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Part I

Introduction
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In literature it is generally acknowledged the importance of the Black & Scholes

framework in the derivative pricing analysis [Black and Scholes, 1973]. From then on the

derivatives instruments have recorded an exponential interest trend in the global economy.

Likewise the derivative analysis literature has experienced a fruitful creation of numerous

methods and instruments proposed to "explain" options market price, especially to explain

the biases between the theoretical price provided by the Black & Scholes model and the

market price

The explanations proposed in literature to model the theoretical price, as attempts

to interpret these biases, are various but there is general consensus on the importance to

model the time varying volatility (Engle [1982], Bollerslev [1986]) and the leverage e¤ect

(Black [1976]). Also in the empirical studies these �nancial return aspects have showed to

be suitable to solve the biases (see Bakshi, Cao and Chen [1997], Engle and Mustafa [1992],

and Heston and Nandi [2000]).

Because there is wide consensus that the variance of the �nancial asset returns is

time variant, a great amount of e¤orts are directing to realize mathematical models which,

by choosing the variance dynamics as the model corner-stone, should be e¤ectively able to

explain the option prices. Surely the GARCH model is a reference instrument to study the

volatility dynamics, and among its advantages there is its highly �exibility to be suitable to

capture the most important features of the �nancial variables. It is to note that the passage

from the GARCH parametric characterization of �nancial asset series to the computation

of the theoretical option price is not immediate.

The volatility is neither time constant nor time homogenous therefore the re-
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searchers have developed wide class of GARCH models and Stochastic Volatility (SV) mod-

els to describe the stochastic time evolution of the volatility.

The Black & Scholes model has yield, without doubt, a great interest to the re-

search to improve the option price techniques and it has end by in�uence the literature but

so much that the pricing model development seems to be con�ned to a set of assumptions

often cited as cause of the poor pricing and hedging performance (Christo¤ersen and Jacobs

(2004)). We refer to some assumptions (i.e., parametric risk premium, normal error ) which

implies a simpli�ed passage to the risk neutral measure (as in Black & Scholes framework)

but their realism remain discussible.

In a time varying volatility model, as in the GARCH model, the Black & Scholes

argument to price the derivative becomes useless, it is no more possible the replication of

the derivative with a portfolio composed by the underlying asset and the risk-free asset. For

this reason the market is said to be incomplete. It is necessary to exploit other theoretical

arguments to formulate a correct option pricing framework. It is known in the �nancial

theory that the existence of a su¢ cient number of derivatives in the market yields the

market completeness, and a well-de�ned option pricing measure can be stated. In this sense

the market incompleteness represents the key point to de�ne the option pricing method.

In this direction a new GARCH option pricing model in incomplete markets condition is

proposed by G. Barone-Adesi, R. Engle and L. Mancini (2007) through their article "A

GARCH Option Pricing Model in Incomplete Markets" (BAEM in the following). This

article endows this work of the underlying hypotheses framework and the pricing theory

used in performing the empirical analysis and in developing the GARCH option pricing
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models.

The analysis of the Nikkei Put Warrants (NPWs) market as long-term options and

proxy to the perpetual options is the empirical object of this study. There is not yet an

o¢ cial market which o¤ers perpetual options, therefore we study an option prices database

of derivatives with long maturity. The analysis of this market area allows us to study the

long-term �nancial phenomenons behavior and it allows to highlight crucially the di¤erent

performances of the models in comparison with particular reference to the option price

dynamics.

This work is organized in three parts: introduction, theoretical part and empirical

part. It follows the conclusion and some critical comments.

The introduction presents the study object that is the long-term American options

market and gives the reasons of the theoretical instruments choice to face the research.

The theoretical part presents the BAEM approach which is the main theoretical

reference point of the entire work. The empirical part shows the analysis results performed

on the Nikkei 225 index historical series and the Nikkei Put Warrants data collected.

Both parts (i.e., the theoretical part and the empirical part) are again divided in

two sections.

First sections refer to three asymmetric GARCH models, widely known in litera-

ture. We name these models "Simple GARCH models". These models use four parameters

to describe the volatility dynamics, one more than the Standard GARCH. This additional

parameter has the end to model the asymmetric response of the volatility to the market

news (i.e., leverage e¤ect).
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Second sections deal with extended versions of the same GARCH models, known

in literature as "Components GARCH models". They decompose the volatility dynamics in

a long-run component and a short-run component. This extension was developed by Engle,

R.F. and G. Lee (1999) and used in option pricing by Christo¤ersen, P., K. Jacobs and Y.

Wang (2004).

Unfortunately there does not exist an analytical close-form formula to compute

the price of an American derivative when the variance has a GARCH dynamics. To this

end we suggest two solutions. The �rst one is used in the empirical analysis and it is an

approximation based on the Monte Carlo method simulation to price the American option.

The second one is proposed in Duan, J.C. and J.G. Simonato (2001) and here it

is revisited in light of the assumptions and of the models used in this work. A particular

arrangement is required in the Component GARCH models case. Even if the sparsity

feature of the transition matrix were exploited, as the authors (Duan, Simonato) suggest,

this approach is more computational demanding than the previous one, particularly in long-

term derivatives pricing. In the last part of this work it is presented a suggestion to reduce

further the computational e¤ort by improving both memory usage and computation speed.

0.1 Presentation of the problem and instruments choice.

The empirical analysis of the long-term options constitutes the object of this study.

The analysis is performed on the Nikkei Put Warrants (NPWs) market. The volatility

dynamics is studied by a GARCHmodel characterization. The reason to choose the GARCH

model is relative to its potential ability in describing the volatility dynamics, its �exibility
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in capturing many �nancial variables features and its aptitude to extensions in managing

both long-term and short-term �nancial phenomenons.

The NPWs have two main features: They are American-style Put Option and they

are o¤ered in a wide range of maturities.

Unluckily there is not a close-form pricing formula to compute an American Option

price in a GARCH framework. From an empirical point of view this makes indispensable

to use some approximation methods. The derivative price will be computed by an approx-

imation techniques based on Monte Carlo simulation method. These price approximations

will be furnished with some theoretical justi�cations and empirically validated with regard

to the characteristics of the long-term derivatives.

Secondly we present the instruments development able to compute the American

GARCH option price by means of Duan and Simonato�s approximation which describes

the GARCH asset price dynamics through a multi-states Markov Chain. This is only a

theoretical presentation but this method is not used in the empirical analysis because it

needs some adjustment in order to improve the computational e¢ ciency. The last part of

the work is dedicated to propose one possible improvement for this method.

The long-term options study implies to model the underlying �nancial variables

dynamics for a long lapse of time. Therefore a comparison between the simple GARCH

models (4 parameters) and the Component GARCH models (7 parameters), which model

richer volatility dynamics, is well regarded.

Nevertheless even if the volatility dynamics is enriched by the "time-varying volatil-

ity", the "volatility-clustering" and the "leverage e¤ect" features the log-returns show a
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non-normal behavior.

Many assumptions of non-normal shocks distribution to model the innovation has

been proposed to cope with this inconsistency. In the parametric ambit it is the case to

cite the stable distributions and the related Levy processes. While in the non-parametric

ambit the Filtering Historical Simulation (Barone-Adesi at al. [1998]) allows to use the

empirical shocks distribution to model the future innovation with respect to the theoretical

assumption about the �nancial variable dynamics.

We verify through the empirical analysis the GARCH framework performance in

the long-term American Option Pricing. To ascertain the analysis results, as in the BAEM

framework, we show both statistical measures of the model mispricing and economic check

of decreasing monotonicity of the SPD with respect to the underlying asset price.

It is important to underline that the analysis is conjointly result of the approxi-

mation method used to price the options, the option pricing underlying assumptions (which

allow to pass from the historical probability measure to the probability risk-adjusted) and

the error distribution assumption.

The assumptions framework, the �nancial theory and the analytic instruments

of this work are based on "A GARCH Option Pricing Model in Incomplete Markets", G.

Barone-Adesi ,R. Engle, L. Mancini [2007].
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0.2 Perpetual options and Long-term options: The o¢ cial

market.

An o¢ cial market trading perpetual options does not exist until today, albeit

some exchange organization seems to promise an open soon. We can consider the long-term

options as a proxy for such derivatives. If we would list the Options with long maturities

traded on organized exchanges we have to number certainly:

� The so called LEAPS (Long-term Equity AnticiPation Securities) with maturities up

to 5 years.

� The Incentive stock options whose maturity can be up to 15 years.

� Variable annuity contracts (in the U.S.) and segregated mutual funds (in Canada)

have embedded equity put options with maturities of up to 30 years.

Even if the long-maturities options have received increasing attention from the

market, at the moment it remains some perplexity about these derivatives. The main

problem is that as the maturity increases as the di¢ culties to model and to verify the

derivative market price become greater. This is mainly due to the real di¢ culty to describe

e¢ caciously a future event far in the time.

There are also derivatives traded by some Financial Institutions with maturity

very long (up to 40 years), for example the Nikkei Put Warrants (NPWs) are American

put options on the NIKKEI 225 index and they are available for di¤erent strike prices and

maturities. The following table shows some Financial Institutions which o¤er NPWs:
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Currency Country Financial Institution Option
Type

Underlying
Type City

Hong Kong Dollar Hong Kong DEUTSCHE BANK AG Put Index Hong
Kong

Hong Kong Dollar Hong Kong SGA SOCIETE GENERALE
ACCEPTANCE NV Put Index Hong

Kong

Singaporean Dollar Singapore BNP PARIBAS ARBITRAGE
ISSUANCE BV Put Index Singapore

Singaporean Dollar Singapore DEUTSCHE BANK AG LONDON Put Index Singapore

Swiss Franc Switzerland ABN AMRO BANK NV Put Index Zurich

Swiss Franc Switzerland ABN AMRO BANK NV LONDON
BRANCH Put Index Zurich

Swiss Franc Switzerland CREDIT SUISSE Put Index Zurich

Swiss Franc Switzerland GOLDMAN SACHS INTERNATIONAL Put Index Zurich

Swiss Franc Switzerland VONTOBEL HOLDING AG Put Index Zurich

United Kingdom
Pound

United
Kingdom

MERRILL LYNCH & COMPANY
INCORPORATED Put Index London

Figure 0.1: International Financial Institutions o¤ering Nikkei Put Warrants

The long-term option market in Italy is at the beginning but the market tendency

to o¤er derivatives with long maturities is recorded. Since 23rd October 2006 the Italian

Exchange(Borsa Italiana) has introduced on the IDEM market (Italian Derivatives Market)

the long stock options. The maturity is 3 years for such derivatives. There are two types

of long options traded on IDEM:

-The European-style derivatives written on the S&P/MIB index

-The American-style derivatives written on single stocks traded in the market.

The empirical analysis of this work will be based on the Nikkei Put Warrants

databases and the historical time series of the Nikkei 225 index. All data was collected from

DataStream.
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Chapter 1

Theoretical part

1.1 Section I - Simple GARCH models

In this part we present the basic version of the models used in the Section I: the

Simple GARCH models. On the basis of these models we present the option pricing theory

underlying the empirical work. Subsequently it is showed the approximative Monte Carlo

method to compute the theoretical American option price. Moreover it is presented the

alternative approximation (due to Duan and Simonato) to price this type of contingent

claim in the GARCH models. Some notes are dedicated to explain how the innovations has

been modeled both parametrically and non-parametrically.

Finally it follows the summarizing schemes of the entire procedure used in the

Empirical analyses.
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1.1.1 Simple GARCH volatility dynamics models

We consider a discrete-time economy. Let St be the price of the Nikkei 225 index

at day t and yt the daily log-return, yt+1 := ln
St+1
St
.

Suppose that under the objective or historical measure P the daily log-return is

described by the following relation:

yt+1 = ln
St+1
St

= �+ �t+1zt+1 (1.1)

where zt+1j�t � (0; 1) under P .

The Simple GARCH models are an extension of the standard GARCH(1,1) and

they could be represented as:

�t+1 = f (�; �t; zt) (1.2)

where the relation expresses that the conditional variance at time t + 1 is function of the

lagged value of the variance (�t), the lagged shock (zt) and a set of parameters (�).

We consider three di¤erent models for the variance dynamics in the �rst section

of the work:

Model I: N-GARCH (N-G):

�2t+1 = ! + ��
2
t + ��

2
t (zt � 
)

2 (1.3)

where !; � > 0 and 0 < � < 1.

Model II: GJR-GARCH (GJR-G):

�2t+1 = ! + ��
2
t + ��

2
t z
2
t � 
�2t z2t It (1.4)
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where !; � > 0 ,0 < � < 1 and It =

8>><>>:
1; zt < 0

0; otherwise

.

Model III: E-GARCH (E-G):

ln
�
�2t+1

�
= ! + � ln

�
�2t
�
+ � (jztj � 
zt) (1.5)

where � > 0 and 0 < � < 1.

The parameters of the models are � = (�; �) where � is the constant drift term

and � = (!; �; �; 
) is the parameter vector related to the variance dynamics.

The parameter 
 allows to model the asymmetric behaviour of the variance, some-

time called Black�s e¤ect. It consists of a greater response of the variance when the news

arrived in the market are negative (zt < 0) than when the news are positive (zt > 0).

All conditions on the parameters !; � are used to avoid theoretical inconsistence

on the value for �2t (i.e., ! < 0 should mean a potential negative value for the variance,

while � < 0 should mean that greater shock movements induce a decreasing variance), while

the conditions on � allow the variance process to be covariance-stationary. Let consider the

value of the stationary variance level for each model, supposing the weakly stationarity on

�2t (i.e.,E
�
�2t
�
= h� 8t (or EP

�
ln
�
�2t
��
= ln (h�) for the E-G)):

in the N-G

h� =
!

1� � � �EP (zt � 
)2
(1.6)

in the GJR-G

h� =
!

1� � � �EP
�
z2t
�
� 
EP

�
z2t It

� (1.7)
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in the E-G

h� = exp

�
! � �EP (jztj � 
zt)

1� �

�
(1.8)

We have used the GARCH property that: E (f (�t) g (zt)) = E
�
f (�t)E

�
g (zt) j�t�1

��
where f and g are some real function, since �t, and thus each its function, is measurable

with respect to the sigma-algebra at time t� 1.

Since we have to avoid the asymptotic divergence and the negativity of the variance

process we need the following additional conditions:

� + �EP (zt � 
)2 < 1 in the N-G

� + �EP
�
z2t
�
+ 
EP

�
z2t It

�
< 1 in the GJR-G

(i.e. the denominators in 1.6 and 1.7 must be greater than 0).

Note that in the normal innovation case (i.e., zt+1j�t
P� N (0; 1) )

h� =
!

1� � � � (1 + 
2) in N-G, h
� =

!

1� � � �� 
=2 in GJR-G,

h� = exp

 
! � �

p
2=�

1� �

!
in E-G.

and the conditions are:

� + �
�
1 + 
2

�
< 1 in the N-G

�+ � + 
=2 < 1 in the GJR-G

The main characteristics of the simple GARCH models can be summarized in:

� Parsimonious model, only 4 parameters to model the variance dynamics.

� Two state variables: price and variance.

� Time varying variance: Simple GARCH models drive the variance process.
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� All model are potentially able to explain the well-known stylised-facts as the �Lever-

age e¤ect� (
 parameter) and the �Clustering e¤ect� in the stochastic volatility (�

parameter).

1.2 Theoretical approach to the option pricing

In the theory of asset pricing it is well known that in a dynamic equilibrium (such

as Rubinstein 1976 or Lucas 1978) the price of any �nancial asset can be represented as a

discounted expected value of its future payo¤s. If r is the riskless rate, ST represents the

state variable of the economy, �t is the information to time t available to the agent and Q is

the risk neutral measure, then the price at time t (i.e., �t) of a single future payo¤ at time

T is

�t = E
Q[�T � e�r(T�t)j�t] = e�r(T�t)

Z 1

0
�T � qt;T (ST ) dST (1.9)

The right-hand side highlights the role of qt;T (s) which represents the probability

density function of the payo¤s under the risk neutral measure Q, and it is called State Price

Density (SPD) or Pricing Density (or Risk neutral Probability Density Function (Cox and

Ross 1976)) or Equivalent Martingale Measure (Harrison and Kreps (1979))).

The SPD completely holds the implicit characteristics of the pricing model used.

In a continuum state setting the SPD allows to de�ne for each possible state of the economy

the price of a security (Arrow-Debreu security price) paying one dollar at time T if the state

variable ST at time T falls into that state (i.e., ST 2 (s; s+ ds)).

Using the notion of State Price Density per unit probability (SPD per unit prob-
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ability), Mt;T (s) := e
�r(T�t) qt;T (s)

pt;T (s)
allows us to rewrite the pricing formula 1.9 as:

�t =

Z 1

0
�T �

�
e�r(T�t)

qt;T (ST )

pt;T (ST )

�
pt;T (ST ) dST = E

P [�T �Mt;T j�t] (1.10)

where P is the historical measure and pt;T (s) represents the historical probability density

function at time t for payo¤ of time T .

The SPD per unit probability can interpreted for each state of the economy as the

price of a pure state contingent claim which pays 1=pt;T (s) dollars at time T if and only if

the state variable ST at time T falls into that state.

Let consider now the SPD approach in the American-style contingent claim case.

In the discrete-case time setting the American option can be exercised only at integer time

instant. The option price can be formulated as a recursive procedure from the end in

backward.

Let �T be the �nal payo¤ at time T of the American option then the value of the

American option (i.e., V ) at time T corresponds to the payo¤:

VT = �T .

In general the American price is the maximum between the value of the option if

immediately exercised and the discounted expected value of the option if left "live" for the

next time, to say with a formula:

Vt = max
�
�t; E

P
�
Vt+1Mt;t+1j�t

�	
for t = 0; 1; :::; T � 1.

The American option price can be written in compact way by using _ as Max

operator in the following way:

V0 = �0_EP ff�1_EP [[:::�T�2_EP ((�T�1_EP (�TMT�1;T j�T�1))MT�2;T�1j�T�2):::

:::]M1;2j�1]gM0;1j�0g, and because Mt�1;t is �t-measurable we can rewrite
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the option price as:

V0 = �0_EP ff�1N0;1_EP [[:::�T�2N0;T�2_EP ((�T�1N0;T�1_EP (�TN0;T j�T�1))j�T�2):::

:::]j�1]gj�0g

where N0;t =
Qt
i=1Mi�1;i, having use the property that (a_ b)c = (ca_ cb) where

a; b; c have positive value.

This formulation highlights that the American option price can be de�ned as

function of the sequence of the State Price Densities per unit probability from the current

time up to maturity.

We return on the SPD approach applied on the long-term American option in a

next paragraph after we have introduced other problem speci�cations.

