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Introduction

In this thesis we propose a fractional version of two well-know structural models to credit risk pricing: the
Merton and Black and Cox models. A brief review of the Credit Risk models known in the literature and
commonly used by practitioners is presented in chapter 1. The notion of Fractional Brownian Motion along
with idea of long range dependence in finance is introduced. Also the empirical literature on credit spreads
is briefly investigated.
In chapter 2 we develop a new theoretical framework for credit spread dynamics. Specifically, we propose a
continuous-time credit risk model that is consistent with the observed behaviour of credit spread and can be
used for pricing credit sensitive instruments, including credit derivatives. We assume that the value of the
firm obeys to a Geometric Fractional Brownian Motion. Prices for the equity, the bond and credit spreads
are derived and a sensitivity analysis is performed. The sensitivity analysis shows that the fractional versions
of the two models above predict credit spreads which are consistent to the ones observed in the market.
Moreover, to provide a justification for these models, an empirical analysis is carried out, which employs
Moody’s Long-Term Corporate Bond Yield Averages for the period December 1992–November 2003 and
Lehman Brothers Eurodollar Indices for the period June 1996–July 2006. Long-range dependence (LRD) in
the series of Treasury and corporate bond yields as well as credit spreads is thus investigated. In particular
semiparametric methods (mainly periodogram-based techniques) are implemented and used in both a frac-
tional integration and fractional cointegration analysis of the series involved. Yields and spreads are shown
to be generally long memory nonstationary processes. This is substantially confirmed by the recent LM test
proposed by Nielsen (2005). Although a number of empirical studies on credit spread dynamics have been
carried out (see for instance Pedrosa and Roll, 1998; Prigent et al., 2001; Kiesel et al., 2001; Bierens et al.,
2005), no research has been performed to date to investigate the long memory properties of credit spread.
Our investigation aims at critically reassessing whether the dynamics of credit spread is consistent with the
assumptions behind mainstream credit risk models, which are widely used by financial institutions.

Chapter 3 is about the most popular type of credit derivatives, i.e. Credit Default Swaps (CDS) and a
new type which is becoming increasingly popular, i.e. Constant Maturity Credit Default Swaps (CMCDS).
CDS represent one of the main reasons why credit markets have grown so fast over the past few years. They
are contracts that provide insurance against the risk of a default by particular company. In such a contract,
in exchange for protection, the buyer pays a premium through the life of the CDS or until default occurs.
and in case of default of the reference issuer, she receives par and delivers an eligible defaulted obligation.
The premium (called the CDS spread) in a CDS spread contract is determined by matching the discounted
cash flows of a fixed leg paid by the protection buyer and a loss leg which corresponds to the net payment
made by the protection seller to the protection buyer in case of default. CMCDS offer investors access to
floating credit spread products and represent an efficient instrument for the investors to express views on
the level and slope of credit curves. Similar to a CDS contract, by entering a CMCDS, the buyer pays a
premium (spread) in exchange of protection. The essential difference between a CMCDS and CDS arises in
the the payment leg: while in a CDS the spread is fixed, in a CMCDS the spread is floating. In particular
the spread is equal to the prevailing reference CDS spread at each reset date times a factor known as the
participation rate. As a consequence, in a CMCDS contract the loss leg is paired with a floating leg, where
spread payments are indexed against a reference constant maturity CDS spread at each reset date. Another
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important feature of these contracts is that investor who sell protection in a CMCDS contract are subject
to a lower mark-to-market volatility than protection sellers in a CDS contract. It is interesting to note
that default risk can be hedged away by constructing a portfolio short CMCDS protection and long CDS
protection.
The main contribution of the chapter is the development of a set of tools that allow, for each company, the
calculation of a proxy premium spread for CMCDS and the analysis of trading strategies based on CDS
and CMCDS. In particular, the chapter aims to identify possible imbalances that may exist in the credit
markets when pairing CDS and CMCDS on the same name. The general idea is to form a swap type
of trading strategy whereby a fixed premium payment is netted against a floating one, both representing
protection premia against default. Note that the aforementioned strategy completely eliminates credit risk
(only counterparty risk is taken). A large database (source: Markit partners) of single-name CDS premia
covering the period January 2001–November 2006 is used to produce the corresponding CMCDS prices using
common market models.

Finally in chapter 4 we address an interesting issue which is related to the topic discussed in chapter 2.
As pointed out by Dolado et al. (2005) and by Mikosch and Stărică (2004) for the case of multiple breaks,
short-memory processes affected by shifts in trends or in the mean may display similar properties as those
prescribed by LRD. In particular Mikosch and Stărică (2004) claim that long-range dependence in volatility
may be explained by nonstationarities in the data (to be precise by changes in the parameters over different

subsamples). The fact that for a time series the estimated fractional integration parameter d̂ falls in the
long memory interval, thus, does not necessarily imply Long Range Dependence: it is well known that the
presence of structural breaks may cause a I(0) process to look like an I(d) one. Since we are dealing with
credit spreads, our sample is very likely to include extraordinary financial and credit events that could result
in one or more structural breaks. Recently some tests to detect if a time series is truly long memory have been
proposed in the econometric literature. These include for instance the test based on temporal aggregation
of Ohanissian et al. (2007). Further, we implement the test proposed by Dolado et al. (2005) of a process
being I(d), under the null, against the alternative of being I(0) with deterministic components subject to
structural breaks. The statistic they propose has been labeled as the Structural Break-Fractional Dickey-
Fuller (SB-FDF) test, since it is based on the same principles behind the Dickey-Fuller unit root test. Finally
the two test of Shimotsu (2006) are illustrated and implemented. One of these is based on sample splitting

and the other on d̂th differencing the data, where d̂ is an estimate of the long memory parameter d. The
tests are applied to both the datasets of credit indeces and credit spreads used for chapter 2. The conclusions
for the Lehman Brothers is that that both yields and spreads are genuine long memory processes. As far as
Moody’s credit indeces are concerned, the yields are genuine long memory processes according to both the
tests procedures. Further, the test based on dth differencing never rejects the null of true long memory also
for the credit spreads series. The SB–FDF test, on the other hand, rejects the null at the 1% confidence level
for four series of credit spreads out of nine. In every case the test detects a jump, the jump occurs in the
second half of the sample. The same tests are also applied to the CDS data used in chapter 3. First the long
memory parameter is estimated for the most liquid maturities and for each obligor using the first differences
of log-CDS quotes. Then the tests of true vs. spurious long memory are run only for the issuers whose data
displays the long memory property. As far as the 5-years contract is concern, looking only at the obligors
whose log-CDS quotes display LRD, the rejection frequencies are between 20 and 28%.



1

Credit Risk Pricing: Review of the Literature

The rise of credit risk measurement and the credit derivatives market started in the early 1990s and has
grown ever since: credit risk is today one of the most intensely studied topics in quantitative finance. The
phenomenal growth of the credit markets, i.e. the enormous diffusion of derivative securities with credit risk,
options and forward contracts subject to counterparty default risk, credit-risky bonds and credit derivatives,
has generated a powerful array of new instruments for managing credit risk. The increasing popularity of
credit derivatives is due to the fact that they allow market participants to easily trade and manage pure
credit risk. In the academic literature models for the pricing of risky debt can be subdivided into two classes:
firm’s value and reduced form models.
The philosophy underlying firm’s value models is to assume there is a fundamental process usually interpreted
as the total value of the assets of the firm that has issued the bonds the researcher is interested in. A stochastic
process for the evolution of the firms’ underlying assets is assumed and this is the driving force behind the
dynamics of the prices of all securities issued by the firm. The well-known structural approach due to
the seminal paper of Merton (1974) assumes that the company has issued only shares and a zero-coupon
bond. The firm defaults if the value of its assets is lower than the promised debt payment at maturity. As
a consequence all claims on the firm’s value are modeled as derivative securities with the firm’s value as
underlying. Merton’s model has been extended for instance by Black and Cox (1976), Geske (1977), Shimko
et al. (1993) and Leland (1994) to allow for more realistic assumptions, such as the possibility of default
before maturity, coupon payments, stochastic interest rates, etc.
In the reduced-form approach the default process of risky debt is directly modeled making some assumptions
on the evolution of the risk-free rate and the recovery rate in the event of default. Usually, the time of default
is modeled directly as the time of the first jump of a Poisson process with random intensity. In particular
Jarrow and Turnbull (1995) consider the simplest case where the default is driven by a Poisson process with
constant intensity with known payoff at default, whereas Duffie and Singleton (1997) developed a similar
model where the payoff in default is also cash, but denoted as a fraction of the value of the defaultable
security just before default. Some papers developed within this framework use a rating-based approach in
which default is attained through changes in credit ratings driven by a Markovian transition matrix. Among
the others it is worth citing Das and Tufano (1996), Jarrow et al. (1997) and Duffee (1998).

1.1 Firm’s Value Models

The first class of models views the firms’ liabilities as contingent claims issued against the firm underlying
assets, with the payoffs to all the firm liabilities in bankruptcy completely specified. Denote by V be the
total value of the assets of the firm. A stochastic process for the evolution of the firm underlying assets and
the conditions under which a default is triggered as well as the payoff of the risky debt in the event of default
are specified. For instance it is possible to assume that V follows a geometric Brownian motion:

dVt = µVtdt+ σVtdBt, (1.1)
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where Bt is a standard Brownian motion. Default can be triggered in two ways: a default occurs at maturity
if V is insufficient to pay back the outstanding debt (in this way during the lifetime of the contract a default
can not be triggered) or more realistically one can assume that a default is triggered as soon as the value of
V falls below a barrier. Let us use the following standard notation: B(t, T ) and B(t, T ) are the prices in t of
default-free and defaultable zero coupon bond respectively, both with maturity T and St is the price in t of
the firm’s equity. The main intuition in Merton (1974) is to assume the value of the firm as the driving force
behind the dynamics of the prices of all securities issued by the firm. Therefore both B and S are function of
V and more generally all claims on the firm’s value are evaluated as derivative securities with the firm’s value
as underlying. This model assumes that the company has a simple capital structure that consists of equity
and a zero-coupon bond. Moreover the term structure of interest rate is deterministic and flat and the firm
pays no dividend over the life of the debt. Suppose, for instance, that the firm has only issued zero coupon
bonds with maturity T and total face value D. Indicate (for ease of notation) with S and B the prices of all
shares issued by the firm and default may happen only at maturity. Thus one gets the following payoffs at
time T :

B(T, T ) = min(D,VT ) (1.2)

ST = max(VT −D, 0). (1.3)

Equations (1.2) and (1.3) are straightforward: in case of default (V < D) one gets B = V and S = 0,
otherwise B = D and S = V −D. Note that in both cases

B(T, T ) + ST = VT

and we can rewrite (1.2) as

B(T, T ) = D − max(D − VT , 0). (1.4)

Equation (1.3) implies that the equity is an European call option with underlying V , maturity T and strike
D, c(Vt,D, T ):

St = c(Vt,D, T ), (1.5)

and therefore, under model (1.1), the value of the share is simply given by the Black-Scholes formula, i.e.

St = VtN(d1) −De−r(T−t)N(d2), (1.6)

where r is the interest rate N(·) is the Normal c.d.f. and

d1 =
log(Vt/D) + (r + 1

2σ
2)(T − t)

σ
√
T − t

d2 = d1 − σ
√
T − t.

Moreover from (1.4), the corporate debt is a given by a combination of D riskless bond and a short position
in a put option on the firm’s assets. Therefore its value is given by:

B(t, T ) = DB(t, T ) − p(Vt,D, T ), (1.7)

or alternatively

B(t, T ) = Vt − c(Vt,D, T ). (1.8)

This means that under the assumptions of the model

B(t, T ) = Vt − St = De−r(T−t) −
[
De−r(T−t)N(−d2) − VtN(−d1)

]

= VtN(−d1) +De−r(T−t)N(d2).
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Note that the risk neutral probability that the firm defaults equals the probability Q that the equityholders
will not exercise their option to buy the assets of the firm for the strike D at time T . This probability is

Q(VT < D) = 1 −N(d2) = N(−d2).

The yield to maturity for a corporate bond is defined implicitly from:

B(t, T ) = De−Y (t,T )(T−t)

and therefore the credit yield spread (defined as the difference between the yield to maturity of a corporate
bond and the yield to maturity of a default-free bond, Y (t, T )) is

s(t, T ) = Y (t, T ) − Y (t, T ),

so that

B(t, T ) = DB(t, T )e−s(t,T )(T−t). (1.9)

In Merton model

s(t, T ) = Y (t, T ) − r

= − log(B(t, T )/D)

T − t
− r = − log(Vt/DN(−d1) + e−r(T−t)N(d2))

T − t
− r

= − 1

T − t
log(Vt/Der(T−t)N(−d1) +N(d2)).

Defining leverage by

ℓ =
D

Vter(T−t)
,

we can rewrite the credit spread arising from the model as

s(t, T ) = − 1

T − t
log

(
1

ℓ
N(h1) +N(h2)

)
, (1.10)

with

h1 = −d1 =
log ℓ

σ
√
T − t

− σ

2

√
T − t

h2 = d2 = − log ℓ

σ
√
T − t

− σ

2

√
T − t.

The Merton model has some important implications. First of all, when the value of the firm is much bigger
that the debt D, then the put option is deep out-of-the-money. This means that the probability of default
is low and corporate debt trades as if it is default-free. Conversely, when Vt ≪ D then in (1.8) c(Vt,D, T )
is small and B(t, T ) is approximately equal to the value of the equity. As a consequence the volatility of
the corporate debt depends on the volatility of the underlying asset when the the put option trades deep
in-the-money. Moreover, if the default-free interest rate increases, then the credit spread decreases. To see
this from (1.9) and (1.7) derive

s(t, T ) = − 1

T − t
log

(
1 − p(Vt,D, T )

DB(t, T )

)
.

Thus
∂s(t, T )

∂r
=

(
∂p(Vt,D, T )

∂r

)(
∂s(t, T )

∂p(Vt,D, T )

)
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Since

∂p(Vt,D, T )

∂r
= −De−r(T−t)(T − t)N(−d2),

∂s(t, T )

∂p(Vt,D, T )
=

1

(T − t)(DB(t, T ) − p(Vt,D, T ))
=

(
1

(T − t)B(t, T )

)

it is possible to conclude
∂s(t, T )

∂r
= − D

B(t, T )
N(−d2) ≤ 0.

When
B(t, T ) = e−r(T−t)

it follows that

s(t, T ) = − 1

T − t
log

(
B(t, T )

D

)
− r

= − 1

T − t
log

(
Vt − St

D

)
− r

and thus

∂s(t, T )

∂r
=

1

(T − t)

(
1

B(t, T )

)(
∂St

∂r

)
− 1

=
1

(T − t)

(
e[s(t,T )+r](T−t)

D

)(
D(T − t)e−r(T−t)N(d2)

)
− 1

= es(t,T )(T−t)N(d2) − 1 =
−VtN(−d1)

B(t, T )
.

The last equality follows from

es(t,T )(T−t)N(d2) =
DB(t, T )N(d2)

B(t, T )
=
B(t, T ) − VtN(−d1)

B(t, T )

and
B(t, T ) = VtN(−d1) +DB(t, T )N(d2).

However there is an intuitive explanation: an increase in the default-free spot interest rate, keeping the value
of the firm constant, makes the probability of default decline. This, in turn, makes the corporate bond price
increase and, consequently, the spread decline. Besides, increases in volatility raise credit spreads because

∂s(t, T )

∂σ
=

1

(T − t)DB(t, T )

∂p(Vt,D, T )

∂σ
=

1√
T − tDB(t, T )

N ′(d1) > 0.

Another implication of the model is that the credit spread tends to zero as the maturity of the zero-coupon
bond tends to zero, at least when V > D. In fact, first take (1.10) and set t = 0. Note that





limT→0N(h1) = 1 − limT→0N(h2) = 0 if D < V

limT→0N(h1) = 1 − limT→0N(h2) = 1 if D > V

limT→0N(h1) = limT→0N(h2) = 1
2 if D = V

.

Therefore for D ≥ V
lim
T→0

s(T ) = +∞,
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Figure 1.1: Credit spreads against maturity when σ = 0.25, D/V = 2/3, r = 0.05.
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whereas for D < V

lim
T→0

s(T )
Hop.
= − lim

T→0

(
∂

∂T h2

)
N ′(h2) + 1

ℓ

(
∂

∂T h1

)
N ′(h1) − ( ∂

∂T ℓ)
ℓ2 N(h1)

N(h2) + 1
ℓN(h1)

= − lim
T→0

(
∂

∂T h2

)
ℓN ′(h2) +

(
∂

∂T h1

)
N ′(h1) + rN(h1)

ℓN(h2) +N(h1)

= − lim
T→0

[
∂

∂T (h1 + h2)
]
N ′(h1) + rN(h1)

ℓN(h2) +N(h1)

= − lim
T→0

−σ
2T

−1/2N ′(h1) + rN(h1)

ℓN(h2) +N(h1)
= 0.

Note that we used
ℓN ′(h2) = N ′(h1).

As a consequence, short maturity credit spreads are near zero in Merton model when D < V . From

∂

∂T
s(T ) = − 1

T

[
s(T ) +

−σ
2T

−1/2N ′(h1) + rN(h1)

ℓN(h2) +N(h1)

]

it is clear that credit spreads rise with maturity for low values of leverage. The explanation is straightforward:
the bigger the leverage, the bigger the probability of default. Clearly, an increase in the probability of default
results in a decrease of the corporate bond price and therefore in an increase in the credit spread. For values
of leverage below unity credit spreads, as functions of time to maturity, are hump shaped, rising at first and
then falling (see Figure 1.1). For leverage levels above unity credit spreads tend to explode near zero and fall
with maturity (see Figure 1.2). A big shortcoming of the model are the inconsistencies in the treatment of
debt with multiple maturities: they default at different times, each at its own maturity, while in reality they
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Figure 1.2: Credit spreads against maturity when σ = 0.25, D/V = 2, r = 0.05.
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default all together. Moreover, the assumption of constant interest rates and a flat yield curve are contrary
to realistic term structures of interest rates. Defaultable bonds must have an embedded exposure to interest
rates that is here modeled unrealistically in terms of movements in a flat yield curve. It is also possible to
verify that credit spreads rise with leverage. In fact

∂

∂ℓ
s(ℓ) = − 1

T

∂
∂ℓ

[
N(h2) + 1

ℓN(h1)
]

N(h2) + 1
ℓN(h1)

=
ℓN ′(h2) +N(h1) −N ′(h1)

T [ℓ2N(h2) + ℓN(h1)]
=

N(h1)

T [ℓ2N(h2) + ℓN(h1)]

=
N(h1)e

s(ℓ)T

Tℓ2
> 0.

Another unrealistic feature of the model is that it implies risk premia1 bigger than those one can find on
the market. Consider, for instance a 2 year maturity bond with D/V = 2/3, volatility of the asset σ = 0.2,

1 If a claim which pays 1 if the event X happens is given, then the expected cash flow under the market probability is P (X).
The price of the claim can be derived by the risk neutral probability Q:

Q(X)

1 + r
.

Define the gross rate of return on the claim, 1 + R(X), as the ratio of the expected cash flow to the price:

1 + R(X) =
P (X)

Q(X)
(1 + r).

The excess return
P (X)

Q(X)
− 1 =

R(X) − r

1 + r

is the risk premium.
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r = 0.1 and equity risk premium of 10%. The expected rate of return is µ = r + 0.1 = 0.2. Recall now that
the risk neutral probability of no default is N(d2). Thus we need to evaluate the ratio

N(d2,µ)

N(d2)
− 1 = 0.0427 = 427 basis points,

where d2,µ is obtained from the expression for d2 replacing r by µ. Realistic values for the risk premium
would be below 100 basis points.
Finally the model reflects the interaction of market and credit risk, i.e. the fact that market and credit risk
are not separable. To see this, suppose that the value of the firm’s assets unexpectedly decreases, giving rise
to market risk. The decrease in the asset’s value increases the probability of default, giving rise to credit
risk. The converse is also true.
In practice the model is calibrated by estimating the current value of the company’s assets and the volatility
of the assets from the market value of the company’s equity and the equity’s instantaneous volatility (see
Jones et al., 1984). Recently Hull et al. (2004) proposed to estimate the model’s parameters from the implied
volatilities of options on the company’s equity.
As already mentioned, a more realistic assumption can be made about the conditions under which default
is triggered. For instance the company could be assumed to default the first time its assets fall below some
default barrier, say L < Vt. This is the case of the first passage time model proposed by Black and Cox
(1976)2. In this framework the equity can be viewed as a down-and-out call option. If the assets hit the
barrier L before time T , the option ceases to exist and the bondholders receive the assets’ value or some
recovered portion of it. If the barrier is not hit before T , then the equity at maturity is, as in Merton’s model,
the payoff on a European call option. In this way the model implies strict absolute priority. Define

τ = min{k ≥ t : Vk < L}

Denoting by E
Q
t [·] the expectation under the risk neutral probabilityQ conditional to the information available

up to time t and by I the indicator function, the equity value, under the assumption of a geometric Brownian
motion (1.1) for V , is:

St = E
Q
t

[
e−r(T−t)(VT −D)+I{τ>T}

]

=
[
VtN(x1) −De−r(T−t)N(x1 − σ

√
T − t)

]

−
[
Vt

(
L

Vt

)2θ

N(y1) −De−r(T−t)

(
L

Vt

)2θ−2

N(y1 − σ
√
T − t)

]
,

where

θ =
r + 1

2σ
2

σ2

x1 =





log(Vt/D)+(r+ 1
2 σ2)(T−t)

σ
√

T−t
if D ≥ L

log(Vt/L)+(r+ 1
2 σ2)(T−t)

σ
√

T−t
if D < L

,

y1 =





log(L2/(VtD))+(r+ 1
2 σ2)(T−t)

σ
√

T−t
if D ≥ L

log(L/Vt)+(r+ 1
2 σ2)(T−t)

σ
√

T−t
if D < L

.

2Actually in the paper the barrier takes an exponential form Le−γ(T−t), where T − t is the time to maturity. For simplicity
we consider the constant barrier case γ = 0. Alternatively it could be reasonable to assume that a default is triggered as soon
as the firm’s value is worth less than a similar but default-free investment, i.e. when

Vτ < L × B(τ, T ).
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Denoting by
mT

t = min
t≤s≤T

Vs,

the running minimum of firm values, and by

r̄ = r − 1

2
σ2

the risk neutral probability of default is given by

1 −Q(τ > T, VT > D)

= 1 −Q
[
mT

t > L, VT > D
]

= 1 −Q

[
min

t≤s≤T
(r̄(T − s) + σBT−s) > log(L/Vt), r̄(T − t) + σBT−t > log(D/Vt)

]
.

Using the joint distribution of an arithmetic Brownian and its running minimum3 , we get

1 −Q(τ > T, VT > D)

= N

(
log(D/Vt) − r̄(T − t)

σ
√
T − t

)
+

(
L

Vt

) 2r̄
σ2

N

(
log(L2/(DVt)) + r̄(T − t)

σ
√
T − t

)
.

Clearly this default probability is higher than the corresponding probability in the Merton model, which is
obtained as the special case L = 0. Note that the barrier option value is, unlike the vanilla call value, not
monotone in firm volatility σ. It follows that equity investors do not always benefit from an increase in asset
volatility, as in the classical Merton model. Note also that, when L ≥ D, bond investors are fully protected:
they receive at least the face value D upon default and the bond is not subject to default risk any more. The
corresponding payoff to bond investors at maturity is

min(VT ,D)I{τ>T} + VT I{τ≤T}

= D − (D − VT )+ + (VT −D)+I{τ≤T}.

This position is equivalent to a portfolio composed of a riskfree loan with face value D maturing at T , a short
European put on the firm with strike D and maturity T and a long European down-and-in call on the firm
with strike D and maturity T . Clearly it holds VT = ST + B(T, T ). The price of the bond can be derived
using the corresponding Black-Scholes formulae. Suppose now that 1 − q = y ∈ [0, 1] is the fraction lost in
case of default, i.e. if default is triggered the bondholders receive qVτ due to bankruptcy costs. This implies
that the price in t of the corporate bond is given by the following formula

B(t, T ) = E
Q
t

[
e−r(τ−t)qVτI{τ≤T} + min(VT ,D)e−r(T−t)I{τ>T}

]
. (1.11)

Deviations from priority can be taken into account with a different payoff distribution at V = L. For instance
we could assume4

Sτ = yVτ = yL,

3 Note that using the reflection principle we have

Q(τ > T ) = Q(mT
t > L)

= Q

[
min

t≤s≤T
(r̄(T − s) + σBT−s) > log(L/Vt)

]

= N

(
log(L/(Vt)) − r̄(T − t)

σ
√

T − t

)
+

(
L

Vt

) 2r̄
σ2

N

(
log(L/Vt) + r̄(T − t)

σ
√

T − t

)
.

4Again, if the default is triggered as soon as Vτ hits the barrier L × B(τ, T ), we could impose

Sτ = y × L × B(τ, T )

B(τ, T ) = q × L × B(τ, T ).
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i.e. we could assume a deviation from absolute priority by yL in favour of the shareholders. Note that
equation (1.11) can be adapted to every defaultable claim paying the amount X at maturity T and X ′ in
case of default before maturity. Taking into account the possibility of a stochastic risk-free interest rate, one
gets for the price in t, Ut of this derivative

Ut = E
Q
t

[
exp

(
−
∫ τ

t

rudu

)
X ′I{τ≤T} + exp

(
−
∫ T

t

rudu

)
XI{τ>T}

]
. (1.12)

If the amount X ′ is paid at maturity T in case of a default prior to maturity it is apparent that

Ut = E
Q
t

[
exp

(
−
∫ T

t

rudu

)
(
X ′I{τ≤T} +XI{τ>T}

)
]
. (1.13)

To solve the inconsistencies in the treatment of debt with multiple maturities of Merton model in Longstaff
and Schwartz (1995) default occurs at the first time that asset values reach a threshold level and at this time
all maturities still outstanding default simultaneously. The problem of no short maturity credit spreads is
eliminated by taking into account the possibility of early default which usually yields higher credit spreads.
In particular it is assumed that interest rates are stochastic and follow a Vasicek process with movements
that are correlated with the firm’s assets:

dVt = rtVtdt+ σV VtdBV (t)

drt = α(θ − rt)dt+ σrdBr(t)

dBV (t)dBr(t) = ρdt.

If during the life of the debt V reaches the default threshold, creditors receive a fraction q of the face value
D at maturity. Assuming also that the value of the firm is independent of the capital structure of the firm,
which implies that changes in capital structure (such as payments of coupon and principal) have no effect on
V , closed form solution for both fixed and floating rate debt are derived.
Merton’s model has been developed among the others by Collin-Dufresne and Goldstein (2001) who try to
overcome the problems of many structural models which preclude the firm issuing the debt from altering its
capital structure. It is well known, however, that firms adjust outstanding debt levels in response to changes
in firm value. The authors take into account this fact and propose a framework in which leverage ratios are
mean reverting. They assume that the dynamics for the firm value under the risk neutral measure is

dVt = (r − ζ)Vtdt+ σVtdBt, (1.14)

where ζ is the payout rate, i.e. the constant fraction of firm value paid out to security holders. The latter
quantity is assumed not to be affected by changes in leverage. Applying Ito’s Lemma the dynamics for
z = log V can be easily derived:

dzt =

(
r − ζ − σ2

2

)
dt+ σdBt.

As in Black and Cox (1976) default is assumed to be triggered the first time firm value reaches some exoge-
nously specified threshold. The dynamics for the log-default threshold, kt is as follows:

dkt = λ(zt − ν − kt)dt. (1.15)

This model implies that every time kt is less than (zt − ν) the firm wishes to increase kt and vice-versa.
In other words, the firm tends to issue debt when their leverage ratio falls below some target and is more
hesitant to modify maturing debt when the leverage is above that target. Note that the solution of (1.15) is

kt = [k0 + ν]e−λt + λ

∫ t

0

e−λ(t−s)zsds− ν =: Qt − ν
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and thus
Dt = ekt = eQt−ν

meaning that the book value of debt depends on the average of past log-firm values. The log-leverage is
Lt = kt − zt and its dynamics is

dLt = dkt − dzt = λ
(

L − Lt

)
dt− σdBt

where

L =
−r + ζ + σ2

2

λ
− ν.

Since the solution of this SDE is

Lt = e−λt
L0 + L[1 − e−λt] − σ

∫ t

0

e−λ(t−u)dBu,

we get

EQ [Lt|L0] =: M(t) = e−λt
L0 + L[1 − e−λt]

VarQ [Lt|L0] =: S2(t) =
σ2

2λ
[1 − e−2λt].

Starting from Ls we have

Lt = e−λ(t−s)
Ls + L[1 − e−λ(t−s)] − σ

∫ t

s

e−λ(t−u)dBu,

and thus

VarQ [Lt|Ls] =: S2(t− s) =
σ2

2λ
[1 − e−2λ(t−s)].

When Ls = 0
EQ [Lt|Ls = 0] =: L(t− s) = L[1 − e−λ(t−s)].

Default is triggered at the random time τ when Lt reaches zero for the first time. In event of default the
bondholders receive only the fraction 1 − y of the face value. Assuming constant interest rate r, equation
(1.13) entails the following time zero price for a defaultable zero coupon bond maturing at time t:

B(0, t) = e−rtEQ
[
I{τ>t} + (1 − y)I{τ<t}

]
= e−rt [1 − yQ(τ < t)] . (1.16)

To get the risk neutral probability of default before maturity, note that L is a Markov process with transition
density denoted as π(Lt, t|Ls, s). Define g (Ls = L, s|L0, 0) as the probability density that the first passage
time through the boundary L occurs at time s. It follows

π(Lt, t|L0, 0) =

∫ t

0

π(Lt, t; τ = s|L0, 0)ds+ π(Lt, t; τ > t|L0, 0)

=

∫ t

0

π(Lt, t| τ = s; L0, 0)π(τ = s; |L0, 0)ds+ π(Lt, t; τ > t|L0, 0)

=

∫ t

0

π(Lt, t|Ls = L, s)g (Ls = L, s|L0, 0) ds+ π(Lt, t; τ > t|L0, 0).

For Lt > L > L0 the last term vanishes and therefore

π(Lt, t|L0, 0) =

∫ t

0

π(Lt, t|Ls = L, s)g (Ls = L, s|L0, 0) ds. (1.17)
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This is because the the a continuous process starting below the boundary (L0 < L) and ending up above the
boundary (Lt > L) at some intermediate time s must touch the boundary L for the first time.
Integrating both sides of (1.17) by

∫∞
0

dLt and setting the default boundary L = 0 one gets

Q(Lt > 0|L0) =

∫ t

0

g (Ls = L, s|L0, 0) ds Q(Lt > 0|Ls = L = 0),

and therefore

N

(
M(t)

S(t)

)
=

∫ t

0

g (Ls = L, s|L0, 0) ds N

(
L(t− s)

S(t− s)

)
. (1.18)

To get a solution for the first passage density, the authors discretize time into n equal intervals of length
∆t = t/n. The integral on the right hand side of (1.18) is approximated by estimating values at the midpoint
of the interval. In particular defining

ai =
M(i∆t)

S(i∆t)
,

bi =
L(i∆t)

S(i∆t)

the first two terms from equation (1.18) can be approximated as

N(a1) = ∆t g
(

L∆t/2 = L,∆t/2
∣∣L0, 0

)
N(b1/2)

N(a2) = ∆t g
(

L∆t/2 = L,∆t/2
∣∣L0, 0

)
N(b3/2)

+∆t g
(

L3∆t/2 = L, 3∆t/2
∣∣L0, 0

)
N(b1/2).

Continuing in this manner one has n equations in the n unknowns

g
(

L(i−1/2)∆t = L, (i− 1/2)∆t
∣∣L0, 0

)
. i = 1, . . . , n

Going back to equation (1.16), if one defines

tj :=
jt

n
= j∆t,

it is apparent that

Q(τ < t) =: Q(L0, tj) =

j∑

i=1

qi

where
qi := ∆t g

(
L(i−1/2)∆t = L, (i− 1/2)∆t

∣∣L0, 0
)
.

Solving the linear system above one gets

q1 =
N(a1)

N(b1/2)

qi =
N(ai) −

∑i−1
k=1 qkN(bi−k+1/2)

N(b1/2)
i = 2, 3, . . . , n.

Since a coupon bond can be thought as a portfolio of discount bonds, the evaluation is straightforward.
Consider a coupon bond with promised coupon payment at dates tj , j = 1, . . . , N and face value one to be
paid in tN = T . When the interest rate is the constant r the time zero value of the bond is

CB(0, T ) =

N∑

j=1

Ce−rtj EQ
[
I{τ>tj} + (1 − ycoup)I{τ<tj}

]

+e−rT EQ
[
I{τ>T} + (1 − y)I{τ<T}

]

=

N∑

j=1

Ce−rtj [1 − ycoupQ(L0, tj)] + e−rT [1 − yQ(L0, T )].
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The analysis is extended to the case of stochastic interest rate. The process for z is

dzt =

(
rt − ζ − σ2

2

)
dt+ σdB1(t).

and a Vasicek model for the interest rate is assumed:

drt = α(θ − rt)dt+ ηdB2(t).

Besides it is assumed that the log-default threshold follows the process

dkt = λ[zt − ν − φ(rt − θ) − kt]dt

where φ is a non-negative parameter. Thus the drift of the log-default threshold is a decreasing function of
the spot rate. This is because debt issuances are likely to drop during high interest rate period. A closed
form solution for the price of the discount bond is derived as

B(0, T ) = EQ
[
e−

∫ T
0

rsds(1 − yI{τ<T})
]

= B(0, T )
[
1 − yQT (r0,L0, T )

]
,

where B(0, T ) is the price5 of a risk free bond:

B(0, T ) = eA(T )
α −r0B(T )

α ,

with

A(T )
α =

[
η2

2α2
− θ

]
T +

[
θ

α
− η2

α3

]
[1 − e−αT ] +

η2

4α3
[1 − e−2αT ]

and

B(T )
α =

1

α
(1 − e−αT )

The expression for QT (r0,L0, T ) is derived again by the means of the integral equation satisfied by the first
hitting time density.
The same idea is used in Leland and Toft (1996). They assume the dynamics (1.14) for the firm’s asset
and that default is triggered when V falls to the value constant L. The time zero price of a bond which
continuously pays the constant coupon flow c(t), has principal p(t) and pays the fraction q(t) of the asset
value L in case of default is

B(0, t) = c(t)

∫ t

0

e−rs[1 −G(Vs = L, s)]ds+ e−rsp(t)[1 −G(Vs = L, s)]

+ q(t)L

∫ t

0

e−rsg(Vs = L, s)ds (1.19)

5 If the model for the interest rate is specified as

drt = (α(t) − β(t)rt)dt + η(t)dBt

with α(t), β(t) and η(t) deterministic functions, then the price of the bond is

B(0, T ) = eA
(T )
K

−r0B
(T )
K ,

where

A
(T )
K =

1

2

∫ T

0
e2K(v)η2(v)

(∫ T

v
e−K(y)dy

)2

dv −
∫ T

0

∫ t

0
e−K(t)+K(u)α(u)dudt

B
(T )
K =

∫ T

0
e−K(t)dt

and

K(t) =

∫ t

0
β(u)du.
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where g(Vs = L, s) is again the density of the first passage for V to the boundary L and G(Vs = L, s) is the
cumulative distribution function of the first passage time to bankruptcy. The first term in the right hand
side of (1.19) is the discounted expected value of the coupon flow, paid at time s with probability 1 −G(s),
the second term is the discounted expected value of the principal repayment and the third term represents
the discounted expected value paid in case of bankruptcy. Integrating the first term in the right hand side
(1.19) by parts yields

B(0, t) =
c(t)

r
+ e−rt

[
p(t) − c(t)

r

]
[1 −G(t)] +

[
q(t)L− c(t)

r

]
H(t),

where

H(t) =

∫ t

0

e−rsg(Vs = L, s)ds.

Formulae for G(t) and H(t) are provided:

G(t) = N [h−(t)] + e−2abN [h+(t)]

H(t) = e(z−a)bN [q−(t)] + e−(z+a)bN [q+(t)]

where

q±(t) =
−b± zσ2t

σ
√
t

; h±(t) =
−b± aσ2t

σ
√
t

;

a =
r − ζ

σ2
− 1

2
; b = log

(
V0

L

)
;

and

z =

(
a2 +

2r

σ2

)1/2

.

Next, the firm is assumed to continuously issue new debt that it will redeem at par at maturity T if not in
bankruptcy. New bond principal is issued at a rate p = P/T per year where P is the total principal value of
all outstanding bonds. As long as the firm remains solvent the total outstanding debt will be P . The coupons
are paid at a rate of c = C/T per year, implying that the total coupon paid by all the outstanding bonds
is C per year. The fraction of firm asset value lost in bankruptcy is y and the remaining value, (1 − y)L is
distributed to bondholders. Equal seniority for all outstanding debt is assumed and therefore the recovery
rate per year is assumed to be q(t) = q/T , implying q = 1 − y. Thus the value of all outstanding bond is

D(V ;L, T ) =

∫ T

0

B(0, t)dt

=

∫ T

0

[
C

Tr
+ e−rt

(
P

T
− C

Tr

)
(1 −G(t)) +

(
1 − y

T
L− C

Tr

)
H(t)

]
dt

=
C

r
+

(
P − C

r

)[
1 − e−rT

rT
− I(T )

]
+

[
(1 − y)L− C

r

]
J(T ),

where

I(T ) =
1

T

∫ T

0

e−rtG(t)dt (1.20a)

J(T ) =
1

T

∫ T

0

H(t)dt. (1.20b)
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The integral (1.20a) can be solved by parts to get

I(T ) =
1

T

[
−1

r
e−rtG(t)

∣∣∣∣
T

0

+
1

r

∫ T

0

e−rtg(t)dt

]

=
1

rT

[
−e−rTG(T ) +

∫ T

0

e−rtg(t)dt

]

=
1

rT

[
H(T ) − e−rTG(T )

]
.

The integral in (1.20b) is not so straightforward but the authors show that

J(T ) =
1

zσ
√
T

(
−q−(T )e(z−a)bN [q−(T )] + q+(T )e−(z+a)bN [q+(T )]

)
.

The total value of the firm, v, is assumed to be the sum of the asset value and the value of tax benefit, less
the value of bankruptcy costs. Thus the value of equity is

S(V ;L, T ) = v(V ;L) −D(V ;L, T ).

The level L is determined endogenously using the equation

∂S(V ;L, T )

∂V

∣∣∣∣
V =L

= 0

This condition maximises with respect to L both the value of the equity and the value of the firm subject to
the condition

S(V ) ≥ 0 for all V ≥ L

and provide a closed form solution for the bankruptcy-triggering level L, which turns out to be independent
of time.
Firm’s value models are suitable if there exists a strong relationship between the prices of the different
securities issued by the firm. In this case these models perform very well when one wants to answer question
that arise from corporate finance, like the analysis of the relative powers of shareholders and creditors. The
weaknesses of these models are to be found in the difficulty to find a meaningful process for the firm’s value.
which is often not tradeable and therefore not observable. In fact it is rarely possible to know the market
value of the firm’s assets because the typical firm has numerous complex debt contracts outstanding traded
on an infrequent basis. This implies among the other things, that the rate of return for the firm’s asset and
hence the volatility cannot be computed.
Furthermore in some situations for the pricing of credit risk derivatives it could be important to consider
directly a stochastic process for the prices of defaultable bonds. This is the case of reduced-form models.

1.2 Reduced-form Models

In reduced-form models default is treated as an unpredictable event driven by a hazard-rate process, i.e. the
time of default is assumed to be the time of the first jump of a Poisson process. A Poisson process, {Nt}, with
intensity λ is defined as a non-decreasing integer-valued process with initial value N0 = 0, whose increments
are independent and satisfy for s > t

P (Ns −Nt = n) =
1

n!
[(s− t)λ]ne−(s−t)λ. (1.21)

To derive (1.21), assume that the probability of a jump in a small time interval ∆t is

P (Nt+∆t −Nt = 1) = 1 − P (Nt+∆t −Nt = 0) = λ∆t,
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so that more 1 jump cannot occur in [t, t+ ∆t]. Now subdivide the interval [t, s] in k subintervals of length
∆t = (s− t)/k). Assume that the probability of a jump in each of these subinterval is ∆tλ and that a jump
in a subinterval is independent of a jump in another subinterval. Then

P (Ns −Nt = n) =

(
k

n

)(
s− t

k
λ

)n(
1 − s− t

k
λ

)k−n

k→∞−→ 1

n!
[(s− t)λ]ne−(s−t)λ.

One can think of Nt as the process for the number of arrivals (in our case defaults) up to time t: it is a
process in the integers 0, 1, 2, . . . where the times of the jumps are T1, T2, . . .. Note that the inter-arrival times
of a Poisson process (Tn+1 − Tn) are exponentially distributed and the density is

P [(Tn+1 − Tn) ∈ (t, t+ dt)] = λe−λtdt.

A more realistic model for the number of defaults could be an inhomogeneous Poisson process, which has the
same properties of an homogeneous Poisson process except that the intensity is a function of time. Repeating
the construction used to get (1.21) yields

P (Ns −Nt) =
1

n!

(
−
∫ T

t

λudu

)n

exp

(
−
∫ T

t

λudu

)
,

i.e. the constant (s− t)λ is replaced by the integral
∫ s

t
λudu.

The first model presented in the following is the one proposed by Jarrow and Turnbull (1995). They first
analyze a two-period discrete time economy, with a default-free and corporate bonds (the latter issued by
the same firm). All the bonds have face value equal to one and maturity T = 1, 2. They define the function

e(t) = B(t, t),

which represents the time t payoff of the corporate bond. They first assume a binomial process for the spot
interest rate. Moreover they select a discrete time binomial process to approximate a continuous time Poisson
process. In particular, at time t = 1 default occurs with probability λµ0 and in this case the bondholders
will get the fraction q. The probability that default happens at time t = 2 conditional on the information
available up to time t = 1 is λµ1. If the firm defaults at time t = 1, it remains in default and the payoff is
again q. Thus

E
Q
0 [e(1)] = qλµ0 + (1 − λµ0), (1.22a)

E
Q
0 [e(2)] = qλµ0 + (1 − λµ0)[qλµ1 + (1 − λµ1)]. (1.22b)

Equation (1.22b) is derived from

E
Q
1 [e(2)] =

{
q if bankrupt at time 1

qλµ1 + (1 − λµ1) otherwise
.

An important assumption is the independence between the process for the spot interest rate and the
bankruptcy process under the risk neutral probability. It can be shown that this implies for t = 1, 2

B(t, T ) = B(t, T )EQ
t [e(T )]. (1.23)

We can rewrite (1.23) as

B(t, T ) = B(t, T ) [Qt(τ > T ) + q(1 −Qt(τ > T ))]

= B(t, T ) [q + (1 − q)Qt(τ > T )] .
(1.24)
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In a continuous time setting they start with a process for the forward rate6 for both the riskless and defaultable
bond. Moreover the function e(·) is specified as

e(t) =

{
q if t ≥ τ

1 if t < τ
,

where as usual τ is the time of default. They assume that τ has an exponential distribution over [0,∞)
with parameter λ and that the Poisson bankruptcy process has constant intensity µ under the risk neutral
probability. This implies the independence of the bankruptcy process from the default-free interest rate
process under the risk neutral probability, because in this case the time of bankruptcy has an exponential
distribution with parameter λµ, which is independent of the spot interest rate process. As a consequence,
equation (1.23) is still valid and it can be shown that

B(t, T ) = B(t, T )EQ
t [e(T )]

= B(t, T )

{
q if t ≥ τ

e−λµ(T−t) + q
(
1 − e−λµ(T−t)

)
if t < τ

.

Note that risk neutral probability of no-default at time T , conditional to the fact that no-default has been
triggered at time t is

Qt(τ > T ) = e−λµ(T−t).

To see that (1.24) is valid in a general setting, denote by β(t) the money market account process and by rt
the default-free spot rate. Clearly

β(t) =





exp
(∑t

i=0 ri

)
in discrete time

exp
(∫ t

0
rudu

)
in continuous time

,

and the price of the risk-free z.c.b. satisfies

B(t, T )

β(t)
= E

Q
t

[
B(T, T )

β(T )

]
,

which implies

B(t, T ) = E
Q
t

[
β(t)

β(T )

]
.

6The default-free forward rate is defined implicitly by

f(t, T ) ≡
{
− log

(
B(t,T+1)

B(t,T )

)
in discrete time

− ∂ log B(t,T )
∂T

in continuous time
.

