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Abstract
Finite Gaussian mixture models provide a powerful and widely employed probabilistic 
approach for clustering multivariate continuous data. However, the practical usefulness 
of these models is jeopardized in high-dimensional spaces, where they tend to be over-
parameterized. As a consequence, different solutions have been proposed, often relying 
on matrix decompositions or variable selection strategies. Recently, a methodological link 
between Gaussian graphical models and finite mixtures has been established, paving the 
way for penalized model-based clustering in the presence of large precision matrices. Not-
withstanding, current methodologies implicitly assume similar levels of sparsity across the 
classes, not accounting for different degrees of association between the variables across 
groups. We overcome this limitation by deriving group-wise penalty factors, which auto-
matically enforce under or over-connectivity in the estimated graphs. The approach is 
entirely data-driven and does not require additional hyper-parameter specification. Analy-
ses on synthetic and real data showcase the validity of our proposal.

Keywords  Model-based clustering · Penalized likelihood · Sparse precision matrices · 
Gaussian graphical models · Graphical lasso · EM algorithm

1  Introduction

In their recent work, Gelman and Vehtari (2021) include regularized estimation procedures 
among the most important contributions to the statistical literature of the last fifty years. 
Technological advancements and the booming of data complexity, both from a dimensional 
and structural perspective, have fostered the development of complex models, often involv-
ing an increasingly large number of parameters. Different regularization strategies have 
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been proposed to obtain good estimates and predictions in these otherwise troublesome 
settings. In this framework, a considerable amount of effort has been put into the estima-
tion of sparse structures (see Hastie et al., 2015, for a review). The rationale underlying the 
sparsity concept assumes that only a small subset of parameters of a given statistical model 
is truly relevant. As a consequence, sparse procedures usually include penalization terms 
in the objective function to be optimized, forcing the estimates of some parameters to be 
equal to zero. These machineries generally lead to an improvement in terms of interpret-
ability and stability of the results, as well as to advantages from a computational perspec-
tive, while reducing the risk of overfitting.

Sparse modeling has been successfully applied in regression and in supervised classi-
fication contexts. Furthermore, these strategies have been recently employed also in the 
model-based clustering framework, where Gaussian mixture models are usually considered 
to group multivariate continuous data. As a matter of fact, these models tend to be over-
parameterized in high-dimensional scenarios (see Bouveyron & Brunet-Saumard, 2014, for 
a discussion), where the detection of meaningful partitions becomes more troublesome. 
For this reason, penalized likelihood methods have been considered, inducing sparsity in 
the resulting parameter estimates, and possibly performing variable selection (see, e.g., Pan 
& Shen, 2007; Xie et al., 2008; Zhou et al., 2009). In particular Zhou et al. (2009) pro-
pose a penalized approach which drastically reduces the number of parameters to be esti-
mated in the component inverse covariance, or precision, matrices. This method exploits 
the connection between Gaussian mixture models and Gaussian graphical models (GGM; 
Whittaker, 1990), which provides a convenient way to graphically represent the conditional 
dependencies encoded in the precision matrices. The estimation of such matrices is dif-
ficult when the number of variables is comparable to or greater than the sample size. For 
this reason, a fruitful line of research has focused on sparsity-inducing procedures, which 
allows to obtain estimates in high-dimensional scenarios: readers may refer to Pourahmadi 
(2013) for a detailed treatment of the topic.

The approach by Zhou et al. (2009) induces the intensity of the penalization imposed 
to be common for all the component precision matrices, thus implicitly assuming that 
the conditional dependence structure among the variables is similar across classes. This 
assumption can be harmful and too restrictive in those settings where the association pat-
terns are cluster-dependent. For instance, the method can be inappropriate to classify sub-
jects affected by autism spectrum disorder, which might present under or over-connected 
fMRI networks with respect to control individuals (see Hull et al., 2017, for a review on 
the topic). Another relevant example can be found in the field of digits recognition, for 
which dependence structures between pixels may vary greatly across digits: a comprehen-
sive analysis is reported in Section 5.2.

In order to circumvent this drawback, a possible solution consists in considering class-
specific penalization intensities. While reasonable, this approach implies a rapidly increas-
ing computational burden and it substantially becomes impractical even with a moderate 
number of classes. Other viable strategies would resort to procedures that deal with the 
estimation of GGMs in the multi-class framework (see, e.g., Danaher et al., 2014, and ref-
erences therein). Nonetheless, most of these proposals adopt a borrowing-strength strategy, 
encouraging the estimated precision matrices to be similar across classes. This behavior 
may be inappropriate in a clustering context, since it might hinder groups discrimination 
and jeopardize the output of the analysis.

In this work, taking our step from Friedman et  al. (2008) where single class inverse 
covariance estimation is considered, we introduce a generalization of the method by Zhou 
et al. (2009), which may be consequently seen as a particular case of our proposal. Even 
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if considering a single penalization parameter, thus avoiding the troublesome selection of 
more shrinkage terms, our approach turns out to be more flexible and adaptive since it 
penalizes a class-specific transformation of the precision matrices rather than the matrices 
themselves. In such a way, we are able to encompass under or over-connectivity situations 
as well as scenarios where the GGMs share similar structures among the groups.

The rest of the paper is structured as follows. Section 2 briefly recalls the model-based 
clustering framework, with a specific focus on the strategies proposed to deal with over-
parameterized mixture models. In Section 3 we motivate and present our proposal, both in 
terms of model specification and estimation. In Sections 4 and 5 the performances and the 
applicability of the proposed approach are tested on synthetic and real data, respectively. 
Lastly, the paper ends with a brief discussion in Section 6.

2 � Preliminaries and Related Work

Model-based clustering (Fraley and Raftery, 2002; McNicholas, 2016; Bouveyron et  al., 
2019) represents a well established and probabilistic-based approach to account for pos-
sible heterogeneity in a population. In this framework, the data generating mechanism 
is assumed to be adequately described by means of a finite mixture of probability dis-
tributions, with a one-to-one correspondence between the mixture components and the 
unknown groups. More specifically, let � = {�1,… , �n} be the set of observed data with 
�i ∈ ℝ

p , for i = 1,… , n , and n denoting the sample size. The density of a generic data 
point xi is given by

where K is the number of mixture components, πk are the mixing proportions with πk > 0 
and 

∑
k�k = 1 , and � = {�1,… ,�K−1,�1,… ,�k} is the vector of model parameters.

In (1), fk(⋅;Θk) represents the generic k-th component density; even if other flexible 
choices have been proposed (see, e.g., McLachlan & Peel, 1998; Lin, 2009, 2010; Vrbik 
& McNicholas, 2014), when dealing with continuous data, Gaussian densities are com-
monly employed. Therefore, we assume that fk(⋅;Θk) = ϕ(⋅;μk,Σk), where ϕ(⋅;μk,Σk) denotes 
the density of a multivariate Gaussian distribution with mean vector �k = (�1k,… ,�pk) , 
covariance matrix Σk, and with Θk = {μk,Σk}, for k = 1,… ,K.

