Department of Information Technology and Mathematical Methods

Working Paper

Series "Mathematics and Statistics"
n. $3 / \mathrm{MS}-2008$

Discrepancy for randomized Riemann sums

by
L. Brandolini, W. Chen, G. Gigante, G. Travaglini

COMITATO DI REDAZIONE ${ }^{\S}$

Series Information Technology (IT): Stefano Paraboschi
Series Mathematics and Statistics (MS): Luca Brandolini, Ilia Negri

[^0]
DISCREPANCY FOR RANDOMIZED RIEMANN SUMS

LUCA BRANDOLINI, WILLIAM CHEN, GIACOMO GIGANTE, AND GIANCARLO TRAVAGLINI

Abstract

Given a finite sequence $U_{N}=\left\{u_{1}, \ldots, u_{N}\right\}$ of points contained in the d-dimensional unit torus, we consider the L^{2} discrepancy between the integral of a given function and the Riemann sums with respect to translations of U_{N}. We show that with positive probability, the L^{2} discrepancy of other sequences close to U_{N} in a certain sense preserves the order of decay of the discrepancy of U_{N}. We also study the role of the regularity of the given function.

Let $N \in \mathbb{N}$ be a given large number, let $U_{N}=\left\{u_{1}, \ldots, u_{N}\right\}$ be a distribution of N points in the unit cube $\left[-\frac{1}{2}, \frac{1}{2}\right)^{d}$, treated as the torus \mathbb{T}^{d}, and let f be a real function on \mathbb{T}^{d}. Suppose that for suitable choices of U_{N} and f, the Riemann sums

$$
\frac{1}{N} \sum_{j=1}^{N} f\left(u_{j}-x\right)
$$

are, after an L^{2} average on the variable $x \in \mathbb{T}^{d}$, good approximations of the integral

$$
\int_{\mathbb{T}^{d}} f(s) \mathrm{d} s
$$

What corresponding statement can we make concerning those sequences close to the sequence U_{N} ? Do such sequences mostly share the same good behavior?

In order to start discussing these questions, we introduce the following randomization of U_{N}; see $[3,6]$ and also $[8,9]$. Let $\mathrm{d} \mu$ denote a probability measure on \mathbb{T}^{d}. For every $j=1, \ldots, N$, let $\mathrm{d} \mu_{j}$ denote the measure obtained after translating $\mathrm{d} \mu$ by u_{j}. More precisely, for any integrable function g on \mathbb{T}^{d}, we have

$$
\int_{\mathbb{T}^{d}} g(t) \mathrm{d} \mu_{j}=\int_{\mathbb{T}^{d}} g\left(t-u_{j}\right) \mathrm{d} \mu
$$

Let $\mathrm{d} t$ denote the Lebesgue measure on \mathbb{T}^{d}. For every sequence $V_{N}=\left\{v_{1}, \ldots, v_{N}\right\}$ in \mathbb{T}^{d} and every function $f \in L^{2}\left(\mathbb{T}^{d}, \mathrm{~d} t\right)$, we introduce, for every $t \in \mathbb{T}^{d}$, the discrepancy

$$
D\left(t, V_{N}\right) \stackrel{\text { def }}{=} \frac{1}{N} \sum_{j=1}^{N} f\left(v_{j}-t\right)-\int_{\mathbb{T}^{d}} f(s) \mathrm{d} s
$$

Observe that $D\left(\cdot, V_{N}\right)$ is a periodic function with Fourier series

$$
\sum_{0 \neq k \in \mathbb{Z}^{d}}\left(\frac{1}{N} \sum_{j=1}^{N} \mathrm{e}^{2 \pi \mathrm{i} k \cdot v_{j}}\right) \widehat{f}(k) \mathrm{e}^{2 \pi \mathrm{i} k \cdot t}
$$

and the Parseval identity yields

$$
D^{2}\left(V_{N}\right) \stackrel{\text { def }}{=}\left\|D\left(\cdot, V_{N}\right)\right\|_{L^{2}\left(\mathbb{T}^{d}, \mathrm{~d} t\right)}^{2}=\sum_{0 \neq k \in \mathbb{Z}^{d}}\left|\frac{1}{N} \sum_{j=1}^{N} \mathrm{e}^{2 \pi \mathrm{i} k \cdot v_{j}}\right|^{2}|\widehat{f}(k)|^{2} .
$$

[^1]We now average $D\left(V_{N}\right)$ in $L^{2}\left(\mathbb{T}^{d}, \mathrm{~d} \mu_{j}\right)$ for every $j=1, \ldots, N$, and consider

$$
\mathfrak{D}_{\mathrm{d} \mu}\left(U_{N}\right) \stackrel{\text { def }}{=}\left(\int_{\mathbb{T}^{d}} \ldots \int_{\mathbb{T}^{d}} D^{2}\left(V_{N}\right) \mathrm{d} \mu_{1}\left(v_{1}\right) \ldots \mathrm{d} \mu_{N}\left(v_{N}\right)\right)^{1 / 2}
$$

