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Abstract
We propose a novel model selection algorithm based on a penalized maximum likelihood estimator (PMLE) for functional

hidden dynamic geostatistical models (f-HDGM). These models employ a classic mixed-effect regression structure with

embedded spatiotemporal dynamics to model georeferenced data observed in a functional domain. Thus, the regression

coefficients are functions. The algorithm simultaneously selects the relevant spline basis functions and regressors that are

used to model the fixed effects. In this way, it automatically shrinks to zero irrelevant parts of the functional coefficients or

the entire function for an irrelevant regressor. The algorithm is based on an adaptive LASSO penalty function, with weights

obtained by the unpenalised f-HDGM maximum likelihood estimators. The computational burden of maximisation is

drastically reduced by a local quadratic approximation of the log-likelihood. A Monte Carlo simulation study provides

insight in prediction ability and parameter estimate precision, considering increasing spatiotemporal dependence and cross-

correlations among predictors. Further, the algorithm behaviour is investigated when modelling air quality functional data

with several weather and land cover covariates. Within this application, we also explore some scalability properties of our

algorithm. Both simulations and empirical results show that the prediction ability of the penalised estimates are equivalent

to those provided by the maximum likelihood estimates. However, adopting the so-called one-standard-error rule, we

obtain estimates closer to the real ones, as well as simpler and more interpretable models.

Keywords Functional HDGM � Adaptive LASSO � Model selection � Penalized maximum likelihood � Geostatistical
models � Air quality Lombardy

1 Introduction

In recent years, we experienced a significant increase in the

availability and size of geo-referenced datasets, especially

in air quality monitoring (Vitolo et al. 2016), agriculture

and livestock farming (Fass‘o, A., Rodeschini, J., Moro,

A.F., Shaboviq, Q., Maranzano, P., Cameletti, M., Otto, P.

2023; Brown et al. 2023), and climate (Cruz-Alonso et al.

2023; Czernecki et al. 2020). As a result, geostatistical

applications need efficient algorithms for variable selec-

tion, that is for selecting relevant predictors from a large set

of candidates.

In addition, geostatistical data often defined on a func-

tional domain because of their characteristics, e.g., vertical

atmospheric profiles in climate studies (Fassò et al. 2018)

or off-shore coastal profile measurements for beach mon-

itoring (Otto et al. 2021). A functional data approach may

also be used to reduce the dimensionality of high-fre-

quency temporal observations. For example, Ignaccolo
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et al. (2008) considered the time series of air quality

measurements at many stations as functional observations.

Also, to understand the bike-sharing system, Piter et al.

(2022) considered daily 5-min usage profiles of a bike-

sharing system as daily functional observations. Due to the

spatial nature of the underlying process, further applica-

tions can be found in environmetrics (e.g., Franco-Villoria

and Ignaccolo 2017; Ignaccolo et al. 2013; Giraldo et al.

2011), medicine (e.g., Aristizabal et al. 2019), economet-

rics (e.g., Pineda-Rı́os et al. 2019). As a result, the above

mentioned need for efficient variable selection should

cover also functional data models.

1.1 The Big-N-problem

In this context, statistical methods have to face the so-

called Big-N-problem, in which the time complexity of

estimation algorithms grows polynomially with an order

greater than 2 when the number of locations is increasing

and traditional methods are often not computationally

feasible (cf. Katzfuss 2017a; Katzfuss and Cressie 2011).

To reduce the complexity of such models, various

approaches have been used, some of which are based on

inducing sparsity in the spatial covariance matrix (Furrer

et al. 2006; Kaufman et al. 2008; Stein 2013; Furrer et al.

2016). Some other approaches are related to the precision

matrix, either using a graphical least absolute shrinkage

and selection operator (LASSO) algorithm (Krock et al.

2021, 2021), or a sparse Cholesky factors approach based

on the Vecchia approximations (Stein et al. 2004; Kang

and Katzfuss 2021; Schäfer et al. 2021) and on multi-res-

olution approximations of Gaussian processes (Katzfuss

2017b; Jurek and Katzfuss 2021). In particular, Vecchia

approximation can be efficently used to peform high-di-

mensional spatiotemporal filtering (Jurek and Katzfuss

2022) and spatiotemporal smoothing (Jurek and Katzfuss

2022b). Low-rank covariance matrices have been also

considered, including fixed-rank kriging and penalised

methods (Banerjee et al. 2008; Cressie and Johannesson

2008; Chang et al. 2010a; Hsu et al. 2012a; Cressie et al.

2010). Eventually, combined approaches, like the so-called

full-scale approximation of the covariance matrix have

been proposed (Sang and Huang 2012).

1.2 Geostatistical variable selection

For large regression models, joint estimation and variable

selection based on penalised estimation provides stable so-

lutions compared to the classic backward and forward

selection methods (Breiman 1996; Bondell et al. 2010). In

this regard, we refer to the review paper of Müller and

Welsh (2010) .

Methods of selecting covariates have been developed

based on penalised methods in spatial and spatiotemporal

settings. For instance, Wang and Zhu (2009) suggested a

penalised least squares approach for spatial regression

models; Cai and Maiti (2020), for spatial autoregressive

models; and Gonella et al. (2022), for conditional autore-

gressive models. For additive spatial models including

potential nonlinear effects, Nandy et al. (2017) developed a

weighted penalised least squares estimator. Alternatively,

penalised maximum likelihood estimators (PMLE) are

considered. For instance, Zhu et al. (2010) suggested

PMLE for linear models with spatially correlated errors.

Chu et al. (2011a) and Chu et al. (2011b) additionally

reduced the model’s complexity by combining covariance

tapering and a PMLE for spatial and spatiotemporal set-

tings, respectively.

It is important to note that geostatistical applications are

prone to cross-correlated regressors due to their spatial

nature. Cross-correlation among the regressors can be a

critical issue in model selection. Indeed, when the covari-

ates are correlated, as pointed out by Zhao and Yu (2006),

the classic LASSO approach would generally not be

selection-consistent. Similarly, Simon and Tibshirani

(2012) showed that in the same situation, the group-

LASSO estimator (cf. Yuan and Lin (2006)), which

assumes orthonormal data within each group, would per-

form poorly in selecting the relevant features. Such issues

motivate the choice of an adaptive LASSO penalty, which

led to selection-consistent estimators in the case of cross-

correlated regressors (see Zou 2006; Zou and Li 2008).

Following the least absolute shrinkage and selector

operator (LASSO) methodology (Tibshirani 1996; Reyes

et al. 2012) proposed a spatiotemporal adaptive LASSO

algorithm for linear regression models with spatiotemporal

neighbourhood structures. The estimation strategy involved

both the penalised least squares and PMLE approaches.

Other examples of penalised regression for spatiotemporal

data are in Al-Sulami et al. (2019), in which an adaptive

LASSO method was developed to simultaneously identify

and estimate spatiotemporal lag interactions in the context

of a data-driven semiparametric nonlinear model. Fur-

thermore, Safikhani et al. (2020) considered LASSO

methods for generalised spatiotemporal autoregressive

models. The estimators are obtained by a modified version

of the penalised least squares that accommodates hierar-

chical group LASSO-type penalties.

In general, spline basis functions are widely used tools

in geostatistics for the spatiotemporal interpolation of

environmental phenomena (see for group-LASSO approa-

ches in this context Hofierka et al. 2002; Xiao et al. 2016;

Chang et al. 2010b; Hsu et al. 2012b). Also, spatial and

spatiotemporal model selection has been addressed in a

Bayesian framework (see e.g., Katzfuss and Cressie 2012;
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Carroll et al. 2016, 2016; Lawson et al. 2017; Carroll et al.