1.3 GARCH option price in incomplete markets (Barone

Adesi-Engle-Mancini approach)

The equation (1.10) can be used to determine the equilibrium asset prices given

the historical price dynamics and the SPD per unit probability.

The BAEM approach supposes that two di¤erent GARCH models can approxi-

mate the historical and the risk-neutral asset price dynamics. Therefore two di¤erent sets

of GARCH parameters allow to determine the volatility pricing process and the historical

volatility of the asset process respectively. Distinguishing the two processes is very impor-

tant. The �rst one is related to the market asset price dynamics and the �rst set of GARCH

parameters can be historically estimated. The second set of the GARCH parameters related

to the pricing process is estimated by inferring the investors aggregate preferences (i.e., how
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they set state prices) through a calibration procedure.

The BAEM framework o¤ers a novel option pricing approach in literature. It

exploits the market incompleteness to determine the pricing distribution distinctly by the

historical distribution. The two distinct distributions allow to characterize the SPD per

unit probability

The BAEM approach develops in the following three points:

1) Historical GARCH parameters estimation by using an asset return time series

to determine the historical asset price dynamics (Asset-based setting estimation)

2) "Risk-neutral" or Pricing GARCH parameters calibration by using option prices

cross sections to determine the pricing process dynamics (Option-based setting estimation)

3) The option pricing process identi�cation: the SPD per unit probability is ob-

tained by discounting the ratio of the historical and pricing densities derived from the two

GARCH models

The next paragraph shows the detailed description for each point.

It is important to highlight some characteristics of the BAEM approach:

a) This approach does not attempt to specify the SPD per unit probability directly through

a speci�cation of the change of measure from P to Q, but it requires to approximate

the change of measure through a calibration procedure directly on the market option

prices and infers the risk-neutral GARCH parameters.

b) The assumption of the two di¤erent processes (i.e., the historical and the pricing process)

allows to treat the risk premium in nonparametric manner (the premium is inferred

by the aggregate investors�behaviour summarized in the SPD).
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c) The valuation results can be validated both statistically and economically, by using

statistical measures to evaluate mispricing error of the model and economic measures

to verify a minimum economic criteria on the SPD per unit probability.

1.3.1 Asset-based setting estimation: the historical GARCH parameter

estimation

In the BAEM approach the historical GARCH parameters estimation is performed

by the maximum likelihood (ML) method. We present a brie�y a description of this proce-

dure:

Let consider the price equation 1.1 as previously stated, we can rewrite it as:

yt = �+ "t, (1.11)

where yt = ln St
St�1

, "t = �tzt and "tj�t�1
P� (0; �t) :

Note that �t is a measurable function w.r.t �t�1 in each GARCH model presented

before.

In order to obtain maximum likelihood parameters estimation assume that the

error term is conditionally normal distributed (i.e., "tj�t�1
i:i:d� N (0; �t) ), we can thus

write the conditional probability density of Yt as:

fYtj�t�1(ytj�t�1;�)
=

1p
2��t (�)

exp

 
�1
2

�
"t � �
�t (�)

�2!
(1.12)

where � = (�; �) where � = (!; �; �; 
)

Let y�(n�1); :::; y�1; y0 be an observed sample of asset log returns of n historical observations.
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The maximum likelihood principle view at the probability density fY�n+1;:::;Y�1;Y0(y�n+1; :::; y�1; y0; �)

as the probability of having observed this particular sample. The Maximum Likelihood Es-

timate of � is the value for which this probability density is maximized.

The i.i.d. assumption allow us to write the joint density as:

fY�n+1;:::;Y�1;Y0 (y�n+1; :::; y�1; y0; �) =

= fY�n+1;:::;Y�2;Y�1 (y�n+1; :::; y�2; y�1; �) fY0jY�1 (y0jy�1; �) =

= fY�n+1 (y�n+1; �)
�n+2Y
t=0

fYtjYt�1 (ytjyt�1; �)

The log-likelihood function can be calculated as:

l (�) = log fY�n+1 (y�n+1; �)+
�n+2X
t=0

log fYtjYt�1 (ytjyt�1; �) and using 1.12 we obtain:

l (�) = log fY�n+1 (y�n+1; �)� n�1
2 log (2�)� 1

2

�n+2X
t=0

log
�
�2t (�)

�
� 1

2

�n+2X
t=0

�
"t��
�t(�)

�2
Note that as long as the sample path becomes as the contribution of the �rst term becomes

negligible.

In conclusion the maximum likelihood estimate is:

b� = (b�;b�) = argmax
�;�

l (�) =

= argmax
�;�

log fY�n+1 (y�n+1; �)�n�1
2 log (2�)� 1

2

�n+2X
t=0

log
�
�2t (�)

�
� 1
2

�n+2X
t=0

�
"t��
�t(�)

�2
where fY�n+1 (y�n+1; �) =

1p
2���n+1

exp
�
� (��n+1z�n+1��)2

2�2�n+1

�
However in the GARCH case to compute the likelihood function we need the initial

values for the variance and the shock term (i.e., ��n+1 and z�n+1). There exist di¤erent

approaches to perform this initialization. A simple approach is to pose the initial variance

to its unconditional value, while Bollerslev suggested (1986) to set the initial variance as:

��n+1 =

vuut(n� 1)�1 �n+2X
t=0

(yt � �)2. The shock term z�n+1 can be deduced from

the price equation by knowing the sample value y�n+1. Anyway both ��n+1 and z�n+1 are
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function of the unknown parameters.

In our empirical work we set the variance to its unconditional expected value to

perform the ML estimation. Because we use a very long historical sample we consider

unlikely that the initial parameters setting can strongly a¤ect the estimate. In the BAEM

approach it is to note that the �nal values for z0 and �0 will be used as starting values for

the calibration procedure.

Although this procedure could appear to restrict the estimation at the normal

error assumption this is no the case. Bollerslev and Wooldridge in 1992 suggested the way

to adjust the standard errors to consider a possible misspeci�cation of the error density and

prove that under some regularity condition we can rely on the consistency of the estimate.

So when the error is non-normal the estimate is called Pseudo Maximum Likelihood(PML)

estimate. Let b�T be the estimate that maximizes the Gaussian log likelihood and let � be
the true value that characterizes the GARCH model, then even if it is non-Gaussian under

certain regularity conditions:

p
T
�b�T � �� d! N

�
0; D�1SD:1

�
(1.13)

where S = p lim
T!1

T�1
TX
t=1

[st (�)] [st (�)]
0 ,where st (�) =

@ log f(ytj�t�1;�)
@�

and D = p lim
T!1

T�1
TX
t=1

�E
n
@st(�)
@�0

j�t�1
o

The standard errors robust to misspeci�cation of the family of densities can be

consistently obtained from the square root of diagonal elements of T�1 bD�1T bST bD�1T where

bD and bS are computed with b� in place of the true parameter value.
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1.3.2 Option-based setting calibration: the �risk-neutral�or pricing GARCH

parameters

In order to approximate the risk neutral GARCH price dynamics it is used a

calibration procedure in the BAEM approach.

The aim of this procedure is to determine the pricing GARCH parameters �� =

(!�; ��; ��; 
�) of the risk-neutral dynamics under the probability measure Q:

yt+1 = ln
St+1
St

= �� + �t+1 (��) zt+1 where zt+1j�t � (0; 1) under Q, where �� is

chosen such that EQ
�

St
St�1

j�t�1
�
= er�� and the variance is described for each model as:

�2t+1 = !
� + ���2t + �

��2t (zt � 
�)
2 (N-G)

�2t+1 = !
� + ���2t + �

��2t z
2
t � 
��2t z2t It (GJR-G)

ln
�
�2t+1

�
= !� + �� ln

�
�2t
�
+ �� (jztj � 
�zt) (E-G)

The calibration procedure returns the pricing parameters (��) which minimize

some error criteria computed on the di¤erence between the theoretical price and the market

option price of the cross-section, in particular the pricing GARCH parameters are deducted

by the following optimization problem:

�� = argmin
�

NtP
i=1

�
PGARCH (Ki; Ti; �)� PMKT (Ki; Ti)

�2
where � = (��; �) and

PMKT (Ki; Ti) is the market price of the i-th option with strike price Ki, maturity Ti and

Nt is the number of the options present in the cross-section at time t. PGARCH (Ki; Ti; �)

is the theoretical GARCH price with parameters �, strike price Ki and maturity Ti:

It is important to note that in the BAEM approach the change of measure from

P to Q relies only on the GARCH parameters but not on the risk neutral distribution of

the scaled innovation z. Indeed the distribution of zt under the Q measure is left the same
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as the historical distribution, it is assured that the new parameters already provides an

appropriate change of measure.

In order to perform the calibration and solve the optimization problem it is used

the fminsearch Matlab function which implements the Nelder-Mead simplex direct search

method and it does not require the computation of the gradients.

Also in the Calibration procedure, as in the Historical estimation, we need of

initial guess for the conditional variance to perform the optimization. The starting value

for the current risk neutral conditional volatility ��0 is the same as the historical conditional

variance �0 computed as explained in the previous paragraph. This choice has its theoretical

justi�cation because when � ! 0 the SPD per unit probability (Mt;t+� (s)) tend to one and

so the historical and the pricing estimate coincide.

A measure of the calibration quality is o¤ered by computing:

APE =

NtP
i=1
jPGARCH (Ki; Ti; �)� PMKT (Ki; Ti) j

NtP
i=1
jPMKT (Ki; Ti) j

(1.14)

In our empirical application the theoretical American GARCH option price PGARCH (Ki; Ti; �)

is computed by an approximation based on Monte Carlo simulation method described in

next paragraphs.

It exists the theoretical explanation which excludes the possibility of use normal

innovations to drive the GARCH dynamics in the BAEM approach. In other words the

assumption of the existence of two di¤erent GARCH dynamics (the historical and the

neutral) both driven by normal innovation to derive the SPD per unit probability are in
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con�icts1.

But in the BAEM approach it is proposed to model the error by the Filtering His-

torical Simulation (FHS) method (introduced by Barone-Adesi, Bourgin, and Giannopoulos

(1998)). However the Gaussian innovations could be used to give an interesting comparison.

To use FHS in modeling the GARCH innovations �rst it needs the historical scaled

GARCH innovations estimate:

Let b� = (b�;b�) the historical GARCH parameters estimated previously (i.e., PML
estimation) on the historical log-returns series y�n+1; y�n+2; :::; y0, then the scaled innova-

tions are given by bzt = yt � b�
�t (b�) ; for t = �n+ 1; :::; 0.

The �ltered historical scaled innovation bzt can be used to drive the GARCH sim-
ulation during the calibration procedure and this provides a non-parametric way to model

the error.

1.3.3 Option pricing process identi�cation.

The State Price Density per unit probability (i.e.,Mt;T (s) := e�r(T�t)
qt;T (s)
pt;T (s)

) is

derived in non-parametric manner by a simulation technique. The simulation is used because

it is known that the distribution of temporally aggregated asset returns is not a simple task

under GARCH dynamics.

To understand the procedure it is useful to consider the asset return behavior both

under the historical measure and under the risk neutral measure.

Under the historical probability measure (P ) the asset return dynamics of the

1In Barone-Adesi, G., R.F. Engle, and L. Mancini L., (2007, p.10) with reference to Duan (1995, Lemma
A.1)
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models presented before are described by:

ln
�

St
St�1

�
= � + �tzt where ztj�t�1

P� (0; 1) and �t = f (�t�1; zt�1; �) where f

depends on the model chosen.

While under the risk neutral probability measure (Q) the asset return dynamics

of the models are:

ln
�

St
St�1

�
= �� + �tzt where ztj�t�1

Q� (0; 1) and �t = f (�t�1; zt�1; ��) :

The SPD per unit probability Mt;T (s) is estimated by discounting the ratio of

the historical and pricing densities. The historical density is estimated assuming that

EP
�
St=St�1j�t�1

�
= exp

�
r + �

365

�
(a risk premium of � per year), this implies under the

Gaussian innovation case that � = r+ �
365 �

�2t
2 . In the empirical work � is �xed at 8% per

year (i.e., � = 0:08).

In the risk neutral density case it is assumed, as usual, that EQ
�
St=St�1j�t�1

�
=

er��, this implies that �� = r � � � �2t
2 .

When the Filtering Historical Simulation is used to drive the innovation then we

have to �x the drift parameters as:

� =
�
r + �

365 � �t
�

�� = (r � � � �t) where �t is computed by the upgrade

of an historical estimate �0 computed as �̂0 = log
�
1
T

PT
1 exp (�tzt)

�
on the basis of the

following relation:

EQ
�

St
St�1

j�t�1
�
= e�

�
EQ

�
exp(�tzt)j�t�1

�
= e�

�+�t .

The estimates for the risk-free rate and the dividend yield for the Japanese market

on daily basis used in the empirical work are r = 0; 01931=365 and � = 0; 005=365;

The historical and the risk-neutral densities are estimated in non parametric man-
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ner by the Matlab function ksdensity with a Gaussian Kernel2 and the optimal default

bandwidth for estimating Gaussian Density.

The SPD per unity probability is numerically obtained by discounting the two

densities as previously obtained.

1.4 Theoretical GARCH option prices methodologies:

In this section we present the Option pricing techniques underlying the work. First

we present the solution to the problem of the perpetual option price in the Gaussian case

as known in literature. Secondly we derive some justi�cations on the use of our "Monte

Carlo American GARCH option price approximations" when the variance process is driven

by a GARCH model. It is the case to anticipate that since the object of the empirical

study are the long-term options then the perpetual option price could represent a �rst

degree of approximation. We could remit to the empirical study to judge how much this

approximation can be considered good or from the other hand side how much it a¤ects the

State Price Density estimation. In the second part of the section we present the Duan and

Simonato�s approximation method to price American GARCH option as a possible alter-

native approximation to compute the option price. Because this method is computational

expensive especially in the case of the Components variance process models, where the state

variables becomes three, we suggest some algorithmic shrewdness to increase the speed. In

the last part we summarize the entire procedure Estimation-Calibration-Identi�cation.

2see B.W. Silverman (1986), Density estimate for Statistics and Data Analysis



26

1.4.1 The Perpetual option price in the Gaussian case

The problem of the Perpetual Call option, under the classical assumption of a

Brownian motion which drives the price dynamics, was solved by McKean H.P. in the 1965.

From then on the solution of this problem was rewritten in various ways, now we

brie�y draw one of this procedure useful to explain in the next paragraph the approximation

solution in the GARCH setting case, what we call "Monte Carlo American GARCH option

price approximations".

Let the asset price St be driven by the standard Gaussian dynamics, then under

the risk neutral setting the price dynamics is given by the following stochastic di¤erential

equation:

dSt = (r � �)Stdt + �StdBt where Bt is a standard Brownian motion, r is the

risk-free rate, � is the dividend-yield and � is the standard deviation.

Using the Ito�s lemma it is possible to derive the solution given the starting value

for St at time t = 0:

The solution of this equation is

St = S0 exp (� (�t+Bt)) where � =
r � � � �2

2

�
(1.15)

The Perpetual Call option price at time t is given by the solution to the following

optimal stopping problem:

C (St) = sup
�
EQ

�
(S� �K)+ exp (�r (� � t)) j�t

�
(1.16)

This formulation expresses the call price as the expected value of the discounted
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payo¤ of the option exercised at time � , where � is a stopping time. Let TH be an optimal

stopping time to exercise the option (i.e., TH = inf ft � 0;St � Hg) the problem can be

reformulated as:

C (St) = sup
H
EQ

�
(STH �K)

+ exp (�r (TH � t)) j�t
�
where STH = H.

In conclusion the call price at time t = 0 is expressed with:

C (S0) = sup
H
(H �K)EQ (exp (�rTH)) (1.17)

In this form the problem of a Perpetual Call pricing can be interpreted as the

so-called free boundary problem. In order words the maximization now is respect an op-

timal price level H while before it was with respect to an optimal time. In the Gaussian

framework the perpetual option optimal barrier level is time-constant and this constitutes

the advantage of this reformulation.

This kind of problem has an intrinsic characteristic: the solution (the call price)

is function of the barrier (H) which has an unknown value. Although the value of H is

unknown, the problem admits a close-form solution in the Gaussian case setting.

The problem is now to compute the expected value EQ (exp (�rTH)) where TH =

inf ft � 0;St � Hg.

First note that at time t = TH , by using 1.15 it results

STH = S0 exp (� (�TH +BTH )) = H (1.18)

Or equivalently

�TH +BTH =
1

�
ln

�
H

S0

�
(1.19)
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where the left hand side is sometime called Brownian motion with drift.

Now let consider the martingale property that EQ
�
exp

�
��2

2 t+ �Bt

��
= 1, it

can be rewritten as

EQ
�
exp

�
�rt+

p
2rBt

��
= 1 with r =

�2

2
(1.20)

The relation is valid for each value of t and also when t is a stochastic time then

EQ
�
exp

�
�rTH +

p
2rBTH

��
= 1, and by using 1.19 we can write:

EQ
�
exp

�
�
�
r + �

p
2r
�
TH
��
=

�
S0
H

�p2r
�

When � = 0 we immediately verify that

EQ (exp (�rTH)) =
�
S0
H

�p2r
� (1.21)

but because � 6= 0 the Girsanov Theorem can be used to change the probability measure,

toggle the drift to zero and compute the optimal stopping time expectation as we need.

At this end we formulate a Radon-Nykodin derivative to change the probability measure:dQ
0

dQ j�t =

exp
�
��2

2 t� �Bt
�

EQ (exp (�rTH)) = EQ
0 �
exp

�
�rTH + �2

2 Th + �BTH

��
=

= EQ
0 �
exp

�
�
�
r + �2

2

�
TH

�� �
S0
H

���
�

By 1.21 we obtain expected value of the optimal stopping time in the perpetual call problem:

EQ (exp (�rTH)) =
�
S0
H

��
where � =

��+
p
2r + �2

�
(1.22)

The perpetual call option problem is now given by:
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C (S0) = sup
H
(H �K)

�
S0
H

��
(1.23)

The �rst order conditions applied to 1.23 allow us to deduce the optimal exercise level H

as:H = K
�

� � 1

In conclusion the call price is:

C (S0;K; r; �; �) = S0
�
S0
H

���1 �K �S0H �� where � = r � � � �2

2

�
,

� =
��+

p
2r + �2

�
and � =

r � � � �2

2

�
as previously written.

In the Perpetual Put Option problem:

P (S0;K; r; �; �) = sup
L
(K � L)EQ (�rTL) (1.24)

one obtains the following relations:

P (S0;K; r; �; �) = K
�
S0
L

��P�S0 �S0L ��P�1 where L = �P

�P�1K and �P = ���
p
2r+�2

� .

1.4.2 Monte Carlo American GARCH option price approximations

In this paragraph we describe the approximations used in order to compute the

American GARCH price in our empirical work.

