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Abstract

The acquisition of a motor skill involves adaptations of spinal and supraspinal pathways to alpha
motoneurons. In this study, we estimated the shared synaptic contributions of these pathways to
understand the neural mechanisms underlying the short-term acquisition of a new force-matching
task. High-density surface electromyography (HDsEMG) was acquired from the first dorsal interosseous
(FDI; 7 males and 6 females) and tibialis anterior (TA; 7 males and 4 females) during 15 trials of an
isometric force-matching task. For two selected trials (pre- and post-skill acquisition), we decomposed
the HDsEMG into motor unit spike trains, tracked motor units between trials, and calculated the mean
discharge rate and the coefficient of variation of interspike interval (COVISI). We also quantified the post/
pre ratio of motor units’ coherence within delta, alpha, and beta bands. Force-matching improvements
were accompanied by increased mean discharge rate and decreased COVISI for both muscles.
Moreover, the area under the curve within alpha band decreased by ∼22% (TA) and ∼13% (FDI),
with no delta or beta bands changes. These reductions correlated significantly with increased coupling
between force/neural drive and target oscillations. These results suggest that short-term force-matching
skill acquisition is mediated by attenuation of physiological tremor oscillations in the shared synaptic
inputs. Supported by simulations, a plausible mechanism for alpha band reductions may involve spinal
interneuron phase-cancelling descending oscillations. Therefore, during skill learning, the central nervous
system acts as a matched filter, adjusting synaptic weights of shared inputs to suppress neural
components unrelated to the specific task.
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Significance Statement

Previous studies have proposed that only the low-frequency oscillations of shared synaptic inputs to
motor neurons, encompassing task-related and task-unrelated oscillations, are responsible for the gen-
erated muscle force. In our study, we investigated whether the acquisition of a new motor task involving
precise force generation requires specific alterations in these shared synaptic inputs. Our findings dem-
onstrated that, for both a handmuscle and a leg muscle, the skill acquisition was mediated by a reduction
in shared synaptic oscillations unrelated to the required force fluctuations (i.e., physiological tremor band
oscillations). Therefore, during the force-matching task learning, the central nervous system acts like a
neural filter, modulating the synaptic weights of shared inputs to attenuate neural components unrelated
to the specific task.
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Introduction
Over the past three decades, the measurement of incremental motor skill acquisition has emerged as a relevant exper-

imental paradigm for investigating the cognitive and neural processes underlying the learning of newmotor abilities (Karni
et al., 1998; Ungerleider et al., 2002). Initially, the newmovement is producedwith varying accuracy, but with repetition and
practice, the central nervous system refines the movement, resulting in effortless and precise execution (Willingham,
1998). Consequently, the learning of a new motor task entails structural and functional alterations in the supraspinal
and spinal pathways (i.e., neural plasticity) to accommodate the acquisition and retention of skilled motor behaviors
(Ungerleider et al., 2002; Dayan and Cohen, 2011). Indeed, compelling evidence from studies on primates (Plautz et al.,
1995; Nudo et al., 1996) and nonprimates (Kleim et al., 1998) animals have demonstrated that, following motor skill train-
ing, there is an expansion of the cortical representations related to the acquired task. Similar neural adaptations have been
observed in humans in studies using noninvasive imaging and neurophysiological techniques (Karni et al., 1995; Pascual-
Leone et al., 1995; Perez et al., 2004; Jensen et al., 2005). Specifically, the acquisition of newmotor skills has been shown
to significantly increase cortical representation (Karni et al., 1995; Pascual-Leone et al., 1995, 1999) and corticospinal
excitability (Perez et al., 2004; Jensen et al., 2005) of the muscles involved in the training task. While there is greater con-
sensus regarding the effects of motor skill learning on supraspinal adaptations in humans, the dynamics of plastic changes
in synaptic connectivity to spinal motor neurons remain relatively unexplored in the literature.
Many daily activities require the rapid acquisition of motor tasks that demand precise control of fine movements within

short time intervals (Johansson andWestling, 1988). As the generation of precise movements relies on the accurate mod-
ulation of muscle forces (Johansson andWestling, 1988; Kumar et al., 2017), specific control strategies are necessary dur-
ing motor skill learning to overcome the inherent variability of the neural pathways innervating muscles. Interestingly,
previous research has demonstrated that themotor neuron pool behaves as a very selective spatial filter, eliminating com-
ponents of synaptic input that are not common to all motor neurons (Negro et al., 2009, 2016b; Negro and Farina, 2011b;
Farina et al., 2014). Additionally, it has also been observed that the muscle itself acts as a temporal smoothing filter of the
neural drive (Bawa and Stein, 1976; Baldissera et al., 1998), further minimizing the high-frequency components of the
synaptic noise across the alphamotor neuron pools. Collectively, these investigations indicate that only the low-frequency
components of the synaptic inputs widely shared across the motor neuron pools are represented in the force output
(Enoka and Farina, 2021). In voluntary tasks, these shared synaptic inputs consist of task-related oscillations, which deter-
mine the precise command for optimal force generation (e.g., control input signals from corticospinal pathways), as well as
task-unrelated oscillations. These task-unrelated oscillations comprise both voluntary components (reflecting errors in
task performance) and involuntary components (e.g., physiological tremor) that act as noise, thereby reducing the preci-
sion of the task (Bays andWolpert, 2007). Thus, the process of learning newmotor tasks involving precise force generation
should require minimizing these task-unrelated oscillations, whether voluntary or involuntary, to maximize the represen-
tation of shared synaptic input related to optimal control in the force output (i.e., task-related oscillations; Harris and
Wolpert, 1998; Bays and Wolpert, 2007).
Despite extensive research exploring the effect of motor learning on reducing errors in task performance (Ungerleider

et al., 2002; Dayan and Cohen, 2011), no study has yet experimentally investigated whether the acquisition of a newmotor
skill involves a reduction in the involuntary components of the shared synaptic input. Particularly intriguing is the observa-
tion that during steady contractions, the force output exhibits involuntary oscillations∼10 Hz (alpha band), commonly asso-
ciated with physiological tremor (McAuley and Marsden, 2000). The origin of these rhythmic fluctuations has been
attributed to cortical pathways (Marsden et al., 1967; McAuley et al., 1997; Evans and Baker, 2003) and/or peripheral path-
ways, likely originating from the Ia afferent feedback loop (Halliday and Redfearn, 1956; Lippold, 1971). If indeed the acqui-
sition of new motor skills is mediated by reductions in physiological tremor, specific cortical and/or peripheral neural
mechanisms must emerge during the skill learning task to reduce alpha band oscillations in the shared synaptic input to
motor neurons. For instance, previous data in macaquemonkeys have shown that spinal interneurons could phase-cancel
∼10 Hz cortical inputs to motor neurons, which would be beneficial to decrease force tremor and improve movement pre-
cision (Williams et al., 2010; Koželj and Baker, 2014). Therefore, it is possible that during motor skill learning, the gain of this
spinal interneurons filter could be upregulated, thereby increasing the cancellation. On the other hand, compelling evidence
has demonstrated that changes in the gain of afferent feedback loop may directly modulate physiological tremor inputs
(Cresswell and Löscher, 2000; Christakos et al., 2006; Laine et al., 2016), presenting another potential mechanism that
could be involved in the acquisition of a skill learning task. Even though both mechanisms appear intuitively reasonable,
no study to date has explored whether either of thesemechanisms plays a role during the acquisition of a skill learning task.
The present study aimed to investigate whether the short-term acquisition of a new force-matching skill is mediated by

alterations in the shared synaptic input to spinal motor neurons, particularly in the physiological tremor band (alpha band;
5–15 Hz). We hypothesized that the acquisition of a new motor skill in an individual muscle would require specific adap-
tations in the neural pathways to the motor neuron pool of that muscle, ultimately reducing the contributions of shared
synaptic oscillations unrelated to the task (i.e., alpha band oscillations). We experimentally tested this hypothesis by
decomposing high-density surface electromyograms from the first dorsal interosseous (FDI) and tibialis anterior (TA)
muscles during 15 trials of a complex, isometric force-matching task (force-matching skill acquisition). In addition, we sim-
ulated a population of motor neurons receiving both common and independent inputs to elucidate the potential neural
mechanisms underlying the experimental results. Specifically, we simulated two scenarios: filtering of alpha oscillations
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by spinal interneuron circuits (Scenario A) and filtering of alpha oscillations in the Ia afferent feedback loop (Scenario B).We
then compared the results of the two scenarios with the experimental results, aiming to determine which scenario best
explains the observed experimental outcomes.