Operationally, maximum likelihood estimation of Ψ is carried out by means of the EM 
algorithm (Dempster et al., 1977). This is achieved by resorting to the missing data repre-
sentation of model (1), with yi = (xi,zi) denoting the complete data, with �i = (zi1,… , ziK) 
latent group indicators where zik = 1 if the i-th observation belongs to the k-th cluster and 
zik = 0 otherwise. Considering a one-to-one correspondence between clusters and mixture 
components, as it is common in the general model-based clustering framework, the parti-
tion is obtained assigning the i-th observation to cluster k* if

 according to the so-called maximum a posteriori (MAP) classification rule (see Ch. 2.3 in 
Bouveyron et al., 2019, for details).

(1)f (�i;�) =

K∑

k=1

�kfk(�i;�k)

k∗ = argmax
k=1,…,K

�k�(�i;�k,�k)
∑K

v=1
�v�(�i;�v,�v)

,
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One of the major limitations of Gaussian mixture models is given by their tendency to 
be over-parameterized in high-dimensional scenarios. In fact, the cardinality of Ψ is of 
order O(Kp2) , thus scaling quadratically with the number of the observed variables and 
often being larger than the sample size. In order to mitigate this issue, several different 
approaches have been studied, and readers may refer to Bouveyron and Brunet-Saumard 
(2014) and Fop and Murphy (2018) for exhaustive surveys on the topic. Hereafter, we 
outline some of the proposals introduced to deal with over-parameterized mixture mod-
els. Roughly speaking, we might identify three different types of approaches, namely 
constrained modeling, sparse estimation, and variable selection.

The first strategy relies on constrained parameterizations of the component covari-
ance matrices. The proposals by Banfield and Raftery (1993) and Celeux and Govaert 
(1995) aim to reduce the number of free parameters by considering an eigen decompo-
sition of Σk, which allows to control the shape, the orientation, and the volume of the 
clusters. Other works falling within this framework are, to mention a few, the ones by 
McLachlan et al. (2003), McNicholas and Murphy (2008), and Bouveyron et al. (2007) 
and Biernacki and Lourme (2014). Most of these methodologies do not directly account 
for the associations between the observed variables, resorting to matrix decompositions 
and focusing on the geometric characteristics of the component densities. As a conse-
quence, parsimony is induced in a rigid way and the interpretation in some cases is not 
straightforward.

The second class of approaches employs flexible sparsity-inducing procedures, to over-
come the limitations of constrained modeling. As an example, we mention the methodol-
ogy recently proposed by Fop et al. (2019), where a mixture of Gaussian covariance graph 
models is devised, coupled with a penalized likelihood estimation strategy. This approach 
eases the interpretation of the results in terms of marginal independence among the vari-
ables and allows for cluster-wise different association structures, by obtaining sparse esti-
mates of the covariance matrices.

Lastly, variable selection has been explored in this context, following two distinct paths. 
On one hand, the problem has been recast in terms of model selection, with models defined 
considering different sets of variables being compared by means of information criteria 
(Raftery and Dean, 2006; Maugis et al., 2009a; b). On the other hand, the second class of 
approaches lies in between the variable selection and the sparse estimation methodologies. 
In fact, in Pan and Shen (2007), Xie et al. (2008), and Zhou et al. (2009) a penalty term is 
considered in the Gaussian mixture model log-likelihood to induce sparsity in the resulting 
estimates and thus possibly identifying a subset of irrelevant variables.

In the following, we focus specifically on the work by Zhou et al. (2009), where the pen-
alty is placed on the inverse covariance parameters of the Gaussian mixture components. 
Such a penalty is considered for regularization and for obtaining sparse estimates of the 
association matrices in high-dimensional settings. Parameters estimation, and the subse-
quent clustering step, are carried out by maximizing the following penalized log-likelihood

The first term is the log-likelihood of a Gaussian mixture model, parametrized in terms 
of the component precision matrices �k = �

−1
k

 , for k = 1,… ,K . The second term cor-
responds to the graphical lasso penalty (see, e.g., Banerjee et al., 2008; Friedman et al., 
2008; Scheinberg et al., 2010; Witten et al., 2011) applied to the component-specific preci-
sion matrices, with the L1 norm taken element-wise, i.e., ‖A1‖ =

∑
ij�Aij� ; in the following, 

(2)�̃P(�) =

n�

i=1

log

K�

k=1

𝜋k𝜙(�i;�k,�k) − 𝜆

K�

k=1

‖�k‖1.
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we do not apply the penalty on the diagonal elements of the precision matrices, even if it is 
possible in principle.

Note that Zhou et al. (2009) consider an additional penalty term �2
∑K

k=1

∑p

j=1
��jk� in (2): 

this corresponds to the lasso penalty function (Tibshirani, 1996) applied element-wise to the 
mean component vectors employed to perform variable selection. Since our primary focus is 
in uncovering the conditional dependence structure enclosed in Ωk, we are not concerned in 
providing penalized estimators for the component mean vectors, we therefore do not include 
this term in (2).

The graphical lasso penalty allows to induce sparsity in the precision matrices, which eases 
the interpretation of the model. In fact, Ωk embeds the conditional dependencies among the 
variables for the k-th component, whereby in the Gaussian case zero entries between pair of 
variables imply that they are conditionally independent given all the others. Moreover, a con-
venient way to visually represent the dependence structure among the features is given by the 
graph of the associated Gaussian graphical model. Here, as already mentioned in the introduc-
tion, a correspondence between a sparse precision matrix and a graph is defined, with nodes 
representing the variables while the edges connect only those features being conditionally 
dependent. A recent and interesting extension is represented by the colored graphical models, 
where symmetry restrictions are added to the precision matrix thus offering a more parsimoni-
ous representation and possibly highlighting commonalties among the variables; readers may 
refer to Højsgaard and Lauritzen (2008), Gao and Massam (2015), and Li et al. (2021) and 
references therein for a more detailed discussion.

Sparse precision matrix estimation via the graphical lasso algorithm is routinely employed 
assuming that observations arise from the same population, adequately described by a single 
multivariate Gaussian distribution, which is indexed by a single GGM. However, this assump-
tion does not hold in the cluster analysis framework where, as in (1), the observed data are 
assumed to arise from K different sub-populations, which might be characterized by different 
association patterns. Some modifications of the standard graphical lasso have been proposed, 
in order to make it applicable also in a multi-class setting (see, e.g., Guo et al., 2011; Mohan 
et al., 2014; Danaher et  al., 2014; Lyu et al., 2018). Nonetheless, these approaches usually 
consider the matrices Ωk to have possible commonalities and shared sparsity patterns; as a 
consequence, they modify the graphical lasso penalty term in order to induce the estimated 
GGMs to be similar to each other, while allowing for structural differences. These strategies 
have been usually considered with an exploratory aim in mind, in order to obtain parsimonious 
and interpretable characterization of the relationships among the variables within and between 
the classes. Undoubtedly, they might be fruitfully embedded also in a probabilistic unsuper-
vised classification context. However, to some extent, by borrowing strength and encouraging 
similarity among groups, these methods may be inappropriate, if not harmful, as they might 
hinder the classification task itself. This particularly holds in the case of clustering, where the 
classes are not readily available and need to be inferred from the data. For this reason, in the 
next section we focus on how to obtain cluster-specific sparse precision matrices to account 
for cluster-wise distinct degrees of sparsity.