The same definition applies also to the defaultable forward rate. Note that in the continuous case

B(t, T ) = exp

(
−
∫ T

t
f(t, u)du

)
.

Moreover the default-free spot interest rate can be obtained as

r(t) = f(t, t).

In fact, denoting by Q the risk neutral measure

∂

∂T
B(t, T )

∣∣∣∣
T=t

=
∂

∂T
E

Q
t

[
exp

(
−
∫ T

t
rudu

)]∣∣∣∣
T=t

= E
Q
t

[
−rT exp

(
−
∫ T

t
rudu

)]∣∣∣∣
T=t

= −rT

but also
∂

∂T
B(t, T )

∣∣∣∣
T=t

=
∂

∂T
exp

(
−
∫ T

t
f(t, u)du

)∣∣∣∣
T=t

= −B(t, T )f(t, T )|T=t = −f(T, T ).
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The price of the corporate z.c.b. is given by

B(t, T ) = E
Q
t

[
β(t)

β(T )

(
qI{τ≤T} + I{τ>T}

)]
,

and since the stochastic process for default-free spot rates and the bankruptcy process are statistically
independent under Q,

B(t, T ) = E
Q
t

[
β(t)

β(T )

]
E

Q
t

[
qI{τ≤T} + I{τ>T}

]
,

which implies (1.24).
It could be interesting to consider a slight modification to this model and consider the possibility of multiple
defaults. Assume that after the first default subsequent defaults may happen and every time there is a
default, a reorganisation takes place and the bondholders lose a fraction y of the face value of their claims,
but the claims continue to live and the issuer continues to operate. To model this situation, it is useful
to consider the inhomogeneous Poisson process {Nt} with possibly time varying intensity λt. Assuming a
stochastic risk-free interest rate rt and using (1.12) with X ′ = 0 and X = (1−y)NT the price of the corporate
bond is:

B(t, T ) = E
Q
t

[
exp

(
−
∫ T

t

rudu

)
(1 − y)NT

]
. (1.25)

Assuming again the independence of the bankruptcy process from the default-free interest rate process under
the risk neutral probability, (1.25) becomes

B(t, T ) = E
Q
t

[
exp

(
−
∫ T

t

rudu

)]
E

Q
t

[
(1 − y)NT

]
. (1.26)

Let us evaluate the second term of the right hand side of (1.26) when λt is constant, i.e. when the Poisson
process is homogeneous. We have

E
Q
t

[
(1 − y)NT

]
=

+∞∑

n=0

(1 − y)n 1

n!
[λ(T − t)]ne−λ(T−t)

= e(1−y)λ(T−t)e−λ(T−t) = e−yλ(T−t).

This implies that the price of the corporate bond is

B(t, T ) = B(t, T )e−yλ(T−t),

and the yield spread

s(t, T ) = − 1

T − t
log

(
B(t, T )

B(t, T )

)
= yλ.

For the inhomogeneous Poisson process again it is sufficient to replace (T − t)λ with the integral
∫ T

t
λudu

and therefore (1.26) becomes

B(t, T ) = E
Q
t

[
exp

(
−
∫ T

t

rudu

)]
exp

(
−y
∫ T

t

λudu

)

Plugging the second term in the expectation yields

B(t, T ) = E
Q
t

[
exp

(
−
∫ T

t

(ru + yλu)du

)]
. (1.27)
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Equation (1.27) tells us that the price of a defaultable bond of maturity T equals the price a default-free
bond of the same maturity in a world where the risk-free short rate is

Rt = rt + yλt.

A result similar to (1.27) can be found in Duffie and Singleton (1999). They denote by ht the hazard rate7

for default at time t and with yt the expected fractional loss in the market value of the defaultable claim if
default were to occur at time t, conditional on the information up to time t. Both this quantity are to be
considered under the risk neutral probability measure. They conclude, assuming the mean-loss rate8 process
htyt to be given exogenously, that under technical conditions, the t price of the claim with payoff X in T is

Ut = E
Q
t

[
exp

(
−
∫ T

t

Rudu

)
X

]
, (1.28)

where Rt = rt + htyt is the default-adjusted short rate process. This means that a bond may be priced as if
it were default-free, replacing r with R. Let us illustrate their model in a discrete time setting. Denote by ht

the conditional probability under Q of default between t and t+1 and by ϕt the recovery (in units of money)
in the event of default at time t. Consider a defaultable claim promising the amount Xt+T at maturity t+T .
If the firm has not defaulted by time t, then the price, Ut of the claim in t is given by the expected value of
e−rtϕt+1 in case of default between t and t+ 1 and the expected value of e−rtUt+1 otherwise. This means

Ut = htE
Q
t

[
e−rtϕt+1

]
+ (1 − ht)E

Q
t

[
e−rtUt+1

]
,

or equivalently
Ut = hte

−rtE
Q
t [ϕt+1] + (1 − ht)e

−rtE
Q
t [Ut+1] . (1.29)

The next step is to consider the “recovery of market value” hypothesis: the risk neutral expected recovery
at t is a fraction, 1 − yt, of the risk neutral expected survival-contingent market value at time t+ 1, i.e.

E
Q
t [ϕt+1] = (1 − yt)E

Q
t [Ut+1] . (1.30)

In a continuous time setting this hypothesis is written as

B(t, T ) = LτB(τ−, T ),

where B(τ−, T ) is the value of the corporate bond just before default. Note that this is equivalent to say that
the claim made by bondholders in the event of default is equal to the value of the bond immediately prior
to default whereas in Jarrow and Turnbull (1995) one has ϕt = (1 − yt)B(t, T ), where L is an exogenously
specified fractional recovery process and, as usual, B(t, T ) is the price at time t of an otherwise identical
default-free bond. This is called “recovery of treasury” hypothesis. An alternative assumption on the
recoveries to creditors during bankruptcy proceedings is the “recovery of face value” hypothesis: in case
of default the creditor receives the fraction y = 1 − q of face value immediately upon default. Plugging eq.
(1.30) in (1.29) yields

Ut = (1 − htyt)e
−rtE

Q
t [Ut+1] .

For annualized rates with small time periods, one can use the approximation ec ≃ 1 + c, to get

Ut = e−RtE
Q
t [Ut+1] , (1.31)

where Rt ≃ rt + htyt. Equation (1.31) implies

Ut = E
Q
t


exp


−

T−1∑

j=0

Rt+j


Xt+T




7 The hazard rate ht can be thought so that ht∆t is the probability of default between times t and t + ∆t as seen at time t
assuming no default between time zero and time t.

8 Note that this is a measure for the exposure to default.
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which is the discrete time version of (1.28). In the continuous time setting the authors introduce a vector of
state variables Zt driving the term structure of defaultable bond prices. In practice these are to be inferred
from the existing level of credit spreads. These state variable are assumed to follow a vector stochastic
differential equation that generalizes the Cox, Ingersoll, and Ross model for the instantaneous spot rate to
the vector case. Let A a diagonal matrix of speeds of mean reversion and Θ a vector of long term levels
to which the state variables are reverting. Let Σ be the covariance matrix between the state variables and
Bt be a standard vector Brownian motion of dimension equal to that of Z. Thus the stochastic differential
equation governing the evolution is given by:

dZt = A(Θ − Zt)dt+ Σdiag(Zt)
1/2dBt. (1.32)

Both the instantaneous spot rate and the mean-loss rate are assumed to be linear in the state variables:

rt = δ0 + δ′Zt,

htyt = γ0 + γ′Zt.

Since the price of a defaultable bond requires that we evaluate the expectation of an exponential of the
integral of a linear function of the state variables, these prices may be obtained in closed form by evaluating
the joint characteristic function. For the process (1.32) it is possible to derive in closed form an exponential
affine expression for the joint characteristic function of the integral of the process:

EQ

[
exp

(
iξ

∫ t

0

Zudu

)]
= exp [a(t, ξ) + b(t, ξ)′Z0] ,

where the coefficient function a(t, ξ) and b(t, ξ) may be explicitly solved for. Equation (1.27) can be obtained
also using a PDE approach. As usual denote by {Nt} a Poisson process with intensity λ(t). Assume a
jump-diffusion model for the equity under the risk neutral measure:

dS = [r + λ(t)]Sdt+ σdB − SdN. (1.33)

This model is consistent with the risk neutral valuation9 as

E[S] = rSdt.

Moreover, the instantaneous variance of the equity return process under jump-to-default will be σ2 +λ since

E

[(
dS

S

)2
]

= (σ2 + λ)dt.

Therefore, if λ changes over time, the equity process will have stochastic variance even when diffusion volatility
σ is constant. Denote by B = B(S, t) the debt of maturity T and assume that on default the bond pays a
recovery fraction 1− y of its value just before default, which is the “recovery of market value” condition. Let
us write

dS = dSc − SdN

where Sc is the continuous part of S. To derive the dynamics of the bond price, we need the modified version
of Ito’s lemma suitable for jumps in process:

dB = BSdSc +Btdt+
1

2
BSS(dSc)2

+[B(S − dN, t) −B(S, t)]dN.

9 It is worth to summarise here the rule of thumbs:

(dN)2 = dN E(dN) = λdt

(dt)2 = (dN)(dB) = 0 (dB)2 = dt.
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Note that the last term is
(1 − y)B −B = −yB

if there is a jump in the interval of length dt. Therefore it holds

dB =

[
BS(r + λ)S +

1

2
BSSσ

2S2 +Bt

]
dt

+BSσSdB − yBdN.

Since in a risk neutral world the bond must earn the risk free rate of return it follows

E[dN ] = rDdt

and thus B must fulfil

(r + yλ)B = BS(r + λ)S +
1

2
BSSσ

2S2 +Bt.

Using the Feynman-Kac formula the solution to the PDE is exactly (1.27). It is natural to assume that
default intensity λ is inversely related to the level of the stock price S. This is because as the stock price
falls, leverage will increase, and λ will increase, resulting also in higher variance of the stock price. From
equation (1.27), given the assumption that λ is inversely related to S, it is easy to show that debt value
is an increasing and concave function of equity S. Since the firm value is the sum of debt and equity, it
follows that the debt will be concave in the firm value as well. This corresponds to what is seen in structural
models: recall equation (1.4) and notice that the negative position in the put (a convex function) makes debt
a concave function of firm value.
Note that, since equity value and firm value specifications are reflections of each other, we could begin with
firm value and derive the resultant stock value process. For instance let

dV

V
= µdt+ ηdB + (Y − 1)dN.

In this formulation Y −1 represents the percentage change from the jump in firm value, meaning that in case

of default firm value V moves to V Y . Denoting by ℓ = B
V the leverage ratio and assuming again the RMV

hypothesis with zero recovery for the shareholders, the percentage change in firm value is

dV

V
dN =

Vdef

V
− 1 = (1 − y)ℓ− 1

because the firm value in case of default is

Vdef = Sdef +Bdef = Bdef = (1 − y)B.

We can now apply the jump-extended Ito’s lemma to get the dynamics for the equity:

dS = µSdt+ ηSdB + {S[(1 − y)ℓ− 1]V − S}dN
= µSdt+ ηSdB − SdN

where µS and ηS are derived using Ito’s lemma. The term S[(1− y)ℓ− 1]V is zero because recovery value is
less than debt value. However starting from the dynamics for the equity (1.33), since the identity V = S+B
holds, we can derive the process for the firm value as

dV = dB + dB

=

[
(1 +BS)(r + λ)S +

1

2
BSSσ

2S2 +Bt

]
dt

+(1 +BS)σSdB − (yB + S)dN.
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This means that the local volatility of dV/V is (1 + BS)σS
V , which is not a constant, even if σ is constant.

Thus, an implication of the model is that the volatility of firm value changes over time. It is possible to show
that, keeping constant the face value of the debt,

lim
S→∞

(1 +BS)
σS

V
= σ.

The explanation for this result is that if the firm is almost all equity, then its volatility will be that of equity.
The same idea of an analysis based on the stochastic process for the equity can be found also in Das and
Sundaram (2005). As in the reduced-form approach, they describe default likelihood by the means of a
hazard-rate process. From the structural model approach, they borrow the boundary conditions on equity in
the event of default. Hence default is identified with zero equity value. The model for the evolution of equity
prices is based on a trinomial branching process with two non-default branches and one absorbing default
branch. Given the stock price at t the evolution over the next period is

S(t+ ∆t) = S(t) exp[σsXs(t)
√

∆t],

where Xs(t) is a discrete random variable taking on values in the set {+1,−1,−∞} and σs is the the
parameter governing the volatility of the equity process on the non-default path. When Xs(t) → −∞ the
firm suddenly defaults and its stock price goes to zero. Next, an univariate Heath, Jarrow, and Morton lattice
for the evolution of the term structure is considered. Forward rates are assumed to follow the process

f(t+ ∆t) = f(t, T ) + α(t, T )∆t+ σ(t, T )Xf

√
∆t,

where the deterministic functions of time α and σ are the drift and the volatility of the process Xf is a random
variable taking values in the set {−1,+1}. The two processes for the term structure and the defaultable
equity price are connected together on a bivariate lattice with 6 emanating branches, i.e. 6 different states
are possible at each node. The next step requires the specification of the joint process requires a probability
measure over the random vector [Xs(t),Xf (t)]. Basically the probability measure is chosen so that normalized
equity prices and bond prices are martingales. This is achieved by setting

E

[
S(t+ ∆t)

S(t)

]
= E[exp(σsXs(t))] = exp(r(t)∆t),

E[Xf (t)] = 0,

Var[Xf (t)] = 1.

The next condition is on the correlation:

Corr(Xs,Xf ) = ρ.

Rather than adding an extra dimension to the lattice model by embedding a separate process, one-period
default probability functions at each node on the bivariate lattice are looked at as function of equity prices and
interest rates at each node. This is because equity prices already reflect credit risk, and default probabilities
are empirically known to be connected to the term structure.
Some papers developed within the reduced-form framework use a rating-based approach in which default is
attained through changes in credit ratings driven by a Markovian transition matrix. Among the others it is
worth citing Das and Tufano (1996), Jarrow et al. (1997) and Duffee (1998).
In particular in Jarrow et al. (1997) the distribution for the default time is modeled via a discrete time, time-
homogeneous Markov chain on a finite state space S = {1, . . . ,K}. S has to be interpreted as the space of
the possible credit classes, so that the state 1 represents the highest class, K− 1 the lowest and K represents
bankruptcy. The Markov chain {ηt : 0 ≤ t ≤ T ∗} is specified under the market probability by the K ×K

transition matrix M = [mi,j ]i,j=1,...,K with mi,j ≥ 0 for all i, j, i 6= j and mi,i ≡ 1−∑K
j=1
j 6=i

mi,j for all i. The

state K is assumed to be absorbing, i.e. mK,i = 0 for all i 6= K and mK,K = 1. mi,j represents the probability
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under the market measure of going from state i to state j in one time step. Under the equivalent martingale
measure, however, the transition probability from the state i time at time t to the state j time at time t+ 1
can depend on the entire history of the process up to time t. Hence, under the martingale probabilities, the
process need not be Markov. Therefore the transition matrix is M̃t,t+1 = [m̃i,j(t, t+ 1)]i,j=1,...,K where for
every t ≥ 0

m̃i,j(t, t+ 1) ≥ 0 i, j i 6= j

m̃i,i(t, t+ 1) ≡ 1 −
∑K

j=1
j 6=i

m̃i,j(t, t+ 1)

m̃K,i(t, t+ 1) = 0 m̃K,K(t, t+ 1) = 1

m̃i,j(t, t+ 1) > 0 ⇔ mi,j > 0 for 0 ≤ t ≤ T ∗ − 1.

To facilitate empirical implementation the following assumption is made:

m̃i,j(t, t+ 1) = πi(t)mi,j for all i, j, i 6= j, (1.34)

where πi(t) is a deterministic function of time such that m̃i,j(t, t+1) ≥ 0 for all i, j, i 6= j and
∑K

j=1
j 6=i

m̃i,j(t, t+

1) for i = 1, . . . ,K. The proportionality adjustments πi(t) are used to transform the actual probabilities to
those used in valuation and can be interpreted as risk premia. The independence of j in the π’s implies that
moving from i to 1 receives the same risk premium as moving from i to K. Note that πi(t) ≥ 0 for all i and
t and πK(t) ≡ 1. Besides we can restate the relationship between M̃ and M as follows:

M̃t,t+1 − I = Π(t)[M − I],

where I is the K ×K identity matrix and

Π(t) = diag(π1(t), . . . , πK−1(t), 1).

Now, given this structure, it is straightforward to compute the risk neutral probability of default occurring
after date T for a firm in the class i at time t:

Qi
t(τ > T ) =

K−1∑

j=1

m̃i,j(t, T ) = 1 − m̃i,K(t, T ). (1.35)

Cleary (1.35) implies

QK
t (τ > T ) = 0 for all 0 ≤ t ≤ T ≤ T ∗. (1.36)

Note that the matrix M̃t,T = [m̃i,j(t, T )]i,j=1,...,K satisfies:

M̃t,T =

T−t−1∏

h=0

M̃t+h,t+h+1.

To obtain the t price of a of a zero-coupon bond issued by a firm in credit class i at time t assuming that if
bankrupt, the firm pays only q < 1, just plug (1.35) in (1.24). To get an expression for the credit risk spread,
evaluate first the forward rate:

f i(t, T ) ≡ − log

(
B

i
(t, T + 1)

B
i
(t, T )

)

= f(t, T ) + I{τ>t} log

(
q + (1 − q)Qi

t(τ > T )

q + (1 − q)Qi
t(τ > T + 1)

)
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The first term in the right hand side is due to the fact that it is assumed that bondholders will receive the
amount q for sure at the maturity of the contract if bankruptcy has occurred prior to time t. Note that from
(1.36) one gets fK(t, T ) = f(t, T ). The spread is simply

si(t, T ) =

{
I{τ>t} log

(
q+(1−q)Qi

t(τ>T )

q+(1−q)Qi
t(τ>T+1)

)
for i = 1, . . . ,K − 1

0 for i = K
.

Moreover the change in the firm’s forward rate over the interval [t, t+ 1] can be derived as follows. Consider
a firm whose time t credit rating ηt = i. Then

fηt+1(t+ 1, T ) − f i(t, T ) = [f(t+ 1, T ) − f(t, T )]

+
[
sηt+1(t+ 1, T ) − si(t, T )

]

for ηt+1 ∈ {1, . . . ,K} with pseudo-probabilities m̃i,ηt+1
(t, t + 1). The first component of the change in

the risky firm’s forward rates is due to changes in the default-free forward rate structure and a shortening
of time to maturity, whereas the second one is due to changes in the default probability arising from an
unpredictable change in credit class and a (predictable) shortening of the time to maturity. This risk has at
most K different outcomes and to hedge this credit class risk, in general, one needs at most K of this firm’s
credit risky securities.
Finally for the spot rate we note that Qi

t(τ > t) = 1 and Qi
t(τ > t+ 1) = 1 − m̃i,K(t, t+ 1) to get

ri(t) = r(t) + I{τ>t} log

(
1

1 − (1 − q)m̃i,K(t, t+ 1)

)
.

Again, rK(t) = r(t). We have seen that, given estimates of the empirical transition matrix M, and the risk
premium πi(t) for 0 ≤ t ≤ T ∗ − 1, one can easily derive the price of the risky zero-coupon bonds. However
one may be interested in deriving the risk premium given the term structure of credit-risky zeros. Suppose
also the recovery rate q is known. Rewriting (1.24) as

B
i
(t, T ) = B(t, T )

[
1 − (1 − q)Qi

t(τ ≤ T )
]

and simple algebra yields

Qi
0(τ ≤ T ) =

B(0, T ) −B
i
(0, T )

(1 − q)B(0, T )
(1.37)

for i = 1, . . . ,K and T = 1, . . . , T ∗

Since
Qi

0(τ ≤ 1) = m̃i,K(0, 1) = πi(0)mi,K ,

it follows form (1.37)

πi(0) =
B(0, T ) −B

i
(0, T )

(1 − q)mi,KB(0, T )
.

This allows us to evaluate
M̃0,1 = I + Π(0)[M − I].

In order to obtain the matrix Π(1), first note that

M̃0,2 = M̃0,1M̃1,2 = M̃0,1 [I + Π(1)(M − I)] ,

and that

Qi
0(τ ≤ 2) = m̃i,K(0, 2) =

K∑

j=1

m̃i,j(0, 1)m̃j,K(1, 2) =
K∑

j=1

m̃i,j(0, 1)πj(1)mj,K .
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Now it is sufficient to solve the linear system

K∑

j=1

m̃i,j(0, 1)πj(1)mj,K =
B(0, 2) −B

i
(0, 2)

(1 − q)B(0, 2)

where the only unknowns are the variables πj(1). This procedure is repeated for t = 1, . . . , T ∗ − 1. It can be

shown that if M̃
−1

0,t exists and its entries are m̄i,j(0, t), then

πi(t) =
K∑

j=1

m̄i,j(0, t)
B(0, t+ 1) −B

i
(0, t+ 1)

(1 − q)B(0, t+ 1)mi,K
.

In a credit risk framework, it could be useful to extend the Heath, Jarrow, and Morton model to the
case of a defaultable bond. Using the usual notation, f i(t, T ) is the forward rate prevailing at time t for a
defaultable bond in the rating class i and f(t, T ) is the forward rate for risk-free bond. It is assumed that
under the market measure

f i(t, T ) = f i(0, T ) +

∫ t

0

µi(u, T )du+

∫ t

0

σi(u, T )dBu.

To derive the price of the bond or other credit derivatives, it is important to understand the dynamics of the
forward rate under the risk neutral measure. In other words one needs to derive some restrictions on the drift
and the diffusion that make discounted prices martingales under the risk neutral measure. By recovering the
prices from forward rates, and applying Ito’s lemma one deduces that the martingale condition determines
completely the forward rate drifts µi(u, T ). Under the “recovery of market value” hypothesis, i.e. when
recovery in default is defined as a proportion of the predefault price of the bond, this drift restriction is seen
to be identical to its counterpart in default free bond pricing:

µi(t, T ) = σi(t, T )

(∫ T

t

σi(u, T )du

)′

.

Under the “recovery of treasury” hypothesis when recovery is a proportion of the price of a Treasury or
default free bond, this restriction is not so straighforward. In particular

µi(t, T ) = σi(t, T )

(∫ T

t

σi(u, T )du

)′

+ ht(1 − yt)
B

i
(t, T )

B(t, T )

[
f i(t, T ) − f(t, T )

]
.

It could be very important to impose these drift restrictions in simulations or in the construction of risk
neutral trees to determine claim valuations.
Another interesting model is proposed in Madan and Unal (1998). Basically they model the hazard rate of
default as a decreasing function of equity value measured in units of the money market account, S∗(t) =
S(t)/β(t). This discounted price is modeled as a martingale:

dS∗(t) = σS∗(t)dB(t).

The intensity of default is modeled by

ht = φ(S∗(t)) =
c

(
log
(

S∗(t)
δ

))2

where c is a positive constant and δ is a parameter to be empirically estimated. If δ > S∗(t) then h is an
increasing function of the equity value and thus increases in equity value are seen as signals of greater risk
increasing the value of equity viewed as an option. On the other hand if δ is below the current equity values
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then h is a decreasing function of S∗ and the hazard rate tend to infinity as S∗ approaches δ. Further, the
authors show that under Q:

G(t, T ) := QT (τ > T ) = E
Q
t

[
exp

(
−
∫ T

t

hudu

)]
. (1.38)

Since we are in a Markov setting, it follows that this survival probability is of the form

G(t, T ) = ψ(S∗, t).

Define

g(S∗, t) = exp

(
−
∫ t

0

hudu

)
ψ(S∗, t) =: ϕ(S∗, t)ψ(S∗, t).

Note that since this quantity is Ft-measurable we have

g(S∗, t) = E
Q
t

[
exp

(
−
∫ T

0

hudu

)]
.

Since for s < t

EQ
s [g(S∗, t)] = EQ

s

[
exp

(
−
∫ T

0

hudu

)]
= g(S∗, s),

it follows that g(S∗, t) is a Q-martingale.
Let us apply Ito’s lemma to get

dg = ψS∗ϕdS∗ +
1

2
ψS∗S∗ (dS∗)2 + [ψt − φ(S∗)ψ] dt

= ψS∗ϕσS∗dB +
1

2
σ2 (S∗)2 ψS∗S∗dt+ [ψt − φ(S∗)ψ] dt.

Since g(S∗, t) is a Q-martingale, ψ satisfies the partial differential equation

1

2
σ2 (S∗)2 ψS∗S∗ + ψt = φ(S∗)ψ

subject to the boundary condition
ψ(S∗, T ) = 1.

The solution is given by

ψ(S∗, t) = Ga

(
2

d2(S∗, T )

)

d(S∗, T ) =
log(S∗/δ)

σ
√
T

− σ
√
T

2

a =
2c

σ2

where Ga(y) satisfies the ordinary differential equation

y2G′′ +

(
3y

2
− 1

)
G′ − aG = 0

subject to G(0) = 1, G′(0) = −a.
Although reduced form models have many advantages (the most important is that they generate realistic
short maturity credit spreads), they lack a structural definition of the default event because the hazard rate
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is specified as an exogenous process. Therefore no explanation of the presence of structural changes in firm-
specific variables is given.
Madan and Unal (2000) bridge the gap between the two streams of literature. They propose a structural
hazard rate model in closed form: default is assumed to be a consequence of a single jump loss event that
drives the equity value to zero and requires cash outlays that cannot be externally financed. Therefore in this
model, default arises from the arrival of an unforeseen event, e.g. the outcome of lawsuits, sudden default
of a creditor, supplier or a customer and catastrophes in production lines. Moreover they assume that the
defaultable bond with face value 1, maturity T in case of default at time τ pays at maturity the amount
q = 1 − y. From (1.13) it follows:

B(t, T ) = E
Q
t

[
exp

(
−
∫ T

t

rudu

)
(1 − yI{τ≤T})

]
.

While Jarrow and Turnbull (1995) evaluate this expectation assuming the independence under Q between
the interest rate process and the default process, Madan and Unal (2000) allow for dependence between the
two and use the rikless bond as a numeraire, rather than the money market account. In other words they
use the T -forward measure10, QT , and obtain

B(t, T ) = B(t, T )EQT

t

[
1 − yI{τ≤T}

]

= B(t, T )
[
1 − yQT (τ ≤ T )

]
.

As a consequence
B(t, T )

B(t, T )
= QT (τ > T ) +

[
1 −QT (τ > T )

]
q.

Now, it is easy to show that (1.38) is true also under QT because of the continuity of dQ/dQT = B(t, T )/β(t)

Ut

β(t)
:= G(t, T ) = E

Q
t

[
exp

(
−
∫ T

t

hudu

)]

= E
QT

t

[
B(t, T )/β(t) exp

(
−
∫ T

t

hudu

)]
.

Since

E
QT

t

[
B(t, T )/β(t) exp

(
−
∫ T

t

hudu

)]
=

Ut

B(t, T )

it follows

G(t, T ) = E
QT

t

[
exp

(
−
∫ T

t

hudu

)]
= E

Q
t

[
exp

(
−
∫ T

t

hudu

)]
. (1.39)

Therefore, according to (1.39) the survival probability is obtained as the expected value of the promised
payoff of the corporate bond discounted at the hazard rate. In contrast, the price of the riskless bond is given
by the expected value of the promise payoff discounted by the risk-free rate rt. Since

B(t, T ) = B(t, T ) −B(t, T )y[1 −G(t, T )]

and thus
B(t, T )y[1 −G(t, T )] = B(t, T ) −B(t, T ),

10 Under this measure every claim settling at time T ′ with payoff X has price in t < T ′

Ut =

{
B(t, T )EQT

t

[
B−1(T ′, T )X

]
if T ′ ≤ T

B(t, T )EQT

t

[
B−1(T, T ′)X

]
if T ′ ≥ T

.
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the quantity 1 −G(t, T ) = QT (τ ≤ T ) can be thought as the “price of default” for a given loss level y.
Next, the assumption that the firm faces at the random time z the payment of the amount D is made.
Default is triggered if D dominates the existing continuously evolving equity, S. The equity value of the firm
is given by the value of its assets less its liabilities. The firm holds cash assets with market value V , that
does not depend on the current level of interest rates and other assets depending on r with current market
value g(t, r). Therefore

S = V + g(t, r) − v̄(t, r),

where v̄(t, r) denotes the liabilities obtained as the present value of promised payment discounted at the
risk-free rate r. When the terms g(t, r) and v̄(t, r) have different sensitivities to r a duration gap arises.
Default arises when D > ST and a payment at time T is due, i.e. when a loss of magnitude D dominates the
existing equity. Now note that

ht = h(V, r) =
P [z ∈ (t, t+ dt) and D ≥ S]

dt

and assume that the loss arrival process is Poisson with constant rate (per unit time) λ and the loss distri-
bution, FD(·) is exponential with mean loss µD. It follows

h(V, r) = λ [1 − FD(S)] = λ [1 − FD(V + g(t, r) − v̄(t, r))] .

A first order approximation of this function around logV0 and r0 yields

h(Vt, rt) ≃ h(V0, r0) − λfD(S0)V0(∆ log V ) − λfD(S0)(g
0
r − v̄0

r)(∆r)

with ∆ log V = log Vt− log V0, ∆r = rt−r0 and g0
r − v̄0

r denotes the partial of g− v̄ with respect to r evaluated
at r0. Since

fD(u) =
1

µD
exp

(
− d

µD

)
,

and simple algebra yields
ht = a− b log Vt + crt (1.40)

where

a = λ [1 − FD(S0)] + b log V0 − cr0,

b =
λ

µD
exp

(
− S0

µD

)
V0,

c = − b

V0
(g0

r − v̄0
r) =

b

V0
D

and D is the firm’s net asset duration.
Equation (1.40) represents a two factor structural hazard rate model. The two factor are the firm’s cash
asset, V , and the level of default free interest rate. The parameters involved may be interpreted in terms of
firm specific features such as the equity level and the duration D .
Assuming a geometric Brownian motion for the firm’s non-financial asset value

dV = rV dt+ σV V dBV

and a Vasicek interest rate model
dr = α(θ − r)dt+ σrdBr,

with
ρdt = dBV dBr,

simple closed forms are derived for the prices of defaultable coupon bonds.
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1.3 Fractional Brownian Motion and Long Range Dependence

in Finance

Fractional Brownian motion has been introduced in the seminal paper Mandelbrot and Van Ness (1968)
already in late sixties and has been widely studied for instance in Sottinen and Valkeila (2001) and Sottinen
(2001). Before stating its properties it is important to introduce formally the concept of long range depen-
dence. Let X = {Xn}n∈N be a stationary process with autocorrelation function (ACF), ρ(·). We say that X
exhibit the statistical property of long range dependence if

lim
n→∞

ρ(n)

cρn−α
= 1. (1.41)

This means that the dependence between Xt and Xt+n varies slowly as n tends to infinity. In particular
the autocorrelation function decays at a hyperbolic rate, which is much slower than the geometric rate of
processes such as finite-order stationary arma processes. Sometimes the long range dependence is defined
via the equivalent requirement:

∞∑

n=−∞
ρ(n) = ∞,

which means that the ACF decays so slowly that the autocorrelations are not summable. Fractional Brownian
motion is part of a more general class of processes that exhibit long range dependence under certain conditions.
These process, called self-similar processes, were introduced by Kolmogorov (1961) as models for turbulence.
A centered process X = {Xt}t∈[0,T ] is said to be self-similar with Hurst exponent H if Xt has the same
distribution of a−HXat for all a > 0 i.e.

Xt
d
= a−HXat ∀a > 0.

Alternatively one can require that the finite-dimensional distributions satisfy

(THXt1 , . . . , T
HXtn

)
d
= (XTt1 , . . . ,XTtn

)

for every T > 0, any choice of ti ≥ 0, i = 1, . . . , n and n ≥ 1. If, in addition, the process is square integrable
and has stationary increments,

Cov(Xt,Xs) =
Var(X1)

2

(
t2H + s2H − |t− s|2H

)
. (1.42)

In fact, assuming for simplicity E(Xt) = 0, it follows

Cov(Xt,Xs) =
1

2

{
E(X2

t ) + E(X2
s ) − E

[
(Xt −Xs)

2
]}

=
1

2

{
E(X2

t ) + E(X2
s ) − E

(
X2

t−s

)}
,

which implies (1.42).
Because of (1.42), one usually assumes H ∈ (0, 1). The cases H < 0 and H > 1 are impossible, the former
implying Var(X0) = ∞ because from (1.42) Var(Xt) = t2HVar(X1) and the latter implying

Corr(Xt,X1) =
t2H − (t− 1)2H

tH
> 1

for t big enough. Moreover the cases H = 0 and H = 1 are not interesting because they imply respectively
X = 0 identically and Corr(Xt,X1) = 1 for t big enough.
To show the connection to long range dependence letX be a centered square integrable process with stationary
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increments. Consider the process {Yn}n∈N with Yn = Xn −Xn−1. Then the autocorrelation function for the
stationary increments is

ρ(n) =
Cov(Yt+n, Yt)

Var(Yt)
=

Cov(Xt+n −Xt+n−1,Xt −Xt−1)

Var(Xt −Xt−1)

=
1

2

[
(n+ 1)2H + (n− 1)2H − 2n2H

]
.

It follows

lim
n→∞

ρ(n)

H(2H − 1)n2H−2
= lim

m→0

(1 +m)2H + (1 −m)2H − 2

2H(2H − 1)m2

Hop.
= lim

m→0

(1 +m)2H−1 − (1 −m)2H−1

2(2H − 1)m

Hop.
= lim

m→0

(1 +m)2H−2 + (1 −m)2H−2

2
= 1.

Therefore it H ∈
(

1
2 , 1
)
, the increment process {Yn}n∈N exhibit long range dependence with α = 2− 2H and

cρ = H(2H − 1).
It is worth noticing, however, that there exist centered processes with stationary and independent increments
satisfying the self-similarity property for H > 1

2 , for instance the α-stable Lévy processes with H = 1
α . These

processes, however, have infinite variance.

1.3.1 Properties

Now we can introduce formally the notion of fractional Brownian motion. It can be thought as a moving
average of dBt, in which the past increments of the standard Brownian motion are weighted by the kernel
(t− s)H− 1

2 . In particular the fractional Brownian motion admits the following representation:

BH,K(t) = K · V 1/2
H

∫

R

ft(s)dBs, (1.43)

with

ft(s) =
1

Γ(H + 1/2)

{
|t− s|H−1/2I(−∞,t](s) − |s|H−1/2I(−∞,0](s)

}

where
VH = Γ(2H + 1) sin(πH)

is a normalization factor such that E
[
(BH,K(t) −BH,K(0))2

]
= K2. K is a scale factor and for K = 1 the

process is called standard and denoted by BH . Thus the fractional Brownian motion is a Gaussian process
with zero mean, stationary increments, variance

E
[
B2

H,K(t)
]

= K2t2H

and covariance

E [BH,K(t)BH,K(s)] =
K2

2

(
t2H + s2H − |t− s|2H

)
.

Therefore the parameter H negotiates whether the fractional Brownian motion has independent increments
(H = 1/2), positive covariance between two increments over non-overlapping time intervals (1/2 < H ≤ 1),
or negative covariance between increments ( 0 < H < 1/2). Another possible representation of the standard
fractional Brownian motion, that involves integrating over the finite interval [0, t], is the following

BH(t) =

∫ t

0

zt(s)dBs, (1.44)
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where

zt(s) = c

[(
t

s

)H−1/2

(t− s)H−1/2 −
(
H − 1

2

)
s1/2−H

∫ t

s

uH−3/2(u− s)H−1/2du

]

and c is a normalization constant depending on H. Another property, useful to define the stochastic integral
with respect to the fractional Brownian motion is the so-called index of p-variation. Let Π: 0 = t0 < t1 <
. . . < tn = T be a partition of the interval [0, T ]. Let

vp(BH ,Π) := lim
|Π|→0

n∑

k=1

|BH(tk) −BH(tk−1)|p

be the p-variation of the fractional Brownian motion over the the interval [0, T ], where |Π| = max1≤k≤n(tk −
tk−1). The index of p-variation is simply the smallest p > 0 for which the p-variation is finite, i.e.

v(BH , [0, T ]) := inf{p > 0 : vp(BH , [0, T ]) <∞}

if this set is non-empty and v(BH , [0, T ]) = ∞ otherwise. Now, it is possible to show that for H ∈
[
1
2 , 1
)

one
has

v(BH) = v(BH , [0, T ]) =
1

H
.

As a recap, here are reported the properties of the standard fractional Brownian motion BH with self-
similarity parameter H ∈

(
1
2 , 1
)
:

• BH(t) has stationary increments;

• BH(0) = 0 and E[BH(0)] = 0;

• E[B2
H(t)] = |t|2H for all t;

• E [BH(t)BH(s)] = 1
2

(
t2H + s2H − |t− s|2H

)
for all t and s;

• BH(t) is Gaussian;

• BH(t) has continuous sample paths;

• If H 6= 1
2 , then BH(t) is not a semimartingale;

• If H 6= 1
2 , then BH(t) is non-Markovian;

• BH(t) has index of p-variation v(BH) = 1
H .

Since for a semimartingale M , v(M) ∈ [0, 1]∪2, it follows that BH is not a semimartingale unless H = 1/2.
As a consequence one cannot hope to use the Ito theory to define the stochastic integral with respect to BH .
To solve this problem two different integrals have been proposed. The first is based on pathwise, i.e. ω-by-ω,
integrals very close to the Riemann-Stieltjes integrals, which leads for “reasonable” integrands f(t, ω) to

∫ T

0

f(t, ω)δBH(t) := lim
|Π|→0

n∑

k=1

f(tk−1, ω)(BH(tk) −BH(tk−1)).

The second one is called the Wick-Ito integral and has the form

∫ T

0

f(t, ω)dBH(t) := lim
|Π|→0

n∑

k=1

f(tk−1, ω) ⋄ (BH(tk) −BH(tk−1)),
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where ⋄ denotes the Wick product (see Hu and Øksendal, 2003). First of all, define

φ(s, t) = H(2H − 1)|s− t|2H−2

and consider the space

L2
φ(R) :=

{
f : R → R so that |f |2φ :=

∫∫

R2

f(s)f(t)φ(s, t)dsdt <∞
}

equipped with the inner product

(f, g)φ :=

∫∫

R2

f(s)g(t)φ(s, t)dsdt.

It is possible to show that L2
φ(R) is separable Hilbert space (i.e. has countable yet dense subsets) and that

Γφ[f(u)] = cH

∫ ∞

u

(t− u)H−3/2f(t)dt

with cH =

√
H(2H−1)Γ( 3

2−H)

Γ(H− 1
2 )Γ(2−2H)

, is an isometry from L2
φ(R) to L2(R). To define the integration of the function

f ∈ L2
φ(R), let the sequence of approximating functions {fm(t)} m→∞−→ f(t) be fm(t) =

∑
i a

(m)
i I[ti,ti+1)(t).

For these simple integrands set
∫

R

fm(t)dBH(t) =
∑

i

a
(m)
i (BH(ti+1) −BH(ti)).

Define ∫

R

f(t)dBH(t) =

∫

R

f(t)δBH(t) = lim
m→∞

∫

R

fm(t)dBH(t).

The limit exists in L2(µφ) because of the isometry

E

[(∫

R

fm(t)dBH(t)

)2
]

= |fm|2φ,

where µφ is the probability law of BH .

1.3.2 Long Range Dependence in Finance

Although introduction of the Geometric Brownian motion-based Black-Scholes formulation of vanilla options
by Black, Scholes, and Merton marked the advent of mathematical finance, it is well known that their model
has many limits. Remember that, the Black & Scholes pricing model assumes the following dynamics for the
asset S:

dSt = St (µdt+ σdBt) , (1.45)

where Bt is a standard Brownian motion. As a consequence the log-returns

Rtk
:= log

Stk

Stk−1

=

(
µ− σ2

2

)
(tk − tk−1) + σ(Btk

−Btk−1
)

are independent normal random variables. However, in recent years, many empirical evidence have shown
that this model cannot describe the behaviour of financial assets. There are two main reasons to explain
why: the empirical distributions of the log-price variations are far from being normal and the actual returns
show some form of dependence. To explain the first reason, many empirical studies indicate that log-returns



32 Credit Risk Pricing: Review of the Literature

are not normal especially when the observation intervals tk − tk−1 are short: after the 1987 market crash,
industry and researchers began to take note of the heavy-tail distribution of financial assets and several
models has been developed using for instance heavy-tailed Lévy processes. The second problem leads to
long-range dependence. For many decades, the general consensus has been to assume a Markovian process
for the asset, implying that all information is contained within current asset price. However, many studies
of financial time series indicate that the stock market prices exhibit the so-called long range dependency
property. To deal with this feature, stochastic volatility models have been introduced. Even though these
models can produce quasi long-range dependence, they are very difficult to implement and often do not lead
to tractable pricing solutions as they lead to high-dimensional PDE’s with variable coefficients. On the other
hand, fractional Brownian motion offers a natural way of modelling long-range dependence giving tractable
solutions to pricing financial instruments. The dependence structure of log-returns is therefore described via
the Hurst parameter H. The assumption of a geometric Brownian motion (gBm) for the firms’ underlying
assets, eq. (1.1), proposed in the original paper by Merton could be the explanation for the poor performance
of structural model in predicting credit spreads.
With this problem in mind, Della Ratta and Urga (2005) try to understand whether credit spreads are
short or long memory processes, and whether, in the latter case, they are stationary or nonstationary. The
theoretical model for the dynamics of the credit spread is described by the following stochastic differential
equation:

dst = µ(st, t)dt+ σ(st, t)dBH(t), (1.46)

where st is the relevant spread, µt and σt are the (possibly time-varying) drift and diffusion term respectively,
and BH is a standard fractional Brownian motion characterized by a slowly decaying autocorrelation function
depending on the Hurst exponent H ∈ (0, 1]. Their dataset consists of daily observations for the 30-year
Historical US Treasury Constant Maturity Yields and Moody’s Aaa, Aa, A and Baa Long-Term Corporate
Bond Yield Averages over the period from December 1992 to November 2003. The latter are average yields
calculated by Moody’s for bonds in a given rating class. Spreads are calculated as the difference between
corporate yields and Treasury yields, as well as between different corporate yields. First difference of the series
involved are also taken into account. The use of rating-specific indices rather than data on individual issues
is justified by the fact that the market for individual corporate bonds is often illiquid which can make credit
spreads not a perfect indicator of credit risk. Moreover, though individual bonds may exhibit inconsistencies
between spreads and ratings because ratings adjust slowly to changes in firm value, on average ratings tend
to be good indicators of credit quality.
First they show, using a Jarque-Bera test that all the series involved are far from being normal. Moreover
differences in credit spreads, are positively skewed, implying that the loss tail of the return distribution
contains more probability than the normal distribution, and leptokurtic. This last feature implies a small
chance of very large returns combined with a large probability of small returns, which is very common in
credit risk.
Besides, using the Ljung-Box test it is shown that yields and spreads are not serially correlated. As far as
first differences are concerned, yield differences are not serially correlated, whereas spread differences have a
significant negative first order autocorrelation coefficient.
Two empirical counterparts for the model (1.46) are considered. The first is based on a fractional white noise
for a discrete time series:

yt − µ = (1 − L)−dǫt, ǫt ∼WN(0, σ2) (1.47)

where L is the lag operator, i.e. Lyt = yt−1, {ǫt}t is a sequence of i.i.d.(0, σ2) random variables (White
Noise) and d is the difference parameter which is allowed to take on non-integer values only in the interval
(−1/2, 1/2) to guarantee covariance stationarity. Clearly yt ∼ I(d). When a fractionally integrated series yt

has long memory, the Hurst parameter can be related to the difference parameter in (1.47) via

d = H − 1

2
.

If d = 0, or equivalently H = 1
2 , yt = ǫt and thus the process is serially uncorrelated, whereas if d > 0,

implying H > 1
2 , the process has long memory. Note that assuming µ = 0 the process (1.47) can be written
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in another form. Using the binomial theorem for integer powers

(1 − L)d =
∞∑

k=0

(−1)k

(
d

k

)
Lk

and allowing d to be non-integer

(1 − L)d =

∞∑

k=0

Γ(k − d)

Γ(−d)Γ(k + 1)
Lk

and thus a fractional white noise process becomes

∞∑

k=0

Γ(k − d)

Γ(−d)Γ(k + 1)
yt−k = ǫt.

Alternatively it can be seen as an infinite order MA process:

yt = B(L)ǫt

with

B(L) =

∞∑

k=0

Γ(k + d)

Γ(d)Γ(k + 1)
Lk.

