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Abstract

A stochastic multi-stage portfolio model for a hydropower producer oper-
ating in a competitive electricity market is proposed. The portfolio includes
its own production, a set of power contracts for delivery or purchase includ-
ing contracts of financial nature as forwards to be able to hedge against risks.
The goal of using such a model is to maximise the profit of the producer and
reduce the economic risks connected to the fact that energy spot and forward
prices are highly volatile. Our results show that, forward contracts can be
used for hedging purposes if we assume that their price can be derived by
the spot dynamics. In incomplete markets the relationship between spot and
forward price is non uniquely determinate. If we explicitly model the spot
and the forward dynamicss we can obtain consistent scenarios which allow
for speculative behaviour. Beyond financial gains, the convenience of using
financial contracts is a more efficient use of the hydroplant, taking advantage
of the possibility of pumping water and ending up with a higher final value
of the reservoir.

1We would like to thank the Innowatio S.r.l. for kindly providing data used in this
analysis. Financial support for this work comes from 2008 Research Bergamo University
Grants coordinated by Bertocchi and Giacometti.
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1. Introduction

As a result of the liberalization of energy markets, generation compa-
nies are exposed to higher uncertainties. Risk management becomes a more
pressing issue for electricity consumers and producers and contracts for fu-
ture delivery of electricity (i.e.forwards contracts) become a tool for hedging
risk. The hydropower producer’s portfolio includes his own production, a set
of power contracts for delivery or purchase including contracts of financial
nature as forwards to be able to hedge against various types of risks. In this
paper we develop a stochastic portfolio model for a hydropower producer
operating in a competitive electricity market.

The goal of using such a model is to reduce the economic risks connected
to the fact that energy spot price may be highly volatile due to various dif-
ferent, unpredictable reasons (i.e. very cold winter) and to the possibility of
a period of scarcity of raining or snowmelting. See [18] and [13] for discus-
sion on the opportunity of using stochastic programming for such problem.
The basis risk factors include the wholesale spot and forward price of elec-
trical energy, which are supposed to be unaffected by the decision of the
utility manager, and the uncertain inflow of hydro reservoirs, see also [8].
The model we propose differs from the one discussed in [8] since we want to
concentrate on the advantage of using financial contracts and therefore we
use as source of uncertainties both the electricity spot prices and the forward
prices considering inflows as deterministic. We leave for future research the
inclusion of stochastic inflows.

2. The producer daily scheduling model

Electricity generation is modeled at the level of detail common in medium-
long term hydroplanning model with a granularity of one day at its finest,
with start-up and shut-down costs considered not significant.

We start introducing the model of the hydroelectric system with hourly
periods. The hydroelectric system consists of a number of cascades, i.e. sets
of hydraulically interconnected hydro plants, pumped-storage hydro plants
and reservoirs. It is mathematically represented by a directed multi-graph,
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where nodes represent water storages (reservoirs) and arcs represent water
flows (either power generation, or pumping, or spillage). Let J denote the
set of nodes and I denote the set of arcs. The arc-node incidence matrix,
whose (i, j)-entry is denoted by Ai,j, represents the interconnections among
water storages and water flows in the hydroelectric system (Ai,j = −1, if arc
i leaves node j; Ai,j = 1, if arc i enters node j; Ai,j = 0, otherwise). For
every arc i ∈ I and for every node j ∈ J the following data are relevant:

• ki [MWh/103m3]: energy coefficient (ki > 0, if arc i represents gen-
eration; ki < 0, if arc i represents pumping; ki = 0, if arc i represents
spillage)

• qi [103m3/h]: maximum water flow in arc i

• vj [103m3]: maximum storage volume in reservoir j

• vj,0 [103m3]: initial storage volume in reservoir j

• vj,T [103m3]: minimum storage volume required in reservoir j at the
end of hour T

• fj,t [103m3/h]: natural inflow in reservoir j in hour t

The power producer must schedule the production of each hydro plant,
which is expressed as the product of the hydro plant energy coefficient times
the turbined volume in hour t, as well as the hourly pumped and spilled
volumes. The decision variables of the hydro scheduling problem are

• qi,t [103m3/h]: water flow on arc i in hour t (turbined volume, if arc
i represents generation; pumped volume, if arc i represents pumping;
spilled volume, if arc i represents spillage);

• vj,t [103m3]: storage volume in reservoir j at the end of hour t.