3 � Proposal

All the multi-class GGM estimation strategies reviewed in Section 2 assume that different 
classes are characterized by a similar structure in the precision matrices, either explicitly 
or implicitly. This assumption is explicit for those approaches where similarities among 
the precision matrices are encouraged by the considered penalty term. Similarly, in the 
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approach proposed by Zhou et al. (2009) the assumption is implicitly entailed by the use 
of a single penalization parameter λ. The adopted penalization scheme, even if somehow 
weighted by the clusters sample sizes, as per (12), can be profitably considered only in 
those situations where the number of non-zero entries in the precision matrices is simi-
lar across classes. Therefore, these approaches do not contemplate under or over-connec-
tivity scenarios, where the groups are characterized by significantly different amounts of 
sparsity. This constitutes a serious limitation in those applications where different degrees 
of connectivity could ultimately characterize the resulting data partition. That is, while 
approaches such as the one by Zhou et al. (2009) well encompass scenarios in which con-
nected nodes are group-wise different, we aim at defining a data-driven strategy specifi-
cally designed for addressing also those situations in which groups differ in the amount of 
sparsity (i.e., in the number of non-zero entries in the precision matrices).

3.1 � Motivating Example

To better explain this issue and to justify our solution, we provide a motivating example 
where we simulate n = 200 p-dimensional observations with p = 20 from a mixture with 
K = 2 Gaussian components and mixing proportions π = (0.5,0.5). The considered compo-
nent precision matrices are associated with the two sparse at random structures depicted in 
the top panel of Fig. 1. The first component is characterized by an almost diagonal preci-
sion matrix while the second presents a dense structure, thus mimicking a scenario where 
the degree of sparsity is drastically different among the two classes. We estimate these 
matrices employing the penalization scheme in (2), with λ ranging over a suitable interval. 
The ability in recovering the association patterns inherent to the two clusters is evaluated 
by means of the F1 score:

where tp denotes the correctly identified edges (i.e., the number of non-zero entries in the 
precision matrix correctly estimated as such), while fp and fn represent respectively the 
number of incorrectly identified edges and the number of missed edges (i.e., the number 
of non-zero entries wrongly shrunk to 0). Line plots displaying the F1 patterns for the two 
components are reported in the bottom panel of Fig. 1. A trade-off is clearly visible, indi-
cating how a common penalty term prevents the possibility to obtain a proper estimation of 
both the precision matrices. In fact, if for the second component a mild penalization might 
be adequate to estimate the dense dependence structure, for the first component the high 
degree of sparsity is recovered only when a stronger penalty is considered.

3.2 � Model Specification

The illustrative example clearly shows how the penalization strategy proposed by Zhou et al. 
(2009) does not represent a suitable solution when dealing with unbalanced class-specific 
degrees of sparsity among the variables. As briefly mentioned in the introduction, a possible 
alternative would consist in uncoupling the precision matrices estimation by considering com-
ponent-specific penalization coefficients. That is, λ in (2) would be substituted by K different 
shrinkage terms. While in principle reasonable, the increased flexibility induced by introduc-
ing K different penalties may be problematic, since in the graphical lasso framework tuning 

(3)F1 =
��

�� + 0.5(�� + ��)
,

653



Journal of Classification (2022) 39:648-674

these hyper-parameters is a difficult task. Time consuming grid searches are generally consid-
ered, with the optimal penalty factor selected either according to some information criteria or 
resorting to computationally intensive cross-validation strategies. The simultaneous presence 
of K penalty terms would make this approach much more complex, also from a computational 
perspective.

In this work we propose instead to carry out parameter estimation by maximizing a penal-
ized log-likelihood function defined as follows:

where ∘ denotes the Hadamard product between two matrices and Pk are weighting matrices 
employed to scale the effect of the penalty. The focus is then shifted towards the specifica-
tion of �1,… ,�K , which, when properly encoding information about class-specific spar-
sity patterns, introduces a degree of flexibility that accounts for under or over-connectivity 

(4)𝓁P(�) =

n∑

i=1

log

K∑

k=1

�k�(�i;�k,�k) − �

K∑

k=1

‖‖�k◦�k
‖‖1 ,

First component Second component
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Fig. 1   On  the top: true data generating component-specific precision matrices. Black squares denote the 
presence of an edge between the two variables in the corresponding GGM. On the bottom: F1 score as a 
function of the parameter λ 
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scenarios. In (4) a single penalization parameter for the precision matrices is considered. 
As a consequence other than the model selection problem concerning the selection of 
the number of components K, we only need to carefully tune a single penalization hyper-
parameter λ. In Section 3.8 we outline a standard technique to choose the number of com-
ponents and the penalty parameter λ according to a model selection criterion.

Hereafter, we describe a data-driven procedure for inferring Pk by means of carefully 
initialized sample precision matrices �̂

(0)

1
,… , �̂

(0)

K
 . Our proposals rely on the definition of 

a function f ∶ �
p

+ → �
p , where �p

+ and �p respectively denote the space of positive semi-
definite and symmetric matrices of dimension p, such that �k = f

(
�̂

(0)

k

)
.

Recommendations on how to compute �̂
(0)

k
 , and how to subsequently define Pk, k 

= 1,…,K will be the object of the next subsections.

3.3 � Initializing the Sample Precision Matrices Ä̂
(0)

k

The definition of a proper strategy to initialize the matrices �̂
(0)

k
 , for k = 1,… ,K , strongly 

depends on the framework and on the specific task of the analysis. In fact, in supervised 
and semi-supervised scenarios, where the class labels are known for at least a subset of 
observations, the initialization step turns out to be straightforward. More formally, let us 
denote with n the number of observations in the training set, with m the number of obser-
vations with known labels and m =

∑K

k=1
mk , with m1,… ,mK denoting the class-specific 

sample sizes with mk > 0, for k = 1,… ,K . In the supervised setting, where m = n, and 
in the semi-supervised one, where 0 < m < n, we simply define �̂

(0)

k
 to be the k-th class 

sample precision matrix estimated on the pertaining mk observations. Note that, if p > mk, 
the initialized sample precision matrix might be obtained by means of K distinct graphical 
lasso algorithms.

On the other hand, in a clustering framework where m = 0, the specification of �̂
(0)

k
 is 

more tricky. The absence of clear indications about the group memberships makes the 
approach introduced for the supervised and semi-supervised context impractical. Nonethe-
less, it is possible to find suitable workarounds in order to employ our proposal even in an 
unsupervised scenario. From a practical point of view, we consider a general multi-step 
procedure as follows:

1.	 Run any clustering algorithm on the observed data � = {�1,… , �n} , to obtain an initial 
partition of the observations into K groups;

2.	 Given the obtained initial partition, estimate the cluster-specific precision matrices 
�̂

(0)

1
,… , �̂

(0)

K
 using only those observations assigned to that specific group; again �̂

(0)

k
 

might be obtained as the sample estimate when p < nk or as the graphical lasso solution 
if p ≥ nk.