In every case the autocovariance is

γk =
σ2Γ(1 − 2d)Γ(k + d)

Γ(d)Γ(1 − d)Γ(k + 1 − d)
.

Note that
γk ≃ ck2d−1

for some constant c as k → ∞.
The model (1.47) can be generalized to the Autoregressive Fractionally Integrated Moving Average process.
An arfima(p, d, q) process is defined as

φ(L)(1 − L)d(yt − µ) = θ(L)ǫt, (1.48)

where φ(L) and θ(L) involve autoregressive and moving average coefficients of order p and q respectively:

φ(L) = 1 −
p∑

i=1

φiL
i

θ(L) = 1 +

q∑

i=1

θiL
i,

with roots lying outside the unit circle and d can be non-integer. Besides, an arfima(0, d, 0) is equivalent
to model (1.47). Again for d 6= 0 the process exhibits long memory. In particular, if d > 0, the sum of the
autocorrelations diverges to infinity, the dependence is positive and the long memory is called persistent. On
the contrary, when d < 0 the sum of the autocorrelations converges to zero, the dependence is negative and
the long memory is called antipersistent (or mean reverting).
To test for the presence of long memory in the series of yields and spreads, the method suggested in Geweke
and Porter-Hudak (1983) is typically used. The main idea of this procedure is to assume that the the spectral
density11 in the neighbourhood of zero frequency is

f(λ) = C

[
4 sin2

(
λ

2

)]−d

= C
∣∣1 − e−iλ

∣∣−2d
, (1.49)

11 The spectral density is defined as the Fourier transform of the autocovariance function γ(n):

f(λ) =
1

2π

+∞∑

n=−∞

γ(n)e−inλ,



34 Credit Risk Pricing: Review of the Literature

for some unknown constant C. Now consider the Fourier transform and the periodogram

ω(λ) =
1√
2πT

T∑

t=1

yte
itλ (1.50)

I(λ) = |ω(λ)|2 . (1.51)

where T is the number of observations and evaluate these quantities and (1.49) at the harmonic ordinates

λj =
2π

T
j. (1.52)

Taking the logarithm of both sides of (1.49) and adding log I(λj) to both sides one gets the following regression
model:

log f(λj) = c+ daj + Uj , j = 1, 2, . . . ,m

where m is a bandwidth parameter,

Uj = log

{[
4 sin2

(
λj

2

)]d

I(λj)/C

}
+ η

is the disturbance term,
c = logC − η

and

aj = − log

[
4 sin2

(
λj

2

)]
. (1.53)

η = 0.5772 the Euler-Mascheroni constant12. Hence the fractional difference parameter is estimated by
least squares. Geweke and Porter-Hudak (1983) showed that using a periodogram estimate of f(λj), the

least squares estimate d̂ using the above regression is normally distributed in large samples if m = Tα with
0 < α < 1:

d̂ ∼ N

(
d,

π2

6
∑m

j=1(aj − ā)2

)

where

ā =

∑m
j=1 aj

m
.

Under the null hypothesis of no long memory (d = 0), the statistic

d̂

(
π2

6
∑m

j=1(aj − ā)2

)−1/2

has a limiting standard normal distribution.
Denote by d′ the long memory parameter of the first differences of the series and by T the number of

and vice versa

γ(n) =

∫ π

−π
f(λ)einλdλ.

Note that since ∀n ∈ N one has γ(n) = γ(−n), sin(−nλ) = − sin(nλ), cos(−nλ) = cos(nλ) and einλ = cos(nλ) + i sin(nλ), we
can rewrite the spectral density as:

f(λ) =
1

2π

[
ρ(n) + 2

+∞∑

n=1

γ(n) cos(nλ)

]
.

12 It holds

η = lim
n→∞

(
n∑

k=1

1

k
− log k

)
.
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observations. It follows that the long memory parameter of the series in levels is d = d′ + 1. Della Ratta and
Urga (2005) test the null hypothesis that d′ = 0 and show show that the estimated value of d′ for the first
differences of yields and spreads is not statistically different from zero when m = T 0.5 or m = T 0.6 and the
null d′ = 0 is therefore not rejected. Thus the estimated values for d are not statistically different from one,
implying that yields and spreads are long memory and nonstationary processes. However, by looking at the
point estimates, they notice that the d′ estimate for the first differences of yields is generally negative, whilst
the d′ estimate for the first differences of spreads is generally positive. Therefore first differences of spreads
are more likely to be long memory than first differences of yields.
To have a confirmation of this, the procedure proposed in Robinson (1995b) is considered for the first
differences of the series. In Robinson (1995b) the fractional difference parameter is estimated by least squares
using the regression:

log f(λj) = c+ daj + Uj , j = l, 2, . . . ,m

The parameter l is such that 0 ≤ l < m < T and is chosen to trim low frequencies out. The corresponding
estimator is called log-periodogram regression estimator (LPE) and is given by

d̂(l) =

m∑

j=l+1

(aj − ā) log I(λj)/Sl

with aj given by (1.53) and

ā =

∑m
j=l+1 aj

m− l
,

Sl =
m∑

j=l+1

(aj − ā)
2
.

It can be shown that this estimator is more efficient than the GPH estimator and robust to nonnormality.
Results obtained in this way are consistent with the GPH results and show that yields and spreads are long
memory non stationary and their first differences are stationary.
To estimate the parameter d in the arfima(p, d, q) framework the AML (approximate maximum likelihood)
procedure of Haslett and Raftery (1989) is used. Note that this procedure as well as the one proposed by
Sowell (1992) (exact maximum likelihood) can be used for a stationary arfima model (−1/2 < d < 1/2).
However, for many economic and financial time series, the data usually seem to lie on the borderline separating
stationarity from non-stationarity. As a consequence, one usually needs to decide whether or not to difference
the original time series before estimating a stationary arfima model. To solve this problem Beran (1995)
extended the estimation of arfima models for any d > −1/2 by considering the following model:

φ(L)(1 − L)δ((1 − L)nyt − µ) = θ(L)ǫt,

where −1/2 < δ < 1/2 φ(L) and θ(L) are defined as above. The integer n is the number of times that yt

must be differenced to achieve stationarity. Thus the difference parameter is given by d = δ + n. The choice
n = 0 or n = 1 is usually satisfactory for modelling economic and financial time series.
For each yield and spread series and their first differences the long memory parameter d is estimated for
the nine combinations of arima(p, d, q) models where p and q are between 0 and 2. Then the model which
minimises the Bayesian Information Criterion is chosen. From the empirical results, the best model for
the series of yields is an arfima(0, 1, 0), which confirms the long memory nonstationary property of these
series. As a consequence the best model for the first differences of yields is an arfima(0, 0, 0), implying that
these series are short memory stationary. As far as the series of spread are concerned, the best model is an
arfima(2, d, 0), with d always statistically greater than 1. The series of spreads over Treasury are therefore
long memory nonstationary processes. As a consequence the differenced series are long memory stationary
processes and this is confirmed by the fact that the best model for the first differences of the spreads over
Treasury is an arfima(2, d, 0), where d is statistically greater than 0 and less than 1/2. However, for the
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series of spreads between different corporate yields the authors seem to get contradictory results. In fact only
one series over six is a long memory stationary process while the other series are short memory stationary
processes. Thus these results seem to contradict the one obtained from the GPH and Robinson analysis but
the authors justify by noticing that for each of the spread series the sum of the AR coefficients is close to
unity, which indicates that the nonstationarity feature highlighted in the GPH and Robinson results has in
fact been captured by the AR coefficients rather than by the d parameter in the arfima framework. Finally
the first differences of spreads between corporate yields are all short memory stationary processes, with some
differences in the estimated long memory parameter (in three cases d is not statistically different from zero
and in the other three cases − 1

2 < d < 0). Moreover the authors point out that, since 9 out of 10 spread series
are driven by an arma(1, 1), and in light of estimation for d, it seems reasonable to assume that spreads are
driven by a mixture of short memory and long memory processes.
Credit spread indices are investigated also in Prigent et al. (2001). The data used in this paper consist of
3561 daily observations from January 1986 to the end of March 2000. Moody’s indices for seasoned corporate
bond yields with a Aaa or Baa rating and the 10 year (constant maturity) Treasury yield constructed by
the Federal Reserve have been collected. As usual spreads are calculated as the difference between corporate
and Treasury yields. As in Della Ratta and Urga (2005), the authors prefer to model directly the spreads
using equation (1.46). The justification of this choice is that when one constructs first a model of risk-free
rates and a model of yields on defaultable securities, and then derives spreads as a difference between the
two, error in both models add up and this may lead to an inaccurate description of the process. Moreover
modelling directly the spreads allows to capture both the liquidity and the credit risk component of credit
spreads. To determine the behaviour of the drift and diffusion terms nonparametric techniques are applied.
First of all the densities of the spread processes are estimated using a Gaussian kernel estimator:

f̂i(x) =
1

nhi

n∑

t=1

φ

(
x− si

t

hi

)
,

where si
t is the time t spread for a bond in the class i, φ(·) is the standard normal density function, hi is the

window width and n the number of observations. The window width is chose as

hi = cσ̂in
−1/5

where c is an arbitrary constant (depending on the level of smoothness one is willing to achieve for the
density) and σ̂i is the empirical standard deviation of spreads of class i. Next, the estimators corresponding
to first-order and second-order approximation proposed in Stanton (1997) for the drift term and the diffusion
are evaluated. From the analysis of these result it is clear that the drift is not constant in the level of spreads
but tend to decrease with spread levels. Since the value of the drift is close to zero for values of the spread
around their mean, there is clear evidence of mean reversion. Moreover they find that the mean reversion
is faster in Aaa bonds than in Baa bonds. The justification is that Aaa spreads are explained in a greater
proportion by liquidity and therefore they revert more quickly to their average than lower rate bonds. This
fact has been acknowledged by many practitioners who suggest that, when one expects the end of a crisis
(where spreads are far above their long-term mean) it is reasonable to invest first in Aaa bonds (which recover
faster) and then move progressively to more speculative securities.
Also a parametric estimation of corporate credit spread is proposed following the model of Chan et al. (1992):

si
t+1 − si

t = αD + βDs
i
t + σD

∣∣si
t

∣∣γD
ǫt+1,

where ǫt+1 are assumed to be i.i.d. normal variables. When αD > 0 and βD < 0 this is a mean reverting
process with −βD < 0 as speed of mean reversion and −α/βD as long term mean. The assumption of
normality makes the estimation of the parameters quite straightforward.
To conclude, the paper proposes a new model for credit spread indices based on these empirical findings and
which guarantees the positivity of the spreads and at the same time captures jumps and mean reversion:

dYt = α(θ − Yt)dt+ σdBt + dNt,
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where Yt = log st, Bt is the standard Brownian motion and Nt is a compound Poisson process.
Using more or less the same econometric methodology of Della Ratta and Urga (2005), Cheng (2004) investi-
gates long memory dynamics in the daily and weekly exchange rates of six Asia Pacific countries: Australia,
Japan, New Zealand, Singapore, South Korea and Taiwan. Three semiparametric frequency domain esti-
mators, GPH, LPE and the Gaussian semiparametric estimator (GSE) proposed by Robinson (1995a), and
an exact maximum likelihood estimator are used assuming that the processes involved are described by a
fractional white noise. Af far as the GSE technique is concerned, as in (1.49) it is assumed that

lim
λ→0+

f(λ)

Gλ1−2H
= 1

for 0 < G <∞ (recall that d = H − 1/2). Clearly, this is a consequence of (1.41) and implies that for a long
memory process the spectral density tends to infinity at zero frequency. Now consider the objective function

Q(G,H) =
1

m

m∑

j=1

{
logGλ1−2H

j +
λ2H−1

j

G
I(λj)

}
,

where the bandwidth parameter m is an integer less than n/2. Parameters are estimated as

(Ĝ, Ĥ) = arg min
0<G<∞
0<H<1

Q(G,H).

This implies that an approximate form of frequency domain Gaussian likelihood is maximized.
Although there exist considerable disparities between the results obtained by the four estimators in Cheng
(2004), the author finds strong evidence of long memory in all the exchange rates considered in case of weekly
data. On the other hand, he generally fails to detect long memory when daily exchange rate series are con-
sidered.
Many studies indicate positive long range dependence, i.e. H > 1

2 : for instance for the daily exchange rate

between USD and JPY between January 1972 and December 1990 the estimated13 Hurst index is Ĥ = 0.642;
Peters (1994) confirms positive long range dependence for the Dow Jones and the S&P500.
Crato and Rothman (1994) investigate the dynamics of Sterling pound quarterly exchange rates against the
currencies of nine countries (US dollar, Japanese yen, deutschmark, French franc, Italian lira, Canadian dol-
lar, Dutch guilder, Swiss franc and Swedish kroner) over the period January 1973- March 1990 and find long
memory and mean reversion in five of the nine series studied.
Cheung and Lai (2001) examine for long memory dynamics in the yen-based real exchange rates of 8 industri-
alised countries and, using the frequency domain maximum likelihood estimator of Fox and Taqqu (1986) on
monthly exchange rates from 1973 to 1997, find long memory and mean reversion behaviour in all 8 exchange
rate series.
However Jacobsen (1996) does not find evidence of LRD investigating return series of stock indexes of some
European country, U.S. and Japan. To reach these results the author uses first a test based on the rescaled
range statistic proposed in Hurst (1951). This statistic is simply the range of partial sums of deviations of a
time series from its mean, rescaled by its standard deviation. Let {yt} be a time series, for instance the series
of the returns from a stock and ȳn = 1

n

∑n
t=1 yt the average return after n periods. Consider the statistic

Rn, defined by the difference between the maximum and the minimum accumulated deviation from the mean
after n periods, i.e.

Rn = max
1≤k≤n

k∑

t=1

(yt − ȳn) − min
1≤k≤n

k∑

t=1

(yt − ȳn) .

This statistic is made dimensionless by dividing by the usual standard deviation:

Sn =

√√√√ 1

n

n∑

t=1

(yt − ȳn)
2
.

13 Comprehensive surveys for the techniques developed to estimate H can be found in Taqqu et al. (1995) and Taqqu and
Teverovsky (1996).



38 Credit Risk Pricing: Review of the Literature

Listing 1.1: Rescaled Range Statistic: Matlab Code

1 function V=rescaled_range(y)

2 n=length(y);

3 R=max(cumsum(y-mean(y)))-min(cumsum(y-mean(y)));

4 V=R/((n -1)^.5* std(y));

and Rn/Sn is called the rescaled range or simply the R/S statistic.
The asymptotic distribution of the normalized rescaled range

Vn =
1√
n

Rn

Sn
=

Rn√∑n
t=1 (yt − ȳn)

2

under the assumption that the yt are i.i.d. is

FVn
(v)

n→∞−→ FV (v) = 1 + 2
∞∑

j=1

(1 − 4j2v2)e−2(jv)2 , (1.54)

where the random variable V is the range of a Brownian bridge on the unit interval. Listing 1.1 shows the
Matlab code to compute the Rescaled Range statistic.
It is possible to show that

E(V ) =

√
π

2
and E(V 2) =

π2

6
.

Using the asymptotic p-values that can be found for instance in Lo (1991, Table II p. 1288), one can test
the null hypothesis of no long term dependence. Although this procedure gives reliable results even if the
time series exhibits skewness and kurtosis, it has a major drawback. The rescaled range is very sensitive to
short range dependence. To see this, consider the simple form of short range dependence and let Xt be a
stationary AR(1) process:

Xt = ρXt−1 + ηt, ηt ∼WN
(
0, σ2

η

)
, |ρ| ∈ (0, 1).

It can be shown that under this AR(1) process the limiting distribution of Vn/
√
n is ξV , where ξ =√

(1 + ρ)/(1 − ρ). Thus under short term dependence, the statistic is biased implying that any incompatibil-
ity between the data and the predicted behaviour of the R/S statistic under the null hypothesis need not be
attributed to the long memory property but may be a symptom of short term dependence. In particular Lo
(1991) proves that in case of short time dependence, the limiting distribution of the rescaled range changes
by a multiplicative constant depending on the short term dependence structure. To solve this problem the
modified rescaled range is introduced. Let {yt} be a strong-mixing process14

yt = µ+ ǫt

where, as usual ǫt is a zero mean random variable. Under the null that {yt} is short term dependent, the
asymptotic distribution of the statistic

Vn,q =
Rn√
nσn,q

is again (1.54) and in particular

lim
n→∞

P {Vn,q ∈ [.809, 1.862]} = 0.95.

14 See Lo (1991) for the details. However here it is sufficient to know that the strong-mixing property implies a form of
asymptotic independence.
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Listing 1.2: Modified Rescaled Range Statistic: Matlab Code

1 function V_q=mod_rescaled_range (y,q)

2 n=length(y);

3 deviations=y-mean(y);

4

5 R=max(cumsum(deviations ))-min(cumsum(deviations ));

6 for t=1:q

7 g(t)= deviations(t+1:n)'* deviations(t:n-1)/n;

8 end

9 g=g';

10

11 sigma_q =((n-1)/n*var(y)+2*(1 -(1:q)/(q+1))*g)^.5;

12 V_q=R/(n^.5* sigma_q );

Vn,q is called (normalized) modified rescaled range statistic (MRS) and the term in the denominator which
replaces the standard deviation, is

σ2
n,q =

1

n

n∑

t=1

(yt − ȳn)
2

+
2

n

q∑

t=1

wt(q)

[
n∑

s=t+1

(ys − ȳn) (ys−t − ȳn)

]

= S2
n + 2

q∑

t=1

wt(q)γ̂t,

where S2
n is the usual estimator of the sample variance, ρ̂ is the estimator of the sample autocovariance of y

γ̂t =
1

n

n∑

s=t+1

(ys − ȳn)(ys−t − ȳn) t = 1, . . . , q

and

wt(q) = 1 − t

q + 1
.

This means that the statistic σ2
n,q involves not only the sum of squared deviations of yt but also its weighted

autocovariances up to lag q. The weights are such that σ2
n,q is positive. Note that σ2

n,q is an estimator of 2π
times the unnormalized spectral density function of yt. The intuition behind this statistic is the following. If
the series is subject to short term dependence, then the variance of the partial sum is not simply the sum of
the variance, but also includes autocovariances. Listing 1.2 shows the Matlab code to compute the Modified
Rescaled Range statistic.

The interval [.809, 1.862] can be used as as the 95% (asymptotic) acceptance region for testing the null
hypothesis

H0 = {no long-range dependence, i.e., H = 0.5}

against the composite alternative

H1 = {there is long-range dependence, i.e. 1/2 < H < 1}.

However this procedure presents the drawback that one has to choose the parameter q. If one chooses small
values for q, not all the short term dependence is captured and hence the modified rescaled range statistic
may continue to give biased result. On the contrary, choosing too large values for q may make the statistic
Vq insensitive to long memory. This could influence both the actual size of the test, P (reject H0|H0), and its
power, P (reject H0|H1). In particular Willinger et al. (1999) show that for large values of q,

Vn,q ≃ q1/2−H .
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This means that, when H > 1/2,the test statistic Vn,q decreases as q increases and, for q large enough , it
will be well within the confidence interval for the null hypothesis, i.e., Vn,q ∈ [.809, 1.862].
To solve this problem one may compute the classical rescaled range statistics under particular models of
short term dependence, for instance an AR(1) or a MA(1) model. To be more precise, first one imposes
an AR(1) or a MA(1) model for the short term dependence and then applies the statistic Vn,0 to the time
series of the corresponding residuals. Although in this case one takes a strong position on the form of short
term dependence which need not be correct, this solution may be helpful when when the modified rescaled
range statistic shows mixed results on the existence of long term dependence, i.e. when rejection of the null
hypothesis of no long term dependence depends on the choice of q. Once the short term dependence model
has been chosen, then it is possible to analyse the residuals for long term dependence using again the rescaled
range statistic.
Going back to Jacobsen (1996), particular models of short term dependence are imposed to estimate the
Hurst exponent using the graphical technique proposed by Mandelbrot and Wallis (1969), the so called R/S
analysis. Hurst (1951) empirically found that, as n→ ∞ the relationship

E

[
Rn

Sn

]
= a1n

H (1.55)

holds for some positive finite constant a1 that does not depend on n. For a short range dependent process it
has been shown that

E

[
Rn

Sn

]
= a2n

1/2 (1.56)

when n → ∞. The discrepancy between (1.55) and (1.56) is generally referred to as the Hurst effect or the
Hurst phenomenon. Therefore, it is possible to hypothesize a relationship of the form

log

[
Rn

Sn

]
= log a+H log n. (1.57)

The analysis based on (1.57) was proposed by Mandelbrot and Wallis (1969) and can be described as follows.
First of all, the original sample of T observations is subdivided into K blocks, each of size n = ⌊T/K⌋. For
instance, if one has a series of 480 monthly returns, then it could be divided into K = 80 blocks considering
six months lags (n = 6). The next step is to evaluate the rescaled range statistic in each interval {y1, . . . , yn},
{yn+1, . . . , y2n}, . . ., {yjn+1, . . . , y(j+1)n}, . . ., {y(K−1)n+1, . . . , ynK} and average the values obtained. Let
Q(n) be this average, i.e.

Q(n) =
1

K

K−1∑

j=0

Rj,n

Sj,n
,

where Rj,n and Sj,n denote the range and the standard deviation for the jth interval of length n:

Rj,n = max
1≤k≤n

k∑

t=1

(yjn+t − ȳj) − min
1≤k≤n

k∑

t=1

(yjn+i − ȳj)

Sj,n =

√√√√ 1

n

n∑

i=1

(yjn+i − ȳj)
2
.

and

ȳj =
1

n

n∑

i=1

yjn+i.

This procedure is repeated for different lags n. The Hurst exponent can hence be obtained as

H = lim
n→∞

log[Q(n)]

log n
.
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Listing 1.3: The graphical technique of Mandelbrot and Wallis (1969): Matlab Code

1 function H=Mandelbrot_Wallis (y)

2 T=length(y);

3

4 for n=2:T

5 K=floor(T/n);

6 R_S=zeros(K,1);

7 for j=1:K

8 R_S(j)= rescaled_range(y((j-1)*n+1:j*n));

9 end

10 Q(n-1)= mean(R_S);

11 end

12 Q=Q';

13

14 B=regress(log(Q),[ones(T-1,1),log ([2:1:T] ')]);

15 H=B(2);

and its estimate can be obtained from the slope of the following regression

log[Q(n)] = α+ β log n n = 2, . . . , T

using ordinary least squares. See Listing 1.3 for the Matlab code.
It is well known that the range Rn for a sequence of independent Normal random variables approaches√

n for large n. As a consequence the Hurst exponent is asymptotically close to 1/2 for an independent
process. Again, in case of positive or negative long term dependence H will converge to values larger or
smaller than 1/2. In case of short term dependence H would converge to 1/2. The R/S analysis has some
advantages over other methods such as the analysis of autocorrelations (for instance it can be used if the time
series exhibits large skewness and kurtosis), and, if compared to Lo’s method that only indicates whether
long-range dependence is present or not, it provides an estimate albeit rough of the Hurst parameter.
The dataset used in Jacobsen (1996) consists of monthly (continuously compounded) return series of stock
market indexes of the Netherlands, Germany, the U.K., Italy, France, the U.S. and Japan. over the period
December 1952 through December 1990 (456 observations) . Using the methodology described before for
these data the author does not find evidence of long range dependence. Only in the cases of Italy and
Germany the rescaled range statistic suggests long range dependence but the author explains that this is
probably due to the presence of short term dependence. Besides he points out that the R/S analysis is biased
in the case of short term dependence as well. In fact after adjusting for short term dependence the estimates
for the Hurst exponent are lower than the ones for the original series.
The same result has been reached by Hiemstra and Jones (1997). Analysing N = 1, 952 common stocks
and using the modified rescaled range approach, they find little evidence of long memory. Their dataset
consists of daily return of stocks listed on the New York and American Stock Exchanges over the period July
2, 1962 to December 31, 1991. Only those stocks for which there are 750 or more contiguous stock-return
observations are included in the sample. Returns from firm i are adjusted for both dividends and stock splits
and are given by

ri,t =
ri,t · fi,t + di,t

pi,t
− 1, for i = 1, . . . , N and t ∈ Ti = {τ1, . . . , τni

}

where ni ≥ 750 denotes the length of the series corresponding to the firm, Ti the set of days for which returns
are observed, pi,t the last sale price at time t, di,t a cash adjustment and fi,t a price adjustment factor at time

t. The MRS methodology is applied to the series using a variety of q-length, qi =
⌊
n

1/4
i

⌋
,
⌊
n

1/3
i

⌋
,
⌊
n

1/2
i

⌋
and

q∗i =

⌊(
3ni

2

)1/3(
2ρ̂

1 − ρ̂2

)2/3
⌋
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where ⌊x⌋ denotes the largest integer less than or equal to x and ρ̂ is, as usual, the first order sample
autocorrelation estimated from the series. The last length is based on a data-dependent formula from Andrews
(1991) and is proved to perform well when the data is generated by an AR(1) process.
In Mandelbrot (1967) empirical studies based on the classical R/S analysis lead the author to suggest that
representative values of the Hurst parameter for asset returns might be around H = 0.55. Mandelbrot’s
empirical findings were essentially confirmed by a later large-scale study by Greene and Fielitz (1977) who
found significant long range dependence in many series of securities. In particular they used the classical R/S-
method on 200 daily stock return series of securities listed on the New York Stock Exchange and reported that
many of the series are characterized by long-range dependence. Lo (1991) himself, using his modified R/S-
statistic and the CRSP daily stock returns from 1962 to 1987 (6400 observations), re-examined the question
of long-run memory in asset returns raised in Greene and Fielitz (1977). Analyzing the entire series, as well
as fractions of it (1/2 and 1/4 of the original series), and using q = 90, 180, 270 and 360 trading periods, Lo’s
main finding is that the daily stock returns do not exhibit long-range dependence. Moreover, Lo observed
that the values of the test-statistic Vn,q do not change much for the different values of q, which he takes as
strong supporting evidence that the test statistic can be trusted. Lo attributes the findings of Greene and
Fielitz (1977) to the fact that the classical R/S analysis is sensitive to the presence of short-range dependence
and concludes that traditional short-range dependent models are adequate to describe actual stock returns.
However the analysis of Lo is reconsidered in Willinger et al. (1999). They point out that, in his analysis
of the CRSP data, Lo relies exclusively on the modified R/S-statistic, and, as pointed out earlier, Vn,q may
be not reliable and has a strong preference for accepting the null hypothesis of no long-run memory, if used
without other methodologies. The authors using the same dataset as in Lo (1991), i.e. the daily CRSP data
for the equal-weighted returns indices over the period 1962-1987, find an estimate of the Hurst parameter
H of about 0.62. But as H-values are very low, the evidence is not absolutely conclusive. However they
argue that Lo’s conclusion is the result of the excessively conservative nature of his proposed test-statistic in
rejecting the null hypothesis of no long-range dependence. More empirical studies can be found in Shiryaev
(1999).
Another test to verify the hyphotesis of long range dependence has been studied by Lobato and Savin (1998).
They employ an approximation to the Lagrange multiplier test and use the statistic

LMT (m) = m

∑m
j=1 vj |ω(λj)|∑m
j=1 |ω(λj)|

where m is a bandwidth parameter, ω(λj) and λj are given respectively by (1.50) and (1.52) and

vj = log j −
∑m

j=1 log j

m
,

to test the null hypothesis H0 : H = 0.5. The statistic has nice asymptotic properties: its asymptotic
distribution is a χ2

1.
It is also interesting to consider the estimator for H proposed by Robinson (1994). As usual it is assumed
that for some H ∈

(
1
2 , 1
)

the spectrum is

f(λ) ∼ L

(
1

λ

)
λ1−2H as λ→ 0+,

where the symbol ∼ indicates that the ratio of left and right hand sides tends to 1 and L(λ) is a slowly
varying function at infinity, i.e. a positive function satisfying

lim
λ→∞

L(qλ)

L(λ)
= 1 for all q > 0.

Moreover it is shown that as T → ∞ and for the bandwidth m such that

1

m
+
m

n
→ 0 as T → ∞
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it holds
F̂ (λm)

F (λm)

p→ 1 as T → ∞

where
p→ denotes the convergence in probability,

F (λ) =

∫ ∞

0

f(θ)dθ,

and

F̂ (λ) =
2π

T

[Tλ/2π]∑

j=1

I(λj)

is the discretely averaged periodogram. Since Robinson shows that

F (λ) ∼ L

(
1

λ

)
λ2(1−H)

2(1 −H)
as λ→ 0+,

then for any q > 0
F (qλ)

F (λ)
∼ q2(1−H)L(1/qλ)

L(1/λ)
∼ q2(1−H)

as λ→ 0+, it is reasonable to consider the following estimator for H:

Ĥmq = 1 − 1

2 log q
log

[
F̂ (qλm)

F̂ (λm)

]
.

The variety of contradictory results offered by the empirical studied examined here can be explained by
the means of an extension of fBm referred to as multifractional Brownian motion (mBm). This process has
been introduced by Peltier and Lévy Véhel (1995) and studied among the others by Bianchi (2005). The
main idea is to substitute the constant over time Hurst exponent with a suitable time dependent function
H(t). For the mBm the moving average representation (1.43) becomes

MH(t),K(t)(t) = K(t) · V 1/2
H(t)

∫

R

ft(s)dBs,

with

ft(s) =
1

Γ(H(t) + 1/2)

{
|t− s|H(t)−1/2I(−∞,t](s) − |s|H(t)−1/2I(−∞,0](s)

}
.

H : [0,∞) → (0, 1] is a Hölder function15. This process is no longer stationary nor self-similar but, as H(t) is
the punctual Hölder exponent of the mBm at point t, the process is locally asymptotically self-similar with
index H(t), meaning that

lim
h→0+

MH(t+hu),K(t+hu)(t+ hu) −MH(t),K(t)(t)

hH(t)

d
= BH(t),K(t)(u), u ∈ R.

As a consequence at any point t there exists a fBm with parameter H(t) tangent to the mBm. Bianchi
(2005) states that dependence and independence could be both present in financial time series, depending
on the local behaviour of H(t) in the time span ones looks at. Therefore he extends and adapts a class of
estimators of the parameter H of the fBm in order to estimate the time-dependent long memory parameter
of a multifractional process.

15 Given two metric spaces (X, dX) and (Y, dY ), a function f : X → Y is a Hölder function with exponent α > 0 if for each
x, y ∈ X such that dX(x, y) < 1 there exists a constant k such that

dY (f(x), f(y)) ≤ kdX(x, y)α.
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1.4 Merton Model and fBM

In this section we try to reconsider the Merton model assuming that the process for the firm’s assets is
driven by a fractional Brownian motion. Suppose again that the company has a simple capital structure
that consists of equity and a zero-coupon bond with maturity T , that the term structure of interest rate is
deterministic and flat and the firm pays no dividend over the life of the debt. Now we make an additional,
more general, assumption on the dynamics of the firm’s value. In particular we assume that V follows a
geometric fractional Brownian motion with H ∈

(
1
2 , 1
)
, i.e.

dVt = µVtdt+ σVtdBH(t).

The solution of this stochastic differential equation (see Hu and Øksendal, 2003, for the proof), based on the
Wick products is

Vt = V0 exp

(
µt+ σBH(t) − 1

2
σ2t2H

)
. (1.58)

In order to get a solution for the price of the equity issued by the firm (and hence the price for the corporate
bond), we notice that formula (1.5) and formula (1.8) are still valid but we need to evaluate the call under
the fBM.
First we introduce some “prediction” formula for the fBM. Let FH

t the σ-algebra generated by the fBM. The
conditional expectation of a fBM process E

[
BH(T )|FH

t

]
, is difficult to compute due to correlation with the

past. However Gripenberg and Norros (1996) derived the following formula:

E
[
BH(T )|FH

t

]
= BH(t) +

∫ t

0

ΨT (t, s)dBH(s),

where

ΨT (t, s) =
sin
(
π(H − 1

2 )
)

π
s

1
2−H

∫ T

t

(u2 − ut)H− 1
2

u− s
du.

Alternatively it is possible to show that from (1.44) one gets

E
[
BH(T )|FH

t

]
=

∫ t

0

zT (s)dBs.

To avoid this difficult computations, a system of quasi-conditional expectations is developed for the fBM. In
particular the quasi-conditional expectation, Ẽ is such that

Ẽ
[
BH(T )|FH

t

]
= BH(t)

and we say that BH(t) is a quasi-martingale. Moreover, for f ∈ L2
φ(R)

Ẽ

[∫ T

0

f(s, ω)dBH(s)

∣∣∣∣∣F
H
t

]
=

∫ t

0

f(s, ω)dBH(s),

i.e. the stochastic integral is a quasi-martingale as well.
If the constant interest rate is denoted by r, then from an application of the Girsanov theorem for fractional
Brownian motion (see Hu and Øksendal, 2003, Theorem 3.18) it follows that

B̂H(t) := BH(t) +
µ− r

σ
t (1.59)

is a fractional Brownian motion with respect to the measure µ̂φ defined on FH
t by

dµ̂φ(ω) = exp

(
−
∫ T

0

K(s)dBH(s) − 1

2
|K|2φ

)
dµφ(ω),
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where K(s) = K(T, s) satisfies

∫ T

0

K(T, s)φ(t, s)ds =
µ− r

σ
for 0 ≤ t ≤ T .

More importantly, under µ̂φ for every bounded FH
t -measurable claim one has

F (t) = e−r(T−t)Ẽµ̂φ

[
F (T )|FH

t

]
.

It is also true that for θ ∈ R

B∗
H(t) = BH(t) + θt2H (1.60)

is a fractional Brownian motion under a measure µ∗
φ. Now we need the following

Lemma 1.4.1. If E[f(BH(T ))] <∞, then ∀t ≤ T

Ẽµφ

[
f(BH(T ))|FH

t

]
=

∫

R

1√
2π(T 2H − t2H)

exp

(
− (x−BH(t))2

2(T 2H − t2H)

)
f(x)dx. (1.61)

Moreover denoting by

Z(t) = exp

(
−θBH(t) − θ2

2
t2H

)
= exp

(
−θB∗

H(t) +
θ2

2
t2H

)
(1.62)

it holds

Ẽµ∗

φ

[
f(BH(T ))|FH

t

]
=

1

Z(t)
Ẽµφ

[
f(BH(T ))Z(T )|FH

t

]
. (1.63)

Proof. First for λ ∈ R consider the process

dX(t) = λX(t)dBH(t); X(0) = 1.

From (1.58) and recalling that X(t) is a martingale

Ẽµφ

[
eλBH(T )− 1

2 λ2T 2H
∣∣∣FH

t

]
= X(t) = eλBH(t)− 1

2 λ2t2H

and thus

Ẽµφ

[
eλBH(T )

∣∣∣FH
t

]
= eλBH(t)+ λ2

2 (T 2H−t2H)

Now let

f(BH(T )) =
1

2π

∫

R

eiBH(T )ξ f̂(ξ)dξ.

This means that we write f as the inverse Fourier transform of f̂ .
Now

Ẽµφ

[
f(BH(T ))|FH

t

]
=

1

2π

∫

R

Ẽµφ

[
eiBH(T )ξ

∣∣∣FH
t

]
f̂(ξ)dξ

=
1

2π

∫

R

exp

(
iξBH(t) − ξ2

2
κ(t, T,H)

)
f̂(ξ)dξ,

where κ(t, T,H) = (T 2H − t2H).

Since e−
ξ2

2 κ(t,T,H) is an inverse Fourier transform and can be obtained as the Fourier transform of

z(y) =
1√

2πκ(t, T,H)
e

−x2

2κ(t,T,H) ,
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and since the Fourier transform of a convolution is the product of the Fourier transform of the two functions
we have

Ẽµφ

[
f(BH(T ))|FH

t

]
=

∫

R

z(BH(t) − x)f(x)dx

which is (1.61). The proof for (1.63) is similar:

Ẽµφ

[
f(BH(T ))Z(T )|FH

t

]
=

1

2π
e−

θ2

2 T 2H

∫

R

Ẽµφ

[
e(iξ−θ)BH(T )

∣∣∣FH
t

]
f̂(ξ)dξ

=
1

2π
e−

θ2

2 T 2H

∫

R

e(iξ−θ)BH(t) exp

(
(iξ − θ)2

2
κ(t, T,H)

)
f̂(ξ)dξ

= Z(t)
1

2π

∫

R

exp

(
iξBH(t) −

(
ξ2

2
+ iξθ

)
κ(t, T,H)

)
f̂(ξ)dξ,

whereas

Ẽµ∗

φ

[
f(BH(T ))|FH

t

]
=

1

2π

∫

R

Ẽµ∗

φ

[
eiξ(B∗

H(T )−θT 2H)
∣∣∣FH

t

]
f̂(ξ)dξ.

Since for λ ∈ R it holds

Ẽµ∗

φ

[
eλB∗

H(T )
∣∣∣FH

t

]
= eλB∗

H(t)+ λ2

2 (T 2H−t2H),

it follows

Ẽµ∗

φ

[
f(BH(T ))|FH

t

]

=
1

2π

∫

R

exp

(
iξB∗

H(t) − ξ2

2
κ(t, T,H)

)
e−iξθT 2H

f̂(ξ)dξ

=
1

2π

∫

R

exp

(
iξBH(t) −

(
ξ2

2
+ iξθ

)
κ(t, T,H)

)
f̂(ξ)dξ.

and hence (1.63).

Finally, following Necula (2002)16 we can derive closed form solution for the price of a European call
option and hence the value of the equity.

Theorem 1.4.2. Assuming a geometric fractional Brownian motion with H ∈
(

1
2 , 1
)

for the firm asset, and

that the firm has only issued zero coupon bonds with maturity T and total face value D, the value of the equity

at time t is

SH
t = VtN(dH

1 ) −De−r(T−t)N(dH
2 ) (1.64)

where

dH
1 =

log(Vt/D) + r(T − t) + 1
2σ

2κ(t, T,H)

σ
√
κ(t, T,H)

(1.65a)

dH
2 =

log(Vt/D) + r(T − t) − 1
2σ

2κ(t, T,H)

σ
√
κ(t, T,H)

. (1.65b)

where κ(t, T,H) = T 2H − t2H .

Proof. Under the measure µ̂φ recalling (1.58) and (1.59) we have

VT = Vt exp

(
r(T − t) + σ(B̂H(T ) − B̂H(t)) − 1

2
σ2κ(t, T,H)

)
.

16 A formula for the price of a European call option at t = 0 is derived in Hu and Øksendal (2003). The formula is extended
for every t ∈ [0, T ] in Necula (2002).
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It is clear that

St = e−r(T−t)Ẽµ̂φ

[
(VT −D)+

∣∣FH
t

]

= e−r(T−t)Ẽµ̂φ

[
VT I{VT >D}

∣∣FH
t

]
−De−r(T−t)Ẽµ̂φ

[
I{VT >D}

∣∣FH
t

]
.

Now, after simple algebraic manipulations

Ẽµ̂φ

[
I{VT >D}

∣∣FH
t

]
= Ẽµ̂φ

[
I{

B̂H(T )>−dH
2

√
κ(t,T,H)+B̂H(t)

}
∣∣∣∣FH

t

]
.

Thus equation (1.61) guarantees that

Ẽµ̂φ

[
I{VT >D}

∣∣FH
t

]
= 1 −N

(
−dH

2

√
κ(t, T,H) + B̂H(t) − B̂H(t)√

κ(t, T,H)

)

= 1 −N
(
−dH

2

)
= N

(
dH
2

)
.

Let Z(t) be as in (1.62) with θ = −σ. Then

Ẽµ̂φ

[
VT I{VT >D}

∣∣FH
t

]
= erTV0Ẽµ̂φ

[
ZT I{VT >D}

∣∣FH
t

]
.

From (1.63) we have

Ẽµ̂φ

[
VT I{VT >D}

∣∣FH
t

]
= erTV0Z(t)Ẽµ∗

φ

[
I{VT >D}

∣∣FH
t

]

= VtẼµ∗

φ

[
I{VT >D}

∣∣FH
t

]
.

Now
Ẽµ∗

φ

[
I{VT >D}

∣∣FH
t

]
= N

(
dH
1

)

follows from (1.61) and

VT = Vt exp

(
r(T − t) + σ(B̂∗

H(T ) − B̂∗
H(t)) +

1

2
σ2κ(t, T,H)

)
.

This result deserves some comments. Formula (1.64) is very similar to the classical Black-Scholes formula:
time to maturity T − t is replaced by κ(t, T,H) = (T 2H − t2H). Note, however, that the price of an European
call in a fBM framework converges to the classical Black-Scholes price for H ↓ 1

2 and thus

lim
H↓ 1

2

SH
t = St,

where St is given by (1.6).
However there is an important difference: option prices evaluated at different times t but same increment
T − t will give different results with fractional Black-Scholes formula, whereas the classical formula will give
identical prices, i.e. if T2 − t2 = T1 − t1, then

SH(t1, T1) 6= SH(t2, T2)

unless H = 1
2 . This is due to the non-Markovian of fBM which forces SH

t to be dependent on the underlying
process evolution during the increment between different t’s.
The price of the corporate bond and the spread are straightforward:

B
H

(t, T ) = VtN(−dH
1 ) +De−r(T−t)N(dH

2 );

sH(t, T ) = − 1

T − t
log(Vt/De−r(T−t)N(−dH

1 ) +N(dH
2 )).
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Again, both B
H

(t, T ) and sH(t, T ) converge to the corrisponding value under the standard BM for H ↓ 1
2 .

Under the fBM is still valid the property for which credit spreads are decreasing function of the default-free
interest rate, because we still have

∂s(t, T )

∂r
= − D

B
H

(t, T )
N(−dH

2 ) ≤ 0.

It could be interesting consider the first passage time model under the fractional Brownian motion. In this
case the equity is a down-and-out call option with strike D and barrier level L.
Unfortunately in the literature a closed form solution for this contingent claim has been found only in the
case r = 0 and when both the current value of the firm assets and the total face value are above the barrier.
Following Necula (2003) we have the following result:

Theorem 1.4.3. If r = 0, Vt > L and D > L the price of the equity is

SH
t = VtN(dH

1 ) −De−r(T−t)N(dH
2 ) −

[
LN(yH

1 ) − D

L
VtN(yH

2 )

]
(1.66)

where dH
1 and dH

2 are obtained from (1.65a) and (1.65b) setting r = 0 and

yH
1 =

log( L2

VtD
) + 1

2σ
2κ(t, T,H)

σ
√
κ(t, T,H)

yH
2 =

log( L2

VtD
) − 1

2σ
2κ(t, T,H)

σ
√
κ(t, T,H)

.

The main intuition behind (1.66) is that a down-and-out call with strike price D, barrier L and maturity
T , whose price in t (when r = 0) is given by

Ẽ
[
(VT −D)+I{τ>T}

∣∣FH
t

]

= Ẽ
[
VT I{VT >D,τ>T}

∣∣FH
t

]
−DẼ

[
I{VT >D,τ>T}

∣∣FH
t

]
,

τ = inf{t : Vt = L},

has the same payoff as a portfolio that consists in a long position of one call with strike D and maturity T

and a short position of D
L puts with strike price L2

D and maturity T . To see this, first consider the case of a
standard Brownian motion Bt, 0 ≤ t ≤ T on some probability space (Ω,F , P ). When r = 0, under the risk
neutral measure Q equivalent to P , the process for Xt = log Vt is

dXt = −σ
2

2
dt+ σdBt.

Now consider the measure Q̃ equivalent to Q such that

Z =
dQ̃

dQ
= exp

[
σ

2
BT − σ2

8
T

]

is the Radon-Nikodym derivative of Q̃ with respect to Q, and

B̃t = Bt −
σ

2
t

is a standard Brownian motion under Q̃. Clearly under Q̃, Xt = log Vt is a Brownian motion as

dXt = σdB̃t.
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Therefore we have

XT −X0 = σB̃T = σBT − σ2

2
T

and thus

Z = exp

[
σ

2

(
XT −X0

σ
+
σT

2

)
− σ2

8
T

]

= exp

[
XT −X0

2
+
σ2

8
T

]
.

Let L = el and define
Tl = inf{t > 0 : Vt = L} = inf{t > 0 : Xt = l}.

For l < X0 it holds
I{Xt>l} = I{Tl>t} + I{Xt>l}I{Tl≤t}

and therefore for every bounded function f(·), noticing that

Yt =

{
Xt if Tl > t

2l −Xt if Tl ≤ t

is a Brownian motion (reflection principle), one has

f(Xt)I{Tl>t} = f(Xt)
(
I{Xt>l} − I{Xt>l}I{Tl≤t}

)

= f(Xt)I{Xt>l} − f(2l − Yt)I{2l−Yt>l}I{Tl≤t}

= f(Xt)I{Xt>l} − f(2l − Yt)I{Yt<l}I{Tl≤t}.

