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Abstract

The basic principles and results of Conservative Logic introduced
by Fredkin and Toffoli in [FT, 82] on the basis of a seminal paper of
Landauer [La, 61] are extended to d–valued logics, with a special at-
tention to three–valued logics. Different approaches to d–valued logics
are examined in order to determine some possible universal sets of
logic primitives. In particular, we consider the typical connectives of
 Lukasiewicz and Gödel logics, as well as Chang’s MV–algebras. As
a result, some possible three–valued and d–valued universal gates are
described which realize a functionally complete set of fundamental con-
nectives.

1 Introduction

The present paper is based on two different research areas which have been
developed in the last years: Conservative Logic and Many–valued Logics.
Conservative logic is a model of computation introduced by Fredkin and
Toffoli in [FT, 82] on the basis of the seminal paper of Landauer [La, 61]
(see also [Be, 73]) to improve the efficiency and performance of computing
processes in terms of dissipated energy. The model is based on the Fredkin
gate, a universal Boolean gate which is both conservative and reversible.

On the other hand, many–valued logics are extensions of classical two–
valued (i.e., Boolean) logic which have a great diffusion due to their ability to
manage incomplete and/or uncertain knowledge. These two main subjects
are briefly described in the next sections.

∗This work has been supported by MIUR\COFIN project “Formal Languages and

Automata: Theory and Application”
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In this paper we propose an extension of conservative logic in order to
include the main features of many–valued logics with a finite number of truth
values. As a result we define some d–valued universal gates which have the
properties required by the conservative and many–valued paradigms.

2 Reversibility, Conservativeness, and Conditional

Control of Boolean Gates

Computational models are usually based upon Boolean logic, and use some
universal set of primitive connectives such as, for example, {AND,NOT}.

From a general point of view, a (classical deterministic) n–inputs/m–
outputs gate (where n,m are positive integers) is a special–purpose com-
puter schematized as a device able to compute (Boolean) logical functions
G : {0, 1}n → {0, 1}m. Any ~x = (x1, x2, . . . , xn) ∈ {0, 1}n (resp., ~y =
(y1, y2, . . . , ym) ∈ {0, 1}m) is called an input (resp., output) configuration.
For every i ∈ {1, 2, . . . , n} (resp., j ∈ {1, 2, . . . ,m}), called the input (resp.,
output) bit of position i (resp., j), the Boolean value xi ∈ {0, 1} (resp.,
yj ∈ {0, 1}) is said to be the state of bit i (resp., j) with respect to con-
figuration ~x (resp., ~y). Finally, in the sequel we denote by λf the generic
configuration belonging to the range of G.

The action of the multi–output map G on an input configuration ~x
produces the output configuration G(~x) = (G1(~x), G2(~x), . . . , Gm(~x)) de-
termined by the component logical truth functions (single–output maps)
Gj : {0, 1}n → {0, 1}, for any j = 1, 2, . . . ,m, with a possible parallel im-
plementation drawn in Figure 1.
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Figure 1: Standard parallel architecture of an n–inputs/m–outputs gate

Conservative logic is a theoretical model of computation whose principal
aim is to compute with zero internal power dissipation. This goal is reached
by basing the model upon reversible and conservative primitives, which
reflect physical principles such as the reversibility of microscopic dynamical
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laws and the conservation of certain physical quantities, such as the energy
of the physical system used to perform the computations.

Reversibility. Most of the times, computational models lack of re-
versibility ; that is, one cannot in general deduce the input values of a gate
from its output values. For example, knowing that the output of an AND
gate is the logical value 0 one cannot deduce the input values that generated
it. The original motivation for the study of reversibility in classical com-
puting came from the observation that heat dissipation is one of the major
obstacles for miniaturization of classical computers and the fact that the
second law of thermodynamics implies that irreversible state changes dur-
ing computation must dissipate heat. “Thus, in the more abstract context
of computing, the laws of “conservation of information” may play a role
analogous to those of conservation of energy and momentum in physics.”
[To, 80].

Lack of reversibility means that during the computation some informa-
tion is lost. As shown by R. Landauer [La, 61] (see also C.H. Bennett [Be, 88]
which can be found in [LR, 90]), a loss of information implies a loss of en-
ergy and therefore any computational model based on irreversible primi-
tives is necessarily informationally dissipative. This is nowadays known (see
[Be, 98]) as:

Landauer’s principle. To erase a bit of classical information
within a computer, 1 bit of entropy must be expelled into the
computer’s environment, typically in the form of waste heat.
Thus logical irreversibility is associated with physical irreversibil-
ity and requires a minimal heat generation, per machine cycle,
typically of the order of kT for each irreversible operation.

In practice the heat dissipation per bit processed by (irreversible) comput-
ers in use today is some orders of magnitude greater than the theoretical
lower bound 1kT ln 2 given by Landauer’s principle. However, if computer
hardware continues to shrink in size as so far, then the only feasible option
to beat Landauer’s lower bound seems to be reversible computation.1

“In the customary approach, this transition [from the irreversibil-
ity of the given computing process to the reversibility of the
physical laws, NdA] occurs at a very low level and is hidden
— so to speak — in the “physics” of the individual gate; as a
consequence of this approach, the details of the work–to–heat
conversion process are put beyond the reach of the conceptual
model of computation that is used.

1 In modern computers heat dissipation is about kT108 per logical operation. The heat

must be removed by external means, for example, by constant cooling of all components

by the thermal coupling of the circuits to a heat reservoir, i.e., air.
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On the other hand, it is possible to formulate a more general
conceptual model of computation such that the gap between the
irreversibility of the desired behavior and the reversibility of a
given underlying mechanism is bridged in an explicit way within
the model itself.” [To, 80, p. 3].

Let us make these considerations less informal by considering as a first
example the logical function L of Table 1 computed by a three–inputs/three–
outputs gate and discussed by Landauer in [La, 61].

x1 x2 x3 → y1 y2 y3

0 0 0 0 0 0
0 0 1 1 1 0
0 1 0 0 0 0
0 1 1 1 1 0
1 0 0 0 0 0
1 0 1 1 1 0
1 1 0 0 0 1
1 1 1 1 1 1

Table 1: The Landauer three–inputs/three–outputs gate

Following Landauer “There are eight possible initial states, and in ther-
mal equilibrium they will occur with equal probability. How much entropy
reduction will occur in a machine cycle? States (111) and (001) occur with a
probability 1/8 each; states (110) and (000) have a probability of occurrence
of 3/8 each. The initial entropy was:

Si(3) = −k
∑

~x

P (~x) loge P (~x)

= −k
∑ 1

8
loge

1

8
= 3 k loge 2

The final entropy is

Sf (L) = −k
∑

λf

PL(λf ) loge PL(λf )

= −k
(1

8
loge

1

8
+

1

8
loge

1

8
+

3

8
loge

3

8
+

3

8
loge

3

8

)

The difference Si(3) − Sf (L) is 0.82 k. The minimum dissipation, if the
initial state has no useful information, is therefore Ei(3)−Ef (L) = (Si(3)−
Sf (L))T = 0.82 k T .”

More precisely, for any admissible output λf = (y1, y2, y3) ∈ Im(L) we
can introduce the set

ML(λf ) := L−1(λf ) = {(x1, x2, x3) ∈ {0, 1}3 : L(x1, x2, x3) = λf}
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whose cardinality |ML(λf )| expresses the indistinguishability degree of the
output λf , i.e., the total number of possible inputs which cannot be distin-
guished by L with respect to the output λf . Then the above probabilities
can be expressed as

PL(λf ) =
|ML(λf )|

|{0, 1}3|
=

1

8
|ML(λf )|

We want now to extend these considerations in order to compare the
dissipation of informational energy in the case of devices whose number of
output lines is not necessarily equal to the number of input lines. To this end,
let us denote by F({0, 1}, n,m) = ({0, 1}m){0,1}

n
the collection of all Boolean

gates G : {0, 1}n → {0, 1}m, and by F({0, 1}, n,N) =
⋃

m∈N F({0, 1}, n,m)
the collection of all Boolean gates with n fixed and m ranging in N. For
instance, F({0, 1}, 2,N) contains both the gate AND : {0, 1}2 → {0, 1},
associating to the Boolean pair (x1, x2) the Boolean value AND(x1, x2) =
x1 · x2, and the two–inputs/four–outputs gate defined by Table 2.

x1 x2 7−→ y1 y2 y3 y4

0 0 0 0 0 0
0 1 0 1 1 0
1 0 0 1 1 1
1 1 1 0 0 1

Table 2: Example of a two–inputs/four–outputs reversible gate

In F({0, 1}, n,N), owing to the assumption that in thermal equilibrium
all possible inputs ~x will occur with equal probability P (~x), the input infor-
mation entropy is independent from the particular gate and equal to:

Si(n) : = −k
∑

~x

P (~x) loge P (~x)

= −k
∑

~x

1

2n
loge

1

2n
= n k loge 2

What depends on the gate G ∈ F({0, 1}, n,N) is the set of λf–indistin-
guishable input configurations, where λf ∈ Im(G) is any admissible output
configuration of G:

MG(λf ) : = G−1(λf )

= {(x1, x2, . . . , xn) ∈ {0, 1}n : G(x1, x2, . . . , xn) = λf}

Let us notice that the collection {MG(λf ) : λf ∈ Im(G)} of all such subsets
constitutes a partition of {0, 1}n. Borrowing some terminology from ax-
iomatic quantum mechanics, elements λf from Im(G) can be called eigen-
values (possible output values) of G, Im(G) is the spectrum of G, the set
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MG(λf ) is the eigenspace (set of possible inputs) associated to the eigen-
value λf , and the characteristic function χMG(λf ) (= 1 if ~x ∈ MG(λf ), and
0 otherwise) is the spectral projection associated to the eigenspace. The
collection of all spectral projections of G, for λf ranging on the spectrum of
G, is a spectral identity resolution of G:

Id =
∑

λf∈Im(G)

χMG(λf )

G =
∑

λf∈Im(G)

λf χMG(λf )

The indistinguishability degree of the admissible output configuration
λf ∈ Im(G) is defined as |MG(λf )|, and the probability of occurrence of λf

as:

PG(λf ) =
1

2n
|MG(λf )|

with corresponding output information entropy :

Sf (G) : = −k
∑

λf∈Im(G)

PG(λf ) loge PG(λf ) (1a)

= −
k

2n

∑

λf∈Im(G)

|MG(λf )| · loge |MG(λf )| + Si(n) (1b)

Hence, the information energy dissipation of G is:

∆E(G) = (Si(n) − Sf (G)) · T

=
kT

2n

∑

λf∈Im(G)

|MG(λf )| · loge |MG(λf )|

In particular, the information energy loss by the AND gate is ∆E(AND) =
3kT
4 loge 3 ≈ 0.82 k T whereas the gate of Table 2 (owing to its reversibility)

has no information energy dissipation.
From (1) it follows immediately that the output information entropy is

bounded by:

0 ≤ Sf (G) ≤ Si(n)

Of course, a generic gate G : {0, 1}n → {0, 1}m is reversible (one–to–one
mapping) iff n = m and every element λf of {0, 1}n is an admissible output;
in this case the corresponding |MG(λf )| is equal to 1 which leads to Si(n)−
Sf (G) = 0, and thus also Ei(n) − Ef (G) = 0. Precisely, the following
Proposition holds.
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Proposition 2.1. Let G be any n–inputs Boolean gate. Then the informa-
tion energy dissipation is bounded by

0 ≤ ∆E(G) ≤ T Si(n) = nkT loge 2

Moreover:

1. Im(G) is a singleton if and only if ∆E(G) = T Si(n);

2. the gate is reversible (one–to–one) if and only if ∆E(G) = 0.

Quoting Toffoli:

“Using invertible logic gates, it is ideally possible to build a se-
quential computer with zero internal power dissipation. The only
source of power dissipation arises outside the circuit, typically at
the input/output interface, if the user chooses to connect input
or output lines to nonreversible digital circuitry. Even in this
case, power dissipation is at most proportional to the number of
argument/result lines, rather than to the number of logic gates
(as in ordinary computers), and is thus independent of the “com-
plexity” of the function being computed. This constitutes the
central result of the present paper.” [To, 80, p. 32]

Let us stress that in the case of an n–inputs/n–outputs gate realizing the
logical function G : {0, 1}n → {0, 1}n the reversibility condition corre-
sponds to the fact that G is a permutation of the set {0, 1}n. For instance,
a 2–inputs/2–outputs reversible gate computes a permutation of the set
{00, 01, 10, 11}. Table 3 shows an example of a gate of this kind.

x1 x2 7−→ y1 y2

0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

Table 3: Example of a two–inputs/two–outputs reversible gate, i.e., a per-
mutation of the set {0, 1}2

Conservativeness. This condition is usually modelled by the prop-
erty that each output (y1, y2, . . . , yn) of the gate is a permutation of the
corresponding input (x1, x2, . . . , xn). We call this condition strict conser-
vativeness of the gate. Trivially a gate of this kind must necessarily have
the same number of input and output lines. In Table 4 an example of a
(strictly) conservative 2–inputs/2–outputs gate is presented.
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x1 x2 7−→ y1 y2

0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

Table 4: Example of a two–inputs/two–outputs conservative gate, i.e., in
each row the output pattern is a permutation of the input pattern

“Some conservative (but not reversible) circuits using comple-
mentary signal streams were discussed by von Neumann [vN, 56]
as early as 1952. More recently, Kinoshita and associates [Ki, 76]
worked out a classification of logic elements that “conserve” 0’s
and 1’s; their work, motivated by research in magnetic–bubble
circuitry, mentions the possibility of more energy–efficient com-
putation, but has apparently little concern for reversibility.”
[To, 80, p. 33]

The importance of conservativeness is further on stressed by Toffoli in
[To, 80]:

“In a conservative logic circuit, the number of 1’s, which is con-
served in the operation of the circuit, is the sum of the number
of 1’s in different parts of the circuit. Thus, this quantity is ad-
ditive, and can be shown to play a formal role analogous to that
of energy in physical systems. [...]

In conclusion, conservative logic represents a substantial step
in the development of a model of computation that adequately
reflects the basic laws of physics.” [To, 80, p. 32]

In general, in concrete devices the Boolean values 0 and 1 are realized by
impulses of energy ε0 and ε1 respectively, with 0 < ε0 < ε1.

