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1 Introduction

Estimation and testing for structural changes is an important research topic in time series econometrics. A
recent annals volume of the Journal of Econometrics published in 2005 entitled “Modelling structural breaks,
long memory and stock market volatility” (edited by Anindya Banerjee and Giovanni Urga, 2005) and Perron
(2006) offer the most recent comprehensive reviews on the topic. In contrast, scarce is the literature on the
issues (estimation and testing) of structural changes in panel models, e.g., Han and Park (1989), Joseph
and Wolfson (1992, 1993), Joseph et al. (1997), Hansen (1999), Chiang et al. (2002), Emerson and Kao
(2001, 2002), Wachter and Tzavalis (2004) and Bai (2006). The estimation and testing for structure change
in panels have many applications in economics, For example, fiscal/monetary policies may affect every unit
in the economy (firms/regions), stock market crashes in the US may also cause the chain reaction in other
stock markets in the world.

Despite the potential usefulness in economics, the econometric theory of the testing and estimation of
structural changes in panels is still underdeveloped. This paper fills the gap in the literature by proposing an
estimation and testing framework for parameter instability in cointegrated panel regression. We derive tests
for structural change for the slope parameters in panel cointegration models with cross-sectional dependence
that is captured by the common stochastic trends. The tests are for the null hypothesis of no structural break
against the alternative hypothesis of (at least) one common change point which is possibly unknown. The
framework we propose is based on a linear cointegrated panel data model where the number of cross-sectional
units n and the number of time observations 7" are both large. The cointegrating equation we study contains
unit-specific variables (idiosyncratic shocks) and a set of possibly unobservable variables that are common
across all units (common shocks).

This paper makes two contributions to the existing literature. First, we develop an asymptotic theory
for the estimates of the parameters in the model. We consider both the case of observed and unobserved
common shocks. Ordinary large panels asymptotic theory (Phillips and Moon, 1999; Kao, 1999) cannot be
applied in our framework due to the strong cross-sectional dependence introduced by the common shocks.
We note that the limiting distributions of the common shocks coefficients are mixed normal, in contrast with
asymptotic normality found in the literature. Second, along similar lines as Andrews (1993), we derive the
limiting distribution of a Wald-type test for the null hypothesis of no structural change at an unknown point
in cointegrated panels where units are cross dependent. The tests we derive are based on functionals of the
Wald-type statistic.

The organization of the paper is as follows. Section 2 introduces the model. Section 3 discusses asymp-
totics. The limiting distribution of the OLS under the null of no structural change is established. Section 4
defines the test statistic. The limiting distributions of the proposed test are also derived. Section 5 discusses

the local power. In Section 6 we report the finite sample properties, i.e., size and power, of our proposed



tests. Section 7 provides concluding remarks. Some useful lemmas are given in Appendix A. In Appendix B
we report the proofs of the main results in the paper.

We write the integral fol W (s)ds as [ W when there is no ambiguity over limits. We define 01/2 to be any
matrix such that Q = (Q1/2) (91/2)/ . We use ||| to denote the Euclidean norm of a vector, 2, to denote
convergence in distribution, -, to denote convergence in probability, [x] to denote the largest integer < z,
I(0) and I(1) to signify a time-series that is integrated of order zero and one, respectively, B = BM (£2) to

denote Brownian motion with the covariance matrix Q, and B = B — f B to denote the demeaned version

of B. We let M < oo be a generic positive number which does not depend on n or T'.

2 Model and Assumptions

Consider the following panel model with common and idiosyncratic shocks

Yir = o + B'Fy + 7'z + uy (1)

i=1,...,nand t =1,...,T, where «; is the individual effect. The parameters 8 and v are R x 1 and p x 1,

respectively, F; = (Fy, ..., Fr;)' is a R x 1 vector of common stochastic trends
Ft = Ft—l + & (2)
x;+ is a p x 1 vector of observable I(1) individual-specific regressors,

Tit = Tip—1 + €3¢ (3)

’ ’ .
and (uit, €, eit) are error terms. When common shocks F; are not observable in (1), we then assume that

F; can be estimated by a set of observable exogenous variables, z;;, such that

zit = N Fy + e (4)

where )\; is a vector of factor loadings and e;; is the error term.!

It is important to point out that our model in (1) is a standard common slope coefficients panel model
not a factor-loading model as in Bai (2004), for example. Similar to this paper but not the same is Stock and
Watson (1999, 2002, 2005). In Stock and Watson’s setup, y;;: in (1) (with n = 1) is the time series variable
to be forecasted and z; = (21, zi2, -+ zz-T)/ is a n-dimensional multiple time series of candidate predictors.

The main aim of this paper is to develop test statistics to test the constancy over time for § = (B'7 o )/
with unknown change points. Considering the alternative hypothesis that there is only one change point k,

three possible sets of alternative hypotheses can be considered as opposed to the null of no structural change

1Kao, Trapani and Urga (2006) provide a comprehensive asymptotic theory of the OLS estimator 3 of 8 when (1) does not
contain idiosyncratic regressors x;¢.



in 0: (1) only the common shocks coefficients S may change, (2) only the idiosyncratic shocks coefficients
may change or (3) both 8 and v may be affected by the break.
Denote 0; = (ﬂ;, 72)’ . Given the null hypothesis

Hy: 0, =0 for all t,

the alternative could be defined as

0 fort=1,..k
H“'Gt_{ez fort=k+1,..,T

with 6, # 05.2

Note that testing for the constancy of 3 for the common factor, F;, may have a different interpretation
than the usual constancy of the slope parameter.> This is the case especially when F; is not observed and
has to be estimated e.g. using the principal component estimator (see Bai, 2003, 2004; Bai and Ng, 2002,
2004). In this case, the estimated factor matrix, Fis given by T times the eigenvectors corresponding to the
R largest eigenvalues of the matrix ZZ’, where Z = (21, 22, ..., zn)/ is T xn with z; = (2i1, zi2, .- ZZ'T),. Since
there is no guarantee that the R largest eigenvalues will have the same order for each ¢, the corresponding
eigenvectors will have different meanings over time. For example, in the term structure literature (see e.g.
Litterman and Scheinkman, 1991; Audrino et al. 2005), one usually uses a three-factor specification (level,
slope and curvature) to explain the yield curves. The largest eigenvalue (and the corresponding eigenvector)
for period t may not the be the same one in period s. This will make the parameter 8 non constant. Thus,
[ being non constant may indicate instability in the factor structure and not merely lack of constancy of a
slope parameter. Recently, Perignon and Villa (2006) provide some discussion on the stability of the latent
factor structure of interest rates over time.

We need the following assumptions.
Assumption M1: Let w;; = (ug, €}, e;t,eit)/. We assume that

(a) wgt is iid over t and the invariance principle holds for the partial sums of w;, so that for a given i,

1 i
d = (-
7w Bu ()= | B
Be ()

2The formulation of the alternative hypothesis encompasses three possible cases:

(BL,y) fort=1,..,k
a. p—
Hj at_{ (By,y") fort=k+1,..,T
! /
b _ B, fort=1,...,k
Hy 9,5—{ gﬁ','yé; fort=k+1,..,T
! !
c.n Y1 fort=1,...,k
Hy et_{ E ’2,7’2; fort=k+1,..,T

where 8, # By and v; # v,.
3We thank Zongwu Cai for pointing this to us.



where B,, (+) represents a multivariate Brownian motion, whose elements have covariance matrices o2,

Q., Q. and . respectively.
(b) For a given t, {uit}, {et, €}, and {e;} are mutually independent across 1.
(¢) {z, F;} are not cointegrated and €2, and Q. are non singular.

(d) The eigenvalues of 2. and the random matrix [ B.B. are distinct with probability 1.

Assumption M2: ||);|| < M and 237" | \;\; — X, as n — oo, where X, is non singular.

Assumption M3: We assume the following limits hold as in Phillips and Moon (1999):

and

as (n,T) — oo where & =z — = 23:1 zi and 02 = Var (u;).