2018) but it will not be the focus of this paper.

Penalised methods are also commonly applied in the

context of functional data analysis, such as penalised

splines (see Silverman and Ramsay 2002; Claeskens et al.

2009). These methods usually regularise the smoothness of

the estimated functions by penalising the integrated second

derivatives. In this way, many basis functions can be used,

thus avoiding the typical overfit resulting from unpenalised

estimation methods.

In the context of functional data, some authors have

proposed the use of penalty methods for selecting relevant

predictors. As an example, Pannu and Billor (2017) pro-

posed using group LASSO for selecting grouped variables

(functional predictors) rather than individual variables;

Ivanoff et al. (2016) proposed adaptive LASSO and group

LASSO estimators for functional Poisson regression; Zhao

et al. (2012) employed a wavelet-based LASSO approach

for regressing scalars on functions aimed at identifying a

relatively small number of non-zero wavelet coefficients;

eventually, Centofanti et al. (2022) proposed a smooth

LASSO able to locate regions where the coefficient func-

tion is zero, and to smoothly estimate non-zero values of

the coefficient function. These contributions, although

close to us in terms of purpose and methodology, do not

consider the presence of spatiotemporal dependence and

cross-correlation between covariates, which are the main

focus of this paper.

1.3 Variable selection for spatiotemporal
functional models

In this paper, we propose a penalised maximum likelihood

estimate for the functional spatiotemporal model known as

the functional hidden dynamics geostatistical model (f-

HDGM) (Wang et al. 2021). More precisely, we develop

an adaptive LASSO method able to estimate the relevant

model coefficients and shrink to zero the irrelevant ones,

while taking into account spatiotemporal correlation and

cross-correlation among predictors.

In our functional setting, the LASSO selected coeffi-

cients are associated with the spline bases of the functional

regressors. As a result we may have two cases. All the

coefficients of a certain regressor are shrunk to zero,

resulting in its drop out. The second and more subtle case,

happens if only some of the coefficients of a single variable

are shrunk to zero. In this case the functional coefficient

may be zero in a subset of the functional domain. Similarly,

when using periodic Fourier bases some frequencies for a

specific variable may be neglected. For instance, Otto et al.

(2021) showed that major storm floods have an effect only

on specific parts of the coastal profiles, that is, those

affected by high waves during a flood.

We test the performance of the algorithm through a

Monte Carlo simulation study based on three settings with

increasing level of complexity and representative of geo-

statistical applications. Furthermore, we apply the penali-

sation algorithm to an empirical example of air quality

assessment. Within the application we study the compu-

tation time of the phases composing the penalty algorithm

and its behaviour as the model complexity increases. Both

simulations and applications are evaluated by highlighting

the predictive ability of the penalised estimators, the

interpretability of the estimates, the precision of parameter

estimation, and the variable selection capability.

Our proposal extend the approach of Fassò et al. (2022),

which considered a two stage variable selection algorithm

approach for multivariate HDGM. In the first stage the

classic trace LASSO is applied to the multivariate response

variable without considering any spatiotemporal structure.

This provides the so-called active sets associated to the

penalty factors k. In the second stage, for each active set

the multivariate HDGM is estimated and tested using

cross-validation. This provides the optimal active set and

the corresponding selected variables according to an hybrid

criterion. Here, considering functional response and pre-

dictors, we propose a penalized maximum likelihood

method based on a second order approximation of the

fHDGM likelihood.

The remainder of the paper is structured as follows. In

Sect. 2, we briefly introduce the considered functional

geostatistical model, namely the f-HDGM. In Sect. 3, we

present the new penalised maximum likelihood approach

using an adaptive LASSO penalty. In Sect. 4, we present

the results of an extensive Monte Carlo simulation of three

simulation settings. In Sect. 5, we illustrate an empirical

application in which the penalisation algorithm is applied

to daily air quality profiles in Lombardy, a region in

Northern Italy. Finally, Sect. 6 concludes this paper and

identifies potential topics for future research.

2 The functional model

In this section, we review the functional spatiotemporal

model known as the functional hidden dynamics geosta-

tistical model. The modelling rationale may be rooted in

the state-space modelling approach (Ferreira et al. 2022;

Jurek and Katzfuss 2021, 2022b). It is based on the classic

idea so that the temporal dynamics is described by a fixed

effect component plus an unobserved Markovian compo-

nent with innovations spatially correlated. In this frame-

work, the spatiotemporal covariance is assumed to be

separable (see for a comparison of different spatiotemporal

models Huang et al. 2007). The multivariate model and its

maximum likelihood estimation are introduced by Calculli
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et al. (2015). The procedure is based on maximising the

likelihood function using an expectation-maximization

(EM) algorithm, which is efficients thanks to the Kalman

Filter algorithm (Rougier et al. 2023).

2.1 Model details

The f-HDGM is designed to handle functional data

fys;tðhÞ : s 2 D; t ¼ 1; . . .; Tg defined on the interval

H ¼ ½h1; h2�. That is, ys;tðhÞ : H ! R can be observed at

any h 2 H for any given location s in the spatial domain D

and for any given discrete time t. Although the spatial

domain D is continuous, we observe such data on n spatial

points in an irregular grid S ¼ fs1; . . .; sng. Similarly, we

observe the data for each function at a discrete set of points

h1; . . .; hq, where both hi and q may depend on si and t.

These observations are denoted by vectors

fys;t ¼ ðys;tðh1Þ; . . .; ys;tðhqÞg. Overall, our data set is

composed of N ¼ nT functional data.

To account for the spatial and temporal dependence, we

model the process using a hidden dynamics geostatistical

model that separates all regressive effects from the spa-

tiotemporal interrelations. More precisely, the f-HDGM is

defined by

ys;tðhÞ ¼ ls;tðhÞ þ xs;tðhÞ þ es;tðhÞ; ð1Þ

where the fixed effects component ls;tðhÞ, the random

effects component xs;tðhÞ and the modelling errors vari-

ance r2ðhÞ ¼ Varðes;tðhÞÞ are modelled using splines.

Let Bk;aðhÞ be the k-th of the Ka basis functions of

component a 2 fl;x; rg. In Eq. 1, the mean, or the fixed

effects component, is a linear regression model in the

functional domain. That is,

ls;tðhÞ ¼
Xp

j¼0

XKl

k¼1

Xs;t;jðhÞBk;lðhÞbjk; ð2Þ

where Xs;t;jðhÞ denotes the functional observations of the j-
th regressor, with j ¼ 0 referring to the functional intercept,

and j ¼ 1; . . .; p referring to the p functional covariates. For

the generic j-th regressor, by multiplying of the spline basis

matrix by the coefficients bj ¼ ðbj1; . . .; bjKl
Þ0, we obtain

the functional coefficients shown in Fig. 1. In Sect. 3, we

propose an adaptive LASSO procedure to penalize these

regression coefficients. In a nutshell, whether all entries of

the vector bj are shrunk to zero or not, we can select the

relevant regressors. That is if bj contains only zeros, then,

the j-th regressor is removed from the model. Moreover, if

bj is only partly shrunk to zero, we can select the relevant

parts and knots of the j-th regressor in the functional

domain.