The values assigned to the decision variables must satisfy the following
constraints that describe the hydroelectric system:

• flow on arc i in hour t is nonnegative and bounded above by the max-
imum volume that can be either turbined, or pumped, or spilled

0 ≤ qi,t ≤ qi i ∈ I, 1 ≤ t ≤ T (1)
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• the storage volume in reservoir j at the end of hour t is nonnegative
and bounded above by the maximum storage volume

0 ≤ vj,t ≤ vj j ∈ J, 1 ≤ t ≤ T (2)

• at the end of hour T , the last hour of the planning period, the storage
volume in reservoir j is bounded below by the minimum storage volume
required at the end of the current planning period, so as to provide
the required initial storage volume at the beginning of the following
planning period

vj,T ≤ vj,T j ∈ J (3)

• the storage volume in reservoir j at the end of hour t must be equal to
the reservoir storage volume at the end of hour t − 1 plus the sum of
inflows in hour t minus the sum of outflows in hour t

vj,t = vj,t−1 + fj,t +
∑

i∈I

Ai,j · qi,t j ∈ J, 1 ≤ t ≤ T (4)

where vj,0 is a data representing the initial storage volume in reservoir j.
Reservoir inflows are natural inflows, turbine discharge from upstream
hydro plants, pumped volumes from downstream hydro plants, spilled
volumes from upstream reservoirs. Reservoir outflows are turbine dis-
charge to downstream hydro plants, pumped volumes to upstream hy-
dro plants and spilled volumes to downstream reservoirs. In this paper,
the values of natural inflows fj,t, j ∈ J, 1 ≤ t ≤ T , are assumed to be
known with certainty.

• the value of the reservoir at the end of the horizon V (vj,T ), is a function
of reservoir level that has to be specified to avoid end effects.

This is the general model used by the producer for daily scheduling where
the time unit is the hour. When we want to include financial contracts we
will assume to work on a daily basis. Thus, all the previous equations will
be transformed to fit the new time period and t will represent the day. From
now on, T represents the time horizon expressed in multiple of days.

3. The use of forward contracts

An electricity forward contract is the obligation to buy or sell a specified
amount of power -1 MegaWatt (MW) during every hour (i.e. base-load) - at
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a predetermined delivery price, the forward price, during a delivery period
fixed at the issue time of the contract. Additional to these so-called base-
load contracts, there are peak-load contracts, which deliver 1MW every hour
during working days from 8 am to 8 pm, in the delivery period only. In this
paper we will not consider them, at this stage.

The forwards contracts are standardized by the following characteristics:
volume, delivery period and settlement. The volume is the number of MWh
underlying the contract. For contracts with a fixed rate (energy amount per
hour) of 1 MW, it is equivalent to the number of hours in the delivery period.
As an example, for a April contract with monthly delivery period (in the
following we will specify the days in the delivery period as DP, hence DP = 30
days in our example), this means a total of 1MW × 30days × 24h/day =
720MWh. The quoted forward price is the price at which the owner of the
contract will buy/sell energy during the delivery period per 1MWh. The
value of the contract is the product of the quotation and the volume. For
each buying or selling of the contract, we consider a transaction fee of 0.01
per MW and an estimated bid-ask spread of 3% of the forward price. In our
example the transaction fee is 0.01EUR × 30days × 24h/day = 7.2EUR

The delivery periods are fixed to each of the 12 calendar months (M1,
M2, .., M12), to the four quarters (Q1, Q2, Q3, Q4) of the calendar year or
to the whole calendar year. There are also shorter delivery period of one day,
one week, and the week-end. For each contract we can distinguish between
a trading period and a delivery period. The trading in a given contract
stops when it enters the delivery period. An other relevant characteristic is
the settlement. We can distinguish between financial contracts and physical
contracts. The former requires a cash settlement of forward price against the
realized spot prices during the delivery period. The latter requires energy’s
delivery at the delivery price during the delivery period.

