928 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 3, JULY-SEPTEMBER 2024

Multi-Dimensional Flat Indexing for Encrypted Data

Sabrina De Capitani di Vimercati
Sara Foresti ", Senior Member, IEEE, Gianluca Oldani
Matthew Rossi

Abstract—We address the problem of indexing encrypted data
outsourced to an external cloud server to support server-side ex-
ecution of multi-attribute queries. Our approach partitions the
dataset in groups with the same number of tuples, and associates
all tuples in a group with the same combination of index values,
so to guarantee protection against static inferences. Our indexing
approach does not require any modifications to the server-side
software stack, and requires limited storage at the client for query
support. The experimental evaluation considers, for the storage
of the encrypted and indexed dataset, both a relational database
(PostgreSQL) and a key-value database (Redis). We carried out
extensive experiments evaluating client-storage requirements and
query performance. The experimental results confirm the efficiency
of our solution. The proposal is supported by an open source
implementation.

Index Terms—Data outsourcing, multi-dimensional index,
encrypted data, efficient query execution.

I. INTRODUCTION

HE use of external cloud providers for storing and man-
T aging databases is no more an emerging direction, but
a widely adopted solution for many individual and business
scenarios. Since information in the database to be outsourced can
be sensitive, proprietary, or company-confidential, encryption is
typically used to protect data confidentiality against the cloud
server storing and managing the data.

In this so called, honest-but-curious scenario, data remain
unintelligible from the cloud server that can only operate on
their encrypted representation. However, encryption affects the
functionality and the efficient support for fine-grained access
and retrieval of data. This problem has been under investigation
for more than twenty years and many interesting directions have

Manuscript received 27 January 2023; revised 10 April 2024; accepted 28
May 2024. Date of publication 4 June 2024; date of current version 6 September
2024. This work was supported in part by the EC under projects Chips JU Edge Al
(101097300) and GLACIATION (101070141), by the Italian MUR under PRIN
project POLAR (2022LA8XBH), and by project SERICS (PE00000014) under
the MUR NRRP funded by the EU - NextGenerationEU. Recommended for
acceptance by B. Xiao. (Corresponding author: Pierangela Samarati.)

Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati
are with the Universita degli Studi di Milano, 20133 Milano, Italy
(e-mail: sabrina.decapitani@unimi.it; ~ sara.foresti@unimi.it; pierangela.
samarati @unimi.it).

Dario Facchinetti, Gianluca Oldani, Stefano Paraboschi, and Matthew
Rossi are with the Universita degli Studi di Bergamo, 24044 Dalmine,
Italy (e-mail: dario.facchinetti@unibg.it; gianluca.oldani@unibg.it; stefano.
paraboschi@unibg.it; matthew.rossi @unibg.it).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TCC.2024.3408905, provided by the authors.

Digital Object Identifier 10.1109/TCC.2024.3408905

, Senior Member, IEEE, Dario Facchinetti

, Graduate Student Member, IEEE, and Pierangela Samarati

, Member, IEEE,
, Member, IEEE, Stefano Paraboschi Y, Member, IEEE,
, Fellow, IEEE

been investigated, including searchable encryption (e.g., [1]),
trusted hardware (e.g., [2], [3]), and coded metadata working
as indexes for the evaluation of conditions (e.g., [4], [5]). All
these approaches represent valid alternatives depending on the
application scenario, but each bears open problems and chal-
lenges, and the level of their application in practice is still below
the expectations of the research community. Important obstacles
to their wide adoption are the performance impact, the limited
integration with classical database technology and limited sup-
port for query functionality. At the same time, a new push to
the development of practical solutions for effectively supporting
queries over encrypted data is represented by recent significant
technological advancements, including the wide availability of
high-bandwidth inexpensive network connections, novel effi-
cient data management solutions for server-side storage, and the
increase in the memory and computational capacity available on
clients. These advancements introduce novel opportunities for
the design of indexing structures for supporting query execution
on encrypted data, offering flexibility and performance. In this
paper, we leverage such technological advancements to design
an indexing structure for effective and efficient execution of
queries over encrypted data, which does not require modifica-
tions to the server-side software stack and is independent from
the nature of server-side storage platforms (i.e., relational or
key-value).

Indexes over encrypted data provide a coding for the at-
tributes, so to enable evaluation of conditions on them while
not exposing actual values to the storing server. Indexing must
however be done carefully to ensure it does not leak information.
For instance, while coding protects actual values, a one-to-one
correspondence between plaintext values and indexes clearly
makes indexes exposed to frequency-based attacks (exploiting
profile of occurrences of values or their combination, which
would be indeed maintained in a one-to-one indexing). Also,
an order-preserving index to support range queries would main-
tain the order of values in the indexing, hence again leaking
information that can enable reconstructing the values behind the
indexes. Hence, indexes should not leak, in their values, any
order.

Frequency-based attacks can be counteracted by destroying
the frequency-based correlation between values and indexes.
The extreme case for this is a one-to-many correspondence (i.e.,
mapping different occurrences of the same value to multiple
indexes) with no index value appearing more than once. While
destroying frequencies in the index values, such an approach
would clearly prove to be cumbersome in query execution.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-0793-3551
https://orcid.org/0000-0001-7534-6055
https://orcid.org/0000-0002-1658-6734
https://orcid.org/0000-0002-5717-7101
https://orcid.org/0000-0003-0399-1738
https://orcid.org/0000-0001-6459-0810
https://orcid.org/0000-0001-7395-4620
mailto:sabrina.decapitani@unimi.it
mailto:sara.foresti@unimi.it
mailto:pierangela.samarati@unimi.it
mailto:pierangela.samarati@unimi.it
mailto:dario.facchinetti@unibg.it
mailto:gianluca.oldani@unibg.it
mailto:stefano.paraboschi@unibg.it
mailto:stefano.paraboschi@unibg.it
mailto:matthew.rossi@unibg.it
https://doi.org/10.1109/TCC.2024.3408905

DE CAPITANI DI VIMERCATT et al.: MULTI-DIMENSIONAL FLAT INDEXING FOR ENCRYPTED DATA 929

Confusion of frequencies obtained through collision with a
many-to-one correspondence (mapping different plaintext val-
ues to the same index) is by itself not sufficient since high-
occurring values would remain exposed.

An effective solution to the problem of protecting against
frequency-based attacks is to provide indexing while ensuring a
completely flat occurrence of index values through both multiple
index values for the same plaintext value as well as collision, that
is, through a many-to-many correspondence between plaintext
values and indexes with flat index occurrences so to provide
confusion and indistinguishability. Importantly, to provide ef-
fective protection, not only individual attributes, but also any
combination of them, should enjoy a flat frequency distribution
Unfortunately, the design of such privacy-preserving indexes
over encrypted data is far from being trivial and entails several
interrelated challenges. First, as noted, not only individual at-
tributes, but also any combination of them, should be designed
to ensure protection against inferences, hence introducing an
inevitable curse of dimensionality. Second, there is the need to
guarantee effectiveness of indexes (in terms of queries supported
and limited overhead caused by spurious tuples returned to the
client due to index collisions) and efficiency (in terms of low
performance overhead) for query execution. Third, there is the
need to limit the storage required at the client for the indexes
supporting query evaluation.

In this paper, we address the challenges above and present
a novel approach for multi-dimensional indexing that: is robust
against static inference exposure, performs well in query exe-
cution (with support for point and range queries even involving
multiple attributes), and requires limited storage at the client
side.

The remainder of the paper is organized as follows. Section II
describes the considered scenario and the rationale of our ap-
proach. Section III illustrates our approach to cluster tuples for
indexing based on flat horizontal partitioning of the original
relation. Section IV presents the definition of indexes and of the
data to be stored at the server and at the client to enable query
evaluation. Section V illustrates the implementation and the
extensive experimental evaluation, confirming the effectiveness
and applicability of our approach. Section VI discusses related
work. Finally, Section VII concludes the paper. Appendixes A
and B, available as supplementary material, present the proce-
dure used to guarantee a valid flat partitioning of the original
relation, and the proofs of theorems, respectively. The artifact
of the software and the scripts that permit the reproduction of all
the experiments reported in the paper are available open-source
at https://github.com/unibg-seclab/flat-index.

II. SCENARIO AND RATIONALE OF THE APPROACH

We frame our work in the context of relational database
systems, the most common and well-known technology for
the management of large data collections, and illustrate our
approach with reference to the outsourcing to the cloud of a
relation 7 over schema R(ai,...,a,), with a; an attribute
of r, =1,...,m. Our problem is the definition of privacy-
preserving indexes for enabling execution of queries involving

[Name[Age[State] [[age[lstate[Tuple| [agc[Istate[Encblock]

t,| Abe | 34 | Ne « t1 € a |titats
to| Bud | 34 | Tx to ¢ B |tatste
ts COy 40 | Ne t3 n A trtgtg
ts| Doc | 34 Wy ta 0 1) tiot11t12

ts| Edd | 37 | Ca
ts| Fox |40 | Ak
t:| Gus | 43 | Ca
ts| Hae | 46 | Ca
to| Isa |49 | Oh
tio| Jim | 55
t11| Ken | 46 | Mi
ti1o| Luc | 52 | Tx

(a)

DPIPI I I[N
S S>> TR L
~
(=2}

()

g

Fig. 1. (a)Plaintextrelation, (b) corresponding encrypted and indexed version,
and (c) relation stored at the server.

evaluation of conditions over attributes, considering point (i.e.,
=) as well as range (i.e., >, >, <, <) conditions. As running
example, we consider the problem of outsourcing the relation in
Fig. 1(a), where queries may need to evaluate conditions over
attributes State (the domain is the set of the two-letter codes
for states in the USA), and Age. A query we want to support is,
for example, “SELECT Name, AgeFROM r WHERE State="Ca”
AND Age>38”. Fig. 1(b) shows a flat indexing with collisions
for the relation in Fig. 1(a), where index values are represented
with Greek letters. Fig. 1(c) shows the encrypted and indexed
version of the relation in Fig. 1(a) to be outsourced at the cloud
server, where the encrypted groups of tuples are represented with
a gray background.