In Eq. 1, the spatiotemporal dependence is modelled by

the functional random effects xs;tðhÞ, given by

xs;tðhÞ ¼
XKx

k¼1

Bk;xðhÞzs;t;k: ð3Þ

In Eq. 3, the latent component zs;t ¼ ðzs;t;1; . . .; zs;t;KxÞ fol-
lows a temporal Markovian process, i.e.,

zs;t ¼ Gzs;t�1 þ gs;t; ð4Þ

where gs;t is a spatially correlated Kx-dimensional zero-

mean Gaussian process

gs;t �NKxð0;CÞ: ð5Þ

Let qðd; hÞ be the exponential covariance function at dis-

tance d with spatial range h. Then, the spatial covariance

function C at location s and s0 is given by

C ¼ diagðv1qðs� s0; h1Þ; . . .; vKxqðs� s0; hKxÞÞ; ð6Þ

where vi and hi are the variance and the range of the j-th

component of gs;t, repectively, with i ¼ 1; . . .;Kx.

Eventually, the model errors es;t are assumed to be

independent and identically normally distributed across

space and time, but the error variance may vary across the

functional domain as follows:

r2ðhÞ ¼
XKr

k¼1

Bk;rðhÞr2k : ð7Þ

Let b ¼ ðb1; . . .; bpÞ0 be the stacked vector of the spline

coefficient vectors of the fixed effects model, let h ¼
ðh1; . . .; hKxÞ

0
be the stacked vector of the spatial ranges,

and let v ¼ ðv1; . . .; vKxÞ
0
be the stacked vector of random

effects variances. Also, let w ¼ fG;V ; h; v; r2g be the set

of all coefficients of the random effects, including the error

term. Moreover, let H denote the Hessian matrix of the

model’s log-likelihood. The full set of parameters fb;wg is

estimated by maximising the log-likelihood using the EM

algorithm. Let fb̂MLE; ŵMLEg denote the maximum likeli-

hood estimate of fb;wg. Moreover, let HMLE ¼
Hðb̂MLE; ŵMLEÞ denote the Hessian matrix computed at the

ML solutions fb̂MLE; ŵMLEg. The EM algorithm used for

computation is implemented in the D-STEMv2 software

(Finazzi and Fassò 2014; Wang et al. 2021) within the

MATLAB environment. Starting with initial parameters

fbh0i;wh0ig, the expectation of the complete data likelihood

of the f-HDGM is iteratively maximised until the param-

eters converge or an upper bound of iterations is reached.

Both, the convergence distance and the iteration limit, can

be specified by the user. Moreover, the M-step involves the

Kalman smoother estimating the random effects and pos-

sibly missing values. For details on the update steps, we
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refer the reader to Calculli et al. (2015) which is the basis

of the algorithm implemented in D-STEMv2.

2.2 Approximations

Estimating the parameters of the f-HDGM can be compu-

tationally demanding. Following Wang et al. (2021), we

will consider two approximations in order to reduce the

computational time. In the first approximation, the vari-

ance-covariance matrix of the parameters is computed

using an approximated approach. This task is performed by

fixing a threshold for the overall improvement in the

variance-covariance matrix computation (see Sect. 2.5 of

Wang et al. 2021).

The second approximation concerns a spatial partition-

ing approach. According to Stein (2013), we divide the

complete dataset into k groups (based on the geodesic

distance) of size r, and assume that the data in the different

groups are not correlated. This implies a factorised likeli-

hood function and the possibility of computing the E-step

in parallel. As a result, the computational complexity is

reduced from OðTn3b3Þ to OðTkr3b3Þ (see Sect. 2.4 of

Wang et al. 2021). Moreover, if the computing infras-

tructure can handle k parallel processes, the computing

time may be further reduced to OðTr3b3Þ.

3 Spatiotemporal adaptive LASSO
estimation for functional coefficients

In this section, we suggest an adaptive LASSO approach to

select (1) the relevant regressors, (2) the relevant sections

of the functional coefficients and (3) the relevant knots of

the fixed effects functional model ls;tðhÞ. The emphasis is

on modelling the relationship between the covariates and

the response variable. Therefore, the parameters of the

random effects components are kept unpenalised. More-

over, for regularised regression approaches, the covariance

matrix of the model errors is usually not penalised (e.g.,

Fan and Li 2001; Tibshirani 1996).

Spatiotemporal parameters could also be included in the

penalised procedure (e.g., see for random effects shrinking

in linear mixed models Bondell et al. 2010). However, in

this case, the shrinkage target should be adjusted to the

specific empirical case. Indeed, while the temporal

dependence parameter matrix G could be shrunk to zero,

i.e., in the case of temporal independence, a zero shrinkage

target is not meaningful for the variance parameters and the

range parameter of the spatial dependence h.
We follow a penalised maximum likelihood estimation

strategy for the fixed effects coefficients conditional on the

random effects parameters, i.e.,

b̂PMLEðk;wÞ ¼ argmax
b

Lðb;wÞ � kf ðbÞ ð8Þ

with the likelihood function L and a penalty function f. To

reduce the computational burden, we locally approximate

the full model log-likelihood L in (8) around the unpe-

nalised and consistent ML estimates using a second-order

local quadratic approximation (Jennrich and Sampson

1976; Longford 1987). That is, we obtain the approximated

log-likelihood as follows:

LðbÞ ffi Lðb̂MLEÞ þ
1

2
ðb� b̂MLEÞ0HMLEðb� b̂MLEÞ; ð9Þ

where HMLE ¼ r2Lðb̂MLE; ŵMLEÞ.
Similar computational solutions involving local

approximation of the likelihood have been proposed by

Zou and Li (2008) for obtaining penalised estimates of the

Fig. 1 Cubic B-splines

functional coefficient with

seven basis functions and

coefficients equal b ¼
ð1; 1; 1; 1; 0; 0; 0Þ0 used in the

simulations
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parameters in Generalised Linear Models (GLM) via the

one-step sparse estimator by Fan and Li (2001) for variable

selection adopting nonconcave penalties; by McIlhagga

(2016) for penalized GLM based on Fisher scoring algo-

rithms; by Zhu et al. (2010) for adaptive spatial LASSO in

lattice data; and by Reyes et al. (2012) for penalised like-

lihood problems in linear spatiotemporal contexts. This

study extends the aforementioned studies by obtaining

penalised estimates of the fixed effects coefficients of a

linear mixed model for functional data, with the spa-

tiotemporal dynamics modelled by a geostatistical random

component.

We now consider the penalty function f ðbÞ in Equa-

tion (8). Motivated by the oracle properties of the adaptive

LASSO estimates (Zou 2006; Bondell et al. 2010), we use

an adaptive penalty for the likelihood of the functional

HDGM. Because the observed data are supposed to be

correlated in space and time, it is important that the algo-

rithm be selection-consistent (Zhang 2010) even in the case

of correlated observations. However, this may not often be

the case for classic LASSO approaches (see among others,

for conditions of selection consistency Zhao and Yu 2006).

Thus, we suggest an adaptive LASSO penalty that has the

desired property of selection consistency, as shown by Zou

(2006); Zou and Li (2008); Huang et al. (2008).