Let us consider, for modeling reasons, the accounting of a forward con-
tract. This specification is relevant to understand the optimisation model we
propose in the following section, where we want to select which contract hold
and which contract close before the delivery period. Assume that we enter in
a long forward position at time Tb, and that we maintain the contract till the
delivery period which starts in Te and holds for DP days. See Figure (1) for
an illustration of all these quantities. We can decomposed the loss/gain on
the contracts into two components: the mark to market, during the trading
period, and the settlement, during the delivery period. The first mechanism
implies that from the purchase day till the last trading day, we close the
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position every day and immediately we reopen it at the new forward price.
The daily gain/loss is given by the price variations. At the end of the trading
period the holder of the long position has a gain/loss of 24 ·DP · (FTe

−FTb
).

The last position of the trading period is a forward with the quote FTe
, called

the reference price. During the delivery period we distinguish between cash
settlement and physical delivery. The former is computed considering the
daily variations between the reference price and the spot price without a
physical exchange of electricity. The latter consists in the payment of the
reference price against the physical delivery of electricity. In equation (5) we
show that this mechanism is equivalent to the classical settlement where the
exchange is between the forward price fixed at the purchase of the contract
and the spot price during the delivery period.

Figure 1: The Evolution of Forward Price

24 ·DP ·
∑

Tb≤t≤Te

(Ft−Ft−1)+
∑

Te<t≤Te+24·DP

(St−FTe
) =

∑

Te≤t≤Te+24·DP

(St−FTb
)

(5)
If we consider physical settlement, the exchange is between the forward

price fixed at the purchase of the contract and the physical delivery of energy
during the delivery period.

24·DP ·
∑

Tb≤t≤Te

(Ft−Ft−1)+
∑

Te<t≤Te+24·DP

(St−FTe
) =

∑

Te≤t≤Te+24·DP

−FTb
(6)

In this work we consider base-load contracts with physical settlement,
since we decide to model the daily movements of the spot process. The
introduction of peak-load contracts would require to model hourly prices.
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4. The deterministic financial model

The power producer is assumed to be a price taker, i.e. not able to
influence the electricity market price, which is therefore exogenous to the
model. We suppose to be able to hedge the producer’s portfolio by buying
and selling forward base-load contracts; the variable buyl,t (selll,t) is used to
denote the number of positions at time t and l represents the tipology of
the contract to be bought (sold) on the forward market. The market price
of these contracts are indicated by Fl,t. Transaction costs (tc) and bid-ask
spread (ba) are as indicated in section 3.

Generally, the producer can buy or sell forward contracts with different
tipology of delivery period, i.e. forward contracts with weekly, monthly,
quarterly and yearly delivery. If the producer has a planning horizon T of
one year (expressed in days), he can decide to hedge his risk by buying or
selling forward contracts with different delivery periods in the different days
of his planning horizon. For contract l, Te(l) indicates the maturity of the
contract, Td(l) the end of the delivery period, Ts(l) indicates the time when
the contract is firstly traded on the market.

We model the objective function representing the producer’s profit: it
consists of various parts taking into accounts net sales in the spot market,
selling and buying forward contracts, and the value of end reservoir:

max =
∑

t

(1 + r)T−t((St

∑

i

kiqi,t +
∑

l

xl,t · 1t∈[Te(l),Td(l)]) + (7)

−
∑

l

Fl,t · xl,t · 1t∈[Te(l),Td(l)] +
∑

l

DP (l)(Fl,t − Fl,t−1) · xl,t · 1t∈[Ts(l),Te(l)) +

−
∑

l

(buyl,t + selll,t)(tc + ba · Fl,t) · 1t∈[Ts(l),Te(l))) +
∑

j

V (vj,T ).

subject to the following constraints:

DP (l) = Td(l) − Te(l) (8)
∑

i

kiqi,t +
∑

l

·xl,t · 1t∈[Te(l),Td(l)] = Dt (9)

where Dt is the production scheduling at time t; the number of open positions
in forward contracts at time t for contract l

xl,t = xl,t−1 + (buyl,t − selll,t)1t∈[Ts(l),Te(l)); (10)