In this paper we study the relation between $\mathfrak{D}_{\mathrm{d} \mu}\left(U_{N}\right)$ and $D\left(U_{N}\right)$. In the case $N=M^{d}$, where $M \in \mathbb{N}$, and

$$
\begin{equation*}
U_{N}=\frac{1}{M} \mathbb{Z}^{d} \cap\left[-\frac{1}{2}, \frac{1}{2}\right)^{d} \tag{1}
\end{equation*}
$$

the above quantities were studied in relation to the sharpness of a result of Beck [1] and of Montgomery [10] on irregularities of distribution; see Remark 3 below. In [6] two of the authors compared the quantities $D\left(U_{N}\right)$ and $\mathfrak{D}_{\mathrm{d} \mu}\left(U_{N}\right)$ in the case (1) and when f is the characteristic function of a ball. Here we study the problem in our more general setting, and we are mainly interested in whether the inequality

$$
\begin{equation*}
\mathfrak{D}_{\mathrm{d} \mu}\left(U_{N}\right) \leq c D\left(U_{N}\right) \tag{2}
\end{equation*}
$$

holds. Throughout this paper, the letters c, C, \ldots will denote positive constants, possibly depending on f but independent of N, and which may change from one step to the next.

We first use a slight modification of an argument in [6] to obtain an explicit formula for $\mathfrak{D}_{\mathrm{d} \mu}\left(U_{N}\right)$. We have

$$
\begin{align*}
& \mathfrak{D}_{\mathrm{d} \mu}^{2}\left(U_{N}\right) \\
& =\int_{\mathbb{T}^{d}} \ldots \int_{\mathbb{T}^{d}} \sum_{0 \neq k \in \mathbb{Z}^{d}}\left|\frac{1}{N} \sum_{j=1}^{N} \mathrm{e}^{2 \pi \mathrm{i} k \cdot v_{j}}\right|^{2}|\widehat{f}(k)|^{2} \mathrm{~d} \mu_{1}\left(v_{1}\right) \ldots \mathrm{d} \mu_{N}\left(v_{N}\right) \\
& =\sum_{0 \neq k \in \mathbb{Z}^{d}}|\widehat{f}(k)|^{2}\left(\frac{1}{N}+\frac{1}{N^{2}} \sum_{\substack{j, \ell=1 \\
j \neq \ell}}^{N} \int_{\mathbb{T}^{d}} \int_{\mathbb{T}^{d}} \mathrm{e}^{2 \pi \mathrm{i} k \cdot v_{j}} \mathrm{e}^{-2 \pi \mathrm{i} k \cdot v_{\ell}} \mathrm{d} \mu_{j}\left(v_{j}\right) \mathrm{d} \mu_{\ell}\left(v_{\ell}\right)\right) \\
& =\sum_{0 \neq k \in \mathbb{Z}^{d}}|\widehat{f}(k)|^{2}\left(\frac{1}{N}+\frac{1}{N^{2}} \sum_{\substack{j, \ell=1 \\
j \neq \ell}}^{N} \mathrm{e}^{2 \pi \mathrm{i} k \cdot\left(u_{\ell}-u_{j}\right)} \int_{\mathbb{T}^{d}} \int_{\mathbb{T}^{d}} \mathrm{e}^{2 \pi \mathrm{i} k \cdot v_{j}} \mathrm{e}^{-2 \pi \mathrm{i} k \cdot v_{\ell}} \mathrm{d} \mu\left(v_{j}\right) \mathrm{d} \mu\left(v_{\ell}\right)\right) \\
& =\sum_{0 \neq k \in \mathbb{Z}^{d}}|\widehat{f}(k)|^{2}\left(\frac{1}{N}+|\widehat{\mu}(k)|^{2}\left(\left|\frac{1}{N} \sum_{j=1}^{N} \mathrm{e}^{2 \pi \mathrm{i} k \cdot u_{j}}\right|^{2}-\frac{1}{N}\right)\right) \\
& =\frac{1}{N} \sum_{0 \neq k \in \mathbb{Z}^{d}}|\widehat{f}(k)|^{2}\left(1-|\widehat{\mu}(k)|^{2}\right)+\sum_{0 \neq k \in \mathbb{Z}^{d}}|\widehat{f}(k)|^{2}|\widehat{\mu}(k)|^{2}\left|\frac{1}{N} \sum_{j=1}^{N} \mathrm{e}^{2 \pi \mathrm{i} k \cdot u_{j}}\right|^{2} \\
& =\frac{1}{N}\left(\|f\|_{L^{2}\left(\mathbb{T}^{d}, \mathrm{~d} t\right)}^{2}-\|f * \mathrm{~d} \mu\|_{L^{2}\left(\mathbb{T}^{d}, \mathrm{~d} t\right)}^{2}\right)+\left\|D\left(\cdot, U_{N}\right) * \mathrm{~d} \mu\right\|_{L^{2}\left(\mathbb{T}^{d}, \mathrm{~d} t\right)}^{2} . \tag{3}
\end{align*}
$$

There are two natural extremal measures. The first one is $\mathrm{d} \mu=\delta_{0}$, the Dirac measure centered at 0 . In this case, we have

$$
\mathfrak{D}_{\delta_{0}}\left(U_{N}\right)=D\left(U_{N}\right) .
$$

On the other hand, when $\mathrm{d} \mu=\mathrm{d} t$, we have

$$
\mathfrak{D}_{\mathrm{d} t}^{2}\left(U_{N}\right)=\frac{1}{N}\left(\|f\|_{L^{2}\left(\mathbb{T}^{d}, \mathrm{~d} t\right)}^{2}-\left|\int_{\mathbb{T}^{d}} f(t) \mathrm{d} t\right|^{2}\right)
$$

the classical Monte-Carlo error.