The goal of our approach is therefore to define an indexing
with collision that both: i) enjoys flat frequencies of occurrences
of index values and combinations thereof and ii) performs
well for query execution, providing support for both point and
range queries, also when multiple attributes are involved. Such
protection and efficiency are achieved by the careful group-
ing of tuples for index definition which employs a recursive
multi-dimensional process. Collision and flattening of indexes
produces groups of tuples that remain indistinguishable one from
the other. Such indistinguishability is maintained at the physical
level by operating encryption at the level of groups of tuples
through a semantically secure encryption and the application of
padding to produce groups all of identical size. The efficiency of
the approach is maintained and favored by a careful realization
of the index at the server.

Our approach tackles the different challenges involved in the
definition and construction of indexing as well as its realization,
addressing the involved challenges in different steps.

¢ Partitioning. The first step of our approach is to partition

tuples for indexing. Aiming at a flat indexing, the challenge
is providing a partitioning suitable for query execution
(tuples in the same group will be mapped to the same com-
bination of index values) and that enjoys flat cardinality of
groups, that is, all groups have the same number of tuples
(with the difference of at most one tuple). The cardinality
of the groups is a parameter (k) of the partitioning process
that can be arbitrarily set by the data owner (intuitively,
it corresponds to a privacy degree provided by the fact

https://github.com/unibg-seclab/flat-index

930 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 3, JULY-SEPTEMBER 2024

that more tuples collide in a same group). Our approach
to partition tuples for indexing, ensuring effective and
efficient query execution, leverages a spatial representation
of the tuples in a multi-dimensional space. Partitioning is
enforced recursively, operating at each a step a cut along
one dimension of the multi-dimensional space, and pro-
ceeding recursively on each of the subspaces so produced
until all subspaces contain k (or k + 1) tuples.

® Index construction. With the partitioning producing
groups taking into account multi-attribute values so to
accommodate query execution, the next challenge is the
realization of the indexing taking into account the overhead
in terms of storage and computation at the client side
for maintaining indexing information and for processing
queries. Our solution for the definition of indexes to be
associated with groups comprises two alternatives: value-
based and group-based indexing, both enjoying limited
overhead and each potentially to be preferred over the other
one depending on architectural considerations. For both
solutions, at the client side, only a compact map needs to
be maintained for translating queries on plaintext data into
queries operating on indexes stored at the server.

e Seamless realization. The third challenge we address is
the seamless realization of the approach over current archi-
tectural solutions, to enable the use of privacy-preserving
indexing over existing storage and computational cloud
services. We support and evaluate both relational (Post-
greSQL) as well as key-value (Redis) data management
technologies. For both, we illustrate the organization of
the storage and the execution of queries. Our extensive ex-
perimental evaluation demonstrates the effectiveness and
the efficiency of our approach.

The remainder of the paper is organized following the steps
above, illustrating partitioning (Section III), index construction
and their seamless realization (Section IV), and our implemen-
tation and experimental evaluation (Section V).

III. PARTITIONING

Our approach for the construction of index values is based on
a partitioning of the tuples in the original relation into groups of
a fixed number of tuples. All the tuples in the same group are
then associated with the same combination of index values. The
number of tuples that must be included in each group, denoted
k, is a parameter that can be arbitrarily set. Clearly, a larger
k provides more protection, but also increases the potential
overhead of query execution (we will elaborate more on this
in Section V). In the following, we introduce the concept of
k-flat partitioning (Section III-A), illustrate how to recursively
partition a relation (Section III-B), and present our approach for
the computation of a k-flat partitioning (Section III-C).

A. k-Flat Partition

The first step of our approach is the partitioning of tuples
in groups of the same size k. Since the cardinality of the
relation may not be a multiple of k, we need to account for
the remainders, which we accommodate by allowing groups to

include at most one tuple more than the % requested (as needed
to fully cover the set of tuples to be partitioned). Our definition
of k-flat partition captures the partitioning of tuples to produce
a maximal flattening of groups with cardinality & as follows.

Definition 3.1 (k-flat partition): Letr be arelation, and k be a
natural number. A k-flat partition of r, denoted P, is a partition
P ={g1,...,gp} of tuples in r such that:

1) Vge P,k <card(g) < k+1;

2) p = |card(r/)k].

The first condition expresses the requirement on the cardi-
nality of the groups (allowing groups to have either k or k + 1
tuples, this latter being needed to accommodate remainders),
and the second condition dictates the number of groups to be the
maximum among those that satisfy condition 1, or - equivalently
- the number of groups with £ + 1 tuples to be minimum. By
dictating the number of groups in the partition, the second
condition forces exactly h = (card(r) mod k) of the groups to
have k + 1 tuples, while all the others will have £ tuples. In other
words, the condition rules out from consideration partitions that
do not enjoy maximum flattening, that is, that have a number of
groups of cardinality k& + 1 larger than the number of remainders
to be accommodated. For instance, assume card(r) =231 and k
= 10. Condition 2 would accept only a partition composed of 23
groups (one of which composed of 11 tuples, all the others being
of 10 tuples) ruling out of consideration partitions composed of
22 groups (eleven of which composed of 11 tuples) or 21 groups
(all with 11 tuples), which - although satisfying condition 1 - do
not maximize the required flattening of & = 10.

Clearly, for a relation r to have a k-flat partition, the number
of remainders to be accommodated (i.e., the extra tuples to
allocate to groups) must be not greater than the number of groups
composing the partition. For instance, trivially, no k-flat partition
for k = 10 can exist for a relation with 23 tuples. In other words,
with h = (card(r) mod k) and p = |card(r)/k|, it must be that
h < p, which is also a sufficient condition for a k-flat partition
to exist, as stated by the following theorem.

Theorem I (Existence of a k-flat partition): Letr be arelation
and & be a natural number such that card(r) >k. A k-flat partition
P of r exists iff h < p, with h = (card(r) mod k) and p =
|card(r)/k].

Given a relation r and a natural number k, we say that r is
k-valid if a k-flat partition exists for . This is captured by the
following definition.

Definition 3.2 (Validity): Letr be arelation, and k be a natural
number. Relation r is said to be k-valid iff h < p, with h =
(card(r) mod k) and p = |card(r)/k].

While the observation in Theorem 1 may seem a non-issue for
the computation of a k-flat partition of r since the cardinality
of r is extremely large and & is very small, it is an important
aspect to take into account in the partitioning process, which, if
not done properly, may easily degenerate.

Our approach to compute a k-flat partition is via a process
recursively cutting a relation in two groups at each step, until a
k-flat partition is reached. In the following, when clear from the
context, we will use the terms relation and group interchange-
ably.

DE CAPITANI DI VIMERCATT et al.: MULTI-DIMENSIONAL FLAT INDEXING FOR ENCRYPTED DATA 931

To ensure that our recursive process terminates with the
computation of a k-flat partition, we force the cut at each step
to produce only k-valid relations and to not increase the number
of groups with cardinality k£ + 1. We then introduce the notion
of cut validity as follows.

Definition 3.3 (Cut validity): Let r be a relation and k be a
natural number. A cut (r,r,), partitioning r into two groups,
is valid iff both r; and r, are k-valid (Definition 3.2) and h =
+h,., with b = (card(r) mod k), =(card(r;) mod k), and h,, =
(card(r,) mod k)

Intuitively, a cut is valid if the two relations resulting from it
are k-valid, that is, a k-flat partition exists for them, and the total
number of groups of cardinality k£ + 1 is not increased by the
cut. For instance, consider a relation composed of 233 tuples,
and £=10. A cut partitioning it into two relations of 23 and
210 tuples, respectively, is not valid due to the non validity of
the first relation (which cannot have a 10-flat partition). Also,
a cut partitioning it into two relations of 117 and 116 tuples,
respectively, is not valid since their k-flat partitions, having
respectively seven and six groups of 11 tuples, cannot represent a
k-flat partition of the original relation. We note that each relation
r with more than k tuples has at least a valid cut, as stated by
the following theorem.

Theorem 2 (Valid cut existence): Let r be a k-valid relation
with card(r)>k. There always exists a valid cut for 7.

Also, any k-flat partition of the relations resulting from a
valid cut of r represents a k-flat partition for r, as stated by
the following theorem.

Theorem 3 (k-flat composition): Let r be a k-valid relation
for a natural number k, (r;,r,) a valid cut for it, P,, a k-flat
partition of 7, and P, a k-flat partition of r,.. P = P,,UP,._is
a k-flat partition for 7.

Since our problem is to group tuples for index construction,
it is important not only to partition tuples as a k-flat partition
to ensure flat indexing, but also to group them in a way that
performs well with respect to query execution. Intuitively, a
partitioning maintaining tuples with the same or close values
for an attribute within the same group as much as possible
behaves better, meaning it introduces less performance overhead
in the execution of queries involving that attribute, than an
approach scattering such values in different groups. However, as
already noted, with multiple attributes involved, the problem is
far from being trivial, as each dimension represents a candidate
to consider.

We introduce our approach by first describing how we take
into consideration the values within tuples so to provide a parti-
tioning performing well for query execution, and then describing
its tweaking to enforce partitioning to ensure k-flatness.

