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Abstract

This paper considers bootstrapping nonstationary panel factor mod-

els when possible time dependence is present in the factors dynamics.

The analysis does not assume any speci�c DGP, and a sieve bootstrap

algorithm is proposed to approximate the autocorrelation structure of

the processes involved in the model. The conditions under which sieve

bootstrap yields consistent estimators and test statistics are explored,

and a selection rule for the order of the approximation of the AR dy-

namics is derived. Two main results are shown. First, an invariance

principle for the partial sums of the bootstrap samples of the �rst

di¤erences of the estimated factors is shown to hold for large T and

�nite or large n. Secondly, it is proved that bootstrap estimates and

test statistics are consistent only for (n; T ) ! 1, whilst the �nite n
case results in inconsistent bootstrap. Sieve bootstrap is shown to be

consistent for the �xed n case only in presence of no serial correlation.

�Cass Business School, Faculty of Finance, 106 Bunhill Row, London EC1Y 8TZ, Tel.:
+44 (0) 207 040 5260; email: L.Trapani@city.ac.uk
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1 Introduction

The bootstrap is a popularly employed tool to approximate the sampling

distribution of statistics. Bootstrapping can improve useful when a statistic

is free from nuisance parameters, as this could lead to asymptotic re�ne-

ments and better small sample properties; however, bootstrapping has also

been widely employed with non pivotal statistics, as a way of overcoming

the complications arising from estimating nuisance parameters. We refer to

Horowitz (2001) for a comprehensive non technical survey. However, in order

for bootstrapping to be applicable, it is necessary to show that (the partial

sums of) the pseudo data generated by the bootstrapping algorithm follow

the same distribution as the original data, and therefore that the distribution

of bootstrap statistics is the same as the asymptotic distribution. This prob-

lem has been investigated in several recent contributions, e.g. Park (2002,

2003), Chang, Park and Song (2006). The main focus of these articles is

proving a sieve bootstrap invariance principle for nonstationary time series

building on strong approximations (see inter alia Sakhananeko, 1980).

This paper moves from a similar research question, thereby aiming to

prove an invariance principle for sieve bootstrap samples. However, sieve

bootstrap is not studied within a time series framework, but with respect to

large nonstationary panel factor models. These models are popular in statis-

tics, where the Lee and Carter (1992) model for mortality has been studied

extensively, also leading to some applications of bootstrap (Haberman and

Renshaw, 2000), and in econometrics - see e.g. Stock and Watson (1999), Bai

(2004, 2005), Bai and Ng (2004) and Bai, Kao and Ng (2008). Panel factor

models di¤er from the standard time series framework (e.g. cointegration),

in that (1) they contain unobservable regressors, which have to be estimated

as well as the other parameters, thereby a¤ecting inference (and bootstrap

as well), and (2) the asymptotics depends upon two indexes, the number of

units n and the number of time observations T . In this context, the bootstrap

should prove particularly useful, since the limiting distribution of statistics

usually depends in a complicated way on nuisance parameters due to (1) non

stationarity and (2) presence of latent variables which are usually proxied
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by generated regressors. Another important issue is the presence of serial

correlation in the data. Although most applications of bootstrap to factor

models consider the i.i.d. case (e.g. Haberman and Renshaw, 2000), this

needs not be the case, and neglecting time dependence can lead to invalid

bootstrap and therefore invalid inference. Thus, it is important to (1) derive

a bootstrap scheme that allows for possible serial correlation and (2) prove

under which conditions the bootstrap scheme is valid.

In this contribution, the validity of sieve bootstrap for (large) nonstation-

ary panel factor models is shown. The main result is an invariance principle

for the bootstrap samples, which is shown here to hold in the weak form (in

probability). More speci�cally, we build on Sakhanenko�s (1980) strong ap-

proximation and on the asymptotic theory derived in Bai (2004), to develop

an invariance principle for the convergence of bootstrap partial sums of the

residuals and of the estimated common factors to Brownian motions. The

algortihm we propose is based on (1) decomposing the data into signal and

noise by using the Principal Components estimator (PC); and (2) estimating

a Vector AutoRegression (VAR) for the estimated common factors and the

error term. The order of the VAR is shown to be dependent on n and T ;

based on this algorithm, an invariance principle for the pseudo innovations is

proved. Since the estimation of the VAR roots is conducted using generated

regressors, as an ancillary result we show that the asymptotic law of the es-

timated VAR coe¢ cients is di¤erent than in the OLS case. Consistency is

proved for the case whereby (n; T )!1 jointly, with no need for restrictions

on the rate of expansion between n and T .

Based on these two results, we show that the bootstrap is consistent for

the case (n; T ) ! 1: thus, sieve bootstrap can be used to e.g. reduce the
bias of the estimated loadings. An important result in the paper is that the

bootstrap can achieve consistency only when both n and T are large, and

that the order of truncation of the VAR depends on n and T as well.

The type of assumptions considered here are the same as in the previous

literature: no further restrictions are required in order to implement the

bootstrap. The results derived in this paper can be applied to prove the

validity of various bootstrap statistics by applying the continuous mapping
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theorem.

The remainder of the paper is organised as follows. Section 2 lays out the

model and discusses the main assumptions. Section 3 contains the bootstrap

algorithm and the relevant asymptotic theory; conclusions are reported in

Section 5. All proofs and derivations are in Appendix Finally, a word on

notation. Throughout the paper, kAk denotes the Euclidean norm of matrix
A;
p
tr (A0A), �!�the ordinary limit, �)�weak convergence, �p!�conver-

gence in probability. Stochastic processes such as B (r) on [0; 1] are usually

written as B, integrals such as
R 1
0
B (r) dr as

R
B and stochastic integrals

such as
R 1
0
B (r) dB (r) as

R
BdB.

2 Model and Assumptions

Consider the model

yit = �
0
iFt + uit; (1)

where i = 1; :::; n and t = 1; :::; T . We assume that the (unobservable) factors

Ft are a k-dimensional vector nonstationary process de�ned as

Ft = Ft�1 + "t: (2)

Model (1) has been considered in the early econometric literature by Cham-

berlain and Rotschild (1983). Recent developments on the (1) in terms of

the estimation and inference on the loadings �i and the factors Ft have been

derived by Bai (2004), Bai and Ng (2004), Kao, Trapani and Urga (2007a,

2007b). Estimation and inference in the stationary case have been studied in

Bai and Ng (2002) and Bai (2003). Note that the determination of the num-

ber of common components k can be done up to some data driven procedure

as designed in Bai (2004). Thus, we do not need to assume knowledge of k.