“In the classical realization the bit, which, for example could
be imagined to be just a mechanical switch, is a system which
is designed to have two distinguishable states; there should be
a sufficiently large energy barrier between them that no spon-
taneous transition, which would evidently be detrimental, can
occur between the two states.” [BZ, 00].

In the case of a generic (non necessarily conservative) gate which com-
putes a logical function G : {0, 1}n → {0, 1}n, a transition
~x = (x1, x2, . . . , xn) → G(~x) = ~y = (y1, y2, . . . , yn) corresponding to a
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0

1

0

εnoise

Figure 2: Realization of Boolean values 0 and 1 by impulses of energy ε0
and ε1, with 0 < εnoise < ε0 < ε1

row of the tabular definition of the Boolean function produces a variation
of the internal energy whose amount is

∆U(~x, ~y) = (εy1 + εy2 + . . . + εyn) − (εx1
+ εx2

+ . . . + εxn)

Therefore, the total internal energy dissipation of G is

∆U(G) =
∑

~x∈{0,1}n

∆U(~x,G(~x))

Conservativeness of the gate G trivially implies no internal energy dissi-
pation (∆U(G) = 0).

“From the viewpoint of a physical implementation, where sig-
nals are encoded in some form of energy, each constant input en-
tails the supply of energy of predictable form, or work, and each
garbage output entails the removal of energy of unpredictable
form, or heat. In this context, a realization with fewer source
and sink lines might point the way to a physical implementation
that dissipates less energy.” [To, 80, p. 13]

Conclusions on Reversibility and Conservativeness. Up to now the
loss of energy due to irreversibility and nonconservativeness of logical prim-
itives was irrelevant compared to the energy dissipated by an electronic
device implementing logical gates. But the problems rising from an extreme
miniaturization in electronics have led to the investigation of new ways of im-
plementing circuits, borrowing the knowledge of quantum mechanics. These
new research areas introduce the possibility of reversible and conservative
computations based on reversible and conservative physical behavior, en-
couraging the definition of new computational models.

Let us stress that there are gates which are reversible but non conser-
vative (for instance, the gate of Table 3 whose transition 00 → 11 is non
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conservative) and gates which are conservative and non reversible (for in-
stance, the gate of Table 4 where both inputs 01 and 10 are mapped into
the same output 10).

A simple example of reversible and conservative two–inputs/two–outputs
gate is the realization of the exchange logical function EXC : {0, 1}2 →
{0, 1}2 whose tabular representation is given in Table 5. In each row the

x1 x2 7−→ y1 y2

0 0 0 0
0 1 1 0
1 0 0 1
1 1 1 1

Table 5: The EXC two–inputs/two–outputs reversible and conservative gate

output pair (y1, y2) is a permutation of the corresponding input pair (x1, x2),
and the map EXC is a (global) permutation of the set {0, 1}2 = {00, 01, 10, 11}.

Conditional Control Gates. Let us consider the Boolean two–inputs/two–
outputs reversible non–conservative gate G(CN) : {0, 1}2 → {0, 1}2 whose
component maps are the following:

G
(CN)
1 : {0, 1}2 → {0, 1}, G

(CN)
1 (x1, x2) := x1

G
(CN)
2 : {0, 1}2 → {0, 1}, G

(CN)
2 (x1, x2) := x1 ⊕ x2

The corresponding truth table is given in Table 6.

x1 x2 7−→ y1 y2

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Table 6: The Controlled–NOT reversible non–conservative gate

We can describe the behavior of this gate by considering the information
x1 as a control input which is left unchanged but which determines the
action of a prescribed operation on the target input x2, transforming it into
the output y2. To be precise, if the control input is 1 then the value of the
target line is negated (i.e., the gate NOT acts on x2 when x1 = 1), otherwise
it is left unchanged (i.e., the gate Id acts on x2 when x1 = 0). Formally, this
is realized by a direct connection of the first input line with the first output
line, whereas the action on the input of the second line is described by two
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maps δ
(CN)
x1

: {0, 1} → {0, 1}, where δ
(CN)
x1

= G
(CN)
2 (x1, · ) for x1 ∈ {1, 0}.

Precisely,

δ
(CN)
0 := G

(CN)
2 (0, · ) = Id and δ

(CN)
1 := G

(CN)
2 (1, · ) = NOT

The input value of the control unit x1 selects the map δ
(CN)
x1 (either the

identity or the NOT map) which acts on the input value x2 of the second line.
For this reason this gate is called the Controlled–NOT (usually abbreviated
with CNOT) gate.

0 0

x2 x2 x2 x2

1 1

Id NOT

Figure 3: The conditional action of the Controlled–NOT gate

From the general viewpoint, the Conditional Control method applies to
the cases in which the n–inputs/n–outputs gate can be divided into two
parts: a control unit and an target (also operating) unit (see Figure 4).

δa

x1

xk

Control Unit

2  −1
k

y
1 = x1

y
k = xk

y
k+1

yn

=

GateOperating Unit

x
k+1

xn(        , ... ,     )
x

k+1

xn

a δ0

δa

δ

δa

δa

Figure 4: Ideal realization of a generic Conditional Control gate: the gate
is divided into a control unit and an operating unit. The input values of
the control unit are left unchanged and select a prescribed function to be
applied to the input values of the operating unit

The control unit has in general k input and k output lines, while the
target unit has (n − k) input and (n − k) output lines. Thus any con-
figuration x1, . . . , xk, xk+1, . . . , xn can be split into two parts: the control
configuration x1, . . . , xk and the operating (sometimes also called target)
configuration xk+1, . . . , xn. Any of the 2k possible control configurations
x1, . . . , xk is labelled by the integer number a =

∑k
t=1 xt 2t−1. Moreover, 2k

functions δ0, δ1, . . . , δ2k−1 of the kind {0, 1}n−k → {0, 1}n−k are stored in
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the memory of the control unit, the function δa being bijectively associated
to the configuration labelled by the integer number a ∈ {0, . . . , 2k − 1}.

When a configuration x1, . . . , xk (labelled by a) is fed as input to the
control lines two things happen:

1. the control configuration x1, . . . , xk is returned unchanged into the
output lines of the control unit;

2. the function δa bijectively associated to the control configuration is
selected and applied to the input configuration xk+1, . . . , xn of the
operating unit, producing the output configuration δa(xk+1, . . . , xn).

We can look at a controlled gate as a finite automaton. The original space
{0, 1}n on which a controlled gate G acts can be split in the set A := {0, 1}k,
called the alphabet of the gate, and the set Q := {0, 1}n−k , called the phase
space of the gate; elements of A are symbols of the alphabet and elements of
Q are states of the gate. Hence, the gate can be represented as a mapping
G : A × Q → A × Q, associating with any symbol–state pair (~a,~s) a new
symbol-state pair G(~a,~s) := (~a, δa(~s)). Therefore, if we put the gate in
cascade with the trivial decoder (according to [To, 80]) πQ : A × Q → Q
associating with any pair (a, s) the single state πQ(a, s) := s one obtains
a deterministic finite automaton AG = 〈A, Q, δ〉 with (finite) alphabet A,
set of states Q, and next state (also transition) function δ := (πQ ◦ G) :
A × Q → Q associating with any letter–state pair (~a,~s) the “next” state
~s ′ = δ(~a,~s) := πQ(G(~a,~s)) = δa(~s).

δG

a

G

a

x
δa(x)

πQ δG(a,x) = δG
a (x)

Figure 5: Automaton generated by a controlled gate

This automaton can be equivalently described by the pair
〈Q, {δ0, δ1, . . . , δ2k−1}〉 consisting of the phase space Q = {0, 1}n−k and
the collection of 2k transformations of the phase space δa : Q → Q, for a
running in {0, 1, . . . , 2k − 1}.

Vice versa, any (finite) automaton A = 〈A, Q, δ〉 consisting of the (fi-
nite) alphabet A, the (finite) phase space Q, and the next state function δ :
A×Q → Q can be equivalently described by the pair 〈Q, {δ0, δ1, . . . , δ|A|−1}〉
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based on the phase space Q and the (finite) collection of phase space trans-
formations δa : Q → Q (for a ∈ {0, 1, . . . , |A|−1) associating with any state
~s the next state ~s ′ = δa(~s) := δ(~a,~s). This automaton generates a con-
trolled gate Gδ : A× Q → A× Q associating with the symbol–state input
pair (~a,~s) the symbol–state output pair Gδ(~a,~s) := (~a, δ(~a,~s)). Trivially, if
|A| = 2k and |Q| = 2h by a suitable binary representations of each symbol
~a and each state ~s this conditional control gate is realized by a mapping
Gδ : {0, 1}n → {0, 1}n, with n = h + k.

a a

δ

Gδ

s δ (a,s)

Figure 6: Controlled gate generated by an automaton

In conclusion, the class of Boolean conditional control gates is categori-
cally equivalent to the class of (deterministic, finite) automata in which both
the alphabet and the phase space have a power of 2 cardinality.

The reversible and conditional controlled gate generated by
a nonreversible gate. If a Boolean gate G : {0, 1}n → {0, 1}m is not
reversible, it is always possible to construct a corresponding reversible gate
Gr : {0, 1}m+n → {0, 1}m+n associating to the input pair (~a,~s) ∈ {0, 1}n ×
{0, 1}m the output pair (~a,~s ⊕ G(~a)) ∈ {0, 1}n × {0, 1}m. This gate is
reversible (and generally non conservative). Moreover it is a controlled gate,
that is a finite automaton with respect to the alphabet A = {0, 1}n, the
phase space Q = {0, 1}m, and the set of next state functions δ~a (for ~a ∈
{0, 1}n) associating to any state ~s ∈ {0, 1}m the next state ~s ′ = δ~a(~s) :=
~s⊕G(~a) ∈ {0, 1}m (see Figure 7).

How to transform a reversible and non conservative Boolean
gate into a reversible and conservative one. If Gr is a non con-
servative reversible gate, we can extend it to a conservative gate Grc by
adding some new input and output lines, and maintaining the original re-
versibility. Let {~x}1 =

∑n+m
i=1 xi be the number of ones contained into the

input ~x; analogously, let {Gr(~x)}1 =
∑n+m

i=1 Gr
i (~x) be the number of ones

contained into the corresponding output Gr(~x). We denote with E(~x) the
quantity {Gr(~x)}1−{~x}1. Clearly E(~x) is an integer number from the inter-
val [−(n+m), n+m]. It is immediately seen that if Gr would be conservative
then it would hold E(~x) = 0 for every ~x ∈ {0, 1}n+m. On the other hand,
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Figure 7: Reversible gate generated by a nonreversible one

since we have supposed that Gr is a non conservative gate, there exists an
~x ∈ {0, 1}n+m such that E(~x) 6= 0.

For the moment, let us suppose that E(~x) > 0. Then there exists an
~x′ ∈ {0, 1}n+m such that E(~x′) < 0. In fact we can express the quantity
∑

~x∈{0,1}n+m E(~x) as follows:

∑

~x∈{0,1}n+m

E(~x) =
∑

~x∈{0,1}n+m

(

{Gr(~x)}1 − {~x}1

)

=
∑

~x∈{0,1}n+m

{Gr(~x)}1 −
∑

~x∈{0,1}n+m

{x}1 (2)

Since Gr is reversible, it is a permutation over the set {0, 1}n+m. This means
that the two sums in (2) are over the same elements, and thus:

∑

~x∈{0,1}n+m

E(~x) = 0

As a consequence, if E(~x) > 0 there must exist an ~x′ ∈ {0, 1}n+m such that
E(~x′) < 0. In a completely analogous way we can show that if E(~x) < 0
then there exists an ~x′ ∈ {0, 1}n+m such that E(~x′) > 0.

For the considerations above, if we define ℓ = −min~xE(~x) and h =
max~xE(~x), and the gate Gr is non conservative, then ℓ and h are positive
integers. For any ~x ∈ {0, 1}n+m such that E(~x) < 0, let Eℓ(~x) be the string
1, . . . , 1
︸ ︷︷ ︸

−E(~x)

, 0, . . . , 0 of length ℓ (if ℓ = 0 we obtain the empty string); analo-

gously, whenever E(~x) > 0 we define Ec
h(~x) as the string 0, . . . , 0

︸ ︷︷ ︸

E(~x)

, 1, . . . , 1

of length h.
To extend Gr to a reversible and conservative gate Grc we can use ℓ

ancillae lines (that we briefly indicate with ~y) to provide −E(~x) ones when-
ever E(~x) < 0, and h ancillae lines (that we indicate with ~z) to remove E(~x)
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ones whenever E(~x) > 0. More precisely, we define Grc : {0, 1}n+m+ℓ+h →
{0, 1}n+m+ℓ+h as follows:

∀ ~x ∈ {0, 1}n+m, ∀ ~y ∈ {0, 1}ℓ, ∀ ~z ∈ {0, 1}h

Grc(~x, ~y, ~z) :=







(Gr(~x), Eℓ(~x),~1h) if E(~x) < 0, ~y = ~0 and ~z = ~1 i)

(~k,~0ℓ,~1h) if Gr(~k) = ~x, E(~k) < 0,

~y = Eℓ(~k) and ~z = ~1 ii)

(Gr(~x),~0ℓ,~1h) if E(~x) = 0, ~y = ~0 and ~z = ~1 iii)

(Gr(~x),~0ℓ, E
c
h(~x)) if E(~x) > 0, ~y = ~0 and ~z = ~1 iv)

(~k,~0ℓ,~1h) if Gr(~k) = ~x, E(~k) > 0,

~y = ~0 and ~z = Ec
h(~k) v)

(~x, ~y, ~z) otherwise vi)

A direct inspection of Grc shows that the map Gr is obtained in the first
n + m output lines when the ancillae lines ~y and ~z are fixed respectively
with the input values ~0 and ~1. Notice that the rules ii) and v) are designed
in order to provide the inverses of the tuples produced by rules i) and iv),
respectively. On the other hand, the tuples produced by rule iii) can be
inverted by computing the inverse of the first n + m components through
the inverse of the map Gr. Finally, rule vi) makes the gate behave as the
identity when none of the previous rules are satisfied: as a consequence, the
corresponding tuples can be trivially inverted. Summarizing, the inverse of
Grc is obtained by substituting rule iii) in the analytic expression of Grc

with the following:

(~k,~0ℓ,~1h) if Gr(~k) = ~x, E(~k) = 0, ~y = ~0 and ~z = ~1

Reconstruction of the original gate from the reversible and conser-
vative induced gate. Following Toffoli ([To, 80]), the original arbitrary
Boolean gate G can be recovered by means of the just constructed reversible
and conservative gate Grc in the following way.