We propose the following estimator with an adaptive

LASSO penalty for the fixed effects coefficients of the f-

HDGM:

b̂PMLEðk; ŵMLEÞ ¼ argmin
b

� 1

2
ðb� b̂MLEÞ0HMLEðb� b̂MLEÞ

þ Nkjjw � bjj1
ð10Þ

where k is the regularisation parameter, � is the element-

wise product, and the penalty weights w are chosen as the

inverse initial ML estimates, that is, w ¼ ðwiÞi¼1;...;p with

wi ¼ 1

jb̂MLE;ijc
, with c ¼ 1 and b̂MLE;i being the i-th entry of

b̂MLE. To increase or diminish the influence of the initial

estimates, c� 0 could also be chosen differently. Gener-

ally, to obtain the oracle properties, the penalty parameter k
should be of order

ffiffiffi
n

p
(see Zou and Li 2008). In the next

paragraph, we will go into further details on the selection

of k.
The algorithm used to solve minimisation in (10) is

based on the BFGS quasi-Newton method over the non-

zero coefficients, that is, the so called active set, with the

initial values being b̂MLE. The algorithm requires limited

computation effort, as the time consuming computation of

the Hessian matrix HMLE used in the approximation (9) is

done only once, and the second-order derivatives can be

computed numerically throughout the optimisation. Notice

that the dimension of problem (10) is much smaller com-

pared to the full model MLE as it involves only beta, while

w is kept fixed at ŵMLE.

The penalised procedure shrinks irrelevant coefficients

to zero. Because this applies to all basis functions sepa-

rately, we do not impose that all coefficients associated

with one regressor must be shrunk to zero simultaneously

as for a block LASSO approach. It is then possible to select

the relevant sections of a functional coefficient and exclude

the irrelevant knots. However, the basis functions may

overlap to some extent. This implies that the height of the

functional coefficient at a given point in the functional

domain (i.e., the sum of the weighted basis functions at a

given point) is determined by several coefficients. If only

some of such coefficients are zero, the functional coeffi-

cient is not zero. Hence, typically, smooth transitions

shrunken to zero can be observed in the functional domain,

depending on the number and location of the knots (i.e., the

fewer knots there are, the smoother the estimated function

is). This further encourages the use of an adaptive LASSO

penalty, which leads to asymptotically unbiased estimates

(see Zou 2006).

3.1 Cross-validation

The penalty parameter k is determined by minimising a

prediction error metric, say PE, obtained from a random K-

fold cross-validation (CV) study. For this reason, let D ¼
fys;tðhÞ; s 2 S; t ¼ 1; . . .;Tg be the set of all available

functional observations, and let D1; . . .;DK be a random

partition of D, which is made by randomly assigning N/k

observation to each group Di with i ¼ 1; . . .;K.

For each subset Di, the penalised estimation is per-

formed for a certain predefined sequence of k, including
k ¼ 0. In particular, the parameters are estimated according

to (10) using data in D�Di ¼ fs 2 D : s 62 Dig. Then, the
data in Di, are used to evaluate the out-of-sample predic-

tion ŷs;tðh; kÞ for a fixed k, and the corresponding predic-

tion error metric PEðkÞi. Eventually, for each k, the overall
performance measures PEðkÞ is obtained by averaging

PEðkÞi for i ¼ 1; 2; . . .;K. The optimal k	 may be chosen

either by minimising PE, namely

k	min;PE ¼ argminkðPEðkÞÞ

In order to consider the random nature of sets Di, a popular

solution is to adopt the so-called one-standard-error rule,

namely to chose k defined by

k	1r;PE ¼ infkfPEðkÞ�PEðk	Þ þ rðPEÞg

where rðPEÞ is the standard error of the average of the PEi.

Of course any k	 between the above two values would have
the same statistical validity. The choice of the metric PE
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may be based on the application at hand. Popular choices

are the root mean square error and the mean absolute error

which are discussed in the following Sect. 3.2.

For a fixed choice of PE and criterion for k	, the pro-

cedure is synthesised using the pseudo-code in

Algorithm 1.

3.2 Which prediction error metric?

In the simulations and application of the next sections, we

will use the root-mean-square error (RMSE) and the mean

absolute error (MAE) as prediction error metrics PE. For

each random partition Di, they are defined as follows:

RMSEðkÞi ¼
1

24kDik
X

ys;t2Di

X

h2H
ðys;tðhÞ � ŷs;tðh; kÞÞ2 ð11Þ

MAEðkÞi ¼
1

24kDik
X

ys;t2Di

X

h2H
jys;tðhÞ � ŷs;tðh; kÞj ð12Þ

where ŷs;tðh; kÞ is the prediction provided by the estimated

model for a fixed k, and kD�Dik denotes the cardinality

of a the set Di. Although other alternatives are available

(Chicco et al. 2021), RMSE and MAE are usual metrics

used in the literature (Sammut and Webb 2010b, a).

In this paper, we employ both RMSE and MAE without

stating a preference rule between the two as there is no

universal consensus on the most appropriate metric for

model errors (Cort and Kenji 2005). The simulation study

described in Sect. 4 is built under the Gaussianity

assumption of Sect. 2. Instead, the air quality exercise of

Sect. 5 does not fulfill such assumption. As discussed in

Chai and Draxler (2014), the RMSE is appropriate when

the error is Gaussian distributed. Whereas, when the error

distribution is affected by skewness, outliers or is lep-

tokurtic (Karunasingha 2022), MAE is preferred being

more robust (Willmott et al. 2009; Hodson 2022). There-

fore, we develop the analysis using both metrics as sug-

gested by Chai et al. (2009).

Using k	min;PE provides the better predictive capabilities

for the data at hand. Instead, the one-standard-error rule

leads to a parsimonious set of parameters and the selected

model is simpler and more interpretable than previous one

(Hastie et al. 2017, 2015). Therefore, in both simulations

and the application we will compare the results coming

from the four CV criteria: k	min;RMSE, k
	
min;MAE, k

	
1r;RMSE, and

k	1r;MAE.

4 Monte carlo simulation study

In this section, we present and discuss an extensive Monte

Carlo simulation study aimed at evaluating the perfor-

mance of the algorithm in various contexts with increasing

levels of complexity and representative of common appli-

cation contexts.
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4.1 Experimental design

To evaluate the performance of the model selection algo-

rithm, we perform a Monte Carlo simulation study based

on three settings, labelled as Setting I, Setting II, and Set-

ting III. The three schemes are summarised in Table 1. The

settings represent the following situations of interest in

geostatistical models. First, we regard a multiple regression

model as a benchmark approach (i.e., all temporal and

spatial dependence parameters are chosen such that the

resulting process is independent in space and time). Sec-

ond, we consider the case of a response variable that is

correlated across space and time but with uncorrelated

regressors. Third, in Setting III, we introduce cross-corre-

lation among the regressors. In particular, we consider

cross-correlation ranging from moderate (0.5) to strong

(0.9). The latter setting represents the most challenging for

model selection, but also the most realistic one.

The spatial dependence is exponentially decreasing with

spatial range h ¼ 50 km, implying a correlation is below

0.37 beyond a 50 km distance. The temporal autoregres-

sive coefficients in the G matrix are all equal to 0.85,

resulting in a pronounced temporal persistence, which is

common in meteorological-related applications.

To represent a realistic spatial setting, we take the

coordinates from the data that is used in the following

empirical sections. More precisely, the coordinates of the

spatial locations refer to the atmospheric monitoring sites

belonging to the 84-stations network of ARPA Lombardia

(see the paper by Maranzano 2022). Regarding the tem-

poral resolution, we consider that the data are observed

over 365 days, with each day representing the functional

domain.

For each of the three settings, 500 Monte Carlo repli-

cations are simulated using a random subset of 15 locations

extracted from the full list of ARPA Lombardia monitoring

network.