Henceforth, all the asymptotic theory will be studied for the case of both

the cross-sectional and the time-series dimensions, n and T respectively,

growing large. This is necessary for the identi�cation (and therefore the con-

sistent estimation) of both the loadings �i and the factors Ft. All limits will

be derived for (n; T )!1 jointly - we refer to Phillips and Moon (1999) for
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the de�nition of this mode of convergence. We also de�ne, henceforth, �nT =

min
np
n;
p
T
o
, CnT = min f

p
n; Tg and 'nT = min

np
n;
p
T= log T

o
.

The following assumptions hold:

Assumption 1: (time series and cross-sectional properties of uit) the error
term uit admits an invertible MA (1) approximation

uit = Di (L) e
u(i)
t =

1X
j=0

Dije
u(i)
t�j ;

where:

(i) the eu(i)t s are iid (over i and t) random variables with E
h
e
u(i)
t

i
= 0 and

E
���eu(i)t

���8 <1;
(ii)

P1
j=0DijL

j 6= 0 for all jLj � 1 and
P1

j=0 j
s jDijj <1 for some s � 1;

(iii) (cross sectional dependence) E (uitujt) = � ij with
Pn

i=1 j� ijj � M for

all j;

(iv) (time series dependence)

(a) E
��n�1=2Pn

i=1 [uisuit � E (uisuit)]
��4 �M for every (t; s)

(b) E [n�1
Pn

i=1 uituis] = s�t,
��s�t�� �M for all s and

T�1
PT

s=1

PT
t=1

��s�t�� �M ;
(v) (initial conditions) E jui0j4 �M .

Assumption 2: (time series properties of "t) "t admits an invertibleMA (1)
approximation where "t = C (L) eFt =

P1
j=0CjL

jeFt�j with

(i) eFt is an iid k-dimensional vector random process with E
�
eFt
�
= 0,

E
�
eFt e

F 0
t

�
= �u and E

eFt r <1 for some r > 4;

(ii) (FCLT and Law of the Iterated Logarithm) as T !1 it holds that
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(a) T�2
PT

t=1 FtF
0
t !

R
B"B

0
" where the vector Brownian motion B"

has covariance matrix ��F =
P1

j=0Cj�uC
0
j, with ��F a positive

de�nite matrix and

(b) lim infT!1 (log log T )T�2
PT

t=1 FtF
0
t = D where D is a nonran-

dom positive de�nite matrix;

(iii)
P1

j=0 j
s kCjk <1 for some s � 1;

(iv) (initial conditions) E kF0k4 �M .

Assumption 3: (identi�ability) the loadings �i are

(i) either non random quantities such that k�ik �M , or random quantities
such that E k�ik4 <1;

(ii) either n�1
Pn

i=1 �i�
0
i = �� if n is �nite, or limn!1 n

�1Pn
i=1 �i�

0
i = ��,

if n!1 with �� positive de�nite;

(iii) the eigenvalues of the matrix �1=2� ��F�
1=2
� are distinct, and the eigen-

values of the stochastic matrix �1=2�
R
B"B

0
"�

1=2
� are distinct almost

surely.

Assumption 4:

(i) f"tg, fuitg and f�ig are three mutually independent groups;

(ii) F0 is independent of fuitg and feitg.

COMMENTS

Model (1) is a standard panel cointegration model, as employed, among oth-

ers, by Lee and Carter (1992), Kao, Trapani and Urga (2007b) and Bai, Kao

and Ng (2007). The model considers a common trends representation and it

does not require prior knowledge of the number of latent stochastic trends

k, which in this context plays the role of the rank of cointegration for the
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vector [y1t; :::; ynt]. This can be determined a priori in principle using various

techniques depending on whether both indexes n and T tend to in�nity or

only one - we refer to Bai and Ng (2002) and Onatski (2006) for the cases

whereby (n; T ) ! 1 and to Lewbel (1991), Donald (1997) and Cragg and

Donald (1997) for cases where max fn; Tg ! 1 and min fn; Tg is �xed. A
problem that arises in this framework is that neither the loadings �i nor the

factors Ft can be observed, and therefore an estimation technique should be

employed that relies solely upon the dependent variables yit, thereby treating

both �i and Ft as parameters.

Assumption 1 is similar to Assumption C in Bai (2004, p. 141), the only

di¤erence being the summability requirement for the AR coe¢ cients. Par-

ticularly, conditions (i) and (ii) allow to establish an invariance principle for

the partial sums of the bootstrap value from the general linear process uit.

Note that Assumption 1(i) is slightly more stringent than Assumption 3.1 in

Park (2002, p. 474), where only E j�itj
r < 1 for r � 4 is assumed. In this

paper, invariance principles are obtained only in their weak (in probability)

form, and therefore r = 4 would su¢ ce in principle; however, assuming r > 4

is needed (here and in the next Assumption) in order for inferential theory

to hold. Part (ii) of the assumption is needed to be able to approximate

the AR (1) polynomial with a �nite autoregressive representation - see e.g.
Hannan and Kavalieris (1986). This is needed in order to prove consistency

of the estimated factors and loadings - see Bai (2004). Assumptions (iii)

and (iv) are not needed for the proof of the bootstrapping algorithm, but

they are su¢ cient conditions in order for and they allow for some (limited)

cross-sectional and time-series dependence in the error term uit. Such gen-

eralizations (cross dependence and serial correlation) are possible only in a

panel data environment where both n and T tend to in�nity. See Bai (2003)

for a discussion, albeit related to the stationary case. Part (v) is a standard

initial condition requirement for the ordinary CLT to hold.

Assumption 2 mimics Assumption A in Bai (2003) and is required in

order for (a) the dimension of the factor space to be estimated consistently

and (b) the asymptotic theory for the estimated factors to hold. Assumption
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(i) is enough for both purposes and it is also the same requirement as in Park

(2002, see Assumption 3.1(a)); part (iii) of the assumption plays the same

role as Assumption 1(ii). In our case, the asymptotic theory results for the

estimated factors Ft will only allow for "in probability" instead of "almost

sure" versions of the invariance principle, and thus in principle assuming

r = 4 would be su¢ cient. Assumption (ii) is merely a set of su¢ cient

conditions needed for the identi�cation of k via information criteria (the

Law of the Iterated Logarithm) and the asymptotics of the estimated Ft;

note that it would be possible to have more primitive assumptions to allow

for the Law of the Iterated Logarithm and the FCLT to hold.

Assumption 3 and Assumption 4 are standard requirements needed to

develop the asymptotics for the estimates of �i and Ft. We refer to Bai

(2004) for further discussions.