Assumption M1(a) considers a framework of no endogeneity of the regressors, serial dependence or con-
temporaneous correlation other than the one determined by the common shocks F; are allowed for. FEx-
tensions to allow for endogeneity of the regressors, serial correlation and weak cross-sectional dependence
among the regression errors are straightforward. Assumption M1(a), therefore, is considered merely for the
purpose of simplification. Assumption M1(b) is a standard requirement for factor analysis and it is needed
when F; are not observable. Note here we allow non-zero covariance between ¢; and €;;. Assumption M1(c)
rules out cointegration among regressors. Assumption M1(d) is a standard requirement in large panel factor
literature. Assumption M2 is also standard. Assumption M3 states that the joint limit theory developed by
Phillips and Moon (1999) holds for (5) and (6).

The following proposition is important for developing the asymptotics in this paper.

Proposition 1 Let Assumption M1 hold. As (n,T) — oo
n T ~
(a) \/ﬁlT2 Dot 2opm1 Wiy = Oy (1),
1 n T d = = 1/2
(b) V/nT Zz’:l Zt:l Wilit — Oy (f BEBE> X 7
where Z; ~ N (0,1g) and w; = F, — = 3] F.

n

Proposition 1 states that the asymptotic magnitude of the cross term " | thl wta?;t is O, (\/ﬁTQ),
thereby smaller than Y% | 37 7@, in (5) (and Y0, S/ wsw) in (7) below). The asymptotic mixed



normality result in part (b) is also different from the distribution limit in equation (6) where asymptotic
normality holds. This result is due to the shock w; being common to all units and I(1).

We now turn to estimation of § (under the null of no structural change).
3 Asymptotics of the Parameter Estimates Under the Null

In this section we provide asymptotics for the OLS of model (1) under the null hypothesis of no structural

change. We distinguish the case of F}; observed from that where F; needs to be estimated.

3.1 F; is Observable

Define Wy, = (w},#,)’. Let 6 be the OLS of 6. Then we have
b9 = |20 ]
Y=
n T lra T
_ vy ww] [z 5 w]
j i=1 t=1

- -1

T T - T

_ 2?21 2%21 wywy 2?21 2%21 Tipwy 2?21 E%:l Wit (7)
n ~ n ~ ~ n ~ M

L Zi:l Zt:l wy T Zi:l thl Ty, Zizl thl Tt Uit

The following proposition characterizes the limiting distribution of 0.

Proposition 2 Let Assumptions M1(a)-M1(d) and M3 hold. Then, as (n,T) — oo it holds that

vir(o-)=var [ 170 oo (V" ) 2 .

= ((6)(% 1))

Proposition 2 states that B — f and 4 — v are asymtotically independent. This result is a consequence of

where

Proposition 1, i.e.,

n n ~ ’ 1
RN Dy ;:1 wwi Yy Z;:l TigWy | _ Op(1) Oy ( n) ) 9)
(YA D DD DKV DD Drg Op (ﬁ) 0, (1)

Note that results in Proposition 2 have /nT convergence, as in Phillips and Moon (1999) and Kao
(1999). However, the limiting distribution of 0 is different from the panel cointegration literature, where
normality holds. The mixed normality found in our case is due to the shocks w; being nonstationary and
common across units, which implies ﬁ Dy Zthl wpwy <, [ B.B. being a random matrix rather than a

constant as in the standard panel cointegration as in (6).



3.2 F; is Unobservable

In order to estimate # when F; is unobservable, we consider a two step approach. First, we derive the
estimator of the vector of common shocks, F}, using equation (4). We then plug this estimator in equation

(1) to retrieve an estimate for 6.
3.2.1 Estimation of F}

The estimator E}, can be estimated by the method of principal components, (see e.g., Bai (2004)).* That is,

F, can be found by minimizing

1 n T , )
Var (R) = T (Zit - )\Z‘Ft)

i=1 t=1

subject to the normalization %23:1 F,F] = Ig, where z; is given in (4). Let F = (Fy,...,Fr)" and
Z = (=1, 22, ...,zn)' a T x n matrix with z; = (21, 22, ...,ziT)'. The estimator F' = (Fl, ...,F’t)/ isaT xR
matrix which is found by T times the eigenvectors corresponding to the R largest eigenvalues of the T' x T
matrix ZZ'.

It is known that the solution to the above minimization problem is not unique, i.e., A\; and F}; are not
directly identifiable since they are identifiable only up to a transformation. Therefore, instead of estimating
the factors F; (or the loadings JA;), what one does by employing the principal component estimator is to
estimate the space spanned by them up to a R x R transformation matrix, say H, thereby finding HF;
instead of F;. Therefore, computing the OLS of 3 for example, would result in estimating H !/ rather than
B. However, as far as testing is concerned, knowledge of H F} is the same as directly estimating F;. Hence,

for the purpose of notational simplicity, we assume H being a R x R identity matrix in this paper.
3.2.2 Estimation of 6

Let W, = F} — % ZtT:1 F, and Wy, = (wé,i;t)/. The OLS estimator of 6 is computed from

Yit = o + 5;Ft + Vixir + Vi (10)
where v, = uy + 3 (Ft — ﬁ't) Note
j_o — [B-8 }

L Y=
[ n -1 n T

S 3N s st
Li=1 t=1 i=1 t=1
[ n T Py n T ~ .7 -1 n T ~

— Zi:l Z%Pﬂ WiWy Zi:l Zthl Tt Wy Zizl Z%:l Wevie | (11)
i Dim1 2oy Wiy iy Doy Tty Dim1 2=y Titvit

4Throughout the paper, we assume that the number of common shocks R is known. If this is not the case, detection of R is
possible using the methods derived by Bai and Ng (2002).



Let

Ug =0’ 40} (12)
where 02 = Var(u;)
ot = B'Qp (022r) Q8 (13)

02 = Var(ey;) and the random variable Qp is defined as
1 ) d
ﬁ Z u?twg — QB-
t=1
The following theorem characterizes the limiting distribution of 6 when F, are not observable.

Theorem 1 Suppose Assumptions M1-M3 hold, with n/T — 0 as (n,T) — oo. We get

van(o-0) =i [ 327 (UG, o ) 2 s

2= ((5) L% 5))

Note that 3 and 4 are asymptotically independent due to ) Zthl Wi W/, being a block diagonal

where

matrix asymptotically similar to (9). The limiting distributions are essentially the same as those found in
Proposition 2, the only difference with respect to (8), being the presence of the extra variance term oy in

the limiting distribution of B This arises from the estimation error of the common shocks, Ft — F;.
4  Test Statistics

The asymptotic theory for 6 derived in the Section 3 is used to derive the limiting distribution for the Wald-
type statistic under the null hypothesis of no structural change. A variety of tests for a break, based on the
Wald statistic have been discussed in the literature, e.g., Andrews (1993), Andrews and Ploberger (1994).
In this section, we consider three statistics: the supremum of the Wald statistic, SupW, the average Wald

statistic, AveW, and the logarithm of the Andrews-Ploberger exponential Wald statistic, FxpW.
Assumption PSE: (Partial Sample Estimation) % — r € (0,1) as T and k — oo.

Assumption PSE states that the fraction of T' at which the change point occurs, r, is bounded away from
zero and one. Therefore, the structural break will divide the sample into two subsamples each of nontrivial
size. This assumption follows an argument similar to that in Corollary 1 in Andrews (1993, p.838).

Consider the following partial sample OLS

—1

n [T’!‘] n [TT]
O = | 2D WaWiu | 3> Wapa
i=1 t=1 i=1 t=1



and .
R n T ) -, n T )
92[T7~] = Z Z WiuW,, Z Z Wityit.