Let consider the asset return dynamics under the risk-neutral measure and when

the innovation are conditionally Gaussian, i.e.,

ln
�

St
St�1

�
= �� + �tzt ztj�t�1

Q� N (0; 1)

In a GARCH framework we can write:

St = S0 exp

 
t�� +

tX
i=1

�i (�
�) zi

!
where �i is a �i�1-measurable function depen-

dent on the GARCH model chosen, and �� is the GARCH risk neutral parameters set.
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The problem of a Perpetual Put under a GARCH variance process remain un-

changed as in eq 1.24.

The solution is not simple to compute but we can expect that changing volatility

involves a non-horizontal optimal barrier to exercise the perpetual option.

So we propose some approximations to obtain the theoretical GARCH option price.

Let assume that it exists a constant horizontal barrier (L) which delimits the early

exercise area from the "waiting to exercise" area, then the American Put option problem

can be rewritten as:

P (S0;K; T ) = sup
t
EQ

�
�te

�rtj�0
�
= EQ0 (e

�r��� jA) + E
Q
0

�
e�rT �T jA

�
where � = inf ft � 0;St � Lg, �t = (K � St)+, A is the set of the price trajectories

which cross the horizontal barrier.

Note that in term of SPD approach the American Put price can be written as:

P (S0;K; T ) = �
�EP0 (M0;� jA) + EP0

�
�TM0;T jA

�
(1.25)

having used �� = �� = (K � S� )+ = (K � L).

In order to obtain an horizontal barrier in the case of GARCH perpetual derivatives

we �rst consider the Gaussian optimal barrier to exercise the option as computed in the

previous paragraph.

This �rst approximation is derived by substituting the stationary variance level

h�(see 1.6, 1.7 and 1.8) in place of the variance �2 in the Gaussian optimal exercise level L.

This is probably a rude approximation but there are some reasons that invite us

to start by this one:



31

1) This approximation will be used only to compute the barrier while the

trajectories simulated with the Monte Carlo method are computed in the original GARCH

framework.

2) The stationary variance level used in place of the conditional variance could

be reasonable when we work with out-of-the-money derivatives and when they have a long

maturity as it is in this case. In such cases the probability of an early exercise is very low in

the �rst period of the life of the derivative, just when it is more probable that the Gaussian

barrier is inaccurate. After that we could expect that the conditional variance tends to be

more near the asymptotic variance and the approximation could results not too rude.

First approximation: H1 = K
�Gauss

�Gauss � 1
where �Gauss =

��� �
p
2r + h�p
h�

and � =
r � � � h�

2p
h�

The second approximation presented, in order to derive an horizontal barrier more accurate

that the previous, is obtained by a parameter added to the barrier in this form:

H2 = K

 �
�Gauss

��
�Gauss

�
� 1

+ �

!
(1.26)

where � is a real number such that the total value of the derivatives under calibration are

maximized.

The Nikkei Put Warrants prices are computed as the sum of the corresponding

European option price conditional on the non-optimal early exercise cases, plus the early

exercise value for the remaining cases. The barrier has the end to estimate this early exercise

premium.

In conclusion the American option price is computed following the next procedure:

Let t = 0 be the current time, S0 be the current asset price, �0 and z0 the initial
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values for the variance and the shock under the risk-neutral measure (which coincide to the

values under the historical measure as explained previously)

� Asset price paths simulation under the pricing measure Q from current time 0 to Tmax

(the max time to maturity of the options in the cross section).

� Start for l = 1

� Start for t = 1

� draw the innovation zt from the historical distribution hypothesized (for

example Gaussian distribution or FHS distribution)

� update the conditional variance �2t = f (�
�; �t�1; zt�1) according to the

GARCH model chosen, remember that the value of z0 and �0 are given.

� repeat for next t until t = Tmax.

� The l-th simulated price path at time t where 0 � t � Tmax is S(l)t =

S0 exp

�
t�� +

tP
i=1
�izi

�
� repeat the procedure for the next path l until l = 10:000.

� A Monte Carlo American Call price approximation can be estimated as P (K;T ) =

1
10000

10000P
l=1

exp (�r� (l))
��
K � S(l)�(l)

�+�
where � (l) =

8>><>>:
T if TH does not exist

TH otherwise

,

TH = min
n
t � 0;S(l)t � H

o
and H is the optimal horizontal barrier to exercise.

If we de�ne A as the set of the trajectories which cross the exercise barrier, the

American Put price can be rewritten as:

P (K;T ) = #(A)
10000

�
1

#(A)

P
l2A

�
exp (�r� (l))

�
K � S(l)�(l)

�+��
+
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+10000�#(A)
10000

 
exp(�rT )
10000�#(A)

P
l =2A

��
K � S(l)T

�+�!
or equivalently

P (K;T ) = p(K;T ) + eep (K;T ) (1.27)

where p(K;T ) = exp(�rT )
10000

P
l

��
S
(l)
T �K

�+�
is the corresponding European put

price while eep represents the early exercise premium and is de�ned by:

eep (K;T ) = #(A)
10000

�
1

#(A)

P
l2A

�
exp (�r� (l))

�
K � S(l)�(l)

�+�
+

� exp(�rT )
#(A)

P
l2A

��
K � S(l)T

�+��
.

As in the BAEM framework to reduce the variance of the Monte Carlo estimates we

use the empirical martingale simulation method proposed by Duan and Simonato (1998).

This method rescales the simulated price path S(l)t such that the expected value of the

underlying asset is equal to the forward price under the risk neutral measure, so done the

simulated prices will have this theoretical asset pricing property reducing the estimation

error.

1.4.3 American GARCH Option price by Duan and Simonato�s Markov

Chain approximation

The Duan and Simonato�s GARCH approximation is based on the Markovian

property of the GARCH process. The GARCH models used in this work and in general the

GARCH(1,1) models can be represented as a bivariate Markovian system (i.e., the state of

the process is uniquely represented by (St; �2t+1), so the process is Markovian of the �rst

order). This feature allows to approximate GARCH models by a discrete Markov chain.
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Now we present the Markov chain approximation of a GARCH (1,1) process (Duan,

Simonato 2001) adapted to the models of Section I, included when the process is driven by

FHS innovations.

Let consider an underlying asset log-return modelled by the usual equation 1.1 or

equivalently let consider lnSt = lnSt�1+�+�tzt where St denote the asset closing price at

day t. Let Q be some probability measure (Objective or risk-neutral or other) and �t be the

variance modelled by 1.3, 1.4 or 1.5. Let zt a standardized random variable independently

distributed with respect to the information up to time t� 1, i.e., ztj�t�1
Q� (0; 1).

As previously stated when Q is the pricing measure (or risk neutral measure) �

is such that E
�
St=St�1j�t�1

�
= er��, in particular in the Gaussian innovation cases, when

the zt is distributed normally, by Ito�s lemma we can conclude that � = r� �� 1
2�

2
t , where

as usually r is the risk-free rate and � is the dividend-yield, or in the FHS innovation cases

� = r � � � �t 3.

Following Duan and Simonato�s suggestions, we form the partition of the states

by using the log of adjusted prices and log variances for the two state variables considered.

The adjusted prices are used to reduce the dimension of the transition matrix by a price

conversion. The log values used are justi�ed mainly for its better convergence behavior.

The adjusted price is computed by S�t = e�e�tSt where e� = r � � � h�=2 and h�

is the stationary variance, the pre-adjusted price can be easily recover later. The uncondi-

tional variance can be computed in the N-G, GJR-G and in the E-G with 1.6, 1.7 and 1.8

respectively.

Note that in term of log-adjusted prices the price dynamics becomes: ln
�
S�t
S�t�1

�
=

3See 1.3.3
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ln
�

St
St�1

�
� e� = 1

2

�
h� � �2t

�
+ �tzt.

The unconditional expectation of the continuously compounded return on the ad-

justed price is zero, since EQ
�
�2t
�
= h� and E (�tzt) = E

�
�tE

�
ztj�t�1

��
= 0.

Let pt and qt be the log of the adjusted price and the log of the variance respectively

(i.e., pt = ln (S�t ) and qt = ln
�
�2t
�
) then the models can be rewritten with:

pt = pt�1 +
1

2
(h� � eqt) +

p
eqtzt (1.28)

qt+1 = ln
�
! + �eqt + �eqt (zt � 
)2

�
(1.29)

in the N-G case

qt+1 = ln
�
! + �eqt + �eqtz2t � 
eqtz2t It

�
(1.30)

in the GJR-G case or

qt+1 = ! + �qt + � (jztj � 
zt) (1.31)

in the E-G case.

In order to �nd a states partition to approximate the GARCH process to the

option pricing end, Duan and Simonato propose:

� Log price partition:[p0�Ip; p0+Ip], where Ip is determined by studying the conditional

behavior of the logarithm of the adjusted asset price over the life of the option contract

(i.e., Ip = �p (m)
qPT

t=1E
Q
�
�2t j�0

�
). Let consider the log price at the end of the

option life: pT = p0 + 1
2

PT
t=1 (h

� � eqt) +
PT
t=1

p
eqtzt, it follows that: EQ (pT j�0) =
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p0 and V arQ (pT j�0) = V arQ
�PT

t=1 �tztj�0
�
=
PT
t=1E

Q
�
�2t j�0

�
. An analytical

formula of the conditional variance of the log price can be derived for many GARCH

processes.

� Log variance partition: To form the partition we would study the conditional behavior

of the logarithm of the variance qT = ln
�
�2T
�
. From the GARCH process character-

istics we know that there are two notable values of the variance: the initial variance,

which the process starts from, and the unconditional variance, h� = EQ
�
�2t
�
, to

whom the process asymptotically is attracted. Both these values have to be con-

sidered in the variance partition, but the second has increasing importance in de-

pendence with the maturity of the option. The partition center can be computed

as: q�1 = ln
�
��min(�;T )

� �21 +
min(t;T )

� h�
�
. The value of � is a temporal index used

to form the weights. As it increases as the relative weight of the unconditional

variance respect to the initial variance increases. Then in the study of long-term

derivatives � has to be small. Anyway it is important to ensure that q1 belongs

to the partition. The log variance partition is [q�1 � Iq; q�1 + Iq]: In order to com-

pute the width Iq of the partition it should be enough to study V arQ (qT j�0), but

in N-G and GJR-G it could result analytically complex. We know by the Jensen

inequality that V arQ (qT j�0) � ln
�
V arQ

�
�2T j�0

��
so Duan proposes to use a width:

Iq = ln
�
eq1 + �q (n)

q
V arQ

�
�2T j�0

��
� q1.

Only in the E-G case we have to note that the log variance partition can be constructed

directly by the E-GARCH equation, because it expresses the variance in logarithmic

terms: [q�1 � Iq; q�1 + Iq] where q�1 =
��min(�;T )

� ln
�
�21
�
+ min(t;T )

� ln (h)� and Iq =



37

�q (n)
qPT

t=1 V ar
Q (qtj�0)� q1:

Note that V arQ
�
qtj�t�2

�
= EQ

��
qt � EQ

�
qtj�t�2

��2 j�t�2� =
= �2EQ

�
jzt�1j � 
zt�1 �

p
2=�

�2
= �2

�
1 + 
2 � 2

�

�
.

In conclusion in the E-G the sum of the conditional variance up to maturity is

given by:
TX
t=1

V arQ (qtj�0) = T�2
�
1 + 
2 � 2

�

�
. (1.32)

Duan and Simonato showed that �p (m)
m!1! 1 and �p(m)

m
m!1! 0 are su¢ cient

partition conditions for the approximating Markov chain to converge to its target GARCH

process.

The logarithmic adjusted price partition and the logarithmic variance partition

are equally divided in m and n odd parts respectively in order to determine the state of the

bivariate process:

p (i) = p0 +
2i� 1�m
m� 1 Ip (1.33)

and the corresponding cells are

C (i) = [c (i) ; c (i+ 1)) (1.34)

for i = 1; :::;m, where c (1) = �1,

c (i) =
p (i� 1) + p (i)

2
(1.35)

for i = 2; :::;m and c (m+ 1) = +1
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q (j) = q�1 +
2j�1�n
n�1 Iq and the corresponding cells are D (j) = [d (j) ; d (j + 1)) for

j = 1; :::; n, where d (1) = �1, d (j) = q(j�1)+q(j)
2 for j = 2; :::; n and d (n+ 1) = +1.

The Markov transition probability from state (i; j) at time t to state (k; l) at time

t+ 1 is de�ned as

� (i; j; k; l) = PrP fpt+1 2 C (k) ; qt+2 2 D (l) jpt = p (i) ; qt+1 = q (j)g

for t = 0; :::; T � 1

It is typical in the GARCH(1,1) models that the variance at time t+ 2 is a deter-

ministic function of the information set at time t + 1. In particular in the models investi-

gated we can write the variance as function of its lagged value, and two lagged prices, i.e.,

:qt+2 = �(qt+1; pt+1; pt)

First we recover zt+1 from the log price equation 1.28 written one time forward:

zt+1 =
pt+1�pt+ 1

2
(eqt+1�h�)p

eqt+1
and substituting in the log variance equation we obtain:

qt+2 = �N�G (qt+1; pt+1; pt) = ln
�
! + �eqt+1 + �

�
pt+1 � pt + 1

2 (e
qt+1 � h�)� 


p
eqt+1

�2�
(N-G)

qt+2 = �GJR�G (qt+1; pt+1; pt) = ln
�
! + �eqt+1 + (�+ 
It)

�
pt+1 � pt + 1

2 (e
qt+1 � h�)

�2�
(GJR-G)

qt+2 = �
E�G (qt+1; pt+1; pt) = !+ �eqt+1 +�

����pt+1�pt+ 1
2
(eqt+1�h�)p

eqt+1

���� 
 pt+1�pt+ 1
2
(eqt+1�h�)p

eqt+1

�
(E-G)

This implies a �rst source of sparsity in the Markovian transition matrix: for each

combination of (i; j; k) it exits only an index l where the transition probability can be non

zero. Thus we can rewrite the Markov transition probability as:
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� (i; j; k; l) =

8>>>>>><>>>>>>:

PrQfpt+1 2 C (k) jpt = p (i) ; qt+1 = q (j)g

if � (q (j) ; p (k) ; p (i)) 2 D (l)

0, otherwise

The conditional probability can be computed with:

� (i; j; k; l) = PrQ fpt+1 2 C (k) jpt = p (i) ; qt+1 = q (j)g =

= PrQ f(c (k) � pt+1 < c (k + 1)) jpt = p (i) ; qt+1 = q (j)g =

= PrQ
n�
c (k) � p (i) + 1

2

�
h� � eq(j)

�
+
p
eq(j)zt+1 < c (k + 1)

�o
.

� (i; j; k; l) =
Q

Pr

(
c (k)� p (i) + 1

2

�
eq(j) � h�

�
p
eq(j)

� zt+1 <
c (k + 1)� p (i) + 1

2

�
eq(j) � h�

�
p
eq(j)

)
(1.36)

1.4.4 American GARCH option price via Markov Chain approximation

The American GARCH option price problem can be formulated via dynamic pro-

gramming. Let f (X;K) be the payo¤function of a European-style option. Let V (St; ht+1; t)

be the value of an American option at time t and let the underlying be determined by a

bivariate Markovian system of order one by the state variables St and ht, then the American

option price can be expressed as a dynamic programming formulation:

V (St; ht+1; t) = max
�
f (St;K) ; e

�rEQ (V (St+1; ht+2; t+ 1) j�t)
	

(1.37)

where V (ST ; hT+1; T ) = f (ST ;K).

From the fact that the GARCH model is a time-homogenous Markov Chain the

problem can be restate by a Markov chain structure.
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First we de�ne � the Markov transition probability matrix for the bivariate system

with dimensions mn�mn where m and n are the total number of the states of the log price

and of the log variance respectively.

The structure of the transition matrix proposed by Duan and Simonato is the following:

where i and j are the characteristic indexes of the provenance state while l and k represent

the achievable state.

Let �S be the vector of the possible asset prices corresponding to the structure of the

transition matrix (i.e., a mn� 1 vector �S = [�s (1) ; �s (2) ; :::; �s (m) ; :::; �s (1) ; �s (2) ; :::; �s (m)]).

Note that S contains m discretized price values repeated for n times (as many as the

variance states number). Although the repetition of the asset price could appear in some

sense redundant, note that the transition matrix is bi-dimensional even if the system is

bivariate.

The option pricing problem can be rewritten by the Markov chain structure as:

�V (t) = max[g
�
�S;K

�
; e�r��V (t+ 1)] with �V (T ) = g

�
�S;K

�
where the max operator works

element-by-element and the g(�; �) function represents the option payo¤. In American or

European Put option case g
�
�S;K

�
= max

��
K1� �S

�
;0
	
where 1 and 0 are mn�1 vectors

of ones and zeros respectively.

Now the problem has to be rewritten to allow us to work with the log adjusted
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price in place of the simpler price.

If the transition probability matrix � is computed with respect to the log price

states, and in the payo¤ function is added a correction term to allow us to work with log

prices but to recover the correct asset price, (i.e., g
�
�P ;K

�
= maxf[K1�e

�
r�h�

2

�
t
exp

�
�P
�
];0g

then the option value can computed by:

�V (t) = max[g
�
�P ;K

�
; e�r��V (t+ 1)] with �V (T ) = g

�
�P ;K

�
The last step is to computed the approximated option price knowing that by

solving the maximization problem we obtain an mn � 1 dimensional vector �V (0). The

option prices computed are function of the current state situated at the center of the price

partition. In order to obtain the correct option price the formula is:

C (S0; h1) =
d (j + 1)� ln (h1)
d (j + 1)� d (j) v (j) +

ln (h1)� d (j)
d (j + 1)� d (j)v (j + 1)

where j and j + 1 locates two adjacent discretized logarithmic volatility values (i.e., d (j)

and d (j + 1)) such that d (j) � ln (h1) � d (j + 1).

1.4.5 Parametric and non parametric Innovations in the transition matrix

The probability 1.36 can be computed when it is chosen a theoretical distribution

of under Q (Gaussian or non-Gaussian), or if it is used other distributional speci�cation,

such as the Filtering Historical Simulation (FHS), to infer the transition probability.

In the Gaussian-case one obtains:

� (i; j; k; l) = N

�
c(k+1)�p(i)+ 1

2(e
q(j)�h�)p

eq(j)

�
�N

�
c(k)�p(i)+ 1

2(e
q(j)�h�)p

eq(j)

�
where N (�) is the cumulative distribution function of a standard normal random variable.

