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Abstract 

The Ti-6Al-4V titanium alloy is commonly used in the manufacturing of aircraft components. These components are typically 
subjected to cyclic stresses during their operational life. The propagation of existing defects contributes to fatigue degradation, 
making a comprehensive study of the fatigue response of Ti-6Al-4V containing defects crucial for an accurate evaluation of 
component durability. This paper presents the outcomes of experiments conducted in an inert environment using smooth and 
notched Ti-6Al-4V specimens subjected to axial cyclic loading. The fatigue strength appears comparable among the notched 
specimens and is significantly higher for the smooth ones. The failure of one of the tested smooth specimens started from a location 
different from where stress concentration is expected, probably due to the presence of a micro notch. 
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1. Introduction  

Due to a remarkable corrosion protection capability and a high strength-to-density ratio, the Ti-6Al-4V titanium 
alloy is commonly used in aircraft engineering to manufacture airframe and engine structural components (Lütjering, 
2007), along with 7075-T6 aluminum alloy (Baragetti et al., 2019b; 2020) and high-strength alloyed steel (Solob et 
al., 2020). Aircraft components are typically subjected to fatigue stresses during their service life and present defects 
that can result from manufacturing processes (Grandt, 2011; Gupta et al., 2022, 2023; Renzo et al., 2022; Liović et al., 
2023) and possible impact of foreign objects (Peters and Ritchie, 2000; Arcieri et al., 2021, 2022, 2023b). 
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Consequently, localized stress concentrations (Morel et al., 2009) and residual stresses (Baragetti and Tordini, 2007; 
Baragetti et al., 2000; Mlikota et al., 2021) associated with the presence of such defects lead to the initiation of fatigue 
cracks, which propagate until failure (Božić et al., 2010; Mlikota et al., 2017, 2018; Čakmak et al., 2019; Cazin et al., 
2020; Vukelić et al., 2020; Khosravani et al., 2022). 

With the spread of additive manufacturing, recent studies in the literature focus on the fatigue properties of               
Ti-6Al-4V components made with this technology (Van Hooreweder et al., 2012; Leuders, 2013; Viespoli et al., 2020; 
Liović et al., 2021; Konda, 2023; Verma et al., 2023) pointing out that the high porosity and percentage of defects 
introduced is responsible for a significant decrease in fatigue life. 

In light of the above, the examination of the fatigue response of Ti-6Al-4V in the presence of defects is crucial for 
accurately assessing the behavior and durability of components. This has been undertaken in studies such as Yetim et 
al. (2010), Arcieri et al. (2018), Babić et al. (2018, 2019, 2020), Baragetti and Arcieri (2019, 2020), Kožar et al. (2020) 
and Monkova et al. (2020), addressing different mechanical problems. The behavior of Ti-6Al-4V under quasi-static 
stress conditions was examined in Baragetti et al. (2018, 2019a), where the detrimental effect on structural integrity 
provided by the combination of sharp notches with aggressive environments was highlighted. This paper presents the 
results of the experiments conducted in an inert environment on Ti-6Al-4V specimens with different geometries 
subjected to axial cyclic loading (Arcieri and Baragetti, 2023a, 2023b; Arcieri et al., 2023a). Fatigue strength appears 
to be similar among the notched specimens, whereas it is much greater for the smooth ones. The failure of one of the 
tested smooth specimens started from a point other than where stress concentration is expected, probably due to the 
presence of a micro notch. 

 
Nomenclature 

d notch depth 
Nf  number of cycles at which the failure occurs 
Nl fatigue life 
SCF stress concentration factor 
σ* stress range corresponding to a fatigue life of Nl loading cycles 
σf  stress range applied to the specimen in the failure load block 
σp stress range applied in the load block before the failure load block 

 