The estimation theory (based on Principal Components) for �i and Ft
is studied in Bai (2004). Particularly, after deriving the number of com-

mon components k using the information criteria proposed in Bai (2004),

the common factors Ft can be estimated as F̂t, where F̂t is T times the

eigenvectors corresponding to the k largest eigenvalues of matrix Y Y 0 where

Y = [y1; :::; yn]
0 with yi = [yi1; :::; yiT ]

0. Then �i can be estimated running the

the OLS estimator in a linear regression with yit as dependent variable and

the estimated factors F̂t as regressors, viz.:

yit = �
0
iF̂t + ûit: (3)

It is well known that �i and Ft are not directly identi�able since they are

identi�able only up to a transformation. Therefore, instead of estimating

the factors Ft (or the loadings �i), what one does by employing the principal

component estimator is to estimate the space spanned by them up to a k�k
transformation matrix, say H, thereby �nding HFt instead of Ft and H�1�i

instead of �i. Whilst this issue is important, we henceforth assume (for

the purpose of notational simplicity) that H is a k � k identity matrix.
The implications of �i and Ft being identi�able only up to a nonsingular

transformation will be discussed after Theorem 3.
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It is important to note here that replacing the true, unobservable factors

Ft with their estimates F̂t alters the error term uit in (1), so that now

ûit = uit + �
0
i

�
Ft � F̂t

�
: (4)

Thus, one would get �̂i =
hPT

t=1 F̂tF̂
0
t

i�1 hPT
t=1 F̂tyit

i
.

3 Bootstrapping

This section contains a description of the bootstrapping algorithm, the algo-

rithm itself and an intuitive argument of the proof.

Since (1) is a cointegrating regression, one may apply the framework of

Chang, Park and Song (2006) to its observable counterpart (3), and therefore

carry out the bootstrapping algorithm to the vector
h
�F̂ 0t ; ûit

i0
. This would

impose a unit root in the boostrap version of F̂t, which is needed in order for

the bootstrap to be consistent as shown by Park (2003). Note that bootstrap-

ping the whole vector would be necessary if some correlation were assumed

between uit and "t. In our case, Assumption 4 rules out any endogeneity and

thus it is not strictly necessary to bootstrap the vector
h
�F̂ 0t ; ûit

i0
and one

may equivalently think of bootstrapping separately �F̂t and ûit.

Henceforth, we shall use the vector �it = [�F
0
t ; uit]

0, and we shall indicate

its AR (1) representation as �it =
P1

j=1 �j�it�j + eit, also denoting 1 �P1
j=1 �j as � (1).

3.1 The generation of the bootstrap sample

The presence of autoregressive dynamics in �Ft and uit entails the use of

a bootstrapping algorithm that preserves the autocorrelation structure over

time. The algorithm we propose is the sieve bootstrap (see Buhlmann, 1997,

and Park, 2002), which is based on approximating the in�nite AR polyno-
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mials C (L) and Di (L) by truncating them at lag q, so that

�Ft =

qX
j=1

�q;j�Ft�j + e
F
qt;

and

uit =

qX
j=1


(i)
q;juit�j + e

u(i)
qt :

The choice of q depends on the values of n and T and it is discussed in the

following assumption.

Assumption 5: As (n; T )!1, q !1 with q = o ('nT ).

Assumption 5 requires that the order of truncation of the AR polynomial

be large and it contains an upper bound on the rate of expansion of q; note

that, in order for q to diverge, it is necessary that botht the time series

dimension T and the cross-sectional dimension n be large. No restrictions on

the rate of expansion between n and T are required. Assumption 5 states also

that, as long as q !1, no lower bounds are required and thus q is allowed
to grow as slowly as required. No indications as to the optimal choice of q

are provided; however, one could think of selecting the order of truncation q

using some information criterai such as e.g. AIC or BIC, under the restriction

that the maximum lag allowed for be of order o ('nT ). As it will be shown

hereafter, the condition that q !1 is needed in order for �̂q;j and ̂
(i)
q;j (the

estimates of �q;j and 
(i)
q;j respectively) to be consistent estimators of �j and


(i)
j .

Consider a statistic based on �̂i, say '
�
�̂i; F̂t

�
, where ' is a continuous

transformation and the presence of F̂t is introduced only to emphasize that

�̂i = �̂i

�
F̂t

�
. The algorithm which we propose in order to generate the

pseudo sample ��it;b for each iteration b is based on the following steps; note

that this sieve bootstrap algorithm mimics the one proposed by Chang, Park

and Song (2006), albeit for the case of a cointegration regression with the

standard VAR representation. The main di¤erences here are (i) the presence
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of unobservable variables in (1) and (ii) the double-index asymptotics, in

that both the cross-sectional and the time series dimensions of the panel are

allowed to tend to in�nity. See also the discussion in Section XX.

Step 1. (PC estimation)

(1.1) Determine the number of common trends k using the criteria in

Bai (2004), or an equivalent information criterion.

(1.2) Estimate �i and Ft in (1) using the PC estimator. Particularly,

estimate Ft as F̂t, where F̂t is T times the k largest eigenvalues of

matrix Y Y 0; and �i as �̂i =
hPT

t=1 F̂tF̂
0
t

i�1 hPT
t=1 F̂tyit

i
, the OLS

estimate in (3).

(1.3) Generate ûit = yit � �̂
0
iF̂t and de�ne �

q
it =

h
�F̂ 0t ; ûit

i0
.

Step 2. (sieve estimation)

(2.1) Estimate �q;j (obtaining �̂q;j) applying OLS
1 to

�qit =

qX
j=1

�q;j�
q
it�j + e

q
it: (5)

(2.2) Compute the OLS residuals from (5) as

êqit = �it �
qX
j=1

�̂q;j�it�j: (6)

Step 3. (sieve bootstrap) forB iterations (each iteration denoted using subscript

b where necessary)

(3.1) (resampling)

1The theory discussed here relies on employing the OLS estimator for �q;j . However,
other techniques could be employed as well. A possible example is the Yule-Walker estima-
tor, which could prove useful since it is known to constrain the estimated AR polynomial
to be stationary. As also pointed out in Park (2002), this would not change the results
derived herein, and thus, for the sake of a concise discussion, we focus our attention solely
on the OLS estimator.
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(3.1.a) Center the residuals (6) around their mean, as

�eqit = ê
q
it �

1

T

TX
t=1

êqit:

(3.1.b) Draw (with replacement) T values from f�eqitg
T
t=1 to obtain the

bootstrap sample
�
e�it;b
	T
t=1
.

(3.2) (generation of the sieve bootstrap sample)

(3.2.a) Generate recursively the bootstrap sample
�
��it;b
	T
t=1

as

�q�it;b =

qX
j=1

�̂q;j�
q�
it�j;b + e

�
it;b; (7)

using as initialization
�
�q�iq ; :::; �

q�
i1

	
=
�
�qiq; :::; �

q
i1

	
.