In more general mathematical parlance, a realization of a func-
tion G consists in a new function Grc together with two mappings
µ and πQ (respectively, the encoder and the decoder) such that
G = πQ ◦Grc ◦µ. In this context, our plan is to obtain a realiza-
tion πQ ◦Grc ◦ µ of G such that Grc is invertible [i.e., reversible]
and conservative, and the mappings µ and πQ are essentially
independent of G and contain as little “computing power” as
possible.

More precisely, though the form of µ and πQ must obviously
reflect the number of input and output components of G, and
thus the format of G’s truth table, we want them to be otherwise
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independent of the particular contents of such truth table as G
is made to range over the set of all combinatorial functions.

In the present case, the encoder is realized by the mapping µ : {0, 1}n →
{0, 1}n+m+ℓ+h associating to the input ~a ∈ {0, 1}n the output 4–tuple
µ(~a) := (~a,~0m,~0ℓ,~1h) ∈ {0, 1}n ×{0, 1}m ×{0, 1}ℓ ×{0, 1}h (independent of
the particular form of G). The decoder is realized by the projection mapping
πQ : A×Q × {0, 1}ℓ × {0, 1}h → Q. Trivially, for any ~a ∈ {0, 1}n one gets
(πQ ◦Grc ◦ µ)(~a) = (πQ ◦Grc)(~a,~0m,~0ℓ,~1h) = πQ(~a,G(~a), ~y, ~z) = G(~a).

µ

0

Gr πQ

a

+0 (a)G
(a)G

G

a a

Figure 8: Original nonreversible gate obtained by its reversible extension

The FAN–OUT gate as a cloning procedure induced by the
Controlled–Not gate. A very important connective in reversible com-
puting is FAN–OUT : L → L2, defined by the law FAN–OUT(x) = (x, x).
In other words, the FAN–OUT function simply clones the input value. When
dealing with classical circuits, the FAN–OUT function is implemented by
sticking two output wires to an existing input wire. The Controlled–NOT
gate (see Table 6) provides a possible realization of the FAN–OUT function
by a two–inputs/two–outputs reversible gate. Indeed, if the operating line is
fixed with the input value x2 = 0, then the control input is cloned realizing
in this way a classical FAN–OUT (see Figure 9).

0 0 1 1

0 0

Id NOT0 1

Figure 9: Realization of the FAN–OUT function with the Controlled–NOT
gate

3 The Conservative and Reversible Fredkin Gate

(F1) One of the paradigmatic conservative and reversible primitive is the

16



Fredkin gate, a three–inputs/three–outputs gate that computes the following
function FG : {0, 1}3 → {0, 1}3:

y1 = x1

y2 = (x1 ∧ x2) ∨ (¬x1 ∧ x3)

y3 = (¬x1 ∧ x2) ∨ (x1 ∧ x3)

In tabular notation it is presented in Table 7.

x1 x2 x3 7−→ y1 y2 y3

0 0 0 0 0 0
0 0 1 0 1 0
0 1 0 0 0 1
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

Table 7: The Fredkin reversible and conservative gate

(F2) The Fredkin gate is self–reversible, i.e., the inverse of function
FG is FG itself. This is a particularly desirable feature for the construction
of the quantum version of a reversible circuit, since the part of the circuit
which “undoes” the computation (in order to disentangle input/output lines
and the so–called ancillae lines) is thus completely symmetrical to the part
which computes the output value.

Note that self–reversibility implies the reversibility property. The con-
verse is not generally true: if f : Lm → Lm is reversible then it is a per-
mutation of Lm and, as it is well known, in general the composition of a
permutation with itself does not give the identity as a result. In particular,
it is immediate to see that only those permutations which are expressible
as the composition of disjoint cycles of length 2 (and fixed points) are self–
reversible.

(F3) Looking at Table 7, it follows immediately that the Fredkin gate
is conservative. This property allows for the realization of the Fredkin gate
in the framework of “billiard ball” computing, and led to the following ob-
servation concerning the physical meaning of conservativeness:

“In conservative logic, all signal processing is ultimately reduced
to conditional routing of signals. Roughly speaking, signals are
treated as unalterable objects that can be moved around in
the course of a computation but never created or destroyed.”
([FT, 82], page 227).
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The billiard ball model, developed by Fredkin and Toffoli in [FT, 82], is
an excellent example of a toy scientific model of no immediate practical
application but of large scientific impact. Balls of radius 1 travel on a unit
grid in two directions. The direction of their movements can be changed
either by an elastic collision, or by a reflection at a “mirror”. Using this
model it is possible to implement a switch gate; the Toffoli gate can then be
implemented with four of them.

(F4) If the first of the inputs is set to 0 then the Fredkin gate exchanges
the second input with the third one, whereas if the first input is set to 1 it
returns all the inputs unchanged, as it is shown in Figure 10.

0 0 1 1

a
EXC

b

b

a
Id

a a

b b

Figure 10: The Fredkin gate as a conditional switch

Therefore, the Fredkin gate is a Conditional Control gate with x1 as
control input, δ0 =EXC and δ1 =Id.

(F5) From the Fredkin gate we can obtain some classical unary and
binary connectives by setting respectively two and one of the input lines to
a constant value (that is, either 0 or 1). For example,

• by fixing x3 = 0 in the input, the second output becomes y2 = (x1 ∧
x2) ∨ (¬x1 ∧ 0) = x1 ∧ x2, i.e., y2 gives the logical AND between x1
and x2. In this case the outputs y1 and y3 are called garbage;

• by fixing x2 = 1 and x3 = 0 the input x1 is negated in the output
y3 = ¬x1, with garbage y1 and y2. In this way we realize the NOT
connective.

(F6) Differently from the realization of the FAN–OUT gate by the
reversible nonconservative Controlled–NOT gate, it is easy to see that it
is impossible to realize the FAN–OUT function by a conservative two–
inputs/two–outputs gate. Such a realization requires at least three input
lines and three output lines, even when working with Boolean logic. The
Fredkin gate supplies one of these possible realizations:

• if we fix x2 = 1 and x3 = 0 then the first input is cloned in the first
and second outputs, i.e., we obtain the FAN–OUT function, with the
output y3 as garbage.

Summarizing, the Fredkin gate has the following properties:
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F-1 ) it is a three–inputs/three–outputs gate, where each input/output
assumes values in {0, 1};

F-2 ) it is reversible, that is a bijective mapping from {0, 1}3 onto
{0, 1}3;

F-2’) it is self–reversible, that is FG2 = FG ◦ FG = Id (the identity
function on {0, 1}3);

F-3 ) it is conservative, in the sense that the number of 0 and 1 in the
input is the same as in the output;

F-4 ) it is a controlled gate, that is x1 is a control input which is left
unchanged but which determines a transformation of the target
input (x2, x3) into the output (y2, y3) by the gate EXC if x1 = 0
and by the identity gate if x1 = 1;

F-5 ) it is a universal primitive, that is, from the configurations of the
gate we can obtain the classical logical connectives AND, OR, IM-
PLICATION, NOT which constitute a “functionally complete”
set of connectives for the Boolean logic, that is a set of primi-
tive truth functions with which all the possible truth functions
(i.e., all the functions {0, 1}n → {0, 1} for n ranging in N) can be
realized;

F-6 ) it realizes the FAN–OUT connective, which plays a central role
in reversible computations since it clones a given input signal.

Our aim is to extend this computational Boolean framework based on
the Fredkin gate to include the main features of many–valued logics, when
a finite number of truth values are involved. In the next section we give a
brief summary of the main aspects of this subject.

4 Many–valued Logics

The simplest extension of classical two–valued logic consists in the intro-
duction of a third “intermediate”, or “neutral” or “indeterminate” value.
 Lukasiewicz developed this idea in [ Lu, 20]. In such paper he introduced a
third truth value to take into account propositions which are neither true
nor false, defining in this way a three–valued logic. This logic was then
extended to deal with d truth values as well as with an infinite number of
truth values, in particular the ℵ0 and ℵ1 cardinalities.

Let us begin with a brief exposition of the main features of the many–
valued logics of  Lukasiewicz; the definition and the properties of the opera-
tors are the same for the finite and the infinite–valued cases, unless otherwise
stated.

Technically speaking, truth values of a logical system are defined just as
syntactic labels, with no numerical meaning. In a subsequent step, it is pos-
sible to give an interpretation of the logical system in terms of an algebraic
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structure; only during such a process, the truth values are associated with
elements of the structure, which can be more abstract mathematical objects
than real or integer numbers. Indeed, all the notions here exposed can be
restated in such a formal way; however, for our purposes it will be conve-
nient to deal with the following sets of truth values, treated as numerical
sets equipped with the standard total order relation induced by R:

• Ld =
{

0, 1
d−1 ,

2
d−1 , . . . ,

d−2
d−1 , 1

}

, with d ≥ 2, for d–valued logics;

• Lℵ0
= [0, 1] ∩ Q, that is the set of rational in the interval [0, 1], for

infinite–valued logics with ℵ0 truth values;

• Lℵ1
= [0, 1], that is the set of real values in the interval [0, 1], for

infinite–valued logics with ℵ1 truth values.

The numbers of Lα, α ∈ {d,ℵ0,ℵ1} are interpreted, after  Lukasiewicz, as
the possible truth values which the logical sentences can be assigned to.
As usually done in literature, the values 1 and 0 denote respectively truth
and falseness, whereas all the other values are used to indicate different
degrees of indefiniteness. With the introduction of the new truth values,
the propositional connectives of Boolean logic must be redefined. Accord-
ingly, many–valued logics represent strong generalizations of bivalent (i.e.,
classical) logic.

4.1  Lukasiewicz approach

The  Lukasiewicz system on the totally ordered numerical set of truth val-
ues Lα, with α ∈ {d,ℵ0,ℵ1}, considers as primitive the implication (→L)
connective, which is defined by the following equation:

x →L y : = min{1, 1 − x + y} ( Lukasiewicz implication)

=

{

1 − x + y if y < x

1 otherwise

In the system 〈Lα,→L 〉 a negation (¬) connective is derived according to
the rule:

¬x : = x →L 0 (diametrical negation)

= 1 − x

Using these two connectives  Lukasiewicz defines some other derived ones as:

x ∨ y := (x →L y) →L y ( Lukasiewicz disjunction)

x ∧ y := ¬(¬x ∨ ¬y) ( Lukasiewicz conjunction)

x ↔L y := (x →L y) ∧ (y →L x) ( Lukasiewicz equivalence)
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the former two being the algebraic realizations of the logical connectives OR
and AND respectively.

From these definitions it is easy to see that the following equalities hold:

x ∨ y = max{x, y} and x ∧ y = min{x, y}

where max and min are the lub and glb of the pair of numbers x, y with
respect to the standard total order of Lα, which can also be expressed in
the form:

x ≤ y iff x →L y = 1

One important feature of all many–valued connectives now presented is
that they are equal to the analogous Boolean connectives when only 0 or 1
are involved.

Zawirski in [Za, 34] for the first time considered as primitive connec-
tive on Lα (instead of the  Lukasiewicz implication) the binary operation of
truncated sum defined as follows:

x⊕ y : = min{1, x + y} (truncated sum)

=

{

x + y if x + y < 1

1 otherwise

The two systems based on the numerical set of truth values Lα, the
 Lukasiewicz one 〈Lα,→L〉 and the Zawirski one 〈Lα,⊕〉, are mutually equiv-
alent owing to the “translation” rules:

x⊕ y = ¬x →L y and x →L y = ¬x⊕ y (3)

Furthermore, the following binary operation can be defined in the Zawirski
〈Lα,⊕〉–system:

x⊙ y : = ¬(¬x⊕ ¬y) = max{0, x + y − 1}

=

{

x + y − 1 if 1 < x + y

0 otherwise

In some semantical interpretations, ⊕ and ⊙ are considered as algebraic
realizations of the logical connectives VEL and ET respectively, and they
are also called the disjunction and conjunction MV–connectives.

Let us stress that on the basis either of the  Lukasiewicz system or of
the Zawirski one it is always possible to derive a structure 〈Lα,∧,∨,¬〉 of
distributive lattice with a nonstandard negation. The lattice join and meet
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operations, algebraic realizations of the logical connectives OR and AND,
can be defined in the two systems respectively as follows:

x ∨ y = max{x, y} = (x⊙ ¬y) ⊕ y = ¬(¬x⊕ y) ⊕ y (4a)

x ∧ y = min{x, y} = (x⊕ ¬y) ⊙ y = ¬[¬(x⊕ ¬y) ⊕¬y] (4b)

Note that the excluded middle law holds in the case of the VEL connective
(∀x ∈ Lα: x ⊕ ¬x = 1), whereas in general this law does not hold for the
OR connective (∀x ∈ Lα \ {0, 1}: x ∨ ¬x 6= 1). A similar result is verified
with respect to the non–contradiction law (∀x ∈ Lα: x ⊙ ¬x = 0 and
∀x ∈ Lα \ {0, 1}: x ∧ ¬x 6= 0). However, the desirable law x ∨ x →L x = 1
holds relatively to the OR connective, but for every x 6= 0, 1 one has that
x ⊕ x →L x 6= 1. In the Zawirski context, the standard ordering on Lα

assumes now the form:

x ≤ y iff ¬x⊕ y = 1

Two modal connectives, possibility (✸) and necessity (✷), can be intro-
duced on Lα according to the following definitions:

✸x =

{

0 if x = 0

1 if x 6= 0
(possibility)

✷x =

{

0 if x 6= 1

1 if x = 1
(necessity)

Note that these two modal connectives are mutually interdefinable, owing
to the following relationships:

✷x = ¬✸¬x and ✸x = ¬✷¬x (5)

Moreover, the restriction of both connectives to the Boolean values coincides
with the identity function (these modalities are meaningless in the Boolean
environment).