Denoting
TY

l = inf{t > 0 : Yt = l}
it follows

TY
l = Tl,

and thus

f(Xt)I{Tl>t} = f(Xt)I{Xt>l} − f(2l − Yt)I{Yt<l}I{T Y
l ≤t}

= f(Xt)I{Xt>l} − f(2l − Yt)I{Yt<l}.

Finally we can conclude, since Xt is a Q̃-Brownian motion

EQ̃
[
f(Xt)I{Tl>t}

]
= EQ̃

[
f(Xt)I{Xt>l}

]
− E

[
f(2l −Xt)I{Xt<l}

]
. (1.67)

Now we can apply (1.67) to get the price in zero of a down-and-out call with maturity T :

EQ
[
(VT −D)+I{Tl>T}

]
= EQ̃

[
e−

XT −X0
2 −σ2

8 T (eXT −D)+I{Tl>T}
]

= EQ̃
[
e−

XT −X0
2 −σ2

8 T (eXT −D)+I{VT >L}
]

−EQ̃
[
e−

2l−XT −X0
2 −σ2

8 T (e2l−XT −D)+I{VT <L}
]

= EQ̃

[
1

Z
(eXT −D)+I{VT >L}

]
− EQ̃

[
eXT −l 1

Z
(e2l−XT −D)+I{VT <L}

]

= EQ
[
(eXT −D)+I{VT >L}

]
− EQ

[
eXT −l(e2l−XT −D)+I{VT <L}

]

= EQ
[
(VT −D)+I{VT >L}

]
− EQ

[
VT

L

(
L2

VT
−D

)+

I{VT <L}

]
.
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Simple algebraic manipulation yields

EQ
[
(VT −D)+I{Tl>T}

]
=

= EQ
[
(VT −D)I{VT >D}I{VT >L}

]
− EQ

[
D

L

(
L2

D
− VT

)
I{VT <L2/D}I{VT <L}

]
.

Now, for D > L the price of the barrier option is

EQ
[
(VT −D)I{VT >D}

]
− EQ

[
D

L

(
L2

D
− VT

)
I{VT <L2/D}

]
,

meaning that its payoff is equal to the one of a portfolio with a long position in a call struck at D and a
short position in D/L puts struck at L2/D. This result can be extended to the case of a fractional Brownian
motion and taking the quasi-conditional expectations instead of the normal expectations one gets equation
(1.66).



2

Fractional Models to Credit Risk Pricing

2.1 Introduction

In the academic literature models for the pricing of risky debt can be subdivided into two classes: firm’s
value and reduced form models.
The philosophy underlying firm’s value models is to assume there is a fundamental process usually interpreted
as the total value of the assets of the firm that has issued the bonds we are interested in. The value of the
firm is assumed to move around stochastically and hence a stochastic process for the evolution of the firms’
underlying assets is assumed. This is the driving force behind the dynamics of the prices of all securities
issued by the firm. The well-known structural approach due to the seminal paper of Merton (1974) assumes
that the company has issued only shares and a zero-coupon bond. The firm defaults if the value of its assets
is lower than the promised debt payment at maturity. As a consequence all claims on the firm’s value are
modeled as derivative securities with the firm’s value as underlying. Merton’s model has been extended for
instance by Black and Cox (1976), Geske (1977), Shimko et al. (1993) and Leland (1994) to allow for more
realistic assumptions, such as the possibility of default before maturity, coupon payments, stochastic interest
rates. The most common alternative to structural models is given by the reduced-form approach, which
directly models the default process of risky debt. In combination with assumptions on the evolution of the
risk-free rate and the recovery rate in the event of default, this is used to value risky debt. See, for example,
Jarrow and Turnbull (1995), Duffie and Singleton (1997) and Madan and Unal (1998).

It is commonly agreed that structural models of credit risk have a poor performance in predicting corporate
bonds prices. One of the main critiques to the classical Merton model and structural models in general, is
that they predict credit spreads that are lower than the ones observed in the market. This is due to the
fact that the assumptions behind the model are far for realistic. In particular the assumption of a geometric
Brownian motion (gBm) for the firms’ underlying assets proposed in the original paper by Merton could be
the explanation for this poor performance. Many empirical evidence have shown that, when a gBm is used
to describe log-returns, such a specification cannot describe the behaviour of financial assets mainly because
the actual returns look to show some form of dependence.

The contribution of this chapter to the literature is twofold. First of all, we investigate the empirical
properties of credit spreads, with specific reference to their long memory features. Although a number of
empirical studies on credit spread dynamics have been carried out (see Pedrosa and Roll, 1998; Prigent et al.,
2001; Kiesel et al., 2001), no research has been performed to date to investigate the long memory properties
of credit spread, the only exception being Della Ratta and Urga (2005). Applied analysis on credit spreads
so far has been carried out within the classical I(0) vs I(1) framework, i.e. by testing for stationarity vs
nonstationarity of spreads only. It is well known that the distinction between I(0) and I(1) processes can
be too restrictive. In contrast to I(0) time series in which shocks die out at an exponential rate, or an I(1)
series with an infinite persistence (no mean reversion), Adenstedt (1974), Granger (1980) and Granger and
Joyeux (1980) proposed an I(d) time series with 0 < d < 1 in which shocks dissipate at a slow hyperbolic
rate. We show that credit spreads are likely to be long memory nonstationary processes, i.e. I(d) processes
with d > 0.5.
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Secondly, we propose the fractional version of two structural credit risk models. The presence of long
memory in credit spreads time series would provide a justification for the theoretical models proposed, that,
in turn, would be able to explain realized credit spreads better than traditional credit risk structural models.
A sensitivity analysis on bond prices and credit spreads predicted by such models shows that indeed the
predicted credit spreads are closer to the real ones than those predicted by the original Merton model.

2.2 Merton and Black and Cox Fractional Models

In the structural approach to credit risk the firm liabilities are thought as contingent claims issued against
the firm underlying assets. A stochastic process for the evolution of the firm underlying assets, V , and the
conditions under which a default is triggered as well as the payoff of the risky debt in the event of default
are specified. Merton (1974) assumes that the firm has only issued zero coupon bonds with maturity T and
total face value D and that default may happen only at maturity. Denote by B(t, T ) and St the prices
in t of a defaultable zero coupon bond and the equity respectively. Both B and S are function of V and
more generally all claims on the firm’s value are evaluated as derivative securities with the firm’s value as
underlying. The term structure of interest rate is assumed to be deterministic and flat and the firm pays no
dividend over the life of the debt. In case of default, bondholders are assumed to have absolute priority, i.e.
bond value at time T is B(T, T ) = min(D,VT ) and the equity is simply a call option, ST = max(VT −D, 0).
Whereas the original model assumes a Geometric Brownian motion for the firm value, here we consider the
following dynamics for V :

dVt = µVtdt+ σVtdBH(t) (2.1)

where BH(t) denotes a fractional Brownian motion and H ∈
(

1
2 , 1
)

is the Hurst parameter. The fractional
Brownian motion is a Gaussian process with zero mean, stationary increments, variance

E
[
B2

H(t)
]

= t2H

and covariance

E [BH(t)BH(s)] =
1

2

(
t2H + s2H − |t− s|2H

)
.

Usually it is assumed that BH(0) = 0. For any H ∈ (0, 1) the process BH(t) is self-similar in the sense that

BH(t)
d
= a−HBH(at).

The parameter H negotiates whether the fractional Brownian motion has independent increments (H = 1/2),
positive covariance between two increments over non-overlapping time intervals (1/2 < H < 1), or negative
covariance between increments (0 < H < 1/2). If 1/2 < H < 1 we say that BH(t) has a long range
dependence, since

∞∑

n=−∞
γ(n) = ∞, (2.2)

where

γ(n) = Cov [BH(1), BH(n+ 1) −BH(n)] =
1

2

[
|n+ 1|2H + |n− 1|2H − 2|n|2H

]
.

When H = 1/2, γ(n) = 0 for all n 6= 0 whereas for 1/2 < H ≤ 1

γ(n) ∼ H(2H − 1)|n|2H−2, as |n| → ∞, (2.3)

where “∼” means that the ratio of the left and right hand sides tends to one. Therefore, when H = 1/2,
(2.1) implies that log-returns are independent normal random variables. However, in recent years, many
empirical evidence have shown that this assumption cannot be used to describe the behaviour of financial
assets because: 1) the empirical distributions of the log-price variations are far from being normal; 2) the
actual returns look to show some form of dependence. In this work we do not deal with the first issue. To
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address the second point, stochastic volatility models have been proposed. Even though these models can
produce quasi long-range dependence, they are very difficult to implement and often do not lead to tractable
pricing solutions. On the other hand, fractional Brownian motion offers a natural way of modelling long-range
dependence giving tractable solutions to pricing financial instruments.
In what follows we denote by N(·) the cumulative probability distribution function of a standard normal
random variable:

N(z) =
1√
2π

∫ z

−∞
e−

1
2 u2

du,

and by n(·) = N ′(·) the density function. The next result follows directly from the fractional Black-Scholes
formula derived in Hu and Øksendal (2003) using the Wick–Itô–Skorohod calculus:

Theorem 2.2.1. Assuming absolute priority for the bondholders, a geometric fractional Brownian motion

(2.1) with H ∈
(

1
2 , 1
)

for the firm asset, and that the firm has only issued zero coupon bonds with maturity T
and total face value D, when the risk-free rate is constant and equal to r, the value of the equity at time 0 is

S0 = V0N(d1) −De−rTN(d2) (2.4)

where

d1 = σ−1T−H (log(V0/D) + rT ) +
1

2
σTH

d2 = d1 − σTH

and N(·) denotes the standard Normal cumulative distribution function. The price of the bond is

B(0, T ) = V0 − S0. (2.5)

The spread is

s(0, T ) = − 1

T
log

(
B(0, T )

D
erT

)
= − 1

T
log

(
B(0, T )

ℓV0

)
, (2.6)

where ℓ = De−rT

V0
is the firm leverage.

Note that as H ↓ 1
2 the price of the equity (2.4) converges to the Black-Scholes price for a call option and

the model reduces to the classical Merton model.

Remark 2.2.2. Since the price of the equity at time t is given by

St = VtN

(
log(Vt/D) + r(T − t) + 1

2σ
2
(
T 2H − t2H

)

σ
√
T 2H − t2H

)

−De−r(T−t)N

(
log(Vt/D) + r(T − t) − 1

2σ
2
(
T 2H − t2H

)

σ
√
T 2H − t2H

)
,

equity prices evaluated at different times t but same time to maturity T − t will give different results with

fractional Black-Scholes formula, whereas the classical formula will give identical prices, i.e. if T2 − t2 =
T1 − t1, then, denoting by S(t, T ) price at time t with maturity T and Hurst exponent H,

SH(t1, T1) 6= SH(t2, T2)

unless H = 1
2 . This is due to the fact that fBM is non-Markovian, which forces SH

t to be dependent on the

underlying process evolution during the increment between different t’s.
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Table 2.1: Sensitivity Analysis for the fractional Merton model.

Equity Spread

∂
∂r

S0 = DT e−rT N(d2)
∂
∂r

s = N(d2)e
sT

− 1 = −
V0N(−d1)

B

∂
∂σ

S0 = V0T
Hn(d1)

∂
∂σ

s = T H−1n(d2)e
sT

∂
∂ℓ

S0 = −V0N(d2)
∂
∂ℓ

s = 1−N(d2)esT

Tℓ
= N(−d1)esT

Tℓ2

∂
∂T

S0 = V0σHT H−1n(d1) + rDe−rT N(d2)
∂

∂T
s = σHT H−2n(d2)e

sT +
−s+r[esT N(d2)−1]

T

∂
∂H

S0 = V0 log TσT Hn(d1)
∂

∂H
s = log TσT H−1n(d2)e

sT

Table 2.1 reports the results of the sensitivity analysis for the fractional Merton model.

Some observations are in order. First of all the fractional Merton model shares some features of the
original model. Note that the corporate bond is equivalent to a long position in a default free bond with
nominal D and a short position in a put option written on V and with strike D or, alternatively, to a long
position in the asset value and a short position in a call written on V and with strike D. Therefore, when the
value of the firm is much bigger that the debt D, then the put option is deep out-of-the-money, the probability
of default, N(−d2) is low and corporate debt trades as if it is default-free. Conversely, when Vt ≪ D then
the call component is small and the bond is approximately equal to the value of the equity. As a consequence
the volatility of the corporate debt depends on the volatility of the underlying asset when the the put option
trades deep in-the-money. It is clear from Table 2.1 that the credit spread is a decreasing function of the
risk-free rate. The intuition is as follows: an increase in the default-free spot interest rate, keeping the value
of the firm constant, makes the probability of default decline. This, in turn, makes the corporate bond price
increase and, consequently, the spread decline. Moreover credit spreads are an increasing function of the
firm’s leverage. The explanation is straightforward: the bigger the leverage, the bigger the probability of
default. Clearly, an increase in the probability of default results in a decrease of the corporate bond price and
therefore in an increase in the credit spread. Of course spreads are increasing functions of the firm volatility
because equity investors do always benefit from an increase in asset volatility which makes the equity price
increase. On the other hand this results in a decrease in the corporate bond price and, thus, in an increase
in the spread. Another implication of the model is that the credit spreads tend to zero as the maturity of
the zero-coupon bond tends to zero when V > D and explode when V ≤ D.
In Figure 2.1–Figure 2.3 we plotted the value of the spreads as a function of time to maturity for three values
of firm leverage (ℓ ∈ {0.8, 1, 1.2}) and three values of the parameter H (H ∈ {0.55, 0.8, 0.95}). The risk-free
is r = 0, so that ℓ = D/V . In every graph, part (a) plots the credit spreads against time for T ∈ [0, 30] and
part (b) for T ∈ [0, 1], to show the different behaviour for time to maturity bigger and smaller than one.

It is clear that when H is close to 1
2 , i.e. under the classical Merton model, credit spreads are hump

shaped with respect to maturity (rising at first and then falling), for values of leverage below unity and are
decreasing for values of leverage bigger than one. For values of the memory parameter H bigger than 1

2 ,
spreads are increasing (ℓ = 80%) and first decreasing and then increasing (ℓ = 100% and ℓ = 120%).

However one of the main critiques to the classical Merton model is that it predicts credit spreads which
are lower than the ones observed in the market. In the fractional Brownian motion framework, on the other
hand, when T > 1 spreads are increasing function of the long memory parameter H. This implies that the
theoretical spreads in the fractional framework are bigger that the spreads predicted by the classical Merton
model (H = 1

2 ). The fractional model entails much more realistic spreads because it takes into account the
dependency structure of financial returns. For T = 1 the spreads are a constant function of H and for T < 1
they are a decreasing function of H, meaning that for short maturities credit spreads are underestimated.
This result can be explained by the fact that the fractional Merton model is affected, for short maturities,
by the same issue of the classical model: since the firm value is modelled as a diffusion process, a sudden
drop in the firm value is impossible, implying that the the firm’s probability of default on very short term
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Figure 2.1: Credit spreads resulting in the fractional Merton model against maturity when σ = 0.2,
D/V = 0.8, r = 0.
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Figure 2.2: Credit spreads resulting in the fractional Merton model against maturity when σ = 0.2, D/V = 1,
r = 0.
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Figure 2.3: Credit spreads resulting in the fractional Merton model against maturity when σ = 0.2,
D/V = 1.2, r = 0.

5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time to Maturity (Years)

C
re

di
t S

pr
ea

d

ℓ = 120%

H = 0.55
H = 0.8
H = 0.95

(a) 0 < T < 30

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

Time to Maturity (Years)

C
re

di
t S

pr
ea

d

ℓ = 120%

H = 0.55
H = 0.8
H = 0.95

(b) 0 < T < 1.



58 Fractional Models to Credit Risk Pricing

debt should be zero. Therefore, as we approach time to maturity, theoretical credit spreads approach zero,
systematically underestimating market spreads.

A more realistic assumption can be made about the conditions under which default is triggered. The
company issuing debt, for instance, can be assumed to default not only at maturity T but the first time
its assets fall below some default barrier, say L. To be more precise, if the assets hit the barrier L before
time T , the option ceases to exist and the bondholders receive the assets value or some recovered portion
of it. If the barrier is not hit before T , then the equity at maturity is, as in Merton model, the payoff on a
European call option. This is the well known first passage time model proposed by Black and Cox (1976).
A straightforward implication of the model is that the equity can be viewed as a down-and-out call option.
To be more precise the time of default is given by the stopping time τ = min{k ≥ t : Vk < L}. Denoting

by E
Q
t [·] the expectation under the risk neutral probability Q conditional to the information available up to

time t and by I the indicator function, the equity value at time t is given by

St = E
Q
t

[
e−

∫ T
t

r(u)du(VT −D)+I{τ>T}
]
.

It is well known that this expression leads to a nice closed-form solution when the interest rate is constant
and V follows a geometric Brownian motion:

St =
[
VtN(x1) −De−r(T−t)N(x1 − σ

√
T − t)

]

−
[
Vt

(
L

Vt

)2θ

N(y1) −De−r(T−t)

(
L

Vt

)2θ−2

N(y1 − σ
√
T − t)

]
,

where

θ =
r + 1

2σ
2

σ2

x1 =





log(Vt/D)+(r+ 1
2 σ2)(T−t)

σ
√

T−t
if D ≥ L

log(Vt/L)+(r+ 1
2 σ2)(T−t)

σ
√

T−t
if D < L

,

y1 =





log(L2/(VtD))+(r+ 1
2 σ2)(T−t)

σ
√

T−t
if D ≥ L

log(L/Vt)+(r+ 1
2 σ2)(T−t)

σ
√

T−t
if D < L

.

Denoting by r̄ = r − 1
2σ

2, a closed-form solution is available for the risk neutral probability of default:

1 −Q(τ > T, VT > D)

= N

(
log(D/Vt) − r̄(T − t)

σ
√
T − t

)
+

(
L

Vt

) 2r̄
σ2

N

(
log(L2/(DVt)) + r̄(T − t)

σ
√
T − t

)
.

Intuitively, this default probability is higher than the corresponding probability in the classical approach,
which is obtained as the special case where L = 0. The corresponding payoff to bond investors at maturity is

min(VT ,D)I{τ>T} + VT I{τ≤T}

= D − (D − VT )+ + (VT −D)+I{τ≤T}.

This position is equivalent to a portfolio composed of a risk-free loan with face value D maturing at T , a short
European put on the firm with strike D and maturity T and a long European down-and-in call on the firm
with strike D and maturity T . The price of the bond can be derived using the corresponding Black-Scholes
formulae.
In order to derive a fractional version of this model, we need some assumptions. First of all we assume that
r = 0 and that both the amount of the debt and the value of the firm are bigger than the threshold L. While
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the former assumption may be restrictive, the latter is very realistic. Now we can extend to the case of a fBM
the result in Carr et al. (1998): under the previous assumptions and in an arbitrage-free economy a position
in a down-and-out call option is equivalent to being long a call struck at D and short D/L puts struck at
L2/D:

Theorem 2.2.3. Assuming a geometric fractional Brownian motion with H ∈
(

1
2 , 1
)

for the firm asset, that

the firm has only issued zero coupon bonds with maturity T and total face value D and that it could default

not only at maturity but also at the first time its assets fall below the barrier L < V0, when the risk-free rate

is r = 0, the value of the equity at time 0 for D > L is

S0 = V0N(d1) −De−rTN(d2) −
[
LN(y1) −

D

L
V0N(y2)

]
(2.7)

where

y1 = σ−1T−H log

(
L2

V0D

)
+

1

2
σTH

y2 = y1 − σTH .

The price of the bond is

B(0, T ) = V0 − S0. (2.8)

The spread is

s(0, T ) = − 1

T
log

(
B(0, T )

D

)
= − 1

T
log

(
B(0, T )

ℓV0

)
, (2.9)

where ℓ = D
V0

is the firm leverage.

Table 2.2 reports the results of the sensitivity analysis for the fractional Black and Cox model.

Table 2.2: Sensitivity Analysis for the fractional Black and Cox model.

Equity Spread

∂
∂σ

S0 = T H [V0n(d1) − Ln(y1)]
∂

∂σ
s = T H−1esT

[
n(d2) −

V0
L

n(y2)
]

∂
∂ℓ

S0 = V0 [N(y2) − N(d2)] + Ln(y1)

σℓT H

[
1 −

L
V0

]
∂
∂ℓ

s = 1
T

[
1

B(0,T )

(
∂S0
∂ℓ

)
+ 1

ℓ

]

∂
∂T

S0 = σHT H−1 [V0n(d1) − Ln(y1)]
∂

∂T
s = σHT H−2esT

[
n(d2) −

V0
L

n(y2)
]
−

s
T

∂
∂H

S0 = log TσT H [V0n(d1) − Ln(y1)]
∂

∂H
s = log TσT H−1esT

[
n(d2) −

V0
L

n(y2)
]

Note that, denoting by sM and sBC the spreads resulting from the fractional Merton and Black and Cox
model respectively, we have

∂

∂x
sBC =

(
∂

∂x
sM

)[
n(d2) −

V0

L
n(y2)

]
, x ∈ {σ,H}.

Simple algebra yields

n(d2) −
V0

L
n(y2) = n(d2)

{
1 − exp

[
− 2

σ2T 2H
log(L/V0) log(L/D)

]}
> 0

since L < D and L < V0. This means that, as in the fractional Merton model, in the fractional Black and
Cox model spreads are increasing functions of both the volatility and the memory parameter.

In Figure 2.4–Figure 2.6 we plotted the value of the spreads as a function of time to maturity for three
values of firm leverage (ℓ ∈ {0.8, 1, 1.2}) and three values of the parameter H (H ∈ {0.55, 0.8, 0.95}). In
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particular we chose V = 100, L = 70 and D ∈ {80, 100, 120}. In every graph, part (a) plots the credit spreads
against time for T ∈ [0, 30] and part (b) for T ∈ [0, 1], to show the different behaviour for time to maturity
bigger and smaller than one. The spreads predicted by the Black and Cox model are below those predicted
by Merton fractional model because SBC ≤ SM, which implies BBC ≥ BM and therefore sBC ≤ sM.
Clearly, for ℓ = 80% spreads keep the usual hump shape, whereas for ℓ ≥ 1 spreads behave like a decreasing
function of T , even for values of H close to unity.

2.3 Econometric Methodology

In what follows we will investigate whether credit spreads can be described by long range dependent series,
in order to validate the analysis of section 2.2. The econometric methodology regarding both fractional
integration and fractional cointegration is presented.

2.3.1 Fractional Integration

Consider a stationary sequence Xt. Assume that the spectral density of the sequence, i.e. f(λ), −π < λ ≤ π
such that γ(s) =

∫ π

−π
f(λ) cos(sλ)ds, s = 0,±1, . . ., satisfies for 0 < G <∞

f(λ) ∼ Gλ−2d as λ→ 0+, (2.10)

where d ∈
(
− 1

2 ,
1
2

)
is the fractional differencing parameter which can be related to H via

d = H − 1

2
.

The main idea behind a fractional differentiation is that for many time series the distinction between I(0)
and I(1) processes can be too restrictive. Even though many series show autocorrelation up to very long
lags as in (2.2), taking the first differences may be excessive and lead to overdifferencing. Thus, the main
idea of some authors (see Granger, 1980; Granger and Joyeux, 1980, among the others) was to introduce an
I(d) time series with 0 < d < 1 in which shocks dissipate at a slow hyperbolic rate, in contrast to I(0) time
series in which shocks die out at an exponential rate, or an I(1) series with an infinite persistence (no mean
reversion). If the series Xt is I(d), it becomes stationary after d-th differencing, i.e.

∆dXt = et,

where et is white noise, ∆ = 1 − L and L denotes the lag operator, LkXt = Xt−k, and (1 − L)d has the
binomial expansion

(1 − L)d =
∞∑

k=0

(−1)k Γ(d+ 1)

Γ(d− k + 1)k!
Lk,

where Γ(·) is the Gamma function.
Note that the non-summability condition (2.2) for 1/2 < H ≤ 1 implies that the spectral density is unbounded
at zero frequency. The spectral density (2.10) has, in fact, a pole when 0 < d < 1/2 and a zero when
−1/2 < d < 0 at λ = 0.
One of the most common procedure to estimate the parameter d in the frequency domain with stationary
data, −1/2 < d < 1/2, is the log-periodogram regression proposed by Geweke and Porter-Hudak (1983), GPH
henceforth. This is a semiparametric method in that no assumption on the behaviour of the spectral density
apart from the origin is made (in other words, parameterization of the short run component is avoided).
Suppose that equation (2.10) is approximately valid for the spectral density of a stationary long memory
process when the first m Fourier frequencies, λj , j = 1, . . . ,m, are considered. The reason why only the first
frequencies are considered is that long range dependency can be captured by studying the behaviour of big
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Figure 2.4: Credit spreads resulting in the fractional Black and Cox model against maturity when σ = 0.2,
V = 100, D = 80 and L = 70.
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Figure 2.5: Credit spreads resulting in the fractional Black and Cox model against maturity when σ = 0.2,
V = 100, D = 100 and L = 70.
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Figure 2.6: Credit spreads resulting in the fractional Black and Cox model against maturity when σ = 0.2,
V = 100, D = 120 and L = 70.
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lags in the autocorrelation function or, equivalently low frequencies in the spectral density.
Define the discrete Fourier transform of Xt for n observations and for λj = 2πj/n:

w(λj) =
1√
2πn

n∑

t=1

Xte
iλjt

and the periodogram
I(λj) = |w(λj)|2 .

Taking the logarithm of both sides of (2.10) yields

log f(λj) ≈ logG− 2d log λj j = 1, . . . ,m

or equivalently
log I(λj) ≈ c+ daj + ǫj j = 1, . . . ,m. (2.11)

with ǫj = log
I(λj)
f(λj)

, c = logG and aj = −2 log λj .

Since the random variables I(λj)/f(λj) are, at least for d = 0, asymptotically i.i.d. distributed, eq. (2.11)
represents a linear regression model, with regressand log I(λj), regressors −2 log λj and slope d, which can be
estimated by ordinary least squares (OLS). This is exactly the GPH estimator, except that here the quantity
2 sin(λj/2) is replaced by its first order Taylor expansion λj .
Robinson (1995b) proposed to trim the very low l frequencies and to consider the logs of a pooled periodogram
of J periodogram values as the dependent variable in the log-periodogram regression. To be more precise,
let J and (m− l)/J be integers and

Y
(J)
h = log




J∑

j=1

I(λh+j−J)


 , h = l + J, l + 2J, . . . ,m.

The parameter d is now estimated by OLS from the regression

Y
(J)
h = c(J) + dah + ǫ

(J)
h , h = l + J, l + 2J, . . . ,m

and therefore we have

d̂ =




m∑

h=l(J)

W 2
h




−1
m∑

h=l(J)

WhY
(J)
h , (2.12)

where

Wh = ah − ā, ā =
J

m− l

m∑

h=l(J)

ah.

When both l and m tend to infinity with the sample size n but more slowly and under the assumption of
Gaussianity, Robinson (1995b) has derived the limiting distribution for the GPH estimator d̂:

√
m
(
d̂− d

)
→dN

(
0,
π2

24

)
. (2.13)

If in the log-periodogram regression we use Aj = − log
[
4 sin2(λj/2)

]
as regressors,

(
d̂− d

)
→dN

(
0, σ2

GPH

)
,

with

σGPH =

√
π2

6
∑m

j=l+1(Aj − Ā)2
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where Ā = 1
m−l

∑m
j=l+1Aj . This suggests how to construct a test statistic for

H0 : d̂ = d.

The test statistic is

td =
d̂(X) − d

σGPH
(2.14)

or

τd =
d̂− 1(∆X) + 1 − d

σGPH
(2.15)

and it has to be compared with standard normal percentiles. The test statistic (2.15) has to be used when
data is not stationary, in which case the long memory parameter for the series X is given by the sum of the
the long memory parameter for the first differences of X and one.

This model easily extends to the multivariate case. Suppose that now Xt is a K-dimensional vector,
whose k-th component is Xkt. We assume that for k = 1, . . . ,K

fkk(λ) ∼ Gkλ
−2dk as λ→ 0+,

where −1/2 < dk < 1/2 and fkk(·) denotes the spectral density of the k-th series. Now we have K regressions

Y
(J)
kh = c

(J)
k + dkah + ǫ

(J)
kh ,

h = l + J, l + 2J, . . . ,m k = 1, . . . ,K,

where

Y
(J)
kh = log




J∑

j=1

Ikk(λh+j−J)


 , h = l + J, l + 2J, . . . ,m k = 1, . . . ,K,

and

Ikk(λ) =
1

2πn

∣∣∣∣∣
n∑

t=1

Xkte
iλt

∣∣∣∣∣

2

k = 1, . . . ,K. (2.16)

Denoting by d̂ and ĉ the estimates for d = (d1, . . . , dK)
′
and c =

(
c
(J)
1 , . . . , c

(J)
K

)′
respectively, it follows

(
ĉ

d̂

)
= vec

(
Y (J)′S(S′S)−1

)
(2.17)

where S = (Sl+J , Sl+2J , . . . , Sm)
′
and Y (J) = (Y

(J)
1 , . . . , Y

(J)
K ), with Sh = (1, ah)′ and

Y
(J)
k =

(
Y

(J)
k,l+J , Y

(J)
k,l+2J , . . . , Y

(J)
k,m

)′
, k = 1, . . . ,K.

Once again, for Gaussian stationary and invertible time series the estimator d̂ is consistent and asymptotically
multivariate normal. Thus it becomes straightforward to test the homogeneous restriction

H0 : Pd = 0

where P is a A×K matrix of rank A < K. The test statistic is

d̂
′
P ′
[
[0, P ]{(S′S) ⊗ Ω̂−1}(0, P )′

]−1

P d̂,

where Ω̂ = J
m−l

∑m
h=l(J) ǫ̂

(J)
h

(
ǫ̂
(J)
h

)′
, ǫ̂

(J)
h =

(
ǫ̂
(J)
1h , . . . , ǫ̂

(J)
Kh

)′
are the residuals of the log-periodogram regres-

sion and ⊗ denotes the Kronecker product. The test statistics has asymptotic χ2
A under H0. For instance
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it could be useful to test if the difference parameter is common to every series. In this case P is the
(K − 1) × (K + 1) matrix

P =




1 −1 0 · · · · · · · · ·
0 1 −1 0 · · · · · ·
...

. . .
. . .

. . .
. . .

. . .

0 · · · · · · 0 1 −1


 .

Basically the same hypothesis is tested in Nielsen (2005). He proposed a Lagrange multiplier (LM) test for
the K-dimensional series {Xt, t = 1, . . . , n} generated by

∆d+θXt = etI (t ≥ 1) ≡ e#t t = 0,±1,±2, . . . , (2.18)

where I(·) denotes the indicator function. This definition (type II I(d+θ) process) entails that the results that
follow are valid for all d and θ, whereas for a type I process they would be valid only for d+ θ ∈ (−1/2, 1/2).
The difference between the two types of processes is discussed in Robinson (2005).
The hypothesis to be tested is

H0 : θ = 0. (2.19)

From (2.18), the Gaussian log-likelihood function is

L(θ,Σ) = −n
2

log (2π|Σ|) − 1

2

n∑

t=1

∆d+θX ′
tΣ

−1∆d+θXt.

Denoting by η = (vec(Σ)′, θ′)′, the multivariate LM test statistic for testing H0 is

LM =
∂L(η)

∂η′

∣∣∣∣
θ=0,Σ=Σ̂

[
− ∂2L(η)

∂η∂η′

∣∣∣∣
θ=0,Σ=Σ̂

]−1
∂L(η)

∂η

∣∣∣∣
θ=0,Σ=Σ̂

.

Since it can be shown that
∂L(θ,Σ)

∂θ

∣∣∣∣
θ=0,Σ=Σ̂

= tr
(
Σ̂−1S10

)

and that the relevant block in the Hessian matrix is

− ∂2L(θ,Σ)

∂θ2

∣∣∣∣
θ=0,Σ=Σ̂

= tr
(
Σ̂−1M11

)

it follows that

LM =
tr
(
Σ̂−1S10

)2

tr
(
Σ̂−1M11

) . (2.20)

Consider the processes Zt = ∆dXt, Z
∗
t−1 =

∑t−1
j=1 j

−1Zt−j and Z∗∗
t−2 =

∑t−2
j=1 j

−1Z∗
t−j−1 and define Z =

(Z1, . . . , Zn)
′
, Z∗ =

(
Z∗

1 , . . . , Z
∗
n−1

)′
, Z∗∗ =

(
Z∗∗

1 , . . . , Z∗∗
n−2

)′
, Z = (Z2, . . . , Zn)

′
and Z = (Z3, . . . , Zn)

′
. The

matrices used in (2.20) are defined as follows: Σ̂ = 1
nZ

′Z is a consistent estimate of the covariance matrix Σ,
S10 =

∑n
t=2 Z

∗
t−1Z

′
t = Z∗′Z, M11 = S11 + 1

2 (S20 + S′
20), with S11 = Z∗′Z∗ and S20 =

∑n
t=3 Z

∗∗
t−2Z

′
t = Z∗∗′Z.

If the assumption of Gaussianity is made, under the null the test statistic (2.20) is asymptotically χ2
1.

The test can be readily extended to the case of different θ for each variable. Suppose now that

∆dk+θkXkt = e#kt, k = 1, . . . ,K, t = 0,±1,±2, . . . . (2.21)

Now θ = (θ1, . . . , θK)′ is a K-vector. Denote by LK(θ,Σ) the log-likelihood for Gaussian data generated by
(2.21). It can be shown that

∂LK(θ,Σ)

∂θ

∣∣∣∣
θ=0,Σ=Σ̂

= J ′
K vec

(
Σ̂−1S′

10

)
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and

− ∂2LK(θ,Σ)

∂θ∂θ′

∣∣∣∣
θ=0,Σ=Σ̂

= S11 ⊙ Σ̂−1 +
(
Σ̂−1S′

20

)
⊙ IK

where ⊙ denotes the Hadamard product, IK is the K-dimensional identity matrix and JK is the K2 × K
JK = (vecE11, . . . , vecEKK), Eii = eie

′
i, where ei is the i-th unit K-vector. Nielsen (2005) shows that, if

the assumption of Gaussianity is made, under the null (2.19), the test statistic

LMK = vec
(
Σ̂−1S′

10

)′
JK

(
S11 ⊙ Σ̂−1 +

(
Σ̂−1S′

20

)
⊙ IK

)−1

J ′
K vec

(
Σ̂−1S′

10

)

is asymptotically χ2
K . This due to the fact that now the number of restriction tested is K. The test can

accommodate also deterministic trends. Suppose that we observe instead of Xt the series

X0
t = βzt +Xt

where zt is a vector of deterministic components, for instance zt = 1 or zt = (1, t)′. Assuming that the matrix∑n
t=1 z̃tz̃

′
t is positive definite for n sufficiently large, where z̃t = ∆dzt, we can estimate β by OLS regressing

Zt on z̃t. The test statistic is then based on the residuals X̃t = X0
t − β̂zt.

If one wants to allow for short run dynamics, the following vector autoregressive (VAR) could be considered:

Φ(L)et = εt t = 0,±1,±2, . . .

where εt is I(0), Φ(z) is a matrix polynomial of order p such that Φ(1) has full rank and et, the process in
(2.18), is stationary. Now the test is based on the residuals from the regression

Zt = Φ̂1Zt−1 + . . .+ Φ̂pZt−p + ε̂t t = p+ 1, . . . , n.

Let ε̂∗t−1 =
∑t−1

j=1 j
−1ε̂t−j , ε̂

∗∗
t−2 =

∑t−2
j=1 j

−1ε̂∗t−j−1, ε̂ = (ε̂p+1, . . . , ε̂n)
′
, ε̂∗ =

(
ε̂∗p+1, . . . , ε̂

∗
n−1

)′
and ε̂∗∗ =(

ε̂∗∗p+1, . . . , ε̂
∗∗
n−2

)′
. Define also ε̂ = (ε̂p+2, . . . , ε̂n)

′
and ε̂ = (ε̂p+3, . . . , ε̂n)

′
and consider for t = p + 1, . . . , n

the pK-vector Z̃t−1 =
(
Z ′

t−1, . . . , Z
′
t−p

)′
and the pK × (n − p) matrix Z̃ =

(
Z̃p+1, . . . , Z̃n

)′
. Now the test

statistics are

LM(p) =
tr
(
Σ̂−1Ŝ10

)2

tr
(
Σ̂−1M11 − Ŝ′

Z1S
−1
ZZ ŜZ1

) (2.22)

LMK(p) = vec
(
Σ̂−1Ŝ′

10

)′
JK

(
Ŝ11 ⊙ Σ̂−1 +

(
Σ̂−1Ŝ′

20

)
⊙ IK −

(
Ŝ′

Z1S
−1
ZZ ŜZ1

)
⊙ Σ̂−1

)−1

×J ′
K vec

(
Σ̂−1Ŝ′

10

)
(2.23)

with Σ̂ = 1
n−p ε̂

′ε̂, Ŝ10 = ε̂∗′ε̂, Ŝ11 = ε̂∗ε̂∗′, Ŝ20 = ε̂∗∗′ε̂, M̂11 = Ŝ11 + 1
2 (Ŝ20 + Ŝ′

20), SZZ = Z̃Z̃ ′ and

ŜZ1 =
∑n−1

t=p+2 Z̃t−1ε̂
∗
t−1 = Z̃ε̂∗′ where in the last equality we defined Z̃ =

(
Z̃p+1, . . . , Z̃n−1

)′
.

As discussed in Velasco (2000), for 0 < d < 1/2 the log-periodogram regression estimator is still consistent
even when the data is not Gaussian. Instead of Gaussianity a fourth order stationary linear process condition
is required. To achieve asymptotic normality also tapering is needed. Define the tapered discrete Fourier
transform which uses the full cosine bell as

wg
k(λ) =

(
2π

n∑

t=1

g2
t

)−1/2 n∑

t=1

gtXkte
iλt k = 1, . . . ,K,

where

gt =
1

2

{
1 − cos

(
2πt

n

)}
.
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Note that
∑n

t=1 gt = 1
2 and

∑n
t=1 g

2
t = 3

8n. Next, the vector of difference parameter is estimated as in (2.17),
except that the periodogram in (2.16) is replaced by

Ig
kk(λ) =

1

2πn
|wg

k(λ)|2 k = 1, . . . ,K. (2.24)

The use of (2.24) reduces the bias of the periodogram on the tails, because tapering downweights the obser-
vations at both extremes of the sample and does not change the central part.

One of the negative features of the GPH estimator is its finite-sample bias. In Andrews and Guggenberger
(2003) a bias-reduced estimator is proposed which implies the use of the frequencies to the power 2k for
k = 1, . . . , r and for some positive integer r, as additional regressors in the log-periodogram regression.
The bias of this estimator goes to zero faster than the GPH estimator, but its variance is increased by a
multiplicative constant. Let log I, and a denote the column m-vectors whose j-th elements are log I(λj) and

aj and let Q be the m × r matrix with (j, k) element given by [Q]j,k = λ2k
j . The bias-reduced estimator d̂r

can be obtained as the OLS estimator from the regression of log I(λj) on 1, aj , λ
2
j , . . . , λ

2r
j , for j = 1, . . . ,m

and therefore, using the partitioned regression formula, is given by

d̂r = (a∗′MQ∗a∗)−1a∗′MQ∗ log I,

with

MQ∗ = Im −Q∗(Q∗′Q∗)−1Q∗′I (r ≥ 1)

a∗ = a−m−1ιa′ι

Q∗ = Q−m−1ιQ′ι

(2.25)

In (2.25) Im denotes the m-identity matrix and ι denotes a column m-vector of ones. Note that when r = 0

MQ∗ = Im and d̂r reduces to the GPH estimator. If m goes to infinity at a slower rate than the MSE-optimal
rate (see Andrews and Guggenberger, 2003, for details),

√
m
(
d̂r − d

)
→dN

(
0, σ2

r

)
, (2.26)

with

σ2
r =

π2

24
cr (2.27)

cr =
(
1 − µ′

rΓ
−1
r µr

)−1
(2.28)

where µr = (µr,1, . . . , µr,r)
′,

µr,k =
2k

(2k + 1)2
, for k = 1, . . . , r

and Γr is an r × r matrix with (j, k) element given by

[Γr]j,k =
4jk

(2j + 2k + 1)(2j + 1)(2k + 1)
, for j, k = 1, . . . , r.

The test statistic for
H0 : d̂ = d

is

td =
√
m
d̂r(X) − d

σr
(2.29)

or

τd =
√
m
d̂r − 1(∆X) + 1 − d

σr
(2.30)
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and it has to be compared with standard normal percentiles.
The asymptotic theory developed by Robinson (1995b) for stationary I(d) processes has been extended

to non-stationary (d ≥ 1/2) and non-invertible (d ≤ −1/2) series by Velasco (1999a,b). Consider Xt ∼ I(d)
with 1/2 + γ ≤ d < 3/2 + γ, with γ integer. Then we will apply the log-periodogram regression to the series

Wt = ∆γXt. Denote by d̂(W ) the corresponding estimate. The estimate for the original series will be

d̂(X) = d̂(W ) + γ.

In other words, we first differenciate the original series γ times, apply the log-periodogram regression to the
differencied series and finally adjust the resulting estimate with the number of differences taken. Basically
the same idea applies to the case of non-invertible series, for which the data is first integrated and then the
number of integrations taken is subtracted by the resulting estimate.

To capture also short range dependencies in the processXt, Autoregressive Fractionally Integrated Moving
Average (arfima) processes have been proposed defined as

φ(L)∆dXt = θ(L)et,

where φ(L) and θ(L) involve autoregressive and moving average coefficients of order p and q respectively:

φ(L) = 1 −
p∑

i=1

φiL
i

θ(L) = 1 +

q∑

i=1

θiL
i,

with roots lying outside the unit circle. The requirement on φ(·) implies stationarity and the one on θ(·)
implies invertibility. Using a, The spectral density is

f(λ; ζ) =
σ2

2π

∣∣1 − eiλ
∣∣−2d

∣∣∣∣
θ(eiλ)

φ(eiλ)

∣∣∣∣
2

, −π < λ ≤ π, (2.31)

where ζ = (d, φ1, . . . , φp, θ1, . . . , θq, σ
2)′. The vector of parameter ζ can be estimated by maximizing an

approximate form of frequency-domain Gaussian likelihood. This amounts to minimize the Whittle objective
function

L(ζ) =

n−1∑

j=1

{
log f(λj ; ζ) +

I(λj)

f(λj ; ζ)

}
.

A problem with this approach is to choose the autoregressive and moving average orders p and q. Under- or
over-specifying p and q could, indeed, lead to bias in the estimates of d. To overcome these difficulties we
could use the local Whittle estimator, d̃ proposed by Künsch (1987), which is based on (2.10) and maximizes
the frequency-domain Gaussian likelihood only for frequencies in the neighborhood of zero. The Whittle
log-likelihood is −m/2 times

Q(G, d) =
1

m

m∑

j=1

{
log
[
Gλ−2d

j

]
+
λ2d

j

G
I(λj)

}
.

Concentrating Q(G, d) with respect to G entails the minimization of the function Q(Ĝ, d), with

Ĝ = arg min
0<G<+∞

Q(G, d) =
1

m

m∑

j=1

λ2d
j I(λj).

The corresponding estimator is:

d̃ = arg min
− 1

2 <d< 1
2



log


 1

m

m∑

j=1

λ2d
j I(λj)


− 2

d

m

m∑

j=1

log λj



 .
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Robinson (1995a) shows that, if m goes to infinity but slower that n,

√
m
(
d̃− d

)
→dN

(
0,

1

4

)
.

Thus, the test statistic for for
H0 : d̃ = d

is
td = 2

√
m
(
d̃(X) − d

)
(2.32)

or, for first differenced data,

τd = 2
√
m
(
d̃− 1(∆X) + 1 − d

)
(2.33)

and it has to be compared with standard normal percentiles.
Looking at (2.13), it is clear that the local Whittle estimator is asymptotically more efficient than the GPH
estimator for the same choice of m.
One of the disadvantages of the local Whittle estimator is its finite sample bias, which can be large. This can
be avoided by using the local polynomial Whittle (LPW) estimator of Andrews and Sun (2004). The main
idea is to approximate the logarithm of the short-run component of the spectrum in a shrinking neighborhood
of frequency zero by a polynomial, instead of a constant. This means that instead of (2.10), the spectral
density is assumed to be

f(λ) ∼ λ−2dϕ(λ) as λ→ 0+.