Note that if $N D^{2}\left(U_{N}\right) \geqslant c$, then $\mathfrak{D}_{\mathrm{d} t}\left(U_{N}\right) \leqslant c_{1} D\left(U_{N}\right)$, and (2) follows easily.
Another very peculiar case is when $D\left(U_{N}\right)=0$. We observe that in general this does not imply $\mathfrak{D}_{\mathrm{d} \mu}\left(U_{N}\right)=0$, so that (2) does not hold. Indeed, let U_{N} be given by (1). Then

$$
\frac{1}{N} \sum_{j=1}^{N} \mathrm{e}^{2 \pi \mathrm{i} k \cdot u_{j}}= \begin{cases}1 & \text { if } k \in M \mathbb{Z}^{d} \tag{4}\\ 0 & \text { otherwise }\end{cases}
$$

Now choose $f(t)=\exp \left(2 \pi \mathrm{i} k_{0} \cdot t\right)$ for some $k_{0} \in \mathbb{Z}^{d} \backslash M \mathbb{Z}^{d}$. Then $D\left(U_{N}\right)=0$. On the other hand, it follows from (3) that

$$
\mathfrak{D}_{\mathrm{d} \mu}^{2}\left(U_{N}\right)=\frac{1}{N}\left(1-\left|\widehat{\mu}\left(k_{0}\right)\right|^{2}\right) \neq 0
$$

whenever $\left|\widehat{\mu}\left(k_{0}\right)\right| \neq 1$, which is easily fulfilled, particularly by several measures with small support around the origin.

Hence, throughout the paper, we will be interested only in the case when

$$
0<D\left(U_{N}\right)<N^{-1 / 2}
$$

Let $0<\varepsilon_{N} \leqslant 1$. For every probability measure $\mathrm{d} \mu$ supported on the unit cube $\left[-\frac{1}{2}, \frac{1}{2}\right)^{d}$, let $\mathrm{d} \mu^{(N)}$ denote the probability measure defined by

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} g(\xi) \mathrm{d} \mu^{(N)}(\xi)=\int_{\mathbb{R}^{d}} g\left(\varepsilon_{N} \xi\right) \mathrm{d} \mu(\xi) \tag{5}
\end{equation*}
$$

Then $\mathrm{d} \mu^{(N)}$ is supported on the subcube $\left[-\frac{1}{2} \varepsilon_{N}, \frac{1}{2} \varepsilon_{N}\right)^{d}$, and can be regarded as a measure on \mathbb{T}^{d}.

We first state our main result.
Theorem 1. Let $f \in L^{2}\left(\mathbb{T}^{d}, \mathrm{~d} t\right)$, and let $U_{N}=\left\{u_{1}, \ldots, u_{N}\right\}$ be a distribution of N points in the cube $\left[-\frac{1}{2}, \frac{1}{2}\right)^{d}$. Assume that $0<D\left(U_{N}\right)<N^{-1 / 2}$. Let $\mathrm{d} \mu$ be a non-Dirac probability measure on \mathbb{T}^{d}, let $\mathrm{d} \mu^{(N)}$ be defined by (5) with $0<\varepsilon_{N} \leq 1$, and let

$$
\eta_{N}= \begin{cases}\varepsilon_{N}^{2 \alpha} & \text { if } \alpha<1 \\ \varepsilon_{N}^{2} \log \left(1+\varepsilon_{N}^{-1}\right) & \text { if } \alpha=1 \\ \varepsilon_{N}^{2} & \text { if } \alpha>1\end{cases}
$$

(i) If for some $\alpha>0$ and for every $\rho>1$ we have

$$
\begin{equation*}
\sum_{\rho \leq|k|<2 \rho}|\widehat{f}(k)|^{2} \leq c \rho^{-2 \alpha} \tag{6}
\end{equation*}
$$

then

$$
\begin{equation*}
\mathfrak{D}_{\mathrm{d} \mu^{(N)}}^{2}\left(U_{N}\right) \leq c \eta_{N} N^{-1}+D^{2}\left(U_{N}\right) \tag{7}
\end{equation*}
$$

(ii) If there exists an open cone ${ }^{1} \Omega \subseteq \mathbb{R}^{d}$ such that for every subcone $\Gamma \subseteq \Omega$,

$$
\begin{equation*}
\sum_{\substack{k \in \Gamma \\ \rho \leq|k|<2 \rho}}|\widehat{f}(k)|^{2} \geq c_{\Gamma} \rho^{-2 \alpha}, \tag{8}
\end{equation*}
$$

then

$$
\mathfrak{D}_{\mathrm{d} \mu(N)}^{2}\left(U_{N}\right) \geq c \eta_{N} N^{-1}
$$

The following Corollary shows that, in some sense, good sequences are never alone. Indeed we give conditions on ε_{N} that make $\mathfrak{D}_{\mathrm{d} \mu^{(N)}}\left(U_{N}\right)$ and $D\left(U_{N}\right)$ comparable.