Besides the diametrical negation (¬) two other negation connectives can
be defined as many–valued extensions of the standard Boolean negation:
the intuitionistic negation (also impossibility ∼) and the anti–intuitionistic
negation (also contingency ♭) defined as:

∼ x := ¬✸x (impossibility)

=

{

1 if x = 0

0 if x 6= 0
(intuitionistic negation)
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and

♭x := ¬✷x (contingency)

=

{

1 if x 6= 1

0 if x = 1
(anti–intuitionistic negation)

In agreement with the intuitionistic propositional logic of Brouwer and Heyt-
ing, the intuitionistic negation “impossibility” fails the excluded middle law
(∀x ∈ Lα \ {0, 1}: x∨ ∼ x = x⊕ ∼ x = x 6= 1), but does not fail the law
of noncontradiction (∀x ∈ Lα: x∧ ∼ x = x⊙ ∼ x = 0). Note that the
restriction of the three negations to the two Boolean values collapses in a
unique (standard) negation (∀x ∈ {0, 1}: ¬x =∼ x = ♭x = 1− x). Trivially,
also these two negation connectives are mutually interdefinable according
to:

♭x = ¬ ∼ ¬x and ∼ x = ¬♭¬x (6)

The intuitionistic negation is a primitive one, together with the diametri-
cal negation, in BZ–lattice structures, of which the system 〈Lα,∧,∨,¬,∼〉 is
a standard model. Also in this case, the modal connectives can be recovered
from the two involved negations according to the following:

✷x = ¬ ∼ x and ✸x =∼ ¬x (7)

For further information on BZ structures see [CN, 89].
In conclusion, in the algebraic approach to many–valued logics we have

considered as primitive two mutually interdefinable (according to (3)) sys-
tems, the  Lukasiewicz one 〈Lα,→L〉 and the Zawirski one 〈Lα,⊕〉. An new
system of distributive lattice with diametrical negation 〈Lα,∧,∨,¬〉 can al-
ways be induced. Moreover, the set of unary connectives {✷,✸,∼, ♭} (two
modalities and two negations) are mutually interdefinable making use of the
diametrical negation (¬) according to the following diagram:

✸OO

¬( · )

��

oo ¬( · )¬ // ✷OO

¬( · )
��

∼ oo
¬( · )¬

// ♭

4.1.1 The finite–valued case

In the three–valued logic L3 one has:

✸x = ¬x →L x = x⊕ x

✷x = ¬(x →L ¬x) = ¬(¬x⊕ ¬x) = x⊙ x
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Let us stress that in the three valued case L3 the above definition of “it
is possible that x” coincides with “if not x then x” (✸x = ¬x →L x);
in [ Lu, 30]  Lukasiewicz mentioned that Tarski, a student of him, in 1921
proposed this as the definition of possibility. Therefore in this particular case
we can derive the modal connectives from the system 〈L3,→L〉 (equivalently,
〈L3,⊕〉) which is thus sufficient to generate all the connectives introduced
above. In particular, the two BZ negations have the form ∼ x = ¬(¬x →L

x) = ¬(x⊕ x) and ♭x = x →L ¬x = ¬x⊕ ¬x.
In the more general finite d–valued case the link between possibility and

VEL connectives is extended by the following identity which is true for every
x ∈ Ld:

✸x := x⊕ x⊕ . . . ⊕ x
︸ ︷︷ ︸

(d−1)−times

Thus owing to this result and the relation

✷x = ¬✸¬x = x⊙ x⊙ . . .⊙ x
︸ ︷︷ ︸

(d−1)−times

also in any finite–valued case the modal connectives of possibility and ne-
cessity can be both derived inside the system 〈Ld,⊕〉.

We observe that, for infinite–valued logics, it is not possible to derive
from →L and ¬ the modal operators ✷ and ✸ and the intuitionistic and
anti–intuitionistic negations ∼ and ♭ as we have just done for the finite–
valued case. In fact, in [Mc, 51] it has been proved the following theorem.

Theorem 4.1. Let L ∈ {Lℵ0
, Lℵ1

}. A function f : Lm → L is expressible
as a formula containing only the operators →L and ¬ if and only if it is
continuous.

4.2 Gödel approach

The extension of classical connectives to many–valued logics is not unique.
For example, different types of implications have been defined in literature;
one of these, which is often used, is the implication →G defined by Gödel:

x →G y :=

{

y if y < x

1 otherwise
(Gödel implication)

Note that, if the use of the constant value 0 is allowed, we can obtain the
intuitionistic negation as ∼ x = x →G 0. Moreover, in the three–valued case
Gödel’s implication differs from →L only for the input pair (12 , 0): in fact,
1
2 →L 0 = 1

2 whereas 1
2 →G 0 = 0.
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5 Functional Completeness of Finite–valued Cal-
culus

We face now the problem whether any conceivable function f : Ln
d → Ld, for

n ranging in N, is constructible using only the operators ¬ and →L, i.e., the
functional completeness problem on Ld of the pair of connectives {¬,→L}.

The following result, originally due to Jerzy S lupecki (see, for example,
[RT, 52]), gives a negative answer.

Theorem 5.1. The d–valued (with d ≥ 3) propositional calculus of  Lukasie-
wicz based on operators ¬ and →L is not functionally complete. That is,
there exist functions f : Ln

d → Ld which are not expressible as a composition
of the logical functions ¬ and →L (from which we stress that it is possible
to derive the logical functions ∨, ∧, ⊕, ⊙, ✸, ✷, ♭, ∼, ↔L).

Proof. The result follows directly from the fact that every function built up
using only ¬ and →L gives a result in {0, 1} when its arguments are assigned
with values in this set. As a consequence we cannot represent, for example,
the constant function which is identically equal to 1

d−1 .

To make the d–valued sentential calculus functionally complete S lupecki
introduced a new unary connective, called tertium, which is defined by the
constant function T : Ld → Ld:

∀x ∈ Ld T (x) :=
1

d− 1

In fact, the following theorem holds.

Theorem 5.2. The d–valued (with d ≥ 2) propositional calculus of  Lukasie-
wicz is functionally complete with respect to the set of primitive truth func-
tions {¬,→L,T }.

The proof of this theorem is constructive and uses the following d func-
tions:

jk : Ld → Ld, for k ∈ Ld

defined as:

jk(x) =

{

1 if x = k

0 otherwise

We do not give here the proof of the theorem above mentioned due to its
length. The interested reader can find it, for example, in [RT, 52]. Observe
that functions jk can also be defined as:

jk(x) = ✷(x ↔L k) (8)
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where the constant values k ∈ Ld are directly involved (besides the con-
nectives ✷ and ↔L, both definable using the pair {¬,→L}). Using these
functions {jk : Ld → Ld | k ∈ Ld} it is immediate to obtain the tertium
function T as follows:

T (x) =
1

d− 1

∑

k∈Ld

jk(x) (9)

On the other hand, the d–valued (d ≥ 3) propositional calculus of
 Lukasiewicz with the tertium function {¬,→L,T } is functionally complete,
and thus owing to (8) and (9) also 〈Ld,→L〉 is functionally complete (recall
that ¬x = x →L 0) according to the following definition:

• A collection of primitive truth functions Ln
d → Ld and a set of con-

stants from Ld is universal or (according to [RT, 52]) functionally com-
plete if and only if all possible truth functions Ln

d → Ld, with n ∈ N,
are constructible by combining these primitive functions and assigned
constants.

This means that it is functionally equivalent to assume the tertium func-
tion or the presence of constants to the original set of primitives {¬,→L}.

5.1 Generalization of the disjunctive normal form (GDNF)

Let us consider the following function from L2n
d to Ld:

M(x1, x2, . . . , xn, c1, c2, . . . , cn) :=

n∧

i=1

jci(xi)

It is easily verified that for every possible choice of x1, x2, . . . , xn, c1, c2, . . . , cn
in Ld it holds:

M(x1, x2, . . . , xn, c1, c2, . . . , cn) =

{

1 if ∀ i ∈ {1, . . . , n}, xi = ci

0 otherwise

We can thus state the following theorem.

Theorem 5.3 (Generalization of the disjunctive normal form). Let
f : Ln

d → Ld be a function. For every choice of (x1, . . . , xn) in Ln
d it holds:

f(x1, . . . , xn) =
∨

f(c1,... ,cn)6=0

[M(x1, . . . , xn, c1, . . . , cn) ∧ f(c1, . . . , cn)]

(10)

Another generalization of the disjunctive normal form which is analogous
to the one presented here can be found in [Ur, 86](Lemma 2.9).
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Notice that if we let E = {0, 1} then expression (10) can be expanded
as:

f(x1, . . . , xn) =
∨

f(c1,... ,cn)6∈E

[M(x1, . . . , xn, c1, . . . , cn) ∧ f(c1, . . . , cn)] ∨

∨

f(c1,... ,cn)=1

M(x1, . . . , xn, c1, . . . , cn)

and eventually simplified by observing that ✷(x ↔L 1) = ✷x and ✷(x ↔L

0) =∼ x.

5.2 Generalization of the conjunctive normal form (GCNF)

Analogously to the disjunctive form, we introduce the function S : L2n
d → Ld

defined as:

S(x1, . . . , xn, c1, . . . , cn) :=

n∨

i=1

hci(xi)

where

hk(x) := ♭(x ↔L k) for k ∈ Ld

The following lemma holds.

Lemma 5.1. For every choice of x1, . . . , xn, c1, . . . , cn in Ld it holds:

S(x1, . . . , xn, c1, . . . , cn) =

{

1 if ∃ i ∈ {1, . . . , n} s.t. xi 6= ci

0 if ∀ i ∈ {1, . . . , n}, xi = ci

Proof. Since hk(x) = ♭(x ↔L k) = ¬✷(x ↔L k) = ¬jk(x), it holds:

hk(x) =

{

1 if x 6= k

0 if x = k

The proof of the claim follows immediately from the fact that S is a dis-
junction of the functions hk(x).

We can thus state the following theorem.

Theorem 5.4 (Generalization of the conjunctive normal form). Let
f : Ln

d → Ld be a function. For every choice of (x1, . . . , xn) in Ln
d it holds:

f(x1, . . . , xn) =
∧

f(c1,... ,cn)6=1

[S(x1, . . . , xn, c1, . . . , cn) ∨ f(c1, . . . , cn)] (11)
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Notice that if we let E = {0, 1} then expression (11) can be expanded
as:

f(x1, . . . , xn) =
∧

f(c1,... ,cn)6∈E

[S(x1, . . . , xn, c1, . . . , cn) ∨ f(c1, . . . , cn)] ∧

∧

f(c1,... ,cn)=0

S(x1, . . . , xn, c1, . . . , cn)

and eventually simplified by observing that ♭(x ↔L 1) = ♭x and ♭(x ↔L

0) = ✸x.

5.3 Clay’s representation

Another way to represent the functions from Ln
d to Ld is given in the fol-

lowing theorem, taken from [Cl, 62].

Theorem 5.5. Let f : Ln
d → Ld be a function. For every choice of (x1, . . . , xn)

in Ln
d it holds:

f(x1, . . . , xn) =
∧

f(c1,... ,cn)6=1

[M(x1, . . . , xn, c1, . . . , cn) →L f(c1, . . . , cn)]

(12)

Proof. It suffices to notice that, from the definition of M , for every choice
of x1, . . . , xn, c1, . . . , cn and y in Ld it holds:

M(x1, . . . , xn, c1, . . . , cn) →L y =

{

y if ∀ i ∈ {1, . . . , n}, xi = ci

1 otherwise

Since x →L 0 = ¬x, expression (12) can be simplified as:

f(x1, . . . , xn) =
∧

f(c1,... ,cn)6∈E

[M(x1, . . . , xn, c1, . . . , cn) →L f(c1, . . . , cn)] ∧

∧

f(c1,... ,cn)=0

¬M(x1, . . . , xn, c1, . . . , cn)

or, alternatively, as:

f(x1, . . . , xn) =
∧

f(c1,... ,cn)6∈E

[M(x1, . . . , xn, c1, . . . , cn) →L f(c1, . . . , cn)] ∧

∧

f(c1,... ,cn)=0

S(x1, . . . , xn, c1, . . . , cn)
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6 Finite–valued Conservative Logics

In this section we extend conservative logic to include the main features
of d–valued logics, with a particular attention towards three–valued logics.
Since conservative logic is based on the Fredkin gate, we will extend it in
order to deal with d possible truth values on its input and output lines.

First of all we restrict our attention to gates having the same number
of input and output lines. For brevity, we denote by (n, d)–gate an n–
inputs/n–outputs gate whose input and output lines may assume values
from Ld. Thus, an (n, d)–gate computes a function f : Ln

d → Ln
d , where

Ln
d = Ld × . . .× Ld

︸ ︷︷ ︸

n times

. Any finite sequence (string) (x1, x2, . . . , xn) ∈ Ln
d is

called a configuration or pattern of size n.
Reversibility The extension of the reversibility property is simple: an

(n, d)–gate is reversible if and only if the function computed by the gate is
one–to–one (or, in other words, a permutation of the set Ln

d ). A similar
argument holds for self–reversibility : a gate is self–reversible if and only if
the corresponding function applied twice is the identity function. As noted
above, this happens if and only if the function is a permutation which can be
expressed as the composition of disjoint cycles of length two (plus, possibly,
some fixed points).

Conservativeness More complex is the case of conservativeness. A
gate is strictly conservative if and only if each output configuration is a per-
mutation of the input one. This definition reflects perfectly the observation
made by Fredkin and Toffoli in [FT, 82], cited above on page 17.

Notice that the permutation of the input values is not fixed, but varies
depending on the pattern of values presented to the input lines; an exam-
ple can be seen in Figure 10, where two possible permutations are chosen
according to the value fed to the first input of the Fredkin gate.

Clearly the two–valued Fredkin gate is strictly conservative, and in our
first efforts to make an extension of this gate to the finite–valued case
we tried to preserve this property. Unfortunately, if the number n of in-
put/output lines of a strictly conservative gate for a d–valued logic is not
greater than d, then it is impossible to realize in its configurations the FAN–
OUT function, as stated in the following proposition.

Proposition 6.1. If n and d are two integer numbers such that 0 < n ≤
d then there is no function f : Ln

d → Ln
d which corresponds to a strictly

conservative gate realizing in its configurations the FAN–OUT gate.