Materials and Methods
Participants
Twenty-four healthy volunteers participated in the study. Specifically, two experiments were performed in which 13 par-

ticipants (6 females; age, 31 ± 4 years; height, 176.8 ± 7.1 cm; mass, 71.9 ± 16.4 kg) performed the FDI muscle protocol,
and 11 (4 females; age, 31 ±3 years; height, 174.9 ± 9.0 cm; mass, 71.2 ± 18.1 kg) performed the TA muscle protocol.
All participants were free from musculoskeletal or neurological injuries and provided written informed consent prior to
the beginning of experiments. This study was approved by the local ethics committee (code NP5665) and conformed
to the latest Declaration of Helsinki.

Experimental design
Participants took part in a single experimental session lasting ∼1 h. For the measurements on the FDI muscle, partic-

ipants sat on an adjustable chair with their elbow flexed at 45° (0° being the anatomical position) and their right upper
arm and hand comfortably resting on a custom-made device. The wrist and the handwere in a neutral position. Themiddle
phalanx of the index finger was fixed to an adjustable support attached to a load cell (SM-100 N, Interface) so that the
isometric abduction force produced by the index finger could be measured (Fig. 1A). To standardize the hand position
and minimize the contribution of other muscles, the little, ring, and middle fingers were separated from the index finger
and secured to the device with Velcro straps. The forearm was also strapped to the device, and the thumb was secured
at ∼80° angle to the index finger (Fig. 1A). For the measurements on the TA muscle, participants were comfortably seated
on a custom-built ankle dynamometer with their right knee fully extended, their ankle at 10° of plantar flexion (0° being the
foot perpendicular to the shank), and their hip flexed at 70° (0° being the hip fully extended). The right foot was fixed with
Velcro straps to an adjustable footplate perpendicularly connected to a load cell (SM-500 N, Interface) to record the dorsi-
flexion isometric force produced by the ankle (Fig. 1B).

Figure 1. Experimental setup. A, Position of the participants’ wrist and hand on the custom-made dynamometer to record the abduction isometric force
produced by the index finger. B, Position of the participants’ shank and foot on the custom-built dynamometer to measure the dorsiflexion isometric force
produced by the ankle. High-density surface electromyography grids were placed over the first dorsal interosseous (FDI) muscle (A) and tibialis anterior (TA)
muscle (B).C, Isometric force-matching tasks presented to the participants for the FDI (top) and the TA (bottom) muscles. Tasks involved a plateau region
of 30 s containing a randomly generated signal low-pass filtered at 1.5 Hz. The target force level was defined as 5 and 10% of MVC for the FDI and TA,
respectively. The same trajectory was used throughout all trials of the force-matching skill task.
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For both TA and FDImuscles, participants were initially asked to perform three isometric maximal voluntary contractions
(MVCs) for 3 s, with a 60 s interval of rest in between. The greatest value across the three MVCs was considered the max-
imal isometric force and used as a reference for the following submaximal contractions. Then, after 5 min rest period, par-
ticipants were instructed to perform 15 trials of a complex, isometric force-matching task (force-matching skill
acquisition). The task involved a linear increase in force at a rate of 5%MVC/s, a variable force region for 30 s, and a linear
decrease in force at a rate of 5%MVC/s. The variable force region contained oscillations above and below the target force
level (averaged exerted force), which was defined as 5%MVC for the FDI and 10%MVC for the TA. The level of 5%MVC
was chosen for the FDI to minimize fatigue effects across the task. Specifically, the oscillations consisted of a randomly
generated signal with frequency content below 1.5 Hz (−3 dB low-pass frequency). Two trajectories were generated, one
for eachmuscle (Fig. 1C), and the same trajectory was used throughout all trials and for all the subjects (Knight and Kamen,
2004). Each trajectory consisted of a black line, depicting the target force, over a white background and a red line depicting
the subject’s force. A minimum of 60 s of rest was provided between trials, and prior to each trial, participants were
encouraged by the same investigator to follow the target as closely as possible. Visual feedback from the target and
the force was displayed on a computer monitor positioned at ∼60 cm in front of the participant, in which the entire target
trajectory was visible and stationary.
To ensure that the changes in shared synaptic oscillations within alpha band observed with the force-matching skill

acquisition (see Results) were not attributable to the sole motor execution, independent of learning, we implemented
a control condition involving a subgroup of three participants (3 males; mean±SD: age, 36 ±10 years; height,
181 ±6 cm; mass, 82 ±25 kg). In these experiments, participants underwent testing on their TA muscle following a proto-
col similar to the one previously described. However, instead of engaging in 15 trials of a complex force-matching task,
they were instructed to perform 15 trials of steady isometric contractions at 10% MVC. Each trial lasted 30 s with a min-
imum of 60 s of rest between trials. To prevent learning effects, participants were presented with a square indicating the
target force level, and they were instructed to move a pointer, which was proportional to the real-time generated force,
inside this square to match the target force.

Data collection
During all trials of the force-matching task, high-density surface electromyograms (HDsEMG) signals were acquired

from FDI and TA muscles using a grid of 64 electrodes arranged into 13 rows× 5 columns, with a missing electrode on
a corner (4 mm interelectrode distance for FDI; 8 mm interelectrode distance for TA; OT Bioelettronica). An experienced
investigator determined the position and orientation of the grids via palpation of anatomical landmarks. Specifically, the
electrodes were attached over the belly of each muscle in the following locations: FDI, lateral to the line connecting the
heads of the first and second metacarpals (Fig. 1A), and TA, ∼1 cm lateral to the tibial prominence (Fig. 1B). Electrodes
were fixed to the skin using a bi-adhesive foam, and the electrode-skin contact was ensured by filling the foam cavities
with conductive paste (AC cream, Spes Medica). Reference electrodes were positioned on the right wrist for the FDI
and on the right ankle for TA. Prior to electrode placement, the skin was cleaned with an abrasive paste (EVERI, Spes
Medica) and shaved when necessary. Surface EMGs were recorded in monopolar mode and digitized at 2,048 sam-
ples/s using a 16 bit amplifier (10–500 Hz bandwidth; Quattrocento, OT Bioelettronica). Force signals provided by the
load cell were amplified by a factor of 100 (Forza-j, OT Bioelettronica) and sampled synchronously with EMGs.

Data analysis
Force and HDsEMG signals were analyzed offline using MATLAB custom-written scripts.