In the Filtering Historical Simulation (FHS) approach, by letting ẑ�T+1; :::; ẑ0 to

be the �ltered historical innovation series estimated to time t = 0 then the transition
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probability can be estimated by:

� (i; j; k; l) = 1
T

�
#

�bztjbzt < c(k+1)�p(i)+ 1
2(e

q(j)�h�)p
eq(j)

�
+

�#
�bztjbzt � c(k)�p(i)+ 1

2(e
q(j)�h�)p

eq(j)

��
where #(A) indicates the cardinality of the set A.

1.4.6 Appendix: Computation of EQ (�2t j�0) and V arQ (�2T j�0) in the GARCH

models:

The GARCH Markov Chain approximation of Duan and Simonato (1999) uses a

�rst state variable partition for the log price and a second one for the log variance. In

order to construct this two �xed partitions it is necessary to compute EQ
�
�2t j�0

�
and

V arQ
�
�2T j�0

�
, in particular we have to be able to compute: Ip = �p (m)

vuut TX
t=1

EQ
�
�2t j�0

�
and Iq = ln

�
eq1 + �q (n)

q
V ar

�
�2T j�0

��
� q1 which indicate the widths of the partitions

form their centre.

0p
0 pp I+0 pp I−

*
1q

*
1 qq I−

*
1 qq I+

Markovian states representation of the bi-variate system

We present the procedure suggested by Duan (1995) to determine the conditional

expectation of the variance, and the conditional variance of the variance.

Let consider the volatility dynamics of the GARCH models as described in the

equations 1.3, 1.4 or 1.5 each equation shows the relation between future volatility and its
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lagged value and one lagged shock.

We can rewrite these equations to give the variance at time t as function of all and

only the lagged shocks up to time 0, given an initial value of the variance(�1 2 �0):

N-G:�2t = !

0@1 + t�2X
i=1

iY
j=1

�
� + �

�
z2t�j � 


�2�1A+ �21 t�1Y
j=1

�
� + �

�
z2t�j � 


�2�

GJR-G:�2t = !

0@1 + t�2X
i=1

iY
j=1

�
� + �z2t�j + 
z

2
t�jIt�j

�1A+ �21 t�1Y
j=1

�
� + �z2t�j + 
z

2
t�jIt�j

�
E-G:ln

�
�2t
�
= !

 
1 +

t�2X
i=1

�i

!
+ �t ln

�
�21
�
+ �

t�1X
i=1

�i�1 (jzt�ij � 
zt�i)

Or equivalently:

N-G: �2t = !

 
1 +

t�2X
i=1

Gi

!
+ �21Gt�1 where Gi =

iY
j=1

�
� + � (zt�j � 
)2

�
GJR-G:�2t = !

 
1 +

t�2X
i=1

Hi

!
+ �21Ht�1 where Hi =

iY
j=1

�
� + �z2t�j + 
z

2
t�jIt�j

�
E-G: ln

�
�2t
�
= !

�
�t�1�1
��1

�
+ �t ln

�
�21
�
+ �

t�1X
i=1

Li where Li = �i�1 (jzt�ij � 
zt�i)

Before we compute the conditional expected value of the variance at time t, we

compute the conditional expected value of Gi,Hi and Li and we consider that they are

independent on zt�i+1:

EQ (Gij�0) = EQ
�
Gi�1

�
� + � (zt�i � 
)2

�
j�0
�
=

= EQ (Gi�1j�0)EQ
��
� + � (zt�i � 
)2

�
j�0
�
= (� + �E (zt � 
)2)i = (vG)i

EQ (Hij�0) = EQ
�
Hi�1

�
� + �z2t�i + 
z

2
t�iIt�1

�
j�0
�
=

= EQ (Hi�1j�0)EQ
�
� + �E

�
z2t�i

�
+ 
E

�
z2t�iIt�i

��
=

= (� + �E
�
z2t
�
+ 
E

�
z2t It

�
)i = (vH)

i

EQ (Lij�0) = EQ
�
�i�1 (jzt�ij � 
zt�i) j�0

�
=

= �i�1
�
EQ (jztj)� 
EQ (zt)

�
Note that in the Gaussian innovation case:
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vG = � + �
�
1 + 
2

�
, vH = � + �+ 
=2 and

�
EQ (jztj)� 
EQ (zt)

�
= 2=

p
2�.

By these calculations we can write the conditional expected value of the variance,

EQ
�
�2t j�0

�
, in each model:

N-G :EQ
�
�2t j�0

�
= !

�
1�vt�1G
1�vG

�
+ �21v

t�1
G

GJR-G :EQ
�
�2t j�0

�
= !

�
1�vt�1H
1�vH

�
+ �21v

t�1
H

In the E-G case we �nd immediately that:

EQ
�
ln
�
�2t j�0

��
=
�
! + �

�
EQjztj � 
EQ(zt)

�� �1��t�1
1��

�
+ �t ln

�
�21
�

But we need EQ
�
�2t j�0

�
to �nd an appropriate partition width, moreover by the

Jensen inequality we know that:E
�
ln�2t j�0

�
� lnE

�
�2t j�0

�
In the E-GARCH case in order to compute E

�
�2t j�0

�
it is enough to note that:

�2t = exp (!)
�
�2t�1

��
exp (� (jzt�1j � 
zt�1)) (1.38)

and this implies that

�2t = [exp (!)]

t�2P
i=0

�i �
�21
��t t�1Q

i=1
fexp [� (jzt�ij � 
zt�i)]g�

i�1

�2t = exp
�
! 1��

t�1

1��

� �
�21
��t
exp

t�1P
i=1

�
��i�1 (jzt�ij � 
zt�i)

	
E
�
�2t j�0

�
= exp

�
! 1��

t�1

1��

� �
�21
��t t�1Q

i=1
E
�
exp

�
��i�1 (jzt�ij � 
zt�i)

	
j�0
�

The expected value could be computed as function of cumulative normal distri-

bution. However this procedure can be used but it could results computational burden

considering that it require to call the cumulative normal distribution a number of times

equal to the length of the sample and it computes only the width of the price state par-

tition. While by applying the Jensen inequality to 1.38 we can be satis�ed by using the

following limitation in which the cumulative distribution is computed only twice:
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E
�
�2t (�) j�0

�
� E

�
�2t (1) j�0

�
with 0 < � < 1

For � = 1 from 1.38 we get

�2t = (exp (!))
t�1 �21

t�1Q
i=1
exp (� (jzt�1j � 
zt�1))

E
�
�2t (1) j�0

�
= �21

np
2� exp

�
! + a2

2

��
exp

�
b2�a2
2

�
(N (b)� 1)� (N (a)� 1)

�ot�1
where a = � (
 � 1) , b = � (
 + 1) andN (x) is the cumulative normal distribution

(i.e., N(x) = 1p
2�

R x
�1 exp

�
�x2

2

�
dx.)

However it is the case to anticipate that � represents in the models the coe¢ cient

of the variance persistence from a day to next day, and its empirical value is close to 1.

In order to determine the width of the price state partition (i.e., Ip)

It is now useful to compute
TX
i=1

E
�
�2i j�0

�
N-G:

TX
i=1

E
�
�2i j�0

�
= !

�
T

1� vG
� 1� vTG
(1� vG)2

�
+ �21

1� vTG
1� vG

(1.39)

GJR-G:

TX
i=1

E
�
�2i j�0

�
= !

�
T

1� vH
� 1� vTH
(1� vH)2

�
+ �21

1� vTH
1� vH

(1.40)

E-G:

TX
i=1

E
�
�2i (�) j�0

�
�

TX
i=1

E
�
�2i (1) j�0

�
= �21

1� vTL
1� vL

(1.41)

with vL =
p
2� exp

�
! + a2

2

��
exp

�
b2�a2
2

�
(N (b)� 1)� (N (a)� 1)

�
and a; b and

N (�) as previously stated.
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The computation of V arQ
�
�2T j�0

�
is based on the general formula: V arQ

�
�2T j�0

�
=

EQ
�
�4T j�0

�
�
�
EQ

�
�2T j�0

��2
Therefore we have to compute E

�
�4T j�0

�
in each model, but �rst note that:

in N-G: E
�
G2kj�0

�
= E

�
G2k�1j�0

�
E

��
� + � (zt�k � 
)2

�2
j�0
�
=

= E
�
G2k�1j�0

�
E
�
�2 + 2��

�
1 + 
2

�
+ �2

�
3 + 6
2 + 
4

��
=

=
�
�2 + 2��

�
1 + 
2

�
+ �2

�
3 + 6
2 + 
4

��k
= ukG where uG = �

2+2��
�
1 + 
2

�
+

�2
�
3 + 6
2 + 
4

�
and for k > j E (GkGj j�0) = E

24G2j kY
i=j

�
� + � (zt�2k+1 + 
)

2
�
j�0

35 =
= E

�
G2j j�0

�
E

0@ kY
i=j

�
� + � (zt�2k+1 + 
)

2
�
j�0

1A = uiG
�
viG
�

We obtain then: E
h�
�2t
�2 j�0i = !2E

8<:
 
t�2X
i=0

Gi

!2�������0
9=;+

+2!�21

"
t�2X
i=0

E (Gt�1Gij�0)
#
+
�
�21
�2
E
�
G2t�1j�0

�
= :::

= �20

"
ut�1G � 1
uG � 1

+ 2
vG

uG � vG

 
ut�1G � 1
uG � 1

� v
t�1
G � 1
vG � 1

!#
+

+2!�21vG
ut�1G �vt�1G
uG�vG + �41u

t�1
G

similarly in the GJR-G one obtains:

E
�
H2
k j�0

�
= ukH where uH =

�
�2 + 3�2 + 3

2

2 + 2�� + �
 + 3�


�
and for k > j E (HkHj j�0) = u

j
H

�
vk�jH

�
so E

h�
�2t
�2 j�0i = �20

"
ut�1H � 1
uH � 1

+ 2
vH

uH � vH

 
ut�1H � 1
uH � 1

� v
t�1
H � 1
vH � 1

!#
+

+2!�21vH
ut�1H �vt�1H
uH�vH + �41u

t�1
H

In the E-G case it is simpler to form the log variance partition than in the other GARCH

models presented because the variance appears in the logarithmic form. The formula to
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compute the log variance partition was presented in 1.32

1.4.7 Summarizing scheme Estimation-Calibration:

Step 1: Parameters Estimation under historical measure P

Percentage daily
returns

of the

underlying asset
from 0 to T

Initial parameters

The initial variance is fixed to
the unconditional variance of
the model

the initial value of  is
computed by

PML
Estimation

Robust
standard
errors

Parameters
estimated

and
errors

The estimated final values
of and at time T
will be used as initial
values for the calibration
procedure

Model:

is a measurable function w.r.t  dependent
on the model chosen: NGARCH, GJR­GARCH,
EGARCH ,etc.

Nominal assumption
for PML:

100ty ×
1

1 1 1ln t
t t t

t

Sy z
S

µ σ+
+ + += = + 1 (0,1)

P

t tz φ+ ≈

tσ 1tφ −

1 (0,1)
P

t tz Nφ+ ≈

*
0 hσ =

0z

( ) 0
0 0

0

, yz µ
µ σ

σ
−

=

T̂σ T̂z

µ̂

( )ˆˆ ˆ ˆ ˆ, , ,ρ ω α β γ=

Estimation procedure scheme
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Step 2: GARCH Calibration (P ) Q)

Initial values of            are the final values
estimated with the PML previously, used
to simulate the risk neutral GARCH
dynamics during the Calibration phase

Models to calibrate
In Gaussian innovation case

In FHS innovation case

      is a measurable function w.r.t
dependent on the model chosen:
NGARCH, GJR­GARCH, EGARCH ,etc.

Cross section of closing prices of an
enough number of options on the same
underlying asset at time T (excluding
illiquid options to avoid microstructure
effects misguide the results)
Cross section series:

Initial parameter values for the numerical
minimization procedure are the parameters
estimated previously,            but the drift μ
(continuously compounded) is set to r ­ δ
where r and δ are the market risk free rate
and the dividend yield on daily base
respectively.

Minimization problem
The calibration is obtained minimizing the mean
squared error between theoretical option prices
and the market prices

Risk neutral parameters resulting by the
calibration:

Average absolute pricing error over the mean price
used as measure of the quality of the calibration:

* *
0 0,zσ

* *
0 0ˆ ˆ,T Tz zσ σ= =

( ) ( )( )2* : arg min , ; ,theor mkt
i i i i

i
P K T P K T

ρ
ρ ρ= −∑

( ), , ,mkt
i i i iK T P K T

ˆρ ρ=

( )* * * * *, , ,ρ ω α β γ=

( ) ( )

( )

*, ; ,
:

,

theor mkt
i i i i

i
mkt

i i
i

P K T P K T
ape

P K T

ρ −
=

∑
∑2

1 1 1 1
1
2t t t ty r zδ σ σ+ + + += − − +

1 1 1t t ty r zδ ζ σ+ + += − − +

tσ 1tφ −

Calibration procedure scheme

The theoretical price of the American option is computed by the approximations

for long-term American GARCH option presented previously.

In a �rst analysis the innovation are assumed to be Gaussian, in a second analysis

the innovation are modelled by the Filtering Historical Simulation approach (Barone-Adesi,
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Bourgin and Giannopoulos (1998))

1.5 Section II - The Component volatility dynamics GARCH

model

1.5.1 Construction of a Component volatility model: the Long-run and

Short-run components

In this section we construct a component version model for each model considered

in Section I, as in Christo¤ersen P. Jacobs and Wang (2004), following the work of Engle and

Lee (1999). The end of this extension is to model the variance dynamics in a characteristic

way.

Let us reconsider the three GARCH models analyzed in the Section I:

N-G : (1.3) �2t+1 = ! + ��
2
t + ��

2
t (zt � 
)

2

GJR-G :(1.4) �2t+1 = !+��
2
t +��

2
t z
2
t �
�2t z2t It where It =

8>><>>:
1; zt < 0

0; otherwise

.

E-G :(1.5) ln
�
�2t+1

�
= ! + � ln

�
�2t
�
+ � (jztj � 
zt)

We rewrite the models by subtracting the unconditional expected value from both

sides, we obtain the zero unconditional mean innovation form:

N-G : �2t+1 � h� = �
�
�2t � h�

�
+ �

�
�2t (zt � 
)

2 � h�
�
E (zt � 
)2

��
GJR-G : �2t+1 � h� = �

�
�2t � h�

�
+ �

�
�2t z

2
t � h�E

�
z2t
��
+ 


�
�2t z

2
t It � h�E

�
z2t It

��
E-G : ln

�
�2t+1

�
� ln (h�) = �

�
ln�2t � lnh�

�
+ � (jztj � 
zt � Ejztj+ 
E (zt))

In this form the variance process has the following scheme:
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�2t+1 = h�
constant term

+ �
speed of reversion

�
�2t � h�

long-run mean

�
+ �vt (�t; zt;�
)
zero-mean "variance-shock" term

(1.42)

(N-G and GJR-G)

ln�2t+1 = lnh�
constant term

+ �
speed of reversion

�
ln�2t � lnh�

long-run mean

�
+ �vt (zt;�
)
zero-mean "variance-shock" term

(1.43)

(E-G)

The zero-mean "variance-shock" term is the variance innovation term which has

zero unconditional mean.

In order to build the Component model version we rewrite the volatility dynamics

for each model by substituting the constant unconditional mean of the conditional variance

process with a time-varying component, denoted by �t, and by renaming the parameters

we obtain the short-run variance equation:

(N-G):�2t+1 = �
2
t+1 + �1

�
�2t � �2t

�
+ �1

�
�2t (zt � 
1)

2 � �2tE (zt � 
1)
2
�

(GJR-G):�2t+1 = �
2
t+1 + �1

�
�2t � �2t

�
+ �1

�
�2t z

2
t � �2tE

�
z2t
��
+ 
1

�
�2t z

2
t It � �2tE

�
z2t It

��
(E-G):ln

�
�2t+1

�
= ln

�
�2t
�
+ �1

�
ln�2t � ln�2t

�
+ �1 (jztj � 
1zt � Ejztj+ 
1E (zt))

The short-run variance equation can be rearranged in the zero conditional innova-

tion form, useful to compute the conditional expected value, by managing the expressions

as indicate in the following.

In the N-G model, adding and subtracting �1�2t
�
E
�
z2t
�
� 2
1E (zt)

�
and grouping

the factors of the term �2t � �2t gives:
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�2t+1 = �
2
t+1 +

�
�1 + �1E (zt � 
1)2

� �
�2t � �2t

�
+ �1�

2
t

�
z2t � E

�
z2t
�
� 2
1 (zt � E (zt))

�
(1.44)

similarly in GJR-G model, adding and subtracting: �1�2tE
�
z2t
�
+ 
1�

2
tE
�
z2t It

�
gives:

�2t+1 = �
2
t+1+

�
�1 + �1E

�
z2t
�
+ 
1E

�
z2t It

�� �
�2t � �2t

�
+�2t

�
�1
�
z2t � E

�
z2t
��
+ 
1

�
z2t It � E

�
z2t It

���
(1.45)

Or equivalently we can rewrite the short-run variance component equation for the

N-GARCH model or for the GJR-GARCH model as:

Short-run variance equation (Component N-GARCH model (cN-G) or Component

GJR-GARCH model (cGJR-G)):

�2t+1 = �
2
t+1 +

~�1
�
�2t � �2t

�
+ �1�

2
t v1;t (1.46)

where:

a) in the cN-G : ~�1 = �1+�1E (zt � 
1)2 and v1;t = z2t �E
�
z2t
�
�2
2 (zt � E (zt))

b) in the cGJR-G : ~�1 = �1 + �1E
�
z2t
�
+ 
1E

�
z2t It

�
and v1;t =

�
z2t � E

�
z2t
��
+


1
�1

�
z2t It � E

�
z2t It

��
.

The Short-run variance equation for the component E-GARCH model(cE-G) is

expressed with:

ln
�
�2t+1

�
= ln

�
�2t+1

�
+ ~�1 ln

�
�2t =�

2
t

�
+ �1v1;t (1.47)

where ~�1 = �1 and v1;t = jztj � 
1zt � Ejztj+ 
1E (zt).
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The expressions for the conditional variance can be considered as a generalization

of the variance process, and following Engle and Lee (1999), the term �2t+1denotes the long-

run component while �2t � �2t (or ln�2t � ln�2t in the cE-G) is the short-run component.

The term v1;t represents the zero conditional mean innovation term in each model.

The component GARCH model is completed by specifying the long-run volatility

component dynamics. Its functional form can be assumed as:

(cN-G and cGJR-G)

�2t+1 = ! + �2�
2
t + �2�

2
t v2;t (1.48)

(cE-G)

ln
�
�2t+1

�
= ! + �2 ln

�
�2t
�
+ �2v2;t (1.49)

where

cN-G : v2;t = z
2
t � E

�
z2t
�
� 2
2 (zt � E (zt))

cGJR-G : v2;t =
�
z2t � E

�
z2t
��
+

2
�2

�
z2t It � E

�
z2t It

��
cE-G : v2;t = jztj � 
2zt � Ejztj+ 
2E (zt)

The parameters of the models are (�; �1; �2) where is �1 = (�1; �1; 
1) the para-

meter vector related to the short-run volatility component, and �2 = (!; �2; �2; 
2) is the

parameter vector related to the long-run volatility component.