7



where, at every time t, buyl,t and selll,t must be nonnegative.
The decision variables qi,t and vj,t represent respectively the flow on arc

i in day t and the storage volume in reservoir j at the end of day t. Thus,
we have to add constraints similar to (1)-(4) where the time unit t is the day
instead of the hour:

0 ≤ qi,t ≤ qi i ∈ I, 1 ≤ t ≤ T (11)

0 ≤ vj,t ≤ vj j ∈ J, 1 ≤ t ≤ T (12)

vj,T ≤ vj,T j ∈ J ; (13)

vj,t = vj,t−1 + fj,t +
∑

i∈I

Ai,j · qi,t j ∈ J, 1 ≤ t ≤ T. (14)

5. The stochastic model

In this paper we assume that the natural inflows are known with certainty
and we concentrate our attention on the financial aspects, i.e. the uncertainty
in the electricity spot prices and in the forward prices and we introduce a
stochastic version of the model discussed in the previous section.

A scenario tree (see for instance [6]) represents the information on the
daily energy spot price and contract forward price, where each path from
the root to a leaf of the tree corresponds to one scenario. The stochastic
model is written in terms of the nodes {1, . . . , n, . . . , N} of the scenario tree
and the tree structure is described by giving each node n the probability Pn,
1 ≤ n ≤ N , and a pointer to its parent pred(n), 2 ≤ n ≤ N (i.e. except the
root of the tree). The planning horizon is divided in K stages, where each
stage k, 1 ≤ k ≤ K, is associated to the number of days Tk and to the set of
nodes Nk, where k(n) is the stage associated to node n. The model can be
extended to any time length.

The variables qi,t, vj,t, fj,t, buyl,t, selll,t in the deterministic model corre-
spond to variables qi,t,n, vj,t,n, fj,t,n, buyl,t,n, selll,t,n, with n ∈ Nk if t ∈ Tk,
1 ≤ k ≤ K. in this version of the model we consider only one contract typol-
ogy, i.e. quarterly contracts. We indicate with r the risk-free interest rate,
W (t, n) the cumulative wealth at time t and node n, U(W ) an increasing
concave utility function of wealth describing the producer risk aversion.

The stochastic model finds values of the decision variables qi,t,n, vj,t,n,
xl,t,n,fj,t,n, buyl,t,n, selll,t,n, for 1 ≤ k ≤ K, n ∈ Nk, t ∈ Tk, i ∈ I and j ∈ J ,
so as to
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max
∑

n∈NK

PnU(WT,n +
∑

j

V (vj,T,n))

subject to
for every 2 ≤ k ≤ K, t ∈ Tk, n ∈ Nk

Wt,n = Wt−1,ν(1 + r) + (St,n(
∑

i

kiqi,t,n +
∑

l

xl,t,n · 1t∈[Te(l),Td(l)]) +

−
∑

l

Fl,t,n · xl,t,n · 1t∈[Te(l),Td(l)] + (15)

+
∑

l

DP (l)(Fl,t,n − Fl,t−1,n) · xl,t,n · 1t∈[Ts(l),Te(l))) +

−
∑

l

(buyl,t,n + selll,t,n)(tc + ba · Fl,t,n) · 1t∈[Ts(l),Te(l)))

where
W0,0 = 0; Fl,0,1 = 0 ∀l (16)

DP (l) = De(l) − Te(l) (17)

∑

i

kiqi,t +
∑

l

xl,t · 1t∈[Te(l),De(l)] = Dt (18)

where Dt is the production scheduling at time t;

0 ≤ qi,t,n ≤ qi i ∈ I, t ∈ Tk, n ∈ Nk, 1 ≤ k ≤ K (19)

0 ≤ vj,t,n ≤ vj j ∈ J, t ∈ Tk, n ∈ Nk, 1 ≤ k ≤ K (20)

vj,t,n = vj,t−1,ν + fj,t,n +
∑

i∈I

Ai,j · qi,t,n j ∈ J, t ∈ Tk, n ∈ Nk, 1 ≤ k ≤ K

(21)

vj,T ≤ vj,T,n j ∈ J, n ∈ NK (22)
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xl,t,n = xl,t−1,ν + (buyl,t,n − selll,t,n)1t∈[Ts(l),Te(l)) t ∈ Tk, n ∈ Nk (23)

buyl,t,n ≥ 0 , selll,t,n ≥ 0 t > tk(n), n ∈ Nk (24)