When resorting to this procedure, the choice of which clustering strategy to adopt for obtain-
ing the initial partition is subjective and needs to be carefully taken. In fact, inadequate choices 
might provide incoherent indications of the true clustering structure and hinder the possibility 
to obtain an accurate reconstruction of the dependencies among the variables when maximizing 
(4). In principle, different clustering strategies may be adopted, and providing specific sugges-
tions about the more adequate ones is beyond the scope of this work. Nonetheless, model-based 
techniques (see, e.g., Fraley and Raftery, 2002) might constitute a clever choice, being them 
coherent with the considered framework. Also ensemble strategies can be adequate, as they 
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aim to combine the strengths of different algorithms and lessen the impact of some otherwise 
cumbersome choices (see Russell et al., 2015; Wei & McNicholas, 2015; Casa et al., 2021), for 
some proposals from a model-based standpoint). In addition, powerful initialization strategies 
for partitioning the data into K groups can as well appropriately serve the purpose (Scrucca & 
Raftery, 2015). Lastly, we remark that the use of standard methods to obtain an appropriate 
initial clustering partition can cause difficulties in high-dimensional settings where p > n. In 
these scenarios, subspace clustering methods specifically designed for high-dimensional data 
can be employed. Examples are mixtures of factor analyzers (McNicholas & Murphy, 2008) 
and model-based discriminant subspace clustering (Bouveyron & Brunet, 2012); we point the 
reader to Section 5 of Bouveyron and Brunet-Saumard (2014) for a comprehensive overview.

3.4 � Obtaining Pk via Inversely Weighted Sample Precision Matrices

Once the sample precision matrices �̂
(0)

k
 have been initialized, the first viable proposal for 

defining Pk reads as follows:

where Pk,ij, Ω̂
(0)

k,ij
 are respectively the (i,j)-th elements of the matrices Pk and �̂

(0)

k
 . Notice that 

it is sufficient to set Pk,ii = 0, ∀i = 1,…,p, whenever the diagonal entries of Ωk shall not be 
penalized. Intuitively, with (5) we are inflating/deflating the penalty enforced on the (i,j)-th 
element of the matrix Ωk according to the magnitude of Ω̂(0)

k,ij
 . Clearly, values of |Ω̂(0)

k,ij
| close 

to 0 induce a higher penalty on Ωk,ij. Should �̂
(0)

k
 be estimated via the graphical lasso, e.g., 

in those situations where p ≥ nk, a small positive constant is added in the denominator of 
(5) to avoid having an undefined Pk. This strategy shares connections with the proposal by 
Bien and Tibshirani (2011) developed in a covariance estimation context, and it might be 
seen as a multi-class extension of the approach proposed in Fan et al. (2009), where the 
adaptive lasso (Zou, 2006) is generalized to the estimation of sparse precision matrices.

A hard-thresholding version of (5) may also be considered, in which entries of Ωk are 
not shrunk if their magnitude exceeds a given constant. A sensible way to do so would be 
to examine the initialized partial correlation matrix for the k-th class, and to fix a value γ ∈ 
(0,1) that acts as a user-defined threshold. This approach is related to the fixed-zero problem 
of Chaudhuri et al. (2007): when λ is sufficiently large, it leads to an estimate equivalent to 
the one obtained from a given association graph where the zero entries correspond to par-
tial correlations of magnitude lower than the specified threshold γ. The idea is connected to 
the thresholding operator for sparse covariance matrix estimation (Bickel and Levina, 2008; 
Pourahmadi, 2013) and it has been explored in the covglasso R package (Fop, 2020). The 
hard-thresholded approach is not further considered in the following as it requires a sensi-
tive choice of γ, whereas the other suggested proposals do not rely on any hyper-parameter 
specification.

3.5 � Obtaining Pk via Distance Measures in the �p

+ Space

An alternative approach consists in setting the elements of Pk proportional to the distance 
between �̂

(0)

k
 and diag

(
�̂

(0)

k

)
 , where diag

(
�̂

(0)

k

)
 indicates a diagonal matrix whose diago-

nal elements are equal to the ones in �̂
(0)

k
 . We propose to compute Pk,ij as follows:

(5)Pk,ij = 1∕
(
|Ω̂(0)

k,ij
|
)
, ∀i, j = 1,… , p,
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with D(⋅, ⋅) being a suitably chosen measure of distance between positive semi-definite 
matrices. Since �p

+ is a non-Euclidean space, the type of distance needs to be carefully 
selected: the reader is referred to Dryden et al. (2009) for a thorough dissertation on the 
topic. Alternatively, to account for the diagonal elements in the definition of Pk, one may 
employ the following quantity:

where Ip denotes the identity matrix of dimension p. The definitions of (6) and (7) sim-
ply stem from the conjecture that the “closer” �̂

(0)

k
 is to a diagonal matrix, the higher the 

group-wise penalty shall be, thus forcing some of the entries in Ωk to be shrunk to 0.

3.6 � Obtaining Pk: Comparison of Methods

The strategies mentioned above share the same underlying rationale as they aim to impose 
stronger penalization on those entries corresponding to weaker sample conditional depend-
encies among variables. Moreover, being the specification class specific, they fruitfully 
encompass situations where one or more groups present different sparsity patterns and 
magnitudes. While the solution in Section 3.4 induces an entry-wise different penalty, it 
heavily depends on the estimation of �̂

(0)

k
 . Therefore, in those situations where the reliabil-

ity of the sample estimates is difficult to assess, it might be convenient to let Pk depend on a 
group-specific constant, as for the strategy in Section 3.5.

The proposed approaches generalize the one by Zhou et  al. (2009), as the strategies 
coincide when Pk is set to be equal to a matrix of ones for all k = 1,… ,K . Once the defi-
nition of Pk has been established, coherently to Zhou et al. (2009), the model is estimated 
employing an EM algorithm: details are given in the next section.

3.7 � Model Estimation

For a fixed number of components K and penalty terms λ and Pk, model estimation deals 
with the maximization of (4) with respect to Ψ. Within the EM framework, a penalized 
complete-data log-likelihood is naturally defined as follows:

where as usual zik is the categorical latent variable indicating the component which obser-
vation xi belongs to. The algorithm alternates between two steps. At the t-th iteration, the 
E-step provides the expected value ẑ(t)

ik
 for the unknown labels zik given �̂

(t−1) , while in the 
M-step (8) is maximized to determine �̂

(t) , conditioning on ẑ(t)
ik

.
In detail, in the E-step the posterior probability of xi belonging to component k is 

updated as follows:

(6)Pk,ij =
1

D

(
�̂

(0)

k
, diag

(
�̂

(0)

k

)) , ∀i, j = 1,… , p and i ≠ j,

(7)Pk,ij =
1

D

(
�̂

(0)

k
, �p

) , ∀i, j = 1,… , p and i ≠ j,

(8)𝓁C(�) =

n∑

i=1

K∑

k=1

zik log�k�(�i;�k,�k) − �

K∑

k=1

‖‖�k◦�k
‖‖1 ,
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In the M-step, the updating formulas for mixing proportions and cluster means are 
readily given by:

where n(t)
k

=
∑n

i=1
ẑ
(t)

ik
 . Notice that, as mentioned in Section 2, we are not concerned in pro-

viding penalized estimators for μk. At any rate, should sparse mean vectors be of interest, 
an extra penalty can be promptly accommodated by adding the term �2

∑K

k=1

∑p

j=1
��jk� in 

(4). In this case, estimation of sparse μk follows directly the steps outlined in Section 2.3.1 
of Zhou et al. (2009).

When (8) is maximized with respect to Ωk, the penalized complete log-likelihood 
simplifies as follows:

By rearranging terms in (11), the following optimization problem needs to be solved 
to obtain the estimate �̂

(t)

k
:

with the constraint that Ωk must be positive definite, Ωk ≻ 0, and Sk denoting the weighted 
sample covariance matrix for cluster k:

Following Zhou et  al. (2009), a coordinate descent graphical lasso algorithm by 
(Friedman et  al., 2008) is employed for solving the maximization problem in (12), 
where in our context the penalty is equal to 2��k∕n

(t)

k
.