Proof. If n = 1 then the gate has one output, and thus it cannot realize
the FAN–OUT function. So, assume that 1 < n ≤ d, and that there ex-
ists a strictly conservative gate realizing FAN–OUT and corresponding to
a function f : Ln

d → Ln
d . In the gate configuration realizing the FAN–OUT

function, one input line is fed with a variable value and n − 1 input lines
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are fed with constant values. Since n − 1 ≤ d − 1, there exists at least
one truth value ℓ ∈ Ld which does not appear in the fixed constant input
values. When the variable value of the input is set to ℓ, both the following
properties should hold:

• the output configuration should be a permutation of the input config-
uration (since the gate is strictly conservative), and

• ℓ should appear twice in the output values (as the gate realizes the
FAN–OUT function),

which is clearly impossible.

If the condition n ≤ d in Proposition 6.1 is relaxed, then it is not dif-
ficult to see that FAN–OUT can be realized through gates which are both
reversible and strictly conservative: see, for example, the Fredkin gate, where
n = 3 and d = 2.

Weak Conservativeness An alternative approach is to weaken the
conservativeness property in order to obtain some reasonable gate that com-
putes the FAN–OUT function. Thus we say that a gate is weakly conserva-
tive if and only if the sum of output values is always equal to the sum of
input values. It is clear that if a gate is strictly conservative then it is also
weakly conservative, while the converse is not generally true.

For example, if the input of a gate is (λ, 0, 1) and the corresponding
output is (0, 1, λ) then the gate is both strictly conservative and weakly
conservative for this input/output pair, regardless of the numerical value
associated to λ ∈ Ld. On the other hand, if the corresponding output is
(λ, λ, λ) then the gate is weakly conservative if and only if we associate to λ
the numerical value 1

2 , while it is not strictly conservative, whatever is the
numerical value associated to λ. Indeed it is easy to see that, for a given
pattern of input values, the set of admissible patterns for output prescribed
by the weak conservativeness property varies depending upon the numerical
values associated to the truth values.

Assuming Ld as the set of truth values, we propose a possible physical
interpretation of the weak conservativeness property. To produce a given
pattern of input values for a gate we need some amount of energy. A “con-
servative” gate has to build the output pattern in such a way that this energy
is preserved; in other words, the output produced must have the property
that, if built from scratch, it requires the same amount of energy which was
required to build the input. The simplest way to satisfy this property is to
produce a permutation of the input values, as strictly conservative gates do.

Now, let us suppose to encode the d truth values on a physical system
which has the energy levels that are equally spaced and ordered according
to the numerical value associated to the truth values. Thus, to switch from
a given truth value, say k

d−1 , to the next, that is k+1
d−1 , we need to provide a
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fixed amount ∆E of energy. Analogously, when passing from a given truth
value to the previous, the same amount ∆E of energy is released.

For a gate to be conservative, it must build the output pattern without
requiring energy from an external source nor dissipating energy towards the
environment; this means that it can switch a line from a truth value k1

d−1

to a higher value k2
d−1 if and only if the energy needed (which is equal to

(k2 − k1) ·∆E) becomes available by lowering of the same amount the truth
value stored in some other line. This is clearly equivalent to requiring that
the sum of the values on the output lines be equal to the sum of the values
on the input lines.

0 and 1–Regularity We now define two other properties of the Fred-
kin gate. They are not fundamental properties but characterize, for d–
valued logics, three–inputs/three–outputs gates that have a behavior which
is similar to the two–valued Fredkin gate. We recall that the Fredkin
gate exchanges the second input with the third one when the first input
is set to 0, and it gives as outputs the inputs unchanged when the first
input is set to 1. According to this point of view, let G : L3

d → L3
d

be the function computed by a (3, d)–gate; we say that the gate is 0–
regular if and only if G(0, x2, x3) = (0, x3, x2) for every possible choice of
x2, x3 in Ld. Analogously, we say that the gate is 1–regular if and only if
G(1, x2, x3) = (1, x2, x3) for every possible choice of x2, x3 in Ld.

Functional Completeness The last fundamental property satisfied
by the Fredkin gate is universality (or functional completeness). Indeed,
according to the definition given above, with the d valued extensions of the
Fredkin gate we will discuss in the next sections it is possible to realize two
universal sets for d–valued logics, either {¬,→L,T } or {¬,⊕,T }.

Conclusions In the next sections we look for universal gates for d–
valued logics which preserve as many of the following properties as possible:

F-1 ) it is a (3, d)–gate, that is a three–inputs/three–outputs gate where
each input and each output line may assume one of the values in

Ld =
{

0, 1
d−1 ,

2
d−1 , . . . ,

d−2
d−1 , 1

}

;

F-2 ) it is reversible;

F-2’) it is self–reversible;

F-3 ) it is weakly–conservative;

F-3’) it is strictly–conservative;

F-4 ) it is a universal gate, that is, from the configurations of the gate
a universal set of connectives is obtained, included FAN–OUT;

F-5 ) it is 0–regular;

F-6 ) it is 1–regular;

F-7 ) y1 = x1, that is, the first output is always equal to the first input
(conditional control condition);
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F-8 ) when feeded with Boolean input triples it behaves as the classical
Fredkin gate.

Properties F-5)–F-8) are not essential from the point of view of conservative
logic, but nonetheless are desirable, since they [characterize] the Fredkin
gate.

7 Three–valued Universal Gates

In order to devise a universal gate for a three–valued logic, the first idea
that comes to mind is to take the equations which define the input/output
behavior of the Fredkin gate and to interpret ¬, ∨ and ∧ respectively as the
 Lukasiewicz negation, disjunction and conjunction. However this approach
does not work, as the mapping from L3

3 to L3
3 thus obtained is not even a

bijection. As a consequence, we have to look for gates which are universal
and preserve as many properties from F-1) – F-8) as possible.

The next table presents all the binary three–valued connectives that we
are interested to realize with our three–valued universal gates: the  Lukasie-
wicz implication →L, the Gödel implication →G, the  Lukasiewicz disjunction
∨, the  Lukasiewicz conjunction ∧, the VEL–disjunction ⊕ and the ET–
conjunction ⊙:

x y →L →G ∧ ∨ ⊕ ⊙

0 0 1 1 0 0 0 0

0 1
2 1 1 0 1

2
1
2 0

0 1 1 1 0 1 1 0
1
2 0 1

2 0 0 1
2

1
2 0

1
2

1
2 1 1 1

2
1
2 1 0

1
2 1 1 1 1

2 1 1 1
2

1 0 0 0 0 1 1 0

1 1
2

1
2

1
2

1
2 1 1 1

2

1 1 1 1 1 1 1 1

The unary connectives here considered are, besides the trivial identity
connective Id, the negation connectives ¬, ∼, ♭ and the modal connectives
✸ and ✷ depicted in the following table:

x ¬ ∼ ♭ ✸ ✷

0 1 1 1 0 0
1
2

1
2 0 1 1 0

1 0 0 0 1 1
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It is important to stress that besides unary and binary connectives we
must consider the FAN–OUT gate which plays a fundamental role for re-
versible computations. Due to Proposition 6.1, the presence of this gate
forbids the strict conservativeness of a universal (3, 3)–gate.

The first three–valued gate that we introduce (F1) allows to obtain from
its configurations all the main connectives of the  Lukasiewicz logic 〈L3,→L〉,
as well as the Gödel implication. The truth table of the gate is given in Table
8; as it can be seen, the gate is self–reversible (and thus reversible), 0–regular
and 1–regular. Moreover, it satisfies properties F-7) and F-8).

x1x2x3 7→ y1 y2 y3

0 0 0 0 0 0

0 0 1
2 0 1

2 0

0 0 1 0 1 0

0 1
2 0 0 0 1

2

0 1
2

1
2 0 1

2
1
2

0 1
2 1 0 1 1

2

0 1 0 0 0 1

0 1 1
2 0 1

2 1

0 1 1 0 1 1

x1x2x3 7→ y1 y2 y3
1
2 0 0 1

2 0 0
1
2 0 1

2
1
2 0 1

2
1
2 0 1 1

2 0 1
1
2

1
2 0 1

2
1
2 0

1
2

1
2

1
2 ** 1

2 1 0
1
2

1
2 1 1

2 1 1
2

1
2 1 0 ** 1

2
1
2

1
2

1
2 1 1

2
1
2

1
2 1

1
2 1 1 1

2 1 1

x1x2x3 7→ y1 y2 y3

1 0 0 1 0 0

1 0 1
2 1 0 1

2

1 0 1 1 0 1

1 1
2 0 1 1

2 0

1 1
2

1
2 1 1

2
1
2

1 1
2 1 1 1

2 1

1 1 0 1 1 0

1 1 1
2 1 1 1

2

1 1 1 1 1 1

Table 8: Truth table of gate F1

Table 9 shows all the relevant connectives which can be obtained from
the gate by fixing one or two of its input lines with constant values from
L3; Pr1 and Pr2 are the projectors connectives defined as Pr1(x1, x2) = x1
and Pr2(x1, x2) = x2 respectively. We can observe that this gate realizes
two negations (the diametrical and the intuitionistic one) and both the
 Lukasiewicz and Gödel implications introduced in Section 4; as a conse-
quence, the universality property F-4) is satisfied for both kinds of three–
valued logic. On the other hand, the necessity modal connective, the anti–
intuitionistic negation and both the binary MV–connectives are not realized.

Due to Proposition 6.1, gate F1 cannot be strictly conservative, as it
realizes the FAN–OUT function. More precisely, strict conservativeness is
lost in the two table rows marked with (∗∗). However, for these rows the gate
is weakly conservative, and therefore the entire gate is weakly conservative.

The next two gates that we introduce are part of the results of an ex-
haustive search — performed with a program written on purpose — over all
three–valued gates having the following properties:

F-1 ) it is a (3, 3)–gate;

F-2’) it is self–reversible;
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Connective Inputs Constants Outputs Garbage

FAN–OUT x1 x2 = 1, x3 = 0 y1, y2 y3
Pr1 x2, x3 x1 = 0 y3 y1, y2
Pr2 x2, x3 x1 = 0 y2 y1, y3
→L x1, x3 x2 = 1 y3 y1, y2
→G x1, x2 x3 = 1 y2 y1, y3
∨ x1, x3 x2 = 1 y2 y1, y3
∧ x1, x2 x3 = 0 y2 y1, y3
Id x1 x2 = 0, x3 = 0 y1 y2, y3
¬ x1 x2 = 1, x3 = 0 y3 y1, y2
∼ x1 x2 = 0, x3 = 1 y2 y1, y3
✸ x1 x2 = 0, x3 = 1 y3 y1, y2

Table 9: The operators obtained through gate F1

F-3 ) it is weakly conservative;

F-8 ) when feeded with Boolean input triples it behaves as the Fredkin
gate.

The first of the two obtained gates (F2) is substantially equivalent to F1;
its truth table is given in Table 10. As we can see, this gate differs from F1

only for the input triples 0 1
2

1
2 and 1

2 0 1
2 . It is only 1–regular and it has not

the property F-7).

x1x2x3 7→ y1 y2 y3

0 0 0 0 0 0

0 0 1
2 0 1

2 0

0 0 1 0 1 0

0 1
2 0 0 0 1

2

0 1
2

1
2

1
2 0 1

2

0 1
2 1 0 1 1

2

0 1 0 0 0 1

0 1 1
2 0 1

2 1

0 1 1 0 1 1

x1x2x3 7→ y1 y2 y3
1
2 0 0 1

2 0 0
1
2 0 1

2 0 1
2

1
2

1
2 0 1 1

2 0 1
1
2

1
2 0 1

2
1
2 0

1
2

1
2

1
2

1
2 1 0

1
2

1
2 1 1

2 1 1
2

1
2 1 0 1

2
1
2

1
2

1
2 1 1

2
1
2

1
2 1

1
2 1 1 1

2 1 1

x1x2x3 7→ y1 y2 y3

1 0 0 1 0 0

1 0 1
2 1 0 1

2

1 0 1 1 0 1

1 1
2 0 1 1

2 0

1 1
2

1
2 1 1

2
1
2

1 1
2 1 1 1

2 1

1 1 0 1 1 0

1 1 1
2 1 1 1

2

1 1 1 1 1 1

Table 10: Truth table of gate F2

Table 11 shows all the relevant connectives which can be obtained from
the gate by fixing one or two of its input lines with constant values from
L3. We can observe that the set of connectives is the same as F1’s with
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the exception of the modal connective ✷, which is not present in the first
gate. Thus, the deficiencies with respect to gate F1 concerning the properties
enjoyed by the gate are balanced with a richer set of realized connectives.
As it does happen with gate F1, the set of connectives realized by the gate
F2 satisfies condition F-4) of universality.

Connective Inputs Constants Outputs Garbage

FAN–OUT x1 x2 = 1, x3 = 0 y1, y2 y3
Pr1 x2, x3 x1 = 1 y2 y1, y3
Pr2 x2, x3 x1 = 1 y3 y1, y2
→L x1, x3 x2 = 1 y3 y1, y2
→G x1, x2 x3 = 1 y2 y1, y3
∨ x1, x3 x2 = 1 y2 y1, y3
∧ x1, x2 x3 = 0 y2 y1, y3
Id x1 x2 = 0, x3 = 0 y1 y2, y3
¬ x1 x2 = 1, x3 = 0 y3 y1, y2
∼ x1 x2 = 0, x3 = 1 y2 y1, y3
✸ x1 x2 = 0, x3 = 1 y3 y1, y2
✷ x1 x2 = 0, x3 = 1

2 y1 y2, y3

Table 11: The operators obtained through gate F2

The last gate (F3) we introduce allows one to realize the MV–connectives
of the 3–valued case; its truth table is given in Table 12. Besides properties
F-1), F-2’), F-3) and F-8), used by our program as the criteria for the
exhaustive search, this gate satisfies property F-7) of conditional control;
moreover, it is 0–regular and 1–regular.

x1x2x3 7→ y1 y2 y3

0 0 0 0 0 0

0 0 1
2 0 1

2 0

0 0 1 0 1 0

0 1
2 0 0 0 1

2

0 1
2

1
2 0 1

2
1
2

0 1
2 1 0 1 1

2

0 1 0 0 0 1

0 1 1
2 0 1

2 1

0 1 1 0 1 1

x1x2x3 7→ y1 y2 y3
1
2 0 0 1

2 0 0
1
2 0 1

2
1
2

1
2 0

1
2 0 1 1

2 0 1
1
2

1
2 0 1

2 0 1
2

1
2

1
2

1
2

1
2 1 0

1
2

1
2 1 1

2
1
2 1

1
2 1 0 1

2
1
2

1
2

1
2 1 1

2
1
2 1 1

2
1
2 1 1 1

2 1 1

x1x2x3 7→ y1 y2 y3

1 0 0 1 0 0

1 0 1
2 1 0 1

2

1 0 1 1 0 1

1 1
2 0 1 1

2 0

1 1
2

1
2 1 1

2
1
2

1 1
2 1 1 1

2 1

1 1 0 1 1 0

1 1 1
2 1 1 1

2

1 1 1 1 1 1

Table 12: Truth table of gate F3
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Table 13 shows all the relevant connectives which can be obtained from
the gate. Given the correspondences between the operators of the 3–valued
Zawirski system 〈L3,⊕〉 and those of the  Lukasiewicz one 〈L3,→L〉 expressed
by equation (3), we have that the set of connectives realized by the gate F3

satisfies condition F-4) of universality.