For the functional interpolation, we use a simple set-up

of cubic B-spline basis functions (Ramsay 2005) with 7

knots, corresponding to the b coefficients given by

b ¼ ð1111000Þ. This allows us to analyse the performance

of the algorithm in selecting relevant parts across the

functional domain, we considered functional regression

coefficients, that is 1 at the start of a day and going

smoothly to 0, as shown in Fig. 1. Note that B-splines used

do not reproduce daily periodicity. This will be addressed

using Fourier bases in the application.

The simulated values of the response variable are given

by the sum of the random effect, the measurement error,

the linear combination of the three covariates, and the

functional intercept. Tibshirani (1996) suggest to stan-

dardise all the covariates and centering the dependent

variable before applying the penalised regression. In our

simulation design, all the covariates are simulated by a

Gaussian distribution with zero mean and unit variance,

thus no standardisation is needed. Since we are interested

in the daily profile, we keep the response variable in its

original scale and the penalty is only applied to the three

Table 1 Specification of the

simulation settings
Setting I Setting II Setting III

Description Uncorrelated response Spatiotemporal correlation Spatiotemporal correlation

Uncorrelated predictors Uncorrelated predictors Correlated predictors

Spatial locations s 15 15 15

Days t 365 365 365

Functional domain [0, 24] [0, 24] [0, 24]

Total observations 15 � 365 � 24 15 � 365 � 24 15 � 365 � 24
Covariates X�N3ð0;RXÞ X�N3ð0;RXÞ X�N3ð0;RXÞ
Var-cov matrix

RX ¼
1 0 0

0 1 0

0 0 1

2
4

3
5 RX ¼

1 0 0

0 1 0

0 0 1

2
4

3
5 RX ¼

1 0:9 0:7
0:9 1 0:5
0:7 0:5 1

2
4

3
5

Spline type B-spline B-spline B-spline

Interior knots 5 5 5

Spline order 3 (cubic) 3 (cubic) 3 (cubic)

Number of bases 7 7 7

b coefficients [1 1 1 1 0 0 0] [1 1 1 1 0 0 0] [1 1 1 1 0 0 0]

h 0 km 50 km 50 km

G diag(0,0,0) diag(0.85,0.85,0.85) diag(0.85,0.85,0.85)

Rg diag(0,0,0) diag(1,1,1) diag(1,1,1)

R� diag(1,1,1) diag(1,1,1) diag(1,1,1)
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covariates, while the functional intercept is left unpe-

nalised. In this way, even for high penalty values that set

the spline coefficients to zero, the intercept can still capture

the average intraday pattern.

The penalty term sequence was generated according to

an exponentially decaying grid, starting from kmin ¼ 10�5

up to kmax ¼ 0:5. As we will show in the simulation results,

for a value of k greater than 0.5, all the coefficients shrunk

to 0. We added as the first value of the sequence k ¼ 0,

corresponding to the unpenalised maximum likelihood

solution. In total, we consider 101 different values. To

identify the optimal value of k, we perform a 10-fold

random cross-validation across space and time.

Being a simulation experiment, we are able to determine

the range of possible values in which the prediction error

metrics used (i.e., RMSE and MAE) may occur. Based on

the simulation setup described in Table 1, we simulate

reference values for the minimum and maximum of each

prediction error metric in each setting. Reference values

are reported in Table 2. The reported reference values

correspond to the average value of the minima and maxima

of the three prediction error metrics calculated on n ¼ 100

simulations of each of the three settings. As may be

noticed, both the spatiotemporal dependence and the cross-

correlation among the covariates increase both the mini-

mum and the maximum. In addition to the mean value,

under parenthesis we report the simulation standard errors.

4.2 Simulation results

The common features of the three settings are numerous.

First, we observe that both the presence of spatiotemporal

dependence (Settings II and III) and cross-correlation

between covariates (Setting III) increase the values of

RMSE and MAE. This is reflected in the RMSE and MAE

values estimated by penalisation (Fig. 2), whose minimum

and maximum values are perfectly overlapping with the

reference values (Table 2) for Setting I. However, not

surprisingly, the estimated values of the metrics in Setting

II and Setting III are slightly higher than the reference

values. In fact, it is known that when spatiotemporal

dependence occurs, part of the information is duplicated or

redundant, thus the information embedded in the sample is

lower compated to the case of independent data (Lee and

Lund 2008; Griffith 2005). This results in an increase of the

prediction errors variability (i.e., the non-predictable por-

tion of the data).1 Also, as expected, for all three settings,

the penalised optimal estimates (k	min;RMSE and k	min;MAE) are

always different from the maximum likelihood estimates

and are mutually consistent (i.e., in line with the Gaussian

framework, the k value minimising the two metrics is on

average the same). However, from the purely predictive

capability standpoint, penalised and unpenalised are

equivalent (i.e., the confidence intervals for k ¼ 0,

k	min;RMSE and k	min;MAE overlap). Last but not least, the one-

standard-error metrics lead to coefficient estimates that are

much closer to the true values compated to the MLE and

minimum solutions.

Specifically for Setting III, the major insights are sum-

marised as follows. Figure 2 shows the average RMSE and

MAE across the Monte Carlo replications and the optimal k
values obtained using the four above mentioned criteria.

The upper panels show MAEs (left) and RMSEs (right) for

all the whole range of k values considered, while the lower

panels focus on the behaviour of MAE and RMSE near the

optimum solutions. Moreover, we depict the CV variability

with the error bars, computed as plus and minus one

standard error of the CV prediction error. Both RMSE and

MAE plots clearly show that k minimising RMSE or MAE

provides different performances from the MLE solution.

Overall, both the RMSE and MAE show smooth patterns.

Table 2 Simulated (n ¼ 100 simulations) reference values for each

setting. Reported values are the average across simulations of the

minimum (min) and maximum (max) MSE, RMSE, and MAE. Values

under parenthesis are the standard error of the mean computed across

simulations

MSE RMSE MAE

Setting I min 0.9999 1.0000 0.7979

(0.0004) (0.0002) (0.0002)

max 2.7257 1.6510 1.2724

(0.0013) (0.0004) (0.0003)

Setting II min 0.9989 0.9995 0.7975

(0.0004) (0.0002) (0.0002)

max 2.7238 1.6504 1.2719

(0.0013) (0.0004) (0.0003)

Setting III min 0.9996 0.9998 (0.7977

(0.0004) (0.0002) (0.0002)

max 5.1389 2.2669 1.6956

(0.0022) (0.0005) (0.0003)

1 Given the Markovian dynamics with respect to the time (Eq. 4) and

the presence of the Gaussian Process with covariance matrix C
(Eq. 5), it is easily demonstrated that the variance of the spatiotem-

poral effect xstðhÞ (Eq. 3) depends: (a) linearly on the marginal

variances v1; . . .; vp; (b) non-linearly (hyperbole) on the temporal

autocorrelation coefficient g; (3) non-linearly (exponential) on the

range h. Figure S3 in the Supplementary Information shows how the

variability of n ¼ 10 simulated random effects and the total variabil-

ity evolves as the temporal autocorrelation, marginal variance and

range change.
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Consistently with the Gaussian simulation framework, the

k minimising the metrics (grey and green vertical lines)

coincide, as well as the penalties associated with the one-

standard-error rule (pink and orange vertical lines). As

previously stated, in terms of predictive capacity, each

model with k lying between the MLE and the one-standard-

error solutions are equivalent as the corresponding inter-

vals overlap.