Force. First, force signals were low-pass filtered at 15 Hz using a third-order Butterworth filter. Then, to quantify the
performance for each trial of the force-matching task, the root-mean-square error (RMSE) between the force and target
signals was computed for the middle 30 s of the target (i.e., oscillatory region; Knight and Kamen, 2004).
Cross-correlation peak values were also calculated for the middle 30 s to assess similarities between fluctuations in force
and target signals. For both RMSE and cross-correlation analyses, the detrended version of the signals was used. To
assess force-matching improvements during the skill acquisition task, the first two and last two trials (out of the 15 trials)
were selected for each participant. Since there were no statistical differences in RMSE and cross-correlation within both
the initial two trials and the final two trials (see Results), we chose to select one trial from the first two and one trial from the
last two to represent the pre- and post-skill acquisition trials for all subsequent analysis. This decision was also driven by
the aim to maximize the number of tracked motor units between trials (see below, Identification and tracking of motor
units). Specifically, the trials selected were the ones with the highest and smallest RMSE between the force and target
signals. To quantify how force steadiness changed during the learning task, we calculated the coefficient of variation
(i.e., standard deviation/mean) of detrended force signals in the two selected trials. In addition, the power spectral density
of force signals from the pre- and post-skill acquisition trials was estimated using Welch’s method (pwelch function in
MATLAB; 1 s Hanning windows with 95% of overlap). For each trial, the mean force power within the delta (1–5 Hz)
and alpha (5–15 Hz) bands was calculated and retained for further analysis. Only the delta and alpha bands were consid-
ered in this analysis because the frequency range of force signals was up to 15 Hz.
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Identification and tracking of motor units. Similar to the force, all motor unit analyses were performed for themiddle 30 s
of the target (i.e., oscillatory region). For the experimental group, HDsEMG signals acquired during the pre- and post-skill
acquisition trials were used. For the control group, data from the first and last trials were used. First, HDsEMG signals were
bandpass filtered with a third-order Butterworth filter (20–500 Hz cutoff frequencies). After visual inspection, channels with
low signal-to-noise ratio or artifacts were discarded. Then, the HDsEMG signals were decomposed into motor unit spike
trains using a convolutive blind source separation algorithm (Negro et al., 2016a; Fig. 2A). Thismethod has been previously
validated and extensively applied to assess the activity of single motor units (Castronovo et al., 2015; Negro et al., 2016a;
Cogliati et al., 2020; Hassan et al., 2020). After the automatic identification of motor units, all the motor unit spike trains
were visually inspected for false positives or false negatives (Hassan et al., 2020). Missing pulses or incorrectly assigned
pulses producing nonphysiological discharge rates were manually and iteratively edited by an experienced operator, and
motor unit spike trains were re-estimated as previously proposed (Martinez-Valdes et al., 2017; Hassan et al., 2020). This
approach has been shown to be highly reliable across operators (Hug et al., 2021). After the editing of motor unit spike
trains, the motor units were tracked between the pre- and post-skill acquisition trials. This was achieved by reapplying
the motor unit separation vectors, which are estimated with the blind source separation algorithm, from one trial to the
other (Oliveira and Negro, 2021; Rossato et al., 2022; Fig. 2B). These motor unit separation vectors are unique for each
individual motor unit and define the spatiotemporal matched filters to estimate the motor unit spike trains. This tracking
procedure was performed in the forward and backward directions (i.e., motor unit separation vectors of pre-skill acquisi-
tion trial were applied on the post-skill acquisition trial and vice versa). Thus, our approach ensured that the same motor
units were tracked and analyzed in both trials. Figure 2B illustrates an example of spike trains from motor units tracked
between trials. Only motor units spike trains with a silhouette value, which is a metric to assess decomposition accuracy
(Negro et al., 2016a), higher than 0.85 were used for analysis. For three participants in FDI and one participant in TA, we
tracked themotor units based on their shape (Martinez-Valdes et al., 2017), as we were not able to track at least four motor
units (see below, Estimates of common synaptic input) by reapplying the motor unit separation vectors. For this analysis,
the two-dimensional representations of the motor unit action potentials of the identified motor units in the pre-skill acqui-
sition trial were cross-correlated with the two-dimensional representations of the identified motor units in the post-skill
acquisition trial (Martinez-Valdes et al., 2017; Cogliati et al., 2020). Only motor units with highly similar motor unit action
potentials (cross-correlation >0.8) were considered as belonging to the same motor units. The mean discharge rate and
coefficient of variation of interspike interval (COVISI) were calculated for each matched motor unit and stored for further
analysis.

Figure 2.Method for common synaptic input estimation. A, Motor unit identification and tracking via decomposition from high-density surface electromy-
ography signals, with motor unit separation vectors reapplied between trials. B, Raster plots of matched units between trials. C, Estimation of common
synaptic oscillations using coherence analysis. This involved analyzing two equally sized CSTs, derived by summing the discharge times of motor units
randomly selected from matched motor units.
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Estimates of common synaptic input. To assess changes in common synaptic input to motor neurons with the force-
matching skill acquisition (experimental group) and repeated motor execution (control group), coherence analysis was
performed between motor units from the same muscle (Negro and Farina, 2012; Castronovo et al., 2015; Negro et al.,
2016b; Maillet et al., 2022; Rossato et al., 2022). Coherence is a frequency-domain linear coupling measure between
two signals. This analysis was performed on two equally sized cumulative spike trains (CSTs), which were obtained by
summing the binary discharge trains of motor units randomly selected from the identified, matched units (Fig. 2C). The
number of motor units selected for each of the two groups was half of the total number of detected units, and this was
repeated for up to 100 permutations. Only participants with at least four matched motor units were included in the coher-
ence analysis. For all permutations, coherence was calculated between the two detrended CSTs using Welch’s period-
ogram with a 1 s Hanning window and an overlap of 95%. The obtained values were averaged for all permutations and
transformed into standard z-scores as described by Gallet and Julien (2011). Only z-scores greater than the bias were con-
sidered for further analysis. The bias was determined as the mean value of z-scores between 250 and 500 Hz, as no sig-
nificant coherence is expected in this frequency range (Castronovo et al., 2015; Maillet et al., 2022). To evaluate changes
between trials, the areas under the curve of the z-coherence profiles within the delta (1–5 Hz), alpha (5–15 Hz), and beta
(15–35 Hz) bands were calculated, and then, the area under the curve ratio (post/pre) was computed separately for each
bandwidth. We subtracted one from the values of the area under the curve ratio so that values higher and lower than 0
indicated, respectively, an increase and decrease in z-coherence during post- compared with pre-skill acquisition trial.
For purposes of visualization only, the pooled z-coherence across all participants was calculated as previously proposed
(Baker et al., 2003).
Considering the nonlinear relation between the synaptic input to motor neuron and its output spike train becomes more

accentuated at higher frequencies (due to the slow operating frequency of individual motor neurons; i.e., ∼30–40 pps), a
greater number of motor units are required to accurately estimate coherence within the beta band (Farina and Negro,
2015). As detailed in the Results section, no significant differenceswere observed in z-coherencewithin this band between
pre- and post-skill acquisition trials for both TA and FDI muscles. Therefore, to ensure that the absence of differences
within this frequency band was not due to the number of motor units utilized in the CST, we conducted an additional anal-
ysis using the TA motor unit data (muscle with greater number of motor units matched between trials). Specifically, we
calculated z-coherence between two CSTs, as described previously, but increasing the number of motor units in each
CST incrementally from 1 to 13 (half of the maximal number of matched motor units across all participants).
Subsequently, for each condition (1 motor unit in each CST, 2 motor units in each CST, and so forth), we computed
the area under the curve ratio (post/pre) of z-coherence within the beta band. This process generated a curve depicting
the z-coherence ratio within beta band as a function of the number of motor unit spike trains used in the CST. If our results
within the beta band were influenced by the number of motor units used in the CSTs, we would expect to observe a sig-
nificant deviation from zero in this curve as the number of motor units increased. Of note, in cases where a participant
could not reach 13 motor units in each CST due to a lower number of identified units, we estimated the area under the
curve of z-coherence within beta band by linear interpolation, using the other area under the curve values for that partic-
ipant as reference points.

Coherence between force/neural drive and target template. To evaluate changes in the coupling between oscillations in
force/neural drive and oscillations in the target template, we calculated the coherence between the force and the target
template and between the neural drive to muscles and the target template. In both cases, an increase in coherence values
between pre- and post-skill acquisition trials would indicate an enhancement in the representation of shared synaptic
input oscillations relevant to optimal force control in the intended motor task (i.e., task-related oscillations). For this anal-
ysis, the neural drive to themuscles was estimated by summing the binary discharge trains across all identifiedmotor units
(i.e., CST; Thompson et al., 2018). Moreover, coherence was calculated only within the frequency bandwidth of the target
template (i.e., delta band). Similar to motor unit analyses, the area under the curve ratio (post/pre) of z-coherence was
computed to assess changes between pre- and post-skill acquisition trials.