3.8 � Further Aspects

Hereafter, we discuss some practical considerations related to the algorithm devised for 
maximizing (4) and described in the previous section.

Convergence  The EM algorithm is considered to have converged once the relative dif-
ference in the objective function for two subsequent iterations is smaller than ε, for a 
given ε > 0:

(9)ẑ
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=
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In our analyses, ε is set equal to 10− 5.

Model Selection  While the determination of Pk is entirely data-driven and does not 
require any external tuning, model selection still needs to be performed when it comes 
to identify the best number of components K and the common penalty term λ. We rely on 
previous results (Pan and Shen, 2007; Zou et al., 2007; Lian, 2011) which propose to select 
λ and K by maximizing a modified version of the Bayesian Information Criterion (BIC, 
Schwarz, 1978):

where logL(�̂) is the log-likelihood evaluated at �̂ , obtained maximizing (4), and d0 is the 
number of parameters that are not shrunk to 0 by the penalized estimation.

Implementation  Routines for fitting the group-wise shrinkage method for model-based 
clustering have been implemented in R (R Core Team, 2022), and the source code is freely 
available at https://​github.​com/​Andre​aCapp​ozzo/​spars​emix in the form of an R package. 
Despite not being explicitly used in the present manuscript, the sparsemix software 
allows for penalizing the mean vectors μk along the lines of Zhou et al. (2009), thus provid-
ing a complete generalization of the methodology described therein.

Promising results are obtained when performing penalized model-based clustering with 
Pk defined as in (6) and (7), as reported in the next section.

4 � Simulated Data Experiment

4.1 � Experimental Setup

We illustrate, via numerical experiments, the effectiveness of the proposed procedures in 
recovering the true group-wise conditional structure in a multi-class population. We gener-
ate n = 1500 observations from a Gaussian mixture distribution with K = 3 components, 
with the precision matrices Ωk having various sparsity patterns, embedding different asso-
ciation structures. Three different scenarios are considered:

•	 Equal proportion of edges in Ωk: for each replication of the simulated experiment, the 
precision matrices Ωk are generated according to a sparse at random Erdős-Rényi graph 
structure (Erdős and Rényi, 1960) characterized by the same probabilities of connec-
tion, equal to 0.5. The number of variables is p = 20.

•	 Different proportion of edges in Ωk: for each replication of the simulated experiment, 
the precision matrices Ωk are generated according to a sparse at random Erdős-Rényi 
graph structure, with probabilities of connection equal to 0.1, 0.8 and 0.4 for Ω1, Ω2 
and Ω3, respectively. The number of variables is p = 20.

•	 High-dimensional and different proportion of edges in Ωk: for each replication of the 
simulated experiment, the precision matrices Ωk are generated according to a sparse at 

|�P

(
�̂

(t+1)
)
− �P

(
�̂

(t)
)
|

|�P

(
�̂

(t)
)
|

< 𝜀.

(13)BIC = 2 logL(�̂) − d0 log(n),

659

https://github.com/AndreaCappozzo/sparsemix


Journal of Classification (2022) 39:648-674

random Erdős-Rényi graph structure with different probabilities of connection as per 
the previous scenario. The number of variables is p = 100.

In all scenarios, we take equal mixing proportions πk = 1/3, k = 1,2,3 and mean vec-
tors equal to:

 for the first two scenarios, while

for the high-dimensional case, with e20 and e100 identifying the all-ones vector in ℝ20 and 
ℝ

100 , respectively. Such parameters induce a moderate degree of overlapping between 
components in the lower-dimensional case, while producing well-separated clusters in the 
high-dimensional scenario. We point out again that the primary objective of the study is 
assessing the recovering of the true underlying sparse precision matrices, and so we do 
not impose any regularization on the mean parameters. An example of the graph structures 
resulting from the first two scenarios are reported in Figs. 2 and 3 respectively.

We repeat the experiment B = 100 times, and for each replication we fit the model in 
(4), computing Pk as follows:

•	 Zhou et al. (2009): Pk set equal to the all-one matrix for k = 1,2,3
•	 Pk via Frobenius distance in �p

+ : Pk computed as in (6), with D(⋅, ⋅) the Frobenius dis-
tance in the �p

+ space,
•	 Pk via Riemannian distance in �p

+ : Pk computed as in (6), with D(⋅, ⋅) the Riemannian 
distance in the �p

+ space,
•	 Pk via inversely weighted |�̂(0)

k
| : Pk computed as in (5).

A grid of equispaced 100 elements for the penalty term λ is considered, with lower and 
upper extremes set to:

�1 = −1.5�20, �2 = 0�20, �3 = 1.5�20,

�1 = 5�100, �2 = 0�100, �3 = 5�100,

(14)

[
0,max

k

{
max

{
|�(0)

k
− �p|

}n
(0)

k

2

}]
,

Ω1 Ω2 Ω3

Fig. 2   Example of simulation setting Equal proportion of edges in Ωk. Black squares denote the presence of 
an edge between the two variables
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where the inner max operation is taken element-wise, and with �(0)
k

 and n(0)
k

 the starting 
estimates of the sample covariance matrices and their associated sample sizes, initialized 
via Gaussian mixture models provided by the mclust software (Scrucca et  al., 2016). 
Other initialization strategies are clearly possible, as described in Section 3.3. We note that 
the upper term in (14) forces the final estimates �̂k to be approximately diagonal when Pk 
are equal to all-ones matrices (Zhao et al., 2012).

The performance of the methods, in relation to the different specification of the Pk 
matrices, is evaluated via component-wise F1 scores defined as in (3), where the problem 
of matching the estimated clustering to the actual classification is dealt with by means of 
the matchClasses routine of the e1071 R package (Meyer et al., 2020). Simulation 
results are reported in the next subsection.

4.2 � Simulation Results: Recovering the Association Structure

Results for the simulated experiments are summarized in Fig. 4, depicting smoothed lines 
plots of the F1 scores for the estimated Ωk, k = 1,2,3, under the three considered scenarios, 
for different specifications of the matrices Pk and shrinkage factor λ. By visually exploring 
Fig. 4, several interesting patterns emerge.

First off, it is immediately noticed that the methods performance in the first scenario 
does not vary across components, with strong similarities between F1 score trajectories for 
Ω1, Ω2 and Ω3. This is expected, as each precision matrix is generated with a probability of 
connection equal to 0.5. This is the “gold-standard” scenario for the method described in 
Zhou et al. (2009), since in principle a common λ should be sufficient for achieving the 
same group-wise degree of sparsity. Indeed, the highest F1 values (around 0.7) are achieved 
by all proposals when small penalty values are considered. Notwithstanding, multiplying 
the common shrinkage term by a group-specific factor Pk moderates the rapid decline in 
performance when λ increases. Particularly, computing the Pk as a function of the Frobe-
nius distance between �̂

(0)

k
 and diag

(
�̂

(0)

k

)
 greatly downweights the impact of the common 

penalty term, making the procedure less sensitive to the selection of λ.
The beneficial effect of group-wise Pk becomes apparent in the second scenario, where 

the true precision matrices have dissimilar a priori probability of connection. F1 trajecto-
ries are component-wise different: the almost diagonal Ω1 would require a higher shrinkage 

Ω1 Ω2 Ω3

Fig. 3   Example of simulation setting Different proportion of edges in Ωk. Black squares denote the presence 
of an edge between the two variables
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for recovering the very sparse underlying graph structure, whereas the highly connected 
Ω2 is well-estimated when low values of λ are considered. This trade-off is mitigated by 
the Pk factor, which adjusts for under or over-connectivity within the estimation process. 
In particular, every suggested approach succeeds in improving the strategy of Zhou et al. 
(2009), with F1 patterns for our proposals almost always dominating the common shrink-
age method. This behavior is intensified even further in the scenario with a larger number 
of variables, where as soon as λ increases, the proportion of incorrectly missed edges pro-
duces a huge drop in the F1 score for the second component. As previously highlighted, 
the Pk via Frobenius distance in �p

+ is the solution enforcing the greatest discount on the 
common λ, greatly improving the results for Ω2 at the expense of overestimating the true 
number of edges for Ω1.