(3.2.b) Integrate the �rst k elements of
�
�q�it;b
	T
t=1
, say

�
�F �t;b

	T
t=1
, to

generate F �t as

F �t;b = F
�
0 +

tX
j=1

�F �j;b;

where the initialization is F �0 = F0.
2

(3.2.c) Generate the bootstrap sample
�
y�it;b
	T
t=1
.3

3.2 Bootstrap asymptotics

In this section, we shall prove that the bootstrap approximation 'b
�
��i;b;F

�
t;b

�
is consistent, i.e. that it has the same asymptotic law as the sample coun-

terpart '
�
�̂i; F̂t

�
. To being with, let the partial sums of the process eit =h

e
u(i)
t ; eF 0t

i0
be de�ned as WT (r) = T

�1=2PbTrc
t=1 eit. Then Assumptions 1 and

2 ensure that the classical FCLT holds, and therefore WT (r)
d! W (r) where

W (r) is a standard (k + 1)-dimensional Brownian motion. This convergence

2Initialising F0 could be done either by setting the (unobservable) value of F0 equal
to the �rst value of the estimated process Ft, say F̂0, or alternatively setting F �0 =

T�1
PT

t=1 F̂t.
3Generating y�it;b will be discussed in Section .
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is in the weak form, and it holds in the space of cadlag functions D [0; 1]

endowed with the Euclidean norm k�k. The weak convergence result can
anyway be strengthened by de�ning (on a suitable space) a copy of WT (r),

say W 0
T (r), which has the same distribution as WT (r) and can be chosen

such that (see Sakhanenko, 1980)

P fkW 0
T (r)�W (r)k � �g �MrT

1�r=2E keitkr ; (8)

where � > 0, r > 2 andMr is an absolute constant depending only on r. Such

results are known as "strong approximations" and they ensure that W 0
T (r),

and thereforeWT (r) which has the same distribution, converge almost surely

to W (r). That (8) holds in our case is immediate in light of Assumptions

1 and 2, since r is assumed to be (at least) bigger than 4 in there. Strong

approximations entail that, as long as one can prove that E keitkr < 1 for

some r > 2, then the FCLT holds. Depending on whether one can prove that

T 1�r=2E keitkr ! 0 in probability or almost surely, the invariance principle

is said to hold in the weak or strong form respectively. Consider now the

bootstrap sample fe�itg
T
t=1, where dependence on b has been supressed. Then

fe�itg
T
t=1 is an i.i.d. sample from the empirical distribution of fêitg

T
t=1 de�ned

on the probability space induced by the bootstrap. Let P � be the measure

in this probability space; then we shall denote convergence in probability

and in distribution in the bootstrap space with respect to P � as
p�! and d�!

respectively.

In order to prove the consistency of the bootstrapping algorithm, we shall

�rst provide will need the following preliminary Lemmas.

Lemma 1 Let Assumptions 1-5 hold; then, as (n; T )!1

E�
e�it;br < 1; (9)

E�
e�it;br = E keitkr +Op

�
q�rs

�
+Op

�
qr��rnT

�
+Op

�
qr'�rnT

�
+ op (1) ;(10)

for some r > 4.

This result is useful to prove an invariance principle for the partial sums
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of e�it;b using (8). Note that the type of invariance principle that we shall

be able to prove is in the weak form, since (9) holds in probability and not

almost surely. The condition that q ! 1 is necessary in order for (9) to

hold, although it is not required for (10). Thus, as also shown in the proof

with greater detail, the condition that n!1 is not needed in order for (9)

to hold, whilst it is needed in order for (10) to be valid.

Lemma 1 and (8) entail

1p
T

bTrcX
t=1

e�it;b
d�! W (r) ;

where W (r) is a (k + 1)-dimensional standard Brownian motion. In order

for this result to be extended to the bootstrap sample
�
�q�it;b
	T
t=1
, we need the

following result as well.

Lemma 2 Under Assumptions 1-5, we have, as (n; T )!1

max
1�j�q

�̂q;j � �j = Op
 r

log T

T

!
+Op

�
1

CnT

�
+op

�
1

qs

�
= Op

�
1

'nT

�
+op

�
1

qs

�
:

(11)

Lemma 2 states that �̂q;j is a uniformly consistent estimator of �j. The

rate Op
�p

log T=T
�
is a well-known result in time series analysis (see e.g.

Theorem 2.1 in Hannan and Kavalieris, 1986); the term Op
�
C�1nT

�
arises from

the fact that �̂q;j is obtained from a regression where the latent variables Ft
and �Ft are replaced by their estimated counterparts F̂t and �F̂t. Thus, the

Op
�
C�1nT

�
term arises from the estimation error in estimating �Ft. Equation

(11) is a joint limit result, in that (n; T ) ! 1 are allowed to both go to

in�nity with no particular ordering; also, no restrictions are required on

the rate of expansion n=T . Note that in this case the condition that n !
1 is pivotal: allowing for �xed n would lead to max1�j�q

�̂q;j � �j =
Op (1), thereby making �̂q;j not (uniformly) consistent. Thus, even though

an invariance principle for the partial sums of u�it;b and �F
�
t;b still holds,

the long run covariance matrices can no longer be estimated consistently.
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Assumption 5 is only needed to put a bound onto the choice of q here; as

the proof shows with greater detail, note that, as in "classical" time series

analysis without generated regressors, the condition q ! 1 is necessary in

order to make the approximation error
�q;j � �j negligible.

The condition that both n and T must be large is somehow counterintu-

itive in light of the literature on nonstationary panel factor models (see Bai,

2004). It is known that consistent estimation of the loadings �i only requires

that T ! 1 (see Bai, 2004); however, when bootstrapping the limiting

distribution of �̂i, validity of sieve bootstrap is achieved only if (n; T )!1.

Consider now the partial sums of the process �it, namely VT (r) = T
�1=2PbTrc

t=1 �it.

Then in light of Assumptions 1 and 2 and using the Beveridge-Nelson de-

composition it holds that VT (r)
d! V (r) = ��1 (1)W (r). In order to prove

the validity of the bootstrap algorithm proposed above, it is necessary to

prove a bootstrap invariance principle for the partial sums of �q�it;b, i.e. that

V �T (r) = T
�1=2PbTrc

t=1 �
q�
it

d�! V (r) as (n; T ) ! 1. This can be done noting
that, using the Beveridge-Nelson decomposition

1p
T

bTrcX
t=1

�q�it = �̂
�1
q (1)

0@ 1p
T

bTrcX
t=1

e�it

1A+ �̂�1q (1)
p
T

�
��
q�
i0 � ��

q�
ibTrc

�
; (12)

where ��q�it =
Pq

j=1

�Pq
i=j �̂q;i

�
�q�it�j+1. Then the following Lemma holds

Lemma 3 Let Assumptions 1-5 hold. Then as (n; T )!1

1p
T

bTrcX
t=1

�q�it
d�! V (r) :

This Lemma states that the partial sums of the bootstrap process f�q�it g
T
t=1

have the same limiting distribution as the partial sums of f�itg
T
t=1. In order

for this resul to hold, two main results are needed. Firstly, the invariance

principle for the partial sums of fe�itg
T
t=1 is required to hold; this follows

from Lemma 1 even for the case of �xed n. Secondly, it must hold that

�̂
�1
q (1)

p! ��1 (1); as the proof of the Lemma shows, this follows from Lemma

15



2. Note that this result would not hold for �nite n, since in that case �̂q;j
would not be a consistent estimator for �q;j. Thus, whilst it is possible to

have a valid bootstrap approximation of the partial sums of eit even for �nite

n (when factors Ft are not estimated consistently) as shown in Lemma 1,

the condition that n ! 1 is necessary in order to achieve consistency of

the bootstrap for �it. This result obviously a¤ects �
�
i;b as well, which is in

apparent contradiction with the estimation theory of �i where only T !1
is required.