The logarithm of ϕ(λ) near zero is approximated for some integer r by a constant plus an even polynomial
of degree 2r:

ϕ(λ) ≈ logG−
r∑

k=1

θkλ
2k.

An even polynomial is chosen in order to reflect the symmetry of the spectrum about zero. Denoting by
θ = (θ1, . . . , θr)

′, the local polynomial Whittle log-likelihood is −m/2 times

Qr(G, d, θ) =
1

m

m∑

j=1

{
log
[
Gλ−2d

j e−pr,j
]
+
λ2d

j

G
I(λj)e

pr,j

}
,

where

pr,j = pr,j(θ) =
r∑

k=1

θkλ
2k
j .

Concentrating Qr(G, d, θ) with respect to G implies that the LPW estimator is given by

d̃r = arg min
− 1

2 <d< 1
2



log


 1

m

m∑

j=1

λ2d
j I(λj)e

pr,j


− 1

m

m∑

j=1

pr,j − 2
d

m

m∑

j=1

log λj



 .

The asymptotic distribution of the LPW estimator is
√
m
(
d̃r − d

)
→dN

(
0,
cr
4

)
, (2.34)

where cr is given by (2.28). The test statistic for

H0 : d̂ = d

is

td = 2
√
m
d̃r(X) − d√

cr
(2.35)

or

τd = 2
√
m
d̃r − 1(∆X) + 1 − d√

cr
(2.36)
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2.3.2 Fractional Cointegration

Consider again the time series Xt and suppose that it is I(d). Suppose that there exists α such that α′Xt is
I(γ) with d ≥ γ positive real numbers. In this case we say that Xt is fractionally cointegrated and denoted
by CI(d, d− γ). Suppose that Xt = (yt, x

′
t)

′
is a (K + 1)-vector with xt = (x1t, . . . , xKt)

′
.

It is common in the literature to compute first the residuals from an equilibrium relation between non-
stationary series integrated of order d ∈ (1/2, 3/2), and then to apply the methodologies proposed in §2.3.1,
to the residuals (or to the differenced residuals). Let us start with the case K = 1. Suppose xt ≡ x1t ∼ I(d)
and yt ∼ I(d) are observable with d ∈ (1/2, 3/2), and that ut ∼ I(δ), where

yt = βxt + ut, t = 1, . . . , n

and 0 ≤ δ < d. Consider a consistent estimator for β and denote by ût the observed residuals. If the
equilibrium errors are stationary, δ ≤ 1/2, we can estimate δ as follows:

δ̂(û) =

(
m∑

h=l+1

W 2
h

)−1 m∑

h=l+1

Wh log Iûû(λh).

This is (2.12) with J = 1. For non-stationary residuls we have

δ̂(∆û) = 1 +

(
m∑

h=l+1

W 2
h

)−1 m∑

h=l+1

Wh log I∆û∆û(λh).

Hassler et al. (2006) derive the condition under which these estimator are logn-consistent and asymptotically

normal, provided that β̂ converges fast enough. In particular they assume that

{
β̂ − β = OP(nδ−d) if δ + d ≥ 1

β̂ − β = OP(n1−2d) if δ + d < 1
, (2.37)

and
m ∼ Ana, l ∼ Bnb, 0 < b < a < 1, 0 < A,B <∞. (2.38)

Assumption (2.37) requires different rate of convergence for the β-estimator, depending on the overall memory
of regressors and errors, δ + d. In particular, when δ + d < 1, a slower rate of convercence is required.
Assumption (2.38) restricts the bandwidth numbers l and m to a power of n. Usually only small values are
chosen for l (l = 0 or l = 1.)

They show1 that for Gaussian ut and xt, under (2.37) and (2.38) as n→ ∞




log n
(
δ̂(û) − δ

)
→p 0 if 0 ≤ δ < 1/2 and δ < d− 1/2 < 1

log n
(
δ̂(∆û) − δ

)
→p 0 if 1/2 < δ < d− 1/2 < 1

.

Moreover asymptotic Normality as in (2.13) for both δ̂(û) and δ̂(∆û) is showed and, most important, logn-
consistency even for non-Gaussian data when the pooled-tapered estimator is used:





log n
(
δ̂(J)(û) − δ

)
→p 0 if d+ δ < 1 and 0 ≤ δ < d < 3/2

log n
(
δ̂(J)(∆û) − δ

)
→p 0 if 1/2 < δ < d < 3/2

, as n→ ∞.

Note that δ̂(û) is consistent only if 0 ≤ δ < 1/2 with δ < d − 1/2 < 1 as for differenced residuals, when l

and m are chosen appropriately. Note that assumption (2.37) is fulfilled when β̂ is the OLS estimates for

1Actually some more technical conditions than the ones presented here are required. (See Hassler et al., 2006, for the whole
set of assumptions.)
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δ ∈ [0, 3/2) − {1/2}. Eq. (2.37) is satisfied also the narrow band frequency domain LS (FDLS) estimator
proposed by Robinson and Marinucci (2001) when a bandwidth is chosen appropriately. This estimator
improves the asymptotic and finite sample properties of OLS estimates. However it is important to notice
that the authors use a different definition of I(d) process and say that a process at, is I(d) if there exist a
zero mean scalar I(0) process, ξt, t ∈ Z, and a scalar µ such that

at = µ+ ∆−dξ#t t ∈ Z, d > 0. (2.39)

Let us present their estimator in our setting assuming now that K ≥ 1. Suppose that

yt = β′xt + ut =

K∑

i=1

βixit + ut, t = 1, . . . , n (2.40)

for xit ∼ I(di), di ∈ (1/2, 3/2), yt ∼ I(dmax) and ut ∼ I(δ), 0 ≤ δ < dmin where dmin = mini di and
dmax = maxi di. Note that the formulation (2.39) does not need the requirements on di because of the
truncation. Thus following Robinson and Marinucci (2001) we can estimate β by the frequency domain least
square statistic

β̂m = F̂xx(m)F̂xy(m), 1 ≤ m ≤ n/2, (2.41)

where for the column vector or scalar sequence bt, t = 1, . . . , n, possibly identical to at, F̂ab(m) denotes the
averaged cross-periodogram:

F̂ab(m) = 2ℜ





2π

n

m∑

j=1

Iab(λj)



− 2π

n
Iab(π)I

(
m =

n

2

)
,

and
Iab(λ) = wa(λ)w′

b(−λ)

is the cross-periodogram. Note that, denoting by [ · ] the integer part and by ā = n−1
∑n

t=1 at we have

F̂ab

([n
2

])
=

1

n

n∑

t=1

(at − ā)(bt − b̄)′, (2.42)

and thus

β̂[n/2] =

(
n∑

t=1

(xt − x̄)(xt − x̄)′
)−1 n∑

t=1

(xt − x̄)(yt − ȳ)′

is the OLS estimate with intercept. Moreover F̂ab(m) can be looked at as the contribution from the first m

frequencies to the mean-corrected sample covariance (2.42). Denoting by β̂im the i-th element of β̂m, the
authors show that one has for di > 1/2, δ ≥ 0, di + δ < 1

{
β̂im − βi = OP(nδ−dim1−dmin−δ)

β̂i[n/2] − βi = OP(n1−dmin−di)
, i = 1, . . . ,K.

if the condition
1

m
+
m

n
→ 0 as n→ ∞ (2.43)

is satisfied. This indicates that the FDLS estimator converges faster than the OLS estimator. Moreover,
under (2.43) and when d1 = · · · = dK > 1/2, δ > 0 and di + δ > 1

{
β̂im − βi = OP(nδ−di)

β̂i[n/2] − βi = OP(nδ−di)
, i = 1, . . . ,K
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meaning that in this case, as long as at least an arbitrarily slowly increasing number m of frequencies is
included, omission of higher frequencies does not change the speed of convergence.
When −1/2 < δ < 1/2, to estimate the vector (δ, d1 − 1, . . . , dK − 1)

′
, derive the residuals from (2.40) and

simply use (2.17) and thus solve K + 1 regressions with dependent variables

(log Iûû(λj), log I∆x1∆x1
(λj), . . . , log I∆xK∆xK

(λj)) .

When the residuals are likely to be non-stationary, estimate the vector (δ − 1, d1 − 1, . . . , dK − 1)
′
by (2.17)

and thus solve K + 1 regressions with dependent variables

(log I∆û∆û(λj), log I∆x1∆x1
(λj), . . . , log I∆xK∆xK

(λj)) .

Define by d̂(û) and d̂(∆û) the estimates of the vector (δ, d1, . . . , dK)
′

based on original and differenced
residuals respectively. Assume that

{
β̂i − βi = OP(nδ−di) if δ + di ≥ 1

β̂i − βi = OP(n1−dmin−di) if δ + di < 1
, i = 1, . . . ,K. (2.44)

Clearly under assumptions (2.38)–(2.44), δ̂ is still log n-consistent and under the additional assumption of
Normality 




2
√
m
(
d̂(û) − d

)
→d N (0,Ω) if 0 ≤ δ < 1/2

2
√
m
(
d̂(∆û) − d

)
→d N (0,Ω) if 1/2 < δ < 1

.

To test the null of cointegration in fractionally cointegrated model we could use the Lagrange multi-
plier test of Nielsen (2004). Suppose that Xt = (yt, x

′
t)

′
, with yt ∼ I(d), is generated by the fractionally

cointegrated system

yt = β′xt + zt t = 1, 2, . . . (2.45)

∆δ+θzt = u#
1t t = 1, 2, . . . (2.46)

∆dxt = u#
2t t = 1, 2, . . . (2.47)

where δ = d− b with d ≥ b ≥ 3/4 + ǫ, for some ǫ > 0 and ut = (u1t, u
′
2t)

′
is an error component. Under the

null
H0 : θ = 0

Xt is CI(d, b). Moreover we assume that

φ(L)u1t = e1t t = 1, 2, . . .

Φ(L)u2t = e2t t = 1, 2, . . .

where φ(z) and Φ(z) are polynomials of order p with coefficient gathered in γ = (γ′1, γ
′
2)

′, Φ(1) has full rank,
meaning that there is no cointegration among the components of xt and et = (e1t, e

′
2t)

′ ∼ iid(0,Σ) with

Σ =

[
σ2

11 σ′
21

σ21 Σ22

]
.

Assuming Gaussianity of the errors the log-likelihood function is

L(θ, β,Σ, γ) = −n
2

log |Σ| − 1

2

n∑

t=1

(
φ(L)∆γ+θzt

Φ(L)∆dxt

)′
Σ−1

(
φ(L)∆γ+θzt

Φ(L)∆dxt

)
.

Define
e1.2t = e1t − σ′

21Σ
−1
22 e2t
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which is e1t centered about its mean conditional on e2t, and the corresponding variance

σ2
1.2 = σ2

11 − σ′
21Σ

−1
22 σ21.

It can be shown that the MLE of β under the null can be obtained as the non-linear least squares estimator
in the augmented regression

∆δyt = β′∆δxt + (1 − φ(L))∆δ(yt − β′xt) + c′Φ(L)∆dxt + e1.2t. (2.48)

Thus the estimate we get is not the one we would have gotten estimating (2.45) by OLS. The two estimator
coincide only if σ21 = 0 and φ(L) = 1. When σ21 6= 0 or φ(L) 6= 1 the OLS estimator is biased because of
endogeneity and serial correlation. When there is no autoregressive term in the equilibrium errors, i.e. when
φ(L) = 1, (2.48) reduces to

∆δyt = β′∆δxt +

p∑

k=0

c′k∆dxt−k + e1.2t. (2.49)

The normalized score statistic under the null

Sn =
1√
n

∂L(θ, β,Σ, γ)

∂θ

∣∣∣∣
θ=0,β=β̂,Σ=Σ̂,γ=γ̂

can be shown to be

Sn =
1√
nσ̂2

1.2

n∑

t=1

t−1∑

j=1

j−1ê1,t−j ê1.2t

with

ê1t = φ̂(L)∆δ(yt − β′xt)

ê1.2t = φ̂(L)∆δ(yt − β′xt) − c′Φ̂(L)∆dxt

σ̂1.2 =

√√√√ 1

n

n∑

t=1

ê′1.2tê1.2t.

A numerical approximation to the one sided test H0 against H1 : θ > 0 is

L̂M =

√
n
∑n

t=1

∑t−1
j=1 j

−1ê1,t−j ê1.2t√
∑n

t=1

(∑t−1
j=1 j

−1ê1,t−j

)2∑n
t=1 ê

2
1.2t

(2.50)

which is to be compared with the quantiles of the standard normal distribution.
A fractionally cointegrated system can be estimated using the results of Dittmann (2004), which proposes

an alternative to Granger (1986) error correction model for fractionally integrated systems. We can use a
three steps procedure. Basically the first two step coincide with the procedure presented before: the residuals
from (2.40) are calculated and the difference parameter δ̂(û) estimated via the GPH method, for instance.
In the third step one computes

̟t ≡ ∆δ̂(û)ût t = 1, . . . , n (2.51)

and verifies that ̟t is a stationary process, using for instance the KPSS test.

2.4 Empirical Application

We consider two different datasets. The first one is given by the Moody’s Long-Term Corporate Bond Yield
Averages. The second one consists of Lehman Brothers Eurodollar Indices.



2.4 Empirical Application 75

Figure 2.7: Treasury, Aaa, Aa, A and Baa yields.
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2.4.1 Dataset 1

First we employ the following data: 30-year Historical US Treasury Constant Maturity Yields and Moody’s
Aaa, Aa, A and Baa Long-Term Corporate Bond Yield Averages. The data covers the period from December
1992 to November 2003, for n = 2703 observations. Spreads are calculated as the difference between corporate
yields and Treasury yields, as well as between different corporate yields. Thus we have 15 series: Treasury
yields (denoted by T), corporate yields (Aaa, Aa, A, and Baa), spreads over Tresasury (sTAaa, sTAa, sTA,
and sTBaa), spreads between corporate yields (sAaaAa, sAaaA, sAaaBaa, sAaA, sAaBaa, and sABaa). These
series are plotted in Figure 2.7–Figure 2.9.

Table 2.3 and Table 2.4 report summary statistics and normality tests for the series involved and for their
first differences respectively.

Tests for normality show that distributions of yields and spreads, and their first differences, are highly
non-normal. Differences in credit spreads, with the exceptions of dsTreasAaa, dsAaBaa and dsABaa are
positively skewed. This implies that the probability of a loss from the return is bigger than the probability
of a loss from return from a normal distribution. Moreover, differences are also leptokurtic.
Table 2.5 and Table 2.6 report unit root and stationarity tests for yields and spreads and their first differences.

Yields and spreads seem to be non-stationary. We have ambiguous results only for sAaaAa and sABaa.
In both cases the KPSS test rejects the null of stationarity, but for the former the null of a unit root is
rejected by the PP test at a 1% level of significance, whereas for the latter the null of a unit root is rejected
by the ADF with lag length 4 at a 5% level of significance and by the PP test at a 1% level of significance.
However first differences of the series are clearly stationary, as shown by Table 2.6. As a consequence, we use
the differenced series to estimate the difference parameter.
First we estimate the parameter d for yields and spreads using different values ofm and J . In particular, when
J = 1 (no pooling), m = [nα] with α ∈ {0.4, 0.5, 0.6, 0.7, 0.8}. As pointed out in Diebold and Inoue (2001)
the choice of m is very important because even though a large value for m, would result in reducing standard
error, this would induce bias in the estimator. This is because eq. (2.10), on which the log-periodogram
estimate is based, is valid only for frequencies close to zero. Even though a popular choice is m =

√
n, many

authors suggest m = n4/5 (see for instance Hassler et al., 2006, pag. 189), which is the mean-square optimal
choice. Table 2.7 and Table 2.8 report the d estimates for the yields and the spreads when l = 0.
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Figure 2.8: Aaa, Aa, A and Baa spreads over Treasury yields.
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Figure 2.9: Spreads between corporate yields.
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Table 2.3: Summary Statistics and Normality Tests for yields and spreads. Both the Jarque–Bera test
and the Normality test proposed by Doornik and Hansen (1994) are computed. In both cases the null

hypothesis is that the series is normally distributed and the test statistic is χ2
2. The p-value is in square

bracket. One asterisk denotes significance at 5% level and two asterisks denote significance at 1% level.

mean std skewness ex. Kurtosis JB test DH test

T 6.1536 0.78947 0.30498 -0.57126 78.655
[0.0000]**

140.41
[0.0000]**

Aaa 7.0975 0.68853 -0.40296 0.37445 88.943
[0.0000]**

69.261
[0.0000]**

Aa 7.3463 0.60072 -0.12787 0.079963 8.0862
[0.0175]*

7.5408
[0.0230]*

A 7.5368 0.58879 -0.1924 -0.11221 18.095
[0.0001]**

21.806
[0.0000]**

Baa 7.8947 0.57677 -0.23461 0.29 34.269
[0.0000]**

26.234
[0.0000]**

sTAaa 0.94396 0.40039 0.85386 -0.47124 353.46
[0.0000]**

1291.5
[0.0000]**

sTAa 1.1927 0.41573 0.54433 -1.1281 276.81
[0.0000]**

934.56
[0.0000]**

sTA 1.3833 0.49232 0.61294 -1.0284 288.36
[0.0000]**

1033.2
[0.0000]**

sTBaa 1.7412 0.49927 0.51375 -1.3408 321.38
[0.0000]**

1197.4
[0.0000]**

sAaaAa 0.24873 0.12367 1.3572 2.0211 1289.9
[0.0000]**

1343
[0.0000]**

sAaaA 0.43932 0.17651 1.0234 0.68153 524.14
[0.0000]**

901.43
[0.0000]**

sAaaBaa 0.79721 0.2279 1.2453 0.5105 727.98
[0.0000]**

2312.4
[0.0000]**

sAaA 0.19058 0.10543 1.0911 0.49992 564.49
[0.0000]**

1330.5
[0.0000]**

sAaBaa 0.54848 0.14479 1.1672 1.0723 743.29
[0.0000]**

1182.2
[0.0000]**

sABaa 0.35789 0.11427 1.5693 3.7498 2693.1
[0.0000]**

1260.6
[0.0000]**
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Table 2.4: Summary Statistics and Normality Tests for first differences of yields and spreads. Both the
Jarque–Bera test and the Normality test proposed by Doornik and Hansen (1994) are computed. In both
cases the null hypothesis is that the series is normally distributed and the test statistic is χ2

2. The p-value
is in square bracket. One asterisk denotes significance at 5% level and two asterisks denote significance at

1% level.

mean std skewness ex. Kurtosis JB test DH test

∆T -0.00074 0.051925 0.30619 2.0323 507.20
[0.0000]**

254.79
[0.0000]**

∆Aaa -0.00079 0.048771 0.31655 2.6307 824.26
[0.0000]**

382.40
[0.0000]**

∆Aa -0.00073 0.046392 0.43888 1.9246 503.78
[0.0000]**

210.14
[0.0000]**

∆A -0.00071 0.04719 0.43378 2.0412 553.84
[0.0000]**

230.94
[0.0000]**

∆Baa -0.00072 0.047793 0.42962 1.9843 526.41
[0.0000]**

221.83
[0.0000]**

∆sTAaa -4.81E-05 0.024443 -2.0015 55.643 350377.5
[0.0000]**

12448
[0.0000]**

∆sTAa 1.48E-05 0.022006 0.45617 8.3799 7999.7
[0.0000]**

1970.7
[0.0000]**

∆sTA 3.70E-05 0.023 0.57711 14.692 24451.1
[0.0000]**

3923.6
[0.0000]**

∆sTBaa 2.22E-05 0.022466 0.5992 9.0243 9330.2
[0.0000]**

2012.1
[0.0000]**

∆sAaaAa 6.29E-05 0.01623 5.8072 144.87 2.3780E+06
[0.0000]**

6833
[0.0000]**

∆sAaaA 8.51E-05 0.017467 4.9598 130.89 1.9397E+06
[0.0000]**

10617
[0.0000]**

∆sAaaBaa 7.03E-05 0.018208 4.3241 112.28 1.4277E+06
[0.0000]**

11489
[0.0000]**

∆sAaA 2.22E-05 0.013233 0.66513 52.071 3.0545E+05
[0.0000]**

16289
[0.0000]**

∆sAaBaa 7.40E-06 0.014959 -0.19375 10.042 11371
[0.0000]**

2719.2
[0.0000]**

∆sABaa -1.48E-05 0.01553 -0.10372 28.283 90065
[0.0000]**

8920.3
[0.0000]**
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Table 2.5: Unit root and stationarity tests for yields and spreads. The
Dickey-Fuller (DF) or augmented Dickey-Fuller with the constant (ADF),

Phillips-Perron with the constant (PP), a two KPSS tests without trend are carried
out. n is the lag length in the ADF and it is chosen by the AIC. In the first KPSS

test the Bartlett kernel with bandwidth parameter
[
4
(

n
100

)1/4
]

is chosen for the

estimation of the long run variance. In the second test the automatic bandwidth
selection procedure of Hobijn et al. (1998) is considered. One asterisk denotes

significance at 5% level and two asterisks denote significance at 1% level.

DF-ADF n KPSS KPSS HFO PP

T -1.8998 0 18.272** 4.8192** -1.8811
Aaa -1.6007 1 9.8415** 2.6134** -1.5274
Aa -1.8819 1 8.5263** 2.2743** -1.771
A -1.9308 1 6.0752** 1.623** -1.8066

Baa -2.0792 1 5.3553** 1.4406** -2.0162
sTAaa -1.4212 39 12.07** 3.16** -1.2784
sTAa -1.415 96 17.553** 4.5677** -1.253
sTA -1.4234 73 17.974** 4.6607** -1.1279

sTBaa -1.219 4 19.013** 4.9377** -1.1825
sAaaAa -2.37 41 11.285** 3.0905** -2.8852**
sAaaA -1.9799 1 18.582** 4.9404** -2.0816

sAaaBaa -1.6043 57 15.306** 4.0569** -1.983
sAaA -1.9006 10 12.082** 3.1866** -2.2683

sAaBaa -2.292 1 11.63** 3.121** -2.4266
sABaa -3.0041* 4 2.3387** 0.63969** -3.1083**

Table 2.6: Unit root and stationarity tests for the first differences of yields and
spreads. The Dickey-Fuller (DF) or augmented Dickey-Fuller with the constant

(ADF), Phillips-Perron with the constant (PP), a two KPSS tests without trend are
carried out. n is the lag length in the ADF and it is chosen by the AIC. In the first

KPSS test the Bartlett kernel with bandwidth parameter
[
4
(

n
100

)1/4
]

is chosen for

the estimation of the long run variance. In the second test the automatic bandwidth
selection procedure of Hobijn et al. (1998) is considered. One asterisk denotes

significance at 5% level and two asterisks denote significance at 1% level.

DF-ADF n KPSS KPSS HFO PP

∆T -50.796** 0 0.038103 0.037796 -50.788**
∆Aaa -50.254** 0 0.065246 0.06474 -50.225**
∆Aa -49.933** 0 0.05892 0.05892 -49.894**
∆A -50.361** 0 0.066975 0.065249 -50.345**

∆Baa -50.116** 0 0.061583 0.059524 -50.087**
∆sTAaa -7.5675** 38 0.30846 0.3141 -63.294**
∆sTAa -5.8175** 95 0.2924 0.2924 -62.675**
∆sTA -5.3436** 72 0.34606 0.35011 -64.169**

∆sTBaa -23.651** 3 0.26461 0.24729 -59.851**
∆sAaaAa -9.4063** 40 0.035604 0.035017 -62.101**
∆sAaaA -63.273** 0 0.038956 0.036094 -63.162**

∆sAaaBaa -8.3088** 56 0.059622 0.059054 -58.503**
∆sAaA -18.297** 9 0.047834 0.051928 -73.938**

∆sAaBaa -60.905** 0 0.043784 0.044609 -60.648**
∆sABaa -64.597** 0 0.035307 0.032132 -64.219**
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Table 2.7: d estimates for the yields with l = 0 and non-tapered data. For every series X, this table

report the estimates d̂(∆X) ≡ d̂ − 1(∆X) + 1 along with the test statistic (2.15). One asterisk denotes
significance at 5% level and two asterisks denote significance at 1% level.

T Aaa Aa A Baa

m = 23 d̂(∆X) 0.80087 0.97492 0.88708 0.97457 0.91151
τd=1 -1.2036 -0.15158 -0.68253 -0.15374 -0.53491

m = 51 d̂(∆X) 0.84594 0.94272 0.87103 0.91001 0.93016
τd=1 -1.5125 -0.56232 -1.2661 -0.88346 -0.68566

J = 1 m = 114 d̂(∆X) 0.96895 1.0195 0.92161 0.97034 0.97393
τd=1 -0.48028 0.30185 -1.2127 -0.45883 -0.40322

m = 252 d̂(∆X) 0.9419 0.98311 0.92178 0.94766 0.99618
τd=1 -1.3749 -0.39957 -1.851 -1.2385 -0.090393

m = 556 d̂(∆X) 0.97927 0.99219 0.97855 0.98767 1.0323
τd=1 -0.7327 -0.27612 -0.75813 -0.43585 1.141

m = 22 d̂(∆X) 1.0896 1.1732 1.2483 1.2048 1.1473
τd=1 0.3291 0.63644 0.91224 0.75256 0.54123

m = 50 d̂(∆X) 0.91791 1.0427 1.0301 1.031 1.019
τd=1 -0.52307 0.27201 0.19174 0.19757 0.12082

J = 2 m = 114 d̂(∆X) 1.0018 1.0379 1.0097 1.0277 1.0257
τd=1 0.01843 0.39641 0.10166 0.28978 0.2693

m = 252 d̂(∆X) 0.97895 1.0072 0.98284 0.99102 1.0219
τd=1 -0.343 0.11798 -0.27969 -0.14631 0.35682

m = 556 d̂(∆X) 0.99833 1.0078 1.0004 1.0049 1.0229
τd=1 -0.041077 0.19234 0.010702 0.12011 0.56376

m = 21 d̂(∆X) 0.87718 1.1111 1.0974 1.124 1.0247
τd=1 -0.32127 0.29064 0.25485 0.32441 0.064606

m = 51 d̂(∆X) 0.83253 0.99082 0.96514 0.97111 0.95098
τd=1 -0.83107 -0.04555 -0.17298 -0.14337 -0.24328

J = 3 m = 114 d̂(∆X) 0.98173 1.0239 0.99281 1.0057 1.015
τd=1 -0.15055 0.19682 -0.059257 0.046875 0.12323

m = 252 d̂(∆X) 0.96576 0.99235 0.97424 0.97644 1.0134
τd=1 -0.44573 -0.099633 -0.33529 -0.30662 0.1748

m = 555 d̂(∆X) 0.97733 0.99088 0.98522 0.9814 1.0062
τd=1 -0.44888 -0.18057 -0.29255 -0.36831 0.12348
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Table 2.8: d estimates for the spreads with l = 0 and non-tapered data. For every series X, this table report the estimates d̂(∆X) ≡ d̂ − 1(∆X) + 1
along with the test statistic (2.15). One asterisk denotes significance at 5% level and two asterisks denote significance at 1% level.

sTAaa sTAa sTA sTBaa sAaaAa sAaaA sAaaBaa sAaA sAaBaa sABaa

m = 23 d̂(∆X) 0.92097 1.05 1.027 0.99384 0.67217 0.65317 0.90996 0.98424 0.87955 1.0693
τd=1 -0.47769 0.30223 0.16305 -0.037205 -1.9816* -2.0965* -0.54425 -0.095236 -0.7281 0.4191

m = 51 d̂(∆X) 1.0332 1.0306 1.072 1.1047 0.80634 0.82961 0.95578 0.994 0.81231 0.91661
τd=1 0.32557 0.30043 0.70673 1.0283 -1.9013 -1.6728 -0.43409 -0.058928 -1.8426 -0.81866

J = 1 m = 114 d̂(∆X) 1.0458 0.99239 1.0342 1.0863 0.87859 0.91356 0.97636 0.99051 0.97782 0.88735
τd=1 0.70796 -0.11771 0.52927 1.3347 -1.8782 -1.3371 -0.36577 -0.14687 -0.34314 -1.7426

m = 252 d̂(∆X) 1.0549 1.0704 1.0868 1.1103 0.98959 1.0024 1.0507 0.96664 1.0448 0.97755
τd=1 1.2982 1.6663 2.0547* 2.6091** -0.24635 0.057549 1.1992 -0.78952 1.0607 -0.53117

m = 556 d̂(∆X) 1.0348 0.99189 0.9903 1.0914 0.97802 0.96553 1.0733 0.90041 0.98604 0.98274
τd=1 1.2285 -0.28653 -0.34269 3.2291** -0.77674 -1.2181 2.59** -3.5191** -0.49324 -0.61002

m = 22 d̂(∆X) 0.84579 0.83857 0.98118 0.92743 0.69372 0.60359 0.79276 0.98821 0.71874 0.85606
τd=1 -0.56658 -0.59311 -0.069149 -0.26662 -1.1253 -1.4565 -0.76143 -0.043302 -1.0334 -0.52884

m = 50 d̂(∆X) 1.0075 1.0331 1.1084 1.1012 0.80097 0.84875 0.95023 0.98799 0.77459 0.93089
τd=1 0.047495 0.21117 0.69051 0.6447 -1.2683 -0.96381 -0.31713 -0.07656 -1.4364 -0.44038

J = 2 m = 114 d̂(∆X) 1.0607 1.0256 1.0642 1.0635 0.89574 0.9342 0.93122 0.9979 0.9928 0.9255
τd=1 0.63486 0.26751 0.67237 0.66457 -1.0912 -0.68868 -0.71985 -0.022027 -0.075375 -0.77971

m = 252 d̂(∆X) 1.0906 1.0847 1.1043 1.1113 0.99528 1.0063 1.0284 0.95773 1.0317 1.0113
τd=1 1.4769 1.3808 1.6996 1.8135 -0.076846 0.10267 0.46259 -0.6889 0.51733 0.18443

m = 556 d̂(∆X) 1.0334 0.99621 1.0075 1.0822 0.98171 0.96581 1.0503 0.88844 0.98291 0.98403
τd=1 0.82167 -0.093305 0.18488 2.0223* -0.44978 -0.84092 1.2378 -2.7438** -0.42024 -0.39273

m = 21 d̂(∆X) 1.0932 1.0585 1.2068 1.0247 0.68511 0.53466 0.83354 0.94063 0.72614 0.93701
τd=1 0.24371 0.15295 0.54093 0.064676 -0.82366 -1.2172 -0.43542 -0.1553 -0.71632 -0.16477

m = 51 d̂(∆X) 1.0793 1.0999 1.1471 1.1204 0.80996 0.82075 0.96278 0.98229 0.75197 0.94084
τd=1 0.39336 0.49595 0.72994 0.59768 -0.94307 -0.88952 -0.1847 -0.087908 -1.2309 -0.29361

J = 3 m = 114 d̂(∆X) 1.0777 1.0638 1.0863 1.085 0.87889 0.92741 0.91604 0.97628 0.98823 0.92951
τd=1 0.64038 0.52583 0.71137 0.7004 -0.99806 -0.59817 -0.69193 -0.1955 -0.096991 -0.5809

m = 252 d̂(∆X) 1.0853 1.0891 1.0949 1.1083 0.99974 1.0001 1.0329 0.94609 1.0055 1.0203
τd=1 1.1101 1.1597 1.2348 1.4097 -0.0034405 0.00074993 0.42821 -0.70174 0.072236 0.26444

m = 555 d̂(∆X) 1.0304 1.0037 0.99824 1.0812 0.98445 0.95898 1.0474 0.87589 0.9791 0.98987
τd=1 0.60192 0.072986 -0.03487 1.6083 -0.30782 -0.81216 0.93849 -2.457* -0.4138 -0.20047
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Table 2.9 and Table 2.10 report the d estimates for the yields and the spreads when l = 1.

Table 2.9: d estimates for the yields with l = 1 and non-tapered data. For every series X, this table

report the estimates d̂(∆X) ≡ d̂ − 1(∆X) + 1 along with the test statistic (2.15). One asterisk denotes
significance at 5% level and two asterisks denote significance at 1% level.

T Aaa Aa A Baa

m = 23 d̂(∆X) 1.0353 1.0736 0.89097 0.99382 0.93387
τd=1 0.17203 0.35853 -0.53124 -0.030098 -0.32219

m = 51 d̂(∆X) 0.94903 0.97784 0.8668 0.90459 0.94177
τd=1 -0.43916 -0.19088 -1.1476 -0.82201 -0.50171

J = 1 m = 114 d̂(∆X) 1.0294 1.0439 0.92612 0.97535 0.98441
τd=1 0.42055 0.62844 -1.0566 -0.35257 -0.22294

m = 252 d̂(∆X) 0.96888 0.99244 0.92397 0.94852 1.0026
τd=1 -0.70267 -0.17059 -1.7165 -1.1622 0.058915

m = 556 d̂(∆X) 0.99411 0.99716 0.98197 0.98975 1.037
τd=1 -0.20233 -0.097479 -0.61933 -0.35224 1.2698

m = 23 d̂(∆X) 1.0026 1.1408 1.1049 1.0806 1.025
τd=1 0.008386 0.44602 0.33236 0.25526 0.079348

m = 51 d̂(∆X) 0.92601 1.0564 1.0201 0.98881 0.99223
τd=1 -0.42809 0.32632 0.11613 -0.064734 -0.044986

J = 2 m = 115 d̂(∆X) 1.0316 1.0563 1.0043 1.0119 1.0314
τd=1 0.3109 0.55491 0.041876 0.11683 0.30894

m = 253 d̂(∆X) 0.98455 1.0027 0.98385 0.97935 1.0147
τd=1 -0.24245 0.041635 -0.25345 -0.3241 0.23073

m = 557 d̂(∆X) 0.98428 0.98638 0.98776 0.97939 1.0106
τd=1 -0.37764 -0.32737 -0.29403 -0.49522 0.25581

m = 22 d̂(∆X) 1.3385 1.2626 1.3282 1.2539 1.2117
τd=1 0.7788 0.60426 0.75521 0.5842 0.48704

m = 52 d̂(∆X) 0.9806 1.0903 1.0449 1.0139 1.012
τd=1 -0.08864 0.41274 0.20518 0.063583 0.054933

J = 3 m = 115 d̂(∆X) 1.0333 1.0352 1.0093 1.0102 1.0356
τd=1 0.26047 0.27487 0.072759 0.079342 0.27822

m = 253 d̂(∆X) 0.99747 1.0067 0.99208 0.99224 1.0216
τd=1 -0.031876 0.084883 -0.099657 -0.097712 0.272

m = 556 d̂(∆X) 1.0008 1.0079 1.0011 0.99927 1.0173
τd=1 0.01551 0.15227 0.022004 -0.014192 0.3351

Table 2.11 and Table 2.12 report the d estimates for the yields and the spreads when l = 0 and the data
is tapered.

Table 2.13 and Table 2.14 report the d estimates for the yields and the spreads when l = 1 and the data
is tapered.

From the analysis of Table 2.7 through Table 2.14 it is clear that yields and spreads are likely to be long
memory and nonstationary processes. In each table we report also the test statistic for the null hypothesis
of d = 1. First of all, the null is never rejected for the yields series, no matter if we consider tapered or
non-tapered data, l = 0 or l = 1, J = 1, J = 2 or J = 3. As far as spreads are concerned, the number
of rejections of the null increases when moving from non-tapered to tapered data. On the other hand, this



2
.4

E
m

p
ir

ic
a
l
A

p
p
lic

a
t
io

n
8
3

Table 2.10: d estimates for the spreads with l = 1 and non-tapered data. For every series X, this table report the estimates d̂(∆X) ≡ d̂ − 1(∆X) + 1
along with the test statistic (2.15). One asterisk denotes significance at 5% level and two asterisks denote significance at 1% level.

sTAaa sTAa sTA sTBaa sAaaAa sAaaA sAaaBaa sAaA sAaBaa sABaa

m = 23 d̂(∆X) 0.74987 0.90468 0.85302 0.87147 0.80844 0.52991 0.91703 0.99587 0.83407 1.3064
τd=1 -1.2187 -0.46443 -0.71613 -0.62622 -0.93333 -2.2904* -0.40423 -0.020122 -0.80843 1.4926

m = 51 d̂(∆X) 0.98108 0.96415 1.0047 1.0691 0.88827 0.80681 0.96923 1.0014 0.78319 0.98951
τd=1 -0.16299 -0.30889 0.040815 0.59539 -0.96263 -1.6645 -0.2651 0.011927 -1.868 -0.090371

J = 1 m = 114 d̂(∆X) 1.024 0.95789 0.99952 1.0671 0.92361 0.91376 0.98493 0.99356 0.9812 0.91611
τd=1 0.34372 -0.60219 -0.006876 0.96001 -1.0925 -1.2334 -0.21554 -0.092087 -0.26894 -1.1997

m = 252 d̂(∆X) 1.0452 1.059 1.0735 1.1025 1.0187 1.0086 1.0599 0.96614 1.0507 0.99742
τd=1 1.0194 1.3323 1.66 2.315* 0.42313 0.19378 1.3516 -0.76431 1.1452 -0.058244

m = 556 d̂(∆X) 1.0292 0.98286 0.97963 1.0867 0.99183 0.967 1.0788 0.89724 0.98653 0.99265
τd=1 1.003 -0.58871 -0.69992 2.9775** -0.28077 -1.1336 2.708** -3.5303** -0.46291 -0.25249

m = 23 d̂(∆X) 0.93695 0.93291 1.0259 0.88609 0.70816 0.55502 0.84467 1.0097 0.71308 1.0857
τd=1 -0.19975 -0.21254 0.081996 -0.36087 -0.92458 -1.4097 -0.4921 0.030827 -0.90899 0.27151

m = 51 d̂(∆X) 1.0691 1.0495 1.1185 1.096 0.86277 0.83437 0.97586 1.0125 0.79056 0.99666
τd=1 0.3999 0.28669 0.68558 0.55523 -0.79403 -0.95836 -0.13968 0.072256 -1.2118 -0.019327

J = 2 m = 115 d̂(∆X) 1.0495 1.0361 1.0838 1.0714 0.93674 0.95939 0.95783 0.96523 0.97625 0.94174
τd=1 0.48755 0.35526 0.82554 0.70339 -0.62323 -0.40004 -0.41539 -0.34249 -0.23392 -0.57398

m = 253 d̂(∆X) 1.0602 1.0759 1.0841 1.0892 1.0275 1.0134 1.0508 0.94644 1.0174 1.0334
τd=1 0.94483 1.1915 1.3194 1.399 0.43186 0.21027 0.79669 -0.84045 0.2729 0.52394

m = 557 d̂(∆X) 1.0254 0.9916 0.98942 1.0748 0.98586 0.95837 1.0537 0.87611 0.9766 0.99081
τd=1 0.61105 -0.20193 -0.2543 1.7968 -0.33985 -1.0004 1.2893 -2.9768** -0.56217 -0.22084

m = 22 d̂(∆X) 0.82371 0.73205 0.89577 0.76287 0.62827 0.57538 0.80618 1.0203 0.61229 0.97652
τd=1 -0.40559 -0.6165 -0.2398 -0.54557 -0.85525 -0.97695 -0.44592 0.046625 -0.89202 -0.054012

m = 52 d̂(∆X) 1.0593 1.0357 1.1252 1.0662 0.82906 0.86221 0.98179 0.99795 0.75392 0.96371
τd=1 0.27088 0.16321 0.57235 0.30249 -0.78121 -0.62973 -0.083205 -0.0093506 -1.1247 -0.16586

J = 3 m = 115 d̂(∆X) 1.0742 1.0027 1.0552 1.0367 0.93158 0.95869 0.96859 0.98545 0.97857 0.95627
τd=1 0.58004 0.021021 0.4311 0.2871 -0.53473 -0.32284 -0.24551 -0.11371 -0.1675 -0.34179

m = 253 d̂(∆X) 1.0805 1.0819 1.0811 1.0863 1.0135 1.0144 1.0398 0.9437 1.0301 1.0493
τd=1 1.0135 1.0316 1.0212 1.0866 0.16971 0.18157 0.50066 -0.70873 0.3787 0.62016

m = 555 d̂(∆X) 1.0246 0.99001 0.99484 1.071 0.97738 0.9567 1.0557 0.86794 0.99075 0.99221
τd=1 0.47749 -0.19368 -0.10012 1.3757 -0.43851 -0.83947 1.0799 -2.5603* -0.17931 -0.15106
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Table 2.11: d estimates for the yields with l = 0 and tapered data. For every series X, this table report the

estimates d̂(∆X) ≡ d̂ − 1(∆X) + 1 along with the test statistic (2.15). One asterisk denotes significance at 5%
level and two asterisks denote significance at 1% level.