Note that the stationarity of the variance process in the Component models implies

that the unconditional variances are:
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H� = EQ
�
�2t+1

�
= ! + �2E

Q
�
�2t
�
+ �2E

Q
�
�2t v2;t

�
=

!

1� �2
(1.50)

moreover the unconditional expectation of the short-run component is:

EQ
�
�2t+1 � �2t+1

�
= ~�1E

Q
�
�2t � �2t

�
+ �1E

Q
�
�2t v1;t

�
= 0, and this implies that

also the stationary level of the variance is:

h� = EQ
�
�2t+1

�
= EQ

�
�2t+1 � �2t+1

�
+ EQ

�
�2t+1

�
= H� =

!

1� �2
(1.51)

To derive the expectation we have used that:

E
�
�2t vi;t

�
= E

�
�2tE

�
vi;tj�t�1

��
= 0 with i = 1; 2 since �2t is �t�1-measurable in

any GARCH models.

The Component Models presented have the following characteristics:

� Parsimonious models, only 7 parameters to model the component volatility dynamics.

� Three state variables: price, short-run volatility component, long-run volatility com-

ponent.

� The constant parameter ! represents the constant long-run variance component.

� Two shock parameter (�1 and �2) to model di¤erently the shock in the short-run and

in the long-run respectively.

� Two persistence parameters (e�1 and �2) to model the persistence of the short-run
component and the long-run component respectively.
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� Two asymmetric parameters (
1 and 
2) to model the asymmetric variance response

to the news in the short-run and in the long-run respectively.

One can note that Component model and its corresponding Simple version are

nested. The Component model is reduces to the Simple version when �2 and �2 approaches

to zero, or in words when the long-term variance component becomes constant.

The following scheme summarizes the three component models analyzed in the

Section II:

Price equation yt+1 = ln
St+1
St

= �+ �t+1zt+1 zt+1j�t
P� (0; 1)

Model IV, Model V

cN-G, cGJR-G

Short-run variance

component equation

�2t+1 = �
2
t+1 +

~�1
�
�2t � �2t

�
+ �1�

2
t v1;t 1:46

Long-run variance

component equation

�2t+1 = ! + �2�
2
t + �2�

2
t v2;t 1:48

Model VI

cE-G

Short-run variance

component equation

ln
�
�2t+1

�
= ln

�
�2t+1

�
+ ~�1 ln

�
�2t =�

2
t

�
+ �1v1;t 1:47

Long-run variance

component equation

ln
�
�2t+1

�
= ! + �2 ln

�
�2t
�
+ �2v2;t 1:49

(1.52)
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where

cN-G vi;t = z
2
t � E

�
z2t
�
� 2
i (zt � E (zt)) ~�1 = �1 + �1E (zt � 
1)2

cGJR-G vi;t =
�
z2t � E

�
z2t
��
+

i
�i

�
z2t It � E

�
z2t It

��
~�1 = �1 + �1E

�
z2t
�
+ 
1E

�
z2t It

�
cE-G vi;t = jztj � 
1zt � Ejztj+ 
iE (zt) ~�1 = �1

in particular in the Gaussian innovations case:

cN-G vi;t = z
2
t � 1� 2
1zt ~�1 = �1 + �1

�
1 + 
21

�
cGJR-G vi;t =

�
z2t � 1

�
+

1
�1

�
z2t It � 1=2

�
~�1 = �1 + �1 + 
1=2

cE-G vi;t = jztj � 
1zt �
p
2=� ~�1 = �1

and i = 1; 2.

1.5.2 Option pricing with the Component GARCH models

To price the long-term American options in the Component GARCH models of

Section II we use the same approaches of the Section I.

Also in this section the Monte Carlo American GARCH option price approximation

is e¤ectively used in the empirical study while the Duan and Simonato�s approximation is

theoretical studied and adapted to operate with the Component Models.

Note on the Monte Carlo American GARCH option price approximation in the

Component Models

The Monte Carlo American GARCH option price approximations, proposed in

the Section I, remain unchanged in the option pricing procedure applied to the Component

Models of the Section II. The trajectories are simulated correctly as indicate in the model

dynamics equation (1.52). The optimal horizontal barriers are computed by the same

procedure as described in 1.4.2
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The Monte Carlo pricing approximation has a great advantage: it can be applied

to a wide class of models without e¤ort to adaptation. This is no true for the Duan and

Simonato�s approximation which requires some theoretical determinations as we see in the

following paragraphs.

Duan and Simonato�s American price approximation in the Component models

The construction of the Component model partitions The GARCH models used

in PART II use three state variables to explain the asset price dynamics (the stock price,

the short-run variance component and the long-run variance component) and uses only one

lagged value for each of these state variables. This allows us to represent the GARCH mod-

els of PART II as a trivariate Markovian system (i.e., the state of the process is uniquely

represented by
�
St; �

2
t+1 � �2t+1;�2t+1

�
(or

�
St; ln

�
�2t+1=�

2
t+1

�
; ln�2t+1

�
in the cE-G case).

Therefore the process is Markovian of the �rst order. Moreover conditional on the informa-

tion to time t we can write the state of the price-variance-system of each component model

to time t+ 1 as:

(cN-G,cGJR-G):

St = f1
�
St�1; �2t � �2t ;�2t ; zt

�
= St�1 exp

�
�+

��
�2t � �2t

�
+�2t

�
zt
	

�2t+1 � �2t+1 = f2
�
�2t � �2t ;�2t ; zt

�
= �1

�
�2t � �2t

�
+ �1

��
�2t � �2t

�
+�2t

�
v1;t

�2t+1 = f3
�
�2t � �2t ;�2t ; zt

�
= ! + �2�

2
t + �2

��
�2t � �2t

�
+�2t

�
v2;t

(cE-G):

St = f1
�
St�1; ln

�
�2t =�

2
t

�
; ln
�
�2t
�
; zt
�
= St�1 exp

�
�+ exp

�
ln
�
�2t =�

2
t

�
+ ln

�
�2t
��
zt
	

ln
�
�2t+1=�

2
t+1

�
= f2

�
ln
�
�2t =�

2
t

�
; zt
�
= �1 ln

�
�2t =�

2
t

�
+ �1v1;t

ln
�
�2t+1

�
= f3

�
ln
�
�2t
�
; zt
�
= ! + �2 ln

�
�2t
�
+ �2v2;t
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where vi;t are function of zt and theirs functional form are reported in (1.52) for each model.

These GARCH models can be approximated by a discrete Markov chain following

the Duan and Simonato�s approach, but it needs some adjustments, and to simplify the

exposition we consider only the cN-G and the cGJR-G cases, excluding the cE-G case.

In order to build the state partitions to approximate the GARCH process we

study the conditional behavior of the logarithm of the adjusted asset price over the life of

the option contract in the trivariate Markovian system
�
St; �

2
t+1 � �2t+1;�2t+1

�
.

We consider as done for the bivariate case the log price partition: [p0 � Ip; p0 + Ip] where

Ip = � (m)
qPT

t=1E
Q
�
�2t j�0

�
The sum of the conditional short-term variances at each time up to maturity (i.e.,

PT
t=1E

Q
�
�2t j�0

�
)

can be determined by the following procedure:

First we compute E
�
�2t j�0

�
. From the equation 1.48 we derive:

E
�
�2t j�t�2

�
= ! + �2�

2
t�1 and so

E
�
�2t j�0

�
= !

0@ t�2X
j=0

�j2

1A+ �t�12 �21 = !
�
1��t�12
1��2

�
+ �t�12 �21

Secondly we note that E
�
�2t � �2t j�t�2

�
= ~�1

�
�2t�1 � �2t�1

�
, this implies that:

EQ
�
�2t � �2t j�0

�
= e�t�11

�
�21 � �21

�
Now we can write the expected value of the short-run variance as:

(cN-G,cGJR-G)

EQ
�
�2t j�0

�
= EQ

�
�2t j�0

�
+ e�t�11

�
�21 � �21

�
= !

�
1� �t�12

1� �2

�
+
�
�t�12 � e�t�11

�
�21 +

e�t�11 �21.

(1.53)

In conclusion:
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TX
t=1

EQ
�
�2t j�0

�
= !

�
T

1� �2
� 1� �T2
(1� �2)2

�
+

�
1� �T2
1� �2

� 1� �
T
1

1� �1

�
�21 +

1� �T1
1� �1

�21. (1.54)

It can be interesting to compare this equation 1.54 to the equations 1.39 or 1.40

obtained for the Simple GARCH models.

Note that the stationarity level of the variance process in the Component models

are reported in 1.50, 1.51.

In order to �nd a centered value for the short-run component partition we compute

a weighted value of the initial variances di¤erence q�1 = ln
�
��min(�;T )

�

�
�21 � �21

��
.

In the Component models the short-run component partition will be [q�1 � Iq; q�1 + Iq]. Iq

can be computed (as in Duan and Simonato) by the formula:

Iq = ln
�
�q (n)

q
V arQ

�
�2T � �2T j�0

��
Similarly the long-run log variance partition is composed on the basis of the interval [Q�1 �

IQ; Q
�
1 + IQ],where Q

�
1 = ln(

��min(�;T )
� �21 +

min(�;T )
� H�),

IQ = ln(e
Q1 + �Q (l)

q
V arQ

�
�2T j�0

�
)�Q1 and Q1 = ln

�
�21
�
.

V ar
�
�2t j�t�2

�
= E

h�
�2t � E

�
�2t j�t�2

��2 j�t�2i = �22�4t�1�v2 where �v2 = V ar (v2;t) .
V ar

�
�2t � �2t j�t�2

�
= V ar

�
�1�

2
t�1v1;t�1j�t�2

�
= �21�

4
t�1�v1 where �v1 = V ar

�
v1;t
�
.

Let for simplicity �� = E
�
�4t�1j�0

�
then

V ar
�
�2t j�0

�
= �22���v2 and V ar

�
�2t � �2t j�0

�
= �21���v1 .

Appendix: computation of �� = E
�
�4t�1j�0

�
Now we show a possible path to compute

�� similarly at the procedure suggested in Duan (1995) and presented in paragraph 1.4.6.
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First we write �2t+1 as function of the lagged values of �
2
t and v2;t by using the

equation (1.48) but �rst subtracting the unconditional expected value:

�2t+1 �H� = �t2
�
�21 �H��+ �2 t�1X

i=0

�i2�
2
t�iv2;t�i (1.55)

The same type of relation is obtained for �2t+1 � �2t+1 by using the relation (1.46) :

�2t+1 � �2t+1 = e�t1 ��21 � �21�+ �1 t�1X
i=0

�i1�
2
t�iv1;t�i (1.56)

Now we substitute the relation 1.55 in 1.56 we obtain a relation which expresses

�2t+1 as function of lagged value of �
2
t and the lagged shocks v1;t; v2;t up to time 1 given the

initial variances values (�21; �
2
1)

�2t+1 = H
� + e�t1 ��21 � �21�+ �t2 ��21 �H��+Pt�1

i=0

�
�1�

i
1v1;t�i + �2�

i
2v2;t�i

�
�2t�i

The last step consists in expressing �2t from the last recursive relation as function

of all and only the lagged shocks given the initial variance values:

�2t = H
�+ e�t�11

�
�21 � �21

�
+�t�12

�
�21 �H��+Pt�2

i=0

�
�1�

i
1v1;t�i + �2�

i
2v2;t�i

�
�2t�i

Let for convenience e! = H�+e�t�11

�
�21 � �21

�
+�t�12

�
�21 �H�� then we can rewrite

the variance as:

�2t = e!+Pt�2
i=0

�
�1�

i
1v1;t�i + �2�

i
2v2;t�i

�
�2t�i or by cumulating the recursive com-

putation we write:

�2t = e! �1 +Pt�2
i=1

Qi
j=1

�
�1�

i
1v1;t�i + �2�

i
2v2;t�i

��
+�21

Qt�1
j=0

�
�1�

i
1v1;t�i + �2�

i
2v2;t�i

�
or equivalently

�2t = e!
 
1 +

t�2X
i=1

Vi

!
+ �21Vt�1 where Vi =

iY
j=1

�
�1�

i
1v1;t�i + �2�

i
2v2;t�i

�
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With this last expression we have found the same formulation of the variance as

in Duan (1995) (see paragraph 1.4.6), we can thus follow the same procedure to compute

the variance of the variance as we would.

The transition probability matrix in the component GARCH model We derive

in this paragraph the transition probabilities in the component GARCH model case. Also

here to remove the trend in the price process, or in other words to limit the transition

matrix dimension, we work with the adjusted price following the Duan and Simonato�s

construction.

The adjusted price is computed by S�t = e
�e�tSt where e� = r � � � h�=2 and h� is

the variance stationary level as computed in 1.51.

Let pt,qt and Qt be the log adjusted price, the log short-run variance component

and the log long-run variance component respectively (i.e., pt = ln (S�t ) ; qt = ln
�
�2t � �2t

�
and Qt = ln

�
�2t
�
) then the component GARCH models can be rewritten with:

pt = pt�1 +
1

2

�
h� � eqt � eQt

�
+
p
eqt + eQtzt (1.57)

in the cN-G, cGJR-G cases

qt+1 = ln
�e�1eqt + �1 �eqt + eQt� v1;t� (1.58)

Qt+1 = ln
�
! + �2e

Qt + �2
�
eqt + eQt

�
v2;t
�

(1.59)

in the cE-G case:

qt+1 = e�1qt + �1v1;t (1.60)
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Qt+1 = ! + �2Qt + �2v2;t (1.61)

Similarly to the bivariate system we assign the partition as it follows:

p (i) = p0 +
2i�1�m
m�1 Ip and the corresponding cells are C (i) = [c (i) ; c (i+ 1)) for

i = 1; :::;m, where c (1) = �1, c (i) = p(i�1)�p(i)
2 for i = 2; :::;m and c (m+ 1) = +1

q (j) = q�1 +
2j�1�n
n�1 Iq and the corresponding cells are D (j) = [d (j) ; d (j + 1)) for

j = 1; :::; n, where d (1) = �1, d (j) = q(j�1)�q(j)
2 for j = 2; :::; n and d (n+ 1) = +1.

Q (r) = Q�1 +
2r�1�o
o�1 IQ and the corresponding cells are E (r) = [e (r) ; e (r + 1))

for r = 1; :::; o, where e (1) = �1, e (r) = Q(r�1)�Q(r)
2 for r = 2; :::; o and e (o+ 1) = +1.

The Markov transition probability from state (i; j; r) at time t to state (k; l; s) at

time t+ 1 is de�ned as

� (i; j; r; k; l; s) = PrP fpt+1 2 C (k) ; qt+2 2 D (l) ; Qt+2 2 E (s) jpt = p (i) ; qt+1 = q (j) ;

Qt+1 = Q (r)
	

for t = 0; :::; T � 1

In the Component GARCH models the variance components at time t + 2 are

deterministic functions of the information set at time t + 1. In particular in the models

investigated we can write the variance components as function of their lagged values, and

two lagged prices, i.e.:

qt+2 = �(Qt+1; qt+1; pt+1; pt)

Qt+2 = �(Qt+1;qt+1; pt+1; pt)

First we recover zt+1 from the log price equation 1.57 written one time forward:

zt+1 =
pt+1�pt+ 1

2(e
qt+eQt�h�)p

eqt+1+eQt+1
and substituting in the log variance equation in each
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model we obtain:

in cN-G :

qt+2 = �
cN�G (Qt+1;qt+1; pt+1; pt) =

= lnfe�1eqt+1 + �1 �eqt+1 + eQt+1� [ (pt+1�pt+ 1
2(e

qt+1+eQt+1�h�))2

eqt+1+eQt+1
+

�1� 2
1
pt+1�pt+ 1

2(e
qt+1+eQt+1�h�)p

eqt+1+eQt+1
]g

Qt+2 = �
cN�G (Qt+1;qt+1; pt+1; pt) =

= lnf! + �2eQt+1 + �2
�
eqt+1 + eQt+1

�
[
(pt+1�pt+ 1

2(e
qt+1+eQt+1�h�))

2

eqt+1+eQt+1
+

�1� 2
2
pt+1�pt+ 1

2(e
qt+1+eQt+1�h�)p

eqt+1+eQt+1
]g

in cGJR-G

qt+2 = �
cGJR�G (Qt+1;qt+1; pt+1; pt) =

= lnfe�1eqt+1 + �1 �eqt+1 + eQt+1� f[ (pt+1�pt+ 1
2(e

qt+1+eQt+1�h�))2

eqt+1+eQt+1
� 1]+

+

1
�1
[
(pt+1�pt+ 1

2(e
qt+1+eQt+1�h�))2

eqt+1+Qt+1
It � 1=2]g

Qt+2 = �
cGJR�G (Qt+1;qt+1; pt+1; pt) =

= lnf! + �2eQt+1 + �2
�
eqt+1 + eQt+1

�
f[ (pt+1�pt+

1
2(e

qt+1+eQt+1�h�))2

eqt+1+eQt+1
� 1]+

� 
2
�2
[
(pt+1�pt+ 1

2(e
qt+1+eQt+1�h�))2

eqt+1+eQt+1
It � 1=2]g

where

It =

8>><>>:
1; pt+1 < pt

0; otherwise

.

In cE-G case

qt+2 = �
cE�G (Qt+1;qt+1; pt+1; pt) =

= e�1qt+1 + �1
"�����pt+1�pt+ 1

2(e
qt+1+eQt+1�h�)q

(eqt+1+eQt+1)

������ 
1
 
pt+1�pt+ 1

2(e
qt+1+eQt+1�h�)q

(eqt+1+eQt+1)

!#
Qt+2 = �

cE�G (Qt+1;qt+1; pt+1; pt) =

= !+�2Qt+1+�2

"�����pt+1�pt+ 1
2(e

qt+1+eQt+1�h�)q
(eqt+1+eQt+1)

������ 
2
 
pt+1�pt+ 1

2(e
qt+1+eQt+1�h�)q

(eqt+1+eQt+1)

!#
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The measurability of the both components (qt and Qt) one time before implies an

highly sparse Markovian transition matrix, because for each combination of (i; j; k; r) there

exits only an index l and an index s where the transition probability can be non zero. Thus

we can rewrite the Markov transition probability as:

� (i; j; r; k; l; s) =

8>>>>>>>>>><>>>>>>>>>>:

PrQ
�
pt+1 2 C (k) jpt = p (i) ; qt+1 = q (j) ; Qt+1 = Q (r)

�
;

if �
�
Q (r) ; q (j) ; p (k) ; p (i)

�
2 D (l)

and �
�
Q (r) ; q (j) ; p (k) ; p (i)

�
2 E (s)

0, otherwise

The conditional probability can be computed with:

PrQ
�
pt+1 2 C (k) jpt = p (i) ; qt+1 = q (j) ; Qt+1 = Q (r)

	
=

= PrQ
�
(c (k) � pt+1 < c (k + 1)) jpt = p (i) ; qt+1 = q (j) ; Qt+1 = Q (r)

	
=

= PrQ
n�
c (k) � p (i) + 1

2

�
h� � eq(j) � eQ(r)

�
+
p
eq(j) + eQ(r)zt+1 < c (k + 1)

�o
=

= PrQ

(
c(k)�p(i)+ 1

2

�
eq(j)+eQ(r)�h�

�
p
eq(j)+eQ(r)

� zt+1 <
c(k+1)�p(i)+ 1

2

�
eq(j)+eQ(r)�h�

�
p
eq(j)+eQ(r)

)

A computational improvement for the Duan and Simonato�s Markovian approx-

imation In this paragraph we present brie�y a computational improvement usable in the

Markovian approximation proposed by Duan and Simonato.