[^2]Corollary 2. Let U_{N} and $\mathrm{d} \mu$ be as given in Theorem 1.
(i) Let $f \in L^{2}\left(\mathbb{T}^{d}, \mathrm{~d} t\right)$ be as given in part (i) of Theorem 1, and let

$$
\varepsilon_{N} \leq \begin{cases}\left(N^{1 / 2} D\left(U_{N}\right)\right)^{1 / \alpha} & \text { if } \alpha<1 \tag{9}\\ \beta_{N} & \text { if } \alpha=1 \\ N^{1 / 2} D\left(U_{N}\right) & \text { if } \alpha>1\end{cases}
$$

where β_{N} satisfies $\beta_{N}^{2} \log \left(1+\beta_{N}^{-1}\right)=N D^{2}\left(U_{N}\right)$. Then

$$
\mathfrak{D}_{\mathrm{d} \mu(N)}^{2}\left(U_{N}\right) \leq c D^{2}\left(U_{N}\right)
$$

(ii) Let $f \in L^{2}\left(\mathbb{T}^{d}, \mathrm{~d} t\right)$ and Ω be as given in part (ii) of Theorem 1. Let $\varepsilon_{N} \leq 1$ satisfy

$$
\varepsilon_{N} \geq \begin{cases}\left(N^{1 / 2} D\left(U_{N}\right)\right)^{1 / \alpha} & \text { if } \alpha<1 \tag{10}\\ \beta_{N} & \text { if } \alpha=1 \\ N^{1 / 2} D\left(U_{N}\right) & \text { if } \alpha>1\end{cases}
$$

Then

$$
\mathfrak{D}_{\mathrm{d} \mu^{(N)}}^{2}\left(U_{N}\right) \geq c D^{2}\left(U_{N}\right)
$$

Remark 3. Consider the particular case when $f=\chi_{A}$, the characteristic function of a convex body $A \subseteq\left[-\frac{1}{2}, \frac{1}{2}\right)^{d}$. Then (6) holds with $\alpha=\frac{1}{2}$. Let $\varepsilon_{N}=N D^{2}\left(U_{N}\right)$. Then

$$
\mathfrak{D}_{\mathrm{d} \mu(N)}^{2}\left(U_{N}\right) \leqslant c D^{2}\left(U_{N}\right) .
$$

If furthermore the boundary of A is smooth and has positive Gaussian curvature then (8) holds with $\alpha=\frac{1}{2}$; see, for instance, [7]. We then have

$$
\mathfrak{D}_{\mathrm{d} \mu(N)}^{2}\left(U_{N}\right) \geqslant c D^{2}\left(U_{N}\right) .
$$

We recall that if A is rotated and contracted, then a result of Beck [1] and of Montgomery [10] says that

$$
\int_{S O(d)} \int_{0}^{1} \int_{\mathbb{T}^{d}}\left|\frac{1}{N} \sum_{j=1}^{N} \chi_{\sigma(r A)}\left(u_{j}-t\right)-r^{d}\right| A| |^{2} \mathrm{~d} t \mathrm{~d} r \mathrm{~d} \sigma \geqslant c N^{-1-1 / d}
$$

for every choice of the point set distribution U_{N}; see also $[2,4,5]$. We also recall that this is not true if the contraction is omitted; see [12, Theorem 3.1].

The assumption (6) concerns the decay of the Fourier coefficients of f. This behavior can be naturally related to the smoothness of the function f as follows. Let $f \in L^{2}\left(\mathbb{T}^{d}\right)$, define $\Delta_{h} f(x)=f(x+h)-f(x)$ and, for every integer $\ell \geqslant 1$, write $\Delta_{h}^{\ell} f=\Delta_{h} \Delta_{h}^{\ell-1} f$. Let $\alpha>0$. We say that f belongs to the Nikol'skiĭ space $H_{2}^{\alpha}\left(\mathbb{T}^{d}\right)$ if there exists $c>0$ such that

$$
\left(\int_{\mathbb{T}^{d}}\left|\Delta_{h}^{\ell} f(x)\right|^{2} \mathrm{~d} x\right)^{1 / 2} \leqslant c|h|^{\alpha}
$$