=1 t=[Tr]+1 =1 t=[Tr]+1

Let 62 and 6? be consistent estimators for o2 and Ug respectively under Hy. Define

[T

9* _ &(IR 0 ! é
JTr] — 0 Guly

for j =1, 2. Then the Wald statistic W([T'r]) is given by

(S s i)

I
+(ZZL1 tT:[Tr]+1WitW;t) ! (1[T1 2[T]) (15)

~k ~k /

W([Tr]) = (91[Tr] - 92[Tr])

Let Sy (r) = 0. [y BedB and Sy (r) = o frl B.dB, where B (-) is the standard Brownian motion.
Define

M (r) = fOT B.BL, My (r) = f: B.B!, and

o I e R e O R E R CIE A U R

The following theorem characterizes the limiting distribution of the Wald test under the null.

Theorem 2 Suppose Assumptions M1-M3 and PSE hold, and that 7% — 0 as (n,T) — oo. Then, under

the null Hy of no structural change

W(T)) % D () = Qr() + Qp(") (16)
with
Qr(r)=s(r) V=L (r)s(r), (17)
B((1—1)%) —B(r? / B((1—7)?) - B(r?)
Qp(r) = [ ( :}(1[_T)2 )] : (18)

where in this case B (-) is a p-dimensional standard Brownian motion. For a given r, Qr(r) and Q,(r) are

independent such that

Qr(r) ~ X%
and ) ,
N 1—-r)—r 9
Qp(r) (1— r)2 T2 Xp-




Let
(1- 7")2 — 72

=iy

Note that B((1 —7)%) — B (r?) has variance (1 — r)? —r2if (1—7r)% > r2. Also B((1 —r)*) — B (%) has

variance 72 — (1 —7)? if r2 > (1 — r)®. Then HB((l -3 —B (r?)|| is a Bessel process of order p, and

[B(u “))-B (rQ)}/ [B((l -r)?’) - B (7‘2)}
‘(1 — r)2 — TQ‘

2

is its standardized squares. Let s = ’(1 — 7‘)2 —r?|, we can write

B((1-r)?%) - B (ﬂ)}' [B((l -’ -B (TQ)] B s BM(s)'BM(s)

24+ (1—r1)? r2 4 (1—r)? 5

7

where BM (s) denotes a p-vector of independent Brownian processes on [0, oo]. For a fixed r, [BM (s)’ BM(s)] /s
has a chi-squared distribution with p degrees of freedom. However, r cannot be 1/2 since s will be zero when
r=1/2.

In order to obtain a test statistic that the critical values can be taken from the literature, e.g., Andrews
(1993), Andrews and Ploberger (1994), we consider the following modification to the Wald test:

o) B
! (Zi:l > i1 WitWit) - o

) n T s s\ L (01[7””] - 02[T7’])
+ (Zz’:l Dt=rr] 41 WitWit)

~ Kk

WH([1r]) = (éum — 091

where )
é** o &(IR 0 h é
Jrr] — 0 m X 61, Jlrr]-
It is clear that
* d * *
W*([T+]) — D* (1) = Qr(-) + @, () (19)

where
Q) = @Qp(%

Note that for a fixed 7, Qg(r) and Q5 (r) are independent and
D* (’I") ~ X?%+p‘
Hence we have the following corollary:

Corollary 1 Suppose Assumptions M1-M3 and PSE hold, and that % — 0 as (n,T) — oo. Then, under

the null Hy of no structural change

wW*([T]) -% D* ()



The results in Theorem 2 and the rest of the paper continue to hold if we relax some of the restrictions

contained in Assumption M1. Particularly, assume that a multivariate invariance principle for w;; holds,

such that
1 [T] 4
— wit — B; (Q) as T — oo for all 7,
\/T tz_; it K3 ( )
where
Bui
— BE
Bi - Bei )
Bei
and
0 = 3 B (wiw),) =IO =S+ 04T
j=—o00
Q’LL QUE Que Q’LLE
_ Qe Qe Qe Qee
a Qeu QEE Q€ QEC
Qeu QEE QEG QP

where I' = Z;’il E (wiong) and ¥ = E (w;ow}y) are partitioned conformably with w;;. In this case, one can
replace the OLS estimator by the fully modified (FM) estimator or dynamic OLS (DOLS), e.g., Phillips and
Moon (1999) and Kao and Chiang (2000), to take account of the presence of serial correlation and exogeneity.
This can be performed by replacing Ei by ﬁu,s in (15) for the Wald test statistic, where ﬁu‘g is a consistent
estimator for

Qu.b = Qu - Qube_lgbu

with
b= (e,€) .

Further, the results in Theorem 2 are for testing the stability of #. However, one can construct tests
separately for 3 and v using Qgr(r) and @ (r) since Qr(r) and Q;(r) are independent. Theorem 2 states
that if one wants to test only for the constancy of § it holds that

d
W(T"]) — Qr(");
if one is interested in testing merely for the constancy of « it holds that
d *
W(IrD) -5 Q).

Finally, theorem 2 is valid for any consistent estimators of o2 and 0’%. To estimate o2, one could compute

1 n N 2
62 = T > <yit —yi— 0 Xit) (20)

i=1 t=1

10



which is consistent under Hy. To find a consistent estimator, Erg, of o’%, from equation (12) a possible choice

is

From equation (13), we have

with

where ); is a consistent estimate of \; and é;; can be computed as

~l A

€it = zit — N Fy.
Therefore, we can provide an estimate for of as

6% =52 + 562, (22)
The following proposition characterizes the consistency of &3 and &? under Hy.

Proposition 3 Suppose Assumptions M1-M3 hold and that 72 — 0 as (n,T) — co. Then, under Hy

~2 P 2
Oy Ous

62 2, o2,

The limiting distribution for the Wald test is now used to test for the presence of a structural break.
Following Andrews (1993) and Andrews and Ploberger (1994), we consider three functionals of the Wald
statistic W(-):

SupW (k) = sup W*(k),

[Tr*|<k<T—[Tr*]

L T
AveW (k) = T W*(k),
k=[Tr*]

and
T [Tr*]

BxpW (k) = log { = > exp [;W*(k)]

k=[Tr*]
where r* represents the fraction of the sample trimmed away from the beginning and the end of the sam-
ple. Therefore, to carry out the test we only use data belonging to the sub-interval of the full sample
{{Tr*],[Tr*]+1,...,T — [Tr*] = 1,T — [T'r*]}. Using the continuous mapping theorem (CMT) we have the

following result:

11



Corollary 2 Suppose Assumptions M1-M3 and PSE hold; then under Hy:
SupW ([Tr]) 4, sup  D*(r),

r*<r<l—r*
AveW([Tr]) L [177 D*(r)dr,
1—r*

ExpW([Tr)) 4, log {f . exp [1D*(r)] dr}
as (n,T) — oo

Critical values for SupW, AveW, and ExzpW can be taken from Andrews (1993) and Andrews and
Ploberger (1994) since D* (r) is X%:er for a fixed r. For example, when r* = 0.15 and R = p = 1, the critical
values of the 5% level for SupW, AveW, and ExpW are 11.79, 4.61, and 3.22 respectively.

5 Local Asymptotic Power

In this section, we evaluate the power of the Wald statistic against local alternatives. We assume the following

sequence of local alternatives:

NGy

/
where ¢ (-) = [glg (), 9 ()} is a (R+p) x 1 arbitrary function defined on the unit interval, with the sub-

HOD 6T =g+ g@) (23)

elements g3 (-) and g, (-) being R x 1 and p x 1 respectively.

The properties of g (%) are specified in the following assumption.

Assumption LP:(Local Power) The function g (%) belongs to the class of Riemann integrable functions

and as (n,T") — oo and for all k:

(a) th 1 g( ) — forg(s)ds
(b) n%"z Z?:l Zz[f,z;rl] WitWi/tg (%) = Op (1)7

(C) nT2 [TT fW (%) :OI) (1)a

d) A 12[”] (L) WaWig (4) = 0, (1),

(e) nT Zz 1Z[TT]W ( )ult_Op(1)~

Possible alternative functional forms for g (-) include: the constant function, i.e. g(-) = ¢ over the whole
sample, which indicates no structural breaks; a single step function, i.e., g(s) =0if r < r and g(s) = Af if
s > r, which represents a one-time change on 6 at k = [T'r]; multiple steps functions that represent multiple
changes; time trending function g (-) = ¢/7.