In the wealth equation (16), in the mass balance equations (21) of the
hydro system model and in the financuial balance equation (23) ν = n, if t−
1, t ∈ Tk, and ν = pred(n), if t−1 ∈ Tk−1 and t ∈ Tk. The objective function
in (5) represents the expected utility of the final wealth on the scenarios and
the constraints are the equivalent of the deterministic constraints related to
the structure of the hydroplant and to the financial contracts.

6. Electricity Spot and Forward prices Scenarios Generation

The Italian electricity spot market was opened in 2003, its activity has
been increasing during the last years and can be considered as a liquid market
with many daily transactions. In our analysis we consider the daily base-load
spot prices time series from 1/1/2008 to 9/9/2009. After removing the daily
and weekly seasonal components, we analyze the log prices data and we find
stationarity but no strong presence of spikes: only four observations are larger
then 3 times the standard deviation on the whole period. The log spot price
exhibits autocorrelation, heteroschedasticity but not a dramatic kurtosis. In
line with recent researches, we fit a regime switching model able to capture
different market conditions, in terms of changing mean and volatilities. We
assume that yt, the log price process, follows an AR(1) model depending on
the state variables st :

yt = µst
+ Φst

yt + ǫt where ǫt ∼ i.i.d N(0, σ2
st
) (25)

where st changes through time and takes values j = 1, . . . , J . The changes
in st are described by a Markov chain P (st+1 = j|st = i) = pji. We do not
observe st directly, but we only infer it through the observed behaviour of yt.

Using the complete data set we find the evidence of the presence of two
regimes. The parameters necessary to fully describe the probability law gov-
erning yt are then the volatility of the Gaussian innovation, the autoregressive
coefficients, the two intercepts and the two state transition probabilities, p11

and p22. In Table 1 and 2 we present the estimated parameters with the
t-statistics in parenthesis.
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Figure 2: The Spot Switching Model

Table 1: Table related to 2.

µ Φst
σ

State 1 0.0140 0.1510 0.0760
(2.4140) (1.9610) (18.5366)

State 2 -0.0210 -0.0507 0.1409
(-1.8584) (0.6225) (19.8451)

Table 2: Transition probability between the two regimes in 2.

Transition State 1 State 2

State 1 0.96 (0.05) 0.04 (0.02)

State 2 0.05 (0.03) 0.95 (0.04)

For a multistage stochastic programming model a scenario tree is needed
where information is revealed. Hence, we generate 100 independent scenarios
describing the evolution of spot prices on a time horizon of one year and we
aggregate them in a recombining tree using the backward scenario reduction
technique proposed by Pflug [15] and Pflug and Hochreither [10]. By reduc-
ing the 100 scenarios we derive a three stage tree and the real probability
measure, P , describing the probability for each scenario. In order to maintain
consistency with the market, the spot prices scenarios are adjusted so that
the expected average spot price in a period is equal to the current market
price of a forward with delivery in that period.
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F (t0, T1, T2) =
∑

s

Ps ·

∑
t=T1,T2

Spots(t)

T2 − T1

(26)

where Spots(t) is the spot price in scenario s at time t and F (t0, T1, T2) is
the today observed forward quotation for a contract with delivery period in
(T1; T2).

The theoretical dynamic of the forward prices can be derived from the
spot dynamic. The price at time t of the forward contract with delivery
period (T1; T2) can be constructed on the spot scenarios as the expected
value of the average spot prices in the delivery period under an equivalent
Q-martingale measure, conditional on the information set available up to
time t. In a complete market this measure is unique and it assures a unique
arbitrage free price of the forward. In incomplete markets, as the electricity
market, this measure is not unique. An approach common in litterature is
to assume that the real probability measure coincides with the risk neutral
probability measure and perform the pricing directly. This is the approach
similar to the approach of Fleten and al.[18]. 2

Following this approach, the consistency constraints on the spot scenarios
combined with the direct pricing of the forward contract on the spot scenarios
implies that the model supports only hedging aspects of trading in contracts.
The source of stochasticity is only one in this case: the spot dynamics. See
figure 3 for an example of scenario tree using this approach.