4 Discussion

Section 3 considers the validity of an invariance principle for the partial sums

of the pseudo samples ��it;b. At least in principle, Lemmas 1, 2 and 3, together

with the Continuous Mapping Theorem (CMT), are su¢ cient in order to use

sieve bootstrap to numerous applications of nonstationary large panel factor

models. There remains the issue, however, as to how to generate the pseudo

samples y�it;b, i.e. as to how to proceed with the algorithm after Step 3.2.c.

The answer depends on the speci�c problem one wants to investigate, as

there are di¤erent strategies towards:

a) the generation of y�it;b itself. For example, y
�
it;b could be computed using

a "�xed regressor" approach (see also Hansen, 2000), whereby

y�it;b = �̂
0
iF̂t + u

�
it;b; (13)

alternatively, y�it;b could be generated replacing the (generated) regres-

sor F̂t with pseudo data, so that

y�it;b = �̂
0
iF

�
t;b + u

�
it;b; (14)

b) how to obtain the bootstrap estimates ��i and F̂
�
t;b. One possible approach

would be applying the Principal Component (PC) estimator to y�it;b,

thereby obtaining ��;PCi and F̂ �;PCt;b ; alternatively, the common factors

(F̂t or F �t;b depending on whether one chooses a �xed regrssor approach

16



or not to generate y�it;b) could be treated as observable, and thus �
�
i

could be computed by applying OLS - or equivalent techniques.

In this Section, some potential pitfalls related to points a) and b) are

discussed. Particularly, two di¤erent applications are studied:

1. bias reduction for the PC estimator �̂i;

2. bootstrap approximation for the common component Cit = �
0
iFt.

Note that henceforth the convention whereby the rotation matrix H was

set equal to the identity matrix (employed in Section 3) is relaxed in order

to facilitate the discussion. Thus, the estimation errors for �i and Ft are

referred to as �̂i �H�1�i and F̂t �HFt respectively.

Bias reduction for �̂i

The asymptotic theory developed in Bai (2004) ensures that �̂i�H�1�i =

Op (T
�1). Thus, as T ! 1 and irrespective of n being �xed or large, �̂i is

an asymptotically unbiased estimator. However, considering the formula

�̂i �H�1�i =

"
TX
t=1

F̂tF̂
0
t

#�1 " TX
t=1

F̂tûit

#

=

"
TX
t=1

F̂tF̂
0
t

#�1 " TX
t=1

F̂tuit +
TX
t=1

F̂t

�
HFt � F̂t

�0
H�1�i

#
;

it can be readily seen that small sample bias can arise from terms such asPT
t=1 F̂t

�
HFt � F̂t

�0
H�1�i and

PT
t=1

�
Ft � F̂t

�
uit, whose order of magni-

tude (see Bai, 2004) is Op
�
T�1C�1nT

�
. Bootstrap can be applied to correct

for small sample bias as follows. The pseudo sample y�it;b can be generated

either according to (13) or to (14). The bootstrap estimator ��i;b is the OLS

estimator, thereby treating the common factors as known; the estimation

17



error is (note the absence of H)

�
(1)�
i;b � �̂i =

"
TX
t=1

F̂tF̂
0
t

#�1 " TX
t=1

F̂tu
�
it;b

#
;

�
(2)�
i;b � �̂i =

"
TX
t=1

F �t;bF
�0
t;b

#�1 " TX
t=1

F �t;bu
�
it;b

#
:

Since u�it;b is obtained from bootstrapping ûit, the distribution limit of the

partial sums of the two processes are the same. Thus, both �(1)�i;b and �(2)�i;b

deliver the same estimation error as the PC estimator �̂i, and thus, using

the invariance principle derived above and the CMT, they should have the

same bias. Thus, the bias of �̂i can be reduced by calculating �̂i � �(1);(2)B ,

with �(1);(2)B = B�1
PB

b=1

h
�
(1);(2)�
i;b � �̂i

i
. Whilst the CMT and the invariance

principle ensure that using (13) or to (14) should not make a di¤erence, it

is important to point out that using PC to calculate ��i;b would lead to the

estimation error

��i;b�H�1
1 �̂i =

"
TX
t=1

F̂ �;PCt;b F̂ �;PC0t;b

#�1( TX
t=1

F̂ �;PCt;b

h
u�it;b + �̂

0
iH

�1
1

�
H1F

�
t;b � F̂

�;PC
t;b

�i)
;

where F̂ �;PCt;b is the PC estimator of F �t;b. Thus, using PC would introduce

the extra error term �̂
0
iH

�1
1

�
H1F

�
t;b � F̂ �t;b

�
.

Bootstrap approximation of the limiting distribution of Ĉit

Consider the estimator of the signal Cit, Ĉit = �̂
0
iF̂t, and let y

�
it;b = �̂

0
iF

�
t;b+

u�it;b. Then the bootstrap version of Ĉit is de�ned as C
�
it;b = �̂

�;PC0
i;b F̂ �;PCt;b ,

where ��;PCi;b and F̂ �;PCt;b are the PC estimators. The estimation error C�it;b�Ĉit
is

C�it;b � Ĉit =
�
F̂ �;PCt;b �H1F �t;b

�0
H�1
1 �̂i + F̂

�;PC0
t;b

�
��;PCi;b �H�1

1 �̂i

�
= I + II:

(15)

The decomposition of this error term is the bootstrap version of the decom-

position of Ĉit�Cit, and thus the CMT ensures that the limiting distributions

18



are the same. Note that this hols for any expansion rate between n and T ;

particularly, as (n; T ) ! 1 we know that (see Bai, 2004) if n=T ! 0 the

leading term is I; conversely, if T=n ! 0, it is II that dominates. Here

bootstrap could prove useful since in practice one has �nite n and T , and

thus the law of Ĉit � Cit, suitably normalised by min
�p
n;
p
T
�
, depends

on the contribution of both terms I and II. An alternative approach would

be treating F �t;b as known and estimating the loadings using OLS. Thus,

C�it;b = �̂
�;OLS0
i;b F �t;b; this would yield

C�it;b � Ĉit =
�
�̂
�;OLS
i;b � �̂i

�0
F �t;b;

which corresponds to only term II in (15) and which would not give an

accurate approximation of the law of Ĉit�Cit unless T is much smaller than
n.