To do this we start speaking about the transition matrix features in the GARCH

approximation useful to understand the improvement.

The sparsity feature of the transition matrix, when we exploit the Markovian

property in describing a GARCH dynamics, means two things:

1. The sparsity feature can be exploit to accelerate the matrix multiplication in the

option pricing procedure, as the authors suggest in their article.
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2. The Markovian structure is a super-structure in comparison to the GARCH structure.

The fact that the GARCH model is much more than a Markovian system re�ects

not only in the depopulated transition matrix but also in the real information contained.

Let look to the transition probability formula (1.36) for the bivariate system, which

we report here for convenience:

� (i; j; k; l) = PrQ
�
c(k)�p(i)+ 1

2(e
q(j)�h�)p

eq(j)
� zt+1 <

c(k+1)�p(i)+ 1
2(e

q(j)�h�)p
eq(j)

�
The sparsity feature, as explained by the authors, is manly related to the obser-

vation that the index l can be determined if i; j; k are known. In the GARCH models this

comes from the measurability of the variance at time t+1 with respect to sigma algebra at

time t. If we know the current price, the lagged price and the current variance (i.e.,i; j; k

is known) the next-step variance is measurable (i.e., the index l is computable) This im-

plies that for each triple of indexes i; j; k can exist only one probability not null in the

matrix position indicated by the indexes i; j; k; l. The secondary sparsity is due to the typ-

ical distributional phenomenon that often events in the distribution tails have probability

numerically null, since they are rare events.

Apart from the sparsity it is important to note that what real matters in the

transition probability computation is the distance between the log price states determined

by indexes i and k, not the individual value in the state, in other word the log-returns

matter

This is equivalent to say that if we equally divide the log price state partition we

obtain equal probabilities for each j when i � k = � with �(m � 1) < � < m � 1 and

(i =2 f1;mg) ^ (k =2 f1;mg)(the operator ^ is the logical operator AND).
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Let us consider the transition probabilities for a given transaction (i; j; k; l), where

we exclude the cases when i or k take values in f1;mg, as we show 8�: (i+� =2 f1;mg)_

(k +� =2 f1;mg) it results that

� (i+�; j; k +�; l) = � (i; j; k; l) (1.62)

from the fact that :

PrQ
�
c(k+�)�p(i+�)+ 1

2(e
q(j)�h�)p

eq(j)
� zt+1 <

c(k+�+1)�p(i+�)+ 1
2(e

q(j)�h�)p
eq(j)

�
=

= PrQ
�
c(k)�p(i)+ 1

2(e
q(j)�h�)p

eq(j)
� zt+1 <

c(k+1)�p(i)+ 1
2(e

q(j)�h�)p
eq(j)

�
where we have used that:

p (i+�) = p (i) + 2 �
m�1Ip that follows from 1.33

and c (k +�) = p(k+�+1)+p(k+�)
2 = p(k+1)+p(k)

2 + 2 �
m�1Ip taken from 1.35.

Therefore c (k +�)� p (i+�) = c (k)� p (i)

In deed there are redundant probabilities in the matrix, and this can be represented

using the Duan and Simonato�s matrix by the following �gure:
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Redundance in the Duan and

Simonato�s Matrix .

The �gure represents a stylized transition matrix for a bivariate system composed

by a nine block sub-matrixes . Each sub-matrix is composed by an external frame and an

inner matrix. The external frames of each block represents the probabilities identi�ed by

the condition (i 2 f1;mg)_ (k 2 f1;mg) (_ is the logical operator OR). These probabilities

cannot considered redundant because are computed by approximating the distribution in

the tail and so by using �1 or +1 in localizing the log price state, di¤erently from what

happen for the internal states.

The diagonal lines represents the redundant probabilities, in other word along the

diagonal there are equal probabilities in each block.

To better appreciate the potential application of this redundancy in order to im-

prove the computational method let rewrite the matrix in a di¤erent way.
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We can note that Duan and Simonato�s matrix structure is primarily ordered with

respect to the variance state indexes (i.e., j; l) which identify the sub-matrix. After each

sub-matrix is internally ordered with respect to prices states indexes (i.e.,i; k)

We invert the order (i.e., ordering primarily w.r.t. i and k and each block internally

on j and l) and obtain the following result:

Markovian Transition matrix rearranged

The transition matrix rearranged has the following features:

1. The great frame containing all and only the probabilities in the tails which we know

to be non-redundant.

2. The internal block matrixes are exactly repeated in diagonal, for the same reason

given in.1.62.
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Perhaps it is important to repeat that the matrix rearrangement has only the

value to well-explain the structured matrix redundancy, all the suggestions could be ap-

plied direct to the Duan and Simonato�s structure. The main di¤erence between the two

structures is that the Duan and Simonato�s structure involves redundant elements while our

rearrangement treats with redundant sub-matrixes.

On the base of these considerations we can draw the �rst obvious computational

improvement.

We need compute only:

a) the probabilities where (i 2 f1;mg)_ (k 2 f1;mg) which form the great frame.

b) the probabilities of non-redundant block (in the example D and E)

c) the probabilities of redundant blocks only one time (in the example A,B and C)

It is clear that by rearranging the matrix to correctly compute the discounted

payo¤ we have to consider the vector of the possible asset prices corresponding to the new

structure of the transition matrix as �S = [�s (1) ; �s (1) ; :::; �s (1) ; �s (2) ; �s (2) ; :::�s (2) ; :::

:::; �s (m) ; �s (m) :::; �s (m)] where each price is repeated by n time, in place of the old

�S = [�s (1) ; �s (2) ; :::; �s (m) ; :::; �s (1) ; �s (2) ; :::; �s (m)].

Precisely we have to consider the log adjusted prices p (i) = p0 + 2i�1�m
m�1 Ip. The

partition is then:

P = [p (1) ; p (1) ; :::; p (1) ; p (2) ; p (2) ; :::; p (2) ; :::; p (m) ; p (m) :::; p (m)] where each

log adjusted price is repeated by n time.

It is at least the case to say that although we refer to a simple bivariate system

all remains valid for a general multivariate Markovian GARCH approximation.
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But this could not complete the computational improvement, because a potential

improvement can be obtained by considering the matrix multiplication procedure involved

during the option pricing procedure.

This could be possible by exploiting conjointly two features of the GARCH option

in the Markovian approximation:

1) The well-structured redundancy in the Transition matrix

2) The linear representation of the payo¤ for successive states

(i.e.,if g (i;K; t) =
�
K1n � e

�
r�h�

2

�
t
exp

�
p0 +

2i�1�m
m�1 Ip

��
then

g (i+ 1;K; t) = g (i;K; t) � exp
�

2
m�1Ip

�
+K � (1� exp

�
2

m�1Ip
�
))

We left the development of this further potential improvement to a future research.

But we terminate this part by underlying the great importance to �nd an e¢ cient and

accurate procedure to price American GARCH Options.
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Chapter 2

Empirical analysis

2.1 Study objective and methodology

In the next paragraph we present the data used in the estimation procedure and

some graphical representations of the Nikkei 225 index. The PML estimation is applied on

about �fty years of historical returns to better estimate the GARCH parameters.

Also in this Chapter there is a �rst section regarding the Simple GARCH models

and a second section related to the Component GARCH models.

About the calibration results we give a preliminary comparison of all models an-

alyzed in a random data (February 7, 2007). This analysis is performed by using both

Gaussian innovations and FHS innovations.

As test of a solution stability we continue the analysis in the following days (Feb-

ruary 8, 9 and so on).

For each analysis we show the calibration results and the pricing error with respect

strike price and maturity.
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2.2 Data: Nikkei 225 index and Nikkei Put Warrants

In the next �gures we give a graphical representation of the Nikkei 225 index

historical series from 1952 and its log-returns during about the last ten years: from January,

15 1997 to February, 7 2007.

Nikkei 225 index
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Nikkei 225 index from 1952 to 2007.

Daily log-return in percentage of Nikkei 225 index from January 15, 1997 to February 7, 2007.

The test of the models presented in this work is based on a Nikkei Put Warrants

database provided by DataStream, all prices are expressed in Japanese Yen. This derivatives
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are o¤ered in a large range of maturities and strike prices from di¤erent �nancial institutions,

as the table 2.1 shows:

Nikkei Put Warrants Time to Maturity(days)

Moneyness < 60 60­180 180­360 360­720 720­3000 >3000
Price (¥) 1,63 15,51 62,87 192,65 384,67 1826,64

<0,85 Stand.Dev. 0,01 21,58 71,02 153,82 249,80 1914,67
Observations 47 397 1064 1957 345 68

Price (¥) 89,90 291,15 542,98 915,07 1351,84 4309,13
0,85­1 Stand.Dev. 101,34 197,64 248,52 308,75 366,71 15482,10

Observations 34 272 693 1216 244 662

Price (¥) 987,76 1243,17 1679,66 2119,96 2588,68 4089,18
1­1,15 Stand.Dev. 688,60 518,73 499,36 486,92 639,80 8013,08

Observations 35 157 459 1017 161 1132

Price (¥) 3826,28 3702,88 4005,52 4281,99 4701,23 11749,90
>1,15 Stand.Dev. 546,62 521,11 899,18 1004,71 908,07 15411,19

Observations 9 33 215 697 209 567

Figure 2.1: The Table shows mean, standard deviation and number of observations for
Nikkei Put Warrants grouped by moneyness/maturity category each Wednesday from July
6, 2005 to May 16, 2007. Time to Maturity range 15-16094 days. Strike price range 9000U-
25000U. Asset price range 11603,53U-17913,21U.

The parameters calibration is avoided to be driven by microstructure e¤ects in

illiquid options by the following contrivances:

- Only Out-of-the-money derivatives with moneyness less than 0,98 are considered

in the calibration.(i.e., moneyness is computed as current asset price over option strike

price)

- Only options, whose prices are greater than U10, are included in the analysis.

To orient the analysis on the long-term options we discard the NPWs with maturity

less than 60 days. Moreover to reduce the computational burden we consider only the long-

term options with maturity less than 3000 days. The thick rectangle in the �gure 2.1
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indicates approximately the area of the Nikkei Put Warrants subjected to the analysis.

The next table summarizes an example of a cross-section e¤ectively used in a

calibration exercise on February 7, 2007.

Nikkei Put Warrants Time to Maturity(days)

Moneyness 60­180 180­360 360­720 720­3000 Tot
Price (¥) 22,93 74,52 177,25 298,40

<0,85 Stand.Dev. 9,59 59,87 157,75
Observations 5 20 37 1 63

Price (¥) 250,65 486,86 947,30 1303,52
0,85­0,98 Stand.Dev. 164,91 219,94 331,86 222,10

Observations 10 17 22 2 51
114

The Table shows mean, standard deviation and number of observations for the 114

Out-of-the-money Nikkei Put Warrants grouped by moneyness/maturity category used in the

calibration procedure for Wednesday Febraury 7, 2007. Time to Maturity 143, 235, 326, 417, 509,

601, 692, 1057, 1422 days.Strike prices range: from U10.000 to U17.000 with increments of U500.

(S0 = U17:292; 32)

Out-of-the-money Nikkei Put Warrants used in the calibration procedure for Wednesday Febraury

7, 2007. Time to Maturity 143, 235, 326, 417, 509, 601, 692, 1057, 1422 days.(S0 = U17:292; 32)
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2.3 Section I - Simple volatility dynamics models

2.3.1 GARCH Model PML Estimation results

The historical daily log-returns yt of the Nikkei 225 index we consider start from

December 31, 1957 to February 7, 2007. Model I,II,III (1.3, 1.4, 1.5) are estimated using

Pseudo Maximum Likelihood (PML) estimator. The PML estimation is repeated for the

next days. The PML estimation results for the models are reported in the following table:

Time series Nikkei 225
PML Estimation results
Range data

parameter Estimate Std.Error Estimate Std.Error Estimate Std.Error Estimate Std.Error Estimate Std.Error Estimate Std.Error
μx10^2 3,99E­02 2,62E­04 4,60E­02 1,91E­04 4,50E­02 1,23E­06   3,99E­02 5,57E­04 4,60E­02 3,77E­02 4,47E­02 2,64E­04
ωx10^4 2,46E­02 2,69E­04 2,22E­02 1,99E­04 ­4,28E­01 9,79E­06   2,46E­02 1,78E­04 2,22E­02 1,01E­01 ­4,47E­01 1,27E­02
α 1,29E­01 2,08E­03 6,03E­02 2,00E­04 2,16E­01 5,66E­04   1,29E­01 9,93E­03 6,03E­02 1,05E­01 2,20E­01 2,18E­01
β 8,26E­01 2,61E­03 8,61E­01 6,00E­04 9,71E­01 1,71E­05   8,26E­01 9,20E­03 8,61E­01 2,81E­01 9,70E­01 2,76E­03
γ 5,25E­01 1,17E­06 1,37E­01 1,02E­05 4,09E­01 5,42E­04   5,25E­01 6,47E­06 1,37E­01 3,52E­04 4,11E­01 2,15E­01
Persistence 0,9899 0,9896 0,9713 0,9899 0,9896 0,9696
Final values estimated
h0x10^4 0,6179 0,6269 0,6731 0,5611 0,5620 0,5920
z0 ­0,8907 ­0,8919 ­0,8595 ­0,0521 ­0,0601 ­0,0570
LogLKLHD 41735 41687 41698 41739 41691 41702
Range data

parameter Estimate Std.Error Estimate Std.Error Estimate Std.Error Estimate Std.Error Estimate Std.Error Estimate Std.Error
μx10^2 4,01E­02 1,01E­03 4,61E­02 2,45E­05 4,53E­02 1,87E­09   4,00E­02 1,59E­02 4,61E­02 2,36E­03 4,51E­02 7,21E­05
ωx10^4 2,46E­02 7,31E­04 2,22E­02 4,89E­05 ­4,25E­01 7,49E­04   2,47E­02 2,11E­01 2,22E­02 1,18E­02 ­4,23E­01 4,90E­05
α 1,29E­01 1,00E­02 6,03E­02 2,87E­04 2,16E­01 1,38E­05   1,29E­01 1,00E­03 6,03E­02 3,34E­04 2,15E­01 1,49E­06
β 8,26E­01 9,75E­03 8,61E­01 3,17E­04 9,72E­01 3,08E­06   8,26E­01 6,34E­04 8,61E­01 4,74E­04 9,72E­01 3,97E­06
γ 5,25E­01 1,95E­06 1,37E­01 5,21E­06 4,08E­01 1,17E­05   5,25E­01 9,56E­07 1,37E­01 2,43E­06 4,08E­01 4,26E­06
Persistence 0,9899 0,9896 0,9716 0,9899 0,9896 0,9718
Final values estimated
h0x10^4 0,5672 0,5889 0,6155 0,5175 0,5293 0,5392
z0 1,5636 1,5267 1,4943 ­0,0557 ­0,0634 ­0,0614
LogLKLHD 41742 41694 41705 41745 41697 41709

GarchGJR EGarch

NGarch GarchGJR EGarch NGarch

NGarch GarchGJR EGarch NGarch

<31­Dec­1957..07­Feb­2007> <31­Dec­1957..08­Feb­2007>

<31­Dec­1957..09­Feb­2007> <31­Dec­1957..12­Feb­2007>

GarchGJR EGarch

Daily returns from December 31, 1957 to February 7, 2007 on Nikkei 225 index are used to

estimate the three simple GARCH models using Psuedo Maximum Likelihood. Robust standard

errors are computed using numerical derivative at the optimum parameter value. h0 and z0 are the

current estimates of the variance and the shock. LogLKLHD is the logarithm of the likelihood at

the optimal parameter values. Persistence refers to the persistence of the conditional variance in

each model. Note: in the E-G case ! is not multiplied by 104:
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Almost all parameters are estimated signi�cantly di¤erent from zero at conven-

tional signi�cance level. Some problems is presented by the E-GARCH estimated up to

February 8, 2007. The log likelihood values indicate that the N-GARCH �ts better than

E-GARCH and E-GARCH better than GJR-GARCH. The models behave only in slightly

di¤erent way in estimating the current volatility (h0) and the current shock (z0). In this

terms N-GARCH and GJR-GARCH are much alike. The persistence are high in all the

models. The more persistent model seems to be the GJR-GARCH.

The estimated parameters are quite stable during the period analyzed. The ex-

pected return parameter estimate(�) is very di¤erent between the models although is more

stable across the time for each model. It is notoriously known the di¢ culty to estimate �.

We remember that the drift (�) is not used in the BAEM approach. It no needs its value

in the calibration procedure, where the drift is adjusted such that the riskfree rate is the

correct rate to use in the pricing procedure While in the historical density estimation it is

used a constant positive risk premia (following a Merton argument (1980))

It is important to underline that the E-GARCH model has a functional form very

di¤erent among the models analyzed, because it expresses the variance in logarithmic terms.

Moreover this implies a no immediate meaning of the parameter values in comparison with

the other models. In particular note that the parameter ! is typically negative in E-GARCH

while it is positive for the other models. This is a coherent result among the models because

in the E-GARCH case to do a sort of comparison it needs convert ! by the exponential

function.

The estimated current volatility (h0) and current shock (z0) reported in the table
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will be used as starting values in the calibration procedure.

To graphically appreciate the model di¤erences we show in this paragraph the

estimated scaled innovations and the historical variance dynamics based on the PML results

as interpreted by each simple GARCH model during about the last 10 years.