for some $\ell \geqslant 1$; see [11, Section 4.3.3].
Proposition 4. Let $f \in H_{2}^{\alpha}\left(\mathbb{T}^{d}\right)$. Then (6) holds.
Proof. Since $\widehat{\Delta_{h} f}(k)=\left(\mathrm{e}^{2 \pi \mathrm{i} k \cdot h}-1\right) \widehat{f}(k)$, we have $\widehat{\Delta_{h}^{\ell} f}(k)=\left(\mathrm{e}^{2 \pi \mathrm{i} k \cdot h}-1\right)^{\ell} \widehat{f}(k)$. Let $h=(1 / 10 \rho, 0, \ldots, 0)$ and $\Gamma=\left\{k \in \mathbb{Z}^{d}: k_{1}^{2} \geq k_{2}^{2}+\ldots+k_{d}^{2}\right\}$. Observe that when $k \in \Gamma$ and $\rho \leq|k| \leq 2 \rho$, we have $\left|\mathrm{e}^{2 \pi \mathrm{i} k \cdot h}-1\right| \geq c$. Therefore

$$
\begin{aligned}
\sum_{\substack{k \in \Gamma \\
\rho \leq|k|<2 \rho}}|\widehat{f}(k)|^{2} & \leq c \sum_{\substack{k \in \Gamma \\
\rho \leq|k|<2 \rho}}\left|\left(\mathrm{e}^{2 \pi \mathrm{i} k \cdot h}-1\right)^{\ell}\right|^{2}|\widehat{f}(k)|^{2} \leq c \sum_{k \in \mathbb{Z}^{d}}\left|\widehat{\Delta_{h}^{\ell}} f(k)\right|^{2} \\
& =c \int_{\mathbb{T}^{d}}\left|\Delta_{h}^{\ell} f(x)\right|^{2} \mathrm{~d} x \leq c|h|^{2 \alpha}=c \rho^{-2 \alpha} .
\end{aligned}
$$

Note here that h is tailored on Γ. Since we can cover \mathbb{Z}^{d} with a finite number of cones, the proposition follows from the above argument applied to different choices of h.

We begin the proof of Theorem 1 with a technical lemma.
Lemma 5. Let $\mathrm{d} \nu$ be a probability measure supported on $\left[-\frac{1}{2}, \frac{1}{2}\right)^{d}$. Then either
(i) $\mathrm{d} \nu$ is the Dirac measure $\delta_{t_{0}}$ at a point $t_{0} \in \mathbb{T}^{d}$; or
(ii) $1-|\widehat{\nu}(\xi)|^{2}=O\left(|\xi|^{2}\right)$ as $\xi \rightarrow 0$, and any open cone in \mathbb{R}^{d} contains an open subcone Γ such that $1-|\widehat{\nu}(\xi)|^{2} \geqslant c|\xi|^{2}$ for small $\xi \in \Gamma$.

Proof. Since $\mathrm{d} \nu$ is compactly supported, its Fourier transform $\widehat{\nu}$ is smooth and has Taylor expansion

$$
\widehat{\nu}(\xi)=1+\nabla \widehat{\nu}(0) \xi+\frac{1}{2} H_{\widehat{\nu}}(0) \xi \cdot \xi+o\left(|\xi|^{2}\right)
$$

and so

$$
1-|\widehat{\nu}(\xi)|^{2}=1-\widehat{\nu}(\xi) \widehat{\nu}(-\xi)=(\nabla \widehat{\nu}(0) \xi)^{2}-H_{\widehat{\nu}}(0) \xi \cdot \xi+o\left(|\xi|^{2}\right)=O\left(|\xi|^{2}\right)
$$

Let $F(\xi)=(\nabla \widehat{\nu}(0) \xi)^{2}-H_{\widehat{\nu}}(0) \xi \cdot \xi$, and assume that F does not vanish identically. Let $\Sigma_{d-1}=\left\{\xi \in \mathbb{R}^{d}:|\xi|=1\right\}$. Since F is a polynomial, it cannot vanish on an open set and therefore $\left\{\xi \in \Sigma_{d-1}: F(\xi)=0\right\}$ has empty interior in Σ_{d-1}. Since F is homogeneous and continuous, it follows that for every open cone in \mathbb{R}^{d}, we can find an open subcone Γ such that $|F(\xi)| \geqslant c|\xi|^{2}$ for $\xi \in \Gamma$. Therefore $1-|\widehat{\nu}(\xi)|^{2} \geqslant c|\xi|^{2}$ for small $\xi \in \Gamma$.

Assume now $F \equiv 0$. Observe that

$$
\frac{\partial \widehat{\nu}}{\partial \xi_{j}}(0)=-2 \pi \mathrm{i} \int_{\mathbb{T}^{d}} x_{j} \mathrm{~d} \nu(x)
$$

and

$$
\frac{\partial^{2} \widehat{\nu}}{\partial \xi_{j} \xi_{\ell}}(0)=-4 \pi^{2} \int_{\mathbb{T}^{d}} x_{j} x_{\ell} \mathrm{d} \nu(x)
$$

Then

$$
\nabla \widehat{\nu}(0) \cdot \xi=-2 \pi \mathrm{i} \int_{\mathbb{T}^{d}}(x \cdot \xi) \mathrm{d} \nu(x)
$$

and

$$
H_{\widehat{\nu}}(0) \xi \cdot \xi=-4 \pi^{2} \sum_{i, j} \int_{\mathbb{T}^{d}} \xi_{j} \xi_{\ell} x_{j} x_{\ell} \mathrm{d} \nu(x)=-4 \pi^{2} \int_{\mathbb{T}^{d}}(\xi \cdot x)^{2} \mathrm{~d} \nu(x)
$$