Assumptions LP(b)-(e) are technical requirements needed in order for g(-) to be a non-trivial local

alternative, i.e., in order for g (-) not to vanish too quickly as T — oo.

12



In what follows, we derive the asymptotic behavior of the Wald statistic under the sequence of local

alternatives (23). Model (1) can be rewritten as

yrftnT) = Q4 + X/ta(nT) + Uit -

Similarly, when common shocks are replaced by their estimates X, we have
5 T
i = i+ X500 + v

NG A (nT ~(nT
with vy = wi + (Ft - Ft) BE“T). Let 957; ) and H;Z ) be the OLS estimators under the local alternative
(23), and let 52 and 52 be consistent estimators for o2 and O'g respectively under the local alternatives

Ht(I"T). Define )
é*(nT) | o¢lR 0 B é(nT)
jk - 0 &qu Jjk >

for j = 1,2, the Wald statistics under the local alternative can be computed as

-1 -
wen =i - | g S | B,
i=1 2t=k41 Vit Wiy

The local asymptotic power for the Wald statistics is given in the following theorem.

(24)

Theorem 3 Suppose Assumptions M1-M3, PSE and LP hold. Then under the local alternative hypotheses
g defined in equation (23),
wOT((T]) =% D () + 0, (1)

where D (r) is defined in Theorem 2.

The arguments in Theorem 3 also hold for the modified Wald test statistic. Theorem 3 indicates that the

Wald statistics in (24) has nontrivial local power irrespective of the particular type of the structural change.

(nT)

The theorem holds for any choice of the estimators 0 and UC which is consistent under H, A possible

estimator for o2 is
n

. 1 _ () 12
UiiﬁZZ[%t*yi*Qt Xit] .
i=1 t=1
To estimate 0% we propose
- A(nT) 5 ~(nT
g 02+ﬁ( )07275( )’

where 0 is defined in equation (21) and B( is the OLS estimator for 8 under H | Then the following

proposition establishes consistency for &u and &C under Hé"T).

Proposition 4 Suppose Assumptions M1-M3, PSE and LP hold. Then under the local alternative hypothe-
ses H'T) defined in equation (23), it holds that

~2 P 2
Oy )

13



~2 P
¢ — ¢

as (n,T) — oo
6 Monte Carlo Simulations

In this section we present the simulation results that are designed to assess the null rejection probabilities
and the power properties of SupW(k), AveW(k), and FxpW (k) statistics. To compare the performance of

the proposed tests we conduct Monte Carlo experiments based on the following design
yit = i + B Fy +vima + uig
Fy=Fi1 +eq,

Tit = Tig—1 T €5t

and

!
Zit = N Fy 4 e

fori=1,..,n,t=1,...,T, where the vector [u;, },, €}, €};] is randomly drawn from a standard multivariate
normal distribution.

For this experiment, we assume a single factor, i.e., R = 1 and J; is generated from i.i.d. N(uy,1). We
set py = 2. Under the null hypothesis of no structural change, we set the values of the parameters g =1
and v = 1. Also we choose o; ~ N (0, 1).

We assess the power of the test considering an alternative hypothesis of structural change in both S and
~v. We consider break location is assumed to take place at the 40% of the sample. To control for the break

magnitude, we simulate model (1)-(4) assuming that, under H,

g Ofort<h
Tl A4c)ffort >k

where ¢ is a scalar that defines the percentage change in the parameter values. We set ¢ = 0.1. When
generating the DGP, the first 1,000 observations are discarded to avoid dependence on the initial conditions.
All our results are based on sample size of n = {20, 40, 60, 120,240,480} and T = {20, 40, 60, 120, 240, 480}
with 10,000 iterations. The size and power are evaluated at 5% level. All programs are written by GAUSS.
The the critical values of the 5% level for SupW, AveW, and ExpW are 11.79, 4.61, and 3.22 respectively.
Those critical values were taken from Andrews (1993) and Andrews and Ploberger (1994).

Table 1 contains empirical rejection frequencies of the test statistics, SupW, AveW, and ExpW, under
the null that 8 and - are stable over time. It is clear from Table 1 that all these three test statistics are

undersized if n and T are small. Overall, all three test statistics show good size when n and T are large.

14



Table 2 gives the power of the test statistics. All tests show very good power properties. The power gain
is substantial as T increases and more moderate for increasing sizes of n. This result is consistent with the

/nT asymptotics of the three tests, as reported in the paper.

7 Conclusion

In this paper, we derive an asymptotic theory for testing for an unknown common change point in a coin-
tegrated panel regression with common and idiosyncratic shocks. We develop the asymptotic theory for the
cases of observable and unobservable common shocks and we derive the limiting distribution of the supre-
mum, average and exponential Wald-type statistics under the null of no structural change. The derived
limiting distributions are nuisance parameter free, depending only on the number of regressors. Monte Carlo
simulations show that all three tests have good size and power properties, the power gain being substantial
as T increases and more moderate for increasing sizes of n, consistent with the \/nT asymptotics of the three

tests.
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Appendix
i F0) 0 15T n PR P LT @
Define C,r = min {\/n, T}, w = (Ft —F ), FO=T7 % F, Wy = (F;,—F),and FF'= %%, | I}.
A Lemmas

Lemma A.1 Under Assumptions M1 and M2, as (n,T) — oo

R 2
@ +X0, |f- A =0, (),

() + 50 e —wil* = 0, (),

(C) % ZZ:l wé (Ft - Ft) = Op (C:,T).

Proof. Part (a) is taken from Lemma 1 in Bai (2004). Consider part (b).

1 < . 2 1 & . Nk
LS el = 356 -5
t=1 t=1
2 & . 2 — — 2
<z U\Ft—FtH +||F—FO||]=I+H-
t=1
NOW,I:T”ZtT:l‘Ft—Ft 2:Op (C;I%) from part (a).. For II, it holds that
2 |1 & 1 2 1
S sz |1 - 1 - B 1
|F - O = T;(Ft Ft)‘ <<Tt§_:l F—F >_OP<CZT>’

using the Cauchy-Schwartz inequality. Therefore % Zthl ||F' —F 0H2 =0, (ﬁ), and consequently

1 — 1
7>l —wi|* =0, (2) :
T t=1 CnT

This proves (b). Part (c) follows directly from Lemma B.4(i) in Bai (2004). =
Lemma A.2 Under Assumptions M1 and M2, as (n,T) — oo

(a) . ;
5 2= el 0 ()
— ) W= > ww,+ 0, | ——=——
T2;” T2;ft "\VTCyr
with
Lz
ﬁZwtw,@:Op(l),

t

I
—
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(b)

with .
1 n
ﬁ;;wtuzt—Op(l)a
(c)
lnTAFF—lnT’FF o, (X
i L (=) = g 23w (r= ) v (&)
with

LS wi (- R) =0, ().

T T
o 1 . .
Zwtwg 5 Z (wy + by — wy) (wy + by — wy)'

N

t=1
1 « 1 «
= QZwtwi—i—ﬁZwt (wt—wt)/
t=1

t=1

3

T T
1 . 1 . .
+ﬁ Z (’lUt - wt) w; + ﬁ Z (wt - wt) (wt — wt)/
t=1 t=1

= I+ IT+1IT+1V.

Assumption M1 ensures that

I=0,(1).

As far as terms I and III are concerned, application of the Cauchy-Schwartz inequality and of Lemma

A.1(a) ensures that they are bounded by

. T 1/2 1/2
IT < T2<lewt|2> (ZthtIZ))
t=1

1 VT
= =010 <CnT>

—

()

Use Lemma A.1(a) we have

Hence,




For part (b), note that

1 n T
T 3N i =

i=1 t=1

From Proposition 1 we have

1 Gt 1
szwtwﬂ- ~7

i=1 t=1

1=0,(1)

n

T
Z(wt—wt)uitzl+ll.

i=1 t=1

applying Cauchy-Schwartz inequality and Lemma A.1(a) to 11 leads to

1 T 1/2 1 n
N 2
< (35 mn-uit) (5

To prove (c) we note that

LS F,—F) =
L3l () -

Lemma A.1(c) ensures that

For II.