T Aaa Aa A Baa

m = 23 d̂(∆X) 1.0794 1.1038 1.0122 1.0886 1.0329
τd=1 0.47993 0.62732 0.073489 0.53561 0.19873

m = 51 d̂(∆X) 0.9769 0.99086 0.94898 0.97784 0.97821
τd=1 -0.22673 -0.089711 -0.50083 -0.21758 -0.21394

J = 1 m = 114 d̂(∆X) 1.0054 0.9199 0.95393 0.97763 0.97777
τd=1 0.084006 -1.2391 -0.71274 -0.34599 -0.34382

m = 252 d̂(∆X) 0.98594 0.94146 0.97549 0.96459 0.99369
τd=1 -0.3326 -1.3853 -0.58009 -0.83783 -0.14941

m = 556 d̂(∆X) 0.9836 0.95627 0.99043 0.9805 1.0066
τd=1 -0.57937 -1.5454 -0.33825 -0.689 0.23245

m = 22 d̂(∆X) 1.0903 1.1548 1.0586 1.1207 1.0611
τd=1 0.33182 0.56892 0.21532 0.44332 0.2246

m = 50 d̂(∆X) 0.99765 1.0371 0.98705 0.99847 0.99164
τd=1 -0.015005 0.23667 -0.082552 -0.009731 -0.053293

J = 2 m = 114 d̂(∆X) 1.0041 0.93739 0.95375 0.95836 0.97683
τd=1 0.042722 -0.65527 -0.4841 -0.43581 -0.24247

m = 252 d̂(∆X) 0.98426 0.95082 0.9613 0.95778 0.96824
τd=1 -0.25658 -0.80147 -0.63075 -0.68805 -0.5176

m = 556 d̂(∆X) 0.98484 0.96438 0.9765 0.97148 0.99067
τd=1 -0.37275 -0.87604 -0.57799 -0.70142 -0.22945

m = 21 d̂(∆X) 1.1436 1.2969 1.1541 1.1949 1.0546
τd=1 0.3755 0.77655 0.40303 0.50977 0.14291

m = 51 d̂(∆X) 0.95943 0.9916 0.97575 0.97473 0.96302
τd=1 -0.20131 -0.041709 -0.12033 -0.12542 -0.18352

J = 3 m = 114 d̂(∆X) 1.0032 0.92731 0.96023 0.96149 0.98751
τd=1 0.026266 -0.599 -0.32773 -0.31739 -0.10294

m = 252 d̂(∆X) 0.99589 0.95255 0.96919 0.96247 0.97723
τd=1 -0.053537 -0.61759 -0.401 -0.48846 -0.29638

m = 555 d̂(∆X) 0.97881 0.96188 0.97832 0.96462 0.98357
τd=1 -0.41944 -0.75476 -0.42926 -0.70044 -0.32534
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Table 2.12: d estimates for the spreads with l = 0 and tapered data. For every series X, this table report the estimates d̂(∆X) ≡ d̂ − 1(∆X) + 1
along with the test statistic (2.15). One asterisk denotes significance at 5% level and two asterisks denote significance at 1% level.

sTAaa sTAa sTA sTBaa sAaaAa sAaaA sAaaBaa sAaA sAaBaa sABaa

m = 23 d̂(∆X) 0.97058 0.96698 1.0416 0.8911 0.69883 0.8081 0.60979 1.1058 0.77158 0.59618
τd=1 -0.17786 -0.1996 0.2512 -0.65824 -1.8204 -1.16 -2.3586* 0.63965 -1.3807 -2.4409*

m = 51 d̂(∆X) 1.0374 1.065 1.1789 1.1409 0.89207 1.0805 1.0218 0.88402 0.88381 0.88352
τd=1 0.36733 0.63831 1.7565 1.3829 -1.0596 0.79042 0.21421 -1.1386 -1.1407 -1.1435

J = 1 m = 114 d̂(∆X) 1.1106 1.071 1.1172 1.128 0.93064 0.97942 1.0287 0.97902 0.96461 0.85941
τd=1 1.7107 1.0986 1.8124 1.9799* -1.073 -0.31839 0.44416 -0.32454 -0.5474 -2.1749*

m = 252 d̂(∆X) 1.132 1.1836 1.186 1.1225 1.0037 0.99484 1.0374 0.93534 0.95569 0.92352
τd=1 3.1225** 4.3453** 4.4004** 2.8991** 0.087883 -0.12205 0.88423 -1.5301 -1.0485 -1.8097

m = 556 d̂(∆X) 1.02 1.0401 1.063 1.0987 0.91555 0.94069 0.97827 0.83367 0.96585 0.95882
τd=1 0.70726 1.4167 2.2276* 3.4893** -2.9841** -2.0958* -0.76778 -5.8775** -1.2067 -1.4552

m = 22 d̂(∆X) 0.96895 0.98127 1.0732 0.86534 0.77152 0.7885 0.56508 1.2826 0.73123 0.55281
τd=1 -0.11409 -0.06881 0.26884 -0.49475 -0.83946 -0.77708 -1.598 1.0383 -0.9875 -1.6431

m = 50 d̂(∆X) 1.0326 1.0731 1.1363 1.1284 0.94519 1.1126 1.0066 0.97601 0.87644 0.8499
τd=1 0.20771 0.46576 0.86871 0.81818 -0.34925 0.71751 0.041853 -0.15285 -0.78738 -0.95646

J = 2 m = 114 d̂(∆X) 1.0805 1.0439 1.1015 1.0938 0.96059 1.0102 0.99244 1.0037 0.92699 0.84934
τd=1 0.84255 0.45924 1.0624 0.9813 -0.41247 0.10692 -0.079132 0.038292 -0.76416 -1.5769

m = 252 d̂(∆X) 1.1098 1.1472 1.1692 1.1222 0.99875 1.011 1.0186 0.93698 0.942 0.90653
τd=1 1.7894 2.3985* 2.7579** 1.9915* -0.020376 0.17942 0.30339 -1.0269 -0.94523 -1.5233

m = 556 d̂(∆X) 1.0183 1.0255 1.0658 1.0917 0.90921 0.94521 0.99247 0.84796 0.9632 0.94889
τd=1 0.45093 0.62662 1.6177 2.2556* -2.233* -1.3476 -0.1852 -3.7395** -0.90508 -1.257

m = 21 d̂(∆X) 0.95851 0.96511 1.0426 0.84411 0.7998 0.78809 0.65575 1.2381 0.67676 0.61542
τd=1 -0.10852 -0.091265 0.1114 -0.40777 -0.52367 -0.5543 -0.90044 0.6229 -0.8455 -1.006

m = 51 d̂(∆X) 1.0536 1.1105 1.17 1.1285 0.92703 1.0581 1.0939 0.93573 0.86702 0.90717
τd=1 0.26585 0.54859 0.84367 0.63778 -0.36215 0.28831 0.46586 -0.31894 -0.65993 -0.46067

J = 3 m = 114 d̂(∆X) 1.0889 1.0992 1.144 1.1274 0.92305 0.98988 0.99682 1.0123 0.92951 0.85291
τd=1 0.7324 0.8172 1.1863 1.0497 -0.63411 -0.083381 -0.02624 0.10151 -0.58086 -1.2122

m = 252 d̂(∆X) 1.1289 1.1832 1.1992 1.1519 0.99718 1.004 1.018 0.93562 0.92674 0.91203
τd=1 1.678 2.3846* 2.5927* 1.9766* -0.036721 0.052639 0.23472 -0.83792 -0.95354 -1.145

m = 555 d̂(∆X) 1.027 1.0473 1.076 1.1006 0.90895 0.93513 0.99848 0.83203 0.96065 0.95801
τd=1 0.53412 0.93722 1.5036 1.9924* -1.8026 -1.2843 -0.030047 -3.3255** -0.77899 -0.83126
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Table 2.13: d estimates for the yields with l = 1 and tapered data. For every series X, this table report the

estimates d̂(∆X) ≡ d̂ − 1(∆X) + 1 along with the test statistic (2.15). One asterisk denotes significance at 5%
level and two asterisks denote significance at 1% level.

T Aaa Aa A Baa

m = 23 d̂(∆X) 1.1884 1.2771 1.155 1.2036 1.1253
τd=1 0.9178 1.3499 0.75544 0.99195 0.61038

m = 51 d̂(∆X) 1.0009 1.0365 0.99467 1.0026 1.0038
τd=1 0.0079118 0.31429 -0.045894 0.022692 0.032615

J = 1 m = 114 d̂(∆X) 1.0197 0.9328 0.97565 0.98891 0.98967
τd=1 0.28106 -0.96113 -0.34828 -0.15855 -0.14768

m = 252 d̂(∆X) 0.9912 0.94918 0.98725 0.969 1.0003
τd=1 -0.19874 -1.1472 -0.28793 -0.69992 0.0075866

m = 556 d̂(∆X) 0.98626 0.96081 0.99699 0.98349 1.0105
τd=1 -0.47201 -1.3464 -0.10337 -0.56734 0.36221

m = 23 d̂(∆X) 1.1827 1.2709 1.1755 1.2025 1.1098
τd=1 0.57871 0.85821 0.5561 0.6416 0.3478

m = 51 d̂(∆X) 0.98636 1.0224 0.99647 0.98728 0.97068
τd=1 -0.078932 0.12977 -0.020433 -0.073616 -0.16963

J = 2 m = 115 d̂(∆X) 1.0152 0.92745 0.95922 0.96206 0.99032
τd=1 0.15 -0.71469 -0.40176 -0.37374 -0.095404

m = 253 d̂(∆X) 1.0219 0.9704 0.99306 0.98199 0.99199
τd=1 0.34416 -0.4645 -0.10899 -0.28258 -0.12572

m = 557 d̂(∆X) 0.9963 0.96762 0.98787 0.97465 0.99454
τd=1 -0.088829 -0.77797 -0.29139 -0.60916 -0.13124

m = 22 d̂(∆X) 1.3521 1.2921 1.196 1.2095 1.1056
τd=1 0.81 0.67203 0.45085 0.48195 0.24288

m = 52 d̂(∆X) 1.0366 1.0708 1.0233 1.0017 0.98548
τd=1 0.16712 0.3234 0.10638 0.0078825 -0.066381

J = 3 m = 115 d̂(∆X) 1.0083 0.92826 0.94957 0.93996 0.97668
τd=1 0.064737 -0.56064 -0.39417 -0.46927 -0.18223

m = 253 d̂(∆X) 1.0106 0.96208 0.98062 0.97014 0.98304
τd=1 0.13345 -0.47735 -0.24392 -0.37584 -0.21347

m = 556 d̂(∆X) 0.98997 0.9647 0.98136 0.97179 0.98751
τd=1 -0.19448 -0.6843 -0.36142 -0.54701 -0.24205
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Table 2.14: d estimates for the spreads with l = 1 and tapered data. For every series X, this table report the estimates d̂(∆X) ≡ d̂ − 1(∆X) + 1
along with the test statistic (2.15). One asterisk denotes significance at 5% level and two asterisks denote significance at 1% level.

sTAaa sTAa sTA sTBaa sAaaAa sAaaA sAaaBaa sAaA sAaBaa sABaa

m = 23 d̂(∆X) 0.86505 0.8581 0.94091 0.79418 0.83822 0.75347 0.62092 0.99287 0.69988 0.56592
τd=1 -0.65751 -0.69136 -0.28792 -1.0028 -0.78825 -1.2012 -1.847 -0.034751 -1.4622 -2.1149*

m = 51 d̂(∆X) 1.0027 1.033 1.1588 1.1389 0.98358 1.103 1.0998 0.7973 0.87553 0.92263
τd=1 0.023083 0.28432 1.3682 1.197 -0.14149 0.88733 0.86003 -1.7464 -1.0724 -0.66664

J = 1 m = 114 d̂(∆X) 1.1025 1.0576 1.1019 1.1246 0.97604 0.9788 1.0628 0.95275 0.96755 0.87341
τd=1 1.4664 0.82384 1.457 1.7813 -0.34274 -0.30318 0.89768 -0.67571 -0.46409 -1.8105

m = 252 d̂(∆X) 1.1291 1.1848 1.1835 1.1201 1.0308 0.99568 1.0537 0.91961 0.95622 0.93445
τd=1 2.9156** 4.1726** 4.143** 2.7123** 0.69581 -0.097571 1.2127 -1.8148 -0.98834 -1.4798

m = 556 d̂(∆X) 1.0139 1.0345 1.0567 1.0966 0.92509 0.93878 0.98391 0.82166 0.96636 0.96557
τd=1 0.47584 1.1835 1.9465 3.3193** -2.5735* -2.103* -0.55262 -6.1267** -1.1558 -1.1829

m = 23 d̂(∆X) 0.89271 0.86956 0.94986 0.77017 0.81107 0.80397 0.7709 1.2047 0.70425 0.67184
τd=1 -0.3399 -0.41325 -0.15884 -0.72813 -0.59854 -0.62103 -0.72581 0.64859 -0.93696 -1.0396

m = 51 d̂(∆X) 1.042 1.0632 1.1423 1.1319 0.94575 1.0717 1.1563 0.85854 0.90909 0.97809
τd=1 0.24298 0.36558 0.8236 0.76345 -0.31391 0.41514 0.90425 -0.81851 -0.52602 -0.12678

J = 2 m = 115 d̂(∆X) 1.0948 1.0903 1.1329 1.1433 0.94662 1.0034 1.052 0.98472 0.95561 0.88498
τd=1 0.93353 0.88919 1.3089 1.4114 -0.52588 0.033477 0.51238 -0.15049 -0.43726 -1.1331

m = 253 d̂(∆X) 1.1244 1.1939 1.2087 1.1395 1.0068 1.0072 1.0359 0.94463 0.94727 0.92958
τd=1 1.9528 3.0428** 3.2749** 2.1893* 0.10712 0.11225 0.56383 -0.86897 -0.82741 -1.1051

m = 557 d̂(∆X) 1.0082 1.0404 1.0672 1.1002 0.90628 0.93846 0.99459 0.82947 0.9682 0.96534
τd=1 0.19659 0.97044 1.6136 2.4077* -2.2519* -1.4787 -0.13008 -4.0975** -0.7641 -0.83286

m = 22 d̂(∆X) 0.9163 0.86516 0.95769 0.75386 0.81551 0.8946 0.80897 1.307 0.69999 0.65095
τd=1 -0.19256 -0.31024 -0.097341 -0.5663 -0.42447 -0.2425 -0.43951 0.7063 -0.69025 -0.80307

m = 52 d̂(∆X) 1.0687 1.0744 1.1692 1.1628 0.97588 1.1609 1.1934 0.84064 0.94133 1.004
τd=1 0.31377 0.34001 0.77312 0.74403 -0.11023 0.73544 0.88385 -0.72831 -0.26812 0.018248

J = 3 m = 115 d̂(∆X) 1.0883 1.0526 1.1059 1.122 0.97594 1.0441 1.0511 0.95795 0.95823 0.89021
τd=1 0.68975 0.41134 0.82757 0.95377 -0.18802 0.34434 0.39943 -0.32866 -0.32645 -0.85802

m = 253 d̂(∆X) 1.0954 1.1608 1.1712 1.121 1.0127 1.0202 1.0389 0.92055 0.94951 0.93231
τd=1 1.201 2.0244* 2.155* 1.5237 0.15936 0.25447 0.48964 -1.0002 -0.63562 -0.85205

m = 555 d̂(∆X) 0.99814 1.0306 1.0598 1.0936 0.90888 0.94024 1.0034 0.8293 0.97406 0.96729
τd=1 -0.035999 0.59346 1.1587 1.8141 -1.7666 -1.1586 0.066679 -3.3095** -0.50301 -0.63409
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number decreases when moving from l = 0 to l = 1 and as J increases. Moreover the rejections seem to be
concentrated to the highest values of m, in particular to m =

[
n0.7

]
. However, even when the null is rejected,

it is quite clear that the fractional difference parameter belong to the interval
(

1
2 , 1
)
, which, again, entails

long memory and non-stationarity.
Table 2.15 and Table 2.16 report the bias-reduced log-periodogram regression estimates for the long-memory
parameter for yields and spreads respectively. Table 2.17 and Table 2.18 report the results for tapered data.

Table 2.15: Bias-reduced log-periodogram regression estimates for the long-memory parameter for the yields.

For every series X, this table report the estimates d̂r(∆X) ≡ d̂r − 1(∆X) + 1 along with the test statistic (2.30).
One asterisk denotes significance at 5% level and two asterisks denote significance at 1% level.

T Aaa Aa A Baa

m = 23 d̂r(∆X) 0.43996 0.98478 0.95773 1.1716 1.013
τd=1 -2.7922** -0.07587 -0.21073 0.85568 0.065032

m = 51 d̂r(∆X) 0.83033 0.95312 0.97245 1.0198 0.93057
τd=1 -1.2596 -0.34801 -0.20454 0.1472 -0.51548

r = 1 m = 114 d̂r(∆X) 0.84397 0.95255 0.84036 0.883 0.9117
τd=1 -1.7319 -0.52663 -1.772 -1.2987 -0.98013

m = 252 d̂r(∆X) 0.94686 0.97995 0.89534 0.9393 0.96861
τd=1 -0.87701 -0.33091 -1.7272 -1.0017 -0.51807

m = 556 d̂r(∆X) 0.94624 0.9794 0.92868 0.95405 0.99853
τd=1 -1.3178 -0.50506 -1.7482 -1.1263 -0.03605

m = 23 d̂r(∆X) -0.21458 0.46407 0.49389 0.74231 0.71132
τd=1 -4.8444** -2.1376* -2.0187* -1.0278 -1.1514

m = 51 d̂r(∆X) 0.7266 1.0213 0.93382 1.0812 0.96691
τd=1 -1.6238 0.12625 -0.39308 0.48229 -0.19654

r = 2 m = 114 d̂r(∆X) 0.82385 0.91065 0.86506 0.91174 0.92051
τd=1 -1.5642 -0.79341 -1.1983 -0.78372 -0.7059

m = 252 d̂r(∆X) 1.0167 1.0495 0.95689 1.0069 1.0118
τd=1 0.22057 0.65341 -0.56919 0.091542 0.15547

m = 556 d̂r(∆X) 0.93907 0.99071 0.91994 0.94768 0.98016
τd=1 -1.1949 -0.18226 -1.5701 -1.026 -0.38913

m = 23 d̂r(∆X) -0.15001 0.58748 0.77727 0.93175 0.86655
τd=1 -3.9316** -1.4103 -0.76147 -0.23334 -0.45623

m = 51 d̂r(∆X) 0.55066 1.0115 0.8993 1.138 1.0543
τd=1 -2.2875* 0.058579 -0.51266 0.70236 0.27668

r = 3 m = 114 d̂r(∆X) 0.81547 0.99903 0.98418 1.0371 0.94946
τd=1 -1.4045 -0.00741 -0.12043 0.28217 -0.38469

m = 252 d̂r(∆X) 0.82901 0.9523 0.83025 0.88369 0.88551
τd=1 -1.935 -0.53975 -1.9209 -1.3162 -1.2956

m = 556 d̂r(∆X) 0.9197 0.97881 0.87348 0.91639 0.97081
τd=1 -1.3497 -0.35613 -2.1267* -1.4055 -0.49065

Table 2.19 and Table 2.20 report the local Whittle estimates for yields and spreads respectively.
Table 2.21 and Table 2.22 report the local polynomial Whittle estimates for yields and spreads.
Basically, the local Whittle estimations and the related tests to verify whether the fractional difference

parameter is different from 1, confirm the results we got from the log-periodogram techniques.

Table 2.23 reports the result of Nielsen (2005) LM test for yields when setting d = 1 in eq. (2.18) or d = ι
in eq. (2.21) for the multivariate case. Panel A reports univariate tests whereas Panel B reports multivariate
tests. Table 2.24 reports the result of Nielsen (2005) LM test for spreads when setting d = 1 in eq. (2.18)
or d = ι in eq. (2.21) for the multivariate case. Panel A reports univariate tests whereas Panel B reports
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Table 2.16: Bias-reduced log-periodogram regression estimates for the long-memory parameter for the spreads. For every series X, this table report

the estimates d̂r(∆X) ≡ d̂r − 1(∆X) + 1 along with the test statistic (2.30). One asterisk denotes significance at 5% level and two asterisks denote
significance at 1% level.

sTAaa sTAa sTA sTBaa sAaaAa sAaaA sAaaBaa sAaA sAaBaa sABaa

m = 23 d̂r(∆X) 1.059 1.2045 1.1696 1.1346 0.58068 0.4825 0.95328 0.83931 0.99171 0.70896
τd=1 0.29406 1.0197 0.84552 0.67103 -2.0906 -2.5801** -0.23293 -0.80115 -0.04135 -1.451

m = 51 d̂r(∆X) 1.0181 1.1011 1.1258 1.1767 0.65606 0.7657 0.86367 0.9308 0.81977 1.0235
τd=1 0.1341 0.75079 0.93369 1.3118 -2.5535* -1.7395 -1.0122 -0.51376 -1.338 0.17415

r = 1 m = 114 d̂r(∆X) 1.0001 1.0159 1.0415 1.1504 0.82088 0.7753 0.91838 0.98174 0.94027 0.98043
τd=1 0.001257 0.17631 0.46028 1.6691 -1.9882* -2.4941* -0.90597 -0.20267 -0.66295 -0.21718

m = 252 d̂r(∆X) 1.0154 1.0297 1.0648 1.1113 0.89699 0.92836 0.9838 1.029 1.0138 0.92827
τd=1 0.25436 0.49016 1.0699 1.8372 -1.7001 -1.1823 -0.26743 0.47928 0.22732 -1.1837

m = 556 d̂r(∆X) 1.0584 1.0942 1.1083 1.1508 1.0004 0.99194 1.0359 0.99125 1.0257 1.0122
τd=1 1.4325 2.309* 2.656** 3.6977** 0.009627 -0.19766 0.8793 -0.21438 0.63031 0.29836

m = 23 d̂r(∆X) 0.87372 0.88378 1.0416 1.1535 0.40838 0.73727 1.2329 0.90874 1.589 0.42791
τd=1 -0.50366 -0.46355 0.16578 0.61243 -2.3597* -1.0479 0.92909 -0.364 2.3494* -2.2818*

m = 51 d̂r(∆X) 0.83194 1.2083 1.1303 0.99718 0.57858 0.61812 0.88608 1.0193 0.92044 0.8081
τd=1 -0.99815 1.2369 0.77409 -0.01676 -2.5029* -2.2681* -0.67664 0.11448 -0.47253 -1.1398

r = 2 m = 114 d̂r(∆X) 1.0159 1.15 1.2048 1.185 0.69743 0.73443 0.98665 0.9786 0.84315 0.93522
τd=1 0.1416 1.3324 1.8187 1.6428 -2.6868** -2.3583* -0.11852 -0.19004 -1.3928 -0.57528

m = 252 d̂r(∆X) 1.0709 1.0085 1.0451 1.1236 0.82695 0.83462 0.95248 0.99267 0.98219 0.89694
τd=1 0.93612 0.11246 0.59499 1.6318 -2.2847* -2.1834* -0.62734 -0.09679 -0.23519 -1.3606

m = 556 d̂r(∆X) 0.98481 1.0475 1.0505 1.0738 0.93566 0.98306 1.0153 1.0256 1.0303 0.90585
τd=1 -0.29798 0.93148 0.98967 1.4482 -1.2618 -0.33218 0.3 0.50133 0.59342 -1.8464

m = 23 d̂r(∆X) 1.5487 1.3743 1.5428 1.5189 0.23828 0.99229 0.84172 0.78267 1.143 0.005531
τd=1 1.8758 1.2798 1.8556 1.7739 -2.6041** -0.02635 -0.54113 -0.74301 0.48902 -3.3999**

m = 51 d̂r(∆X) 0.95502 1.1039 0.96958 0.98069 0.54429 0.28705 0.9367 0.852 1.1204 0.93087
τd=1 -0.22897 0.52883 -0.15485 -0.09833 -2.32* -3.6295** -0.32224 -0.75342 0.61293 -0.35194

r = 3 m = 114 d̂r(∆X) 1.1002 1.0591 1.0812 1.1034 0.72119 0.88721 0.87987 0.95507 0.70713 0.98158
τd=1 0.76294 0.45 0.6181 0.78734 -2.1221* -0.8585 -0.91432 -0.34194 -2.2291* -0.14024

m = 252 d̂r(∆X) 1.0443 0.99721 1.0992 1.1288 0.84288 0.78257 0.92227 0.93698 0.91356 0.90651
τd=1 0.50145 -0.03153 1.1221 1.457 -1.7781 -2.4606* -0.87962 -0.71311 -0.97813 -1.0579

m = 556 d̂r(∆X) 1.0576 1.0672 1.1092 1.1191 0.91318 0.94757 1.0003 1.0163 1.075 0.93473
τd=1 0.9682 1.1297 1.8361 2.0023* -1.4593 -0.88135 0.005632 0.27326 1.2605 -1.0972
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Table 2.17: Bias-reduced log-periodogram regression estimates for the long-memory parameter for the tapered

yields. For every series X, this table report the estimates d̂r(∆X) ≡ d̂r − 1(∆X) + 1 along with the test statistic
(2.30). One asterisk denotes significance at 5% level and two asterisks denote significance at 1% level.

T Aaa Aa A Baa

m = 23 d̂r(∆X) 1.0024 1.1394 1.0789 1.1753 1.115
τd=1 0.011889 0.69514 0.39359 0.87415 0.5734

m = 51 d̂r(∆X) 1.142 1.2702 1.075 1.1663 1.1118
τd=1 1.0541 2.0063* 0.55669 1.2346 0.83001

r = 1 m = 114 d̂r(∆X) 0.95423 0.97232 0.91717 0.96366 0.95208
τd=1 -0.50803 -0.3072 -0.91939 -0.40339 -0.53191

m = 252 d̂r(∆X) 1.0047 0.90765 0.95592 0.9703 0.9811
τd=1 0.077832 -1.5241 -0.72747 -0.4901 -0.31192

m = 556 d̂r(∆X) 0.95056 0.91582 0.93804 0.93192 0.95831
τd=1 -1.212 -2.0635* -1.5188 -1.6689 -1.0219

m = 23 d̂r(∆X) 0.57062 0.56423 0.75148 0.80936 0.97394
τd=1 -1.7126 -1.7381 -0.99125 -0.76037 -0.10396

m = 51 d̂r(∆X) 1.1155 1.1977 1.0708 1.1782 1.1187
τd=1 0.68593 1.1745 0.42056 1.0584 0.70505

r = 2 m = 114 d̂r(∆X) 1.1015 1.1257 1.0095 1.0886 1.0543
τd=1 0.90096 1.1166 0.084281 0.78687 0.48217

m = 252 d̂r(∆X) 1.067 0.97652 0.99023 1.0336 1.0116
τd=1 0.88498 -0.31003 -0.12903 0.44317 0.15374

m = 556 d̂r(∆X) 0.97466 0.91166 0.9651 0.95789 0.97538
τd=1 -0.49701 -1.7325 -0.68451 -0.82585 -0.48275

m = 23 d̂r(∆X) 0.69049 0.69371 0.76844 0.96686 0.98444
τd=1 -1.0582 -1.0471 -0.79165 -0.11331 -0.0532

m = 51 d̂r(∆X) 0.97134 1.0078 1.0225 1.1186 1.0561
τd=1 -0.14589 0.0395 0.11453 0.60389 0.28557

r = 3 m = 114 d̂r(∆X) 1.0581 1.2127 1.0331 1.1137 1.0558
τd=1 0.44239 1.6192 0.25205 0.86526 0.42461

m = 252 d̂r(∆X) 0.93191 0.94418 0.88974 0.94565 0.95005
τd=1 -0.77059 -0.63164 -1.2478 -0.61508 -0.56529

m = 556 d̂r(∆X) 1.0347 0.93926 0.97937 0.98571 1.0169
τd=1 0.58312 -1.0209 -0.34674 -0.24024 0.2839
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Table 2.18: Bias-reduced log-periodogram regression estimates for the long-memory parameter for the tapered spreads. For every series X, this table

report the estimates d̂r(∆X) ≡ d̂r − 1(∆X) + 1 along with the test statistic (2.30). One asterisk denotes significance at 5% level and two asterisks
denote significance at 1% level.

sTAaa sTAa sTA sTBaa sAaaAa sAaaA sAaaBaa sAaA sAaBaa sABaa

m = 23 d̂r(∆X) 1.0499 1.0849 1.1271 1.0558 0.71379 0.70085 0.40559 1.1063 0.92604 0.6375
τd=1 0.24902 0.42349 0.63361 0.27796 -1.427 -1.4915 -2.9636** 0.53021 -0.36874 -1.8073

m = 51 d̂r(∆X) 1.0891 1.116 1.1309 1.1679 0.80449 0.98151 0.69377 1.0852 0.7438 0.66089
τd=1 0.66164 0.86119 0.97167 1.2465 -1.4515 -0.13726 -2.2735* 0.63243 -1.9021 -2.5176*

r = 1 m = 114 d̂r(∆X) 1.0619 1.0069 1.0845 1.1648 0.89106 1.0071 1.1244 0.78772 1.0251 0.93859
τd=1 0.68701 0.076283 0.93757 1.8293 -1.2092 0.079201 1.3813 -2.3563 0.27913 -0.68165

m = 252 d̂r(∆X) 1.1492 1.0831 1.0954 1.1709 0.88639 0.97115 1.108 0.97535 0.997 0.89844
τd=1 2.4614* 1.3715 1.5743 2.8211** -1.8749 -0.47618 1.7822 -0.40673 -0.04949 -1.676

m = 556 d̂r(∆X) 1.1498 1.2127 1.172 1.1267 1.0019 0.99946 1.0228 0.92428 1.0191 0.97122
τd=1 3.6721** 5.2135** 4.2164** 3.1066** 0.046261 -0.01335 0.55856 -1.8562 0.46713 -0.70548

m = 23 d̂r(∆X) 0.99939 1.1089 1.1159 1.1086 0.50581 0.68613 0.40375 1.3656 1.0456 0.65495
τd=1 -0.0024164 0.43452 0.46215 0.43323 -1.9711 -1.2519 -2.3782* 1.458 0.18194 -1.3763

m = 56 d̂r(∆X) 0.98155 1.061 1.1676 0.88518 0.54465 0.68823 0.40612 1.1152 0.81036 0.47599
τd=1 -0.1096 0.36245 0.99516 -0.68195 -2.7045 -1.8517 -3.5273** 0.68417 -1.1263 -3.1123**

r = 2 m = 114 d̂r(∆X) 1.0597 1.1767 1.2581 1.2714 0.89595 1.1089 0.90328 0.83456 0.85663 0.78908
τd=1 0.53054 1.569 2.2919* 2.4096* -0.92391 0.96682 -0.8589 -1.4691 -1.2731 -1.873

m = 252 d̂r(∆X) 1.1245 1.0689 1.1108 1.1502 0.9282 0.99472 1.071 0.91405 0.98613 0.88569
τd=1 1.644 0.90998 1.4635 1.9826* -0.94791 -0.06969 0.93697 -1.1348 -0.18313 -1.5092

m = 556 d̂r(∆X) 1.1282 1.1542 1.1574 1.0999 0.99174 0.98391 1.056 0.98117 0.92893 0.85883
τd=1 2.5138* 3.0248** 3.0877** 1.9594 -0.16193 -0.31546 1.0974 -0.36923 -1.3938 -2.7684**

m = 23 d̂r(∆X) 1.8031 1.6837 1.6949 1.4422 0.31379 0.57444 0.31805 1.8157 0.93309 0.59212
τd=1 2.7455** 2.3375* 2.3756* 1.5118 -2.346* -1.4549 -2.3314* 2.7888** -0.22875 -1.3945

m = 51 d̂r(∆X) 0.83486 0.81456 0.8459 0.59809 0.54911 0.40078 0.25638 1.2843 0.93727 0.52875
τd=1 -0.84071 -0.94406 -0.78451 -2.0461* -2.2954* -3.0506** -3.7857** 1.4473 -0.31934 -2.3991*

r = 3 m = 114 d̂r(∆X) 1.1328 1.1289 1.2537 1.1108 0.79883 1.0708 0.72726 1.1609 0.69125 0.67726
τd=1 1.011 0.9808 1.9314 0.84322 -1.5312 0.53859 -2.0759* 1.2248 -2.35* -2.4565*

m = 252 d̂r(∆X) 1.0616 1.0343 1.1587 1.1524 0.93044 1.0115 1.0045 0.8616 0.99915 0.85044
τd=1 0.69742 0.38783 1.7955 1.7251 -0.78716 0.13007 0.05048 -1.5661 -0.00959 -1.6925

m = 556 d̂r(∆X) 1.1816 1.1603 1.1932 1.1933 0.95299 1.015 1.1181 0.98059 0.97508 0.88751
τd=1 3.0532** 2.6945** 3.2476** 3.2499** -0.79013 0.25156 1.9846* -0.32619 -0.41887 -1.8909
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Table 2.19: Local Whittle estimates for the yields. For every series X, this table report the estimates d̃(X)

and d̃(∆X) ≡ d̃ − 1(∆X) + 1 along with the test statistics (2.32) and (2.33) respectively. One asterisk denotes
significance at 5% level and two asterisks denote significance at 1% level.

T Aaa Aa A Baa

m = 23 d̃(X) 1.1577 1.167 1.1097 1.1454 1.1219
td=1 1.5123 1.6017 1.0521 1.3948 1.1689

m = 51 d̃(X) 0.91182 0.94809 0.92025 0.90521 0.88131
td=1 -1.2594 -0.74138 -1.1391 -1.3539 -1.6952

m = 114 d̃(X) 0.99674 0.99071 0.96684 0.96289 0.96243
td=1 -0.0697 -0.19833 -0.708 -0.7925 -0.80225

m = 252 d̃(X) 0.9941 0.99666 0.98005 0.97504 0.99569
td=1 -0.18737 -0.10596 -0.63354 -0.79245 -0.13684

m = 556 d̃(X) 0.98095 0.97878 0.97273 0.96478 0.97887
td=1 -0.89842 -1.0006 -1.2861 -1.6611 -0.99643

m = 23 d̃(∆X) 0.96063 1.0084 1.0473 1.026 0.99513
τd=1 -0.37759 0.08021 0.45354 0.24948 -0.04672

m = 51 d̃(∆X) 0.93782 1.0165 1.0079 0.9944 0.97732
τd=1 -0.88811 0.2356 0.11253 -0.08003 -0.32394

m = 114 d̃(∆X) 1.0372 1.0134 1.0083 1.0101 1.0269
τd=1 0.79448 0.28525 0.17759 0.21594 0.57464

m = 252 d̃(∆X) 0.98669 0.98386 0.972 0.97201 1.0024
τd=1 -0.42253 -0.51249 -0.889 -0.88861 0.077778

m = 556 d̃(∆X) 0.98806 0.99025 0.97874 0.97453 0.99326
τd=1 -0.56288 -0.45975 -1.0024 -1.2014 -0.3177

multivariate tests.
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Table 2.20: Local Whittle estimates for the spreads. For every series X, this table report the estimates d̃(X) and d̃(∆X) ≡ d̃ − 1(∆X) + 1
along with the test statistics (2.32) and (2.33) respectively. One asterisk denotes significance at 5% level and two asterisks denote significance at

1% level.

sTAaa sTAa sTA sTBaa sAaaAa sAaaA sAaaBaa sAaA sAaBaa sABaa

m = 23 d̃(X) 0.93646 0.98644 1.0337 0.96975 0.79523 0.84721 0.87801 0.9524 0.78504 0.89519
td=1 -0.60941 -0.1301 0.3232 -0.29017 -1.9641 -1.4655 -1.1701 -0.45658 -2.0619* -1.0053

m = 51 d̃(X) 1.0659 1.0772 1.1409 1.104 0.88337 0.96783 0.98093 0.9698 0.79327 0.88544
td=1 0.94154 1.1032 2.0125* 1.4849 -1.6658 -0.45951 -0.27232 -0.43128 -2.9527** -1.6362

m = 114 d̃(X) 1.0828 1.0495 1.0834 1.0701 0.91027 0.99811 0.94407 0.9712 0.98375 0.90814
td=1 1.7686 1.0575 1.7815 1.4974 -1.9161 -0.04037 -1.1943 -0.61498 -0.3471 -1.9617*

m = 252 d̃(X) 1.0842 1.0728 1.0877 1.0965 1.0034 1.0272 1.0454 0.9167 1.0119 1.0119
td=1 2.6731** 2.312* 2.783** 3.0635** 0.10737 0.86367 1.4401 -2.6448** 0.37758 0.37762

m = 556 d̃(X) 1.0083 0.99229 1.0046 1.0537 0.94755 0.9577 1.0333 0.85168 0.9668 0.96479
td=1 0.38937 -0.36375 0.219 2.5311* -2.4737* -1.995 1.5712 -6.9946** -1.5658 -1.6603

m = 23 d̃(∆X) 0.95017 0.97652 1.0213 0.96277 0.62929 0.7002 0.82383 0.99918 0.78182 0.89659
τd=1 -0.47793 -0.22524 0.20405 -0.35709 -3.5558** -2.8756** -1.6898 -0.00782 -2.0927* -0.99187

m = 51 d̃(∆X) 1.0623 1.0774 1.1407 1.1004 0.80978 0.88246 0.91923 0.95135 0.7861 0.89481
τd=1 0.88943 1.1058 2.01* 1.4336 -2.7169** -1.6788 -1.1536 -0.69483 -3.055** -1.5023

m = 114 d̃(∆X) 1.0776 1.05 1.0822 1.0677 0.86685 0.94205 0.90191 0.96217 0.97921 0.91494
τd=1 1.6573 1.0669 1.7545 1.4466 -2.8433** -1.2375 -2.0946* -0.80773 -0.44394 -1.8163

m = 252 d̃(∆X) 1.0873 1.0787 1.0903 1.1 0.99018 1.0055 1.0362 0.913 1.0149 1.0148
τd=1 2.7718** 2.4972* 2.8678** 3.1736** -0.31183 0.17487 1.1506 -2.7621** 0.47373 0.46939

m = 556 d̃(∆X) 1.0273 1.008 1.0162 1.0703 0.96682 0.96454 1.054 0.85775 0.98494 0.97835
τd=1 1.2862 0.37586 0.76442 3.3159** -1.5646 -1.6724 2.545* -6.7085** -0.71027 -1.0208
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Table 2.21: Local polynomial Whittle estimates for the yields. For every series X, this table report the

estimates d̃r(∆X) ≡ d̃r − 1(∆X) + 1 along with the test statistic (2.36). One asterisk denotes significance at 5%
level and two asterisks denote significance at 1% level.

T Aaa Aa A Baa

m = 23 d̃r(∆X) 0.59787 1.0289 1.0835 1.1342 1.0622
τd=1 -2.5714* 0.18507 0.53378 0.85836 0.3978

m = 51 d̃r(∆X) 0.95966 0.98565 1.0727 1.049 0.99381
τd=1 -0.38413 -0.13667 0.69195 0.46704 -0.05896

r = 1 m = 114 d̃r(∆X) 0.98557 1.0478 1.012 1.0122 0.98501
τd=1 -0.20547 0.68098 0.17144 0.17397 -0.21333

m = 252 d̃r(∆X) 1.0263 1.0096 1.0043 1.0075 1.0237
τd=1 0.55581 0.20244 0.0911 0.15857 0.50094

m = 556 d̃r(∆X) 0.97396 0.96149 0.95921 0.95598 0.98334
τd=1 -0.81882 -1.2109 -1.2825 -1.3839 -0.52367

m = 23 d̃r(∆X) 0.59787 1.029 1.0835 1.1342 1.0622
τd=1 -2.0571* 0.1481 0.42705 0.68671 0.31827

m = 51 d̃r(∆X) 0.95967 0.98566 1.0727 1.0491 0.99382
τd=1 -0.30722 -0.10925 0.55359 0.37397 -0.04709

r = 2 m = 114 d̃r(∆X) 0.92865 1.0034 1.0279 0.99909 0.97961
τd=1 -0.81264 0.038178 0.31805 -0.01041 -0.23218

m = 252 d̃r(∆X) 1.1153 1.0893 1.0781 1.0825 1.0799
τd=1 1.9526 1.5118 1.3227 1.3978 1.3524

m = 556 d̃r(∆X) 1.003 1.0026 0.98883 0.99634 1.0225
τd=1 0.075935 0.066491 -0.28093 -0.09195 0.56505

m = 23 d̃r(∆X) 0.59787 1.0289 1.0835 1.1342 1.0622
τd=1 -1.7632 0.12694 0.36609 0.58861 0.27278

m = 51 d̃r(∆X) 0.95967 0.98566 1.0727 1.049 0.99382
τd=1 -0.2633 -0.09363 0.47451 0.31982 -0.04035

r = 3 m = 114 d̃r(∆X) 0.92885 1.0035 1.0279 0.99903 0.97963
τd=1 -0.69458 0.033868 0.27191 -0.00942 -0.19887

m = 252 d̃r(∆X) 0.94258 0.9848 0.96609 0.96355 0.95871
τd=1 -0.83336 -0.2206 -0.49212 -0.529 -0.59923

m = 556 d̃r(∆X) 1.0166 1.014 1.0013 1.0037 1.0352
τd=1 0.35723 0.30117 0.027176 0.079197 0.75857
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Table 2.22: Local polynomial Whittle estimates for the spreads. For every series X, this table report the estimates d̃r(∆X) ≡ d̃r − 1(∆X) + 1 along
with the test statistic (2.36). One asterisk denotes significance at 5% level and two asterisks denote significance at 1% level.

sTAaa sTAa sTA sTBaa sAaaAa sAaaA sAaaBaa sAaA sAaBaa sABaa

m = 23 d̃r(∆X) 0.98958 0.97615 1.0086 0.99845 0.54751 0.47622 0.82339 0.82933 0.91142 0.73433
τd=1 -0.06661 -0.1525 0.055122 -0.00988 -2.8934** -3.3493** -1.1293 -1.0913 -0.56639 -1.6988

m = 51 d̃r(∆X) 1.0171 1.0154 1.0741 1.0876 0.56199 0.70758 0.76569 0.87679 0.73 0.87479
τd=1 0.16271 0.14695 0.70548 0.83395 -4.1707** -2.7844** -2.2311* -1.1732 -2.5709* -1.1923

r = 1 m = 114 d̃r(∆X) 1.033 1.0679 1.0977 1.1247 0.89921 0.86401 0.93223 0.94564 0.81838 0.93568
τd=1 0.46956 0.96614 1.3904 1.7752 -1.4349 -1.936 -0.96484 -0.77381 -2.5855 -0.91569

m = 252 d̃r(∆X) 1.0724 1.0714 1.0981 1.1015 0.87836 0.96398 0.92438 0.99362 1.0167 0.94442
τd=1 1.5321 1.5118 2.0761* 2.148* -2.5746** -0.76236 -1.6006 -0.13499 0.35271 -1.1764

m = 556 d̃r(∆X) 1.0993 1.114 1.1232 1.1413 0.99786 0.99568 1.0267 0.93327 1.0414 1.0535
τd=1 3.1224** 3.5855** 3.8729** 4.4421** -0.06738 -0.1358 0.84045 -2.0978* 1.3027 1.6806

m = 23 d̃r(∆X) 0.98958 0.97615 1.0086 0.99845 0.54751 0.47622 0.82339 0.82933 0.91143 0.73433
τd=1 -0.05329 -0.12201 0.044046 -0.00791 -2.3147* -2.6794** -0.90344 -0.87307 -0.45311 -1.359

m = 51 d̃r(∆X) 1.0171 1.0154 1.0741 0.93765 0.56202 0.7076 0.76571 1.0611 0.73001 0.8748
τd=1 0.13027 0.11762 0.56448 -0.47496 -3.3363** -2.2273* -1.7847 0.46549 -2.0567* -0.95375

r = 2 m = 114 d̃r(∆X) 1.0442 1.1329 1.2093 1.1724 0.68801 0.77586 0.89559 0.92398 0.76173 0.89184
τd=1 0.50347 1.5142 2.3839* 1.9636* -3.5532** -2.5527* -1.1891 -0.86574 -2.7136** -1.2318

m = 252 d̃r(∆X) 1.0812 1.0714 1.0949 1.0872 0.8368 0.88461 0.88516 0.98193 0.94894 0.89768
τd=1 1.3758 1.2087 1.607 1.477 -2.7634** -1.9539 -1.9445 -0.30606 -0.86465 -1.7326

m = 556 d̃r(∆X) 1.0477 1.0674 1.0754 1.0699 0.94827 0.9943 0.96456 0.96952 1.0056 0.95539
τd=1 1.1989 1.6961 1.8976 1.7576 -1.301 -0.14334 -0.89135 -0.76673 0.13968 -1.1219

m = 23 d̃r(∆X) 0.98958 0.97615 1.0086 0.99845 0.54751 0.47622 0.82339 0.82933 0.91143 0.7338
τd=1 -0.04568 -0.10458 0.037746 -0.00678 -1.984* -2.2967* -0.77438 -0.74835 -0.38838 -1.1672

m = 51 d̃r(∆X) 1.0171 1.0154 1.0741 0.93768 0.56202 0.70761 0.76571 1.0611 0.73001 0.8748
τd=1 0.11166 0.10083 0.48383 -0.40693 -2.8597** -1.9091 -1.5297 0.39899 -1.7629 -0.81749

r = 3 m = 114 d̃r(∆X) 1.0442 1.1331 1.2093 1.1727 0.68853 0.77597 0.8957 0.92382 0.76191 0.89197
τd=1 0.43131 1.2994 2.0429* 1.6855 -3.0405** -2.1869* -1.0182 -0.74369 -2.3242* -1.0545

m = 252 d̃r(∆X) 1.0808 1.0636 1.1323 1.1033 0.88548 0.86043 0.86742 0.90521 0.8094 0.88199
τd=1 1.1723 0.92236 1.9203 1.4987 -1.6622 -2.0256* -1.9243 -1.3758 -2.7664** -1.7128

m = 556 d̃r(∆X) 1.0973 1.0815 1.1109 1.0933 0.90859 0.98106 0.96213 0.97777 1.034 0.97422
τd=1 2.0975* 1.756 2.39* 2.0112* -1.9708* -0.40835 -0.81647 -0.47927 0.73193 -0.55574
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Table 2.23: Nielsen (2005) LM test for yields. For the univariate case, we set d = 1 in eq. (2.18). For the
multivariate case, we set d = ι in eq. (2.21). Panel A reports univariate tests whereas Panel B reports

multivariate tests.

Panel A

T Aaa Aa A Baa

p = 0 LM 0.24403 0.98816 0.74011 0.25188 1.4597
pval 0.62131 0.32019 0.38963 0.61575 0.22698

p = 1 LM 0.2163 0.16096 0.68366 0.7104 0.076076
pval 0.64187 0.68828 0.40833 0.39931 0.78269

p = 2 LM 0.16922 0.37611 0.5547 0.66573 0.12288
pval 0.68081 0.53969 0.4564 0.41454 0.72593

p = 3 LM 0.10598 0.23807 0.30477 0.38305 0.04553
pval 0.74476 0.62561 0.58091 0.53598 0.83103

p = 4 LM 0.003461 0.020401 0.057072 0.054574 0.013225
pval 0.95308 0.88642 0.81119 0.81529 0.90845

Panel B

p = 0 LM 167.6335 LMK 169.8412
pval 0 pval 0

p = 1 LM 0.050609 LMK 3.7343
pval 0.822 pval 0.5883

p = 2 LM 0.005161 LMK 3.9713
pval 0.9427 pval 0.5536

p = 3 LM 0.003228 LMK 2.2841
pval 0.9547 pval 0.8086

p = 4 LM 0.099125 LMK 1.9812
pval 0.7529 pval 0.8517
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The tables show that every time we do not allow for short run dynamics (i.e. p = 0), and we consider the
univariate procedure, first differencing is sufficient to achieve stationarity for yields, but not for spreads. The
null of stationarity after first differencing is rejected for the series sBaa when p = 1 and p = 2 and for the
series sAaA when p = 1. Also in the multivariate case for yields and for spreads over treasury when p = 0
the null hypothesis of stationarity after first differencing is rejected. This is not the case when we allow for
for short run dynamics (p > 0).

Table 2.25 reports the results of some unit root and stationarity tests for the residuals from the cointe-
grating regression for all possible bivariate systems of yields.
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Table 2.24: Nielsen (2005) LM test for spreads. For the univariate case, we set d = 1 in eq. (2.18). For the multivariate case, we set d = ι in eq.
(2.21). Panel A reports univariate tests whereas Panel B reports multivariate tests for spreads over Treasury only.