B. Recursive Partitioning

Our approach to partition leverages a representation of the
dataset in a multi-dimensional space and enforces partitioning
through recursive cuts, similarly to what is done in multi-
dimensional anonymization approaches (e.g., Mondrian [6]) and
in some multi-dimensional indexing approaches, like quad trees,

Oh 4
Mi
Ak o
Tx e

Wy e
Ne ¢
Caq *
3437404346495255
Age <=415 Age > 415
Ak 4
& 1.
w Wy .
R oh{"
Ne Cade
State 348740 State State 4346495255 State
IN IN IN IN
{Ne,Tx} {Ak,Ca,Wy} {Ca,Oh} {Mi, Tx,Wy}
Ak Tx
Tx Ca Oh Mi
Ne wy Ca Wy

———
34 40 343740 434649 46 5255

Fig.2. Graphical representation of the cuts performed by procedure Cut over
the relation in Fig. 1(a).

k-d trees and R-trees. Our problem and solution bears however
several important differences. As a matter of fact, we need to
cluster tuples to produce indexing performing well for query
execution (in contrast to cluster tuples for data generalization),
while ensuring groups with flat occurrences (in contrast to just
require a minimum group cardinality). Our approach performs
recursive cuts considering then a flexible and dynamic order of
values in the different dimensions, and also enforcing controls
and adjustments to ensure flat partitioning as per Definition 3.1.

Our partitioning process works then in a multi-dimensional
space, with one dimension for each attribute to be indexed, and
where each tuple is the point in such a space where its coordinate
values (i.e., the values of its attributes) meet. As an example, the
space appearing at the top of Fig. 2 is the multi-dimensional
representation of attributes State and Age for the tuples in
Fig. 1(a). For the attributes to be indexed, a point in the multi-
dimensional space can correspond to more tuples, which can be
represented as a counter associated with the point. Since in our
example such a value is always 1, we simply omit it. Note that
the tree in Fig. 2 is just a representation of the recursive calls of
the cutting process and of the subspaces it produces, and does
not represent the indexing structure itself, which is defined in a
subsequent step over the subspaces in the leaves.

For the partitioning process and index construction, we clas-
sify attributes to be indexed into two categories:

® continuous attributes (e.g., Age in Fig. 1(a)), characterized

by a total order relationship on their domain, and on which
range conditions need to be supported;

® nominal attributes (e.g., State in Fig. 1(a)), which do

not have an order in their domain and hence on which
only equality conditions apply. The domain can support
queries for a set of values, all explicitly represented in the
condition.

While the spatial representation conveys an order of values
along a dimension, we maintain such an order fixed, and corre-
sponding to the order dictated by the domain, only for continuous
attributes, so that partitioning will cluster together same or close

932 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 3, JULY-SEPTEMBER 2024

values. By contrast, we adjust the order of nominal attributes as
best suited for the process, as we elaborate next.

The partitioning process works by cutting at each step the tu-
ples along one dimension (attribute) in the space and recursively
calling itself on each of the two produced subspaces. At each
iteration, the dimension along which a cut is to be performed
is chosen to be an attribute that enjoys the highest number of
distinct values. If the attribute is a continuous attribute, the cut
divides the tuples into two groups depending on their value with
respect to the median: tuples with values lower than or equal to
the median in one group and tuples with values higher than the
median in the other group. Should the median correspond to the
maximum value for the attribute in the relation, the values equal
to the median will be put into the second group (which would
otherwise be empty) instead of the first one. If the attribute is
a nominal attribute, the cut divides the tuples into two groups
with a “first-fit decreasing” bin packing strategy [7], considering
values of the attribute in decreasing order of their frequencies
and placing tuples that have the value under consideration in the
smaller group. Fig. 2 illustrates the working of the partitioning
process for our running example aiming at a 3-flat partition.
The first cut operates on attribute Age (which has 8 distinct
values), splitting tuples in two groups, the left group has the
tuples with Age lower than or equal to the median (which is
41.5) and the right group has the tuples with Age higher than
the median. On each of the two spaces, the subsequent cut
operates on attribute State, dividing tuples into two groups,
considering State values in decreasing order of occurrences
and, for each State value under consideration, placing tuples
with such value in the group that is smaller. In the figure, the
order of values in the State dimension has been rearranged at
each step to better represent the cut graphically (starting from the
origin, they always appear in decreasing order of occurrences).
The resulting groups, reported at the bottom of Fig. 2, have all
cardinality 3, and hence no further cut needs to be performed.

C. Computing a k-Flat Partition

Our approach to compute a k-flat partition of a relation r uses
recursive partitioning as illustrated above, enriched to ensure the
validity of the cut performed at each step and the enforcement of
possible adjustments if the cut is not valid. Fig. 3 illustrates the
pseudocode of the process, which comprises three procedures:
Partition, Cut, and Check.

Partition. It performs the partitioning recursively calling it-
self and calling procedure Cut for performing the cutting process
described above, eventually determining a k-flat partition P.
When called, Partition(r) first evaluates the cardinality of r
(line 1). If such a cardinality is not greater than k& + 1 (i.e., it is
either k or k£ + 1), no further cut needs to be performed and r is
added to P. Else, if all the tuples in r have the same values for all
the attributes in the set A of attributes to index (line 2), it simply
splits the tuples in |card(r)/k] groups each containing either
k or k + 1 tuples (as per Definition 3.1). Otherwise (line 8) it
picks an attribute a with the highest number of distinct values
and calls procedure Cut to split the tuples in the relation along
a’s dimension, then recursively calling itself on the two returned
groups.

INPUT: (r, A, k) /* relation r to partition; attributes A to index; global var. k */
OUTPUT: P /* k-flat partition P of r */
PARTITION(r)
1 if card(r) <k + 1then P:=P U {r}
2 elseif count(distinct A) = 1 then /* all tuples over A are equal */
3 p:=|card(r)/k]
h = card(r) mod k
Let {g1,..., gp}+ be a partition of r in h groups of k+1 tuples
and p—h groups of k tuples
P:=PU{gitU...U{gp}
else
9. Choose a € A s.t. count(distinct a) is maximum
w0 (ry, rr) = Cut(r,a)
11 Partition(r;)
122 Partition(r,)

PES I

CUT(r,a) /* cut relation r over attribute a in two k-valid relations r;, r, */

1 if @ is continuous then

2 med := median(r[a]) /* compute the median of a */

if med = max(r[a]) then
ry=A{ter | tlal<med}; v = {ter | tla]>med}

else r; := {ter | tla]<med}; r, = {ter | tla]>med}

m := Check(r,r,rr)

case m of /* move m tuples to produce two k-valid relations r;, v */
> 0: Move m tuples with values for a closest to ned from r; to r,.

9 < 0: Move m tuples with values for a closest to ned from r,. to r;

10 else /* a is nominal */

1. Yo € rla], ¢y = count(r[a]=v) /* count ¢, to be priority of v */

122 Let Q be a max priority queue with the distinct values in r[a]

13 7= 0; =

14 while NOTEMPTY(Q)

3
4
5:
6
7
8

15: v = POP(Q)
16: if card(r;) < card(r,) then r; :=r; U {ter | tla] = v}
17 else =7 U {ter | tla] = v}

18 m = Check(r,r;,r)

190 case m of /* move m tuples to produce two k-valid relations r;, - */
20: > 0: Move m tuples with the minimum count from r; to 7

21: < 0: Move m tuples with the minimum count from 7, to r;

2: return ry, 7

Fig.3. Algorithm for computing a k-flat partition.

Cut. Called with a relation r and attribute a as parameters,
procedure Cut partitions the tuples in r based on the values
of a, enforcing the process described in Section III-B, distin-
guishing the cases where a is continuous (lines 1-9) or nominal
(lines 10-21). After producing the two groups r; and .., it calls
procedure Check (lines 6 and 18), which checks the validity
of the computed cut and returns the number m of tuples to be
moved from a group to the other to make the cut valid (in case it
is not), while minimizing the number of tuples to be moved. The
sign (+ or —) of the returned number indicates the direction of
the movement: a positive number indicates that tuples need to
be moved from 7; to r,, while a negative number indicates that
tuples need to be moved from r,. to ; (while 0O is returned if the
cut is already valid). To maintain the quality of the computed
cut, the m tuples to be moved from one group to the other are
those close to the median if the cut was on a continuous attribute
(lines 7-9), or those with a value v for a with a lower number of
occurrences if the cut was on a nominal attribute (lines 19-21).

The pseudocode of procedure Check and a detailed descrip-
tion of its working, distinguishing the different cases of non-
validity for a cut and hence of minimum number of tuples to be
moved from one group to the other (and viceversa) to make it
valid, are illustrated in Appendix A.

Theorem 4 (k-flat partition computation correctness): Let
r be a k-valid relation for a natural number k. Partition(r)
terminates and computes a k-flat partition for r.

IV. INDEXING AND ENCRYPTION

At the end of the partitioning process, each group in the
k-flat partition contains tuples that must be mapped to the same

DE CAPITANI DI VIMERCATT et al.: MULTI-DIMENSIONAL FLAT INDEXING FOR ENCRYPTED DATA 933

Oh .

Ca 0 « «83 MAP

Ak . Gid | Age | State | Tuples Iage | Istate | Tuples I¢ | Tuples
Wy| . & . g1 | [34,40] | NeTx titats € « t1tats Y1 | titats

Mi . g2 [34,40] AkCaWy tatste C ﬁ tatste Y2 | tatste

Tx{ g1 . 84 g3 [43,49] CaOh trtsto n A trtsto Y3 | trtsty

Ne| - . ga | [46,55] | MiTxWy | tioti1ti2 0 1 tioti1tiz Ya | tioti1ti2

343740434649 5255

(a) Spatial representation (b) MAP (c) Value-based (d) Group-based

Fig. 4.

combination of index values. The next step is then the definition
of such indexes (Section IV-A), the construction of the data
structures to be maintained at the client for supporting query
evaluation (Section IV-B), and the organization of the encrypted
and indexed data to be stored at the cloud server (Section IV-C).