However, if the decision maker expects the average spot price to be dif-
ferent, in any time t along the scenarios, from the forward price then we may
introduce the possibility of speculation. In reality, the electricity spot and
futures prices are not closely related, as it is typical for other commodities,
such as crude oil. Electricity spot and forward prices can be very far from
each other. Often, the spot and futures markets are so dissimilar that the
relationship between spot and futures prices breaks down. If we compare, ex
post, the forward quotations with the realised spot prices we observe that the
difference does not necessarily tend to zero for contracts approaching their
maturity.

”‘For example, for the Nordpool data, the historical correlation (com-

2An alternative approach is to remain under the real probability measure and estimate
and incorporate a market price of risk in the drift. However, this approach requires a
liquid market for forward contracts.
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Figure 3: Scenarios for spot and related forward prices

puted using a moving window of the past 60 days) between the electricity
spot and the nearby futures price ranges from 0.65 to −0.15, indicating that
the futures price is a poor proxy for the electricity spot price.”’ see Borovkova
and Geman [3],[4].

For this reason we decide to model explicitly the dynamic of the for-
ward curve imposing that the scenarios generated for the spot and forward
contracts are correlated and consistent with the today observed contracts
quotations, i.e we impose that

1. the spot scenarios are consistent with the observed quotations of the
forward contracts (26) and

2. expected forward price at each time equals the today observed quota-
tion

F (t0, T1, T2) =
∑

s

Ps · Fs(t, T1, T2) ∀t (27)

where Fs(t, T1, T2) is the forward price along the scenario s at time t.
The sources of stochasticity are 2 in this case: the spot dynamics and the

forward curve dynamics.
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The electricity forward curve is a non-trivial object and requires special
attention, mainly for two reasons. Firstly, forward contracts are subject
to a seasonal effect related to the delivery period and secondly, the term
structure cannot be constructed simply by interpolating between points in the
price maturity space because electricity forward contracts concern delivery of
electricity during a given time interval - week, month, year - in the future, not
a single day. Consequently, the methods developed for fixed income markets
cannot be applied directly to electricity price data. We restrict our analysis
to one segment of the term structure, the quarterly contracts, and leave a
more comprehensive analysis to future research. Here we apply the model
to the forward prices of quartely contracts in the period 1/01/09-9/09/09 on
Italian data of OTC contracts quoted at the TFS, a private platform which
at present is more liquid than the standardised market, the IDEX (Italian
Derivatives Energy Exchange) just started at the beginning of 2009.

The idea is to compute from the daily quotations of the forward contracts,
the forward term structure for fixed key rates and analyse the dynamics of
the term structure.

In order to derive the forward curve we have to remove the seasonal
effect associated with forward contracts. We follow Borovkova and Geman
[3],[4]. They observe that seasonal effects in the spot price and in the futures
contracts are significantly different and that the main feature of electricity
forward curves is the seasonality attached to the delivery period, not to the
trading day. Let F (t, T, T + Q) be the day-t price of the forward contract
expiring in T with T = (T1, T2, T3, T4). We fix the beginning of the delivery
period at 4 dates (January 1st , April 1st, July 1st and September 1st) and
the length of delivery period to 3 months in order to represent the quarterly
contracts Q1, Q2, Q3, Q4.

We estimate the deterministic seasonal forward premium, π(T ), for each
delivery date assuming that the forward price is the product of two compo-
nents, a seasonal component (the premium) and a component which depends
on the time to maturity

F (t, T, T + Q) = F̄ (t)eπ(T )−γ(t,T−t)(T−t) (28)

where the deseasonalized forward price FDS(t, T, T + Q) is

FDS(t, T, T + Q) = F (t, T, T + Q)e−π(T ) (29)

The seasonal premium is defined as the average deviation fom the mean value
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of the log forward quotations

π̂(T ) =
1

n

∑

t

(ln(F (t, T, T + Q)) − ln(F̄ (t))) T = T1, . . . , T4 (30)

where

ln(F̄ (t)) =
1

4

∑

T=T1,...,T4

ln(F (t, T, T + Q)) (31)

The estimated seasonal premia for quartely electricity forwards are shown
in Figure 4.