17

Il
QS
S
I/~
2
S
N~
@Q
N
S\H
~
N~
Il
Q
S
|
3|
S
——

Hence,

proving (c). m

Xi

(a)

(b)

~

IN
VR

1

iy (Ft - Ft) -0, (C}m

o\ 1/2

LSl (B R + 23 @) (R B) =11

)-o(ez,)

/ ’ = ’ ' S == el gl . S T
Let Xi; = (Ft,xit) X = (Ft,xit> Wit = Xyt — Xi, and Wiy = Xy — X,, with X; = 257 | X, and
T o T ~ T ~
% Zt:l X,’t. Recall wy = Ft — % Zt:l Ft, Tit = Tjt — % Zt:l Tit, and Wit = (wg, .T;t)/ .

Lemma A.3 Under Assumptions M1 and M3, as (n,T) — oo

and

where Zy ~ N (0,Ig) and Zy ~ N (0,1,).
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Proof. To prove (a), note

n T
1 T ’ 1 n T ~
1 E : E : W, = Tz D1 ;Utwt T2 Dt Z%:l Wi Ly
2 ? 7 - 1 n ~ o0 1 n ~ =)
T i=1 t=1 nT?2 Zizl Zt:l LitWy nT?2 Zi:l Zt:1 TitLsy

_ {;ﬁ]

T
1 _
=73 E wyw, 4, /BEBQ;
t=1

Equation (5) in Assumption M3 states that

1 n T 1
Cc = W Zz.fit.f;t i> 603(26,

i=1 t=1

Assumption M1(a) ensures that

We know from Proposition 1 that
1 n T }
— > D Fuw; =0y (1)
i=1 t=1

In order to prove (b), note that

Z Z Wisuyy =

zltl

L — |

T

DT D1 Dot Wellit
T ~

ﬁ Z?:l Zt:l Tt Uit

_ [d}

From equation (6) in Assumption M3 that

1 1
o S s L N (0,390 ) = -0/, x 2

=1 t=1

We also know from Proposition 1

1 T 1/2
ATIL w5 ([ B.8) 0 x 20

This proves part (b). m
Lemma A.4 Under Assumptions M1-M3 it holds that, as (n,T) — oo and @ —0

(a) .,
1 sy d B:B. 0
s 150 ]
t=1
(b)
1 n T 4 o 1/2
7TZZ uzt+ﬁ (wg — ’th)] — (/BsB;> o¢ X 2,
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n T
1 . N
722%1& (wy — ) B =0p (1),
VT i=1 t=1
where Zy ~ N (0,1Ig), and

0¢=0yt0m,

on = 0\ B QpEAQ S,

T
1 ., d A
8 RN
t=1

with

and

Proof. To prove part (a), note that

n T
1 T A~ A~ 1 n T A~ =
1 § : § :WitW'/t _ Tz Zt:l WrWy T2 2121 thl Wi Ly
nT? ‘
=1 t=1

T . . T . .
n% Z:’L:l Dt Tty n% E?:l Doty Tty

Then Lemma A.2(a) ensures that

so that

From equation (5)

We have
1 n T 1 n T 1 n T
A o~ ~/ A ~/
T2 W = ) ) it s ) ) (b —w) &
nT =1 t=1 nT i=1 t=1 nT i=1 t=1
= I+4+1I

We know from Proposition 1 that

For I1, the Cauchy-Schwartz inequality and Lemma A.1(b) lead to

1 T 1/2 T
~ 2 §
t=1

_ #op (g;) 0, (VnT) =0, (\/ﬁloﬂ) '
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Therefore, as (n,T) — oo

To prove part (b), note that

1 n T ) . - A ) A N
ﬁ;; u1t+,3 wt*wt)] = WZZwtuihLﬁzzwt(wt*wt)ﬂ

As far as a is concerned, we have

n T n T
@ = \/;ﬂ“;zwtuit+iﬂﬂ22(wt_wt)uit

=1 t=1 i=1 t=1
= I+1I,

and according to Lemma A.3(b) we have

o 1/2
= (/BEB;) ou X 7.

<§:wf wf||>1/2 nZT:
—-0

For 11, we have

11

IN

t=1 t=1

b ) VaT) =0, (%)

fT Z Z Wi + op

=1 t=1

i=1

1 n
% Zuit
1

8- 3~
’ﬂ ~

Therefore, IT = o, (1) and

For b, we know from Bai (2004) that, as (n,T) — oo and ﬁ — 0 we have

\/ﬁ (12],5 wt T2 Z wsw Z i i€it =

Therefore we write

3
S
3

n T

=1 t=1

Hence

2

= wy ult-|- wy — i)’ B} +op(1).
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From Theorem 2 in Bai (2004) we know that for a given ¢

\/E(U)tlbt)—< ) Z)\BLt+Op *)QBN(O F)

as n — 0o where

’

W w
-5 Qn,
and
. 1 n n ,
I D9 S (RN
i=1 j=1
1 n n ,
= 03 lim —ZZM)\j
n—oomn, =1 =1
= UgEA.
Then
1 & T
TZwtﬁ \/ﬁ(’u}t—’UA}t) - Z tB QBN O P)+OP(1)
t=1 t=1
T
= Z well; + op
where

I, = 8 QpN (0,T).
It is clear that
1 T d —7
T > wdl, /BEdBH
t=1
as T — oo where By is defined as

t
S"1; % By =onB*. (26)
j=1

1
VT
where B* is the standard Brownian motion. It follows that
1 X / 4 » N2
T > wiB Vn (wy — @) /BEdBH = </ BEB€> on X 7y
t=1
Finally, consider the joint distribution of the elements in

T
\/%T Z?:l Zt:l WUt
T ~ 5 N .

\/717T Z?:l Zt:l w3 (wt - wt)

Any linear combination of these elements takes the form

n T
% Z {;Z [¢1@tuit + ¢>2ﬁ5tﬁl (wy — {l}t)] }

=1 t=1
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for some ¢ and ¢,. Let
T
1 N —~ ~
SiT = T ; |:¢1wtuit + ¢S (wy — wt)] .

For a given T, it is also clear that every element of ¢;p are iid across i conditional on C, the o-algebra
generated by {F;}. Without loss of the generality, we assume R = 1. It is clear that every element of ¢;r

are 74d across 7 conditional on C which is an invariant o-field. Thus

1 & ;o p ,
E Z§iT§iT — F (%TCZ'T‘C)
=1

where
E (§iT§;T|C>
= oar l; zT:zﬁt [¢1Uit + ¢251 (wy — @t):|‘|
t=1
= = gi; Var {@ [6,ui + 628 (w, — @) }
= % i {@t@; [gb%var (uit) + 291 E [Uz'tﬂ/ (we — @f)} + ¢§Ua7"ﬂ/ ((we — @t))] }
and

n T
% > % >~ { iy [$Fvar (ui) + 2016, [wiB (we = @0)] + d3vars’ (w, — )] |
1 I 1~ :
=5 D B gtvar (wir) + 22 3 = > 20,0, (it (wi — @)]
=1 t=1

1 1 o
+ﬁ =1 Z W, W, 5var (wy — wy) .
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Notice that E and wvar are conditional expectation and conditional variance respectively. It follows that

conditional on C,

n T
In 1
EZEZ twt2¢1¢2E [Uztﬂ wy — W) H
i=1 t=1
Ign 1 / ~
- n Z T2 Zwtwt2¢1¢2E {Uz‘tﬂ (wy — wf)}
i1 =1

1 T
== @t’l/ljt2¢1¢2E

TQ\/ﬁt 1

i’n Zuzt] 5, (wt - ﬁ}\t)‘| H

1/2 T
1 1 2112 !
< 2ol (TZ Il ) (ETZ‘
(

= TQIZ@t@t2¢1¢2E |:U'tﬂ (wt ’LUt):|
2

Wh (w, — @)