A. Map Construction

We start by identifying, for each attribute and each group of
tuples in the partition, the attribute values that the group covers,
specified as an interval for a continuous attribute and as a set of
values for a nominal attribute.

Definition 4.1 (Coverage): Let P be a k-flat partition of a
relation r, a € A be an attribute to index, and g be a group in P.
The coverage of a in g, denoted g[a], is defined as:

e glal=[v;,v,], with v; = min{t[a] | t€g} and v, =

max{t[a] | t€g}, if a is a continuous attribute;

e glal={t[a] | t€g}, if a is a nominal attribute.

For instance, with reference to the partitioning process in
Fig. 2, whose result is graphically illustrated by the spatial repre-
sentation in Fig. 4(a), g1[Age]=[34,40], g1 [State]={Ne,Tx}.
We refer to the groups in a k-flat partition, together with their
coverages for the attributes to index and the tuples in each group,
as the MAP of the partition, formally defined as follows.

Definition4.2 (Map): Let P be a k-flat partition of a relation
and A = {a1,...,a,} beasetof attributes to index. The MAP of
P over Aisthe setof tuples {{(g[gid].glai].. . ..glan],g[tuples]) |
g€P}, with g[gid] the unique group identifier of g, and g[fuples]
the set of tuples in g.

Fig. 4(b) reports the MAP for the partition in Fig. 4(a). For
simplicity, in the figure and in the remainder of the paper, we omit
the brackets and commas in the coverage of nominal attributes.
For instance, NeTx stands for {Ne,Tx}.

In the following, we use notation MAP[gid] to denote the set
of all gid of the groups in P, MAP[a] to denote the support
of multiset J¥_; gi[a], and 1, (c) to denote the multiplicity of
coverage ¢ of a in the multiset. For instance, with reference
to Fig. 4(b), MAP[gid]={g1, g2, g3, g4}, MAP[Age]={[34,40],
[43,49], [46,55]}, with jipge([34,40]) = 2 and pipge ([43,49]) =
MAge([467 55]) = 1.

To define indexes at the level of group of tuples (all tuples
in a group are to be associated with the same combination of
indexes), we define indexes over the MAP. We investigate two
approaches to indexing: value-based (indexing coverages) and
group-based (indexing group ids), which we then evaluate with
respect to the size of the storage required for the client and the
performance in query evaluation (Section V).

(a) Spatial representation of the coverages of the running example, (b) corresponding MAP, and (c) its value-based, and (d) group-based indexing.

With value-based indexing, indexes are computed with re-
spect to coverages (hence producing the same combination
of index values for the tuples in each group), while mapping
different occurrences of the same coverage to different index
values.

Definition 4.3 (Value-based indexing): Let MAP be amap of a
k-flat partition P of relation r over a set A of attributes to index.
A value-based indexing over MAP is a set of functions, one for
each attribute a in A, defined as ¢, :MAP[a]— 2%+, with Z, the
domain for a of index values, such that:

1) Ve € MAP[a], |to(c)| = pa(c);

2) Ve, € MAP[a], with ¢ # , 1 (c) N 1o () = 0;

3) Va' € A, witha # a',Z, N Ly = 0.

In other words, there is a function for each attribute to index,
mapping coverages to sets of indexes such that: /) each coverage
is mapped to as many indexes as the multiplicity of the coverage;
2) the sets of indexes of different coverages are disjoint, and 3)
the sets of indexes of different attributes are disjoint. Fig. 4(c)
illustrates an example of value-based indexing for the MAP in
Fig. 4(b). At the practical level, value-based indexing for an
attribute a can berealized by using a salt o, for the attribute and a
random token 7. for each of its coverages c, and encrypting (with
CBC mode) the token using the salt as initialization vector. Index
values are extracted from the result of encryption as fixed-length
non-overlapping strings of bits.

With group-based indexing, indexes are computed with re-
spect to group identifiers (hence producing the same index value
for the tuples in each group) while mapping different group
identifiers to different index values.

Definition 4.4 (Group-based indexing): Let MAP be a map
of a k-flat partition P of relation r over a set A of attributes.
A group-based indexing over MAP is an injective function
tgia:MAP[gid| — Zy;q, with Zy;4 the domain of index values.

Fig. 4(d) illustrates an example of group-based indexing for
the MAPin Fig. 4(b). At the practical level, group-based indexing
can be realized by simply assigning a sequential number to
each group and then applying a random shuffling on all the
values; groups are then uploaded to the cloud server in the
order of the group identifier. This solution guarantees absence
of collisions and the most compact representation of the group
identifiers.

B. Client-Side Storage

At the client, a data structure (which we refer to as client
map) needs to be maintained to enable translation of conditions

934 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 3, JULY-SEPTEMBER 2024

Value-based Group-based

SALT INDEX_Age INDEX_Age
Att Salt Coverage|Freq|Token Coverage| Gid
Age Ohge [34,40] 2 | T340 [34,40] g1, 82
State|ograte| [[4349] 1 | Tz49) [43,49] g3
[46,55] 1 T[46,55] [46,55] g4

INDEX_State INDEX_State

Coverage|Freq|Token Coverage|Gid
AkCaWy | T |Takcawy| AkCaWy | g2
CaOh 1 |7Tcaon CaOh g3
MiTxWy | 1 | 7mimwy MiTxWy | ga
NeTx 1 | 7Tnerx NeTx g1

Fig. 5. Information stored at the client.

on plaintext values in the queries into conditions to be executed
on the indexed dataset at the server.

For value-based indexing, the client needs to store, for each
attribute a to index, the salt o, to be used as initialization
vector for index generation, and, for each of its coverages c, the
multiplicity of the coverage p, (¢) (which dictates how many
index values the coverage maps to) and the initialization token
T.. For group-based indexing, the client needs to store, for each
attribute, the set of coverages and their corresponding group
ids. Fig. 5 illustrates the client map for the value-based and
group-based indexing of our running example.

Translating plaintext conditions into conditions on index val-
ues requires determining the coverages involved in the query
evaluation, that is, including plaintext values involved in the
query. Depending on the conditions expected to be evaluated, the
client map can be organized at the physical level for providing
efficient retrieval of such coverages. For instance, coverages for
continuous attributes can be stored sorted with respect to their
minimum (maximum, resp.) interval value to support efficient
evaluation of conditions of the form a < v (a > v, resp.) or as
interval trees hence offering a logarithmic cost for searches, at
the price however of more storage space (up to three times as
much).

For nominal attributes, mapping of plaintext values to cover-
ages can be realized via a bitmap representation of coverages,
with a row for each plaintext value in the actual domain of the
attribute and a bit for each coverage. Since bitmaps are expected
to be sparse, it is advantageous to consider the use of roaring
bitmaps [8], a recent technique with associated open-source
implementation that offers good performance in terms of size
and speed for sparse bitmaps. Bitmaps and roaring bitmaps allow
the efficient (constant cost) retrieval of all coverages including a
value of interest. Since the cost required for the construction
of all these alternative structures is low (a few seconds for
tables containing millions of tuples) and their size depends on
the distribution of data for a given dataset, all the alternative
structures can be built and the most compact one chosen.

C. Server-Side Storage

At the server side, the relation to be outsourced can be stored
with tuples encrypted and associated with the computed indexes.
Since all tuples in a group share the same indexes, tuples within
a group are indistinguishable from the indexes, and hence query

Value-based Group-based
= Iage|Istate | Encblock Ig [Encblock
g € a |titats Y1 |t1tats
=) ¢ B |tatste Y2 [tatste
= n A |trtstg 3 |trtste
~ 0 & |tioti1tiz Y4 |tiot11t12
o | [Tage|I| Tstate|1] [I[Encblock Ig |Encblock
% e |1 o |1 [1]t1tats Y1 [t1tats
» ¢ |2 B 2| [2[tatste Y2 |tatste
> n (3 A (3] [3|trtsts 3 |trtsto
M 0 |4 5§ |4] |4|ti0t1i1t12 V4 [t1ot11t12

Fig. 6. Information stored at the server.

execution always operates at the granularity of group (either
none or all tuples in a group are to be returned). Given this,
encryption can be applied at the group level, producing a single
encrypted block for the whole group. Thanks to the k-flatness
of the partition, encryption at the level of group enjoys a cor-
responding flatness on the size of encrypted blocks (provided a
small padding).

At the physical level, the organization of the encrypted and
indexed data depends on the database supported at the server
(e.g., relational vs key-value). Fig. 6 illustrates the encrypted and
indexed representation for the relation in our running example,
considering value-based and group-based indexing, assuming
the adoption of a relational and of a key-value database.

With a relational database, data can be simply stored as a
relation with an attribute for the encrypted block, and an attribute
for each index to be supported (see Fig. 6).

With a key-value database, value-based indexing requires
storing different key-value structures: a primary one for the
encrypted block and a secondary one for each of the indexed
attributes to be supported, all connected via a common id. The
common id works as a key for the structure storing the encrypted
blocks and as value for the structures reporting the indexes,
with each index working as key for the corresponding structure.
Group-based indexing is simply realized with a single structure,
with as key the index of the group id and as value the encrypted
block (see Fig. 6). The key-value model turns out to offer a
natural mapping for group-based indexing.