Connective Inputs Constants Outputs Garbage

FAN–OUT x1 x2 = 1, x3 = 0 y1, y2 y3
Pr1 x2, x3 x1 = 0 y3 y1, y2
Pr2 x2, x3 x1 = 0 y2 y1, y3
⊕ x1, x3 x2 = 1 y2 y1, y3
⊙ x1, x2 x3 = 0 y2 y1, y3
Id x1 x2 = 0, x3 = 0 y1 y2, y3
¬ x1 x2 = 1, x3 = 0 y3 y1, y2
∼ x1 x2 = 0, x3 = 1 y2 y1, y3
✸ x1 x2 = 0, x3 = 1 y3 y1, y2
✷ x3 x1 = 1

2 , x2 = 0 y3 y1, y2

Table 13: The operators obtained through gate F3

It is worth noting that, as a consequence of Proposition 6.1, none of the
gates presented in this section is strictly conservative.

We conclude this section with the following proposition.

Proposition 7.1. For d ≥ 3, there is no (3,d)–gate satisfying properties
F-2), F-3) and F-8) which is able to realize the  Lukasiewicz connectives
(∧,∨,→L), the Gödel implication (→G) and the MV–connectives (⊕,⊙).

Proof. The only configurations that allow one to realize the classical im-
plication with a Boolean Fredkin gate are x2 = 1 and x3 = 1. Thus, if we
impose property F-8) to our (3, d)–gate we get the following two possibilities
to implement →L and →G:

Connective Inputs Constant Output Garbage

→L x1, x3 x2 = 1 y3 y1, y2
→G x1, x2 x3 = 1 y2 y1, y3

→G x1, x3 x2 = 1 y3 y1, y2
→L x1, x2 x3 = 1 y2 y1, y3

However, in both cases there is no configuration that allows one to realize
⊕. In the next table we explore all the configurations and, for each case, we
give a short proof of the incompatibility.
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Connective Inputs Constant Output Garbage Proof

⊕ x1, x3 x2 = 1 y2 y1, y3 (1)
⊕ x1, x2 x3 = 1 y3 y1, y2 (2)
⊕ x2, x3 x1 = λ y1 y2, y3 (3)
⊕ x2, x3 x1 = λ y2 y1, y3 (4)
⊕ x2, x3 x1 = λ y3 y1, y2 (5)
⊕ x1, x3 x2 = λ y1 y2, y3 (6)
⊕ x1, x3 x2 = λ y2 y1, y3 (7)
⊕ x1, x3 x2 = λ y3 y1, y2 (8)
⊕ x1, x2 x3 = λ y1 y2, y3 (9)
⊕ x1, x2 x3 = λ y2 y1, y3 (10)
⊕ x1, x2 x3 = λ y3 y1, y2 (11)

where λ ∈ Ld \ {0, 1}. In what follows, γ is an unspecified element of Ld.

(1) for λ ≤ 1
2 , all the triples λ1(1 − λ) are mapped to 011, thus violating

F-2);
(3) triples λ11 are mapped to 111, thus violating F-3);
(4) for the triples λ01, it should be 0⊕1 = 1 on y2, and also λ →L 0 = 1−λ
or λ →G 0 = 0 on the same output;
(6) triples 0λ1 are mapped to 11γ, thus violating F-3);
(7) for the triples 1λ1, it should be 1⊕1 = 1 on y2, and also 1 →L λ = 1−λ
or 1 →G λ = λ on the same output;
(9) triples 01λ are mapped to 1γ1, thus violating F-3);
(10) for the triples 11λ, it should be 1⊕1 = 1 on y2, and also 1 →L λ = 1−λ
or 1 →G λ = λ on the same output;
(2),(5),(8),(11) can be obtained respectively from (1), (4), (7), (10) by ex-
changing the second and third input/output lines of the gate.

If a strictly conservative gate that realizes all the three–valued connec-
tives mentioned above is needed then, due to Propositions 6.1 and 7.1, it
is necessary to look for (n, 3)–gates with n ≥ 4. In a forthcoming paper, a
(4, 3)–gate which has all the required properties will be presented.

8 Finite–valued Universal Gates

After the discovery of the generalizations of the Fredkin gate to three–valued
logics exposed in the previous section, we obviously tried to generalize fur-
ther to d–valued logics.

The approach followed in the previous section, that is making an ex-
haustive search in the space of truth tables of all (3, d)–gates, is clearly
not feasible to find a solution which is valid for every value of d. As a
consequence, we looked for some analytic expressions which define the new
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reversible and conservative gates independently of the cardinality of the set
of truth values.

8.1 A gate for  Lukasiewicz and Gödel d–valued logics

The first function f1
d

: L3
d → L3

d we define is:

∀x = (x1, x2, x3) ∈ L3
d

f1
d
(x) :=







(x1, x3, x2) if x1 = 0 and x2 6= x3 i)

(x1, x3, x2) if 0 < x1 ≤ x3 < 1 and x2 = 1 ii)

(x1, x3, x2) if 0 < x1 ≤ x2 < 1 and x3 = 1 iii)

(x1, x1, 1 − x1 + x3) if x3 < x1 < 1 and x2 = 1 iv)

(x1, 1, x3 + x1 − 1) if x1 < 1, x2 = x1, x3 + x1 ≥ 1

and x3 < 1 v)

(x1, x1, x2 − x1) if 0 < x1 < x2 < 1 and x3 = 0 vi)

(x1, x3 + x1, 0) if 0 < x1, x2 = x1, x3 + x1 < 1

and x3 > 0 vii)

(x1, x2, x3) otherwise viii)

A direct inspection of the definition allows to conclude that the function
f1
d

is well defined; that is, each triple (x1, x2, x3) of L3
d is associated by f1

d

with a single triple (y1, y2, y3) of L3
d.

Let us see some properties of f1
d
.

Proposition 8.1. f1
d

is self–reversible.

Proof. We have to prove that ∀x ∈ L3
d, f1

d

(
f1
d
(x)

)
= x. We can proceed by

dividing the elements of the domain as in rules i), ii), ..., viii).
Let a and b be two arbitrary elements of Ld. Considering the above rules

it holds:
i) f1

d

(
f1
d
(0, a, b)

)
= f1

d
(0, b, a) = (0, a, b).

ii) Let x = (a, 1, b) with 0 < a ≤ b < 1. Therefore y = f1
d
(a, 1, b) =

(a, b, 1). y fulfills iii) then f1
d
(a, b, 1) = (a, 1, b) = x.

iii) Let x = (a, b, 1) with 0 < a ≤ b < 1. y = f1
d
(a, b, 1) = (a, 1, b) that

fulfills ii) thus f1
d
(a, 1, b) = (a, b, 1) = x.

iv) Let x = (a, 1, b) with b < a < 1. y = f1
d
(a, 1, b) = (a, a, 1 − a + b).

Since 0 ≤ b < a < 1, 1− a+ b+ a ≥ 1 and 1− a+ b < 1. Therefore y fulfills

v) thus f1
d
(a, a, 1 − a + b) = (a, 1, 1 − a + b + a− 1) = (a, 1, b) = x.

v) Let x = (a, a, b) with a < 1, b + a ≥ 1 and b < 1. y = f1
d
(a, a, b) =

(a, 1, b + a − 1). Since b + a ≥ 1 and b < 1, 0 ≤ b + a − 1 < a < 1. As a
consequence we have that y satisfies iv), so f1

d
(a, 1, b+a−1) = (a, a, 1−a+

b + a− 1) = (a, a, b) = x.
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vi) Let x = (a, b, 0) with 0 < a < b < 1. y = f1
d
(a, b, 0) = (a, a, b − a).

b−a+a < 1 and b−a > 0. This implies that y satisfies vii), and consequently

f1
d
(a, a, b− a) = (a, b, 0) = x.

vii) Let x = (a, a, b) with 0 < a, b + a < 1 and b > 0. y = f1
d
(a, a, b) =

(a, b+a, 0). We have that y satisfies vi), therefore f1
d
(a, b+a, 0) = (a, a, b) =

x.
viii) obvious.

The proof of the previous proposition shows the method used to build
the function f1

d
. Rules i) and viii) allow the function to behave as the Fred-

kin gate when the inputs are restricted to {0, 1}. Rules ii) and iv) have been
introduced in order to allow the gate to generate the  Lukasiewicz implica-
tion on the third output line and the  Lukasiewicz disjunction on the second
output line when the second input line is set to 1. Rules iii) and v) are
the converse of rules ii) and iv); this is done in order to guarantee the self–
reversibility of the gate. Rules vi) and viii) realize the  Lukasiewicz conjunc-
tion on the second output line when the third input line is set to 0, whereas
vii) and viii) are the converse. Rule viii) uses the simplest self–reversible
function (the identity function) to deal with the cases not considered by
other rules.

Properties F-5), F-6), F-7) and F-8) are trivially satisfied by f1
d
. More-

over, each rule was written in order to verify the property of weak conser-
vativeness. In fact, the following proposition holds, whose proof is straight-
forward, and thus it is omitted.

Proposition 8.2. f1
d

is weakly conservative.

It is also easy to see that f1
d

is a universal function. In fact, as it is
shown in Table 14, using suitable configurations of constants in the input
lines we obtain a set of connectives which suffices to generate, besides the
FAN–OUT gate, all the operators of  Lukasiewicz and Gödel d–valued logics.

It is important to underline that, as said before, the properties of the
gate do not depend on the number of truth values involved. Moreover, when
d = 3 the function f1

d
behaves just like the gate F1 presented in the previous

section.

8.2 A family of functions which realize necessity

Since f1
d

does not allow one to realize the modal operator ✷, we propose the
following family of functions. Let λ be any value from the set Ld \ {0, 1};
the family of functions f2

d,λ
: L3

d → L3
d, parameterized with respect to λ, is

defined as follows:
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Connective Inputs Constants Outputs Garbage

FAN–OUT x1 x2 = 1, x3 = 0 y1, y2 y3
Pr1 x2, x3 x1 = 0 y3 y1, y2
Pr2 x2, x3 x1 = 0 y2 y1, y3
→L x1, x3 x2 = 1 y3 y1, y2
→G x1, x2 x3 = 1 y2 y1, y3
∨ x1, x3 x2 = 1 y2 y1, y3
∧ x1, x2 x3 = 0 y2 y1, y3
Id x1 x2 = 0, x3 = 0 y1 y2, y3
¬ x1 x2 = 1, x3 = 0 y3 y1, y2
∼ x1 x2 = 0, x3 = 1 y2 y1, y3
✸ x1 x2 = 0, x3 = 1 y3 y1, y2

Table 14: The operators obtained through function f1
d

∀x = (x1, x2, x3) ∈ L3
d

f2
d,λ

(x) :=







(x2, x1, x3) if x1 = 0, 0 < x2 < 1 and x3 = λ i)

(x2, x1, x3) if 0 < x1 < 1, x2 = 0 and x3 = λ ii)

(x1, x3, x2) if x1 = 0, x2 6= λ, x3 6= λ and x2 6= x3 iii)

(x1, x3, x2) if 0 ≤ x1 ≤ x3 < 1 and x2 = 1 iv)

(x1, x3, x2) if 0 ≤ x1 ≤ x2 < 1 and x3 = 1 v)

(x1, x1, 1 − x1 + x3) if x3 < x1 < 1 and x2 = 1 vi)

(x1, 1, x3 + x1 − 1) if x1 < 1, x2 = x1, x3 + x1 ≥ 1

and x3 < 1 vii)

(x1, x1, x2 − x1) if 0 ≤ x1 < x2 < 1 and x3 = 0 viii)

(x1, x3 + x1, 0) if 0 ≤ x1, x2 = x1, x3 + x1 < 1

and x3 > 0 ix)

(x1, x2, x3) otherwise x)

For each fixed value of λ we get a function which realizes the connectives
exposed in Table 15. As it can be seen, the price we pay to realize the modal
connective ✷ together with all the connectives of f1

d
is that the functions

f2
d,λ

loose 0–regularity in 2d − 5 input/output pairs and property F-7) in

2d− 4 input/output pairs.
Now, let us see some properties of functions f2

d,λ
. The proofs of the next

two propositions are similar to the ones of Propositions 8.1 and 8.2, and
thus they are omitted.
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Proposition 8.3. For each fixed value of λ in Ld \{0, 1}, the function f2
d,λ

is self–reversible.

Proposition 8.4. For each fixed value of λ in Ld \{0, 1}, the function f2
d,λ

is weakly conservative.

Properties F-6) and F-8) are trivially satisfied by functions f2
d,λ

. Table 15

reports the operators that can be obtained with the functions f2
d,λ

by fixing

one or two input lines with constant values from Ld. Such configurations
have been chosen on the example of the gate F2 presented in the previous
section.

We observe that, also in this case, for a fixed λ the constants involved
in such configurations are independent of d.