5 Conclusions

This paper considers bootstrapping nonstationary panel factor models when

possible time dependence is present in the factors dynamics. The analysis

does not assume any speci�c DGP, and a sieve bootstrap algorithm is pro-

posed to approximate the autocorrelation structure of the processes involved

in the model. The conditions under which sieve bootstrap yields consistent

estimators and test statistics are explored, and a selection rule for the order

of the approximation of the AR dynamics is derived. Two main results are

shown. First, an invariance principle for the partial sums of the bootstrap

samples of the �rst di¤erences of the estimated factors is shown to hold for

large T and �nite or large n. Secondly, it is proved that bootstrap estimates

and test statistics are consistent only for (n; T )!1, whilst the �nite n case
results in inconsistent bootstrap. Sieve bootstrap is shown to be consistent

for the �xed n case only in presence of no serial correlation.
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6 Appendix A: useful Lemmas

Lemma 4 Let Assumptions hold. Then, for r > 4

1

T

TX
t=1

�F̂t ��Ftr = Op
�
��rnT
�
; (16)

1

T

TX
t=1

�F̂tr = Op (1) ; (17)

1

T

TX
t=1

kûit � uitkr = Op
�
��rnT
�
; (18)

1

T

TX
t=1

kûitkr = Op (1) (19)

Proof. Letting ut = [u1t; :::; unt]
0 and � = (�1; �2; :::; �n)

0, the error term

�F̂t ��Ft can be decomposed as (see e.g. Bai and Ng, 2002, p. 213)

�F̂t ��Ft

= T�1
TX
s=1

�F̂ss�t + T
�1

TX
s=1

�F̂s�st + T
�1

TX
s=1

�F̂s�st + T
�1

TX
s=1

�F̂s�st;

where s�t = n
�1E (u0tus), �st = n

�1 (u0tus) � s�t, �st = n�1 (�F 0s�0ut) and
�st = n

�1 (�F 0t�
0us). Thus

1

T

TX
t=1

�F̂t ��Ftr � 1

T

TX
t=1

24 1T
TX
s=1

�F̂ss�t


2
35r=2 + 1

T

TX
t=1

24 1T
TX
s=1

�F̂s�st


2
35r=2

+
1

T

TX
t=1

24 1T
TX
s=1

�F̂s�st


2
35r=2 + 1

T

TX
t=1

24 1T
TX
s=1

�F̂s�st


2
35r=2

= I + II + III + IV:
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Consider I. Applying the Cauchy-Schwartz inequality we get

I � T�r=2
"
1

T

TX
s=1

�F̂s2#r=2 1
T

TX
t=1

"
TX
s=1

2s�t

#r=2
:

Assumption 1(iv)-(b) ensures that
PT

s=1

��s�t��2 = O (1). Note that T�1PT
s=1

�F̂s2 �
T�1

PT
s=1 k�Fsk

2+T�1
PT

s=1

�F̂s ��Fs2, with T�1PT
s=1

�F̂s ��Fs2 =
Op
�
��2nT
�
according to Lemma A.1 in Bai (2003, p. 159); Assumption 2(i) and

the LLN ensure that T�1
PT

s=1 k�Fsk
2 = Op (1). Therefore, I = Op

�
T�r=2

�
.

As far as II is concerned, we have

II �
"
1

T

TX
s=1

�F̂s2#r=2 1
T

TX
t=1

"
1

T

TX
s=1

�2st

#r=2
:

Since it holds that T�1
PT

s=1 �
2
st = Op (n

�1) - see Bai (2003, p. 159) - we

�nally have II = Op
�
n�r=2

�
.

Considering term III, it holds that 1T
TX
s=1

�F̂s�st


r

= T�r

 1n
TX
s=1

�F̂s�F
0
s�

0ut


r

= n�r k�0utkr
 1T

TX
s=1

�F̂s�F
0
s


r

:

Note that T�1
PT

s=1�F̂s�F
0
s = T

�1PT
s=1�Fs�F

0
s+T

�1PT
s=1

�
�F̂s ��Fs

�
�F 0s =

Op (1) + Op
�
��2nT
�
from Lemma B.2 in Bai (2003, p. 164). Also, we have

n�r k�0utkr = n�r=2
n�1=2Pn

i=1 �iuit
r = Op �n�r=2� after Assumptions 2(i)

and 3. Thus, III = Op
�
n�r=2

�
.

Last, term IV can be rearranged using

 1T
TX
s=1

�F̂s�st


r

=

24 1nT
TX
s=1

�F̂su
0
s��Ft


2
35r=2 ;
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and (see Bai, 2003, p. 160) since
(nT )�1PT

s=1�F̂su
0
s��Ft

2 = Op �n�1=2��1nT �
we have IV = Op

�
n�r=2��rnT

�
.

Thus, we have T�1
PT

t=1

�F̂t ��Ftr = Op
�
T�r=2

�
+ Op

�
n�r=2

�
+

Op
�
n�r=2

�
+ Op

�
n�r=2��rnT

�
= Op

�
��rnT
�
. Equation (17) can be proved not-

ing that T�1
PT

t=1

�F̂tr � T�1PT
t=1 k�Ftk

r +T�1
PT

t=1

�F̂t ��Ftr =
Op (1) +Op

�
��rnT
�
.

Last, consider (18). Since ûit = yit��̂
0
iF̂t, in light of (1) we have ûit�uit =

�0iFt � �̂
0
iF̂t, and therefore

1

T

TX
t=1

jûit � uitjr =
1

T

TX
t=1

������i � �̂i�0 Ft � �̂i �F̂t � Ft�����r
� 1

T

TX
t=1

������̂i � �i�0 Ft����r + 1

T

TX
t=1

����̂0i �F̂t � Ft����r
= I + II:

Consider I; this can be rewritten as
�̂i � �ir T�1PT

t=1 kFtk
r. Note that

�̂i � �i = Op (T
�1) - see Lemma 3 in Bai (2004, p. 148). Also, Assump-

tions 1(i), 1(ii), 2(i) and 2(iii) ensure that
PT

t=1 kFtk
r = Op

�
T 1+

1
2
r
�
-

see Theorem 5.3 in Park and Phillips (1999). Thus, I = Op

�
T�

1
2
r
�
. As

far as II is concerned,
PT

t=1

����̂0i �F̂t � Ft����r = �̂irPT
t=1

F̂t � Ftr. As-
sumption 3(i) ensures

�̂ir = k�i + op (1)kr = O (1), and similar calcula-

tions as before (based on the theory developed in Bai, 2004) would lead

to
PT

t=1

F̂t � Ftr = Op
�
TC�rnT

�
. Thus, II = Op

�
C�rnT

�
and therefore

T�1
PT

t=1 jûit � uitj
r = Op

�
��rnT
�
. Equation (19) follows from similar cal-

culations as those derived for the proof of (17).