In Fig. 3 we can observe that the coefficients averages

are smoothly shrunk towards 0. For values of the penalty

term k greater than 0.03 (i.e., logðkÞ[ � 3:50), all the

coefficients are shrunk to 0 and the RMSE and MAE sta-

bilise around 2.35 and 1.75, respectively.

In Fig. 4, we plot the empirical distribution (i.e., the

box-plot) across the simulations of each fixed effects

coefficient for k ¼ k	min;RMSE (upper panel) and k ¼
k	1r;RMSE (lower panel).

In both cases, the following is very noticeable: (1) the

coefficients are estimated very close to their actual value,

which indicates that the penalised estimators are approxi-

mately unbiased; (2) the variability for null coefficients is

considerably smaller than for coefficients equal to 1; and

(3) for increasing values of penalisation (i.e. moving from

k	min;RMSE to k	1r;RMSE solutions) the coefficients variability

decreases, especially for the true zero coefficients. The two

last considerations are strengthened by Table S5 in the

Supplementary Information. The findings suggest that the

one-standard-error estimates (for both MAE and RMSE)

are quite different from the minimum and MLE solutions.

In fact, it is easy to see that the coefficients associated with

bases 5, 6 and 7 of each covariate (all null in the simulative

setup) tend to the true value 0 as the penalty increases,

while the first four coefficients remain around the true

value 1. In the case of the null parameters, comparing the

distances between the estimators and the true coefficients

(‘‘RMSE’’ columns), it is noticeable tht the distance

Fig. 2 RMSE and MAE for different values of k in Setting III. Top

panels: full k range. Bottom panels: near-optimum k range. Left

panels: MAE. Right panels: RMSE. The vertical and horizontal lines

correspond to the considered selection rules (grey: k	1min;MAE; pink:

k	1r;MAE; black: k
	
min;RMSE; orange: k

	
1r;RMSE)
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decreases as one moves from the MLE estimators to the

penalized ones (reaching exactly zero with the standard-

error estimators). In contrast, high penalty values introduce

a bias in the one-unit coefficients, leading to an increase in

their variability. Thus, we can state that the one-standard-

error rule enjoy an oracle property in the sense that for the

null coefficients we detect the true zero values. Also, from

an inferential standpoint, the sparsity induced by the one-

standard-error estimates leads to models less complex and

easier to interpret than the MLE estimates.

5 Application to air quality in Lombardy

In this section, we present an empirical application of the

penalisation algorithm to an air quality assessment case

study. The application is structured in such a way to study

some scalability properties of the procedure, that is the

computation time of the phases composing Algorithm 1,

and its behaviour as the model complexity increases.

The application refers to air quality data recorded during

the COVID-19 pandemic in Lombardy region, Italy (see

the upper panel of Fig. 5). Airborne pollution in Lombardy

has attracted considerable research interest for many years.

With the COVID-19 emergence, many researchers have

become increasingly interested in the short-term effects of

lockdowns on air quality (Cameletti 2020; Collivignarelli

et al. 2020; Lovarelli et al. 2020; Fassò et al. 2022).

We model hourly nitrogen dioxide (NO2) concentrations

obtained by the n ¼ 84 stations depicted in Fig. 5 (bottom

panel) from 1 March, 2020, to 31 May, 2020, that is T ¼
92 days. We consider the concentration throughout the day

as a functional observation. For a first insight on the

intraday variations, in Fig. 6 we show the regional intra-

daily evolution of the NO2 concentrations through a

functional box plot computed on the full sample. The 24-

hour profile clearly shows the intra-day dynamics of the

average (blue curve) and median (black) concentrations, as

well as of their variability (the red line represents the

functional standard deviation). In particular, there are

strong differences between the NO2 concentrations at night

and day. They are in accordance with anthropic activities –

that is, very high concentrations are seen during peak

hours, between 7am and 9am and between 5pm and 11pm.

Also, the standard deviation’s curve shows a pattern very

close to the average, with two local maxima at peak hours

and the minimum value during the afternoon. On average,

the standard deviation is bounded between 8.50lg=m3

(3pm) and 16.62lg=m3 (9pm), with mean 12.76lg=m3.

To explain the airborne pollutant concentrations, we

consider a set of nine meteorological and land cover vari-

ables: temperature (�C), precipitation (mm), relative

humidity (%), atmospheric pressure (Pa), eastward and

northward component of the wind (m/s), geopotential

height (m2/s2) and high and low vegetation covering

(measured as one-half of the total green leaf area per unit

horizontal ground surface area, cf. Sabater 2019). Since the

variables present different scales and ranges, we stan-

dardise both the response variable and the covariates with

respect to their overall 24-hour mean and standard

Fig. 3 Average estimated

coefficients for different values

of k in Setting III. The positive

coefficients are drawn in blue,

and the zero coefficients are

depicted by the red dashed lines
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deviation. Following Tibshirani (1996), having standard-

ised both the response variable and the covariates, penali-

sation is applied to predictors only, while the functional

intercept is left unpenalised. The total number of obser-

vations was n
 T ¼ 185472 for each variable.

To account for the natural daily cycle, in Equation (1),

we set t as the day, whereas h is the time across the day.

Hence, periodic Fourier basis functions with b bases and a

support between 0 and 24 were used.2 Recall that by

construction, Fourier splines require an odd number of

bases, and their interpretation depends on the frequency. In

fact, except for the first basis, the other basis pairs were

calculated at increasing frequency. For example, if the

number of bases was b ¼ 5, the pair formed by the fourth

and fifth bases would have twice the frequency of the

second and third pair. The use of Fourier bases ensures the

continuity of the last hour of a day to the first hour of the

consecutive day. According to the number of basis func-

tions, the total number of parameters to estimate is equal to

b
 14. In particular, b
 10 parameters are associated with

the covariates and the functional intercept; b
 3 with

spatiotemporal dynamics, and b with residual component

variances.

The algorithm is initialised by estimating both the fixed

and random effects of the f-HDGM using the unpenalised

MLE. After estimating the full model, we apply the

penalised likelihood model selection algorithm using an

exponentially decaying grid of penalty coefficients k that

ranged from kmin ¼ 10�4 to kmax ¼ 0:50. We also includes

a value of k ¼ 0 for the unpenalised estimates.

5.1 Scalability of the algorithm

Using the air quality data introduced above, we study the

computing time of Phases 1, 2 and 3 of Algorithm 1 and

the algorithm’s behaviour for increasing model complexity.

To do this, we consider an increasing number of Fourier

bases b for each covariate and an increasing number of

spatial partitions. We also consider the impact of approx-

imation methods for the fixed-effect coefficients (i.e., b̂MLE

and the Hessian matrix (i.e., HMLE) of the initial unpe-

nalised f-HDGM introduced in Sect. 2.2.

Moreover, we examine the algorithm’s ability to select

only the relevant frequencies of the Fourier bases by

shrinking irrelevant frequencies towards 0. Thus, we test

the following occurrences as the complexity increases: (1)

the increase in the number of fixed zero coefficients, and

(2) the higher concentration of zeroes for the coefficients

associated with high Fourier frequencies. The latter is

consistent with observed NO2 concentrations (Fig. 6),

whose intra-day behaviour is fairly smooth and shows two

peaks, which mean that from a modelling perspective, a

small number of seasonal frequencies (low complexity) is

expected.

A total of 17 models were evaluated. For each model,

we considered the computation time for the three main

phases of the algorithm – that is, the initial model esti-

mation with the EM algorithm, the computation of the

variance-covariance matrix of the parameters, and the

penalised likelihood algorithm.