Hence

$$
\begin{aligned}
0 & =(\nabla \widehat{\nu}(0) \xi)^{2}-H_{\widehat{\nu}}(0) \xi \cdot \xi=-4 \pi^{2}\left(\int_{\mathbb{T}^{d}}(x \cdot \xi) \mathrm{d} \nu(x)\right)^{2}+4 \pi^{2} \int_{\mathbb{T}^{d}}(\xi \cdot x)^{2} \mathrm{~d} \nu(x) \\
& =4 \pi^{2} \int_{\mathbb{T}^{d}}\left(x \cdot \xi-\int_{\mathbb{T}^{d}}(t \cdot \xi) \mathrm{d} \nu(t)\right)^{2} \mathrm{~d} \nu(x)
\end{aligned}
$$

Let

$$
t_{0}=\int_{\mathbb{T}^{d}} t \mathrm{~d} \nu(t)
$$

Since $\mathrm{d} \nu(x)$ is positive, it follows that for every fixed ξ, we have

$$
\nu\left(\left\{x: x \cdot \xi-\xi \cdot t_{0} \neq 0\right\}\right)=0
$$

Since ξ is arbitrary, we conclude that $\nu\left(\left\{x: x-t_{0} \neq 0\right\}\right)=0$, so that $\mathrm{d} \nu$ is supported at t_{0}. Since $\mathrm{d} \nu$ is a probability measure, we have $\mathrm{d} \nu=\delta_{t_{0}}$.

Proof of Theorem 1. By Lemma 5, we have

$$
1-\left|\widehat{\mu^{(N)}}(k)\right|^{2}=1-\left|\widehat{\mu}\left(\varepsilon_{N} k\right)\right|^{2}=O\left(\varepsilon_{N}^{2}|k|^{2}\right)
$$

As $\mathrm{d} \mu$ is a probability measure, we have

$$
0 \leq 1-\left|\widehat{\mu^{(N)}}(k)\right|^{2} \leq \min \left\{1, c \varepsilon_{N}^{2}|k|^{2}\right\} .
$$

By (6), we have

$$
\begin{align*}
& \sum_{k \in \mathbb{Z}^{d}}|\widehat{f}(k)|^{2}\left(1-\left|\widehat{\mu^{(N)}}(k)\right|^{2}\right) \leq \sum_{k \in \mathbb{Z}^{d}}|\widehat{f}(k)|^{2} \min \left\{1, c \varepsilon_{N}^{2}|k|^{2}\right\} \\
& \quad \leq \sum_{j=0}^{+\infty} \min \left\{1, c \varepsilon_{N}^{2} 2^{2 j}\right\} \sum_{2^{j} \leq|k|<2^{j+1}}|\widehat{f}(k)|^{2} \leq c \sum_{j=0}^{+\infty} \min \left\{1, \varepsilon_{N}^{2} 2^{2 j}\right\} 2^{-2 j \alpha} \\
& \quad \leq c \varepsilon_{N}^{2} \sum_{2^{j}<\varepsilon_{N}^{-1}} 2^{(2-2 \alpha) j}+c \sum_{2^{j}>\varepsilon_{N}^{-1}} 2^{-2 j \alpha} . \tag{11}
\end{align*}
$$

There are three cases. If $\alpha<1$, we have

$$
\sum_{0 \neq k \in \mathbb{Z}^{d}}|\widehat{f}(k)|^{2}\left(1-\left|\widehat{\mu^{(N)}}(k)\right|^{2}\right) \leq c \varepsilon_{N}^{2 \alpha}
$$

If $\alpha=1$, we have

$$
\sum_{0 \neq k \in \mathbb{Z}^{d}}|\widehat{f}(k)|^{2}\left(1-\left|\widehat{\mu^{(N)}}(k)\right|^{2}\right) \leq c \varepsilon_{N}^{2} \log \left(1+\varepsilon_{N}^{-1}\right)
$$

If $\alpha>1$, we have

$$
\sum_{0 \neq k \in \mathbb{Z}^{d}}|\widehat{f}(k)|^{2}\left(1-\left|\widehat{\mu^{(N)}}(k)\right|^{2}\right) \leq c \varepsilon_{N}^{2}
$$

Since $\mathrm{d} \mu$ is a probability measure, we have

$$
\begin{equation*}
\left\|D\left(\cdot, U_{N}\right) * \mathrm{~d} \mu\right\|_{L^{2}\left(\mathbb{T}^{d}, \mathrm{~d} t\right)} \leq D\left(U_{N}\right) \tag{12}
\end{equation*}
$$