Simulations
To elucidate the neural mechanisms underlying the observed reductions in alpha band oscillations with the acquisition

of the force-matching skill (see Results), we simulated the sequence of events from the excitation of an ensemble of motor
neurons to the generation of isometric force output using themodel proposed by Fuglevand et al. (1993). In this model, the
population of motor neurons received common and independent inputs in varying relative proportions (Negro and Farina,
2012). Detailed descriptions of the modeling approach can be found in previous studies (Negro and Farina, 2011a; Farina
et al., 2014; Negro et al., 2016b; Dideriksen and Negro, 2018). The motor neuron parameters were consistent with those
used by Cisi and Kohn (2008) and were selected according to an exponential distribution over the pool of motor neurons
(Fuglevand et al., 1993).
The number of motor neurons was set to 450 (similar to the number of TA motor units; Feinstein et al. 1955), with only

those having a minimum discharge rate of 8 pulses per second (pps) being fully recruited (Taylor et al., 2002). The input to
the motor neuron pool was modeled as a linear summation of common synaptic input to all motor neurons and an inde-
pendent noise input specific to eachmotor neuron (Negro et al., 2016b). The common synaptic input, which represents the
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input originating from the brainstem, spinal interneurons or muscle afferents, included both task-related and
task-unrelated oscillations. In our simulations, the task-related oscillations (i.e., oscillations within the delta band) were
simulated using the same random signal provided as the target to participants during the skill acquisition task in the
TA experimental recordings. Task-unrelated oscillations were simulated as the linear summation of 5–15 Hz Gaussian
noise (i.e., oscillations within the alpha band) and 15–60 Hz Gaussian noise (i.e., oscillations within beta and piper bands).
To explore the effects of afferent feedbackmodulation, we also included in themodel a presynaptic gain of Ia afferent feed-
back into the motor neuron pool. Finally, the independent noise input, representing the individual variability of the mem-
brane potential of each motor neuron, was modeled as a Gaussian noise with a bandwidth of 50 Hz (Negro et al., 2016b).
Two different scenarios were simulated to investigate the neural mechanisms underlying the observed changes

between pre- and post-skill acquisition (refer to Fig. 9 in Results). In Scenario A, we hypothesized that decreases in alpha
band with the acquisition of the force-matching skill could be explained by spinal interneurons phase-cancelling central
oscillatory inputs in the alpha frequency range (Williams et al., 2010; Koželj and Baker, 2014). The gain of this spinal inter-
neurons filter would be upregulated during the skill acquisition task, thereby reducing alpha band oscillations between pre-
and post-skill acquisition. To simulate this scenario, we created two models to represent pre- and post-skill acquisition.
Then, we simulated an increase in the gain of the spinal interneurons filter in the post-skill acquisition model by decreasing
the standard deviation of the 5–15 Hz input to the motor neuron pool compared with the pre-skill acquisition model. In
Scenario B, we hypothesized that reductions in alpha band with the force-matching skill acquisition could be explained
by increases in presynaptic inhibition of Ia afferent feedback into the motor neuron pool. Similarly, we created two models
to represent pre- and post-skill acquisition, but in this case, we simulated an increase in presynaptic inhibition of Ia afferent
feedback in the post-skill acquisitionmodel by decreasing the gain of the Ia afferent input to themotor neuron pool. In both
scenarios, each model (pre- and post-skill acquisition) was repeated 10 times as has been done in previous stimulation
studies (Dideriksen andNegro, 2018). Following the same approach on the experimental data, we calculated the simulated
force output power spectrum; the ratio (post/pre) of the area under the curve of motor unit z-coherence within delta
(1–5 Hz), alpha (5–15 Hz), and beta (15–35 Hz) bands; and the area under the curve ratio (post/pre) of z-coherence between
simulated force/CST and the target template. We then compared the results of Scenarios A and B with the experimental
results to explore which simulated scenario aligns more closely with the observed experimental outcomes.

Statistical analysis
All statistical analyses were performed in R (version 4.3.0), using RStudio environment (version 2023.03.1).
To compare the RMSE between the four selected trials (first two and last two), Friedman tests were used. When signifi-

cant effect of “trial” was detected, post hoc tests with Bonferroni’s correction were conducted for pairwise comparisons.
To compare the coefficient of variation of force, and mean force power within delta and alpha bands between pre- and
post-skill acquisition trials, Wilcoxon signed-rank tests were used. The Wilcoxon signed-rank test was also used to com-
pare mean force power within delta and alpha bands between the pre-skill acquisition and post-skill acquisition models.
To compare the mean discharge rate and COVISI between pre- and post-skill acquisition trials, we applied linear

mixed-effect models, as they allow for the inclusion of all detected units and not just the mean value for each participant
and trial (Boccia et al., 2019). This statistical model accounts for the nonindependence of observations, which is partic-
ularly useful for this experimental design due to the hierarchical nature of motor unit data (greater correlation for units
within participants compared with between participants; Tenan et al., 2014). For both mean discharge rate and COVISI,
random intercept models were applied with “trial” (pre- and post-skill acquisition) as fixed effect and “participant” as ran-
dom effect [e.g., mean discharge rate ∼1+ trial + (1 | participant)]. LMMs were implemented using the package lmerTest
(Kuznetsova et al., 2017) with the Kenward–Roger method to approximate the degrees of freedom and estimate the p
values. The emmeans package was used to determine estimated marginal means and their differences with 95% confi-
dence intervals (Lenth et al., 2019).
For both experimental and simulated data, to compare estimates of common synaptic input (i.e., z-coherence) between

pre- and post-skill acquisition trials, changes in area under the curve ratio (post/pre) were tested using one-sample
Wilcoxon signed-rank test (null hypothesis µ0 = 0), separately for delta, alpha, and beta bands. For the control group,
we conducted descriptive analysis on changes in the area under the curve within the alpha band to compare with those
observed in the experimental group. To investigate whether the coherence results within the beta band were influenced by
the number of motor units used in the CSTs, we utilized the one-sample Statistical Parametric Mapping test (Pataky et al.,
2013). This test allowed us to determine whether the curve of the z-coherence ratio within beta band, as a function of the
number of motor units (see above, Estimates of common synaptic input), showed a statistically significant deviation from 0.
Conceptually, the one-sample Statistical Parametric Mapping test resembles the one-sample t test, but it evaluates the
entire curve. For both experimental and simulated data, changes in area under the curve ratio of target–force z-coherence
and target–CST z-coherence between pre- and post-skill acquisition trials were assessed using the one-sample Wilcoxon
signed-rank test (null hypothesis µ0 = 0).
For the experimental data, repeated-measures correlations were performed to test whether changes in the average

z-coherence of motor units within alpha band were correlated with improvements in performance during the skill acqui-
sition task (i.e., RMSE between the force and target signals). Additionally, repeated-measures correlations were used
to test whether changes in the average z-coherence of motor units within alpha band were associated with changes in
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the average z-coherence between force/neural drive and target template. These analyses were implemented using the
rmcorr package with fixed slopes to estimate a single correlation coefficient for all participants. For this analysis, the
data of TA and FDI muscles were pooled together. For all statistical comparisons, statistical significance was set at an
α of 0.05. For the results of motor unit discharge properties, the values in the text are reported as mean with 95% confi-
dence intervals. All the other values are reported as mean ± standard deviation in the text and median/interquartile ranges
in the figures. All individual data of motor unit discharge times for both TA and FDI muscles recorded in the pre- and post-
skill acquisition trials are available at https://doi.org/10.6084/m9.figshare.23703804. All effect sizes, along with their 95%
confidence intervals and the methods of calculation, are detailed in the statistical table provided as supplementary
material (Extended Data 1). Superscript lowercase letters in the Results section correspond to specific lines within this
statistical table.

Code accessibility
The codes used for the computational model described in the paper are openly accessible online at https://doi.org/10.

6084/m9.figshare.23703804. Additionally, these codes are provided in the supplementary material (Extended Data 2). The
computations were performed on aWindows desktop with an AMDRyzen 9 5950X 16-core processor and 128 GB of RAM.