Once the encrypted and indexed relation has been stored at the
server, each query ¢ formulated at the client side on relation r can
be translated into a query ¢° working on the outsourced relation.
Fig. 7 illustrates the query execution process. The translation of
q in ¢ is performed using the client map. The encrypted tuples
retrieved as result of query ¢® are sent to the client, decrypted,
and filtered through the execution of a query ¢° that eliminates
possible spurious tuples (i.e., tuples satisfying ¢° but not q).
Query ¢¢ is the same query as ¢ with the only difference that is
executed over the result of ¢* and not over relation r.

V. IMPLEMENTATION AND EXPERIMENTS

To verify the effectiveness of our approach, we have realized
a prototype and run a series of experiments. In the remainder of

DE CAPITANI DI VIMERCATT et al.: MULTI-DIMENSIONAL FLAT INDEXING FOR ENCRYPTED DATA 935

DATA
OWNER
encrypted & indexed relation

1)q ‘ maps ‘

2)

T 'm 3

Quel [proooror !

TransIZor 3q° Query Executor :

7) plaintext 6)q¢ 9

result of g :

5) encrypted 3

result of ¢° T 3

L | Query Executor | — | == |-
CLIENT SERVER

Fig. 7. Query execution process.

-~ baseline
—8— S=json, C=lz4

~¥— S=json, C=none
—A— S=json, C=snappy
~#— S=json, C=zstd
—#- S=msgpack, C=lz4
—e— S=msgpack, C=none

-~ baseline
—8- S=json, C=lz4

~¥- S=json, C=none
—&— S=json, C=snappy
~#- S=json, C=zstd
—m- S=msgpack, C=lz4
—e— S=msgpack, C=none

S=msgpack, C=snappy
—e— S=msgpack, C=zstd
S=pickle, C=Iz4
~#— S=pickle, C=none
—<— S=pickle, C=snappy
~»— S=pickle, C=zstd

S=msgpack, C=snappy

- S=msgpack, C=zstd
S=pickle, C=Iz4

~#- S=pickle, C=none

—<— S=pickle, C=snappy

~»— S=pickle, C=zstd

Bandwidth (Mbit)

(a) Point queries

Bandwidth (Mbit)

(b) Range queries

Fig. 8. Performance of serialization and compression alternatives.

this section, we first illustrate the description of the prototype,
which supports both a relational (Postgres) and a key-value
(Redis) realization of our approach. We then illustrate the ex-
perimental results aimed at evaluating the storage required at
the client for the client map (Section V-A) and the impact on
performance in query evaluation due to the grouping of tuples
(Section V-B).

Prototype description. Given a dataset to be outsourced, the
prototype computes a k-flat partition (Section III), builds the
client map, and generates the encrypted and indexed dataset
(Section IV) for its outsourcing at a server supporting either
a relational or a key-value database. The prototype is written
in Python. The computation of the k-flat partition is realized
through a multi-container Docker application leveraging Apache
Spark, using Pandas [9] and Arrow [10] for improving its effi-
ciency. The client map is made persistent on disk, serialized
using Pickle [11], compressed using the open source Bzip2
library [12], and encrypted using a non-deterministic authenti-
cated encryption cipher. The encryption of each group of tuples
in the outsourced relation is obtained by serializing the tuples
in JSON format, encoding them in utf-8 and compressing them
using the open source Zstandard library [13]. Such combination
was chosen after experimenting with various alternatives (JSON,
MessagePack and Pickle for serialization and LZ4, Snappy and
Zstandard for compression) as it proved to to have the best
performance (see Fig. 8). The binary object is then padded and

- occp - ST

- wace - scEp - wacP -—AGEP

0.80
0.70
060s
0507
0408
-
0308
0208
0.10
0.00

Map size (Kil

10 25 50 75 100 25 50 75 100
k k

(a) Value-based (b) Group-based

Fig.9. Size of client maps for each attribute, varying k (left axis: overall; right
axis: bytes per tuple).

encrypted using a non-deterministic authenticated encryption
cipher. We rely on Docker Compose [14] to automatically build,
install, and run the application. As anticipated at the end of
Section, all the software is open-source and available on Github.

The client application focuses on the management of queries.
The client application rewrites queries expressed over the plain-
text relation in queries operating on the encrypted and indexed
dataset. The rewritten query is sent to the server application,
which is implemented as a separate container. PostgreSQL is
used for the relational database implementation and Redis for
the key-value implementation. Since Redis does not support key-
value stores with composite keys, to implement our value-based
approach we relied on the execution of a LUA script on the
Redis instance. This script is responsible of retrieving the values
of the field connecting all the key-value structures (working as
key for the structure storing the encrypted blocks and as value
for the structures storing index values) for each attribute in the
query. This request is processed in a single interaction, with
communication latency equal to a single RTT.

The transmission of the query from the client to the server is
implemented using SQLAlchemy [15] or Redis-py [16], respec-
tively for PostgreSQL and Redis. A SQLite in-memory database,
empty at the start of the application, post processes the result
returned by the server to remove spurious tuples (i.e., tuples
returned by the server due to index collision but not belonging
to the result of the original query).

Dataset and experiment settings. We have performed exper-
iments on the usa2019 dataset [17], a publicly available large
dataset from U.S. Census Bureau comprising more than 3 M
tuples for a total size of 65 MB. For the experiments, we con-
sidered a projection of the dataset on nominal attributes State
(8T) and Occupation (OCCP), and continuous attributes Age
(AGEP) and Wage (WAGP).

A. Client Storage

The size of the client-side map is affected by three factors:
1) the type (i.e., continuous vs nominal), size, and distribution
of values of the indexed attributes; 2) the indexing approach
(i.e., value-based vs group-based); and 3) the value of k. For the
first factor, the attributes considered from usa2019 represent
different characteristics. We then run experiments for both value-
based and group-based indexing, varying the value of k.

Fig. 9 shows the size of the client map for each of the four
attributes of the usa2019 dataset considering the value-based
and group-based indexing, varying the value of k. The figure also

936 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 3, JULY-SEPTEMBER 2024

8- k=10 —@= k=25 —h— k=50 —— k=75 —@— k=100 8- k=10 —#— k=25 —d— k=50 —— k=75 —@— k=100

1.8
1.6

1.4
@
125
103
g

O.B§

—_— 063

1.8

16

1.4
o

129

103

g

.\-\-_\’\ 088
s

‘\\H““ 063
‘\‘m.__‘t 04 ‘\.\3:._.__*‘—'.__. 04

0.2 0.2
.0 .0
0.5 1.0 1.5 2.0 2.5 3.0 0.5 1.0 1.5 2.0 25 3.0
Millions of tuples Millions of tuples

(a) Value-based (b) Group-based

Map size (% of plaintext)
PN WA UG N @ o

Map size (% of plaintext)
EF N W B VO N B O
#t downloaded / #t in result

Fig. 10. Size of client map, varying the size of the dataset (left axis: % of
plaintext; right axis: bytes per tuple).

reports, on the right axis, the average size of the map expressed as
bytes per tuple. For both value-based and group-based indexing,
the map size for continuous attributes (WAGP and AGEP) is
smaller than the one for nominal attributes (OCCP and ST).
Furthermore, we can observe a significant reduction in the size of
the map as k increases, which however implies a higher number
of spurious tuples (see next section).

Fig. 10 shows the size of the client map (summing the size
for all four attributes), in terms of percentage over the size of
the dataset (left axis) and of bytes per tuple (right axis) for
different values of k, varying the size of the dataset (the per-
centage and the bytes per tuple for a given database are linearly
dependent). The datasets of various size have been obtained
extracting random samples from usa2019. The graphs show
that the size of the map decreases at the increase of k. As
visible from the graphs, maps created for larger datasets (while
being larger in absolute size) occupy a smaller percentage of
the size of the plaintext dataset. This is maintained over all the
samples, and has been confirmed from other experiments we ran
on different datasets as representative of small and very large
datasets, namely usa2018 [18] (0.5 M tuples of 12 MB) and
transactions [19] (sample of 30 M tuples of 1.5 GB). For
instance, for £ = 25, the size of the map in terms of percentage
over the size of the dataset, reporting in the order usa2018,
usa2019, and transactionsis: 4.51%, 2.10%, and 1.40%
(for value-based indexing), and 6.66%, 3.60%, and 2.10% (for
group-based indexing). Note that, as size of the dataset, we
considered the projection over the indexed attributes, while the
actual size of the dataset is much larger (containing also all not
indexed attributes). The size of the client map compared with
the size of the dataset is then in practice even much smaller than
what observed in our experiments. As it can be observed from
the reported numbers, and as also visible from Fig. 10, group-
based indexing requires, in the examined datasets, between 50%
and 100% more client-side storage than value-based indexing.
However, as we will see in the next section, it consistently offers
better performance.

B. Performance

The indexes constructed as illustrated in the previous sections
trivially guarantee that all tuples responding to the original
queries are returned in the encrypted result retrieved from the

o~ AGEP
-~ baseline

—A— OCCP —- ST —#- WAGP —e AGEP

-~ baseline

—m- WAGP

—
o
o

-
o
n

=
o
)

5.0

25

#t downloaded / #t in result

0.0 0.0
10 25 50 75 100 10 25 50 75 100

k k
(a) Point queries (b) Range queries

Fig. 11. Overhead in the number of tuples downloaded.

server. However, by design, index collision (i.e., the fact that
different values are mapped to a same index), clearly implies
retrieval of additional tuples that do not belong to the result
of the original queries. These are removed by the client by
re-applying the query locally as a post processing step [5],
[20]. Such additional tuples bring a potential overhead in query
execution due for communication and processing. We discuss
first the evaluation with respect to the number of additional tuples
and then the execution time, comparing them with respect to the
realization of the queries on plaintext values (i.e., offering no
protection on the database content). We also discuss the impact
of latency and bandwidth.