Panel A

sAaa sAa sA sBaa sAaaAa sAaaA sAaaBaa sAaA sAaBaa sABaa

p = 0 43.789 44.47 53.892 10.476 55.159 68.764 8.1254 254.31 39.43 79.58
3.66E-11 2.58E-11 2.12E-13 0.00121 1.11E-13 1.11E-16 0.004365 0 3.40E-10 0.00E+00

p = 1 3.0048 1.177 1.6468 8.4342 0.14955 0.015179 7.6248 26.407 0.092168 0.00071
0.083017 0.27797 0.19939 0.003682 0.69897 0.90195 0.005757 2.77E-07 0.76144 0.97875

p = 2 3.2169 2.8481 4.0746 6.6772 0.36829 0.074718 0.087621 5.5076 0.096976 0.23447
0.072881 0.09148 0.043533 0.009765 0.54394 0.78459 0.76722 0.018934 0.75549 0.62823

p = 3 1.047 1.5122 2.4191 1.6061 0.05593 0.039755 0.053543 1.8383 0.092241 0.15987
0.30619 0.2188 0.11986 0.20505 0.81305 0.84196 0.81701 0.17516 0.76135 0.68927

p = 4 0.51029 0.74678 0.92112 0.375 0.13419 0.020081 0.2416 0.79341 0.000393 0.095139
0.47501 0.3875 0.33718 0.54029 0.71412 0.88731 0.62305 0.37307 0.98419 0.75774

Panel B

p = 0 LM 232.1004 LMK 282.6042
pval 0 pval 0

p = 1 LM 0.004572 LMK 10.178
pval 0.94609 pval 0.037538

p = 2 LM 0.067499 LMK 4.669
pval 0.79501 pval 0.32297

p = 3 LM 0.038253 LMK 1.4772
pval 0.84494 pval 0.83067

p = 4 LM 0.03184 LMK 1.0435
pval 0.85838 pval 0.90313
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Table 2.25 shows that there is no evidence of cointegration between Treasury and corporate yields. The
only exception is the system Aaa–Aa for which the DF and the KPSS tests lead to different conclusions. This
surprising result could be explained by the fact that the usual concept of cointegration may be too restrictive.
Treasury and corporate yields may in fact be fractionally cointegrated.

Table 2.26 through Table 2.29 report the results of the three step procedure of Dittmann (2004) when
residuals from the narrow band FDLS estimation are used. Table 2.26 and Table 2.27 report the results for
the residuals, whereas Table 2.28 and Table 2.29 report the results for the differenced residuals.

Table 2.30 through Table 2.33 report the results of the three step procedure of Dittmann (2004) when
tapered residuals from the narrow band FDLS estimation are used. Table 2.30 and Table 2.31 report the
results for the residuals, whereas Table 2.32 and Table 2.33 report the results for the differenced residuals.

From the analysis of Table 2.26 through Table 2.33, it is clear that the fractional differencing parameter
is always statistically different (and less) than 1 only for the systems Aaa-Aa and Aa-A. From Table 2.26
(non-tapered data, l = 0 and J = 1), it seems that the some fractional cointegration is present also in the
system Aaa-A. When tapered data is used, some evidence of fractional cointegration in the system T-Aaa,
can be found as well.
These results are different from the ones in Della Ratta and Urga (2005) in which the authors find fractional
cointegration in all the bivariate systems except T-Baa and Aaa-Baa. This discrepancy is due to the fact
that they use m = [n0.9].
On the other hand, looking at the Dittmann (2004) estimation procedure, the residuals from the cointegrating
relation seem to be non-stationary even after the fractional differention, according to the KPSS test, only for
the system T-Aaa. For each other bivariate system the null hypothesis of stationarity cannot be reject by
using the KPSS test.

2.4.2 Dataset 2

Our second dataset consists of Lehman Brothers Eurodollar Aaa, Aa, A and Baa Indices and U.S. Global
Treasury Index. The indices include primarily corporates bonds (even though they can include government-
related and securitized bonds). The data covers the period from June 1996 to July 2006, for n = 2613
observations. Spreads are calculated as the difference between corporate yields and Treasury yields, as well
as between different corporate yields. Thus we have 15 series: Lehman Brothers U.S. Global Treasury Index
(denoted by T), corporate yields (Aaa, Aa, A, and Baa), spreads over Tresasury (sTAaa, sTAa, sTA, and
sTBaa), spreads between corporate yields (sAaaAa, sAaaA, sAaaBaa, sAaA, sAaBaa, and sABaa). These
series are plotted in Figure 2.10–Figure 2.12.

Table 2.34 and Table 2.35 report summary statistics and normality tests for the series involved and for
their first differences respectively. All the series are highly non-normal.

Table 2.36 and Table 2.37 report unit root and stationarity tests for yields and spreads and their first
differences.

The series are clearly non-stationary. As far as first differences are concerned, only for the series ∆T the
KPSS tests reject the null of stationarity (at a 5% level of significance). Thus we can conclude that first
differences of the series are stationary.

Table 2.38 and Table 2.39 report the d estimates for the yields and the spreads when l = 0.
Table 2.40 and Table 2.41 report the d estimates for the yields and the spreads when l = 1.
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Table 2.25: Cointegration analysis: unit root and stationarity tests for bivariate systems. Cointegration analysis is performed for all possible
bivariate systems X − Y . For each pair of variables X and Y , the Dickey-Fuller without the constant (DF), augmented Dickey-Fuller without the
constant (ADF), Phillips-Perron with the constant (PP), a two KPSS tests without trend are carried out on the estimated OLS residuals of the

regression of Y on X and a constant. In the first KPSS test the Bartlett kernel with bandwidth parameter
[
4
(

n
100

)1/4
]

is chosen for the estimation of

the long run variance. In the second test the automatic bandwidth selection procedure of Hobijn et al. (1998) is considered.

T - Aaa T - Aa T- A T - Baa Aaa - Aa Aaa - A Aaa - Baa Aa - A Aa - Baa A - Baa

DF -1.1126 -1.2185 -1.2286 -1.3477 -5.1035** -3.3781* -2.7935 -3.3225* -2.8467 -3.642**
ADF1 -0.76146 -0.98468 -1.0283 -1.2659 -4.3831** -2.8898* -2.6082 -2.4953 -2.4872 -2.9817*
ADF2 -0.81788 -0.98766 -1.0388 -1.3245 -4.5047** -2.875* -2.7763 -2.2745 -2.4988 -2.9505*
ADF3 -0.90426 -0.99256 -1.0319 -1.374 -4.3949** -2.8312 -2.8307 -2.1635 -2.5038 -2.9765*
ADF4 -0.91223 -0.98571 -1.0051 -1.3784 -4.4816** -2.7972 -2.8929 -2.0932 -2.5522 -3.1397*
ADF5 -0.90747 -0.97528 -0.93669 -1.3485 -4.5053** -2.7663 -2.8436 -2.0015 -2.5385 -3.1477*
PP -0.9226 -1.036 -1.042 -1.407 -4.681** -2.926* -2.869* -2.304 -2.656 -3.249*

KPSS 4.009** 4.8108** 4.9315** 5.0898** 2.6821** 10.335** 7.4391** 9.3078** 7.949** 1.5756**
KPSS HFO 1.0565** 1.2671** 1.2948** 1.3483** 0.80581** 2.8043** 2.0253** 2.459** 2.1548** 0.43417*
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Table 2.26: Fractional cointegration analysis: Dittmann (2004) estimation procedure for bivariate systems using the narrow band FDLS residuals.
For all possible bivariate systems X − Y first the narrow band FDLS estimator (2.41) of the regression of Y on X is computed for different m. The

last one is the OLS estimator (with intercept). Next the GPH estimator and the test statistic are computed for the residuals. The bandwidth
parameter in the GPH estimation is set to [n4/5] and we choose l = 0 and J = 1. Finally the KPSS test without trend and with the Bartlett kernel

and bandwidth parameter
[
4
(

n
100

)1/4
]

for the estimation of the long run variance, is performed on the fractionally differenced residuals (2.51).

T - Aaa T - Aa T- A T - Baa Aaa - Aa Aaa - A Aaa - Baa Aa - A Aa - Baa A - Baa

m = 23 β̂m 0.74243 0.63936 0.56868 0.54938 0.86181 0.82778 0.78703 0.96271 0.92503 0.9561

δ̂(û) 0.98741 0.98462 0.98743 1.0212 0.92114 0.92985 1.0344 0.8899 0.97552 0.96388
td=1 -0.44504 -0.54344 -0.44409 0.74761 -2.7866** -2.4789* 1.2171 -3.8907** -0.86504 -1.2765
KPSS 0.445 0.39127 0.37659 0.29511 0.31628 0.33678 0.20062 0.27833 0.23695 0.18659

m = 51 β̂m 0.74829 0.6464 0.57828 0.56105 0.86315 0.83101 0.7934 0.96457 0.9304 0.96007

δ̂(û) 0.98909 0.98569 0.98748 1.0202 0.92156 0.92646 1.0352 0.88891 0.97519 0.96386
td=1 -0.38541 -0.5055 -0.44253 0.71274 -2.7719** -2.5987** 1.2445 -3.9257** -0.8766 -1.2769
KPSS 0.44318 0.39026 0.37776 0.29763 0.31383 0.33882 0.19815 0.27005 0.23158 0.17879

m = 114 β̂m 0.75012 0.64879 0.58112 0.56418 0.86389 0.83195 0.79485 0.96476 0.93129 0.96067

δ̂(û) 0.98961 0.98609 0.98749 1.02 0.92185 0.92528 1.0354 0.88881 0.97508 0.96389
td=1 -0.36731 -0.49162 -0.44197 0.70594 -2.7616** -2.6405** 1.2524 -3.9291** -0.88061 -1.276
KPSS 0.44265 0.38987 0.3781 0.29819 0.31238 0.33967 0.19752 0.26918 0.23071 0.17757

m = 252 β̂m 0.75106 0.64999 0.58257 0.56568 0.86425 0.83242 0.7955 0.96485 0.93156 0.96081

δ̂(û) 0.98987 0.98629 0.9875 1.0199 0.92201 0.92465 1.0355 0.88877 0.97504 0.9639
td=1 -0.35801 -0.4844 -0.44166 0.70353 -2.7561** -2.6627** 1.2561 -3.9307** -0.8819 -1.2758
KPSS 0.44238 0.38966 0.37828 0.29842 0.31166 0.34014 0.19724 0.26876 0.23045 0.17726

m = 556 β̂m 0.75151 0.65056 0.58331 0.56649 0.8644 0.83267 0.79589 0.96494 0.93179 0.96093

δ̂(û) 0.99 0.98639 0.98751 1.0199 0.92208 0.9243 1.0356 0.88872 0.97501 0.9639
td=1 -0.35355 -0.48089 -0.44151 0.70252 -2.7536** -2.675** 1.2584 -3.9323** -0.88304 -1.2756
KPSS 0.44225 0.38956 0.37837 0.29854 0.31135 0.3404 0.19706 0.26834 0.23022 0.17701

m = 1351 β̂m 0.75171 0.65084 0.58367 0.5669 0.86447 0.83277 0.79608 0.96494 0.93189 0.96097

δ̂(û) 0.99005 0.98644 0.98751 1.0199 0.92211 0.92416 1.0356 0.88872 0.975 0.9639
td=1 -0.35159 -0.47914 -0.44143 0.7021 -2.7525** -2.6799** 1.2595 -3.9322** -0.8835 -1.2755
KPSS 0.44219 0.38951 0.37841 0.29859 0.31121 0.34051 0.19698 0.26835 0.23013 0.17694
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Table 2.27: Fractional cointegration analysis: Dittmann (2004) estimation procedure for bivariate systems using the narrow band FDLS residuals.
For all possible bivariate systems X − Y first the narrow band FDLS estimator (2.41) of the regression of Y on X is computed for different m. The

last one is the OLS estimator (with intercept). Next the GPH estimator and the test statistic are computed for the residuals. The bandwidth
parameter in the GPH estimation is set to [n4/5] and we choose J = l = 1. Finally the KPSS test without trend and with the Bartlett kernel and

bandwidth parameter
[
4
(

n
100

)1/4
]

for the estimation of the long run variance, is performed on the fractionally differenced residuals (2.51).

T - Aaa T - Aa T- A T - Baa Aaa - Aa Aaa - A Aaa - Baa Aa - A Aa - Baa A - Baa

m = 23 β̂m 0.74243 0.63936 0.56868 0.54938 0.86181 0.82778 0.78703 0.96271 0.92503 0.9561

δ̂(û) 0.98774 0.98584 0.98878 1.0257 0.93441 0.92952 1.0409 0.88566 0.97728 0.97376
td=1 -0.42108 -0.48645 -0.38547 0.88216 -2.2531* -2.4212 1.4056 -3.9282** -0.78036 -0.90133
KPSS 0.44426 0.38887 0.37405 0.28797 0.29696 0.33725 0.19358 0.2817 0.23506 0.17716

m = 51 β̂m 0.74829 0.6464 0.57828 0.56105 0.86315 0.83101 0.7934 0.96457 0.9304 0.96007

δ̂(û) 0.98928 0.9866 0.98837 1.0241 0.93471 0.92582 1.0415 0.88455 0.97678 0.97373
td=1 -0.36827 -0.46051 -0.39939 0.82715 -2.2431* -2.5484 1.4254 -3.9661** -0.79767 -0.90255
KPSS 0.44277 0.3885 0.37606 0.29144 0.29485 0.33974 0.19142 0.27332 0.22993 0.16981

m = 114 β̂m 0.75012 0.64879 0.58112 0.56418 0.86389 0.83195 0.79485 0.96476 0.93129 0.96067

δ̂(û) 0.98974 0.98688 0.98826 1.0237 0.93493 0.92453 1.0417 0.88444 0.97663 0.97375
td=1 -0.35233 -0.45066 -0.40338 0.81505 -2.2353* -2.5926 1.4316 -3.9698** -0.80268 -0.90179
KPSS 0.44235 0.38832 0.37666 0.29225 0.29359 0.34073 0.19087 0.27243 0.2291 0.16866

m = 252 β̂m 0.75106 0.64999 0.58257 0.56568 0.86425 0.83242 0.7955 0.96485 0.93156 0.96081

δ̂(û) 0.98998 0.98703 0.9882 1.0236 0.93506 0.92385 1.0418 0.88439 0.97659 0.97376
td=1 -0.34415 -0.44546 -0.40541 0.81013 -2.231* -2.616 1.4346 -3.9715** -0.80427 -0.90158
KPSS 0.44213 0.38821 0.37696 0.2926 0.29295 0.34128 0.19061 0.27201 0.22885 0.16837

m = 556 β̂m 0.75151 0.65056 0.58331 0.56649 0.8644 0.83267 0.79589 0.96494 0.93179 0.96093

δ̂(û) 0.9901 0.98711 0.98817 1.0235 0.93511 0.92348 1.0418 0.88434 0.97655 0.97376
td=1 -0.34023 -0.44291 -0.40643 0.80778 -2.2291* -2.6289 1.4364 -3.9733** -0.80567 -0.90141
KPSS 0.44203 0.38816 0.37712 0.29278 0.29268 0.34158 0.19046 0.27159 0.22864 0.16814

m = 1351 β̂m 0.75171 0.65084 0.58367 0.5669 0.86447 0.83277 0.79608 0.96494 0.93189 0.96097

δ̂(û) 0.99015 0.98714 0.98815 1.0235 0.93514 0.92332 1.0418 0.88434 0.97653 0.97376
td=1 -0.33851 -0.44163 -0.40693 0.80668 -2.2282* -2.6341 1.4374 -3.9732** -0.80624 -0.90136
KPSS 0.44199 0.38813 0.37719 0.29286 0.29256 0.3417 0.19038 0.2716 0.22855 0.16807
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Table 2.28: Fractional cointegration analysis: Dittmann (2004) estimation procedure for bivariate systems using the first differenced narrow band
FDLS residuals. For all possible bivariate systems X − Y first the narrow band FDLS estimator (2.41) of the regression of Y on X is computed for

different m. The last one is the OLS estimator (with intercept). Next the GPH estimator and the test statistic are computed for the first differenced
residuals. The bandwidth parameter in the GPH estimation is set to [n4/5] and we choose l = 0 and J = 1. Finally the KPSS test without trend and

with the Bartlett kernel and bandwidth parameter
[
4
(

n
100

)1/4
]

for the estimation of the long run variance, is performed on the fractionally

differenced residuals (2.51).

T - Aaa T - Aa T- A T - Baa Aaa - Aa Aaa - A Aaa - Baa Aa - A Aa - Baa A - Baa

m = 23 β̂m 0.74243 0.63936 0.56868 0.54938 0.86181 0.82778 0.78703 0.96271 0.92503 0.9561

δ̂(∆û) 1.0147 0.98232 0.96133 1.0723 0.96185 0.962 1.0657 0.90746 0.99318 0.99013
τd=1 0.51848 -0.62488 -1.3665 2.5564* -1.3483 -1.3429 2.3217* -3.2699** -0.24109 -0.34869
KPSS 0.38731 0.39583 0.42804 0.22093 0.25929 0.29206 0.16819 0.26428 0.21831 0.16228

m = 51 β̂m 0.74829 0.6464 0.57828 0.56105 0.86315 0.83101 0.7934 0.96457 0.9304 0.96007

δ̂(∆û) 1.015 0.97985 0.9618 1.0743 0.96162 0.9629 1.0662 0.90745 0.99437 0.98578
τd=1 0.53124 -0.71208 -1.3498 2.6247** -1.3563 -1.3108 2.3384* -3.2703** -0.1988 -0.50235
KPSS 0.38848 0.40183 0.42817 0.21943 0.25816 0.28866 0.16648 0.25599 0.21205 0.15926

m = 114 β̂m 0.75012 0.64879 0.58112 0.56418 0.86389 0.83195 0.79485 0.96476 0.93129 0.96067

δ̂(∆û) 1.0152 0.9782 0.96191 1.0748 0.96148 0.96316 1.0663 0.90745 0.9946 0.98516
τd=1 0.53552 -0.77031 -1.346 2.6426** -1.3612 -1.3018 2.3424* -3.2705** -0.19084 -0.52444
KPSS 0.38884 0.4055 0.42828 0.21905 0.25755 0.28767 0.16608 0.25512 0.21096 0.15874

m = 252 β̂m 0.75106 0.64999 0.58257 0.56568 0.86425 0.83242 0.7955 0.96485 0.93156 0.96081

δ̂(∆û) 1.0152 0.97738 0.96196 1.075 0.96141 0.96329 1.0663 0.90744 0.99467 0.98501
τd=1 0.53778 -0.79919 -1.3442 2.6516** -1.3638 -1.2972 2.3442* -3.2706** -0.18848 -0.52988
KPSS 0.38902 0.40733 0.42835 0.21885 0.25725 0.28718 0.1659 0.25471 0.21063 0.1586

m = 556 β̂m 0.75151 0.65056 0.58331 0.56649 0.8644 0.83267 0.79589 0.96494 0.93179 0.96093

δ̂(∆û) 1.0152 0.97742 0.96198 1.0752 0.96138 0.96336 1.0664 0.90744 0.99472 0.98488
τd=1 0.53887 -0.79803 -1.3434 2.6566** -1.3649 -1.2948 2.3453* -3.2707** -0.18644 -0.53426
KPSS 0.38911 0.40735 0.42839 0.21874 0.25713 0.28692 0.16579 0.2543 0.21035 0.15849

m = 1351 β̂m 0.75171 0.65084 0.58367 0.5669 0.86447 0.83277 0.79608 0.96494 0.93189 0.96097

δ̂(∆û) 1.0153 0.97754 0.962 1.0753 0.96136 0.96338 1.0664 0.90744 0.99475 0.98484
τd=1 0.53936 -0.79364 -1.3429 2.6591** -1.3654 -1.2939 2.3458* -3.2707** -0.18564 -0.53554
KPSS 0.38915 0.40715 0.4284 0.21869 0.25707 0.28681 0.16573 0.25431 0.21023 0.15846
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Table 2.29: Fractional cointegration analysis: Dittmann (2004) estimation procedure for bivariate systems using the first differenced narrow band
FDLS residuals. For all possible bivariate systems X − Y first the narrow band FDLS estimator (2.41) of the regression of Y on X is computed for

different m. The last one is the OLS estimator (with intercept). Next the GPH estimator and the test statistic are computed for the first differenced
residuals. The bandwidth parameter in the GPH estimation is set to [n4/5] and we choose J = l = 1. Finally the KPSS test without trend and with

the Bartlett kernel and bandwidth parameter
[
4
(

n
100

)1/4
]

for the estimation of the long run variance, is performed on the fractionally differenced

residuals (2.51).

T - Aaa T - Aa T- A T - Baa Aaa - Aa Aaa - A Aaa - Baa Aa - A Aa - Baa A - Baa

m = 23 β̂m 0.74243 0.63936 0.56868 0.54938 0.86181 0.82778 0.78703 0.96271 0.92503 0.9561

δ̂(∆û) 1.0089 0.97473 0.95241 1.0704 0.9693 0.96063 1.0694 0.90359 0.99315 0.99937
τd=1 0.30463 -0.86817 -1.635 2.4187* -1.0545 -1.3524 2.3852* -3.3121** -0.23527 -0.02149
KPSS 0.39919 0.41107 0.44648 0.22347 0.24959 0.2939 0.16459 0.26739 0.21834 0.15427

m = 51 β̂m 0.74829 0.6464 0.57828 0.56105 0.86315 0.83101 0.7934 0.96457 0.9304 0.96007

δ̂(∆û) 1.0092 0.97197 0.95273 1.0722 0.96912 0.96161 1.0699 0.90362 0.99448 0.9949
τd=1 0.31493 -0.96309 -1.6238 2.481* -1.0609 -1.3187 2.4029* -3.311** -0.1898 -0.1753
KPSS 0.40048 0.41776 0.44683 0.22211 0.24847 0.29037 0.16288 0.25891 0.21195 0.15159

m = 114 β̂m 0.75012 0.64879 0.58112 0.56418 0.86389 0.83195 0.79485 0.96476 0.93129 0.96067

δ̂(∆û) 1.0093 0.97016 0.95279 1.0727 0.969 0.96189 1.0701 0.90362 0.99472 0.99425
τd=1 0.31844 -1.025 -1.6218 2.4972* -1.065 -1.3091 2.4071* -3.3111** -0.1813 -0.1974
KPSS 0.40087 0.4218 0.44701 0.22177 0.24786 0.28935 0.16248 0.25803 0.21084 0.15112

m = 252 β̂m 0.75106 0.64999 0.58257 0.56568 0.86425 0.83242 0.7955 0.96485 0.93156 0.96081

δ̂(∆û) 1.0093 0.96927 0.95282 1.0729 0.96894 0.96203 1.0701 0.90362 0.9948 0.9941
τd=1 0.32029 -1.0557 -1.6208 2.5054* -1.0671 -1.3044 2.409* -3.3111** -0.17878 -0.20284
KPSS 0.40107 0.42382 0.44711 0.22159 0.24757 0.28884 0.1623 0.25761 0.2105 0.151

m = 556 β̂m 0.75151 0.65056 0.58331 0.56649 0.8644 0.83267 0.79589 0.96494 0.93179 0.96093

δ̂(∆û) 1.0093 0.96929 0.95283 1.0731 0.96891 0.9621 1.0702 0.90362 0.99486 0.99397
τd=1 0.3212 -1.0549 -1.6204 2.5099* -1.068 -1.3018 2.4101* -3.3111** -0.1766 -0.20723
KPSS 0.40116 0.42385 0.44717 0.22149 0.24745 0.28857 0.16219 0.25719 0.21021 0.1509

m = 1351 β̂m 0.75171 0.65084 0.58367 0.5669 0.86447 0.83277 0.79608 0.96494 0.93189 0.96097

δ̂(∆û) 1.0094 0.96942 0.95284 1.0731 0.9689 0.96213 1.0702 0.90362 0.99488 0.99393
τd=1 0.3216 -1.0505 -1.6202 2.5123* -1.0684 -1.3008 2.4107* -3.3111** -0.17574 -0.20851
KPSS 0.4012 0.42363 0.44719 0.22144 0.24739 0.28846 0.16214 0.2572 0.2101 0.15087
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Table 2.30: Fractional cointegration analysis: Dittmann (2004) estimation procedure for bivariate systems using the narrow band FDLS tapered
residuals. For all possible bivariate systems X − Y first the narrow band FDLS estimator (2.41) of the regression of Y on X is computed for different
m. The last one is the OLS estimator (with intercept). Next the GPH estimator and the test statistic are computed for the tapered residuals. The

bandwidth parameter in the GPH estimation is set to [n4/5] and we choose l = 0 and J = 1. Finally the KPSS test without trend and with the Bartlett

kernel and bandwidth parameter
[
4
(

n
100

)1/4
]

for the estimation of the long run variance, is performed on the fractionally differenced residuals (2.51).

T - Aaa T - Aa T- A T - Baa Aaa - Aa Aaa - A Aaa - Baa Aa - A Aa - Baa A - Baa

m = 23 β̂m 0.74243 0.63936 0.56868 0.54938 0.86181 0.82778 0.78703 0.96271 0.92503 0.9561

δ̂(û) 0.96096 1.0136 0.99213 1.0513 0.93205 0.98667 1.0286 0.83335 0.9934 0.98539
td=1 -1.3797 0.47901 -0.2781 1.8138 -2.401* -0.47102 1.0104 -5.8889** -0.23329 -0.51639
KPSS 0.50544* 0.33671 0.36775 0.24961 0.30034 0.25993 0.20713 0.32178 0.21808 0.1665

m = 51 β̂m 0.74829 0.6464 0.57828 0.56105 0.86315 0.83101 0.7934 0.96457 0.9304 0.96007

δ̂(û) 0.96307 1.0152 0.99303 1.0553 0.93111 0.98661 1.0296 0.83248 0.99252 0.9847
td=1 -1.305 0.53794 -0.24613 1.9527 -2.4343* -0.47305 1.0445 -5.9197** -0.26445 -0.54065
KPSS 0.50223* 0.3349 0.36732 0.24507 0.29997 0.25818 0.20435 0.311 0.2139 0.16019

m = 114 β̂m 0.75012 0.64879 0.58112 0.56418 0.86389 0.83195 0.79485 0.96476 0.93129 0.96067

δ̂(û) 0.96373 1.0158 0.99325 1.0564 0.93059 0.9866 1.0295 0.83239 0.99237 0.9846
td=1 -1.2815 0.55745 -0.23868 1.9935* -2.4527* -0.47344 1.0412 -5.9228** -0.26963 -0.54433
KPSS 0.50123* 0.33431 0.36732 0.24373 0.29975 0.25765 0.20405 0.30987 0.21317 0.15922

m = 252 β̂m 0.75106 0.64999 0.58257 0.56568 0.86425 0.83242 0.7955 0.96485 0.93156 0.96081

δ̂(û) 0.96408 1.016 0.99334 1.057 0.93034 0.9866 1.0294 0.83235 0.99233 0.98457
td=1 -1.2694 0.56693 -0.23527 2.0137* -2.4616* -0.4736 1.04 -5.9243** -0.2712 -0.54525
KPSS 0.50072* 0.33404 0.36733 0.24307 0.29964 0.25738 0.20391 0.30934 0.21295 0.15897

m = 556 β̂m 0.75151 0.65056 0.58331 0.56649 0.8644 0.83267 0.79589 0.96494 0.93179 0.96093

δ̂(û) 0.96424 1.0162 0.99339 1.0573 0.93023 0.9866 1.0296 0.83231 0.99229 0.98455
td=1 -1.2637 0.57136 -0.23364 2.0247* -2.4654* -0.47368 1.0455 -5.9258** -0.27258 -0.546
KPSS 0.50047* 0.33392 0.36735 0.24271 0.29959 0.25724 0.20363 0.3088 0.21275 0.15878

m = 1351 β̂m 0.75171 0.65084 0.58367 0.5669 0.86447 0.83277 0.79608 0.96494 0.93189 0.96097

δ̂(û) 0.96431 1.0162 0.99341 1.0575 0.93019 0.98659 1.0297 0.83231 0.99227 0.98454
td=1 -1.2611 0.57354 -0.23289 2.0303* -2.4671* -0.47371 1.0497 -5.9257** -0.27312 -0.54622
KPSS 0.50037* 0.33385 0.36736 0.24252 0.29957 0.25718 0.20344 0.30881 0.21268 0.15872
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Table 2.31: Fractional cointegration analysis: Dittmann (2004) estimation procedure for bivariate systems using the narrow band FDLS tapered
residuals. For all possible bivariate systems X − Y first the narrow band FDLS estimator (2.41) of the regression of Y on X is computed for different
m. The last one is the OLS estimator (with intercept). Next the GPH estimator and the test statistic are computed for the tapered residuals. The
bandwidth parameter in the GPH estimation is set to [n4/5] and we choose J = l = 1. Finally the KPSS test without trend and with the Bartlett

kernel and bandwidth parameter
[
4
(

n
100

)1/4
]

for the estimation of the long run variance, is performed on the fractionally differenced residuals (2.51).

T - Aaa T - Aa T- A T - Baa Aaa - Aa Aaa - A Aaa - Baa Aa - A Aa - Baa A - Baa

m = 23 β̂m 0.74243 0.63936 0.56868 0.54938 0.86181 0.82778 0.78703 0.96271 0.92503 0.9561

δ̂(û) 0.93611 0.98865 0.96550 1.02754 0.9067 0.96202 1.00633 0.81032 0.97528 0.97083
td=1 -2.1948* -0.38976 -1.18531 0.94626 -3.20515** -1.30488 0.21750 -6.5163** -0.84922 -1.00213
KPSS 0.5659* 0.38336 0.41957 0.28505 0.33809 0.29203 0.23319 0.33849 0.23721 0.17992

m = 51 β̂m 0.74829 0.6464 0.57828 0.56105 0.86315 0.83101 0.7934 0.96457 0.9304 0.96007

δ̂(û) 0.93841 0.99043 0.96644 1.03168 0.90578 0.96204 1.00749 0.80973 0.97474 0.97060
td=1 -2.1157* -0.32876 -1.15295 1.088201 -3.2369** -1.3039 0.257192 -6.5365** -0.86762 -1.00998
KPSS 0.5617* 0.381031 0.418799 0.279637 0.337499 0.289797 0.229751 0.326608 0.232049 0.172625

m = 114 β̂m 0.75012 0.64879 0.58112 0.56418 0.86389 0.83195 0.79485 0.96476 0.93129 0.96067

δ̂(û) 0.93914 0.99102 0.96666 1.03289 0.90527 0.96206 1.00741 0.80967 0.97466 0.97057
td=1 -2.091* -0.30854 -1.14545 1.129896 -3.2544** -1.30339 0.254549 -6.5385** -0.87064 -1.01113
KPSS 0.5605* 0.38028 0.418702 0.27805 0.337153 0.289128 0.229367 0.325368 0.231145 0.171502

m = 252 β̂m 0.75106 0.64999 0.58257 0.56568 0.86425 0.83242 0.7955 0.96485 0.93156 0.96081

δ̂(û) 0.93951 0.99130 0.96676 1.03349 0.90502 0.96207 1.00738 0.80964 0.97463 0.97056
td=1 -2.078* -0.29871 -1.14201 1.150492 -3.2629** -1.30309 0.253617 -6.5395** -0.87157 -1.01142
KPSS 0.5598* 0.379923 0.418676 0.277266 0.336981 0.28879 0.229186 0.324783 0.230873 0.171221

m = 556 β̂m 0.75151 0.65056 0.58331 0.56649 0.8644 0.83267 0.79589 0.96494 0.93179 0.96093

δ̂(û) 0.93969 0.99144 0.96681 1.03382 0.90492 0.96207 1.00756 0.80962 0.97461 0.97055
td=1 -2.0719* -0.29411 -1.14037 1.161758 -3.2665** -1.30292 0.259702 -6.5404** -0.87238 -1.01166
KPSS 0.5595* 0.379759 0.41867 0.276837 0.336907 0.288608 0.228846 0.324188 0.230637 0.170993

m = 1351 β̂m 0.75171 0.65084 0.58367 0.5669 0.86447 0.83277 0.79608 0.96494 0.93189 0.96097

δ̂(û) 0.93977 0.99150 0.96683 1.03399 0.90487 0.96208 1.00769 0.80962 0.97460 0.97055
td=1 -2.069* -0.29186 -1.1396 1.167526 -3.2681** -1.30285 0.264278 -6.5404** -0.8727 -1.01173
KPSS 0.5593* 0.379679 0.418668 0.276618 0.336874 0.288535 0.228623 0.324204 0.230543 0.170926
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Table 2.32: Fractional cointegration analysis: Dittmann (2004) estimation procedure for bivariate systems using the first differenced narrow band
FDLS tapered residuals. For all possible bivariate systems X − Y first the narrow band FDLS estimator (2.41) of the regression of Y on X is

computed for different m. The last one is the OLS estimator (with intercept). Next the GPH estimator and the test statistic are computed for the
first differenced tapered residuals. The bandwidth parameter in the GPH estimation is set to [n4/5] and we choose l = 0 and J = 1. Finally the KPSS

test without trend and with the Bartlett kernel and bandwidth parameter
[
4
(

n
100

)1/4
]

for the estimation of the long run variance, is performed on the

fractionally differenced residuals (2.51).

T - Aaa T - Aa T- A T - Baa Aaa - Aa Aaa - A Aaa - Baa Aa - A Aa - Baa A - Baa

m = 23 β̂m 0.74243 0.63936 0.56868 0.54938 0.86181 0.82778 0.78703 0.96271 0.92503 0.9561

δ̂(∆û) 0.96222 1.0117 0.98838 1.0455 0.91288 0.97626 1.0175 0.83796 0.98258 0.95788
τd=1 -1.3349 0.41268 -0.41056 1.6089 -3.0786** -0.83895 0.61834 -5.7259** -0.61562 -1.4883
KPSS 0.50244* 0.34009 0.3748 0.25796 0.32866 0.27324 0.21987 0.31837 0.2294 0.19246

m = 51 β̂m 0.74829 0.6464 0.57828 0.56105 0.86315 0.83101 0.7934 0.96457 0.9304 0.96007

δ̂(∆û) 0.96305 1.0127 0.989 1.0472 0.91221 0.97614 1.0195 0.83736 0.98165 0.95679
τd=1 -1.3056 0.4473 -0.3886 1.6682 -3.1023** -0.8433 0.68919 -5.7471** -0.64832 -1.527
KPSS 0.50227* 0.3395 0.37487 0.25652 0.32774 0.27142 0.21568 0.30759 0.2249 0.18542

m = 114 β̂m 0.75012 0.64879 0.58112 0.56418 0.86389 0.83195 0.79485 0.96476 0.93129 0.96067

δ̂(∆û) 0.9633 1.013 0.98915 1.0478 0.91186 0.9761 1.02 0.8373 0.98148 0.95698
τd=1 -1.2967 0.45826 -0.38329 1.689 -3.1147** -0.8447 0.70655 -5.7492** -0.65436 -1.5203
KPSS 0.50224* 0.33934 0.37497 0.25595 0.32719 0.27089 0.21468 0.30646 0.22413 0.184

m = 252 β̂m 0.75106 0.64999 0.58257 0.56568 0.86425 0.83242 0.7955 0.96485 0.93156 0.96081

δ̂(∆û) 0.96343 1.0131 0.98922 1.0481 0.91169 0.97608 1.0202 0.83728 0.98143 0.95703
τd=1 -1.2922 0.46343 -0.3808 1.6995 -3.1206** -0.84543 0.71392 -5.7502** -0.65619 -1.5184
KPSS 0.50223* 0.33928 0.37503 0.25565 0.32691 0.27062 0.21425 0.30592 0.22389 0.18364

m = 556 β̂m 0.75151 0.65056 0.58331 0.56649 0.8644 0.83267 0.79589 0.96494 0.93179 0.96093

δ̂(∆û) 0.96349 1.0132 0.98926 1.0483 0.91162 0.97606 1.0203 0.83725 0.98138 0.95708
τd=1 -1.2901 0.46581 -0.37959 1.7053 -3.123** -0.84582 0.71832 -5.7512** -0.6578 -1.5167
KPSS 0.50222* 0.33926 0.37507 0.25549 0.32679 0.27048 0.21399 0.30538 0.22369 0.18334

m = 1351 β̂m 0.75171 0.65084 0.58367 0.5669 0.86447 0.83277 0.79608 0.96494 0.93189 0.96097

δ̂(∆û) 0.96352 1.0132 0.98927 1.0483 0.91159 0.97606 1.0204 0.83725 0.98137 0.95709
τd=1 -1.2891 0.46696 -0.37902 1.7083 -3.1241** -0.84598 0.72048 -5.7512** -0.65844 -1.5162
KPSS 0.50222* 0.33925 0.37508 0.2554 0.32673 0.27042 0.21387 0.3054 0.22361 0.18325
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Table 2.33: Fractional cointegration analysis: Dittmann (2004) estimation procedure for bivariate systems using the first differenced narrow band
FDLS tapered residuals. For all possible bivariate systems X − Y first the narrow band FDLS estimator (2.41) of the regression of Y on X is

computed for different m. The last one is the OLS estimator (with intercept). Next the GPH estimator and the test statistic are computed for the
first differenced tapered residuals. The bandwidth parameter in the GPH estimation is set to [n4/5] and we choose J = l = 1. Finally the KPSS test

without trend and with the Bartlett kernel and bandwidth parameter
[
4
(

n
100

)1/4
]

for the estimation of the long run variance, is performed on the

fractionally differenced residuals (2.51).

T - Aaa T - Aa T- A T - Baa Aaa - Aa Aaa - A Aaa - Baa Aa - A Aa - Baa A - Baa

m = 23 β̂m 0.74243 0.63936 0.56868 0.54938 0.86181 0.82778 0.78703 0.96271 0.92503 0.9561

δ̂(∆û) 0.95592 1.00877 0.98279 1.04424 0.92332 0.97375 1.01981 0.82550 0.98235 0.96334
τd=1 -1.51423 0.301343 -0.59129 1.519698 -2.6341** -0.90169 0.680466 -5.9945** -0.60634 -1.25953
KPSS 0.5174* 0.345378 0.385468 0.259843 0.313055 0.276501 0.217174 0.327542 0.229647 0.187109

m = 51 β̂m 0.74829 0.6464 0.57828 0.56105 0.86315 0.83101 0.7934 0.96457 0.9304 0.96007

δ̂(∆û) 0.95667 1.00963 0.98324 1.04580 0.92270 0.97362 1.02202 0.82489 0.98147 0.96231
τd=1 -1.48852 0.330942 -0.57585 1.573294 -2.6556** -0.90637 0.756305 -6.0156** -0.63649 -1.29483
KPSS 0.5173* 0.344974 0.38583 0.258566 0.312159 0.274662 0.21281 0.316263 0.225089 0.180234

m = 114 β̂m 0.75012 0.64879 0.58112 0.56418 0.86389 0.83195 0.79485 0.96476 0.93129 0.96067

δ̂(∆û) 0.95690 1.00990 0.98333 1.04636 0.92237 0.97357 1.02256 0.82483 0.98131 0.96253
τd=1 -1.48077 0.340172 -0.57253 1.59264 -2.6668** -0.90787 0.774878 -6.0177** -0.64211 -1.28735
KPSS 0.5174* 0.344886 0.386015 0.258022 0.31162 0.274122 0.211773 0.315084 0.224305 0.178825

m = 252 β̂m 0.75106 0.64999 0.58257 0.56568 0.86425 0.83242 0.7955 0.96485 0.93156 0.96081

δ̂(∆û) 0.95701 1.01003 0.98338 1.04665 0.92222 0.97355 1.02279 0.82480 0.98126 0.96259
τd=1 -1.47683 0.344475 -0.57107 1.602464 -2.672** -0.90864 0.782764 -6.0187** -0.64382 -1.28519
KPSS 0.5174* 0.344862 0.386123 0.257739 0.311349 0.273851 0.211325 0.314528 0.224069 0.178465

m = 556 β̂m 0.75151 0.65056 0.58331 0.56649 0.8644 0.83267 0.79589 0.96494 0.93179 0.96093

δ̂(∆û) 0.95707 1.01008 0.98340 1.04680 0.92215 0.97354 1.02292 0.82477 0.98121 0.96264
τd=1 -1.47495 0.346428 -0.57038 1.607897 -2.6742** -0.90906 0.787474 -6.0197** -0.64533 -1.28336
KPSS 0.5174* 0.344856 0.386182 0.257582 0.311233 0.273705 0.211055 0.313961 0.223864 0.178171

m = 1351 β̂m 0.75171 0.65084 0.58367 0.5669 0.86447 0.83277 0.79608 0.96494 0.93189 0.96097

δ̂(∆û) 0.95709 1.01011 0.98341 1.04689 0.92213 0.97353 1.02299 0.82477 0.98120 0.96266
τd=1 -1.47413 0.347369 -0.57006 1.610692 -2.6752** -0.90923 0.789783 -6.0196** -0.64593 -1.28281
KPSS 0.5174* 0.344854 0.386212 0.257501 0.311181 0.273647 0.210922 0.313976 0.223783 0.178084
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Figure 2.10: Treasury, Aaa, Aa, A and Baa yields.
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Figure 2.11: Aaa, Aa, A and Baa spreads over Treasury yields.
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Table 2.34: Summary Statistics and Normality Tests for yields and spreads. Both the Jarque–Bera test
and the Normality test proposed by Doornik and Hansen (1994) are computed. In both cases the null

hypothesis is that the series is normally distributed and the test statistic is χ2
2. The p-value is in square

bracket. One asterisk denotes significance at 5% level and two asterisks denote significance at 1% level.

mean std skewness ex. Kurtosis JB test DH test

T 3.7971 1.0329 0.49184 -0.85435 184.82
[0.0000]**

491.32
[0.0000]**

Aaa 5.0023 1.3531 -0.1839 -1.1172 150.63
[0.0000]**

280.97
[0.0000]**

Aa 5.2922 1.2345 -0.1256 -1.0434 125.41
[0.0000]**

209.97
[0.0000]**

A 5.884 1.0786 -0.17544 -0.89106 99.848
[0.0000]**

164.72
[0.0000]**

Baa 6.8015 1.0963 -0.14954 -0.84478 87.437
[0.0000]**

136.51
[0.0000]**

sTAaa 1.2052 0.67704 0.35848 -0.79221 124.3
[0.0000]**

261.52
[0.0000]**

sTAa 1.4951 0.6473 0.40889 -0.84553 150.65
[0.0000]**

350.45
[0.0000]**

sTA 2.0869 0.68766 -0.07889 -1.1279 141.21
[0.0000]**

238.96
[0.0000]**

sTBaa 3.0044 0.86577 -0.04827 -0.55195 34.183
[0.0000]**

41.948
[0.0000]**

sAaaAa 0.28991 0.21031 1.3317 1.1194 908.8
[0.0000]**

1990
[0.0000]**

sAaaA 0.88171 0.55901 1.1248 0.39386 567.9
[0.0000]**

1578.5
[0.0000]**

sAaaBaa 1.7992 0.85093 1.1255 1.1131 686.55
[0.0000]**

954.28
[0.0000]**

sAaA 0.5918 0.37765 1.0959 0.39871 540.33
[0.0000]**

1413.8
[0.0000]**

sAaBaa 1.5093 0.67882 1.0193 1.2905 633.75
[0.0000]**

570.69
[0.0000]**

sABaa 0.9175 0.39532 1.5203 5.4625 4255.4
[0.0000]**

633.83
[0.0000]**
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Table 2.35: Summary Statistics and Normality Tests for first differences of yields and spreads. Both the
Jarque–Bera test and the Normality test proposed by Doornik and Hansen (1994) are computed. In both
cases the null hypothesis is that the series is normally distributed and the test statistic is χ2

2. The p-value
is in square bracket. One asterisk denotes significance at 5% level and two asterisks denote significance at

1% level.

mean std skewness ex. Kurtosis JB test DH test

∆T -0.00102 0.030141 -0.50965 13.697 20530
[0.0000]**

3560.2
[0.0000]**

∆Aaa -0.00044 0.056111 0.11038 4.5905 2298.7
[0.0000]**

941.74
[0.0000]**

∆Aa -0.00036 0.054982 0.12057 3.952 1706.1
[0.0000]**

757.68
[0.0000]**

∆A -0.00035 0.056562 -0.22236 6.0169 3961.7
[0.0000]**

1335
[0.0000]**

∆Baa -0.00054 0.095544 -5.9017 425.03 1.97E+07
[0.0000]**

85499
[0.0000]**

∆sTAaa 5.74E-04 0.039787 0.06011 4.0579 1793.7
[0.0000]**

795.57
[0.0000]**

∆sTAa 6.62E-04 0.039436 -0.05592 5.0338 2759.1
[0.0000]**

1080.1
[0.0000]**

∆sTA 6.70E-04 0.042533 -0.30854 8.9381 8736
[0.0000]**

2206.3
[0.0000]**

∆sTBaa 4.79E-04 0.09024 -6.9097 534.99 3.12E+07
[0.0000]**

1.01E+05
[0.0000]**

∆sAaaAa 8.81E-05 0.016003 -6.9689 211.46 4.89E+06
[0.0000]**

9446.6
[0.0000]**

∆sAaaA 9.57E-05 0.025676 -1.8983 56.592 3.50E+05
[0.0000]**

12937
[0.0000]**

∆sAaaBaa -9.57E-05 0.087108 -9.3362 638.72 4.44E+07
[0.0000]**

79671
[0.0000]**

∆sAaA 7.66E-06 0.023299 -2.7988 67.146 4.94E+05
[0.0000]**

10512
[0.0000]**

∆sAaBaa -1.84E-04 0.086607 -9.6012 665.31 4.82E+07
[0.0000]**

81236
[0.0000]**

∆sABaa -1.91E-04 0.083233 -5.8308 578.27 3.64E+07
[0.0000]**

1.37E+05
[0.0000]**



112 Fractional Models to Credit Risk Pricing

Figure 2.12: Spreads between corporate yields.