Figure 4: The Forward Seasonal Premia

As expected, forwards expiring in winter are at a premium with respect
to the average price level, and summer forwards at a discount. For electricity
the January premium is the highest, at 15%, while the April is −12%.

Once we have removed the seasonal premium, we can derive the terms
structure for quarterly contracts. More precisely we concentrate our attention
on four key rates relative to the four quarterly maturities. The procedure
used in the forecasting approach for scenario generation basically involves
two distinct steps. By principal component analysis (PCA) on the daily
deseasonalized historical returns of forwards key rates, we find the orthog-
onal factors. The first three factors explain 92% for the forward curve and
correspond to a parallel shift (first factor which explains 61%) a tilting (sec-
ond factor which explains 17%) and a curvature effect (third factor explains
14%), see Figure 5. We consider as relevant the first two factors that have
an explanatory power of about 80% of the variability.
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Figure 5: Factor loadings

The residuals contains all the information related to the residual 20% of
variability and the correlation among the returns of the different maturities.
Thus, we compute the residuals not explained by the first two factors ob-
tained from the PCA and we then model the variance of the residuals with
a GARCH model in order to capture the dependence of returns. This model
incorporates:

• a dependence effect given by the relevance of the observations of the
immediate past (conditional term)

• a feedback mechanism through which past observations are taken into
consideration to explain the present volatility value (autoregressive
part).

Roughly speaking, if a time series exhibits GARCH effects, it means it is
heteroskedastic; that is, its variance may be well described by a time-varying
process.

The variables to be modelled are the residuals series obtained by the
PCA. We applied the following univariate GARCH(1,1) to each of them:

rt = ǫt (32)

h2
t = α1ǫ

2
t−1 + α2h

2
t−1 (33)

where h2
t is the conditional variance process of the residuals and ǫt is the

innovation of the time series process, with ǫt = ztht and zt is a Gaussian i.i.d.
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process with zero mean and unit variance. In Table 3 we report the estimate
of the GARCH(1,1) models and asymptotic t-statistics.

Table 3: Garch(1,1) parameters and t-statistics.

α1 α2

Residual Q1 0.0376 ( 3.2478) 0.9499(54.0736)
Residual Q2 0.0233 ( 3.3218) 0.9654(97.9361)
Residual Q3 0.1274 ( 2.7203) 0.8492(21.4536)
Residual Q4 0.1125 ( 1.6657) 0.8589(13.5745)

In order the generate correlated scenarios, we combine together the stan-
dardized residuals of the GARCH(1,1) model and the residuals from the
regime switching model for the same days. We do not impose any para-
metric assumption on the marginal distributions and use the the empirical
cumulative distribution to fit a Gaussian copula of the historical residuals
vectors. We simulate a vector of correlated innovations from the Gaussian
copula and reconstruct the forecasted scenarios using the estimated principal
factors for the forward price scenario and the regime switching for the log
spot price. Following this procedure we generate correlated scenarios for spot
and forward prices

Hence, we generate 100 correlated scenarios and we aggregated them in a
recombining tree using the backward scenario reduction technique proposed
by Pflug and Hochreither [10] (See figure 3. Finally, we adjust the multi-
variate tree, as described above, in order to guarantee market consistency.

7. Numerical results

In this section we discuss the numerical results obtained by solving the
stochastic model on two cases studies. The simulation framework is based
on MATLAB release 12 and on GAMS release 21.5, for modeling and solving
the optimization problem by non linear optimization package (MINOS). The
hydro system is composed by one cascade with three basins and three hydro
plants, one of these is a pumped storage hydro plant as shown in Figure 7 (see
Tables 4 and 5 for input data of the hydro system). In order to represent the
scenarios we introduce the following notation, see also Vespucci et al. [17],
T1 = 1, T2 = {t : 2 ≤ t ≤ 20}, T3 = {t : 21 ≤ t ≤ 191}. We have considered
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Figure 6: Multivariate scenarios for spot and forward prices

twenty five scenarios represented by means of a scenario tree where the nodes
are as follows: N1 = 1, N2 = {2, . . . , 6}, N3 = {7, . . . , 31} .