N-GARCH model: Estimated scaled innovation of Nikkei 225 index from January 15, 1997 to

February 7, 2007(�rst panel) and estimated conditional variances (second panel) obtained from

PML estimation.
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GJR-GARCH model: Estimated scaled innovation of Nikkei 225 index from January 15, 1997 to

February 7, 2007(�rst panel) and estimated conditional variances (second panel) obtained from

PML estimation.
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E-GARCH model: Estimated scaled innovation of Nikkei 225 index from January 15, 1997 to

February 7, 2007(�rst panel) and estimated conditional variances (second panel) obtained from

PML estimation.
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2.3.2 Calibration results

We calibrate the simple GARCH models to the market prices of the Out-of-the-

money Nikkei Put Warrants observed on Wednesday February 7, 2007. Starting values for

the risk neutral parameters �� = (!�; ��; ��; 
�) are the parameters obtained by the PML

estimation procedure and given in the table showed in the previous paragraph 2.3.1.

We report two preliminary tables to begin with the empirical analysis of the cali-

bration results starting from February 7, 2007 to February 12, 2007.

The next table is obtained by computing the American option price by the �rst

Monte Carlo American option approximation which uses the Gaussian barrier to approxi-

mate the optimal exercise barrier.

Time series NK225
Range data <31­Dec­1957..07­Feb­2007> <31­Dec­1957..08­Feb­2007> <31­Dec­1957..09­Feb­2007> <31­Dec­1957..12­Feb­2007>
Cross­Section Nikkei Put Warrants : 07­Feb­2007 08­Feb­2007 09­Feb­2007 12­Feb­2007
Gaussian Calibration results NGarch GarchGJR EGarch NGarch GarchGJR EGarch NGarch GarchGJR EGarch NGarch GarchGJR EGarch
ω*x10^4 2,79E­02 4,22E­02 ­3,76E­02 3,63E­02 6,70E­02 ­1,74E­01 3,06E­02 2,21E­02 ­1,60E+00 7,23E­03 2,20E­02 ­1,09E­01
α* 5,74E­04 6,61E­02 3,02E­07 6,58E­02 2,57E­02 3,35E­02 2,55E­05 5,90E­02 9,09E­07 7,14E­03 5,93E­02 4,38E­02
β* 9,76E­01 8,54E­01 9,96E­01 8,58E­01 9,97E­01 9,83E­01 9,74E­01 8,45E­01 8,24E­01 9,81E­01 8,46E­01 9,91E­01
γ* 5,61E­01 6,92E­02 ­1,42E+00 7,59E­01 ­1,55E­01 1,49E+00 6,10E­01 1,34E­01 5,29E­01 9,51E­01 1,35E­01 5,21E­01

Persistence 0,9765 0,9544 0,9957 0,9614 0,9455 0,9835 0,9738 0,9044 0,8238 0,9948 0,9726 0,9914

APE 7,3% 9,3% 4,2% 10,2% 7,7% 3,8% 9,5% 15,0% 11,2% 4,5% 12,7% 3,8%
RMSE 42,99 48,82 21,43 52,26 43,43 19,27 51,17 65,65 59,85 24,45 56,29 17,60
Max ABS(E) 219,24 242,22 86,63 271,45 197,61 63,50 290,26 332,76 328,04 117,52 299,95 61,54
Cross­Section Nikkei Put Warrants : 07­Feb­2007 08­Feb­2007 09­Feb­2007 12­Feb­2007
FHS Calibration
ω*x10^4 3,95E­02 3,36E­02 ­6,79E­01 4,32E­02 1,43E­02 ­6,13E­02 3,62E­02 2,22E­02 ­1,43E­01 7,40E­03 1,04E­02 ­6,85E­02
α* 7,89E­02 1,49E­01 1,64E­01 6,00E­02 1,30E­01 9,42E­07 7,55E­02 5,92E­02 4,47E­02 1,63E­02 7,50E­02 1,25E­05
β* 8,83E­01 8,67E­01 9,38E­01 8,97E­01 8,65E­01 9,93E­01 8,88E­01 8,55E­01 9,87E­01 9,73E­01 9,41E­01 9,92E­01
γ* 2,58E­01 ­7,68E­02 5,28E­01 3,66E­01 ­3,73E­03 4,27E­01 3,01E­01 1,33E­01 ­1,65E+00 6,33E­01 ­4,08E­02 5,97E­01

Persistence 0,9667 0,9777 0,9378 0,9653 0,9929 0,9930 0,9708 0,9141 0,9870 0,9954 0,9961 0,9922

APE 10,4% 7,5% 4,8% 8,3% 10,5% 5,7% 11,1% 16,1% 4,8% 6,2% 5,0% 5,5%
RMSE 55,46 45,13 26,54 49,42 47,37 30,89 55,83 64,59 20,55 28,54 25,59 28,60
Max ABS(E) 306,62 266,24 112,21 315,33 187,33 156,10 344,71 309,64 69,15 131,00 127,71 157,14

mean NGarch GarchGJR EGarch
Gaussian APE 7,9% 11,1% 5,8%

RMSE 42,72 53,55 29,54
Max ABS(E) 224,62 268,14 134,93

FHS APE 9,0% 9,8% 5,2%
RMSE 47,31 45,67 26,64
Max ABS(E) 274,41 222,73 123,65

Calibration results of Simple GARCH Models I,II,II using Gaussian innovations (Panel 1) and FHS

Innovations (Panel 2) on February 7, 2007 out of the money Nikkei Put Warrants (114), up to

February 12, 2007. American price approximation is computed by Monte Carlo simulation and
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Gaussian Barrier (H_1). Time to maturities start from: 143, 235, 326, 417, 509, 601, 692, 1057,

1422 days. The root mean squared error (RMSE) is in U, the APE measure is de�ned in .Note: in

the E-G case !� is not multiplied by 104:

The results presented in the next table obtained by using the second Monte Carlo

American option approximation as explained in paragraph 1.4.2.

Time series NK225
Range data <31­Dec­1957..07­Feb­2007> <31­Dec­1957..08­Feb­2007> <31­Dec­1957..09­Feb­2007> <31­Dec­1957..12­Feb­2007>

Cross­Section NPWs 07­Feb­2007 08­Feb­2007 09­Feb­2007 12­Feb­2007
Gaussian Calibration NGarch Garch_GJR EGarch NGarch Garch_GJR EGarch NGarch Garch_GJR EGarch NGarch Garch_GJR EGarch
ω*x10^4 2,61E­02 2,75E­02 ­3,49E­01 4,04E­02 2,21E­02 ­4,94E­01 4,02E­03 2,16E­02 ­9,95E­01 4,77E­02 1,26E­02 ­4,21E­01
β* 9,57E­01 8,81E­01 9,70E­01 8,91E­01 8,58E­01 9,57E­01 9,74E­01 9,03E­01 8,91E­01 8,19E­01 8,89E­01 9,71E­01
α* 1,45E­02 8,22E­02 1,04E­01 5,38E­02 5,94E­02 1,33E­01 1,40E­02 9,86E­02 3,94E­05 1,39E­01 1,20E­01 2,12E­01
γ* 6,30E­01 2,75E­02 ­4,31E­02 6,34E­01 1,32E­01 1,29E+00 8,49E­01 ­3,83E­02 5,62E­01 1,11E­01 ­3,42E­02 3,94E­01

Persistence 0,9776 0,9772 0,9702 0,9663 0,9836 0,9574 0,9977 0,9823 0,8906 0,9594 0,9920 0,9712

APE 7,3% 7,1% 8,1% 8,7% 11,8% 4,7% 5,8% 7,7% 10,9% 7,3% 4,1% 8,8%
RMSE 42,64 38,87 41,73 46,83 51,92 23,28 24,95 44,36 58,64 42,20 21,26 39,74
Max ABS(E) 232,78 203,25 155,21 250,56 211,38 61,20 79,49 264,96 328,41 266,93 97,03 117,55
η 0,30 0,30 0,30 0,30 0,40 0,40 0,40 0,30 0,40 0,30 0,30 0,50
Mean Feb, 7­12 NGarch Garch_GJR EGarch
APE 7,3% 7,7% 8,1%
RMSE 39,15 39,10 40,85
Max ABS(E) 207,44 194,16 165,59

Calibration results of Simple GARCH Models I,II,II using Gaussian innovations on February 7,

2007 out of the money Nikkei Put Warrants (114), up to February 12, 2007. American price

approximation is computed by Monte Carlo simulation and Optimal Horizontal Barrier (H_2).

Time to maturities start from: 143, 235, 326, 417, 509, 601, 692, 1057, 1422 days. The root mean

squared error (RMSE) is in U, the APE measure is de�ned in 1.14. the parameter � is de�ned in

1.26. Note: in the E-G case !� is not multiplied by 104:

A preliminary look to the parameter estimations induces to remain unsatis�ed

from di¤erent point of views. First of all the RMSE and APE is high for all models. This

implies that the Simple GARCH models don�t achieve a good quality in the calibration

�tting exercise using our American option approximations for the Strike price-Maturity

space of the derivative cross-section analyzed.
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Moreover in the calibration procedure left free to interpret the cross section gen-

erate some negative leverage e¤ect parameter in particular for the GJR-GARCH and the

E-GARCH. In order to obtain a pricing process parameter with a positive leverage e¤ect as

obtained by the PML estimation we impose the positivity constraint for the next calibration

procedure. This is equivalent to �nd a GARCH pricing process by minimizing the pricing

error in the class of the GARCH process which admits positive leverage e¤ect.

While at the moment we postpone additional comments we presents some graphical

calibration results to visualize other empirical problems of the model investigated:

Monte Carlo (Approx 1) calibration results of the N-GARCH model to 114 out of the money

Nikkei Put Warrants prices observed on February 7, 2007.
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Monte Carlo (Aprox 1) calibration results of the GJR-GARCH model to 114 out of the money

Nikkei Put Warrants prices observed on February 7, 2007.

Monte Carlo (Approx 1) calibration results of the E-GARCH model to 114 out of the money

Nikkei Put Warrants prices observed on February 7, 2007.
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If we refer to the last three calibration graphics (related to the three simple

GARCH models) we can observe similar mispricing errors. The short maturity NPWs

are generally overpriced and the long maturity NPWs are underpriced. The same result

is obtained if we use the second approximation in order to compute the theoretical option

price.

Pricing errors with respect to the time to Maturity of the N-GARCH model to 114 out of the

money Nikkei Put Warrants prices observed on February 7, 2007.

The same observation is con�rmed if we take a look to the last �gure and although

this shows only the N-GARCH error pricing with respect to the time to maturity, the

empirical evidence of the other models is much alike.
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Pricing errors with respect to strike price of the N-GARCH model to 114 out of the money Nikkei

Put Warrants prices observed on February 7, 2007.

A moderate mispricing is present with respect to the strike price. Exactly as the

options are near the money as such error tend to be larger. Also the pricing errors with

respect to the strike price behave in the same way for all models therefore we have showed

only the �gure related to the N-GARCH model.

We limit our consideration to the fact that the simple GARCH models present a

signi�cant mispricing with respect to the time maturity. Because our study is oriented on

the long-term maturity derivatives we pass directly to the empirical study of the Component

models.

We only add an obligatory consideration:

These �rst conclusions, we have drawn, are conjointly result of the approximation

method used to price the options, the option pricing underlying assumptions (which mainly
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allow to pass from the historical probability measure to the probability risk-adjusted) and

the error distribution assumption.

While the option pricing assumptions are very weak, due to the numerous strong

hypotheses relaxed in the BAEM-framework, and while the error distribution assumption

is also treated in non parametric manner, some right doubts are to be moved with regard

to the option pricing approximation accuracy. We cannot exclude that these same models

give better performances by exploiting other more accurate pricing techniques.

After all these same models have known better performances in European deriva-

tives analysis, as in the BAEM article.

But the next section induces to moderate our criticism to the option price approx-

imation, while highlights that the Simple GARCH models tend to have much di¢ culties to

model both short-term options and long-term options, as con�rmed in Christo¤ersen, P.,

K. Jacobs and Y. Wang (2004).

2.4 Section II - Component volatility dynamics models

2.4.1 GARCH Models PML Estimation results

As done for the Simple GARCH model, the Component GARCH models (i.e.,

Model IV,V,VI (1.52)) are estimated using Pseudo Maximum Likelihood (PML) estimator.

The PML estimation results for the three Component models are reported in the

next table:
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Time series Nikkei 225 index
PML Estimation results
Range data

parameter Estimate Std.Error Estimate Std.Error Estimate Std.Error Estimate Std.Error Estimate Std.Error Estimate Std.Error
μ x10^2 4,03E­02 1,58E­02 4,46E­02 2,06E­04 4,64E­02 9,62E­07 4,04E­02 1,34E­03 4,48E­02 1,42E­02 4,60E­02 7,68E­03
β 1 7,12E­01 5,85E­02 7,80E­01 5,22E­06 8,18E­01 1,13E­04 7,12E­01 1,30E­06 7,80E­01 5,35E­01 8,17E­01 6,18E­02

α 1 9,28E­02 5,19E­03 1,10E­05 1,34E­08 1,13E­01 9,26E­04 9,30E­02 2,07E­04 1,47E­05 1,28E­04 1,13E­01 4,02E­02

γ 1 1,05E+00 2,40E­06 2,17E­01 1,56E­04 1,39E+00 1,77E­05 1,05E+00 2,67E­07 2,16E­01 4,87E­02 1,40E+00 1,67E­02
ωx10^4 3,34E­03 3,28E­05 3,21E­03 3,98E­06 ­6,97E­02 1,36E­07 3,30E­03 8,59E­07 3,26E­03 4,10E­02 ­7,00E­02 1,30E­03
β 2 9,98E­01 4,18E­03 9,98E­01 1,12E­04 9,92E­01 1,03E­06 9,98E­01 4,64E­06 9,98E­01 4,80E­05 9,92E­01 2,81E­04

α 2 3,59E­02 3,83E­03 3,32E­02 2,85E­05 1,06E­01 1,89E­05 3,53E­02 1,14E­03 3,35E­02 3,47E­03 1,06E­01 1,91E­01

γ 2 1,18E­01 5,15E­02 6,16E­03 3,43E­05 1,32E­01 1,03E­03 1,15E­01 4,16E­04 6,28E­03 2,89E­02 1,34E­01 2,56E­01

Short­run persistence 0,907186 0,887995 0,817804 0,906565 0,887591 0,817295
Long­run persistence 0,997941 0,998089 0,991880 0,997865 0,998022 0,991847
Final values estimated
H0x10^4 0,8621 0,7570 0,6216 0,8355 0,7273 0,5793
h0x10^4 0,7498 0,7168 0,7628 0,6724 0,6175 0,6345
z0 ­0,8090 ­0,8325 ­0,8090 ­0,0482 ­0,0558 ­0,0566
LogLKLHD 41862 41812 41836 41866 41816 41840
Range data

parameter Estimate Std.Error Estimate Std.Error Estimate Std.Error Estimate Std.Error Estimate Std.Error Estimate Std.Error
μ x10^2 4,06E­02 3,00E­04 4,48E­02 9,00E­05 4,64E­02 1,64E­06 4,05E­02 1,72E­04 4,47E­02 3,49E­02 4,65E­02 5,93E­05
β 1 7,14E­01 9,06E­05 7,80E­01 1,52E­05 8,30E­01 3,37E­05 7,14E­01 6,88E­05 7,79E­01 1,86E­04 8,34E­01 3,61E­04

α 1 9,56E­02 5,72E­04 1,24E­06 7,76E­11 1,25E­01 3,78E­04 9,58E­02 2,00E­04 9,03E­06 1,03E­07 1,28E­01 2,56E­04

γ 1 1,02E+00 2,06E­06 2,17E­01 1,54E­05 1,26E+00 1,63E­05 1,01E+00 3,45E­05 2,17E­01 2,85E­04 1,23E+00 1,17E­04
ωx10^4 2,86E­03 7,84E­07 3,06E­03 1,69E­05 ­5,60E­02 1,85E­07 2,79E­03 1,23E­05 3,20E­03 3,05E­06 ­5,22E­02 2,12E­06
β 2 9,98E­01 2,20E­05 9,98E­01 1,83E­06 9,93E­01 4,46E­07 9,98E­01 1,91E­05 9,98E­01 3,25E­07 9,94E­01 4,02E­06

α 2 3,30E­02 4,75E­04 3,27E­02 1,08E­04 9,60E­02 2,14E­04 3,28E­02 5,21E­05 3,34E­02 2,69E­04 9,31E­02 2,99E­04

γ 2 1,09E­01 4,65E­04 5,65E­03 3,76E­05 1,18E­01 1,47E­04 1,08E­01 1,22E­04 6,04E­03 3,57E­05 1,13E­01 2,84E­04

Short­run persistence 0,907684 0,888277 0,830099 0,907790 0,887869 0,833660
Long­run persistence 0,998151 0,998176 0,993415 0,998205 0,998126 0,993843
Final values estimated
H0x10^4 0,8779 0,7618 0,6299 0,8630 0,7379 0,5976
h0x10^4 0,5934 0,5921 0,5772 0,5521 0,5259 0,5096
z0 1,5281 1,5243 1,5416 ­0,0546 ­0,0617 ­0,0651
LogLKLHD 41869 41819 41845 41873 41823 41849

<31­Dec­1957..07­Feb­2007>

<31­Dec­1957..09­Feb­2007> <31­Dec­1957..12­Feb­2007>
NGarch GarchGJR EGarch NGarch GarchGJR EGarch

<31­Dec­1957..08­Feb­2007>
GarchGJR EGarchNGarch GarchGJR EGarch NGarch

Daily returns from December 31, 1957 to February 7, 2007 on Nikkei 225 index are used to

estimate the three Component GARCH models using Psuedo Maximum Likelihood. Robust

standard errors are computed using numerical derivative at the optimum parameter value. H0, h0

and z0 are the current estimates of the log-term variance, the short-term variance and the shock.

LogLKLHD is the logarithm of the likelihood at the optimal parameter values. Short-run

Persistence refers to the persistence of the conditional short-term variance component (e�1).
Long-run Persistence is the persistence of the conditional long-term variance component (�2).

Note: in the E-G case ! is not multiplied by 104:

The Component model PML estimation results appear to be similar to the Simple

models PML estimation results for many aspects. Also here some problems is presented



87

by the E-GARCH estimated up to February 8, 2007. In terms of �t the log likelihood

values indicate that the cN-GARCH �ts better than cE-GARCH and cE-GARCH better

than cGJR-GARCH. In estimating the current volatility (h0) and the current shock (z0)

the models behave in similar fashion, while the current long-term variance component (H0)

are di¤erently estimated in each model. The long-run persistence are very high, proxy to

1, in all the models in particular in cN-GARCH and cGJR-GARCH. At this end we cite

the work of Christo¤ersen et.al. (2004). Fixing the long-run persistence to 1, as possible

alternative model, they have shown that the resulting "persistent" model is dominated by

the component model related also in out-the-sample comparison. Although the log-run

persistence is proxy to 1, modelling this di¤erence appears to be very important.