Results
Changes in force-matching and force power spectrum with skill acquisition
To assess improvements in force-matching during the skill acquisition task, we compared the RMSE and cross-

correlation peak values between the force and target signals in the first two trials and the last two trials out of the 15.
Figure 3A shows the fluctuations in dorsiflexion isometric force produced by a representative participant for these trials,
where the yellow traces represent the first two trials, and the green traces refer to the last two. Improvements in force-
matching are evident across trials, which are visually confirmed by the greater overlap between the force and the target
template when comparing the final two with the initial two trials. Indeed, for both TA and FDI muscles, there were signifi-
cant differences in RMSE (p<0.001 for bothmuscles; Friedman test) and cross-correlation peak values (p<0.001 for both
muscles; Friedman test) among trials. Specifically, for both muscles, RMSE values were significantly lower in the last two
trials compared with the first two (p<0.006 for all; Bonferroni’s post hoc test; Fig. 3B,C)a,b. Moreover, for both muscles,

Figure 3. Performance results. Four (first two and last two) out of the 15 trials were used for each participant to assess improvements in force-matching. A,
Representative comparison between the force and target during the skill acquisition task. The yellow lines indicate dorsiflexion isometric forces produced
by a participant for the first two trials, and the green lines for the last two trials. The black line indicates the target.B,C, Group results of RMSE between the
force and target for the tibialis anterior (TA) muscle (B) and the first dorsal interosseous (FDI) muscle (C). Circles identify individual participants. Horizontal
traces, boxes, and whiskers denote the median value, interquartile interval, and distribution range. *p<0.05.
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cross-correlation peak values obtained in the last two trials were significantly greater than in the first two (p<0.006 for all;
Bonferroni’s post hoc tests)c,d. No significant differences were found in RMSE and cross-correlation within both the initial
two trials and the final two trials (p>0.128 for all; Bonferroni’s post hoc tests)a–d. Given this lack of difference and with the
aim of maximizing the number of tracked motor units between trials (see Materials and Methods), for all subsequent anal-
yses, we selected one trial from the first two (the one with the highest RMSE) and one trial from the last two (the one with
the lowest RMSE) to represent the pre- and post-skill acquisition trials.
In Figure 4A, it is possible to see the two trials that were chosen to represent the pre- and post-skill acquisition trials for

the same participant in Figure 3A. There is a decrease of ∼43% in RMSE (from 1.16 to 0.66%MVC) and an increase of
∼88% in cross-correlation peak value (from 0.41 to 0.78) between pre- and post-acquisition trials. To assess whether
the force steadiness changed with the force-matching skill acquisition, we quantified the coefficient of variation of force
for the two selected trials. For both TA and FDI muscles, there were significant differences in the coefficient of variation of
force between trials (Fig. 4B). Specifically, the coefficient of variation of force values obtained for the post-skill acquisition
trial were significantly lower than pre-skill acquisition trial for both TA (pre: 11.77± 1.57%; post: 9.51 ±0.83%; p=0.005;
Wilcoxon signed-rank test)e and FDI (pre: 14.13 ± 6.18%; post: 8.65 ±0.93%; p<0.001; Wilcoxon signed-rank test)e.
We also examined how mean force power changed during the learning task, separately for the delta (1–5 Hz) and alpha
(5–15 Hz) bands (the frequency bandwidth of the force signal). Figure 4C illustrates the power spectrum of force signals
depicted in Figure 4A. It is visually evident for this representative participant that there was a reduction in the power spec-
trum of force between pre- and post-skill acquisition trials for both frequency bandwidths. This reduction in themean force
power with the force-matching skill acquisition was statistically confirmed for both TA (p<0.003 for both delta and alpha
bands; Wilcoxon signed-rank test; Fig. 4D)f and FDI (p<0.002 for both delta and alpha bands; Wilcoxon signed-rank test;
Fig. 4E)g muscles.

Changes in motor unit discharge properties with skill acquisition
In order to evaluate changes in motor unit discharge properties (i.e., mean discharge rate and COVISI) with the force-

matching skill acquisition, we decomposed HDsEMG signals into motor unit spike trains. Note that we trackedmotor units
pre- and post-skill acquisition to ensure the same motor units were compared between trials (see the Materials and
Methods section for further details). For the TA muscle, we identified a total of 166 and 198 motor units for pre- and post-

Figure 4. Force steadiness and force power spectrum results. Two trials were selected for each participant to represent the pre- and post-skill acquisition
trials. A, Representative comparison between the force and target for these two trials, where the yellow and green lines indicate the pre- and post-skill
acquisition trials, respectively. The black line indicates the target.B, Group results of coefficient of variation of force (force steadiness).C, Power spectrum
of force signals depicted in A. The gray box shows a zoom in the alpha band (5–15 Hz). D, E, Group results of mean force power the tibialis anterior (TA)
muscle (D) and the first dorsal interosseous (FDI) muscle (E). Circles identify individual participants. Horizontal traces, boxes, and whiskers denote median
value, interquartile interval, and distribution range. *p<0.05.
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skill acquisition trials, respectively, and were able to track 138 motor units (13±7 motor units per participant). For the FDI
muscle, instead, we identified a total of 105 and 127 motor units for pre- and post-skill acquisition trials, respectively, from
which 62 were tracked across trials (5±2 motor units per participant).
For both muscles, a significant effect of trial (pre- vs post-skill acquisition) was found on the mean discharge rate and

COVISI values ofmatchedmotor units. Specifically, for the TAmuscle, themean discharge rate significantly increased from
10.9 [9.95, 11.9] to 11.9 [10.92, 12.9] pps between pre- and post-skill acquisition trials [F=23.083; p<0.001; linear mixed
models (LMM); Fig. 5A]h. Conversely, the COVISI significantly decreased from 48.0 [42.9, 53.2] to 31.4 [26.3, 36.3]% with
the force-matching skill acquisition (F=22.986; p<0.001; LMM; Fig. 5C)i. Similar results were observed for the FDI
muscle, with the values of mean discharge rate significantly increasing from 11.6 [10.5, 12.7] to 12.3 [11.3, 13.4] pps
(F=5.166; p=0.025; LMM; Fig. 5B)j and the values of COVISI significantly decreasing from 46.6 [39.4, 53.8] to 35.4
[28.1, 42.6]% (F=8.952; p=0.003; LMM; Fig. 5D)k between pre- and post-skill acquisition trials.

Changes in common synaptic input with skill acquisition
In order to assess changes in common synaptic input between pre- and post-skill acquisition trials, we used coherence

analysis between the spike trains of matched motor units. We specifically quantified the ratio (post/pre) of the area under
the curve of z-coherence within delta (1–5 Hz), alpha (5–15 Hz), and beta (15–35 Hz) bands. The coherence analysis was
performed in 10 and 9 participants for TA and FDI muscles, respectively, as only three or fewer motor units were matched
for Participant 7 in TA and Participants 2, 8, 11, and 13 in FDI. Figure 6, A and B, displays the pooled z-coherence for all
participants. When comparing pre- and post-skill acquisition trials, for both TA and FDI muscles there is a clear reduction
in the area under the curve in the alpha band (Fig. 6A,B, gray area). Indeed, for the TA muscle, there was a significant
median reduction of ∼22% in the area under the curve within the alpha band between pre- and post-skill acquisition trials

Figure 5. Mean discharge rate and discharge variability results. A, B, Mean discharge rate results of matched motor units between pre- and post-skill
acquisition trials for the tibialis anterior (TA) muscle (A) and the first dorsal interosseous (FDI) muscle (B). C, D, Coefficient of variation of interspike interval
results of matched motor units between pre- and post-skill acquisition trials for the TA (C) and FDI (D) muscles. Each circle identifies a matched motor unit
between trials. Each color of the circles corresponds to a specific participant. Horizontal traces, boxes, and whiskers denote median value, interquartile
interval, and distribution range. Density curves of the data are represented on the right side of each panel by half-violin plots (yellow for pre-skill acquisition
and green for post-skill acquisition). Note that density curves can be used to visually compare differences between pre- and post-skill acquisition trials.
*p<0.05.
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(p=0.014; one-sample Wilcoxon signed-rank test; Fig. 6C)l, which was not observed either for delta or beta bands
(p>0.322 for both; one-sample Wilcoxon signed-rank tests)l. Similarly, for the FDI muscle, the area under the curve within
the alpha band significantly decreased by a median of ∼13% with the force-matching skill acquisition (p=0.008;
one-sample Wilcoxon signed-rank test; Fig. 6D)m but did not significantly change for delta or beta bands (p>0.074 for
both; one-sample Wilcoxon signed-rank tests)m. Notably in Figure 6D, two potential outlier values are visible in the
beta band (dots higher than 0 and close to −6). When excluding these values from the analysis, there was a significant
decrease in the area under the curve within beta band between pre- and post-skill acquisition trials for the FDI muscle
(p=0.02; one-sample Wilcoxon signed-rank test).
To confirm that the observed reductions in alpha band coherence with the force-matching skill acquisition were not