7 Appendix B: proofs and derivations

Proof of Lemma 1. Consider the (k + 1)-dimensional vector e�it;b par-

titioned as
�
eF�0it;b ; e

u�
it;b

�0
, where eF�it;b is a k-dimensional vector containing the

elements corresponding to �F �t;b and e
u�
it;b is the last element; consider also

22



the conformed partitioning êqt =
�
êF 0qt ; ê

u
qt

�0
. Since

e�it;br � eF�it;br + ��eu�it;b��r,
we shall prove (9) by showing separately

T 1�
1
2
rE�

eF�it;br p�! 0; (20)

T 1�
1
2
rE�

��eu�it;b��r p�! 0: (21)

Consider (20). Recalling that �Ft =
Pq

j=1 �q;j�Ft�j + e
F
qt, the following

two equations will be used henceforth:

�F̂t =

qX
j=1

�̂q;j�F̂t�j + ê
F
qt;

�Ft =
1X
j=1

�j�Ft�j + e
F
t ;

where �̂q;j is the matrix containing the �rst k rows and columns in the esti-

mate �̂q;j derived in step 2.1 of the bootstrapping algorithm. Recalling that�
eF�it;b
	T
t=1
=
n
êFqt � T�1

PT
t=1 ê

F
qt

oT
t=1
, it follows that

E�
eF�it;br =

1

T

TX
t=1

"
êFqt �

1

T

TX
t=1

êFqt

#r

� 1

T

TX
t=1

eFt r + 1

T

TX
t=1

eFqt � eFt r
+
1

T

TX
t=1

êFqt � eFqtr +
 1T

TX
t=1

êFqt


r

:

Assumption 2(i) and the LLN ensure that T�1
PT

t=1

eFt r p! E
eFt r <1

as T !1; thus, T 1� 1
2
r
h
T�1

PT
t=1

eFt ri = Op �T 1� 1
2
r
�
.

As far as T�1
PT

t=1

eFqt � eFt r is concerned, note that eFqt�eFt =P1
j=q+1 �j�Ft�j
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and therefore Minkowski�s inequality and the stationarity of �Ft lead to

1

T

TX
t=1

eFqt � eFt r
=

1

T

TX
t=1


1X

j=q+1

�j�Ft�j


r

� 1

T

TX
t=1

k�Ftkr
 1X
j=q+1

j�jj
!r
:

The term T�1
PT

t=1 k�Ftk
r is �nite in light of Assumption 2(i) and the

LLN, and Assumption 1(ii) ensures that
P1

j=q+1 j�jj = o (q�s). This en-

tails T 1�
1
2
r
h
T�1

PT
t=1

eFqt � eFt ri = Op �T 1� 1
2
rq�rs

�
.

The term T�1
PT

t=1

êFqt � eFqtr can be rewritten as
êFqt � eFqt =

qX
j=0

�q;j

�
�F̂t�j ��Ft�j

�
�

qX
j=1

(�̂q;j � �q;j)�F̂t�j;

where �q;0 = 1. Hence

1

T

TX
t=1

êFqt � eFqtr � 1

T

TX
t=1


qX
j=0

�q;j

�
�F̂t�j ��Ft�j

�
r

+
1

T

TX
t=1


qX
j=1

(�̂q;j � �q;j)�F̂t�j


r

= I + II:

After Minkowsi�s inequality we have

I � 1

T

TX
t=1

�F̂t ��Ftr qX
j=0

j�q;jj
!r
;

and it holds that
Pq

j=0 j�q;jj �
P1

j=0 j�jj = O (1). Also, T�1
PT

t=1

�F̂t ��Ftr =
Op
�
��rnT
�
according to (16) in Lemma 4. Thus, I = Op

�
��rnT
�
. As far as II is

concerned, we have

II � 1

T

TX
t=1

�F̂tr qX
j=0

j�̂q;j � �q;jj
!r
:

Equation (17) in Lemma 4 ensures that T�1
PT

t=1

�F̂tr = Op (1). Also,
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Pq
j=0 j�̂q;j � �q;jj � qmax1�j�q j�̂q;j � �q;jj, and Lemma 2 leads to [qmax1�j�q j�̂q;j � �q;jj]

r =

Op

h
qrT�r=2 (log T )r=2 + qr��2rnT

i
. Thus, it holds that T 1�

1
2
r
h
T�1

PT
t=1

êFqt � eFqtri =
Op

�
T 1�

1
2
r��rnT

�
+Op

h
T 1�rqr (log T )r=2

i
+Op

�
T 1�

1
2
rqr��2rnT

�
.

Last, consider
T�1PT

t=1 ê
F
qt

r; we have êFqt = �
Pq

j=0 �̂q;j�F̂t�j with

�̂q;0 = �1. Thus

� 1
T

TX
t=1

êFqt =

qX
j=0

�q;j

 
1

T

TX
t=1

�F̂t�j

!
+

qX
j=0

(�̂q;j � �q;j)
 
1

T

TX
t=1

�F̂t�j

!
= I + II:

Noting that T�1
PT

t=1�F̂t�j = Op
�
T�1=2

�
for all js, it holds that

I �
 

qX
j=0

j�q;jj2
!1=20@ qX

j=0

����� 1T
TX
t=1

�F̂t�j

�����
2
1A1=2

� O (1)

24q max
1�j�q

����� 1T
TX
t=1

�F̂t�j

�����
2
351=2 = Op�r q

T

�
;

and also

II �
 

qX
j=0

j�̂q;j � �q;jj2
!1=20@ qX

j=0

����� 1T
TX
t=1

�F̂t�j

�����
2
1A1=2

�
�
q max
1�j�q

j�̂q;j � �q;jj2
�1=2

Op

�r
q

T

�
:

Since, in light of Lemma 2, max1�j�q j�̂q;j � �q;jj2 = Op
�
'�2nT

�
, we haveT�1PT

t=1 ê
F
qt

r = Op �qr=2T�r=2� = op (1).
Combining all these results together, it follows that

E�
eF�it;br = E

eFt r +Op �q�rs�+Op �qr��2rnT

�
+Op

h
qrT�r=2 (log T )r=2

i
+Op

�
qr=2T�r=2

�
= E

eFt r + op (1) ;
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which proves (10), and hence also