Connective Inputs Constants Outputs Garbage

FAN–OUT x1 x2 = 1, x3 = 0 y1, y2 y3
Pr1 x2, x3 x1 = 1 y2 y1, y3
Pr2 x2, x3 x1 = 1 y3 y1, y2
→L x1, x3 x2 = 1 y3 y1, y2
→G x1, x2 x3 = 1 y2 y1, y3
∨ x1, x3 x2 = 1 y2 y1, y3
∧ x1, x2 x3 = 0 y2 y1, y3
Id x1 x2 = 0, x3 = 0 y1 y2, y3
¬ x1 x2 = 1, x3 = 0 y3 y1, y2
∼ x1 x2 = 0, x3 = 1 y2 y1, y3
✸ x1 x2 = 0, x3 = 1 y3 y1, y2
✷ x1 x2 = 0, x3 = λ y1 y2, y3

Table 15: The operators obtained through functions f2
d,λ

Note that, when d = 3, the function f2
d, 1

2

behaves just like the gate F2

presented in the previous section.

8.3 A gate for MV–connectives

None of the gates just presented generates the MV connectives showed in
Section 4. This fact led us to build the function md : L3

d → L3
d defined as

follows:
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∀x = (x1, x2, x3) ∈ L3
d

md(x) :=







(x1, x3, x2) if x1 = 0 and x2 6= x3 i)

(x1, x1 + x3, 1 − x1) if x1 > 0, x2 = 1 and x1 + x3 < 1 ii)

(x1, 1, x2 − x1) if 0 < x1 ≤ x2 < 1 and x3 = 1 − x1 iii)

(x1, x1 + x2 − 1,

1 − x1) if x1 < 1, x2 < 1, x3 = 0 and

x1 + x2 > 1 iv)

(x1, x2 + x3, 0) if 0 < x2 < x1 < 1 and x3 = 1 − x1 v)

(x1, x3, x2) if 0 < x1, x2 > 0, x3 = 0 and

x1 + x2 ≤ 1 vi)

(x1, x3, x2) if 0 < x1, x2 = 0, x3 > 0 and

x1 + x3 ≤ 1 vii)

(x1, x2, x3) otherwise viii)

In order to find this gate we used the technique previously shown: first
we looked at the gate F3 exposed in the previous section in order to know
which configurations give rise to the operators ⊕ and ⊙; successively, we
wrote their inverses. Thus it is no wonder that, for d = 3, the function md

behaves like the gate F3 presented in the previous section.
As for the previous functions, we can state the following properties.

Proposition 8.5. md is self–reversible.

Proposition 8.6. md is weakly conservative.

Moreover, properties F-5), F-6), F-7) and F-8) are trivially satisfied by
md.

Table 16 reports the operators that can be obtained from function md

by fixing one or two input lines with constant values from Ld. As we can
see, md is a gate providing functional completeness of finite–valued calculus,
regardless of the value assumed by d.

9 Conclusions and Directions for Future Work

We presented some generalizations of the Fredkin gate for d–valued re-
versible and conservative logics, notably d–valued  Lukasiewicz and d–valued
Gödel logics. In particular, we introduced three gates for three–valued logics
and three possible extensions of such gates for d–valued logics; one of the ex-
tensions was specifically designed to realize the MV–connectives. Moreover
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Connectives Inputs Constants Outputs Garbage

FAN–OUT x1 x2 = 1, x3 = 0 y1, y2 y3
Pr1 x2, x3 x1 = 0 y3 y1, y2
Pr2 x2, x3 x1 = 0 y2 y1, y3
⊕ x1, x3 x2 = 1 y2 y1, y3
⊙ x1, x2 x3 = 0 y2 y1, y3
Id x1 x2 = 0, x3 = 0 y1 y2, y3
¬ x1 x2 = 1, x3 = 0 y3 y1, y2
∼ x1 x2 = 0, x3 = 1 y2 y1, y3
✸ x1 x2 = 0, x3 = 1 y3 y1, y2
✷ x3 x1 = 1

d−1 , x2 = 0 y3 y1, y2

Table 16: The operators obtained through function md

we showed how to realize, with such gates, the operators that characterize
some modal logics.

One of the purposes of our work was to show that the framework of
reversible and conservative computation can be extended toward some non
classical “reasoning environments”, originally proposed to deal with propo-
sitions which embed imprecise and uncertain information, that are usually
based upon many–valued and modal logics.

It remains open the question on how it is possible to extend further the
framework towards infinite–valued logics, such as fuzzy logics, both with ℵ0

and ℵ1 truth values. We feel that in such settings many new and interesting
questions arise; here we propose just a few of them. For example: since
reversible circuits need no more to have the same number of input and
output lines, and moreover we can encode on a single input (or output)
as much information as we want, what are the computational properties
of such circuits? What are the differences with respect to reversible and
conservative circuits for d–valued logics? How can we characterize the set
of functions computed by such circuits?

Moreover, it is not difficult to extend Proposition 6.1 to deal with an
infinite number of truth values. A direct consequence is that there are
no possible extensions of the Fredkin gate to infinite–valued logics which
compute the FAN–OUT function and at the same time are strictly conser-
vative. How does this change the notion of conservativeness? In this paper
we proposed the alternative notion of weak conservativeness, together with
a possible physical interpretation; however, when dealing with an infinite
number of energy levels there are two possibilities: either the energy levels
extend over an unlimited range, so that to switch from a given level to an-
other it could be necessary an infinite amount of energy, or the levels become
increasingly close to each other. In the latter case, an infinite precision on
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the amount of energy can be required to switch from one level to another;
in this situation, when the energy gap between the levels becomes smaller
than the underlying thermal noise the computing physical system goes out
of control. The above observations lead naturally to the following question:
are the circuits for infinite–valued logics physically realizable? On the other
hand, do we really need them?
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10 Appendix: The abstract algebraic approaches
to many–valued logics

10.1 BZW algebras

The set of numbers Lα (α ∈ {d,ℵ0,ℵ1}), interpreted as possible truth values
of propositional sentences, equipped with the connectives →L, ¬, and ∼ are
standard models of an abstract system, called Brouwer–Zadeh–Wajsberg
(BZW ) algebra, which can be considered a useful algebraic environment of
many–valued logics.

Wajsberg (W ) algebras were introduced by Wajsberg in order to give
an algebraic axiomatization to many valued logics [Wa, 31, Wa, 35]. Fun-
damental aspect of W algebras is the usage of  Lukasiewicz implication as
a primitive operator. Brouwer–Zadeh (BZ) lattices, on the other hand, in-
volve an intuitionistic negation ∼, besides a fuzzy one ¬ [CN, 89]. Moreover,
by suitable compositions of the two negations, it is possible to define the two
basic modal operators, necessity (✷) and possibility (✸). Thus, by a pasting
of the two structures one obtains BZW algebras. These algebras also result
to be a general classical “unsharp environment” for an abstract introduction
to rough approximation spaces.

Definition 10.1. A Brouwer Zadeh Wajsberg (BZW ) algebra is a system
〈A,→,¬,∼, 1〉, where A is a nonempty set, 1 is a constant element, ¬ and
∼ are unary operators, and → is a binary operator, obeying the following
axioms:

(BZW1) 1 → x = x

(BZW2) (x → y) → ((y → z) → (x → z)) = 1

(BZW3) (x → y) → y = (y → x) → x

(BZW4) (¬x → ¬y) → (y → x) = 1

(BZW5) ¬ ∼ x →∼∼ x = 1

(BZW6) (¬x →∼∼ x) →∼∼ x = 1

(BZW7) ¬ ∼ ((x → y) → y) = (¬ ∼ x →∼∼ y) →∼∼ y

A de Morgan BZW , shortly a BZW dM , algebra is a BZW algebra in which
axiom (BZW7) is replaced by the following:

(BZW7′) ∼ ¬[(¬x → ¬y) → ¬y] = (¬ ∼∼ x → ¬ ∼∼ y) → ¬ ∼∼ y

Let us note that the substructure 〈A,→,¬, 1〉 induced by a BZW algebra
is a W algebra, just characterized by axioms (BZW1)–(BZW4) [Wa, 31,
Wa, 35]. Now, from any BZW algebra it is possible to obtain in a canonical
way a structure of BZ distributive lattice according to the following result.
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Theorem 10.1. Let 〈A,→,¬,∼, 1〉 be a BZW algebra. Let us introduce a
new constant and two derived operators according to the following:

0 := ¬1 (13)

x ∨ y := (x → y) → y (14)

x ∧ y := ¬((¬x → ¬y) → ¬y) (15)

Then the structure 〈A,∧,∨,¬,∼, 0〉 is a distributive BZ lattice. In other
words:

(1) A is a distributive lattice with respect to the join and the meet oper-
ations ∨,∧ defined by (14) and (15), respectively. The partial order
relation induced by these operations is:

x ≤ y iff x → y = 1. (16)

A is bounded by the least element 0 and the greatest element 1:

∀x ∈ A, 0 ≤ x ≤ 1.

(2) The unary operation ¬ : A 7→ A is a Kleene (or Zadeh) orthocomple-
mentation. In other words the following hold:

(K1) ¬(¬x) = x

(K2) ¬(x ∨ y) = ¬x ∧ ¬y

(K3) x ∧ ¬x ≤ y ∨ ¬y.

(3) The unary operation ∼: A 7→ A is a Brouwer orthocomplementation.
That is, it satisfies the following properties:

(B1) x∧ ∼∼ x = x

(B2) ∼ (x ∨ y) =∼ x∧ ∼ y

(B3) x∧ ∼ x = 0

(4) The two orthocomplementations are linked by the following intercon-
nection rule:

(in) ¬ ∼ x =∼∼ x

Let us note that under condition (K1) the de Morgan law (K2) is equiv-
alent to the dual de Morgan law “¬(x∧y) = ¬x∧¬y” and to the Kleene con-
traposition law “x ≤ y implies ¬y ≤ ¬x”. In general neither the noncontra-
diction law “∀x : x∧¬x = 0” nor the excluded–middle law “∀x : x∨¬x = 1”
hold from this negation, even if for some elements e (for instance e = 0, 1)
it may happen that e ∧ ¬e = 0 and e ∨ ¬e = 1.

As to the Brouwer negation, we have that under condition (B1) the de
Morgan law (B2) is equivalent to the Brouwer contraposition law “x ≤ y
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implies ∼ y ≤∼ x”, but not to the dual de Morgan law. In this case the
intuitionistic noncontradiction law is verified, but the excluded middle law
in general is not required to hold.

On the other hand, if the structure in Theorem 10.1 is a BZW dM algebra
then the Brouwer negation satisfies also the dual de Morgan law “∼ (x ∧
y) =∼ x∨ ∼ y”. However, in both cases (either BZW or BZW dM) in
general the Brouwer negation satisfies the weak double negation law (B1),
also written as “∀x : x ≤∼∼ x”, which does not forbid that for some special
elements e (for instance e = 0, 1) e =∼∼ e holds.

A third kind of complementation, called anti–intuitionistic orthocomple-
mentation, can be defined in any BZW algebra.

Definition 10.2. Let A = 〈A,→,¬,∼, 1〉 be a BZW algebra. The anti–
intuitionistic complementation is the unary operation ♭ : A 7→ A defined as
follows:

♭x := ¬ ∼ ¬x

One can easily show that ♭ satisfies the following conditions:

(AB1) ♭♭x ≤ x;

(AB2) ♭x ∨ ♭y = ♭(x ∧ y) [equivalently, x ≤ y implies ♭y ≤ ♭x];

(AB3) x ∨ ♭x = 1.

As we have said at the beginning of this Appendix, the structure
〈Lα, →L, ¬, ∼, 1〉 based on the set of truth values Lα from the real unit
interval, is a model of BZW dM algebraic structure with respect to the
 Lukasiewicz implication connective →L, the diametrical negation ¬, and
the impossibility negation ∼ introduced in Section 4.

10.2 Modal operators in BZW algebras

Modal operators can be naturally introduced in any Brouwer Zadeh lattice
(hence in any BZW algebra). The necessity operator ✷ and the possibility
operator ✸ are defined in terms of Zadeh and Brouwer complementations.

Definition 10.3. For any element x of a Brouwer Zadeh lattice A, the
necessity and the possibility of x are defined as follows:
(n) The necessity: ✷(x) :=∼ ¬x.
(p) The possibility: ✸(x) := ¬✷(¬x).

As a consequence, one obtains:

✸(x) = ¬ ∼ x ✷(✸(x)) =∼∼ x

∼ x = ✷(¬x) = ¬(✸x) ♭x = ¬(✷x) = ✸(¬x)
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On this basis, similarly to the modal interpretation of intuitionistic logic,
the Brouwer complementation ∼ can be interpreted as the negation of pos-
sibility or impossibility (also the necessity of a negation). Analogously, the
anti–Brouwer complementation ♭ can be interpreted as the negation of ne-
cessity or contingency .

Our modal operators ✷ and ✸ turn out to have an S5–like behavior based
on a Kleene algebra, rather than on a Boolean one. Since ¬ represents here
a fuzzy (i.e., Kleene) negation on a distributive lattice, the result will be a
fuzzy (i.e., Kleene) S5 modal situation.

Theorem 10.2. In any BZ lattice the following conditions hold:

(1)
✷(x) ≤ x ≤ ✸(x)

In other words: necessity implies actuality and actuality implies pos-
sibility (a characteristic principle of the modal system T [Ch, 88]).

(2)
✷(✷(x)) = ✷(x)

✸(✸(x)) = ✸(x)

Necessity of necessity is equal to necessity; similarly for possibility (a
characteristic S4–principle [Ch, 88]).

(3)
x ≤ ✷(✸(x))

Actuality implies necessity of possibility (a characteristic B–principle
[Ch, 88]).

(4)
✸(x) = ✷(✸(x))

✷(x) = ✸(✷(x))

Possibility is equal to the necessity of possibility; analogously, necessity
is equal to the possibility of necessity (a characteristic S5–principle
[Ch, 88]).

On this basis, the definition of BZW algebras admits of a natural modal
translation. It is worthwhile noticing that the modal translation of axiom
(BZW6) (¬x → ✷(✸(x)) = ✷(✸(x)) ) asserts a weak (modal) version of
the consecutio mirabilis principle. As it is well known, the strong consecutio
mirabilis principle (((¬x → x) → x) = 1 ) is not generally valid in the case
of BZW algebras.