2. Materials and methods 

The axial cyclic tests were carried out on flat specimens having the shape depicted in Fig. 1 (Arcieri and Baragetti, 
2023a, 2023b; Arcieri et al., 2023a). Smooth and notched specimens were fatigued and for the latter the following 
values of notch depth were investigated: d = 0.5, 1 and 2 mm. The specimens were made from a rolled plate of               
Ti-6Al-4V alloy with the following chemical composition: 5.97% aluminum, 4.07% vanadium, 0.20% iron, 0.19% 
oxygen, 0.003% carbon, 0.015% hydrogen, 0.05% nitrogen and balanced titanium (Baragetti and Medolago, 2013). 
Ti-6Al-4V was not solution treated and over-aged. As a consequence of the chemical composition and the 
metallurgical process, the yield stress of the alloy ranges from 958 to 1050 MPa and the ultimate tensile strength 
ranges from 1000 to 1100 MPa (Baragetti and Medolago, 2013; Baragetti, 2013). To mitigate residual stress effects 
in the specimens, notches were created by low-speed milling. A plane stress linear elastic finite element analysis was 
performed on the model of a quarter of the specimens using the Abaqus/Standard code (2021) to determine the stress 
concentration factor (SCF) for each tested specimen. A homogeneous isotropic elastic material model was used for 
the analyses and the SCF was determined based on axial stresses. In the case of smooth specimen, stress concentrations 
occur at the fillet base. 
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Fig. 1. Shape of the tested specimens, adapted from Arcieri and Baragetti (2023a, 2023b) and Arcieri et al. (2023a). 

Before initiating the axial fatigue tests, the surface of the notches and the part of the front and rear surfaces of the 
specimens near the notches were polished using grit paper and diamond paste. In the case of smooth specimens, the 
side surfaces were difficult to polish. 

The step loading method proposed by Nicholas (2002) was employed for fatigue testing. This approach involves 
the sequential application of various load blocks to the tested specimens. Each specimen was loaded at constant 
amplitude for Nl cycles in each load block, where Nl represents the investigated fatigue life and it is equal to 200000 
loading cycles in this study. If the specimen does not fail in a load block, an increased stress is applied in the following 
one. The stress range σ* at failure corresponding to a fatigue life of Nl loading cycles is calculated using equation 1, 
where σf is the stress range at which the specimen fails, Nf is the number of loading cycles in the failure load block 
and σp is the stress range applied in the prior load block: 

𝜎𝜎∗ � 𝜎𝜎� � ��
�� �𝜎𝜎� � 𝜎𝜎��    (1) 

Nicholas' method provides preliminary fatigue data and fits well when fatigue cracks grow rapidly. However, the 
potential development of cracks in the load blocks before failure could lead to a modification in the stress state in the 
specimen, which influences the fatigue behavior.  

The fatigue tests were conducted at a frequency of 5 Hz, with a stress ratio equal to 0 and in an inert environment. 

3. Results 

Fig. 2 illustrates the experimental results, where the data referring to the notched specimens are taken from Arcieri 
and Baragetti (2023a, 2023b) and Arcieri et al. (2023a). The data that correspond to a number of cycles different from 
200000 refer to tests where failure occurred in the first applied load block. In these cases, the step loading formula 
was not employed. One of the two tested smooth specimens (SCF =1.14) failed in the first load block after 125644 
loading cycles, with an applied stress range of 407 MPa. The second smooth specimen failed in the second applied 
load block after 44633 cycles, under a stress range of 436 MPa. The specimen with a SCF of 2.48 (d = 0.5 mm) failed 
after 135544 cycles under a stress range of 234 MPa. The specimen with a SCF of 2.91 (d = 1 mm) failed after 160650 
cycles at a stress range of 255 MPa. The specimen with a SCF of 3.11 (d = 2 mm) failed in the first load block after 
139458 cycles, with a stress range of 251 MPa. Observing Fig. 2, it is evident that the fatigue strength of the smooth 
specimens significantly exceeds that of all the notched specimens tested while the stress at failure is similar among 
the notched specimens. Given the shape of the notch, its depth seems to partially influence the fatigue resistance of 
the specimens. Analyzing the fatigue behavior from a phenomenological perspective, the failure of one of the tested 
smooth specimens did not start from the fillet base but rather from a point on the side of the specimen’s gauge section, 
where a micro notch probably existed. 
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Fig. 2. Experimental results, some data are from Arcieri and Baragetti (2023a, 2023b) and Arcieri et al. (2023a). 

4. Conclusions 

This study compares the strengths of smooth (SCF = 1.14) and notched (SCF = 2.48, 2.91 and 3.11) Ti-6Al-4V 
specimens under axial cyclic loading. The tests were carried out in an inert atmosphere with a stress ratio equal to 0 
and adopting a step loading method. While the stress at failure is similar among the notched specimens, the fatigue 
strength of the smooth specimens is significantly higher. This suggests that, given the shape of the notch, its depth 
probably partially influences the fatigue resistance. One of the tested smooth specimens failed at a point on the side 
of the specimen's gauge section, likely due to the presence of a micro notch. Future developments could involve an 
in-depth analysis of the failure mechanism, including an assessment of potential contributions from micro notches that 
may exist. 
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