify areas of superior and inferior
performance within our predictions. Whenever certain regions of a 3D reconstruction lack
precision, the overall experience of the patient may be adversely affected. Despite the fact
that all other regions overlap perfectly with the ground truth, a deviation can indicate a
false result in the extreme case.
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Figure 11. Three-dimensional reconstruction of the segmentation results of the proposed approach in mm.

5. Discussion

The accuracy of automatic segmentation models depends on the implemented algo-
rithm and the characteristics of the input data, in terms of quantity and quality [2,52]. In
this study, attention U-net was implemented adding different modules to obtain a novel
configuration, including ResNet50 transfer learning , a classification module and one more
layer. The input data were a total of 16,230 images, providing a much more detailed
anatomical representation than is typically obtained in standard clinical protocols.

The proposed model showed a high performance, achieving a mean Dice score of
98.05% and HD of 0.38 mm.

Although there have been several research studies focusing on the application of DL
to MRI images of the knee joint, our quantitative evaluation metrics cannot be directly
compared to those from the other studies listed in Table 4. This is primarily due to the
variations in the datasets used. Different studies employed different MRI sequences, which
affects the image quality, resolution, and the specific anatomical details captured. These
differences in the datasets resulted in variability in the performance metrics, making direct
comparisons challenging. We have shown the progression of accuracy on the same dataset
in Tables 2 and 3, respectively.

Table 4. Results of comparative accuracy in recent literature works.

Model Neural Networks Architecture Dice Score

Chen et al., 2022 [1] 3D U-Net 98.0%
Robert et al., 2022 [53] 2.5D U-Net 98.0%
Tang et al., 2022 [54] 3D V-Net 96.4%
Liu et al., 2022 [55] 2D U-Net VGG16 96.0%
Almajalid et al., 2022 [40] Modified U-Net 96.0%
Kulseng et al., 2023 [52] Modified U-Net 98.0%
Proposed approach Extended Atte.Unet 98.05%

Improvement in Dice accuracy and Hausdorff distance could enhance clinical appli-
cations immensely by creating more precise 3D models for surgical planning and custom
implants that are suited to the patient’s anatomy.

This study, while achieving an improvement in accuracy, has several limitations. The
dataset used is still relatively small and sourced from a single institution. This limits
the generalization of the proposed approach’s findings to other populations and imaging
conditions. Additionally, the exclusion of certain image axes during training might have
introduced a bias in the segmentation model, potentially affecting its performance in
real-world scenarios.

Future work should test the robustness of the model on different datasets, potentially
focusing on specific groups, such as males over the age of 60. Since OA affects older
individuals more frequently, fine-tuning the model for these specific scenarios could be
highly beneficial. Moreover, the focal Tversky loss function led to a decrease in Dice score.
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The focal Tversky loss was intended to address class imbalance problems by focusing
on hard-to-segment areas. However, its application might have overly penalized certain
predictions, leading to a lower overall Dice score. Future work should explore fine tuning
the hyper-parameters of focal Tversky, possibly through a linear interpolation method, to
achieve better results.

6. Conclusions

This study introduced several novel modules and integrated them into current seg-
mentation methodologies, resulting in an enhanced attention U-Net. The attention U-Net
incorporates innovative components such as transfer learning, increased depth, a focal
Tversky technique, and an additional classifier, to overcome the challenges and constraints
described in the article. By combining these techniques, commendable segmentation results
were obtained, particularly within the relatively unexplored field of femur segmentation.
The purpose of this research was to leverage automated 3D modeling to reduce manual
intervention by radiologists and provide patients with more precise 3D implants by lever-
aging femur segmentation. By developing a cutting-edge technique, we aim to develop
patient-specific implants that are tailored to the anatomical characteristics of each patient.
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