48



10.3 Rough approximation spaces in BZW algebras

As stated in Theorem 10.2, in general the order chain ✷(x) ≤ x ≤ ✸(x)
holds. Clearly, this is a fuzzy situation. In a crisp environment we have no
difference among necessity, actuality and possibility, i.e., we are interested to
those elements for which e = ✸(e) (equivalently, e = ✷(e)). This leads one
to define the substructure of all M–sharp (exact, crisp) elements, denoted
by Ae,M , as follows:

Ae,M := {e ∈ A : ✸(e) = e} = {e ∈ A : ✷(e) = e}

However, this is not the only way to define sharp elements. In fact, since in
general x ∧ ¬x 6= 0 (equivalently, x ∨ ¬x 6= 1) it is possible to consider as
Kleene sharp (K–sharp) the elements which satisfy the non contradiction (or,
equivalently, the excluded middle) law with respect to the Kleene negation:

Ae,¬ := {e ∈ A : e ∧ ¬e = 0} = {e ∈ A : e ∨ ¬e = 1}

Alternatively, considering the Brouwer negation we have that the weak dou-
ble negation law holds (∀x ∈ A, x ≤∼∼ x) whereas the double negation law
fails. So we can introduce a further definition of Brouwer sharp (B–sharp)
elements as follows:

Ae,∼ := {e ∈ A :∼∼ e = e} = {e ∈ A : ♭♭e = e}

Finally, as stated before the property ¬x → (✷(✸(x)) = (✷(✸(x))) holds
but in general it is not true that ¬x → x = x. As a consequence, the
→–sharp elements are:

Ae,→ := {e ∈ A : ¬e → e = e}

The relation among all these different substructures of exact elements is
figured out in the following proposition.

Proposition 10.1. Let A be a BZW algebra. Then

Ae,∼ = Ae,M ⊆ Ae,→ = Ae,¬

Let A be a BZW dM algebra. Then

Ae,∼ = Ae,M = Ae,→ = Ae,¬

Consequently, in the case of BZW dM algebras we simply talk of sharp el-
ements and write Ae. Otherwise, in the more general case of BZW algebras
we distinguish between B–sharp elements, i.e., elements in Ae,∼ (= Ae,M),
and K–sharp elements, i.e., elements belonging to Ae,¬ (= Ae,→).

As we have seen, in any BZW algebra it is possible, through the com-
position of the two negations, to introduce the modal operators ✷ and ✸.
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These operators can be used to give a rough approximation of any element
x ∈ A by B–sharp definable elements. In fact, ✷(x) (resp., ✸(x)) turns out
to be the best approximation from the bottom (resp., top) of x by B–sharp
elements. To be precise, for any element x ∈ A the following holds:

(I1) ✷(x) is B–sharp (✷(x) ∈ Ae,∼)

(I2) ✷(x) is an inner (lower) approximation of x (✷(x) ≤ x)

(I3) ✷(x) is the best inner approximation of x by B–sharp elements
(let e ∈ Ae,∼ be such that e ≤ x, then e ≤ ✷(x))

Analogously,

(O1) ✸(x) is B–sharp (✸(x) ∈ Ae,∼)

(O2) ✸(x) is an outer (upper) approximation of x (x ≤ ✸(x))

(O3) ✸(x) is the best outer approximation of x by B–sharp elements
(let f ∈ Ae,∼ be such that x ≤ f , then ✸(x) ≤ f)

Definition 10.4. Given a BZW algebra 〈A,→,¬,∼, 1〉, the induced rough
approximation space is the structure 〈A,Ae,∼,✷,✸〉 consisting of the set A
of all the elements which can be approximated, the set Ae,∼ of all definable
(or B–sharp) elements, and the inner (resp., outer) approximation map ✷ :
A → Ae,∼ (resp., ✸ : A → Ae,∼).

For any element x ∈ A, its rough approximation is defined as the pair
of B–sharp elements:

r(x) := 〈✷(x),✸(x)〉 [with ✷(x) ≤ x ≤ ✸(x)]

drawn in the following diagram:

x ∈ A
✷

vvmmmmmmmmmmmm

✸

((QQQQQQQQQQQQ

r

��

✷(x) ∈ Ae,∼

((PPPPPPPPPPPP

✸(x) ∈ Ae,∼

vvnnnnnnnnnnnn

〈✷(x),✸(x)〉

So the mapping r : A → Ae,∼ × Ae,∼ approximates an unsharp (fuzzy) ele-
ment by a pair of B–sharp (crisp, exact) ones representing its inner and outer
sharp approximation, respectively. Clearly, B–sharp elements are character-
ized by the property that they coincide with their rough approximations:

e ∈ Ae,∼ iff r(e) = 〈e, e〉.
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10.4 BZW algebras and BZMV algebras

In Section 4 we have seen that in each Lα the identities x →L y = ¬x ⊕ y
and x ⊕ y = ¬x →L y show that there is no essential difference of expres-
sive power between the implication connective →L and the additive one ⊕,
owing to their mutual interdefinability. This suggests to introduce an alge-
braic structure, called BZMV algebra (see [CDG, 98], [CGP, 99]), based on
the primitive connective ⊕, and to show that BZMV algebras and BZW
algebras are categorically equivalent. First of all we recall the definition of
BZMV algebras.

Definition 10.5. A BZMV algebra is a system 〈A,⊕,¬,∼, 0〉, where A is
a nonempty set, 0 is a constant, ¬ and ∼ are unary operators, and ⊕ is a
binary operator, obeying the following axioms:

(BZMV 1) (x⊕ y) ⊕ z = (y ⊕ z) ⊕ x

(BZMV 2) x⊕ 0 = x

(BZMV 3) ¬(¬x) = x

(BZMV 4) ¬(¬x⊕ y) ⊕ y = ¬(x⊕ ¬y) ⊕ x

(BZMV 5) ∼ x⊕ ∼∼ x = ¬0

(BZMV 6) x⊕ ∼∼ x =∼∼ x

(BZMV 7) ¬ ∼ [(¬(¬x⊕ y) ⊕ y)] = ¬(∼ x⊕ ∼∼ y)⊕ ∼∼ y

Now we introduce in a BZW algebra two new operators:

x⊕ y := ¬x → y (17)

x⊙ y := ¬(x → ¬y) (18)

As to the relationship between the two structures of BZW and BZMV
algebras we have the following theorem.

Theorem 10.3.

1. Let A = 〈A,→,¬,∼, 1〉 be a BZW algebra. Then putting x ⊕ y :=
¬x → y and 0 := ¬1, the corresponding system ABZMV = 〈A,⊕,¬,∼
, 0〉 is a BZMV algebra.

2. Let A = 〈A,⊕,¬,∼, 0〉 be a BZMV algebra. Then putting x → y :=
¬x⊕y and 1 := ¬0, the corresponding system ABZW = 〈A,→,¬,∼, 1〉
is a BZW algebra.

3. (a) Let A be any BZW algebra, then A = (ABZMV )BZW

(b) Let A be any BZMV algebra, then A = (ABZW )BZMV
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Thus we have that under a suitable definition of the involved operators,
BZW and BZMV algebras are categorically equivalent. Being no difference
between the expressive power of the two structures, one can choose the
algebra that best fits his/her analysis.

In particular, in the context of BZMV algebras the partial order relation
defined by (16), taking into account (17), assumes the form:

x ≤ y iff ¬x⊕ y = 1 (19)

Moreover, the induced structure of BZ distributive lattice 〈A,∨,∧,¬ ∼, 0〉
of Theorem 10.1 in the present case is obtained from the operations of meet
and join, intrinsically defined using the operators ⊕ and ¬ as follows:

x ∨ y := (x⊙¬y) ⊕ y = ¬(¬x⊕ y) ⊕ y

x ∧ y := (x⊕¬y) ⊙ y = ¬[¬(x⊕ ¬y) ⊕ ¬y]

As to the Kleene sharp elements we have now the following identifica-
tions:

Ae,¬ = {e ∈ A : e⊕ e = e} = {e ∈ A : e⊙ e = e}

In the case of BZMV algebras, the set Ae,¬ of all Kleene sharp elements
is closed under the operations ⊕, ⊙, ¬, and ∼; moreover on this set the
lattice operations ∨ and ∧ coincide with the MV algebra operations ⊕ and
⊙ (see [CDG, 98, CGP, 99]) :

∀e, f ∈ Ae,¬, e⊕ f = e ∨ f and e⊙ f = e ∧ f

The structure 〈Ae,¬,⊕,⊙,¬,∼, 0〉 is the largest BZMV subalgebra of A
which is at the same time a Boolean BZ lattice with respect to the operations
∨(= ⊕), ∧(= ⊙), ¬ and ∼. That is, Ae,¬ is a BZ distributive lattice
such that the substructure 〈Ae,¬,∨,∧,¬, 0〉 is a Boolean (rather than just a
Kleene) lattice.

Relatively to the Brouwer sharp elements, the set Ae,∼ is closed under
the operations ⊕, ⊙, ¬, and ∼. Moreover,

∀e, f ∈ Ae,∼, e⊕ f = e ∨ f and e⊙ f = e ∧ f

∀e ∈ Ae,∼, ¬e =∼ e

Analogously, the structure 〈Ae,¬,⊕,¬, 0〉 is the largest MV subalgebra of
A which is at the same time a Boolean lattice with respect to the same
operations ∨(= ⊕), ∧(= ⊙), and ¬.
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10.5 Chang and Wajsberg many–valued algebras

MV–algebras are algebraic structures introduced by C.C. Chang in order
to provide an algebraic proof of the completeness theorem for the infinite
many–valued logic of  Lukasiewicz (see [Ch, 58] and [Ch, 59]). A privileged
model of this logic is based on the set Lℵ1

of truth values, which gives rise to
a totally ordered MV–algebra. Here we present a definition of MV–algebra
which is simpler than the axiomatization proposed by Mangani in [Ma, 73].

Definition 10.6. An MV–algebra is a structure 〈L,⊕,¬, 0〉 where L is a
nonempty set, 0 is a constant element of L, ⊕ is a binary operation on L,
and ¬ is a unary operator on L, satisfying the following axioms:

P1) (x⊕ y) ⊕ z = (y ⊕ z) ⊕ x

P2) x⊕ 0 = x

P3) x⊕ ¬0 = ¬0

P4) ¬(¬0) = 0

P5) ¬(¬x⊕ y) ⊕ y = ¬(x⊕ ¬y) ⊕ x

Axioms P1) – P5) are independent, as it is shown in [CL, 98]. In
[CDG, 98] the following result is proved.

Proposition 10.2. Let 〈A,⊕,¬,∼, 0〉 be a BZMV algebra. Then the sub-
structure 〈A,⊕,¬, 0〉 is an MV algebra.

Using ⊕ and ¬, in this algebraic context we can define the derived op-
erations:

1 := ¬0

x⊙ y := ¬(¬x⊕ ¬y)

x ∨ y := (x⊙¬y) ⊕ y = ¬(¬x⊕ y) ⊕ y

x ∧ y := (x⊕¬y) ⊙ y = ¬[¬(x⊕ ¬y) ⊕ ¬y]

obtaining a structure 〈L,⊕,⊙,∨,∧,¬, 0, 1〉 which satisfies the following con-
ditions, assumed as axioms by Chang in his original definition:

(C1) x⊕ y = y ⊕ x (C1’) x⊙ y = y ⊙ x
(C2) x⊕ (y ⊕ z) = (x⊕ y) ⊕ z (C2’) x⊙ (y ⊙ z) = (x⊙ y) ⊙ z
(C3) x⊕ ¬x = 1 (C3’) x⊙ ¬x = 0
(C4) x⊕ 1 = 1 (C4’) x⊙ 0 = 0
(C5) x⊕ 0 = x (C5’) x⊙ 1 = x
(C6) ¬(x⊕ y) = ¬x⊙ ¬y (C6’) ¬(x⊙ y) = ¬x⊕ ¬y
(C7) ¬(¬x) = x (C8) ¬0 = 1
(C9) x ∨ y = y ∨ x (C9’) x ∧ y = y ∧ x
(C10) x ∨ (y ∨ z) = (x ∨ y) ∨ z (C10’) x ∧ (y ∧ z) = (x ∧ y) ∧ z
(C11) x⊕ (y ∧ z) = (x⊕ y) ∧ (x⊕ z) (C11’) x⊙ (y ∨ z) = (x⊙ y) ∨ (x⊙ z)
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Notice that these conditions stress the fact that an MV–algebra represents
a particular weakening of a Boolean algebra, where ⊕ and ⊙ are generally
non idempotent. Also in any MV–algebra a partial order relation can be
induced making use of (19).

Theorem 10.4. The structure 〈L,∧,∨,¬, 0, 1〉 is a Kleene lattice (that is
a bounded involutive distributive lattice satisfying the Kleene condition).

As a general consequence of this result, since in the many–valued case
⊕ and ⊙ together with ¬ can express ∨ and ∧, the (additive) operations
⊕ and ⊙ are regarded as more fundamental than the lattice operations.
Every MV–algebra is a subdirect product of totally ordered MV–algebras
and an equation holds in the class of all MV–algebras if and only if it holds
in the MV–algebra based on Lℵ1

([Ch, 58]). Actually the proof of com-
pleteness of finite valued logics needs stronger structures; for this purpose
R. Grigolia ([Gr, 77]) introduced MVd–algebras which are particular kinds
of MV–algebras.

Let us recall that a Wajsberg (W) algebra is a system 〈A,→L,¬, 1〉 where
L is a nonempty set, 1 is a constant element, →L is a binary operation, and ¬
is a unary operation, satisfying conditions (BZW1)–(BZW4) of Definition
10.1. The two structures of Chang and of Wajsberg many–valued algebras
are categorically equivalent according to the following straightforward result.

Theorem 10.5.

1. Let L = 〈L,⊕,¬, 0〉 be a Chang MV–algebra. Then putting x →L y =
¬x⊕ y and 1 = ¬0 the corresponding structure LW = 〈L,→L,¬, 1〉 is
a Wajsberg MV–algebra.

2. Let A = 〈A,→L,¬, 1〉 be a Wajsberg MV–algebra. Then putting x ⊕
y = ¬x →L y and 0 = ¬1 the corresponding structure AC = 〈A,⊕,¬, 0〉
is a Chang MV–algebra.

3. Let L be a Chang MV–algebra then
(
LW

)C
= L and let A be a Wajs-

berg MV–algebra then
(
AL

)C
= A.
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