solely attributable to motor execution independent of learning, we collected data from a subgroup of three participants
who repeated 15 trials of steady isometric contractions of dorsiflexion. In contrast to the changes observed between
pre- and post-skill acquisition trials, there was an average increase of 56.1% in alpha band coherence during the repetition
of motor execution, with individual increases of 107.3, 11.1, and 49.8%. Furthermore, to examine whether the absence of
statistical differences within the beta band was due to the number of motor units utilized in the CST, we conducted an
additional analysis using the TA motor unit data (for detailed information, please refer to the Materials and Methods sec-
tion). In brief, we calculated z-coherence between two CSTs, incrementally increasing the number of motor units in each
CST from 1 to 13 (half of the maximal number of matched motor units across all participants). We then computed the area
under the curve ratio (post/pre) of z-coherence within the beta band. If our results within the beta band were influenced by
the number of motor units used in the CSTs, wewould expect to observe a significant deviation from zero in this ratio curve
as the number of motor units increased. Instead, we observed that the results of area under the curve ratio of z-coherence
within the beta band were not influenced by the number of motor units used in the CSTs, which was confirmed statistically
using the one-sample Statistical Parametric Mapping (p>0.05).

Changes in coherence between force/neural drive and target with skill acquisition
To evaluate changes in the linear coupling between oscillations in force/neural drive and oscillations in the target template

between pre- and post-skill acquisition trials, we calculated the z-coherence within delta band (the frequency bandwidth of

Figure 6.Motor unit coherence results. A,B, Pooled z-coherence profiles considering all participants for the tibialis anterior (TA) muscle (A) and first dorsal
interosseous (FDI) muscle (B; yellow for pre-skill acquisition and green for post-skill acquisition). The horizontal dashed line indicates the confidence level.
Vertical dashed lines highlight the three frequency bandwidths analyzed: delta (1–5 Hz), alpha (5–15 Hz), and beta (15–35 Hz) bands. Gray areas denote
statistical differences in the area under the curve between pre- and post-skill acquisition trials. C, D, Group results of the area under the curve ratio of
coherence for the TA (C) and FDI (D) muscles. Circles identify individual participants. Note that, for visualization purposes, the individual data point of
one participant in the delta band of panel D (with a value exceeding 0.6) is not displayed. Horizontal traces, boxes, and whiskers denote median value,
interquartile interval, and distribution range. Density curves of the data are represented on the right side of each panel by half-violin plots. *p<0.05.
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the target) between the target and the force and between the target and the neural drive to the muscles (i.e., CST). Figure 7
displays the pooled z-coherence between force and target, and between CST and target, for both TA (top) and FDI (bottom)
muscles. In all cases, therewas a clear increase in the area under the curve of z-coherence betweenpre- andpost-skill acqui-
sition trials. Indeed, significant increases in the area under the curve ratio of target–force z-coherence (p<0.001 for both
muscles; one-sample Wilcoxon rank-signed test; Fig. 7A)n and target–CST z-coherence (p<0.004 for both muscles; one-
sample Wilcoxon rank-signed test; Fig.7B)o were observed between pre- and post-skill acquisition trials.
To investigate whether reductions in the motor unit z-coherence within the alpha band between trials (Fig. 6) were corre-

latedwith improvements in performance (Fig. 3), aswell as changes in target–force and target–CST coherence between trials
(Fig. 7), we used repeated-measures correlations. For this analysis, the data from TA and FDI muscles were pooled together.
Figure 8A shows a significant association between average z-coherence within alpha band and RMSE between force and
target signals (rrm=0.574; p=0.008)p. Furthermore, significant inverse associations were observed between average
z-coherence within alpha band and target–force average z-coherence (Fig. 8B; rrm=−0.638; p=0.002)q, as well as between
average z-coherence within alpha band and target–CST average z-coherence (Fig. 8C; rrm=−0.619; p=0.004)r.

Figure 7.Coherence between force/neural drive and target results. Pooled z-coherence profiles between force and target (A) and CST and target (B) for the
tibialis anterior (TA) muscle (top) and first dorsal interosseous (FDI) muscle (bottom). Yellow and green lines indicate the pre-skill acquisition and post-skill
acquisition trials, respectively. Note that the frequency bandwidth analyzed was only the delta band (the frequency bandwidth of the target). Blue boxplots
show the group results of the area under the curve ratio of z-coherence. Circles identify individual participants. Horizontal traces, boxes, and whiskers
denote median value, interquartile interval, and distribution range. *p<0.05.

Figure 8.Correlation results. Repeated-measures correlations between changes inmotor unit coherence within the alpha band and root mean square error
between force and target signals (A), as well as betweenmotor unit coherence within alpha band and coherence between force and target (B), and between
motor unit coherence within the alpha band and coherence between CST and target (C). For this analysis, data from tibialis anterior and first dorsal inter-
osseous muscles were pooled together.
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Neural mechanisms underlying the short-term acquisition of a skill task
To explore the neural mechanisms underlying the observed changes between pre- and post-skill acquisition, we sim-

ulated a population of motor neurons receiving common and independent inputs and the sequence of events from the
excitation of these motor neurons to the generation of isometric force output. Specifically, two different scenarios were
simulated (refer to Materials and Methods section for further details). In Scenario A, we hypothesized that decreases in
alpha band with the acquisition of the force-matching skill could be explained by spinal interneurons phase-cancelling
central oscillatory inputs in the alpha frequency range (Fig. 9A). In Scenario B, the reductions in alpha band with the force-
matching skill acquisition could be explained by increases in presynaptic inhibition of Ia afferent feedback into the motor
neuron pool (Fig. 9B). We calculated the simulated force output power spectrum; the ratio (post/pre) of the area under the
curve of motor unit z-coherence within delta (1–5 Hz), alpha (5–15 Hz), and beta (15–35 Hz) bands; and the area under the
curve ratio (post/pre) of z-coherence between simulated force/CST and the target template. We then compared the results
of the different scenarios with the experimental results to explore which simulated scenario aligns more closely with the
observed experimental outcomes.
Results of Scenario A were found to align more closely with the observed experimental outcomes, but only when we

slightly increased the beta band input to the motor neuron pool in the post-skill acquisition model compared with pre-skill
acquisition model. Consistent with the experimental results, there was a reduction in the power spectrum of force between
pre- and post-skill acquisition models for both delta and alpha bands (p<0.05 for both; Wilcoxon signed-rank test).
Figure 10A displays the pooled z-coherence of simulated motor units for the 10 realizations of the best fitting scenario
(Scenario A), showing a clear reduction within alpha band between pre- (yellow line) and post-skill acquisition (green
line) models. Indeed, the area under the curve of coherence within the alpha band significantly decreased between
pre- and post-skill acquisitionmodels (p<0.002; one-sampleWilcoxon signed-rank test; Fig. 10B) but did not significantly
change either for delta or beta bands (p>0.274 for both; one-sample Wilcoxon signed-rank tests; Fig. 10B). Moreover,
there were an increase in the area under the curve of simulated target–force z-coherence (p=0.002; one-sample
Wilcoxon rank-signed test; Fig. 10C) and simulated target–CST z-coherence (p=0.002; one-sample Wilcoxon rank-
signed test; Fig. 10D) between pre- and post-skill acquisition models. In contrast, the simulation results of Scenario B
did not match the experimental results. In this scenario, there was a significant increase in the power spectrum of force
within delta band (p=0.002; Wilcoxon signed-rank test), as well as a significant increase in the area under the curve of

Figure 9.Simulated scenarios to investigate neural mechanisms underlying the experimental results. Two different scenarios were simulated to investigate
potential mechanisms that could explain the observed changes between pre- and post-skill acquisition. In Scenario A (left panel), we hypothesized that
decreases in alpha band with the acquisition of the force-matching skill could be explained by spinal interneurons phase-cancelling central oscillatory
inputs in the alpha frequency range. In Scenario B (right panel), we hypothesized that reductions in alpha band with the force-matching skill acquisition
could be explained by increases in presynaptic inhibition of Ia afferent feedback into the motor neuron pool. Details about how we simulated these sce-
narios are provided in the Materials and Methods section.
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coherence within the delta band (p=0.002; one-sample Wilcoxon signed-rank test) between pre- and post-skill acquisi-
tion models, which were not observed in the experimental outcomes.