For model complexity we consider three scenarios:

b ¼ 5, b ¼ 7 and b ¼ 9. In the first case, the total number

of the model’s parameters is b
 14 ¼70; in the second

case, is 98, and in the third case is 126. Therefore, the

numbers of fixed effect parameters is 50, 70, and 90,

respectively. Moreover, for spatial partitioning we consider

groups varying from k ¼ 1 (no spatial partitioning) to

k ¼ 5. Eventually, the threshold for the overall improve-

ment in the variance-covariance matrix computation is

fixed to 0.01.

The results are summarised in Figs. 7 and 8, and full

details are given in Table S1 of the Supplementary

Information.

In particular, Fig. 7 shows the computational cost of the

penalised likelihood algorithm as a function of the model

complexity, the spatial partitioning and the adoption of an

approximation for the variance-covariance matrix. The

main results are summarised as follows:

• Variance-covariance matrix approximation (upper left

panel of Fig. 7): compared to the exact solution, the

approximation reduces the computation time of 66% for

Phase 2, and 25% for the overall computation. This

holds independently from the model complexity. Of

course, the penalisation algorithm is not affected;

• Spatial partitioning (upper right panel of Fig. 7): the

application of a spatial partitioning reduces the initial

computation time by 30% to 50% and the penalisation

phase 3 by up to 38%. Moreover, it reduces the overall

time of more than 30%. The variance-covariance matrix

computation was not affected. The time gain is

negligible when the number of groups increase (i.e.

k� 4);

• Model complexity (left panels of Fig. 7): when the

number of basis functions b is reduced from 9 to 7, the

computation time of all phases significantly decreases,

independent of the approximation of the variance-

covariance matrix. In particular, the penalised

bFig. 4 Box plot of the estimated coefficients across 500 simulations at

k	min;RMSE (upper panel) and at k	1r;RMSE (lower panel) for Setting III

2 Following Ramsay (2005) (Section 3.4), a set of periodic Fourier

basis functions is defined as B0ðhÞ ¼ 1, B2Ka�1 ¼ sinðhKa
2p
24
Þ, and

B2Ka
¼ cosðhKa

2p
24
Þ
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Fig. 5 Physical map of Po

Valley (upper left panel) and

Lombardy (upper right panel)

and the ARPA Lombardia air

quality monitoring network by

type of station (lower left panel)

and type of area (lower right

panel)

Fig. 6 Intraday box-plot of NO2

concentrations (lg=m3)

observed between the 1 March

2020 and 31 May 2020
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likelihood estimation decreases by up to 68% and the

overall computation by 45%. When b further decreases

to 5, the gain is less pronounced;

• Concerning the cross-validated model error, both MAE

and RMSE are affected only by the model complexity

(lower right panel of Fig. 7). Indeed, independent of the

approximation of the covariance matrix or of the spatial

partitioning, both MAE and RMSE decreased as the

number of basis functions increased for all four criteria

used to define the optimum k	min;PE.

In Fig. 8 we present the relationship between model

complexity and the share of regressors removed with the

adaptive LASSO. The plot clearly shows that when the

number of basis functions is large, the overall proportion of

zero coefficients increases up to 25% of the total. The

graph on the right examines the excluded coefficients in

detail and shows that the highest frequencies (corre-

sponding to b6; b7;b8 and b9) are the most frequently

removed by the algorithm. This is consistent with the NO2

concentrations shown in Fig. 6. Indeed, since the response

variable exhibites a very smooth intra-day pattern, the

number of frequencies required to model the relationship

with the covariates is low.

This result allows us to state that the adaptive LASSO

algorithm proposed in this study can be a useful tool for

identifying the most relevant frequencies as it is precise in its

selection and implementable even in contexts with large data

sets. If time computing time is not an issue, using a higher

number of frequencies (e.g.,b ¼ 9 in our case) provides better

forecasting performance (i.e., lower RMSE and MAE) while

avoiding an excessive number of non-zero coefficients.

Fig. 7 Computation time and cross-validation errors across the

models. Computation time of each phase by model complexity with

and without spatial partitioning (upper left panel); computation time

of each phase by increasing level of spatial partitioning (upper right

panel); computation time of each phase by increasing level of spatial

partitioning and model complexity (lower left panel); RMSE and

MAE by model complexity and increasing spatial partitioning (lower

right panel)
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5.2 Penalised estimates

The above estimates show very limited variability across

the models and exhibit weak sensitivity to the spatial par-

titioning and Hessian matrix approximations. As shown in

the preceding section, the impact of our adaptive LASSO

procedure is more pronounced as the number of fixed

effects coefficients increases. Thus, we report and com-

ment on the empirical results obtained considering the

model with the lowest prediction error among those using

b ¼ 9 basis functions. Specifically, we consider the case

with an approximate variance-covariance matrix and

without spatial partitioning.

In Fig. 9, we depict the behavior of the average cross-

validation MAE (left panels) and RMSE (right panels) for

increasing values of the penalty term k. The computed

RMSE falls between 7.26lg=m3 (for small values of k) and
7.75lg=m3 (for large values of k). These values are in the

same scale as the observed standard deviation (shown in

Fig. 6), but still below the minimum variability observed in

the data (about 8.50 lg=m3). By computing the ratio of the

minimum MSE to the average intra-day variance we obtain

the average proportion of variance unexplained by the

model, equivalent to 32.34%. This percentage is consistent

with the plot of the variance of measurement errors (Fig-

ure S1 in the Supplementary Information), whose average

value is 28.60%. For large values of the penalty term (i.e.,

logðkÞ[ � 4) all the covariates are drop out. However,

both one-standard-error-rules provide more parsimonious

models with prediction errors not significantly different

from the optimal ones. The estimated coefficients that

correspond to the unrestricted model and the models

associated with the four penalty terms considered are

shown in Fig. 10.

In Fig. 11, we show the 24-hour estimated functional

coefficients for each variable. The black lines correspond to

the unpenalised MLE solution; the green lines to the

optimal k w.r.t RMSE; the grey lines, to the optimal k w.r.t

Fig. 8 Percentage of zero coefficients across the models. Percentage

of zero coefficients by model complexity when applying a spatial

partitioning with k ¼ 2 groups (left panel); percentage of zero

coefficients by basis function (coefficients) when applying a spatial

partitioning with k ¼ 2 groups
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MAE; the orange lines, to the 1SE optimal k w.r.t RMSE;

and the pink lines, to the 1SE optimal k w.r.t MAE. The

estimated coefficients associated with temperature always

exhibits negative values, particularly in the late afternoon

and evening hours. The patterns obtained for different

values of k did not show large discrepancies and tended to

overlap throughout the day, leaving the overall dynamics

unchanged during the day. However, the penalty seemed to

mitigate the temperature effect at peak hours (10 a.m. and 8

p.m.). Rainfall shows a negative effect on the NO2 con-

centrations, especially in the evening and just before dawn.

In both moments, the effect reached the minimum peaks.

Unlike the temperature, whose daily pattern varied slightly

as the penalty increased, for higher values of k, the pre-

cipitation diminished its effect and tended to flatten slightly

towards 0. Considering the one-standard-error rule,

between 7 a.m. and 5 p.m., the curve flattened to a constant

negative value without being exactly 0. For the same k
values, the two negative peak periods are greatly mitigated.