In view of (11) and (12), the inequality (7) follows from (3).
Let Ω be such that $1-|\widehat{\mu}(\xi)|^{2} \geq c|\xi|^{2}$ for small $\xi \in \Omega$. Suppose that there exists $\Gamma \subseteq \Omega$ such that (8) holds. Then

$$
\begin{aligned}
\mathfrak{D}_{\mathrm{d} \mu} \mu^{(N)}(N) & \geq \frac{1}{N}\left(\|f\|_{L^{2}\left(\mathbb{T}^{d}, \mathrm{~d} t\right)}^{2}-\left\|f * \mathrm{~d} \mu^{(N)}\right\|_{L^{2}\left(\mathbb{T}^{d}, \mathrm{~d} t\right)}^{2}\right) \\
& =\frac{1}{N} \sum_{0 \neq k \in \mathbb{Z}^{d}}|\widehat{f}(k)|^{2}\left(1-\left|\widehat{\mu}\left(\varepsilon_{N} k\right)\right|^{2}\right) \\
& \geq \frac{c}{N} \sum_{2^{j} \leq c_{1} \varepsilon_{N}^{-1}} \sum_{2^{j} \leq \mid k \in \Gamma<2^{j+1}}|\widehat{f}(k)|^{2}\left(1-\left|\widehat{\mu}\left(\varepsilon_{N} k\right)\right|^{2}\right) \\
& \geq c \frac{\varepsilon_{N}^{2}}{N} \sum_{2^{j} \leq c_{1} \varepsilon_{N}^{-1}} 2^{-2 j \alpha} 2^{2 j} \geq c \eta_{N} N^{-1}
\end{aligned}
$$

Remark 6. The estimates from below for $\mathfrak{D}_{\mathrm{d} \mu^{(N)}}^{2}(N)$ contained in Theorem 1 and Corollary 2 depend on suitable estimates for the first term

$$
\frac{1}{N}\left(\|f\|_{L^{2}\left(\mathbb{T}^{d}, \mathrm{~d} t\right)}^{2}-\left\|f * \mathrm{~d} \mu^{(N)}\right\|_{L^{2}\left(\mathbb{T}^{d}, \mathrm{~d} t\right)}^{2}\right)
$$

in (3). We observe that in our setting the second term may vanish even in rather natural examples. Indeed, let

$$
f(x)=\sum_{k \neq 0} \frac{1}{|k|^{\gamma}} \mathrm{e}^{2 \pi \mathrm{i} k x}
$$

for some $\gamma>d / 2+1$. One can easily check that (8) holds with $\alpha=\gamma-d / 2$. Let U_{N} as in (1) and μ be the (normalized) Lebesgue measure restricted to $\left[-\frac{1}{2}, \frac{1}{2}\right)^{d}$, so that, taking $\varepsilon_{N}=1 / M$, we have

$$
\widehat{\mu^{(N)}}(k)=N \prod_{j=1}^{d} \frac{\sin \left(\pi k_{j} / M\right)}{\pi k_{j}}
$$

By (4) we have

$$
D^{2}\left(U_{N}\right)=\sum_{k \neq 0}|\widehat{f}(M k)|^{2}=\frac{1}{M^{2 \gamma}} \sum_{k \neq 0} \frac{1}{|k|^{2 \gamma}}=\frac{c_{\gamma}}{M^{2 \gamma}}
$$

and

$$
\left\|D\left(\cdot, U_{N}\right) * \mathrm{~d} \mu^{(N)}\right\|_{L^{2}\left(\mathbb{T}^{d}, \mathrm{~d} t\right)}=\sum_{k \neq 0}|\widehat{f}(M k)|^{2}\left|\widehat{\mu^{(N)}}(M k)\right|^{2}=0 .
$$

On the other hand observe that

$$
\varepsilon_{N}=\frac{1}{M} \geqslant N^{1 / 2} D\left(U_{N}\right)=M^{d / 2-\gamma}
$$

and therefore we can apply part (ii) of Corollary 2 and get $\mathfrak{D}_{\mathrm{d} \mu(N)}^{2}\left(U_{N}\right) \geq c D^{2}\left(U_{N}\right)$.

Let $\mathrm{d} \mu^{\otimes}$ be defined on $\left(\mathbb{T}^{d}\right)^{N}$ by

$$
\int_{\left(\mathbb{T}^{d}\right)^{N}} \varphi \mathrm{~d} \mu^{\otimes}=\int_{\mathbb{T}^{d}} \ldots \int_{\mathbb{T}^{d}} \varphi\left(v_{1}-u_{1}, \ldots, v_{N}-u_{N}\right) \mathrm{d} \mu^{(N)}\left(v_{1}\right) \ldots \mathrm{d} \mu^{(N)}\left(v_{N}\right) .
$$

We can now state and prove the result introduced in the abstract.
Corollary 7. Let U_{N} and $\mathrm{d} \mu$ be as given in Theorem 1 and Corollary 2.
(i) Let $f \in L^{2}\left(\mathbb{T}^{d}, \mathrm{~d} t\right)$ and ε_{N} be as given in part (i) of Corollary 2. Then for every λ satisfying $0<\lambda<1$, there exists a constant $c_{\lambda}>0$, independent of U_{N} and such that $\mathrm{d} \mu^{\otimes}\left(\left\{V_{N}: D\left(V_{N}\right) \leq c_{\lambda} D\left(U_{N}\right)\right\}\right) \geq \lambda$.
(ii) Let $f \in L^{2}\left(\mathbb{T}^{d}, \mathrm{~d} t\right), \Omega$ and ε_{N} be as given in part (ii) of Corollary 2. Then for a suitable constant $c>0$, we have $\mathrm{d} \mu^{\otimes}\left(\left\{V_{N}: D\left(V_{N}\right) \geq c D\left(U_{N}\right)\right\}\right)>0$.