Discussion
In this study, we investigated whether short-term learning of a complex, isometric force-matching task is mediated by

specific adaptations in the shared synaptic inputs to alphamotor neuron pools of the TA and FDI muscles. Our experimen-
tal findings revealed that both muscles exhibited improvements in force-matching as skill acquisition progressed, accom-
panied by a reduction in coherent oscillations acrossmotor neuron spike trains unrelated to the required force fluctuations
(i.e., physiological tremor band oscillations). Importantly, these reductions in alpha band with the force-matching skill
acquisition correlated significantly with improvements in performance and an increased coupling between force/neural
drive and target oscillations. Based on simulations, our findings further indicate that the potential neural mechanism
underlying decreases in alpha band with the acquisition of the force-matching skill is related to spinal interneurons phase-
cancelling central oscillatory inputs in the alpha frequency range. As discussed below, these outcomes suggest that the
acquisition of a new force-matching task involves specific changes in spinal neural circuitry that behave as a matched
neural filter, ultimately minimizing shared noise components unrelated to the intended task.
Traditionally, motor sequence learning, which assesses the incremental acquisition of sequential motor skills, has been

used as experimental paradigm to investigate neuroplasticity underlying skilled task acquisition (Karni et al., 1998;
Ungerleider et al., 2002). Psychophysiological evidence has revealed that two main stages are involved in this paradigm:
a fast stage characterized by considerable performance improvements within a single session and a slow stage where
further but quantitatively smaller improvements can be observed across multiple sessions (Ungerleider et al., 2002;
Dayan and Cohen, 2011). Consistent with previous research (Knight and Kamen, 2004; Perez et al., 2005), our study
focused on the fast-learning stage of incremental motor skill acquisition, as we aimed to investigate the rapid acquisition
of a fine control task involving muscle force modulation. Thus, ensuring that the observed neural plastic changes in this
study were specifically related to the force-matching skill task, and did not arise from overall motor activity or other con-
founding factors, is a necessary step for interpreting our main results. The median reductions in RMSE of ∼40% for both
the TA and FDI observed after 15 repetitions of the task (Fig. 3), along with cross-correlation increases of ∼35% for both
muscles, indicate that the chosen task and number of trials were sufficiently challenging to enable skill acquisition.

Figure 10. Simulation results of best fitting scenario. A, Pooled z-coherence profiles considering all realizations. Vertical dashed lines highlight the three
frequency bandwidths analyzed: delta (1–5 Hz), alpha (5–15 Hz), and beta (15–35 Hz) bands. B, Group results of the area under the curve ratio of coher-
ence. Circles identify individual simulation realizations. Horizontal traces, boxes, and whiskers denote median value, interquartile interval, and distribution
range.C,D, Pooled z-coherence profiles between simulated force and target (C) and between simulated CST and target (D). Note that the frequency band-
width analyzed was only the delta band (the frequency bandwidth of the target). Blue boxplots show the results of the area under the curve ratio of
z-coherence for all simulation realizations. In panels A,C, and D, yellow and green lines indicate the pre-skill acquisition and post-skill acquisition models,
respectively. *p<0.05.
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Previous experiments using a similar task involving index finger abduction demonstrated comparable RMSE improve-
ments (∼50%) between force and target over the same number of repetitions (Knight and Kamen, 2004). Taking these fac-
tors into consideration, it is plausible to assume that the alterations identified in motor unit discharge characteristics and
shared synaptic inputs are indeed associated with the intended force-matching task.
Due to the low-pass and amplification characteristics of the motor neuron pool, experimental and simulated data have

extensively demonstrated that only the low-frequency components of the synaptic inputs largely shared across the motor
neuron pool are represented in the generated muscle force (Negro et al., 2009, 2016b; Negro and Farina, 2011a,b, Farina
et al., 2014; Thompson et al., 2018). Although the contributions of these common synaptic input components may not be
directly measured in humans, they have been indirectly estimated through coherence analysis of discharge times of motor
unit spike trains (Negro and Farina, 2012; Castronovo et al., 2015; Maillet et al., 2022; Rossato et al., 2022). For instance,
Castronovo et al. (2015) have demonstrated significant coherence between motor unit spike trains up to ∼80 Hz during
isometric contractions, and these results have been repeatedly confirmed by subsequent studies using EMG (Kerkman
et al., 2018) and motor unit (McManus et al., 2019; Muceli et al., 2022) recordings. Among these significant oscillation fre-
quencies, the delta band of coherence (1–5 Hz) is believed to reflect the effective control signal to the motor neuron pool
(i.e., task-related oscillations of the common synaptic input) as it encompasses the frequency range of the force signal
(Farina et al., 2014). On the other hand, beta band oscillations (15–35 Hz) in motor unit coherence are commonly attributed
to cortical origin, as studies have demonstrated associations between muscular and cortical activities within this
frequency range (Conway et al., 1995b; Baker et al., 1997; Baker, 2007). Finally, the alpha band coherence (5–15 Hz) is
typically associated with the physiological tremor (Conway et al., 1995a; Christakos et al., 2006; Laine et al., 2016).
Given that alpha band frequencies are not entirely filtered out by the contractile properties of the muscle (Bawa and

Stein, 1976; Baldissera et al., 1998), they are also reflected in the variability of force. Thus, these neural oscillations can
be viewed as an involuntary common noise input that limits the accuracy of the force output (i.e., task-unrelated oscilla-
tions of the common synaptic input). For instance, a demanding visuomotor task has been shown to increase alpha band
coherence, which was accompanied by larger force tremors (Laine et al., 2014). These findings, along with others (Ribot-
Ciscar et al., 2009; Roche et al., 2011), suggest that a high-sensitivity task, such as the one presented to the participants in
this study, would result in larger fluctuations in the alpha band and consequently, lead to increased force oscillations.
Indeed, as illustrated in Figure 4A and reflected in the coefficient of variation of force results (Fig. 4B), the pre-skill acqui-
sition trial exhibited greater force fluctuations in both the TA and FDI muscles. Supporting this observation, we also found
higher motor unit discharge variability, a measure of the variance of the common synaptic input received by the motor
neurons, in the pre-skill acquisition trial (Fig. 5C,D), which is consistent with previous research (Knight and Kamen,
2004; Ely et al., 2022). However, we hypothesized that the repetition of this challenging task would prompt the central ner-
vous system to effectively minimize the common synaptic oscillations unrelated to the specific task. This would lead to
reductions in alpha band oscillations (physiological tremor), subsequent improvements in force control, and, ultimately,
the short-term acquisition of the motor task.
To test our hypothesis, we experimentally examined changes in motor unit coherence within delta, alpha, and beta

bands between pre- and post-skill acquisition. For both investigated muscles, our results revealed reductions in
z-coherence, specifically within the physiological tremor frequency band (Fig. 6), supporting our hypothesis.
Importantly, these reductions were reflected in the oscillations of muscle force output within the alpha band (Fig. 4C–E).
To further investigate whether these decreases in physiological tremor frequencies in both neural and force outputs were
indeed associated with the force-matching skill acquisition, we calculated the linear coupling between the target and the
force, as well as between the target and the CST (an estimation of the effective neural drive to the muscle). We found
that both the target–force and target–CST coherence values increased significantly between pre- and post-skill acquisition
(Fig. 7), indicating an enhancement in the representation of task-related oscillations of shared synaptic input with the force-
matching skill acquisition. Notably, this better match between the neural/mechanical oscillations and the target fluctuations
correlated significantly with the observed reductions in alpha band (physiological tremor) oscillations (Fig. 8B,C). These find-
ings collectively support our hypothesis that, indeed, the short-term acquisition of a force-matching skill is mediated by a
reduction of physiological tremor in motor neuron inputs.
The observed decrease in alpha band oscillations could be attributed to modulations in peripheral pathways, cortical