The estimated parameters are quite stable during the period analyzed. The ex-

pected return parameter estimate(�) is very di¤erent between the models although is more

stable across the time for each model.

The estimated current long-term variance component (H0), current variance(h0)

and current shock (z0) reported in the table will be used as starting values in the calibration

procedure.

To graphically appreciate the model di¤erences we present in the next �gures the

estimated scaled innovations and the historical variance component dynamics based on the

PML results as interpreted by each component GARCH model during about the last 10

years.
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Component N-GARCH model: Estimated scaled innovation (zt) of Nikkei 225 index from January

15, 1997 to February 7, 2007(�rst panel) and estimated conditional variances (�2t ,�
2
t ) (second

panel) obtained from PML estimation.
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Component GJR-GARCH model: Estimated scaled innovation (zt) of Nikkei 225 index from

January 15, 1997 to February 7, 2007(�rst panel) and estimated conditional variances (�2t ,�
2
t )

(second panel) obtained from PML estimation.



90

Component E-GARCH model: Estimated scaled innovation (zt) of Nikkei 225 index from January

15, 1997 to February 7, 2007(�rst panel) and estimated conditional variances (�2t ,�
2
t ) (second

panel) obtained from PML estimation.

2.4.2 Calibration results

We repeat the calibration exercise as done for the Simple GARCH model. We

calibrate the Component GARCH models to the market prices of the Out-of-the-money
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Nikkei Put starting from Wednesday February 7, 2007. Starting values for the risk neu-

tral parameters �� = (��1; �
�
1; 


�
1; !

�; ��2; �
�
2; 


�
2) are the parameters obtained by the PML

estimation procedure and given in �gure 2.4.1.

We report a summarizing table to begin with the empirical analysis of the calibra-

tion results starting from February 7, 2007 to February 12, 2007.

The next table is obtained by computing the American option price by the second

Monte Carlo American option approximation which uses the optimal horizontal barrier as

explained in paragraph 1.4.2.

Time series Nikkei 225 index
Historical Range data <31­Dec­1957..07­Feb­2007> <31­Dec­1957..08­Feb­2007> <31­Dec­1957..09­Feb­2007> <31­Dec­1957..12­Feb­2007>
Gaussian Calibration cNGarch cGarchGJR cEGarch cNGarch cGarchGJR cEGarch cNGarch cGarchGJR cEGarch cNGarch cGarchGJR cEGarch
Cross­Section NPWs 07­Feb­2007 08­Feb­2007 09­Feb­2007 12­Feb­2007
β' 1 4,36E­01 6,32E­01 4,28E­01 3,27E­01 4,51E­01 7,92E­01 7,63E­01 7,37E­01 7,61E­01 3,65E­02 4,58E­01 5,60E­01

α' 1 6,73E­02 1,23E­05 2,09E­01 3,92E­02 1,62E­05 1,10E­01 1,05E­01 1,28E­06 1,09E­01 9,12E­02 6,92E­06 1,28E­01

γ' 1 2,10E+00 2,00E­01 8,80E­01 1,67E+00 2,26E­01 1,41E+00 1,07E+00 2,11E­01 1,68E+00 1,01E+00 1,32E­01 1,38E+00
ω' 2,37E­07 3,88E­07 ­6,35E­02 2,85E­07 4,83E­07 ­7,07E­02 2,67E­07 3,08E­07 ­3,46E­03 5,78E­07 4,39E­07 ­7,86E­02
β' 2 1,00E+00 9,98E­01 9,93E­01 9,99E­01 9,97E­01 9,92E­01 9,99E­01 9,98E­01 1,00E+00 9,97E­01 9,97E­01 9,91E­01

α' 2 4,64E­03 2,64E­02 2,96E­02 8,54E­06 1,92E­02 1,03E­01 2,80E­02 3,23E­02 1,21E­02 1,41E­02 2,82E­02 6,27E­02

γ' 2 1,50E­01 6,47E­03 1,39E­01 3,28E­01 5,57E­03 1,34E­01 1,00E­01 5,61E­03 2,21E­01 1,01E­01 4,26E­03 1,24E­01

Short­run Persistence 0,8004 0,7322 0,4279 0,4751 0,5639 0,7916 0,9892 0,8421 0,7611 0,2215 0,5244 0,5600
Long­run persistence 0,9998 0,9978 0,9927 0,9986 0,9972 0,9921 0,9987 0,9983 0,9995 0,9973 0,9973 0,9909

APE 6,5% 3,6% 4,3% 4,3% 3,6% 12,2% 10,1% 6,5% 5,3% 4,4% 3,5% 4,2%
RMSE 52,23 17,27 22,12 21,69 17,99 63,67 43,60 26,78 23,00 19,93 16,86 19,66
Max ABS(E) 423,83 62,93 77,14 79,27 76,72 302,87 107,84 92,54 78,62 67,84 50,88 69,90
η 0,40 0,30 0,30 0,30 0,30 0,40 0,20 0,30 0,30 0,30 0,10 0,40
Cross­Section NPWs 07­Feb­2007 08­Feb­2007 09­Feb­2007 12­Feb­2007
FHS Calibration
β' 1 5,96E­01 6,24E­01 3,73E­01 7,01E­01 4,87E­01 8,03E­01 5,28E­03 3,74E­01 1,13E­02 4,34E­01 4,23E­03 1,03E­02

α' 1 8,43E­02 2,41E­05 1,37E­01 9,33E­02 1,21E­05 1,17E­01 1,68E­01 9,63E­07 1,82E­01 1,63E­01 1,34E­05 1,98E­01

γ' 1 3,69E­02 1,43E­01 2,00E+00 1,01E+00 3,93E­01 1,42E+00 7,28E­01 6,43E­01 2,69E+00 1,09E+00 7,03E­02 9,17E­01
ω' 3,29E­07 1,82E­07 ­1,25E­01 3,28E­07 3,46E­07 ­6,79E­02 7,91E­08 4,67E­07 ­5,88E­02 4,07E­07 2,84E­07 ­5,71E­02
β' 2 1,00E+00 9,99E­01 9,86E­01 9,91E­01 9,98E­01 9,91E­01 1,00E+00 9,97E­01 9,93E­01 9,98E­01 9,99E­01 9,93E­01

α' 2 1,41E­02 4,12E­03 3,01E­02 3,51E­02 2,59E­03 1,03E­01 1,13E­06 9,18E­04 6,44E­02 4,43E­03 1,73E­02 3,62E­04

γ' 2 4,91E­01 4,29E­03 1,86E­01 1,18E­01 4,47E­03 1,34E­01 1,98E­02 4,66E­03 8,83E­02 7,05E­02 1,14E­02 1,48E­01

Short­run Persistence 0,6807 0,6951 0,3731 0,8887 0,6834 0,8028 0,2630 0,6952 0,0113 0,7894 0,0394 0,0103
Long­run persistence 1,0000 0,9993 0,9858 0,9913 0,9980 0,9915 1,0000 0,9966 0,9931 0,9977 0,9990 0,9934

APE 7,0% 4,1% 9,3% 21,0% 7,1% 12,0% 6,8% 9,3% 12,7% 10,0% 3,8% 6,8%
RMSE 120,93 21,78 40,95 89,50 33,19 187,74 34,16 44,35 69,73 51,69 19,28 31,88
Max ABS(E) 345,18 96,71 114,22 123,21 84,87 98,78 186,98 269,10 167,80 129,14 68,74 131,81
η 0,30 0,40 0,40 0,10 0,40 0,50 0,80 0,30 0,40 0,40 0,30 0,50

Gaussian Mean Feb, 7­12 cNGarch cGarchGJR cEGarch FHS Mean Feb, 7­12 cNGarch cGarchGJR cEGarch
APE 6,3% 4,3% 6,5% APE 11,2% 6,1% 10,2%
RMSE 34,36 19,73 32,11 RMSE 74,07 29,65 82,57
Max ABS(E) 169,69 70,77 132,13 Max ABS(E) 196,13 129,85 128,15
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Calibration results of Component GARCH Models IV,V,VI using Gaussian/FHS innovations on

February 7, 2007 out of the money Nikkei Put Warrants (114), up to February 12, 2007. American

price approximation is computed by Monte Carlo simulation and Optimal Horizontal Barrier

(H_2). Time to maturities start from: 143, 235, 326, 417, 509, 601, 692, 1057, 1422 days. The root

mean squared error (RMSE) is in U, the APE measure is de�ned in 1.14. the parameter � is

de�ned in 1.26. Note: in the cE-G case !� is not multiplied by 104:

The Gaussian calibration results for the Component models are satisfactory with

particular regard to the RMSE and APE, which present very low values in all models if

we consider the wide Strike price-Maturity space of the derivative cross-section analyzed.

However Component GJR-GARCH is conspicuous for its good performance, especially be-

cause it shows to have a good extrapolation ability to interpret long-term option price if

measured with Max ABS(E).

Before we pass to show other analyses on the calibration results we have interest

to compare the risk neutral parameters to the historical parameters.

If we compare the calibration results table with the historical estimates table we

can observe some interesting empirical evidence.

First note that our results derived through the BAEM approach allows us to rely

on the market coherence of the risk neutral parameters. Instead of make hypotheses on the

risk neutral pricing process, such as many other methods in literature, we can study its

features directly from the market.

In the Gaussian innovation case the risk neutral process remains highly long-run

persistence like as the historical process while the short-run persistence is generally reduced

by passing from the historical to the risk-neutral measure.
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This evidence is valid also in the FHS innovation case but in a more marked way:

some days suggest a risk neutral pricing process without mean-reversion features (e�1 ' 0).
This can be revised with our intuition by highlighting a possible exploration path for future

research. If the historical price process is modelled by a component GARCH model, an

interesting risk-neutral pricing hypothesis seems to be to model the pricing process through

a component GARCH model with zero-short-run-persistence. If the investor have a long-

run and a short-run volatility expectation in order to describe the market volatility, under

the risk-neutral setting these two expectations tend to coincide.

We conclude the calibration section by a series of graphic �gures which allow us

to highlight the model performance along some critical dimensions.

Figure 2.2: Monte Carlo (approx 2) calibration results of the cN-GARCH model to 114
out of the money Nikkei Put Warrants prices observed on February 12, 2007 (Gaussian
Innovation)
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Figure 2.3: Monte Carlo (approx 2) calibration results of the cGJR-GARCH model to 114
out of the money Nikkei Put Warrants prices observed on February 12, 2007 (Gaussian
Innovation)

Figure 2.4: Monte Carlo (approx 2) calibration results of the cE-GARCH model to 114
out of the money Nikkei Put Warrants prices observed on February 12, 2007 (Gaussian
Innovation)
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Figure 2.5: Pricing errors with respect to the time to Maturity of the cGJR-GARCH model
to 114 out of the money Nikkei PutWarrants prices observed on February 12, 2007 (Gaussian
Innovation)

Figure 2.6: Monte Carlo (approx 2) calibration results of the cN-GARCH model to 114 out
of the money Nikkei Put Warrants prices observed on February 12, 2007 (FHS Innovation)
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Figure 2.7: Monte Carlo (approx 2) calibration results of the cGJR-GARCH model to
114 out of the money Nikkei Put Warrants prices observed on February 12, 2007 (FHS
Innovation)

Figure 2.8: Monte Carlo (approx 2) calibration results of the cE-GARCH model to 114 out
of the money Nikkei Put Warrants prices observed on February 12, 2007 (FHS innovation)
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Figure 2.9: Pricing errors with respect to the time to Maturity of the cGJR-GARCH model
to 114 out of the money Nikkei Put Warrants prices observed on February 12, 2007 (FHS
Innovation)

Figure 2.10: Pricing errors with respect to strike price of the cGJR-GARCH model to 114
out of the money Nikkei Put Warrants prices observed on February 12, 2007
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The calibration exercise results using Gaussian Innovations on February 12, 2007

is showed in �gure 2.2, 2.3 and 2.4. The �gure 2.5 shows the pricing error of the cGJR-

GARCH model with respect to the time to maturity. As we can see the increasing bias

trend present in the Simple GARCH model are completely disappeared in the Component

GARCH models.

The Component models appear to be suitable in short-term and long-term option

prices calibration more that the simple models. Some problem on the long-term maturity

options appear in the FHS innovation calibration exercise. As showed in �gure 2.6, 2.7 and

2.8 the mispricing for the long-term options is evident, and it is also veri�able in �gure 2.9.

Here it is the case to suspect that the horizontal barrier, used to compute the

option price in our approximation and deduced from the Gaussian dynamics of the asset

price process, could be not reasonable when we use FHS innovation to lead the price process

This observation will be discussed in the conclusion.

Also for the Component models a moderate mispricing is present with respect to

the time to maturity, but it has a smaller error. This evidence is valid all models both

in Gaussian innovation case and FHS innovation case, therefore we present only the �gure

related to the cGJR-GARCH model (�gure 2.10).

After we have shown some statistical characteristic of the NPWs analyzed by the

BAEM approach using our Monte Carlo American option approximations we conclude our

analysis by adding the economical analysis of the State Price Density per unit probability.
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2.4.3 State price Density Estimations

The calibration exercise could appear as a simple �tting exercise involving the

absence of arbitrage and some pricing process stability over time and across maturities.

The State Price Density investigation can endow the option pricing work of the economic

meaning underlying. The SPD summarizes the investor preferences for aggregate wealth in

di¤erent states of economy. From the restrictions on the investor preferences imposed by

Economic Theory we expect a decreasing SPD with respect to the economy state. In order

to realize an economic validation of the model we perform some empirical veri�cation on

the SPD in this direction.

One possibility is to refer to the Put option price formulation in 1.27: we can

estimate State Price density per unit probability (M0;T ) as discounted ratio of the pricing

and the historical densities derived from the two related GARCH models.

In order to assess the economical meaning of the SPD we study the historical

density and the pricing (risk-neutral) density as derived through the Monte Carlo simulation

of the two GARCH processes previously estimated.

We present in the next �gures the Historical distributions and the Pricing dis-

tributions and the related SPD for di¤erent time to maturity of the cGJR-GARCH on

February12, 2007.
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These �gures con�rm some results obtained before and allow to redirect some

question for future researches.

The SPD presents an initial part which appear to be inconsistent with fundamental

assumptions about investor behavior. If we interpret the SPD as the investor�s marginal

utility as the economic theory suggests, in this initial state range investors behave as if they

are risk seeking (and not risk averse).

We also note that as the maturity increase as the SPD tends to become monoton-

ically decreasing and the empirical evidence reconcile with the economic theory.

Therefore although the economic investigation on our results highlights some in-

consistencies in the short-term modelling, in the long-term the SPD validation appear rea-

sonable considering also that in the lowest states and lowest maturities we have very few

observations to rely on the SPD estimation goodness.

Also here we can suspect that our American option approximation doesn�t work

very well for the short-term options, but as maturity becomes longer as the performance

becomes reasonable.

This suggests our setting suitable in treating American derivatives more long in
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terms of maturity respect to our database.
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Chapter 3

Conclusions and critical comments

In this work we have shown a study on long-term American options and the em-

pirical evidences emerging from the Nikkei Put Warrants analysis. The main problems

encountered in this work are related to the di¢ culty in forecasting long-term phenomenon

with accuracy, the American option pricing closed-formula inexistence, the strong assump-

tions of the currently used option pricing theory. In our study we can relax some strong

assumptions by using the BAEM approach (Barone-Adesi, Engle, Mancini (2007)). In the

BAEM work the authors studied European options on S&P500 index while we use their

approach to analyze American options on Nikkei 225 index.

We study three basic GARCH models widely known in literature: N-GARCH

(Engle and Ng (1993)) GJR-GARCH (Glosten et.al.(1993)) and E-GARCH (Nelson (1991)).

These models have one additional parameter respect to the standard GARCH(1,1) devoted

to model the asymmetric response of the conditional variance to the market news arrival.

The empirical analysis shows that these basic GARCH models don�t achieve a
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performance acceptable level in explain the cross sections of the Nikkei Put Warrants in-

vestigated.

If a �rst explanation for the bad performance seems to be impute to our option

price approximation accuracy, a succeeding analysis incline us to moderate our criticism

while suggests that the basic models have to be extended in order to manage with long-

term options.

It is known in empirical analysis studies that as the maturity range increases as

the option pricing model performance generally deteriorate. This is mainly due to the

increasing di¢ cult to perform forecast as the horizon become long or, in other words, to

the di¢ culty in correctly model a stochastic �nancial phenomenon for a long-term period.

In order to cope with this problem we have extended our three basic GARCH

models by constructing the related component GARCH model versions as suggested by

Engle and Lee (1999). Christo¤ersen et al. (2004) built the component version of the

Heston and Nandi�s model and studied European derivatives rely on a European option price

close-form solution. We study American contingent claims and we cannot rely on a closed

form solution. In order to price the American options we propose some approximations.

The approximations used in the empirical analysis are derived starting from the perpetual

option framework under Gaussian dynamics. We use an horizontal barrier and a Monte

Carlo simulation to compute the theoretical American option price.

The Component GARCH models show to have an appreciable ability to explain

the option cross-section. Among the models investigated the Component GJR-GARCH

model often dominates the other models. We have used both Gaussian innovation and FHS
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innovation to drive the simulation in order to obtain both a parametric estimation and a

non-parametric estimation of the error.

Unluckily the FHS based estimations don�t improve the Gaussian results as we

expect. But we have to underline that our American option prices are approximations de-

rived on theoretical option price based on Gaussian innovation therefore we cannot exclude

that other option price approximation can realize better results. We observe that while the

horizontal barrier used to localize the early exercise area seems to work well in the Gaussian

innovation case, in the FHS innovation case the same procedure makes worse the results

if measured by the RMSE (Root Mean Squared Error) and by the APE (Absolute Pricing

Error).

The State Price Density investigation have allowed to obtain two important results:

1) Our setting is con�rmed to be suitable in treating American derivatives very

long in terms of maturity

2) In order to treat both short-term and long-term American derivatives it needs

a more accurate American option price approximation.

The importance of an e¢ cient American option price under GARCH dynamics is

more times underlined in this work. As alternative option price approximation we propose

to use the Duan and Simonato�s method. We theoretically develop their approximation

for each model investigated in our work. Finally we present some suggestions to improve

the computational e¢ ciency of this approximation method and show some possible future

development.

We terminate this work by underling the importance of the research on American
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Options especially in a �exible framework such as the GARCH one. The BAEM approach

has allowed to consider conjointly the statistical properties and the economic meaning of

the pricing process. We left to future researches a deeper analysis in and out-the sample

based on an American GARCH Option price formula more general than our Monte Carlo

approximation which should allow us to compute both short term than long-term options

accurately.
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