Proof. If (9) holds, then Corollary 2 gives

$$
\int_{\mathbb{T}^{d}} \cdots \int_{\mathbb{T}^{d}} D^{2}\left(V_{N}\right) \mathrm{d} \mu^{\otimes}\left(V_{N}\right) \leq c D^{2}\left(U_{N}\right) .
$$

By the Chebyshev inequality, we have

$$
\mathrm{d} \mu^{\otimes}\left(\left\{V_{N}: D\left(V_{N}\right)>c_{\lambda} D\left(U_{N}\right)\right\}\right) \leq \frac{c}{c_{\lambda}^{2}},
$$

and so

$$
\mathrm{d} \mu^{\otimes}\left(\left\{V_{N}: D\left(V_{N}\right) \leq c_{\lambda} D\left(U_{N}\right)\right\}\right) \geq 1-\frac{c}{c_{\lambda}^{2}} .
$$

A suitable choice of c_{λ} completes the proof of part (i). If (10) and (8) hold, then Corollary 2 gives

$$
\int_{\mathbb{T}^{d}} \ldots \int_{\mathbb{T}^{d}} D^{2}\left(V_{N}\right) \mathrm{d} \mu^{\otimes}\left(V_{N}\right) \geq c D^{2}\left(U_{N}\right)
$$

which easily implies $\mathrm{d} \mu^{\otimes}\left(\left\{V_{N}: D\left(V_{N}\right) \geq c D\left(U_{N}\right)\right\}\right)>0$.

References

[1] J. Beck. Irregularities of distribution I. Acta Math., 159 (1987), 1-49.
[2] J. Beck, W.W.L. Chen. Irregularities of Distribution (Cambridge Tracts in Mathematics 89, Cambridge University Press, 1987).
[3] J. Beck, W.W.L. Chen. Note on irregularities of distribution II. Proc. London Math. Soc., 61 (1990), 251-272.
[4] L. Brandolini, L. Colzani, G. Travaglini. Average decay of Fourier transforms and integer points in polyhedra. Ark. Mat., 35 (1997), 253-275.
[5] L. Brandolini, M. Rigoli, G. Travaglini. Average decay of Fourier transforms and geometry of convex sets. Rev. Mat. Iberoamericana, 14 (1998), 519-560.
[6] W.W.L. Chen, G. Travaglini. Deterministic and probabilistic discrepancies. Ark. Mat. (to appear).
[7] C.S. Herz. Fourier transforms related to convex sets. Ann. of Math., 75 (1962), 81-92.
[8] F.J. Hickernell, H. Woźniakowski. The price of pessimism for multidimensional quadrature. J. Complexity, 17 (2001), 625-659.
[9] D.P. Mitchell. Consequences of stratified samplings in graphics. SIGGRAPH 96: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, pp. 277280 (Association for Computing Machinery, 1996).
[10] H.L. Montgomery. Ten Lectures on the Interface between Harmonic Analysis and Analytic Number Theory (CBMS Regional Conference Series in Mathematics 84, American Mathematical Society, 1994).
[11] S.M. Nikol'skiĭ. Approximation of Functions of Several Variables and Imbedding Theorems (Springer-Verlag, 1975).
[12] L. Parnovski, A.V. Sobolev. On the Bethe-Sommerfeld conjecture for the polyharmonic operator. Duke Math. J., 107 (2001), 209-223.

Dipartimento di Ingegneria dell'Informazione e Metodi Matematici, Università di Bergamo, Viale Marconi 5, 24044 Dalmine, Bergamo, Italy

E-mail address: luca.brandolini@unibg.it
Department of Mathematics, Macquarie University, Sydney, NSW 2109, Australia
E-mail address: wchen@maths.mq.edu.au
Dipartimento di Ingegneria dell'Informazione e Metodi Matematici, Università di Bergamo, Viale Marconi 5, 24044 Dalmine, Bergamo, Italy

E-mail address: giacomo.gigante@unibg.it
Dipartimento di Statistica, Edificio U7, Università di Milano-Bicocca, Via Bicocca degli Arcimboldi 8, 20126 Milano, Italy

E-mail address: giancarlo.travaglini@unimib.it

[^0]: ${ }^{\text {§ }}$ L'accesso alle Series è approvato dal Comitato di Redazione. I Working Papers della Collana dei Quaderni del Dipartimento di Ingegneria dell'Informazione e Metodi Matematici costituiscono un servizio atto a fornire la tempestiva divulgazione dei risultati dell'attività di ricerca, siano essi in forma provvisoria o definitiva.

[^1]: 1991 Mathematics Subject Classification. Primary 11K38; Secondary 41A55.

[^2]: ${ }^{1}$ In this paper every cone starts from the origin.