Figure  4 shows the overall superiority of our proposals with respect to a common 
penalty framework in group-wise recovering of sparse precision matrices. Nevertheless, 
when it comes to performing the analysis, a single value of λ must be chosen. We make 
use of the BIC criterion defined in Section 3.8 to determine the best λ for each method 
and instance of the simulated experiments. For the B = 100 simulations in the three 
scenarios, the resulting empirical distribution of the mean F1 score averaged over �̂1 , 
�̂2 , and �̂3 is reported in Fig.  5. As expected, the overall results do not dramatically 
change in the equal proportion of edges in Ωk case. On the other hand, for the other two 
scenarios, our proposals perform substantially better compared to Zhou et  al. (2009), 
especially in the case with larger number of variables. None of the introduced methods 
for computing Pk seems to outperform the others; nonetheless, it is clear that, whenever 
the degree of conditional dependence varies greatly across components, weighting the 
common penalty λ by a group-specific factor improves the recovering of the group-wise 
different sparse structures.
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Fig. 4   Smoothed lines plots of the F1 score for B = 100 repetitions of the simulated scenarios, varying 
method and shrinkage factor λ 
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4.3 � Simulation Results: Clustering Performance

The previous section showcases the ability of our proposals in learning group-wise 
different sparse structures in the components precision matrices. In doing so, we did 
not directly assess the obtained clustering, as the mean vectors induced adequately 
well-separated components. We hereafter evaluate the recovering of the underlying 
data partition by generating further B = 100 samples from the Different proportion of 
edges in Ωk scenario. Contrarily to the previous study, we fix μ1 = μ2 = μ3 = 0. That 
is, components differ only on the basis of their conditional dependence structures, 
and thus the final allocation is entirely driven by the estimated precision matrices 
�̂k . In this case, where both the clustering and the association structures are of inter-
est, a comprehensive model selection strategy is needed to choose K and to properly 
tune λ. More specifically, coherently with both the model-based clustering literature 
and the penalized estimation schemes setting, we evaluate each model on a grid of λ 
values, whose range is computed as in (14), and for different mixture components K 
∈{2,3,4,5}. For each model, we select λ and K according to the BIC criterion defined 
in (13). The adjusted Rand index (ARI, Hubert and Arabie, 1985) is employed for 
comparing the estimated classification with the true data partition. The results are 
reported in Fig. 6. While the resulting clustering is satisfactorily close to the true one 
for all models, including in the penalty specification the group-wise shrinkage matri-
ces Pk seems to improve the overall performance. Careful analysis of the results dem-
onstrates that the model with common penalty struggles in separating the components 
with high and medium degree of connectivity. Such a behavior is exacerbated even 
further when the data dimensionality is equal or even larger than the sample size, as 
demonstrated in the next section.

4.4 � Simulation Results: p ≥ n Scenarios

In this section we further explore, via simulation, the applicability of our proposals 
when the data dimension is equal or even larger than the sample size. In detail, the fol-
lowing data generating process is considered: we sample n = 100 observations from a K 
= 2 Gaussian mixture, with precision matrices generated according to a sparse at ran-
dom Erdős-Rényi graph structure with probabilities of connection equal to 0.1 and 0.8 

Equal proportion of edges in Ωk Different proportion of edges in Ωk High − dimensional and different proportion of edges in Ωk

0.60 0.64 0.68 0.72 0.76 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5

Zhou et al.(2009)

Pk via Frobenius distance in S+
p

Pk via Riemannian distance in S+
p

Pk via inversely weighted |Ω̂k

(0)
|

Average F1 score

Fig. 5   Boxplots of the mean F1 score, averaged over Ω̂
1
 , Ω̂

2
 and Ω̂

3
 , for the B = 100 simulations in the three 

considered scenarios. For each simulation and method, the shrinkage parameter λ is selected according to 
the modified BIC defined in (13)
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(the same structure as for the first two components in the Different proportion of edges 
in Ωk scenario, see Section 4.1). We contemplate two different cases, setting the number 
of variables equal to p = 100 and p = 200. For each scenario, we replicate the experi-
ments B = 100 times, monitoring the resulting mean F1 scores and ARI: Figures 7 and 8 
report the resulting boxplots for the former and latter metric, respectively.

Similarly to what observed in the right-most panel of Fig. 5, the inclusion of data-
driven Pk assures a better recovery of the true conditional association structure: the 
mean F1 scores displayed by our proposals are significantly higher than the one dis-
played by Zhou et  al. (2009). Particularly, employing the strategy described in Sec-
tion 3.5, coupled with a Frobenius distance, seems to outperform all the other proce-
dures. Interestingly, our proposals showcase fairly good results even in the challenging n 
= 100, K = 2, p = 200 scenario, demonstrating the effective applicability of such criteria 
even when the feature space is bigger than the sample size. The same holds only par-
tially true when we monitor the ARI (Fig. 8). As it may be expected, the high dimen-
sionality deteriorates the recovery of the true data partition for all penalized models. 
Nonetheless, the ARI for methods with group-wise different Pk is never lower than the 
one of Zhou et  al. (2009). Moreover, the clustering retrieved by the Pk via inversely 
weighted |�̂(0)

k
| procedure is significantly better than all the other alternatives, particu-

larly for the n = 100, K = 2, p = 100 scenario.

4.5 � A Note on Computing Times

All the penalized methods considered in the aforementioned simulation studies rely on an 
iterative algorithm when performing parameters estimation. To this extent, it is of inter-
est to investigate the required elapsed time to fit the models. Table 1 reports the average 
computing times and associated standard deviations for different methods and simulated 
scenarios. All the simulated experiments were run on a computer cluster with 32 proces-
sors Intel Xeon E5-4610 @2.3GHz.