1/
2)

= o0,(1)
with
1 n
Ut —F Ust
VP
since
1 / PENIE
Eig Z ‘ Etﬂ (’U}t — ’U}t) = 0p (1)
t=1
and
1 r 2
~2
L)@t =0,
t=1
Also
T
Z wt(blvar Uit ) —>/B B. d)
and

T
1 o ’ R d I
T2 S dihvard (w - @) L [ B.Bokoh
t=1
Let I; be the o field generated by F; and (s17,...,¢;7). Then {¢;r,I;} is a martingale difference sequence

(MDS) with positive variance given by E (giTg;T|C> satisfying

E (QTC;T|C> LN /Psﬁ; [¢ oy +¢20H]
_ ( / BEB;) 6 Vo

with ¢ = (¢, ¢72)/ where



Hence, we can use the MDS CLT to get
1/2

N S R (1 e
=1

where Z ~ N (0,1g) and E (£,£;|C) and Z are independent. Thus, any linear combination of the two

elements in the vector in (27) is asymptotically mixed normal, i.e.,

n T ~
ﬁ Dic1 2orm1 Wity
T Yot Yoiy Bif (Ft - Ft)

with

with
O¢ =0y +011-
This proves (ii).

Consider (iii). Recall that we have, as (n,T') — oo with # -0

i=1 t=1 =1 j=1
T n n T !
1 1 . 1 , 1 N
= Z — ) Ty —= ) €jtA; ( 5 w5w5> B+ op(1)
\/ﬁT |:t—1 <\/> =1 ) n j=1 T s=1
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therefore, for (n,T) — oo we have
L (Lo o (LS aur) (£ Sne] -0, (L
VAT S\ ™ 2\ ) TP V)

This proves the Lemma. m
Lemma A.5 Let Assumptions M1-M3 and PSE hold. Then, as (n,T) — oo with /n/T — 0, it holds
that

(a)

i=1 t=1

nT? Z Z Wi W,

i=1 t=k+1

n k r = =
1 vy d, | Jo BBl 0
gz 22 Wl = [ "o T L2, }
J:

(b)

1 k
ZWMS wip + ' (wy — wt)] —

——m 1 1/2 ;
\/ﬁT o1 =1 %TUUQE X Z
n T 1= = 1/2
1 p I BEB’> oo X 7y
—= Wi [ug + B (0 — wy)] — " N )
\/ﬁT;t:Xk:l %(1—7‘)0u92/2><2

for all v where Zy and Z; are independent standard normals of dimensions R and p respectively.
Proof. The results are taken directly from Lemma A.4 and Chiang et al. (2002).

B PROOFS

B.1 Proof of Proposition 1

Proof. Consider (a). Note

This is because®

SLet’s assume p = 1 and 02 = 1

Tit = Tit—1 + €t = E €ij-
=1
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with

1 T
E (%zt) = F (mit -7 szt>

and
1 T
ﬁ Z tht = Op (1)
t=1

for any Gy ~ I(1). This proves (a).
Next we consider (b). Let C' be the o-field generated by the {w;} and

1 X
Sir = T Zwtuit-
t=1
We begin with the sequential limit. We know that
d —
§ir — /BedBu =&

as T — oo for a fixed n. It is clear that every element of &, is iid across ¢ conditional on C' which is an

invariant o-field. Thus
1 n ’ ’ —
n Zfzfz ——E (§7§z|c) = Gi/BeBa
i=1

by an ergodic theorem. Let I; be the o field generated by F; and (£,...,&;). Then {,,I;;i > 1} is a

martingale difference sequence (MDS) because {¢,} are iid across ¢ conditional on C' and
E(&|Li-1) = E (&]C) =0.
A conditional Lindeberg condition holds here because for all § > 0
Jim © ZE (&1 (Il > Vo) 1) = tim B (€1 (6] > Vo) [C)
- = 0.

Hence, an MDS CLT, e.g., Corollary 3.1 of Hall and Heyde (1980), implies that

Y ;g (B (sgi0)] " x

Then

E”
1 J

N (0,1) + 0p (1) ~ I(1).

t
- 1

t

1 & 1 <&
VROUEE PWIE

i=1j=1 j

n

-

1 7

This is because for a given t,
1 & d
—= > €ij = N(0,1)
vn i=1

as n — oo by a CLT.



where Z; ~ N (0,Ig) and E (§1§;|C) are independent. Note

& (¢810)] 7 o ( / Bsé;)m.

Denote (n,T),. — oo as the sequential limit, i.e., T — oo first and n — oo later. Thus, as (n,T),. — oo,

seq seq

we have

T WUt — Oy </ B5B6> X Z7.

vnT i=1 t=1
We now show the limiting distribution continues to hold in the joint limit, i.e., (n,T) — oo. Given the
sequential limit results derived above, establishing the joint limit results is done by verifying the conditions
(i) - (iv) in Theorem 3 in Phillips and Moon (1999). Conditions (i), (ii), and (iv) are obviously satisfied.
We only have to verify uniform integrability in (iii). Put in our context, the uniform integrability condition

states that if ||&; 7| <, 1€ ]| and E ||€; |l 4 E II€; 1, then ||€, 7|l is uniformly integrable. We first observe
that

E[sz] = E

Il
o

and

. .. . o, . . . /
as T — oo. Thus (;p is %id across ¢ conditional on C' with mean zero and covariance Q,; [ Q;Q;. Now we

need to show that [|€;]|” is uniformly integrable in T for all 7. Recall

%
/BEdBW- o (/BB) X 7.

2

Note
d —
Il - H [ aas.,

by a continuous mapping theorem (CMT) and

El¢q® = tr {E (giTCiT):|



since

2
E|¢l

E / |BodBui||”
i / B ([B-dB.] [BdB,.] )

. / B.B.

It follows that ||C;||* is uniformly integrable. We then apply Theorem 3 in Phillips and Moon (1999) to

complete the proof

1/2
ZZwtun — Oy < BEB;> X Zl.

zltl
]

B.2 Proof of Proposition 2

Proof. Note

o) - [ 2]

—1
n T n T ~
1 ( D1 D WeWy Yy > Tipw) )] 1

5 T - T - = T .
n1? Z?:l Dot Wiy Z?:l D im1 Titdyy VvnT E?:l Dot Titit

Lemma A.3(a) ensures that, as (n,7T") — oo we have

S Y wew zzilzf_lmw;} a [faB; 0 ]
; .

Z?=1 Zthl Witit ]

1

) T ~ T - -~ — 1
nT? Z?:l Dot Wiy Z?:l D1 Ty 88k

According to Lemma A.3(b), it is clear that conditional on conditional on C, the o-algebra generated by
1

{Ft}a
Yy Yoy wittie | _d << 0 ) ( ([B.Bl)o2 A )>
— =1 2p=1 " AN , c) Ou
vnT Dic1 23:1 Tit Uit 0 A %Qeoi

. : T T -
where A denotes the asymptotic covariance between ﬁ Yo > weui and ﬁ S > Tiruge. Com-

bining the two results, we get conditional on C,

(f BB

(v “i )+
_ (<f5£’m )
2 ((0)-(% 1))

29

with



Hence without conditioning C'

R =\ —1/2
vt (5 6) . ( BB "o ) 2
This proves the proposition. m
B.3 Proof of Theorem 1
Proof. The proof is Similar to Proposition 2. Recall

Yir = i + BLE, 4+ Y + vir,

where v = us + 6’ (Ft - ﬁ't) Note
o) = o[ 34]

1 T ~ o Af n T ~ ~) -1 1
< nY oy Wiy D1 Dy Wiy )]

- 1t g1 0t -
nT? Z?:thzlzitWQ Z?:th:lmitIgt

Zznzl ZtT:I WiVt ‘| (728)

\/HT Z?:l 2:{:1 Tt Vi

We know from Lemma A.4 that

Z?:l ZtT=1 W | 1 Z?:l ZtT=1 Wit
T .
2?21 Zt:l TitVit

/nT IRV D D S T

Hence using Lemma A.4 and the similar steps to Proposition 2 we can show that

L +o0,(1).