pathways, or both. The possibility of peripheral modulation aligns with previous studies showing H-reflex depression fol-
lowing visuomotor skill tasks (Perez et al., 2005; Giboin et al., 2020), suggesting an increase in the presynaptic inhibition of
Ia afferents duringmotor skill acquisition. Considering the involvement of Ia afferent loop in physiological tremor enhance-
ment (Cresswell and Löscher, 2000; Christakos et al., 2006; Laine et al., 2016), this increased Ia inhibition with skill acqui-
sition may underlie the observed reductions in physiological tremor oscillations (Fig. 9, Scenario B). Another possibility is
that these decreases in physiological tremor band occur via central pathways. This possibility is consistent with previous
evidence showing that spinal interneurons could reduce alpha band oscillations in motor neuron output by
phase-inverting the inputs to motor neurons at this frequency bandwidth (Williams et al., 2010; Koželj and Baker,
2014). These spinal interneurons would act as a neural filter, cancelling the descending oscillations within alpha band.
Therefore, it is possible that the gain of this spinal interneuron filter undergoes upregulation during force-matching skill
acquisition, consequently amplifying the cancellation effect (Fig. 9, Scenario A). To explore which of these two possibilities
alignsmore closely with our experimental outcomes, we conducted simulations. Our findings demonstrated that the spinal
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interneurons filter, cancelling cortical oscillatory inputs in the alpha frequency range, is likely the explanation for our exper-
imental findings, as all the results of this simulation scenario were similar to the experimental observations (Fig. 10).
Conversely, reductions in the gain of Ia afferent feedback loop alone are unlikely to explain the observed reductions in
alpha band oscillations with the acquisition of the force-matching skill.
It is still possible that the observed decreases in alpha band oscillations are mediated by direct alterations in cortical

oscillatory activity during the acquisition of the force-matching skill. Although supraspinal projections to alpha motor neu-
rons originate from various sources (cortical and subcortical pathways; Fig. 9), shared inputs from the motor cortex are
believed to be the primary source of correlation between motor neuron spike trains during voluntary tasks (Conway
et al., 1995b; Baker et al., 1997). According to the alpha inhibition hypothesis (Klimesch, 1996; Pfurtscheller, 2003), cortical
alpha oscillations are presumed to play an active role in top-down inhibitory control of neuronal processes and in mod-
ulating cognitive functions such as perceptual learning [for a review, see Sigala et al. (2014)]. For instance, compelling evi-
dence suggests that sensory tasks and self-paced movements may lead to diminished encephalography activity within
alpha bands (Neuper and Pfurtscheller, 2001). Consequently, the changes in alpha band coherence observed in the pre-
sent study at the neuromuscular level may reflect, at least partially, ongoing modulations in electrocortical brain activity
transmitted to the motor neuron pools during the learning process of the visuomotor task. However, it is noteworthy
that in healthy individuals, corticomuscular coherence does not show direct significant coherent oscillations in the alpha
band (Conway et al., 1995b; Baker et al., 1997), and no changes in corticomuscular coherence in the alpha band were
observed following a visuomotor training task (Perez et al., 2006). Therefore, we believe that alterations in cortical activity
alone may not fully account for the decreased alpha band oscillations at the motor neuron pool level observed with skill
learning. It is also plausible that more complex neural schemes of physiological tremor oscillation cancellation occur, com-
bining cortical alterations and the two scenarios outlined in Figure 9 into a unified system or, for example, involving recur-
rent inhibition from spinal Renshaw cells, which could also remove the alpha band components of motor neurons output
(Williams and Baker, 2009).
A final consideration of the shared synaptic alterations during the learning of a force-matching task is related to the alter-

ations in beta band oscillations. Our experimental results showed no significant changes in beta band coherence between
pre- and post-skill acquisition trials for both FDI and TAmuscles (Fig. 6). Importantly, this lack of changewas not attributed
to a low number of tracked motor units between trials (see Results). However, in the simulation that best aligned with the
experimental outcomes (Fig. 9, Scenario A), we could only replicate the experimental findings by simulating a slight
increase in beta band oscillations in the shared synaptic inputs to motor neurons between pre- and post-skill acquisition
models. Additionally, upon removing two potential outliers in the beta band (Fig. 6D), a weak but still significant reduction
in beta band oscillations was observed with the force-matching skill for the FDI muscle. These results suggest that beta
oscillations might still play a role in short-term acquisition of a force-matching skill task, consistent with recent evidence
suggesting that cortical beta oscillations are associated, at least in part, with motor performance following visuomotor
learning (Espenhahn et al., 2019). Further investigation is needed to elucidate the implications of beta oscillations in the
context of a force-matching skill acquisition.
Finally, we observed a subtle increase in mean discharge rate (∼1 pps; Fig. 5A,B) with the force-matching skill acquisi-

tion. An increase in mean discharge rate has been linked to improved transmission of common synaptic input to motor
neuron spike trains (Negro and Farina, 2012), which would result in increased shared synaptic oscillations. Contrarily,
we observed a decrease in shared synaptic noise oscillations despite the increase in mean discharge rate. These results
suggest that the observed increases in mean discharge rate are unlikely to explain the reductions in shared synaptic noise
oscillations observed with force-matching skill acquisition. Hence, it is possible that changes in peripheral motor unit
properties, such as reductions in motor unit twitch duration or amplitude, may have contributed to the observed changes
in mean discharge rate. Another plausible possibility is the cocontraction of antagonistic muscles to stiffen the joints in
response to the challenges of the learning task, inducing an increase in the mean discharge rate. Indeed, prior investiga-
tion has demonstrated that antagonistic cocontraction can enhance learning of novel motor tasks (Heald et al., 2018).
However, further investigation is warranted to fully elucidate the underlying mechanisms.
From a practical perspective, our findings suggest that a brief (∼25 min) session of a force-matching task involving the

tracking of low-frequency oscillations led to improvements in muscle force control and accuracy. These improvements in
performance, evidenced by reductions in the coefficient of variation of force (Fig. 4B) and decreased error between force
and target signals (Fig. 3B,C), were correlated with the observed decreases in alpha band oscillations in motor neuron
inputs (Fig. 8A). Importantly, these reductions in the alpha band were not solely attributable to motor execution, as the
control group exhibited opposite changes with increases in alpha oscillations during repeated motor execution indepen-
dent of learning. This implies that the reduction in alpha band activity may represent one of the mechanisms underlying
performance improvements during a force-matching skill learning task. Furthermore, considering we observed increases
in alpha band activity after the repetition of an isometric task without learning, it is conceivable that the reductions in alpha
band during the acquisition of a force-matching skill are even more significant. Therefore, the low-intensity task provided
to healthy individuals in our study may hold relevance for clinical populations with pathological tremor, such as
Parkinson’s disease, and older adults, who often exhibited enhanced physiological tremor oscillations during force pro-
duction (Semmler et al., 2003). Further investigations are warranted to explore the potential impact of the proposed force-
matching task on these specific populations. Additionally, future research should explore the translational implications of
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our findings for long-term training scenarios. For instance, a 4 week training period involving a similar force-matching task
(following a sinusoidal target) resulted in comparable improvements in performance (Ely et al., 2022), suggesting promis-
ing possibilities for further investigation.
In conclusion, our study demonstrates that the acquisition of a force-matching skill involves specific adaptations in the

shared synaptic input to alpha motor neurons, leading to improved force control by minimizing physiological tremor oscil-
lations in motor neuron inputs. Furthermore, our findings propose that the likely mechanism driving these reductions in
alpha band oscillations involves spinal interneurons phase-cancelling the descending oscillations within alpha band.
Therefore, our study provides novel insights into the neural mechanisms underpinning short-term motor learning.
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