Zhou et al.(2009)

Pk via Frobenius distance in S+
p

Pk via Riemannian distance in S+
p

Pk via inversely weighted |Ω̂k

(0)
|

0.96 0.97 0.98 0.99
Adjusted Rand Index

Fig. 6   Boxplots of the ARI for the B = 100 simulations of the scenario described in Section 4.3. For each 
method, the shrinkage parameter λ and the number of components K are selected according to the modified 
BIC defined in (13)
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First off, recall that the calculation of the group-wise different Pk in our proposals is per-
formed only once prior to start the EM algorithm. Therefore, at least in principle, the extra 
computational effort required by our methods with respect to the one by Zhou et al. (2009) 
amounts only to compute the Pk at the beginning of the iterative procedure. By looking at 
Table 1 we notice that, irrespective of the methods and quite naturally, a higher dimensionality 
is associated with a longer computational time. At any rate, in low dimensional settings (Equal 
proportion of edges inΩk and Different proportion of edges in Ωk) our methods seems to be 
even (slightly) faster than Zhou et al. (2009). Conversely, when the dimensionality increases, 
Zhou et al. (2009) showcase, as expected, the shortest computing times. This is particularly 
true if compared with the Pk via Frobenius distance in Sp+ strategy, for which it appears a larger 
number of EM iterations are necessary to reach convergence in high-dimensional settings. 
Notwithstanding we argue that, as extensively demonstrated in the previous sections, the small 
extra price to pay in terms of computing time tends to be well worth when it comes to detect 
clusters with diverse degrees of sparsity between the variables.

All in all, considering a group-wise penalty not only improves the estimation of the compo-
nent precision matrices, but it also enhances the quality of the resulting data partition in all the 
simulated scenarios, even in the most challenging ones in which the data dimension is equal or 

n=100, K=2, p=100 n=100, K=2, p=200
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Pk via inversely weighted |Ω̂k

(0)
|

Average F1 score

Fig. 7   Boxplots of the mean F1 score, averaged over Ω̂
1
 , Ω̂

2
 , for the B = 100 simulations in the two p ≥ n 

scenarios. For each simulation and method, the shrinkage parameter λ is selected according to the modified 
BIC defined in (13)
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Fig. 8   Boxplots of the ARI for the B = 100 simulations in the two p ≥ n scenarios. For each simulation and 
method, the shrinkage parameter λ is selected according to the modified BIC defined in (13)
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even greater than the sample size. The same happens in the illustrative data examples, as it is 
reported in the next section.

5 � Illustrative Datasets

This section presents two illustrative data examples. In this case, contrarily to the synthetic 
experiments reported in Section 4, the true underlying graph structure is unknown and thus 
we employ several metrics to assess the model performance under the different definitions of 
the Pk matrices. Classification accuracy is evaluated as usual via the ARI, while the number of 
non-zero estimated parameters in the precision matrices (indicated by dΩ) is taken as a proxy 
of model complexity. The identification of the underlying conditional association structure is 
evaluated by implementing the following approach. Using the true class labels we compute 
the data class-specific precision matrices; then, for each method, we measure the median dis-
tance (in terms of the Frobenius norm) between the empirical and the estimated sparse preci-
sion matrices. In doing so, we make again use of the matchClasses routine to match the 
empirical class-specific precision matrix with its corresponding sparse estimate. In detail, the 
Median Frobenius Distance metric (MFD) is computed as follows:

with ||⋅||F denoting the Frobenius norm, while �̂k is the estimated precision matrix of the 
k-th component for a given method and �̄k is the empirical k-th class precision matrix, 
computed using the true labels.

Similarly to the first simulation study, we fix the number of clusters to the number of 
classes available in the data; we do so in order to focus the attention on the model selec-
tion aspect concerning the recovery of the conditional association structure, rather than on 
the selection of the number of components in the mixture. Lastly note that data have been 
standardized before applying any modeling procedure, as it is customarily done with penal-
ized estimation. Nonetheless, we acknowledge that standardization can have an impact on 
the results and we refer to the recent work by Carter et al. (2021) for a thorough discussion.

(15)median
k∈1,…,K

(
|| �̂k − �̄k||F

)

Table 1   Average computing time (in seconds) over B = 100 runs for the simulation studies reported in Sec-
tions 4.2 (first three columns) and 4.4 (last two columns). The metric refers to the average time required in 
fitting a model with a single shrinkage term λ. Standard errors are reported in parentheses

Equal prop of
edges in Ωk

Diff prop of
of edges in Ωk

High dim and diff
prop of edges in Ωk 

Section 4.4
p = 100

Section 4.4
p = 200

Zhou et al. (2009) 0.0918 0.0892 0.1461 1.5895 10.5871
(0.073) (0.106) (0.055) (0.092) (0.495)

Pk via Frobenius 0.0352 0.0458 2.7869 3.024 22.2367
distance in Sp+ (0.016) (0.098) (0.723) (2.514) (18.184)
Pk via Riemannian 0.0325 0.0378 0.4767 1.7297 11.7203
distance in Sp+ (0.014) (0.05) (0.532) (0.559) (4.547)
Pk via inversely 0.0294 0.0347 0.2065 1.5943 10.7254

weighted |Ω̂(0)

k
| (0.015) (0.045) (0.156) (0.118) (0.915)
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5.1 � Olive Oil

The first dataset reports the percentage composition of p = 8 fatty acids in n = 572 units 
of olive oil. The oil samples come from K = 9 Italian regions: the aim is to recover the 
geographical partition of the oils by means of their lipidic features. This dataset was firstly 
described in Forina et al. (1983) and it is available in the R package pgmm (McNicholas 
et al., 2019). Results for the considered methods are reported in Table 2.

Together with the different specification of Pk for sparse estimation, we include in the 
comparison the standard model-based clustering approach with eigen-decomposed covari-
ance matrices selected using BIC, fitted via the mclust software (Scrucca et al., 2016).

For all penalized methods, the selection criterion defined in (13) is used to identify the 
best λ in a data-driven fashion. In general, penalized models outperform mclust VVE 
(different volume and shape but same clusters orientation) in recovering the true data parti-
tion. This might be due to the rigid dependence structure imposed by such model, where 
the association among variables is forced to be equal across all components. Notice that 
including a data-dependent specification for Pk slightly improves the clustering accuracy 
with respect to the all-one matrix (Zhou et al., 2009). Moreover, the overall model com-
plexity is reduced: the method with common penalty selects a λ that induces a mild spar-
sity, as a total of Kp(p + 1)/2 = 324 parameters would be considered in a fully uncon-
strained estimation. On the other hand, for our proposals the number of non-zero inverse 
covariance parameters dΩ is lower than for the full model, and particularly the Pk via 
inversely weighted |�̂(0)

k
| approach substantially reduces the number of estimated param-

eters, while showcasing the highest ARI and the lowest Median Frobenius distance. The 
corresponding graphs for the 9 different clusters are reported in Fig. 9, in which we see that 
the conditional dependence structure appreciably varies across regions, with our proposal 
taking advantage of it in the estimation phase.