. - \1/2
1 > ZtTT:lthz't d (fBaBé)Z 9|y
n ~ 1
vnT Zi:l Zt:l TitVit %QE/ ou

with Z ~ N << (0) > , < I(f IO )> . This proves the theorem. m

p

B.4 Proof of Theorem 2

Proof. Theorem 2 states two separate results that need to be proved:

As far as equation (16) is concerned, consider the definitions of 9:k, 9;, S1(r), So (r), Mi (r) and Ms (r).
2

u?

Then, use Assumption PSE and in light of Lemma A.5 and the consistency of &g and 6., we have that,

uniformly in r

ST (9; _9) d [for BEB;} o ! Jy BedB | _ [ Af;é@ulgl(g)) ] 7 (29)

) l Mo (r) " 52 (1) ] |

Qe B {(1 - ’”)2}




Then we note that

(éik - é;k) = (é;kk - 9) - (é;k - 9) )

\/ET(éy{k_é;k): [ 1 _I] [\/ﬁTgélk_eg ]

and

VAT (0g — 6

where I is (R+ p) x (R + p) identity matrix. Therefore, use equations (29) and (30), under Hy we have

My (r) "1 Sy (r)
S0 2 B(r?)
My (r)™" Sy (r)
o_-12p [(1 )

(1_7,)2 €

\/ET(éIk—é;c)L[I ~1] (

[ M) TS () = Ma (1) Sy (1)
= \/6921/2 [B(ﬁ) _ ngpr)?)]

r2 7,',‘)2

Also, use Lemma A.5(c), it follows that

n A N
(ﬁ >im1 Zt:lWitWit) d [ My (1) 4 My ()" 0 _c

RN | - 0 QQ—I + 6 -1
+ (n% i Z?:kﬂ WitWit) 2

I € (1—r)2 "%

Therefore, by the CMT and uniformly in r we have

-1

1 n k z A
(nT2 Zi:l Zt:l WitWit)
RN
|+ (T DL S Walt)
My (r)"1 Sy (r) = My (r) ™" Sa (r)
V62 {BW) _ Bgu—;)?)]
€ r2 1—7)?

-1

= [ s - )7 (r)]’ (M) M ()]

W) = var (0 -8y vt (6, - 03,

g [ M) TSI = Ma(r) M Se(r) T
- VB2 [BGA) B((H)?)]

r2 (1—7)2

(M ()7 81 ) = M ()7 5 ()]

B -rA-B()]

r(l—r)

B(1-7)*)—B(r?)
r(l—r)

L
2 (1-r)?
= I+1I

For I, we have, by definition of s (r) and V (r)

I= (M8 — My 'Sy] (Mt + My Y] 7 M8y — My tSe] = s (r) VL (1) s (r) = Qr(r).
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For 11, we have

1,1 B(1-r*-B(@?)] [ B((1—r)? —B(?)
2 (1—r)? r(l—r) r(l—r)
~[Bla-mH-B6Y)] [Bla-r?-B () o
= 7“2—1-(1 —7“)2 - p(T)

Hence
d
W ([Tr]) — Qr(r) + Qp(r),
which proves equation (2). Independence of Qgr(r) and @Q,(r) follows from the fact that B and 7 are
asymptotically independent.
Suppose (1 —r)* > 72 then B((1—1)%) — B (%) has variance (1 — r)? — 2 so that for a fixed r
B((1-7)*) - B(r?)

(1 77")2 —7r2

~N(0,1).

Also if 2 > (1 —r)? then B((1 — 1)) — B (r?) has variance 7> — (1 — r)* so that for a fixed r

B(r?) — B((1—1)*)

~ N (0,1)
72— (1—7)?
Hence
’(1 —r)? =2 )
Qp(r) ~ ——m—mm X
o (r) r2 4 (1—7)° Xp
As far as Qg(r) is concerned, let W be an R-dimensional demeaned standard Brownian motion, and B be

a scalar standard Brownian motion. We have B, = Qi/ ZW, and

Si (r):Q;/Q/ WdB,
0

M (r) = QY2 (/ V‘VVV’) 02,
0

and similarly for S; (r) and Mj (r). Therefore we can write

V() 1
[ [ s e a1 [ ]

_ l Q12 » ] [ 801 WW’))_1 ] 0-1/201/2
0 —ar W’ <

4 o172 0

WW’) :| l 0 _9;1/2 9
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so that

Qr(r) = () V7(r)s(r)

1/2
T = 1 = Qg 0
= | Jraw' ['aBw | l L

Q12 0
O 796—1/2

[ ) ()

—1 -

PR U I 0 |
<y () H o g
a2 o JrwaB
x 1/2 17
0 Q [, WdB

() (o) () (o)
Q) (o)
(o) () () (] )

Letting C be the sigma field generated by the {F;}, we have that, conditional on C:

(o) (v (o)
(/Tl WW’)_l (/:WdB) C = (/:WW/)_UQZQ’

where Z; and Z5 are two R-dimensional independent standard normals. Z; and Z5 are independent since

-1

they arise from the presence of the stochastic increments dB (r), which are independent across r. Therefore

(/TIV_VdB)

we also have

-1

C
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where Z has an R-dimensional standard normal distribution. Hence we have the following passages

Qr(r)|C D !

[ () ) ()]
[y (e T

= 7'Z

Therefore, conditional upon C'

Qr(r)|C =2'Z ~ X%

Since this result does not depend on C' - i.e. it holds true for all the possible elements in the sigma-field C -

we have that, unconditionally on C
Qr(r) ~ X5
This also proves that both Q,(r) and Qg(r) are nuisance parameters free. m

B.5 Proof of Proposition 3

Proof. Consider 62:

52 1 & 4 _ Al A\ 2
u_niTZZ(yit_yi_gXit) :

=1 t=1

Consistency of 6 under Hy, which has been proved in Theorem 1, implies that

A2 .
As far as 67 is concerned, we have

and we know that, under Hy, c}i =02 + 0, (1) and likewise B=pB+ op (1). Also, it holds that

(b £ LE (£ ()

i=1

and we know from Lemma A.4 (a) that

1 T T
7 D ey = Z wiw + oy (1
t=1 t=1
From Bai (2004) we know that the principal component estimator for the loadings ); is consistent, and

therefore a LLN applies for the residuals é2, so that

Ty

l@

’ﬂ
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Therefore,
and hence

This proves the Theorem. m

B.6 Proof of Theorem 3

Proof. Under the local alternative hypotheses Hl(lnT) the model can be rewritten as

yl(ZLT) = + X/te(nT) + Vit

N t
= it Xuf+ \/ﬁTX’{tg (T) o

The partial sample OLS estimate for 6 is defined as

n k k
9?:@2%%} S,

i=1 t=1 =1t=1

and we have
. (nT) , . A -1 n k t
01k = [ZZ With‘It] Z Wit [O‘% + X'tﬁ + fT tg ( ) + Uit]
i=1 t=1 i=1 t=1
n k
Sttt (1)

bt
[iiw’*”“zzw“ﬂ % (7))

=1 i=1 t=1

n k -
DD Wall
=1 t=1

|
]

2D WaW

i=1 t=1

This leads to

S 3 S e L (1),

zltl i=1 t=1

~(nT
and likewise, with respect to the partial sample OLS estimator for the second subsample 9;: )

T [92’,§T) ~ 0]
1 n T A . -1
T 2 WitWi’t]

i=1 t=k+1

1

fTZ > W”U”WTZ > Wz “g(t>

=1 t=k+1 =1 t=k+1
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Combining these two results, we have
(nT)  A(nT)
vnT {glk — Oy, }

1 n k ) R
w2 22 WitWi’t]

-1

1 n k R k ¢
NS Zwiwm ZZWn \fTXZ/ ( )

i=1 t=1 i=1 t=1 i=1 t=1
1 & = o t
7 7!
HER S anﬁ] )DPDRIIRELES 3 o )| X
nT =1 t=k+1 \/>T7, 1t=k+1 \/> =1 t=k+1 \/>T

We know that Lemma A.5 ensures that, as (n,T) — oo along the path /n/T — 0

n k -1
ESwa

=1 t=1 i=1 t=1
n T 1 1 n T
=935 LA IIELS o) o
=1 t=k+1 1=1t=k+1
= O (1) )

uniformly in 7.