Table 4: Hydro basin data: capacity, initial and minimum final storage volumes.

basin vj vj,0 vj,T

v1 1000 100 0
v2 2000 1000 500
v3 2000 1000 500

Table 5: Hydro arc data: energy coefficient and capacity.

arc ki qi

c1 1.0 100
c2 -1.7 50
c3 1.1 150
c4 0.9 120
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Figure 7: The hydro system

In order to assess the value of modeling uncertainty for three stage prob-
lems, we follow the procedure introduced in the literature by Vespucci et
al. [17] for evaluating the value of the stochastic solution for three stage
problem.

The procedure is based on the idea of reproducing the decision process
as the uncertainty reveals: this procedure is suitable for multistage problems
and is not prone to infeasibility.

The optimal objective value obtained in stage 3 is called modified EEV
(MEEV). Technically, this is computed as follows.

1. Scenario tree T1,mean (see Figure 8(a)), is defined by considering the
expected value of the uncertantiy parameters (spot and forward prices);
the stochastic model with scenario tree T1,mean is solved and the op-
timal values of the first stage variables are stored. In this way the
optimal solution of the EV problem is computed.
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2. Scenario tree T2,mean (see Figure 8(b)) is the expected value of the spot
and forward prices on nodes belonging to N3. The stochastic model
with scenario tree T2,mean is solved having assigned the value stored
at step 1. to the first stage decision variables. The oprimal value of
second stage variables are stored.

3. The stochastic model on benchmark tree T1 (see Figure 8(c)) is solved,
assigning to the first stage decision variables the values stored at step
1 and to the second stage decision variables the values stored at step
2, (see Figure 8(c)).

Figure 8: Scheme for the computation of MEEV

As first step, we solve the model considering only one source of variability,
the spot price. If we consider only the financial components (buying and
selling on the spot and forward markets) we notice a decrease both in the
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expected value and in the variance of the cumulated profit along the scenarios.
It is natural since the contracts are used for hedging the risk related to
movements of the spot prices. The main difference between the solutions with
and without financial contracts is in the use of production scheduling. The
introduction of financial contracts leads to a more efficient use of pumping,
ending up with a higher expected value of water at the time horizon T .
Overall, the effect of using forwards is an increase of the value of the objective
function - from 267452.00 to 285248.42.

Finally, we consider all the sources of variability, the spot and the forward
prices. If we consider only the financial part, we notice an increase both in
the expected value of the profit and in the variance of the cumulated wealth
along the scenarios. In this case we do not have pure hedging but speculative
contracts. As before, the use of forward contracts allows a more efficient use
of water pumping with a higher final level of water in the basins. Overall,
the effects of the financial part and the production scheduling lead to an
increase in the objective function, from 232,068.61 to 251,308.03. We report
the certainty equivalent obtained by using a power utility function with risk
aversion coefficient −0.5.

Finally, we compute the Modified EEV ( MEEV=2445909.78 ). The value
of the stochastic solution is 6798.25 and it allows us to obtain the goodness
of the expected solution value when the expected values are replaced by the
random values for the input variables.

Table 6: two sources of stochasticity.

Profit Value (Euro) Certainty equivalent

Stochastic Model 251,308.03
Modified expected mean value model 244,509.78
(rolling horizon)
Modified VSS 6,798.25

8. Conclusions

In this paper we have introduced a model for the daily hydro power
system scheduling problem with scenarios on days power production. The
model is a stochastic multi-stage non linear model where the profit comes
from the direct production and financial operations in the forward energy
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market. At this stage we consider as random variables the spot energy price
and the forward prices. When we consider only one source of stochasticity the
forward contracts can be used for hedging purposes. When we consider two
source of uncertainties, we allow for a speculative behaviour of the producer.

Our results show that, a part from the financial gains, the convenience
of using financial contracts is a more efficient use of the hydroplant, taking
advantage of the possibility of pumping water and ending up with a higher
final value of the reservoir.
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