For evaluating performance, we run different sets of exper-
iments. Each experiment executes in sequence a sample of
queries randomly extracted from a pool of 5.000 queries. The
queries in the pool are grouped according to their selectivity. Our
experiments consider queries with a selectivity of up to 10% of
the dataset. These are the most interesting configurations, where
indexes are useful to filter tuples in query results; queries that
return a larger portion of the dataset may lead to a flat retrieval
of the whole dataset.

Additional tuples. We have first evaluated the overhead,
in terms of additional number of tuples downloaded from the
server, for point queries (for all the four attributes of the
usa2019 dataset) as well as for range queries (for the two
continuous attributes). Fig. 11 reports the ratio between the
number of tuples in the groups retrieved from the server and
the tuples actually belonging to the query result; the horizontal
baseline at value 1.0 represents the profile of a query executed
on a plaintext database. As visible from Fig. 11, the number of
spurious tuples increases with the increase of k (the larger the
groups the greater the number of tuples returned due to index
collision that do not belong to the result). However, we note that
its limited value with respect to & (the worst overhead is for WAGP
reaching 15x over the baseline for £ = 100), and the limited
overhead for range queries thanks to the multi-dimensional space
partitioning used for defining groups. Most importantly, as we
will show next, the overhead in terms of number of tuples shows a
much lower impact in terms of execution time. Current networks
offer a relatively high bandwidth and the overhead introduced
by spurious tuples is dominated by other factors. In addition,
the use of data compression in the storage of tuples significantly
reduces the impact of spurious tuples.

DE CAPITANI DI VIMERCATT et al.: MULTI-DIMENSIONAL FLAT INDEXING FOR ENCRYPTED DATA 937

 PostgreSQL —— Group-based, PostgresQL.
. Redis Group-based, Redis

ased, Redis

alue-based, PostgreSQL
q,

—4— Group-based, PostgresQL.

4 Group-based, Redis alue-based, Redis Group-based, Redis.

k k
(a) Point queries (WAGP) (b) Range queries (WAGP)

Fig. 12.

Execution time. We have evaluated the performance for
both value-based and group-based indexing, building both a
PostgreSQL and a Redis implementation for the server, hence
considering four different configurations for the realization of
our solution. The experiments aimed at comparing performance
for the different configurations with respect to the one of the
baseline configuration, which corresponds to a plaintext dataset
stored in PostgreSQL where queries are executed on the plaintext
dataset without any rewriting, and classical indexes are defined
within the database over the attributes involved in queries. We
do not present a baseline configuration with Redis, because the
key-value model does not support queries on attributes other
than the key.

We have then evaluated the execution time for point and
range single attribute queries over continuous attribute WAGP
and nominal attribute OCCP, as well as of multi-attribute queries
involving both the attributes for various configurations obtained
varying k (for multi-attribute queries, we evaluate a conjunction
between the selection predicates on the attributes). We have
measured both the server execution time and the global execu-
tion time. The global execution time measures the overall time
required to: submit the query to the client-side query translator;
parse the query; generate the index values and rewrite the query;
submit the query to the server; execute the query on the server;
send the resulting encrypted blocks to the client; decrypt the
encrypted blocks and serialize the resulting plaintext tuples in
SQLite; remove spurious tuples. The server-side execution time
measures only the time required by the server to run the query
and retrieve the encrypted blocks. In the first set of experiments,
the network latency between client and server is set to 10 ms (a
value that assumes the server to be relatively near to the client),
and the bandwidth to 1 Gbps (a value representative of current
network connections; we will explore next the impact of latency
and bandwidth on performance).

The results reported are the average observed execution
times, obtained as the total running time of the queries in the
sample divided by the number of queries. In the figures, we
report the curves for the different configurations but do not
report the standard deviation because in most cases it is smaller
than the size of the marker used for distinguishing the different
lines. Also, since the main objective is the comparison with the
query execution time of the baseline rather than the absolute
times, the scale varies for the different experiments. Note that
for the baseline configuration, global execution time corresponds
to server-side execution time with just the addition of network
latency, as it is expected, since in the baseline requires no post
processing the client.

(c) Point queries (OCCP)

75 100 U100 25 50 75 100 10 25 50 75 100

(d) Point queries (WAGP,0CCP) (e) Range queries (WAGP,0CCP)

Global execution time for single (a)—(c) and multi-attribute (d) and (e) queries.

Figs. 12 and 13 show the global and the server execution time
for single and multi-attribute queries, varying the value of k.

Global execution time shows a different trend for point queries
over WAGP with respect to the one observed for point queries over
OCCEP: at the increase of k, the global execution time decreases
for queries over WAGP while it increases for queries over OCCP
(this latter is the trend observed also for queries over ST and
AGEP). The different behavior depends on the interplay between
a number of factors: the increase in & leads to a greater number
of spurious tuples, but it also leads to queries that access a
smaller number of groups, which being of larger size may also
benefit more from data compression; for attribute WAGP, which
is the one with the greatest cardinality, the partitioning leads to
a greater probability of having tuples with similar values in the
same groups (testified by the low data overhead for range queries
reported in Fig. 11(b)) and then an improved performance as k
Srows.

Server execution time is mostly well below the server execu-
tion time observed for the baseline and decreases at the increase
of k. This is explained by the simpler structure of the queries,
which for larger k& values provide a smaller number of index
values or group ids to extract; the data overhead is greater, but
the reduced complexity of the query leads to better server per-
formance. Also, the Redis implementation consistently enjoys
lower execution time at the server. This derives from the greater
efficiency of Redis in the management of simple data structures.
We also note that configurations with group-based indexing are
consistently faster than the ones using the value-based indexing.
The difference in speed between group-based and value-based
indexing decreases when k increases, as larger k£ implies that a
smaller number of index values is generated. As a final observa-
tion, we note that point queries exhibit lower query processing
times compared to range queries. This is justified by the larger
size of the query results of range queries.

Multi-attribute point queries with group-based indexes show
a significant improvement in the global execution time. This
happens because multi-attribute group-based point queries are
more selective than the single-attribute ones, and then require
less data transfer, thus producing a saving in the global execution
time. We also note that, for multi-attribute point queries for the
group-based indexing, the server-side execution time dominates
the global execution time, meaning that the time required for
data processing at the client is negligible compared to the
server-side execution time. Also, with the group-based indexing
the conjunction between the conditions on attributes OCCP and
WAGP is performed at the client and this produces a saving,
since less index values are generated and communicated to the

938

~8- Value-based, PostgreSQL —— Group-based, PostgreSQL ~8- Value-based, PostgreSQL —— Group-based, PostgreSQL
~#- Value-based, Redis - . Redis &~ Value-based, Redis. d, Redis

== baseline == baseline

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL.

~e- Value-based, PostgreSQL —&— Group.
0. R

~#- Group-based, Redis.

12, NO. 3, JULY-SEPTEMBER 2024

based, PostgresaL. ~8- Value-based, PostgreSQL &~ Group-based, PostgreSQL &~ Value-based, PostgreSQL —&— Group-based, PostgreSQL
= Value-based, Redis 4 Group-based, Redis = Value-based, Redis - Group-based, Redis

Time (s)
Time (s)

100 10 25 50 75 100 0 25

k
(a) Point queries (WAGP) (b) Range queries (WAGP)

Fig. 13.

~8- Value-based, PostgreSQL —— Group-based, PostgresQL
~#- Value-based, Redis -
== baseline

-8~ Value-based, PostgreSQL —— Group-based, PostgreSQL
~®- Value-based, Redis @~ Group-based, Redis
-~ baseline

= Value-based, Redis
--- baseline

(c) Point queries (OCCP)

8- Value-based, PostgreSQL —A— Group-based, PostgreSQL

100

(d) Point queries (WAGP,0CCP) (e) Range queries (WAGP,0CCP)

Server execution time for single (a)—(c) and multi-attribute (d) and (e) queries.

8- Value-based, PostgreSQL —A— Group-based, PostgreSQL
= Value-based, Redis - Group-based, Redis
--- baseline

8- Value-based, PostgreSQL —&— Group-based, PostgreSQL
@~ Group-based, Redis ~®- Value-based, Redis - Group-based, Redis

0.7
06
505
gDA
Fos
0.2
0.1

25 50 75 100 25
Latency (ms)

(a) Point queries (WAGP)

7 100 T2
Latency (ms)

(b) Range queries (WAGP)

Fig. 14.

server. This is visible by comparing the global execution time
for value-based indexing and for group-based indexing.

With respect to the multi-attribute range queries, we observe
similar performance between the baseline and the configurations
using group-based indexing (Fig. 12(e)), while there is a degra-
dation of performance when using value-based indexing. From
the comparison between Fig. 12(e) and (e) we can see that, for
all configurations, a non-negligible amount of time is spent to
delete spurious tuples and to transfer the data (we will evaluate
bandwidth impact on performance in the following).

Impact of latency. Since latency has a direct impact on
performance and usability, we have quantitatively measured
its impact repeating the set of experiments illustrated above
varying the latency. Fig. 14 shows the global execution time
of single-attribute and multi-attribute queries, considering k =
50 and latency values of 25, 50, 75, and 100 ms, corresponding
to round-trip-times equal to twice the latency.! These latency
values have been selected to mimic a variety of configurations,
with the server located in the same geographic region or farther
from the client (the range 25—100 ms covers most of the scenarios
where a client accesses the servers of a cloud provider).