These elements confirm the important role of temperature

and rainfall in mitigating NO2 concentrations, which is

highlighted in literature (e.g., Fassò et al. 2022). Relative

humidity presents some very interesting findings. First, its

effect is null at around midnight, slightly negative at night

before dawn and strongly positive in the daylight hours.

Moreover, the penalisation appeared to produce no effect

on the intra-day behaviour. This is consistent with the fact

that whereas temperature and rainfall showed more com-

plex patterns during the day, relative humidity already

exhibits a simple pattern and did not need further

smoothing.

Both the effects of atmospheric pressure and geopoten-

tial height (used as a proxy of elevation) depend on the

moment of the day that was being considered. In both

Fig. 9 MAE against the logarithm of the penalty term k (left panels)

and RMSE against the logarithm of the penalty term k (right panels).

The horizontal lines represent the values of MAE and RMSE for key

values of logðkÞ, the optimal (k	min;RMSE and k	min;MAE), 1-SE optimal

values (k	1SE RMSE and k	1SE MAE). The bottom panels are details near

the optimum

Stochastic Environmental Research and Risk Assessment

123



cases, the estimates show a positive effect at the start and at

the end of the day and a negative effect in the afternoon.

However, in the case of elevation, the functional coefficient

in the early and late hours is very close to zero, and in the

central hours, it deviates significantly from 0 regardless of

the penalty used. For both variables, penalisation does not

play a significant role, as the difference between penalised

and non-penalised curves approaches 0 and the infra-daily

dynamics appears to be stable.

Also, the U (eastward) and V (northward) components

of wind show a time-varying behaviour across the day. In

both cases, the effect on the NO2 concentrations is posi-

tively estimated during the early stage of the day, espe-

cially between 5 a.m. and 10 a.m., and it strongly

weakened in the afternoon and at night, reaching values

very close to 0 between 3 p.m. and 8 p.m. However, the

cleaning effect is limited to the early part of the day. The

shrinkage effect induced by the penalisation algorithm is

more pronounced in the eastward component than in the

northward component. In fact, we noticed that the effect of

the eastward component was strongly smoothed in the

morning hours, and the coefficient was cancelled during the

afternoon. The northward component, although also

smoothed, showed a significantly positive effect in the

early hours of the day.

Finally, we notice that penalisation generates a

remarkable influence on the two land cover variables, that

is the high vegetation and low vegetation indices. Both

variables are heavily squeezed towards 0 even for the

contained values of k until reaching zero for the values

associated with the one-standard-error rule. Similar results

are presented in Fassò et al. (2022), in which the effect of

the same covariates on the NO2, PM10 and PM2:5 con-

centrations in Lombardy is estimated to be close to 0, and

thus not statistically significant, with the exception of the

most urbanised areas.

To sum up, as expected, from Fig. 9 we see that from

the predictive ability standpoint, penalised and non-pe-

nalised estimators are equivalent. However, Fig. 11 sug-

gests that for some covariates the non-penalised intraday

functional dynamics may be different from the penalised

ones. In fact, for most of the covariates the smoothing

increases moving from the MLE to the one-standard-error

solution. In this regard, the functional coefficient of the

rainfall shrinks close to zero in the middle of the day,

whereas the vegetation variables lose much of their

importance shrinking close to zero for the large part of the

day. So, compared to the MLE and k	min solutions, the one-
standard-error estimate leads to a simpler and more inter-

pretable model. This holds both for the RMSE and the

MAE.

6 Conclusions and future developments

In this paper, we introduced an adaptive LASSO estimator

for the so called functional hidden dynamic geostatistical

models (f-HDGM). This new estimation approach based on

penalised maximum-likelihood estimation can be used to

efficiently estimate the relevant model coefficients and

Fig. 10 Functional coefficients

against the logarithm of the

penalty term k. Vertical lines
represent key values of logðkÞ,
i.e. unpenalized (k ¼ 0),

optimal (k	RMSE and k	MAE), 1-SE

rule (k	1r;RMSE and k	1r;MAE)
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shrink to zero the irrelevant ones, while taking into account

spatiotemporal correlation and cross-correlation among

predictors. In addition to the case in which all the coeffi-

cients of the splines basis associated with a certain

covariate are set to zero, it is possible that only some of

them are shrunk to zero. Indeed, the algorithm can be

successfully applied to identify the relevant part of a

functional coefficient across its functional domain.

From a computational perspective, we showed that the

estimation can be efficiently implemented as a local

quadratic approximation around the maximum of the log-

likelihood function. To find this maximum, the EM algo-

rithm can be used (see Wang et al. 2021). Then, a BFGS

quasi-Newton iterative method can be used to optimise the

penalised function.

We analysed the performance of this estimation proce-

dure through a Monte Carlo simulation study based on

three settings with increasing level of complexity and

representative of common applied contexts. To be precise,

we considered settings where only parts of the functional

coefficients had zero effects and where the regressors were

cross-correlated and driven by spatiotemporal dynamics, as

is often observed in geostatistical applications. The results

of the simulations show that from the pure prediction

ability perspective, penalised estimates are equivalent to

maximum likelihood estimates. However, from an infer-

ential standpoint, the one-standard-error estimates lead to

models much more parsimonious and easier to interpret

than the MLE estimates. As expected, having simulated in

a Gaussian context, MAE and RMSE give almost equiva-

lent results. Finally, the estimates produced by the one-

standard-error rule enjoy an oracle property in the sense

that for the null coefficients we detect the true zero value.

Furthermore, we applied have the penalisation algorithm

to an empirical example of air quality assessment using

hourly NO2 concentrations observed in Lombardy, Italy.

Fig. 11 Estimated functional b coefficients for differently selected optimal penalty parameters
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Like the simulations, the empirical results reveal that from

the pure prediction capability perspective, the penalised

estimates are equivalent to the maximum likelihood esti-

mates. While the solutions of the one-standard-error rule

for RMSE and MAE are very similar, the minimum solu-

tion of the MAE suggests a higher degree of penalisation

for the coefficients. In terms of inference, the one-standard-

error estimates of the coefficients associated with different

weather variables are very smoothed and in some cases

almost zero. We also provided an extended study of the

scalability of the algorithm when applied to real world

data. In particular, we showed that even with high model

complexity, the computation time (both of the penalised

likelihood and overall) can greatly benefit from approxi-

mations in model estimation, leaving performance essen-

tially unaffected.

This paper focused on model selection in functional data

contexts, performed using an adaptive LASSO penalisation

algorithm. However, further extensions can be pursued.

Our proposal may be useful in several environmental pol-

icy assessment contexts, such as agricultural policies

(Fass‘o, A., Rodeschini, J., Moro, A.F., Shaboviq, Q.,

Maranzano, P., Cameletti, M., Otto, P. 2023), air quality

assessment (Fassò et al. 2022), and energy policies (Yuan

et al. 2018). Indeed, the smoothness of the estimated

functional coefficients can also be of high interest in such

applications because too large a number of spline bases

leads to over-fitting and non-smooth estimated effects.

From the methodological perspective, a further penalty

term based on the integrated second derivatives could

counter these effects. Thus, an elastic net structure that

includes the smoothness penalty and an adaptive LASSO

penalty is a very interesting topic for future research.

Eventually, using the results of Simon and Tibshirani

(2012), the standardised group-LASSO estimator could be

extended to spatiotemporal functional models by optimis-

ing a penalized likelihood function with quadratic

approximation and by assuming that the spline basis

functions associated with each covariate are a group.
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