(nT)

To prove that the Wald test has non trivial power against the local alternatives H, ~’, we need to prove

that, as far as equation (31) is concerned, it also holds that as (n,7") — oo with /n/T — 0

3] | ZZMJTMC)

i=1 t=1 i=1 t=1
AR t
il WitWi’t] Z > W”\fTX/ ( )
i=1t=k+1 i=1t=k+1
= Op(l)v
uniformly in r. It holds that
1
\FT;;W”WT ”g( )
/ t
LS e ()] o () (£)
n k , ¢
- T22;W‘tw‘t9< ) a7 2 W (=) o (7)
n k
Zz;( it — W, ) ¢t9< > nlgzz;( it =W )(Wit_Wit>/g<;>
=11 =1 t=
= [+I1I+IIT+1V.

Assumption LP(b) states that



Also, for IT and 11, it holds that
1 n k 5 1/2 1 n k ¢
1 < [ — HW — Wi~
< (eSS wl’) (a3 (7

k /2 | Lk N 1/2
= (- w> (ZZ g() )
<T2 nTZ_:lt:1 \/T T

1/2

As (n,T) — oo with /n/T — 0, Lemma A.1(b) ensures that
k 1/2
1 . 1 1
(Tz > i - wt||2> ~o(3)o ()] =o
t=1 nT
fT ZZ

also, by Assumption LP(d)
Wz,t ( t >
i=1 t=1

Consequently, II = III = o, (1). Finally for IV, we have
1 n k 1 n k n 2 1/2
(i) (2o (1))
i=1 t=1 =1 t=1
k

< (1 inwt w ) <1t_1 g(;> 2>1/2
- o(z)o(ag)o(x)am-n0

uniformly in r if /n/T — 0. Combining these results we get

S L (L) =00

i=1 t=1

2

= Op(1)~

1V

IN

uniformly in r, and likewise

Z Z Wlth tg<t>:o,,(1).

i=1t=k+1

Hence

VnT |0y, " =0y, | — B((1-r)*)-B(*)
|: \/60 r(1-—r)

(nT) A(nT)} d [ M, (r)—l Sy (r) — Mo (7‘)—1 Sy (1) L 0,(1).

After proving the distribution limit for the partial OLS estimates under H(SnT)7 we can now turn to the
limiting distribution of the test statistics W (T) (k). This is defined as
E -1 !
(nT) 62p 0 ] [pnm) ey (Zizl 2t Wz‘tW{t) (nT) _ A(nT)
wenm) = | 7r L [ o] N
g I n T T 7
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Since both 7, and &, are consistent for o and o,, the Continuous Mapping Theorem ensures that, as

(n,T) — oo, under the alternative g
WOT(Tr]) % D (r) + 0,(1).
uniformly in 7.
B.7 Proof of Proposition 4
Proof. We first consider the consistency of 52. Let
Yit = Yit — Yi-

Then we have

=1 t=1 =1 t=1
9 1 ii(N @/X) 1 . t
ﬁ Yit t<x it \[T it9 T
=1 t=1
= I+II+III.

As far as term [ is concerned, we have

2
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As far as 111 is concerned, it holds that

1 n T . n T o -1, . . "
SO D NREAL 5 LA IS o o RHFLSHEY
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Now
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use Lemma A .4;

use Assumption LP(d);

use Assumption LP(e);
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$5n] B s

i=1 t=1
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due to Lemma A.4 and Assumption LP(b). Hence
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and it holds that
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For I, use Assumption M1 and a LLN we have
I=0%+0,(1).

As far as I] and II1 are concerned, we have

T
1 .
I < 1017 2 > e = @)l = 0, (1)
t=1

using Lemma A.1(b), and

T /2 , . 7 1/2
1 R
||m||s||0QnT<Zn<wt—wt>n2> (ZD@) — 0, (1),
t=1

i=1 t=1
after equation (25). Then under the local alternatives H™ it holds that

~2 P 2
0, — Oy

We are now ready also to prove consistency of &?. Since

B(nT)/a'Q ~ (nT)

)
UC =0y + T )
and since

A2 P2
UW Uﬂ

~ (nT
under Hé”T) as it does not depend on H(gnT) being true or not, in light of the consistency of ﬂ(n ) we have
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TABLE 1:
Size at the 5% Level
Panel A: Size for SupW

n\T 20 40 60 120 240 480

20 0.0175 0.0375 0.0372 0.0637 0.0587 0.0519
40 0.0145 0.0236 0.0248 0.0462 0.0514 0.0604
60 0.0149 0.0260 0.0340 0.0337 0.0397 0.0550
120 0.0151 0.0287 0.0346 0.0373 0.0470 0.0561
240 0.0172 0.0309 0.0306 0.0360 0.0480 0.0454
480  0.0212 0.0285 0.0351 0.0349 0.0501 0.0560

Panel B: Size for AveW

n\T 20 40 60 120 240 480

20 0.0267 0.0375 0.0350 0.0490 0.0407 0.0350
40 0.0258 0.0267 0.0242 0.0342 0.0349 0.0403
60 0.0220 0.0273 0.0312 0.0299 0.0265 0.0339
120 0.0238 0.0298 0.0315 0.0325 0.0306 0.0354
240 0.0241 0.0333 0.0330 0.0311 0.0367 0.0314
480  0.0312 0.0300 0.0307 0.0298 0.0375 0.0349

Panel C: Size for ExpW

n\T 20 40 60 120 240 480

20 0.0306 0.0472 0.0455 0.0653 0.0537 0.0458
40 0.0272 0.0325 0.0534 0.0475 0.0461 0.0525
60 0.0241 0.0353 0.0392 0.0337 0.0352 0.0455
120 0.0269 0.0388 0.0428 0.0396 0.0411 0.0473
240 0.0289 0.0427 0.0403 0.0362 0.0453 0.0405
480  0.0370 0.0403 0.0415 0.0377 0.0489 0.0460
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TABLE 2:
Power at 5% Level
Panel A. Power for SupW

n\T 20 40 60 120 240 480

20 0.0715 0.2085 0.4723 0.7962 0.9972 1.0000
40 0.0850 0.2332 0.5129 0.9467 1.0000 1.0000
60 0.0932 0.3281 0.6545 0.9837 1.0000 1.0000
120 0.1340 0.5551 0.8512 0.9999 1.0000 1.0000
240  0.2545 0.9640 0.9697 1.0000 1.0000 1.0000
480  0.4195 0.9327 0.9996 1.0000 1.0000 1.0000

Panel B. Power for AveW

n\T 20 40 60 120 240 480

20 0.0859 0.2170 0.4477 0.8364 0.9983 1.0000
40 0.1055 0.2699 0.5523 0.9655 1.0000 1.0000
60 0.1172 0.3693 0.6917 0.9927 1.0000 1.0000
120 0.1686 0.6003 0.8921 1.0000 1.0000 1.0000
240 0.2991 0.8142 0.9877 1.0000 1.0000 1.0000
480 0.4700 0.9637 1.0000 1.0000 1.0000 1.0000

Panel C. Power for ExeW

n\T 20 40 60 120 240 480

20 0.1009 0.2448 0.4993 0.8321 0.9980 1.0000
40 0.1224 0.2838 0.5628 0.9620 1.0000 1.0000
60 0.1329 0.3874 0.7006 0.9910 1.0000 1.0000
120 0.1806 0.6151 0.8899 1.0000 1.0000 1.0000
240 0.3168 0.8131 0.9850 1.0000 1.0000 1.0000
480  0.4894 0.9599 0.9999 1.0000 1.0000 1.0000
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