T 1�
1
2
rE�

eF�it;br = Op

�
T 1�

1
2
r
�
+Op

�
T 1�

1
2
rq�rs

�
+Op

�
T 1�

1
2
rqr'�rnT

�
+Op

�
T 1�rq

1
2
r
�
+ op (1)

= Op

�
T 1�

1
2
r
�
+Op

�
T 1�

1
2
rqr'�rnT

�
+ op (1) :

Then T 1�
1
2
rE�

eF�it;br = op (1) for any r > 2.
As far as (21) is concerned, recall that uit =

Pq
j=1 

(i)
q;juit�j+e

u(i)
qt , consider

the notation

ûit =

qX
j=1

̂
(i)
q;jûit�j + ê

u(i)
qt ;

uit =
1X
j=1


(i)
j uit�j + e

u(i)
t ;

where ̂(i)q;j is the element in position (k + 1; k + 1) in the matrix �̂q;j derived

in step 2.1 of the bootstrapping algorithm. Suppressing the dependence on

i, Then we can write

E�
��eu�it;b��r =

1

T

TX
t=1

"
êuqt �

1

T

TX
t=1

êuqt

#r

� 1

T

TX
t=1

jeut j
r +

1

T

TX
t=1

��euqt � eut ��r
+
1

T

TX
t=1

��êuqt � euqt��r +
����� 1T

TX
t=1

êuqt

�����
r

:

Using Assumption 2(i) and similar arguments as in Park (2002), it can be

shown that T�1
PT

t=1 jeut j
r = Op (1) and T�1

PT
t=1

��euqt � eut ��r = Op (q
�rs).

Note that

1

T

TX
t=1

��êuqt � euqt��r � 1

T

TX
t=1

�����
qX
j=0


(i)
q;j (ûit�j � uit�j)

�����
r

+
1

T

TX
t=1

�����
qX
j=1

�
̂
(i)
q;j � 

(i)
q;j

�
ûit�j

�����
r

= I + II;
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with �uq;0 = 1. Then it holds that

I � 1

T

TX
t=1

jûit � uitjr
 

qX
j=0

���(i)q;j���
!r
;

and (18) in Lemma 4 entails I = Op
�
qr��rnT

�
. Also,

II � 1

T

TX
t=1

jûitjr
 

qX
j=0

���̂(i)q;j � (i)q;j���
!r
:

Equation (19) in Lemma 4 ensures that T�1
PT

t=1 jûitj
r = Op (1). Also,Pq

j=0

���̂(i)q;j � (i)q;j��� � qmax1�j�q ���̂(i)q;j � (i)q;j���, and Lemma 2 leads to hqmax1�j�q ������̂(i)q;j � (i)q;j������ir
= Op

�
qr'�rnT

�
. Last, it can be shown straightforwardly that����� 1T
TX
t=1

êuqt

�����
r

� 1

T

TX
t=1

jûitjr
 

qX
j=0

���̂(i)q;j���
!r
= Op

��r
q

T

�r�
;

in light of (19). Thus

E�
��eu�it;b��r = E jeuitjr +Op �q�rs�+Op �qr��rnT �+Op �qr'�rnT �+ op (1) ;

which proves (10). Equation (21) also follows.

Proof of Lemma 2. Note �rst thatmax1�j�q
�̂q;j � �j � max1�j�q �̂q;j � �q;j+

max1�j�q
�q;j � �j, and note that, in light of Assumptions 1(ii) and 2(iii)

we have max1�j�q
�q;j � �j �Pq

j=1

�q;j � �j = o (q�s) - see e.g. Theo-
rem 2.1 in Hannan and Kavalieris (1986).

In order to �nd a bound for max1�j�q
�̂q;j � �q;j, assume �rst, for the

sake of the notation and without loss of generality, that k = 1, so that �Ft
and related quantities are scalars. Then the �q;j�s are scalars as well as the


(i)
q;j�s; letting �q;j =

h
�q;j; 

(i)
q;j

i0
, it can be shown thatmax1�j�q j�̂q;j � �q;jj =

Op

�p
log T=T

�
+ Op

�
��2nT
�
and max1�j�q

���̂(i)q;j � (i)q;j��� = Op

�p
log T=T

�
+

Op
�
��2nT
�
. Consider �rst �̂q;j. Letting �q = [�q;1; :::; �q;q]

0, OLS regression of
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�F̂t against the vector �F̂q;t =
h
�F̂t�1; :::;�F̂t�q

i0
leads to

�̂q =

"
TX

t=q+1

�F̂q;t�F̂
0
q;t

#�1 " TX
t=q+1

�F̂q;t�F̂t

#
:

Consider
PT

t=q+1�F̂q;t�F̂
0
q;t; application of Lemma A.1 and Lemma B.2 in

Bai (2003) entails T�1
PT

t=q+1�F̂q;t�F̂
0
q;t = T

�1PT
t=q+1�Fq;t�F

0
q;t+Op

�
��2nT
�
.

Letting
PT

t=q+1�Fq;t�F
0
q;t = d = Op (T ), after some algebra we have

�̂q � �q = d�1

(
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�Fq;te
F
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�
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and therefore
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jIV j :

FromTheorem 2.1 in Hannan and Kavalieris (1986) we know thatmax1�j�q jIj =
Op

�p
log T=T

�
. Also, using Lemma B.2 in Bai (2003) it can be proved

that II = Op
�
��2nT
�
and III = Op

�
��2nT
�
, and Lemma A.1 in Bai (2003)

entails IV = Op
�
��2nT
�
; note that these results hold for all q, and thus

max1�j�q jaj = Op
�
��2nT
�
for a = II, III and IV .

The proof for ̂(i)q;j follows similar lines. De�ning q =
�
q;1; :::; q;q

�0
(and suppressing the dependence on i for the sake of notation) and ûit;q =

[ûit�1;q; :::; ûit�q;q]
0 we have ̂q =

hPT
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0
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i
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sider
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0
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0
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. Lemma A.1 in Bai (2004) ensures
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Thus, T�1
PT

t=q+1 ûit;qû
0
it;q = T

�1PT
t=q+1 uit;qu

0
it;q+op (1). As far as
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is concerned, note that
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Proof of Lemma 3. Assumptions 1 and 2 ensure that V (r) =

��1 (1)W (r), with � (1) = 1 �
P1

j=1 �j and T
�1=2PbTrc

t=1 eit
d! W (r). Con-

sider (12) and note that
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.

After Assumption 1(ii) and 2(iii) it holds that
P1

j=q+1 �j = o (q
�s), and after

Lemma 2 we have
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�
�̂q;j � �q;j
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which is negligible under Assumption 5. Thus, �̂
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strap invariance principle in Lemma 1 ensures that T�1=2
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�
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Also, following the same lines as Park (2002, proof of Theorem 3.3), we may

show that T�1=2 sup1�t�T
����q�it �� = op (1). Therefore the CMT entails
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