The trend for single-attribute and multi-attribute queries are
similar. For all five configurations, the execution time grows lin-
early with the increase of latency, with Redis configurations en-
joying a lower slope with respect to PostgreSQL ones (including
the baseline, which has been implemented using PostgreSQL).
There are two main observations from the experiments, both
supporting the applicability of our approach. First, with the
execution time increasing linearly at the increase of latency, the
net effect is a proportional reduction of the overhead due to

"The delay is set using tc [21], a utility bundled with iproute?2 [22] that
permits to control the Kernel packet scheduler.

50 75
Latency (ms)

(c) Point queries (OCCP)

0.
100 25

) 7 100
Latency (ms)

(e) Range queries (WAGP,OCCP)

0 7
Latency (ms)

(d) Point queries (WAGP,0CCP)

Global execution time for single (a)—(c) and multi-attribute (d) and (e) queries, varying latency.

grouping. Second, the Redis implementation, enjoying a lighter
communication and access protocol, is less affected by latency
increase.

Impact of bandwidth. We ran a dedicated set of experiments
varying the bandwidth between client and server, to evaluate
its effect on query execution time and hence the applicability
of the approach in low bandwidth scenarios. We have then
repeated the set of experiments discussed above considering
bandwidth values of 1 Mbps, 10 Mbps, 100 Mbps, and 1 Gbps
(this latter being the one considered before). Fig. 15 reports the
global execution time for single-attributes and multi-attribute
queries for different values of k, varying the bandwidth. Queries
are issued using our group-based implementation for Redis.
As it is visible from the figures, the overhead is negligible
for bandwidth of at least 10 Mbps (which can be assumed to
cover the wide majority of configurations, given that evolution
of network technology is making available, in most scenarios,
communication channels with bandwidth above 100 Mbps). It
is to note also that for range and multi-attribute queries, the data
compression and serialization provided by our implementation
and the greater efficiency of Redis, in scenarios with low band-
width, produce improvements in the overall execution time with
respect to the one offered by the baseline PostgreSQL plaintext
implementation.

VI. RELATED WORK

The problem of supporting query evaluation over encrypted
data stored off-premises has been widely studied. Existing ap-
proaches that address this problem rely on the use of specific
cryptographic primitives or on the definition of indexes.

The cryptographic primitives supporting searches over en-
crypted data include property-preserving encryption (e.g., [23],

DE CAPITANI DI VIMERCATT et al.: MULTI-DIMENSIONAL FLAT INDEXING FOR ENCRYPTED DATA 939

o k=10 - k=25 — k=50 ~#- k=75 —+— k=100

- k=10 B k=25 —A— k=50 - k=75 —k— k=100
== baseline == baseline

8 k=10 B k=25 —k— k=50 - k=75 —& k=100

0 k=10 - k=25 —A- k=50 - k=75 —& k=100 @ k=10 B~ k=25 —k— k=50 —#- k=75 —— k=100
'

=== baseline == baseline

N

0.06 10
0.05 s
—0.04
2z — 61 1
2 N
2)
E

°
°
8
Time (s)

1

10 100 1000 1
Bandwidth (Mbps)

(b) Range queries (WAGP)

10 100
Bandwidth (Mbps)

(a) Point queries (WAGP)

Fig. 15.

[24], [25], [26]), searchable symmetric encryption (SSE) and
range SSE (e.g., [1], [27], [28]), and fully homomorphic en-
cryption (e.g., [29], [30], [31]). These approaches provide a
different trade-off among efficiency, security, and the kind of
supported queries (e.g., [32], [33]). In particular, maintaining
plaintext functionality (e.g., preserving order of values) in the
encryption makes the encryption vulnerable to inferences, as
the information carried by such functionality is leaked. Also,
while considerable progress has been made in the field, the
computational overhead of stronger cryptographic primitives
still results too cumbersome for most database applications. Our
proposal differs from these approaches mainly because we use
an auxiliary indexing structure on the client, and store together
in a single block groups of tuples of uniform cardinality and size.
These aspects mitigate the possible leakages deriving from the
execution of cryptographic functions [34] and from the retrieval
of single tuples.

Indexes are metadata defined over attributes frequently in-
volved in query evaluation (e.g., [4], [5], [35], [36], [37]).
Indexes are stored together with the encrypted data and can be
used to efficiently retrieve the data to be returned in response to a
query. Different approaches to indexing have been investigated.
Some indexing techniques are built over a single attribute of the
outsourced relation (e.g., [5]), and therefore can only support
queries defined on such an attribute. Other solutions support
indexes on multiple attributes. These include the work in [38]
that, similarly to our proposal, provides indexes at the group
level, but with the aim to find a balance between the number
of spurious tuples and the protection given by the entropy in
the query results; hence, it considers a different setting of the
problem. Other approaches rely on tree-based structures (e.g.,
R-trees and KD-trees) that have been designed to efficiently sup-
port queries over plaintext data (e.g., nearest neighbor searches
in spatial applications [39]). The problem would then be how
to efficiently and securely traverse a tree-based structure whose
nodes are encrypted with the same cryptographic primitives used
for protecting data. Different indexing solutions focus on differ-
ent aspects of this problem, such as the definition of new search
algorithms, the definition of novel cryptographic techniques that
support the tree-traversal procedure of, for example, R-trees, or
the definition of novel tree-based structures supporting range
queries (e.g., [40], [41], [42], [43]). These proposals mainly
focus on the efficiency aspect or on the cryptographic techniques
and do not address the problem of protecting against frequency-
based attacks, do not support flat grouping of the data to be

10 100
Bandwidth (Mbps)
(c) Point queries (OCCP)

0.
1000 1 1000 1 10 100 1000
Bandwidth (Mbps)

(e) Range queries (WAGP,0CCP)

10 100
Bandwidth (Mbps)

(d) Point queries (WAGP,0CCP)

Global execution time for single (a)—(c) and multi-attribute (d) and (e) queries, varying bandwidth.

protected, and do not consider the storage of data in a key-value
database.

Other lines of work in the context of ensuring some form of
confidentiality in data outsourcing includes: the use of trusted
hardware for protecting query exection [2], [3]; the fragmen-
tation of data for their external storage (so to avoid or limit
encryption when what is to be protected is the association
among the data rather than their values) [44], [45], [46]; and
the protection of the confidentiality of the accesses and their
patterns, with different variations of ORAM-based solutions
(e.g., Path-ORAM) typically relying on data re-allocation to
break the otherwise fixed correspondence between data and their
physical storage location (which comes at the price of significant
overhead and limitations in query execution). While sharing the
scenario of data outsourcing to not fully trusted services, these
approaches address therefore a different problem.

VII. CONCLUSION

We have presented an approach for the definition of multi-
attribute indexes that enables the execution of point and range
queries over encrypted data outsourced to an external cloud
provider. The proposed approach to index construction pro-
vides both flattening and collisions on any combination of
index values, and ensures an effective execution of queries. Our
experimental evaluation considers the storage of data on both
an external relational database (PostgreSQL) and a key-value
database (Redis), and shows the effectiveness of the proposal,
thus supporting its application in real-world scenarios.

REFERENCES

[1] G. Poh, J. Chin, W. Yau, K. Choo, and M. Mohamad, “Searchable sym-
metric encryption: Designs and challenges,” ACM Comput. Surv., vol. 50,
no. 3, pp. 1-37, 2017.

[2] A. Arasu, K. Eguro, M. Joglekar, R. Kaushik, D. Kossmann, and R. Rama-
murthy, “Transaction processing on confidential data using cipherbase,”
in Proc. IEEE 31st Int. Conf. Data Eng., 2015, pp. 435-446.

[3] S.BajajandR. Sion, “TrustedDB: A trusted hardware-based database with
privacy and data confidentiality,” IEEE Trans. Knowl. Data Eng., vol. 26,
no. 3, pp. 752-765, Mar. 2014.

[4] E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and P.
Samarati, “Balancing confidentiality and efficiency in untrusted relational
DBMSs,” in Proc. 10th ACM Conf. Comput. Commun. Secur., 2003,
pp. 93-102.

[5] H. Hacigiimiis, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL over
encrypted data in the database-service-provider model,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2002, pp. 216-227.

[6] K. LeFevre, D. DeWitt, and R. Ramakrishnan, “Mondrian multidimen-
sional k-anonymity,” in Proc. 22nd Int. Conf. Data Eng., 2006, pp. 25-36.

940

(71
(8]
(9]
[10]
[11]
[12]
[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]

[32]

[33]

[34]

[35]

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 3, JULY-SEPTEMBER 2024

A. C. Yao, “New algorithms for bin packing,” J. ACM, vol. 27, no. 2,
pp. 207-227, 1980.

D. Lemire et al., “Roaring bitmaps: Implementation of an optimized
software library,” Softw. Pract. Exp., vol. 48, no. 4, pp. 867-895, 2018.
The pandas development team, “Pandas-dev/pandas: Pandas,” 2020,
doi: 10.5281/zenodo.3509134.

The Apache Software Foundation, “Apache arrow,” 2021. [Online]. Avail-
able: https://arrow.apache.org/

G. Van Rossum, “The python library reference, release 3.10.4,” 2022.
[Online]. Available: https://docs.python.org/3/library/pickle.html

J. Seward, “bzip2 and libbzip2,” 1996. [Online]. Available: http://www.
bzip.org

Facebook, ‘Zstandard,” 2021. [Online]. Available: https://facebook.
github.io/zstd/

Docker Inc., “Docker-compose,” 2021. [Online]. Available: https://docs.
docker.com/compose/

M. Bayer, “SQLAIlchemy,” in The Architecture of Open Source Applica-
tions Volume II: Structure, Scale, and a Few More Fearless Hacks, A.
Brown and G. Wilson, Eds., 2012.