5.2 � Handwritten Digits Recognition

The second dataset, publicly available in the University of California Irvine Machine 
Learning data repository (http://​archi​ve.​ics.​uci.​edu/​ml/​datas​ets/​optic​al+​recog​nition+​of+​
handw​ritten+​digits), contains n = 5620 samples of handwritten digits represented by 64 
features. Each variable counts the pixels of an 8 × 8 grid in which the original images 
were divided. The aim is to recognize the K = 10 digits by means of the penalized proce-
dures introduced in the paper. This clustering problem is more challenging than the one 
presented in Section 5.1, due to both the higher dimensionality and the narrower separation 

Table 2   BIC, ARI, number of 
estimated parameters and Median 
Frobenius Distance, as defined in 
(15), for different model-based 
clustering methods. Olive oil 
dataset

BIC ARI dΩ MFD

mclust VVE − 4790 0.6586 100 758
Zhou et al.(2009) − 5302 0.6724 320 830

Pk via inversely weighted |Ω̂(0)

k
| − 5058 0.7199 242 421

Pk via Frobenius distance in �p

+ − 5286 0.6875 312 701
Pk via Riemannian distance in �p

+ − 5282 0.6812 314 798
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between classes (see Fig. 10). Before applying the different clustering methods, we employ 
a preprocessing step, excluding from the subsequent analysis all predictors with near zero 
variance. This boils down to essentially remove the left-most and right-most pixels in each 
image, as being mostly white they contain no separating information. To this task, we use 
the default routines available in the R package caret (Kuhn, 2021). After having elimi-
nated these variables, we are left with p = 47 features, which are then considered to per-
form model-based clustering. Results are reported in Table 3. The parsimonious structure 
selected by mclust forces the precision matrices to be all equal across groups. This rigid 
constraint undermines the classification accuracy and the uncovering of the conditional 
dependence structure, resulting in the worst ARI and Median Frobenius distance metrics. 
Conversely, the penalized methods are able to shrink the estimates in a group-wise manner. 
This is especially true in our proposals for which, even though the resulting classification 
accuracy is not dramatically affected, the Median Frobenius distance is always smaller than 
Zhou et al. (2009). In Fig. 11 we report the estimated graphs in the precision matrices for 
the Pk via Riemannian distance in Sp+ approach which results in the highest ARI. Lastly 
note how the numbers of estimated edges appreciably differ between digits, an aspect that 
is implicitly taken into account in our data-driven specification of the Pk matrices.

Ω̂South Apulia Ω̂Umbria Ω̂West Liguria

Ω̂Inland Sardinia Ω̂North Apulia Ω̂Sicily

Ω̂Calabria Ω̂Costal Sardinia Ω̂East Liguria

Fig. 9   Estimated graphs in the precision matrices for the Pk via inversely weighted |�̂(0)

k
| approach. Black 

squares denote the presence of an edge between the two variables. Olive oil dataset
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6 � Discussion

The present paper has highlighted the limitations of imposing a single penalty when per-
forming sparse estimation of component precision matrices in a multi-class setting. We 
have argued that methods enforcing similarities in the graphical models across groups may 
not be adequate for classification, since they have detrimental effects when it comes to 
groups discrimination, in particular in the case of clustering. Thus, we have focused our 
attention on the penalized model-based method with sparse precision matrices framework 
of Zhou et  al. (2009), where class-specific differences are preserved. Nonetheless, this 
methodology does not account for situations in which a component displays under or over-
connectivity with respect to the remaining ones. To this extent, we have proposed some 
procedures to incorporate group-specific differences in the estimation, enforcing a care-
fully initialized solution to drive the algorithm in under or over penalizing specific compo-
nents. Numerical illustrations and analyses on real data have confirmed the validity of our 
proposals. By means of our solutions we have achieved both group-wise flexibility in the 
precision matrices reconstruction and we have mitigated the impact the common shrinkage 
factor has in the overall sparse estimation.

The present paper opens up a quite natural direction for future research: the penal-
ized approach could be adapted to estimate sparse covariance matrices, rather than preci-
sion matrices. In the Gaussian case, a missing edge between two nodes in the Gaussian 
covariance graph model corresponds to two variables being marginally independent, and 

5 6 7 8 9

0 1 2 3 4

Fig. 10   Image representation of the means of digits 0 to 9. Handwritten digits dataset

Table 3   BIC, ARI, number of 
estimated parameters and Median 
Frobenius Distance, as defined in 
(15), for different model-based 
clustering methods. Handwritten 
digits dataset

BIC ARI dΩ MFD

mclust EEE − 521220 0.6489 1128 172
Zhou et al.(2009) − 388862 0.6837 4914 148

Pk via inversely weighted |�̂(0)

k
| − 368604 0.6820 3436 104

Pk via Frobenius distance in �p

+ − 391359 0.6827 6066 146
Pk via Riemannian distance in �p

+ − 388902 0.6841 5206 147
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the so-called covariance graph (Chaudhuri et al., 2007) allows to represent the pattern of 
zeroes in the covariance matrices. A related methodology based on cluster-specific pen-
alties has been recently introduced by Fop et al. (2019), unfortunately, such an approach 
relies on a time-consuming graph structure search, making it less attractive in high-dimen-
sional problems. On the other hand, the definition of a penalized likelihood that incorpo-
rates a covariance graphical lasso term (Bien and Tibshirani, 2011; Wang, 2014) can be 
effectively employed in these scenarios: model definitions are being explored and they will 
be the object of future work.

The framework proposed here has also interesting connections with the notion of 
global-local shrinkage developed in the Bayesian literature for sparsity-inducing priors 
(Bhattacharya et al., 2015; Polson & Scott, 2010). The general formulation of these priors 
is based on a normal scale mixture representation, where the mean is zero and the variance 
is expressed as the product of two nonnegative parameters: one scaling parameter pulls the 
global shrinkage towards zero, while the other allows for modifications in the amount of 
shrinkage (Bhattacharya et al., 2015). Global-local shrinkage priors for Gaussian graphi-
cal models have been employed in Leday et al. (2017) for gene network inference in the 
case of a homogeneous population. The authors develop a simultaneous equations mod-
eling approach for graph inference, where the regression parameters are given Gaussian 
scale mixture priors for local and global shrinkage, which allows borrowing of informa-
tion among the regressions and encourages the posterior expectation of the correspond-
ing entries of the precision matrix to be shrunk towards zero. As pointed out by Leday 
et al. (2017), compared to Meinshausen et al. (2006), a disadvantage of these priors is that 
they do not automatically perform variable selection, hence the graph structure needs to be 
recovered by thresholding of the posterior means of the regression coefficients. An alterna-
tive use of global-local shrinkage priors is in the Bayesian graphical lasso of Wang (2012). 
Here, it is shown that the graphical lasso estimator is the maximum a posteriori of a Bayes-
ian hierarchical model where the entries of the precision matrix have exponential and dou-
ble exponential prior distributions, which can be represented as a scale mixture of normals. 
We note that the graphical modeling Bayesian frameworks of Leday et al. (2017) and Wang 
(2012) are developed for the case of a homogeneous sample, and that global-local shrink-
age is intended only in terms of joint shrinkage of all the entries of Ω, allowing only for 
variable and scale-specific adjustments. In contrast, in our proposed approach, global-local 
shrinkage would be intended in terms of joint shrinkage of the component precision matri-
ces Ωk towards a common level of sparsity, with cluster related adaptations. The penalty 
term λ could be considered the global shrinkage factor, which equally shrinks the entries 
of the precision matrices across the mixture components, while the weighting matrices Pk 
allow for local cluster-specific adjustments. Following the literature on penalized model-
based clustering, we devised our proposal under a penalized likelihood framework, which 
has computational advantages especially in high-dimensional scenarios. However, with the 
purpose of sparse Bayesian model-based clustering, carefully defined prior distributions 
could be defined for global-local shrinkage across mixture components and within clusters; 
these considerations open a path for future developments of our proposal in a Bayesian 
context and are currently under exploration.

As a last worthy note, even if the proposed procedure is applicable in a general setting, 
we believe that the definition of group-specific penalties should never leave aside prior 
information and subject-matter knowledge whenever available, as their incorporation in the 
methodology can be strongly beneficial for the analysis.
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