Redis Inc., “redis-py,” 2021. [Online]. Available: https:/redis.read
thedocs.io/en/latest/

U. S. Bureau of the Census, “Public use microdata sample. individual
dataset of all US. 1-year version of ACS2019,” 2019. [Online]. Available:
https://www2.census.gov/programs-surveys/acs/data/pums/

U. S. Bureau of the Census, “Public use microdata sample. individual
dataset of all US. 1-year version of ACS2018,”2019. [Online]. Available:
https://www2.census.gov/programs-surveys/acs/data/pums

Kaggle, “Acquire valued shoppers challenge, transactions dataset,”
2014. https://www.kaggle.com/c/acquire-valued-shoppers-challenge/
data?select=transactions.csv.gz

E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and P.
Samarati, “Balancing confidentiality and efficiency in untrusted relational
DBMSs,” in Proc. 10th ACM Conf. Comput. Commun. Secur., 2003,
pp. 93-102.

“TC(8) — Linux manual page,” 2022. [Online]. Available: https://man7.
org/linux/man-pages/man8/tc.8.html

“iproute2—Ubuntu man pages,” 2021. [Online]. Available: https:/
launchpad.net/ubuntu/focal/package/iproute2

A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill, “Order-preserving
symmetric encryption,” in Proc. Adv. Cryptol., 2009, pp. 224-241.

R. Popa, F. H. Li, and N. Zeldovich, “An ideal-security protocol for
order-preserving encoding,” in Proc. IEEE Symp. Secur. Privacy, 2013,
pp. 463-477.

D. Li et al., “Frequency-hiding order-preserving encryption with small
client storage,” in Proc. VLDB Endowment, vol. 14, no. 14, pp. 3295-3307,
2021.

A. R. Chowdhury and P. Ramanathan, “Public order preserving cipher
generation scheme for distributed computing,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2018, pp. 2273-2275.

C. Bosch, P. Hartel, W. Jonker, and A. Peter, “A survey of provably secure
searchable encryption,” ACM Comput. Surv., vol. 47, no. 2, pp. 1-51,
2015.

F. Falzon, E. Markatou, Z. Espiritu, and R. Tamassia, “Attacks on encrypted
range search schemes in multiple dimensions,” Cryptology ePrint Archive,
2022.[Online]. Available: https://eprint.iacr.org/2022/090.pdf

C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc.
41st Annu. ACM Symp. Theory Comput., 2009, pp. 169-178.

C. Gentry and S. Halevi, “Implementing Gentry’s fully-homomorphic
encryption scheme,” in Proc. Eurocrypt, 2011, pp. 129-148.

Microsoft, “Microsoft SEAL,” 2021, [Online]. Available: https://www.
microsoft.com/en-us/research/project/microsoft-seal

R. Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan, “CryptDB:
Protecting confidentiality with encrypted query processing,” in Proc. 33rd
ACM Symp. Operating Syst. Princ., 2011, pp. 85-100.

M. Naveed, S. Kamara, and C. Wright, “Inference attacks on property-
preserving encrypted database,” in Proc. 22nd ACM SIGSAC Conf. Com-
put. Commun. Secur., 2015, pp. 644-655.

1. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis, M. Garo-
falakis, and C. Papamanthou, “Practical private range search in depth,”
ACM Trans. Database Syst., vol. 43, no. 1, pp. 1-52, 2018.

1. Demertzis, S. Papadopoulos, O. Papapetrou, A. Deligiannakis, and M.
Garofalakis, “Practical private range search revisited,” in Proc. Int. Conf.
Manage. Data, 2016, pp. 185-198.

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

H. Van Tran, T. Allard, L. d’Orazio, and A. El Abbadi, “FRESQUE:
A scalable ingestion framework for secure range query processing on
clouds,” in Proc. 24th Int. Conf. Extending Database Technol., 2021,
pp. 205-216.

B. Hore, S. Mehrotra, and G. Tsudik, “A privacy-preserving index for
range queries,” in Proc. 13th Int. Conf. Very Large Data Bases, 2004,
pp. 720-731.

B. Hore, S. Mehrotra, M. Canim, and M. Kantarcioglu, “Secure multidi-
mensional range queries over outsourced data,” VLDB J., vol. 21, no. 3,
pp- 333-358, 2012.

J. Wang, S. Wu, H. Gao, J. Li, and B. Ooi, “Indexing multi-dimensional
data in a cloud system,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2010, pp. 591-602.

B. Wang, Y. Hou, and M. Li, “QuickN: Practical and secure nearest neigh-
bor search on encrypted large-scale data,” IEEE Trans. Cloud Comput.,
vol. 10, no. 3, pp. 20662078, Jul.-Sep. 2022.

B. Wang, Y. Hou, M. Li, H. Wang, and H. Li, “Maple: Scalable multi-
dimensional range search over encrypted cloud data with tree-based
index,” in Proc. 9th ACM Symp. Inf. Comput. Commun. Secur., 2014,
pp. 111-122.

Z. Wu and K. Li, “VBTree: Forward secure conjunctive queries over
encrypted data for cloud computing,” VLDB J., vol. 28, no. 1, pp. 25-46,
2019.

S. Wu, Q. Li, G. Li, D. Yuan, X. Yuan, and C. Wang, “ServeDB: Secure,
verifiable, and efficient range queries on outsourced database,” in Proc.
IEEE 35th Int. Conf. Data Eng., 2019, pp. 626—637.

G. Cormode, D. Srivastava, T. Yu, and Q. Zhang, “Anonymizing bipartite
graph data using safe groupings,” in Proc. VLDB Endowment, vol. 1, no. 1,
pp- 833-844, 2008.

S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P.
Samarati, “Fragments and loose associations: Respecting privacy in data
publishing,” in Proc. VLDB Endowment, vol. 3, no. 1, pp. 1370-1381,
2010.

X. Xiao and Y. Tao, “Anatomy: Simple and effective privacy preservation,”
in Proc. 32nd Int. Conf. Very Large Data Bases, 2006, pp. 139—150.

Sabrina De Capitani di Vimercati (Senior Member,
IEEE) is a professor with the Universita degli Studi
di Milano, Italy. Her research interests are in data
security and privacy. She has published more than
230 papers in journals, conference proceedings, and
books. She has been a visiting researcher with SRI
International, CA, USA, and George Mason Univer-
sity, VA, USA. More information available online at
https://decapitani.di.unimi.it.

Dario Facchinetti (Member, IEEE) is a post-doctoral
researcher with the Universita degli Studi di Bergamo,
Ttaly. His work ranges from the integration of security
features in mobile, database and cloud systems, to
policy and privacy management. He is interested in
access control and sandboxing techniques.

Sara Foresti (Senior Member, IEEE) is a professor
with the Universita degli Studi di Milano, Italy. Her
research interests are in data security and privacy.
She has published more than 100 papers in journals,
conference proceedings, and books. She has been a
visiting researcher with George Mason University,
VA, USA. She chairs the IFIP WG 11.3 on Data and
Applications Security and Privacy. More information
available online at https://foresti.di.unimi.it.

https://dx.doi.org/10.5281/zenodo.3509134
https://arrow.apache.org/
https://docs.python.org/3/library/pickle.html
http://www.bzip.org
http://www.bzip.org
https://facebook.github.io/zstd/
https://facebook.github.io/zstd/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://redis.readpenalty -@M thedocs.io/en/latest/
https://redis.readpenalty -@M thedocs.io/en/latest/
https://www2.census.gov/programs-surveys/acs/data/pums/
https://www2.census.gov/programs-surveys/acs/data/pums
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data{?}select$=$transactions.csv.gz
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data{?}select$=$transactions.csv.gz
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
https://launchpad.net/ubuntu/focal/package/iproute2
https://launchpad.net/ubuntu/focal/package/iproute2
https://eprint.iacr.org/2022/090.pdf
https://www.microsoft.com/en-us/research/project/microsoft-seal
https://www.microsoft.com/en-us/research/project/microsoft-seal
https://decapitani.di.unimi.it
https://foresti.di.unimi.it

DE CAPITANI DI VIMERCATT et al.: MULTI-DIMENSIONAL FLAT INDEXING FOR ENCRYPTED DATA

Gianluca Oldani (Member, IEEE) is currently work-
ing toward the PhD degree with the Universita degli
Studi di Bergamo, Italy. His research interests include
web security, distributed technologies, and data pri-
vacy.

Stefano Paraboschi (Member, IEEE) is a professor
with the Universita degli Studi di Bergamo, Italy.
His research focuses on information security and pri-
vacy, Web technology for data intensive applications,
XML, information systems, and database technology.
He has been a visiting Researcher at Stanford Univer-
sity and IBM Almaden, CA, USA, and George Mason
University, VA, USA. More information available
online at https://cs.unibg.it/parabosc.

941

Matthew Rossi (Graduate Student Member, IEEE)
is currently working toward the PhD degree with
the Universita degli Studi di Bergamo, Italy. From
2019 to 2020, he was a research assistant with the
Department of Information Engineering, Universita
degli Studi di Bergamo. His research interest includes
the integration of security features in mobile systems,
policy management and privacy of outsourced data.

Pierangela Samarati (Fellow, IEEE) is a professor
with the Universita degli Studi di Milano, Italy. Her
main research interests are in data protection, security,
and privacy. She has published more than 290 papers
in journals, conference proceedings, and books. She
has been a visiting researcher with Stanford Uni-
versity, CA, USA, SRI International, CA, USA, and
George Mason University, VA, USA. She is a Fellow
of ACM, and IFIP. More information available online
at https://samarati.di.unimi.it.

Open Access funding provided by ‘Universita degli Studi di Milano’ within the CRUI CARE Agreement

https://cs.unibg.it/parabosc
https://samarati.di.unimi.it

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