Apr97 Sep98 Jan00 May01 Oct02 Feb04 Jul05

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

sAaaBaa
sAaBaa
sABaa
sAaaA
sAaaAa
sAaA

Table 2.36: Unit root and stationarity tests for yields and spreads. The
Dickey-Fuller (DF) or augmented Dickey-Fuller with the constant (ADF),

Phillips-Perron with the constant (PP), a two KPSS tests without trend are carried
out. n is the lag length in the ADF and it is chosen by the AIC. In the first KPSS

test the Bartlett kernel with bandwidth parameter
[
4
(

n
100

)1/4
]

is chosen for the

estimation of the long run variance. In the second test the automatic bandwidth
selection procedure of Hobijn et al. (1998) is considered. One asterisk denotes

significance at 5% level and two asterisks denote significance at 1% level.

DF-ADF n KPSS KPSS HFO PP

T -1.653 100 21.939** 5.8588** -2.4475
Aaa -1.3355 5 15.53** 4.1328** -1.3556
Aa -1.4069 1 15.243** 4.0624** -1.3791
A -1.4417 4 14.781** 3.948** -1.4918

Baa -1.3117 100 14.614** 3.935** -2.0929
sTAaa -1.2298 20 3.0473** 0.81407** -1.3345
sTAa -1.5499 14 3.1227** 0.8378** -1.6637
sTA -2.0273 9 5.7085** 1.5349** -2.0796

sTBaa -2.395 100 5.7847** 1.5748** -2.6558
sAaaAa -1.5907 40 8.2945** 2.2227** -1.8038
sAaaA -1.5777 12 8.2115** 2.1942** -1.4043

sAaaBaa -1.637 100 6.0188** 1.6326** -2.3115
sAaA -1.9143 13 7.1743** 1.9317** -1.6063

sAaBaa -1.6902 100 5.1076** 1.4035** -2.8231
sABaa -2.5695 100 2.5392** 0.75018** -5.0142
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Table 2.37: Unit root and stationarity tests for the first differences of yields and
spreads. The Dickey-Fuller (DF) or augmented Dickey-Fuller with the constant

(ADF), Phillips-Perron with the constant (PP), a two KPSS tests without trend are
carried out. n is the lag length in the ADF and it is chosen by the AIC. In the first

KPSS test the Bartlett kernel with bandwidth parameter
[
4
(

n
100

)1/4
]

is chosen for

the estimation of the long run variance. In the second test the automatic bandwidth
selection procedure of Hobijn et al. (1998) is considered. One asterisk denotes

significance at 5% level and two asterisks denote significance at 1% level.

DF-ADF n KPSS KPSS HFO PP

∆T -5.0327** 100 0.49783* 0.57193* -46.559**
∆Aaa -31.028** 2 0.28466 0.28348 -48.534**
∆Aa -48.939** 0 0.23192 0.23514 -48.9**
∆A -30.982** 2 0.13926 0.13961 -49.026**

∆Baa -5.4058** 100 0.043328 0.067559 -51.144**
∆sTAaa -12.988** 15 0.2278 0.23711 -55.581**
∆sTAa -16.111** 9 0.20595 0.20595 -55.308**
∆sTA -17.149** 8 0.2161 0.20603 -53.492**

∆sTBaa -5.4791** 100 0.087047 0.17655 -52.481**
∆sAaaAa -9.8791** 27 0.13711 0.14612 -58.483**
∆sAaaA -47.969** 0 0.2518 0.23199 -48.007**

∆sAaaBaa -5.5451** 100 0.085492 0.15935 -51.546**
∆sAaA -12.846** 11 0.16635 0.15742 -49.314**

∆sAaBaa -5.9663** 100 0.0595 0.12429 -51.976**
∆sABaa -6.2875** 100 0.018934 0.049348 -52.222**
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Table 2.38: d estimates for the yields with l = 0 and non-tapered data. For every series X, this table

report the estimates d̂(∆X) ≡ d̂ − 1(∆X) + 1 along with the test statistic (2.15). One asterisk denotes
significance at 5% level and two asterisks denote significance at 1% level.

T Aaa Aa A Baa

m = 23 d̂(∆X) 1.2581 1.2515 1.1604 1.083 1.0871
τd=1 1.5604 1.5201 0.9697 0.50184 0.52656

m = 51 d̂(∆X) 1.1294 1.1236 1.0096 0.96692 1.0217
τd=1 1.2699 1.213 0.093876 -0.32475 0.21305

J = 1 m = 112 d̂(∆X) 1.0682 1.0422 0.99158 1.0198 0.85643
τd=1 1.0449 0.64641 -0.12902 0.30295 -2.1994*

m = 246 d̂(∆X) 1.0208 1.0409 1.0359 1.0575 0.74505
τd=1 0.4864 0.95613 0.83888 1.3435 -5.956**

m = 556 d̂(∆X) 1.0148 0.99107 1.0113 1 0.97023
τd=1 0.5147 -0.31107 0.39283 0.0015018 -1.0371

m = 22 d̂(∆X) 1.1826 1.2629 1.2284 1.078 0.96728
τd=1 0.67096 0.96584 0.83919 0.28667 -0.12023

m = 50 d̂(∆X) 1.1465 1.1281 1.0176 0.92094 0.98424
τd=1 0.93375 0.81619 0.11237 -0.50375 -0.10041

J = 2 m = 112 d̂(∆X) 1.0602 1.0223 0.99915 0.99495 0.85764
τd=1 0.62374 0.23103 -0.0087573 -0.052284 -1.4748

m = 246 d̂(∆X) 1.033 1.022 1.0354 1.034 0.78248
τd=1 0.53074 0.35311 0.56936 0.54746 -3.4981**

m = 540 d̂(∆X) 1.0267 0.9821 1.0001 0.98612 0.97088
τd=1 0.64605 -0.43349 0.0034196 -0.33598 -0.70518

m = 21 d̂(∆X) 1.1145 1.2036 1.2009 1.1472 1.0003
τd=1 0.29945 0.53258 0.52556 0.38513 0.00079007

m = 51 d̂(∆X) 1.1662 1.0994 1.0029 0.90823 0.88635
τd=1 0.82486 0.49336 0.014482 -0.45542 -0.56399

J = 3 m = 111 d̂(∆X) 1.0624 1.0168 0.98903 0.98403 0.84686
τd=1 0.50589 0.13617 -0.088924 -0.12953 -1.2418

m = 246 d̂(∆X) 1.0217 1.0077 1.0134 1.0205 0.78128
τd=1 0.27872 0.098729 0.17264 0.26338 -2.8083**

m = 540 d̂(∆X) 1.0076 0.97012 0.97491 0.96528 0.96627
τd=1 0.14766 -0.58275 -0.48925 -0.67707 -0.65778
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Table 2.39: d estimates for the spreads with l = 0 and non-tapered data. For every series X, this table report the estimates d̂(∆X) ≡ d̂ − 1(∆X) + 1
along with the test statistic (2.15). One asterisk denotes significance at 5% level and two asterisks denote significance at 1% level.

sTAaa sTAa sTA sTBaa sAaaAa sAaaA sAaaBaa sAaA sAaBaa sABaa

m = 23 d̂(∆X) 1.2842 1.2771 1.0939 0.90145 1.2824 1.001 1.0814 0.84378 0.97525 0.91161
τd=1 1.7178 1.6751 0.56784 -0.59567 1.707 0.0061963 0.49206 -0.94429 -0.14959 -0.53428

m = 51 d̂(∆X) 1.0892 1.0207 0.86605 1.003 1.084 0.99138 1.0394 0.90515 0.97152 0.9241
τd=1 0.87569 0.20275 -1.315 0.029142 0.82471 -0.084613 0.38672 -0.93115 -0.27958 -0.74513

J = 1 m = 112 d̂(∆X) 0.98681 0.93182 1.014 0.7928 1.0093 1.0548 0.8507 1.0269 0.81457 0.73488
τd=1 -0.2021 -1.0445 0.21447 -3.1741** 0.14258 0.83966 -2.2871 0.41208 -2.8405** -4.0613**

m = 246 d̂(∆X) 0.97249 0.97061 0.97969 0.67172 0.97788 1.0765 0.68616 1.0103 0.66432 0.60893
τd=1 -0.64277 -0.68661 -0.47458 -7.6691** -0.51672 1.7879 -7.3318 0.24046 -7.8419** -9.136**

m = 541 d̂(∆X) 0.91012 0.91467 0.91893 0.92445 0.92679 1.0143 0.94304 0.95264 0.94656 0.96151
τd=1 -3.1308** -2.9722** -2.8237** -2.6316** -2.55* 0.49733 -1.9842* -1.6495 -1.8615 -1.3408

m = 22 d̂(∆X) 1.2269 1.2556 1.0385 0.928 1.2656 1.0239 1.0166 0.81106 0.90499 0.84669
τd=1 0.83364 0.93919 0.14144 -0.26454 0.9759 0.087669 0.060898 -0.6942 -0.34907 -0.56329

m = 50 d̂(∆X) 1.0579 0.95946 0.88081 0.95231 1.0661 0.94956 0.9755 0.83398 0.91914 0.88095
τd=1 0.36926 -0.25833 -0.7595 -0.30388 0.42115 -0.32143 -0.1561 -1.0579 -0.51526 -0.75863

J = 2 m = 112 d̂(∆X) 0.94896 0.91678 0.98779 0.78335 1.0151 1.0305 0.8053 0.99712 0.76965 0.68177
τd=1 -0.5288 -0.86217 -0.12648 -2.2444* 0.15628 0.31604 -2.0171 -0.029806 -2.3863* -3.2967**

m = 246 d̂(∆X) 0.938 0.95109 0.96599 0.70733 0.97893 1.0677 0.68778 1.0183 0.66653 0.60789
τd=1 -0.99713 -0.78661 -0.54696 -4.7066** -0.33879 1.0887 -5.0211 0.29487 -5.3627** -6.3058**

m = 540 d̂(∆X) 0.89623 0.90968 0.91502 0.95424 0.91996 1.0055 0.95067 0.95856 0.9486 0.95037
τd=1 -2.5127* -2.187* -2.0578* -1.1081 -1.9382 0.13396 -1.1946 -1.0033 -1.2447 -1.2018

m = 21 d̂(∆X) 1.2875 1.3558 1.1515 0.97172 1.3603 1.0681 1.027 0.8034 0.89875 0.80958
τd=1 0.75206 0.93062 0.39632 -0.073973 0.94241 0.17825 0.070726 -0.51424 -0.26485 -0.49808

m = 51 d̂(∆X) 1.102 1.0298 0.86285 0.87513 1.0528 0.94813 0.9567 0.84687 0.88577 0.82421
τd=1 0.50608 0.14808 -0.68059 -0.61967 0.26222 -0.25739 -0.2149 -0.75993 -0.56686 -0.87238

J = 3 m = 111 d̂(∆X) 0.97016 0.96446 0.96795 0.797 0.99019 1.0275 0.8078 1.0098 0.77858 0.69052
τd=1 -0.24195 -0.28824 -0.25993 -1.6463 -0.079541 0.22333 -1.5587 0.079266 -1.7956 -2.5097*

m = 246 d̂(∆X) 0.93912 0.97025 0.97433 0.71867 0.97007 1.075 0.68909 1.0317 0.67452 0.6193
τd=1 -0.78171 -0.38197 -0.32961 -3.6123** -0.38434 0.96264 -3.9921** 0.40688 -4.1791** -4.8882**

m = 540 d̂(∆X) 0.90421 0.91539 0.91342 0.9544 0.91137 1.002 0.95337 0.96212 0.95584 0.96029
τd=1 -1.8682 -1.6501 -1.6886 -0.88943 -1.7285 0.039412 -0.90953 -0.73876 -0.86122 -0.77449
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Table 2.40: d estimates for the yields with l = 1 and non-tapered data. For every series X, this table

report the estimates d̂(∆X) ≡ d̂ − 1(∆X) + 1 along with the test statistic (2.15). One asterisk denotes
significance at 5% level and two asterisks denote significance at 1% level.

T Aaa Aa A Baa

m = 23 d̂(∆X) 1.3759 1.2371 1.0897 1.0369 1.1007
τd=1 1.8313 1.1554 0.43725 0.17976 0.49064

m = 51 d̂(∆X) 1.1562 1.1007 0.95973 0.93141 1.014
τd=1 1.346 0.86782 -0.34698 -0.59092 0.12019

J = 1 m = 112 d̂(∆X) 1.0733 1.0219 0.96663 1.0101 0.83367
τd=1 1.0377 0.30963 -0.47219 0.1432 -2.3536*

m = 246 d̂(∆X) 1.0202 1.031 1.027 1.0554 0.72618
τd=1 0.45048 0.69009 0.60237 1.233 -6.0982**

m = 541 d̂(∆X) 1.0143 0.98406 1.0058 0.99653 0.97097
τd=1 0.48299 -0.53958 0.19782 -0.11746 -0.98258

m = 23 d̂(∆X) 1.3195 1.1994 1.0626 0.96704 0.95092
τd=1 1.0122 0.63175 0.19826 -0.10442 -0.15548

m = 51 d̂(∆X) 1.2089 1.0938 0.97749 0.88543 0.91273
τd=1 1.2087 0.54283 -0.13025 -0.66289 -0.50492

J = 2 m = 111 d̂(∆X) 1.0668 1.007 0.96148 0.96577 0.84231
τd=1 0.64348 0.067874 -0.37124 -0.32985 -1.5196

m = 245 d̂(∆X) 1.0198 0.99279 1.0003 1.0351 0.76307
τd=1 0.3049 -0.11113 0.0039196 0.54125 -3.6502**

m = 541 d̂(∆X) 0.99835 0.96241 0.96757 0.96695 0.96452
τd=1 -0.038898 -0.88873 -0.76679 -0.78145 -0.83882

m = 22 d̂(∆X) 1.2125 1.1807 1.1392 1.0175 0.94072
τd=1 0.48897 0.41577 0.3202 0.040309 -0.13638

m = 49 d̂(∆X) 1.1523 1.0693 0.98725 0.89863 0.92421
τd=1 0.66643 0.30319 -0.055805 -0.44367 -0.3317

J = 3 m = 112 d̂(∆X) 1.0865 1.0385 1.0228 1.0132 0.84473
τd=1 0.66476 0.29592 0.17539 0.10168 -1.1932

m = 244 d̂(∆X) 1.0335 1.0266 1.0473 1.0419 0.78075
τd=1 0.41309 0.32814 0.58284 0.51635 -2.7021**

m = 541 d̂(∆X) 1.0209 0.98464 0.99679 0.97531 0.9764
τd=1 0.39919 -0.29327 -0.061296 -0.47139 -0.4506

Table 2.42 and Table 2.43 report the d estimates for the yields and the spreads when l = 0 and the data
is tapered.

Table 2.44 and Table 2.45 report the d estimates for the yields and the spreads when l = 1 and the data
is tapered.

Table 2.46 and Table 2.47 report the local Whittle estimates for yields and spreads respectively.

Once again, the main conclusion is that credit spreads are long memory nonstationary processes. The
same conclusion cannot always be drawn for yields, for which the null H0 : d = 1 is not very often rejected.

Table 2.48 reports the result of Nielsen (2005) LM test for yields when setting d = 1 in eq. (2.18) or d = ι
in eq. (2.21) for the multivariate case. Panel A reports univariate tests whereas Panel B reports multivariate
tests. Table 2.49 reports the result of Nielsen (2005) LM test for spreads when setting d = 1 in eq. (2.18)
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Table 2.41: d estimates for the spreads with l = 1 and non-tapered data. For every series X, this table report the estimates d̂(∆X) ≡ d̂ − 1(∆X) + 1
along with the test statistic (2.15). One asterisk denotes significance at 5% level and two asterisks denote significance at 1% level.

sTAaa sTAa sTA sTBaa sAaaAa sAaaA sAaaBaa sAaA sAaBaa sABaa

m = 23 d̂(∆X) 1.1701 1.1398 0.9199 0.7483 1.3607 0.90304 1.0415 0.68071 0.91293 0.95979
τd=1 0.82871 0.68096 -0.39028 -1.2263 1.7573 -0.47238 0.20203 -1.5557 -0.4242 -0.19593

m = 51 d̂(∆X) 1.0141 0.92667 0.7551 0.95332 1.0829 0.94366 1.0112 0.84406 0.94138 0.944
τd=1 0.12169 -0.63181 -2.1099* -0.40215 0.71385 -0.4854 0.096296 -1.3435 -0.50508 -0.48249

J = 1 m = 112 d̂(∆X) 0.94058 0.87891 0.98142 0.74608 1.0006 1.0396 0.81616 1.0124 0.78285 0.72336
τd=1 -0.84075 -1.7135 -0.26292 -3.5929** 0.0087585 0.56067 -2.6013** 0.1754 -3.0727** -3.9145**

m = 246 d̂(∆X) 0.94903 0.94795 0.96128 0.64073 0.9713 1.0699 0.65802 1.0011 0.63845 0.5946
τd=1 -1.1351 -1.1591 -0.86233 -8.0013** -0.63918 1.5568 -7.616** 0.024421 -8.052** -9.0286**

m = 541 d̂(∆X) 0.89596 0.90114 0.90726 0.92044 0.92141 1.0082 0.94063 0.94549 0.94637 0.97006
τd=1 -3.5212** -3.3459** -3.1386** -2.6926** -2.6597** 0.27795 -2.0093* -1.8447 -1.815 -1.0133

m = 23 d̂(∆X) 1.1189 1.1007 0.81821 0.79465 1.2277 0.91241 0.99823 0.69297 0.86705 0.83902
τd=1 0.3766 0.31905 -0.57593 -0.65057 0.72131 -0.27749 -0.0056051 -0.97269 -0.42119 -0.51

m = 51 d̂(∆X) 1.0578 1.0043 0.77206 0.88315 1.0976 0.89983 0.9462 0.79136 0.86697 0.88421
τd=1 0.33429 0.024886 -1.3188 -0.67608 0.5647 -0.5796 -0.31129 -1.2072 -0.76971 -0.66997

J = 2 m = 111 d̂(∆X) 0.94313 0.9224 0.91163 0.77666 0.99698 1.0258 0.79501 0.99304 0.75674 0.70038
τd=1 -0.54809 -0.74788 -0.85159 -2.1524* -0.029142 0.24891 -1.9755 -0.067079 -2.3443* -2.8874**

m = 245 d̂(∆X) 0.9395 0.96127 0.96641 0.68919 0.96173 1.0567 0.6659 1.0237 0.64683 0.61228
τd=1 -0.93212 -0.59672 -0.51751 -4.7884** -0.5896 0.87381 -5.147** 0.36503 -5.4409** -5.9731**

m = 541 d̂(∆X) 0.90036 0.91179 0.91001 0.94825 0.91302 0.99138 0.94922 0.9513 0.95134 0.96816
τd=1 -2.356* -2.0858* -2.1277* -1.2237 -2.0566* -0.20391 -1.2007 -1.1515 -1.1506 -0.75294

m = 22 d̂(∆X) 1.0739 0.96073 0.79603 0.81196 1.327 0.98387 0.97927 0.66956 0.82034 0.822
τd=1 0.16997 -0.090348 -0.46929 -0.43262 0.75237 -0.037114 -0.047689 -0.76026 -0.41335 -0.40954

m = 49 d̂(∆X) 1.0315 0.94349 0.71925 0.84775 1.0649 0.91049 0.89909 0.78573 0.84542 0.87466
τd=1 0.13793 -0.24731 -1.2288 -0.66636 0.28392 -0.39175 -0.44164 -0.93782 -0.67657 -0.54858

J = 3 m = 112 d̂(∆X) 0.95327 0.91758 0.93779 0.7614 1.0046 1.0455 0.78145 0.98456 0.75053 0.68538
τd=1 -0.35913 -0.63334 -0.47803 -1.8335 0.034985 0.34953 -1.6795 -0.11867 -1.917 -2.4177*

m = 244 d̂(∆X) 0.92885 0.9427 0.9518 0.70227 0.96135 1.0662 0.6788 1.0337 0.65873 0.61628
τd=1 -0.87684 -0.70623 -0.59401 -3.6694** -0.47632 0.81533 -3.9586** 0.41525 -4.206** -4.7291**

m = 541 d̂(∆X) 0.90126 0.90693 0.89682 0.9601 0.90361 0.99342 0.95766 0.96526 0.9581 0.96811
τd=1 -1.8852 -1.777 -1.97* -0.7618 -1.8403 -0.12563 -0.80836 -0.66331 -0.79987 -0.60893
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Table 2.42: d estimates for the yields with l = 0 and tapered data. For every series X, this table report the

estimates d̂(∆X) ≡ d̂ − 1(∆X) + 1 along with the test statistic (2.15). One asterisk denotes significance at 5%
level and two asterisks denote significance at 1% level.

T Aaa Aa A Baa

m = 23 d̂(∆X) 1.2899 1.478 1.3751 1.1379 1.0869
τd=1 1.7523 2.8896 2.2672 0.83366 0.52532

m = 51 d̂(∆X) 1.1664 1.187 1.1156 0.94489 0.96329
τd=1 1.6333 1.8361 1.1345 -0.54101 -0.36041

J = 1 m = 112 d̂(∆X) 1.1419 1.0675 1.0548 1.0088 0.99412
τd=1 2.1731* 1.0343 0.8397 0.13463 -0.090087

m = 246 d̂(∆X) 1.0404 1.029 1.0417 1.0339 1.0181
τd=1 0.94409 0.67689 0.97454 0.79283 0.4221

m = 541 d̂(∆X) 1.0165 0.98709 0.98741 0.94704 1.0251
τd=1 0.57379 -0.44964 -0.43852 -1.8447 0.87521

m = 22 d̂(∆X) 1.2432 1.3822 1.3452 1.2135 1.1297
τd=1 0.89372 1.4041 1.2683 0.7846 0.47637

m = 50 d̂(∆X) 1.1651 1.16 1.0681 0.92461 0.98681
τd=1 1.0521 1.0197 0.43396 -0.4804 -0.08407

J = 2 m = 112 d̂(∆X) 1.1196 1.06 1.0417 1.0011 0.98983
τd=1 1.2388 0.6212 0.43199 0.011856 -0.10536

m = 246 d̂(∆X) 1.0399 1.0347 1.0441 1.0432 1.0183
τd=1 0.64198 0.55747 0.70873 0.69545 0.29416

m = 540 d̂(∆X) 1.0241 0.98924 0.99199 0.96007 1.0372
τd=1 0.58437 -0.26057 -0.19386 -0.96678 0.90108

21 d̂(∆X) 1.1945 1.3976 1.3983 1.2326 1.1202
τd=1 0.50878 1.0401 1.0417 0.60846 0.31449

m = 51 d̂(∆X) 1.1237 1.1377 1.0709 0.91235 0.92345
τd=1 0.61391 0.68335 0.35206 -0.43496 -0.37986

J = 3 m = 111 d̂(∆X) 1.0867 1.0324 1.0131 0.9748 0.98964
τd=1 0.7033 0.26269 0.10607 -0.20434 -0.084021

m = 246 d̂(∆X) 1.0327 1.021 1.0283 1.0346 1.0203
τd=1 0.41999 0.27008 0.36347 0.44408 0.26123

m = 540 d̂(∆X) 1.023 0.97857 0.97851 0.95116 1.0339
τd=1 0.44773 -0.41788 -0.41917 -0.95264 0.66133
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Table 2.43: d estimates for the spreads with l = 0 and tapered data. For every series X, this table report the estimates d̂(∆X) ≡ d̂ − 1(∆X) + 1
along with the test statistic (2.15). One asterisk denotes significance at 5% level and two asterisks denote significance at 1% level.

sTAaa sTAa sTA sTBaa sAaaAa sAaaA sAaaBaa sAaA sAaBaa sABaa

m = 23 d̂(∆X) 1.3271 1.2381 0.99842 0.89355 1.3041 0.96375 1.0554 0.80029 0.94746 0.70537
τd=1 1.9769 1.4394 -0.0095709 -0.64347 1.8381 -0.21911 0.33513 -1.2072 -0.31758 -1.7809

m = 51 d̂(∆X) 1.1777 1.0788 0.88128 0.95244 1.0411 0.96008 1.002 0.85356 0.93172 0.88863
τd=1 1.7446 0.77363 -1.1655 -0.46688 0.40361 -0.39187 0.019709 -1.4376 -0.67031 -1.0934

J = 1 m = 112 d̂(∆X) 1.0392 1.0195 0.99114 0.96512 0.97944 1.022 0.96871 0.95967 0.93177 0.87603
τd=1 0.60025 0.29886 -0.13579 -0.53432 -0.31491 0.33651 -0.47934 -0.61787 -1.0452 -1.8991

m = 246 d̂(∆X) 1.0136 1.0084 0.99483 0.98757 0.99336 1.0938 1.0029 1.0487 0.97516 0.93288
τd=1 0.31741 0.19508 -0.12067 -0.29032 -0.15505 2.1925* 0.067027 1.1367 -0.58031 -1.5681

m = 541 d̂(∆X) 0.91863 0.90536 0.90688 1.0478 0.94185 1.054 1.0762 1.0442 1.0736 1.0164
τd=1 -2.8344** -3.2966** -3.2434** 1.6645 -2.0254* 1.8825 2.6549** 1.5408 2.5629* 0.57166

m = 22 d̂(∆X) 1.2826 1.2477 1.0005 0.9065 1.3904 0.98571 1.0535 0.76995 0.91197 0.72771
τd=1 1.0385 0.91019 0.0018814 -0.34352 1.4345 -0.052492 0.1964 -0.84526 -0.32345 -1.0004

m = 50 d̂(∆X) 1.1168 1.017 0.86575 0.94063 1.0378 0.9601 1.0092 0.84993 0.95273 0.91688
τd=1 0.74401 0.10859 -0.85545 -0.37829 0.24091 -0.25422 0.058911 -0.9563 -0.30124 -0.52968

J = 2 m = 112 d̂(∆X) 1.0106 0.99182 0.98783 0.95452 0.9718 1.0009 0.95521 0.95122 0.93203 0.852
τd=1 0.11014 -0.084713 -0.12603 -0.47115 -0.29217 0.0088505 -0.46396 -0.50532 -0.70419 -1.5332

m = 246 d̂(∆X) 1.0048 1.0096 0.99889 0.97406 0.99031 1.0843 0.9677 1.044 0.94718 0.90705
τd=1 0.07735 0.15401 -0.017772 -0.41715 -0.15576 1.3556 -0.51949 0.70838 -0.8495 -1.4947

m = 540 d̂(∆X) 0.9171 0.91342 0.91182 1.0423 0.93293 1.0575 1.0674 1.0441 1.0668 1.0077
τd=1 -2.0073* -2.0964* -2.1351* 1.0241 -1.6239 1.3935 1.6321 1.0682 1.6175 0.1855

m = 21 d̂(∆X) 1.351 1.3885 1.0363 0.9003 1.4829 1.0083 1.0846 0.73547 0.92579 0.7267
τd=1 0.91821 1.0161 0.094966 -0.26078 1.263 0.02161 0.22132 -0.69194 -0.1941 -0.71486

m = 51 d̂(∆X) 1.1372 1.0313 0.85755 0.91093 1.0163 0.94668 1.0043 0.8557 0.93772 0.89994
τd=1 0.68098 0.1551 -0.70693 -0.44203 0.08068 -0.26459 0.021183 -0.71608 -0.30905 -0.49655

J = 3 m = 111 d̂(∆X) 0.99048 0.97958 0.98208 0.98401 0.94119 0.99573 0.96683 0.9722 0.94592 0.87009
τd=1 -0.077231 -0.16561 -0.1453 -0.12969 -0.47695 -0.034667 -0.26901 -0.22548 -0.43859 -1.0535

m = 246 d̂(∆X) 0.99393 1.007 0.9989 0.98782 0.9925 1.0923 0.967 1.0544 0.95059 0.9106
τd=1 -0.077906 0.090217 -0.014102 -0.15634 -0.096248 1.1846 -0.42368 0.69834 -0.63448 -1.1479

m = 540 d̂(∆X) 0.91317 0.91343 0.90697 1.0405 0.93741 1.0555 1.0629 1.0413 1.0647 1.0066
τd=1 -1.6935 -1.6884 -1.8144 0.79034 -1.2207 1.082 1.2266 0.80494 1.2625 0.12917
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Table 2.44: d estimates for the yields with l = 1 and tapered data. For every series X, this table report the

estimates d̂(∆X) ≡ d̂ − 1(∆X) + 1 along with the test statistic (2.15). One asterisk denotes significance at 5%
level and two asterisks denote significance at 1% level.

T Aaa Aa A Baa

m = 23 d̂(∆X) 1.3479 1.5424 1.4008 1.0428 1.0549
τd=1 1.6949 2.6425 1.9528 0.2083 0.26751

m = 51 d̂(∆X) 1.1696 1.1666 1.0842 0.87385 0.9261
τd=1 1.4612 1.4357 0.72581 -1.0869 -0.63671

J = 1 m = 112 d̂(∆X) 1.1392 1.0438 1.033 0.98458 0.97932
τd=1 1.9701 0.61991 0.46705 -0.21816 -0.29257

m = 246 d̂(∆X) 1.0321 1.0147 1.0301 1.0238 1.0129
τd=1 0.71463 0.32735 0.67021 0.53023 0.28768

m = 541 d̂(∆X) 1.0114 0.9783 0.97938 0.9383 1.0228
τd=1 0.38479 -0.7344 -0.69781 -2.0881* 0.77246

m = 23 d̂(∆X) 1.3497 1.5899 1.4199 1.0796 0.97171
τd=1 1.1079 1.8688 1.3302 0.25232 -0.089613

m = 51 d̂(∆X) 1.157 1.1578 1.0713 0.89413 0.92349
τd=1 0.90837 0.91311 0.41277 -0.61257 -0.4427

J = 2 m = 111 d̂(∆X) 1.1032 1.0203 1.0108 0.94338 1.0037
τd=1 0.99439 0.19572 0.10443 -0.5457 0.0359

m = 245 d̂(∆X) 1.0205 0.98666 1.0077 1.0182 1.0123
τd=1 0.31548 -0.20551 0.11819 0.2798 0.19018

m = 541 d̂(∆X) 1.0127 0.95111 0.95982 0.93412 1.0132
τd=1 0.30058 -1.156 -0.95 -1.5577 0.31315

m = 22 d̂(∆X) 1.2746 1.4167 1.3819 1.1234 1.1013
τd=1 0.6318 0.9588 0.87866 0.28399 0.23303

m = 49 d̂(∆X) 1.114 1.1109 1.0156 0.84867 0.93783
τd=1 0.49898 0.48517 0.068277 -0.66234 -0.2721

J = 3 m = 112 d̂(∆X) 1.1237 1.0571 1.0342 0.97818 0.99098
τd=1 0.95034 0.43902 0.26256 -0.16771 -0.069297

m = 244 d̂(∆X) 1.0343 1.0225 1.0374 1.0326 1.0211
τd=1 0.42223 0.27695 0.46133 0.40197 0.25979

m = 541 d̂(∆X) 1.0251 0.98493 0.99033 0.95028 1.0297
τd=1 0.47982 -0.28764 -0.18455 -0.94936 0.56727
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Table 2.45: d estimates for the spreads with l = 1 and tapered data. For every series X, this table report the estimates d̂(∆X) ≡ d̂ − 1(∆X) + 1
along with the test statistic (2.15). One asterisk denotes significance at 5% level and two asterisks denote significance at 1% level.

sTAaa sTAa sTA sTBaa sAaaAa sAaaA sAaaBaa sAaA sAaBaa sABaa

m = 23 d̂(∆X) 1.3007 1.1786 0.83758 0.822 1.356 0.87772 1.0732 0.66035 0.95341 0.82651
τd=1 1.4651 0.87002 -0.79135 -0.86724 1.7345 -0.59579 0.35673 -1.6548 -0.227 -0.84528

m = 51 d̂(∆X) 1.1464 1.0314 0.79479 0.92742 1.0143 0.91852 0.99064 0.80057 0.9234 0.96588
t 1.2613 0.27034 -1.7681 -0.62533 0.12354 -0.70198 -0.080601 -1.7182 -0.65996 -0.294

J = 1 m = 112 d̂(∆X) 1.0089 0.99073 0.96517 0.95466 0.96 1.0089 0.95893 0.94687 0.92718 0.90929
τd=1 0.12555 -0.13119 -0.49282 -0.64151 -0.56607 0.12565 -0.58109 -0.75179 -1.0304 -1.2835

m = 246 d̂(∆X) 0.99685 0.99345 0.98227 0.98463 0.98508 1.0915 1.001 1.0476 0.97641 0.95388
τd=1 -0.070165 -0.14595 -0.39497 -0.3423 -0.3322 2.0383* 0.022721 1.0609 -0.5253 -1.0271

m = 541 d̂(∆X) 0.90638 0.89358 0.89686 1.0488 0.93568 1.0511 1.0783 1.0433 1.0783 1.0303
τd=1 -3.1686** -3.6018** -3.4908** 1.6503 -2.1769* 1.7283 2.6515** 1.466 2.6506** 1.0258

m = 23 d̂(∆X) 1.3008 1.1765 0.77997 0.78599 1.302 0.89014 1.0532 0.66062 0.91643 0.81789
τd=1 0.95306 0.55917 -0.69708 -0.67801 0.95684 -0.34804 0.16865 -1.0752 -0.26475 -0.57695

m = 51 d̂(∆X) 1.1321 1.0273 0.81764 0.9077 1.001 0.92185 0.98761 0.82383 0.92797 0.96754
τd=1 0.76435 0.1579 -1.0551 -0.53407 0.0056384 -0.45218 -0.071701 -1.0193 -0.41677 -0.1878

J = 2 m = 111 d̂(∆X) 1.0024 0.9762 0.94833 0.97485 0.94399 1.0073 0.96285 0.94568 0.9403 0.90483
τd=1 0.023354 -0.22932 -0.49795 -0.24234 -0.53978 0.069986 -0.35799 -0.52348 -0.57532 -0.91718

m = 245 d̂(∆X) 0.99183 0.99854 0.98705 0.97881 0.98026 1.0904 0.95546 1.0501 0.94464 0.91985
τd=1 -0.12589 -0.022423 -0.19945 -0.32653 -0.30409 1.3921 -0.68612 0.77173 -0.8528 -1.2348

m = 541 d̂(∆X) 0.89748 0.89466 0.89256 1.0374 0.93872 1.0463 1.062 1.0406 1.0719 1.0224
τd=1 -2.4241* -2.4907* -2.5404* 0.88403 -1.4489 1.0958 1.467 0.95942 1.7003 0.53052

m = 22 d̂(∆X) 1.2709 1.1372 0.81315 0.84481 1.4099 0.92604 1.0592 0.61262 0.89641 0.772
τd=1 0.62334 0.31562 -0.4299 -0.35706 0.94305 -0.17016 0.13614 -0.89125 -0.23834 -0.52456

m = 49 d̂(∆X) 1.1107 0.99025 0.75007 0.9255 0.99361 0.94636 1.01 0.80781 0.95436 0.99143
τd=1 0.48443 -0.042662 -1.0939 -0.32607 -0.027978 -0.23478 0.043688 -0.84117 -0.19977 -0.0375

J = 3 m = 112 d̂(∆X) 1.0276 0.98392 0.96025 0.96525 0.94343 1.0237 0.95631 0.94652 0.93411 0.87899
τd=1 0.21243 -0.12353 -0.30546 -0.26703 -0.43473 0.18178 -0.33577 -0.41095 -0.50634 -0.92993

m = 244 d̂(∆X) 1.0033 1.0084 0.99464 0.98245 0.96651 1.0981 0.96678 1.0598 0.95237 0.92317
τd=1 0.040185 0.10374 -0.06602 -0.21631 -0.41279 1.2094 -0.40947 0.73702 -0.58703 -0.94692

m = 541 d̂(∆X) 0.90561 0.90769 0.89949 1.0443 0.91663 1.0469 1.0719 1.0481 1.0725 1.0215
τd=1 -1.8021 -1.7624 -1.919 0.84512 -1.5917 0.89498 1.3727 0.91814 1.3843 0.41125
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Table 2.46: Local Whittle estimates for the yields. For every series X, this table report the estimates d̃(X)

and d̃(∆X) ≡ d̃ − 1(∆X) + 1 along with the test statistics (2.32) and (2.33) respectively. One asterisk denotes
significance at 5% level and two asterisks denote significance at 1% level.

T Aaa Aa A Baa

m = 23 d̃(X) 1.0246 1.1363 1.1138 1.0436 0.94433
td=1 0.23583 1.307 1.0918 0.41784 -0.53401

m = 51 d̃(X) 1.0562 1.0969 1.0531 1.0012 0.95645
td=1 0.80258 1.3841 0.759 0.017322 -0.62198

m = 112 d̃(X) 1.035 1.0439 1.0405 1.0134 0.87084
td=1 0.73995 0.92852 0.85753 0.28369 -2.7338**

m = 246 d̃(X) 0.9958 1.0184 1.0338 1.0263 0.81509
td=1 -0.13178 0.57583 1.0604 0.82409 -5.8004**

m = 541 d̃(X) 0.98032 0.96551 0.97165 0.952 0.93213
td=1 -0.9156 -1.6044 -1.319 -2.2331* -3.1573**

m = 23 d̃(∆X) 1.1145 1.1786 1.1422 1.0511 0.9164
τd=1 1.0979 1.7132 1.3638 0.48989 -0.80189

m = 51 d̃(∆X) 1.1035 1.086 1.0387 0.9757 0.91543
τd=1 1.4776 1.2285 0.55322 -0.34705 -1.2079

m = 112 d̃(∆X) 1.0497 1.041 1.0353 1.0084 0.86556
τd=1 1.0519 0.86829 0.74792 0.17851 -2.8455**

m = 246 d̃(∆X) 1.0202 1.0224 1.0378 1.0319 0.81136
τd=1 0.63507 0.70141 1.1865 1 -5.9175**

m = 541 d̃(∆X) 1.0145 0.98156 0.98845 0.96748 0.95415
τd=1 0.67399 -0.85789 -0.5375 -1.5128 -2.1328*

or d = ι in eq. (2.21) for the multivariate case. Panel A reports univariate tests whereas Panel B reports
multivariate tests.

From the tables is clear that for p = 0 all the first differenced credit spreads series are not stationary
except sBaa, sAaabaa, sAaA and sAaBaa. Further, for the series sAaaAa the null of stationarity after first
differencing is rejected for the series also when p = 1. Among the yields, the null is rejected also for the time
series T, result confirmed also by the fact that the fractional differencing parameter appears to be bigger
than one from the GPH estimation.

Table 2.50 reports the results of some unit root and stationarity tests for the residuals from the cointe-
grating regression for all possible bivariate systems of yields.

Table 2.50 shows that there is no evidence of cointegration between Treasury and corporate yields. Am-
biguous results are found for the systems Aa–Baa and A–Baa and, to some extend, for the systems T–Baa
and T–Baa. The explanation could be the presence of fractional cointegration.
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Table 2.47: Local Whittle estimates for the spreads. For every series X, this table report the estimates d̃(X) and d̃(∆X) ≡ d̃ − 1(∆X) + 1
along with the test statistics (2.32) and (2.33) respectively. One asterisk denotes significance at 5% level and two asterisks denote significance at

1% level.

sTAaa sTAa sTA sTBaa sAaaAa sAaaA sAaaBaa sAaA sAaBaa sABaa

m = 23 d̃(X) 1.1717 1.1117 0.99789 0.90988 1.0813 1.0066 0.96996 0.91087 0.89467 0.72878
td=1 1.6467 1.0709 -0.02021 -0.86441 0.77936 0.062928 -0.28811 -0.85494 -1.0103 -2.6015**

m = 51 d̃(X) 1.0131 0.97652 0.9152 0.9057 1.0125 0.96721 0.93819 0.90455 0.88818 0.78432
td=1 0.18725 -0.33534 -1.2113 -1.3468 0.17916 -0.46828 -0.88287 -1.3634 -1.5971 -3.0805**

m = 112 d̃(X) 1.0023 0.99495 0.98792 0.86258 1.0004 1.0323 0.843 1.0045 0.79136 0.69449
td=1 0.049605 -0.10684 -0.25558 -2.9085** 0.008162 0.68448 -3.3231** 0.09521 -4.4161** -6.4665**

m = 246 d̃(X) 0.97093 0.98067 0.97815 0.79325 0.97008 1.0266 0.75687 1.0132 0.71827 0.64924
td=1 -0.91182 -0.60632 -0.68533 -6.4856** -0.9384 0.83476 -7.6267** 0.415 -8.8376** -11.003**

m = 541 d̃(X) 0.93805 0.94879 0.93947 0.9488 0.90683 0.98603 0.93777 0.96052 0.92321 0.93546
td=1 -2.8821** -2.3823* -2.816** -2.3817* -4.3341** -0.64987 -2.8949** -1.8364 -3.572** -3.0023**

m = 23 d̃(∆X) 1.2312 1.1598 1.0153 0.90972 1.0769 1.0036 0.97134 0.91059 0.90072 0.74891
τd=1 2.2176* 1.5332 0.1463 -0.86596 0.7375 0.034742 -0.27488 -0.8576 -0.95224 -2.4084*

m = 51 d̃(∆X) 1.0768 1.0244 0.94109 0.9101 1.0062 0.96765 0.93845 0.90476 0.89026 0.79554
τd=1 1.0966 0.34857 -0.84145 -1.2841 0.087909 -0.46202 -0.87916 -1.3602 -1.5674 -2.9203**

m = 112 d̃(∆X) 1.0147 1.0112 0.98043 0.82468 1.0069 1.0307 0.84994 1.0049 0.80597 0.71468
τd=1 0.31031 0.2364 -0.41416 -3.7108** 0.14694 0.64987 -3.1762** 0.10289 -4.1068** -6.0391

m = 246 d̃(∆X) 0.98308 1.0077 0.99019 0.76281 0.97788 1.0307 0.76446 1.0173 0.73106 0.66569
τd=1 -0.53073 0.24222 -0.3077 -7.4404** -0.69377 0.96332 -7.3886** 0.54124 -8.4363** -10.487**

m = 541 d̃(∆X) 0.92833 0.94244 0.9258 0.94646 0.91755 1.0022 0.9564 0.97652 0.94539 0.96025
τd=1 -3.3342** -2.6775** -3.4519** -2.4908* -3.8353** 0.10244 -2.0284* -1.0923 -2.5402* -1.8489
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Table 2.48: Nielsen (2005) LM test for yields. For the univariate case, we set d = 1 in eq. (2.18). For the
multivariate case, we set d = ι in eq. (2.21). Panel A reports univariate tests whereas Panel B reports

multivariate tests.

Panel A

T Aaa Aa A Baa

p = 0 LM 15.039 1.5956 1.6096 0.58635 0.084594
pval 0.000105 0.20653 0.20454 0.44383 0.77117

p = 1 LM 0.18465 0.57407 0.18801 0.95166 0.60887
pval 0.66741 0.44864 0.66457 0.3293 0.43521

p = 2 LM 0.024477 0.1242 0.010532 0.18311 0.024272
pval 0.87568 0.72453 0.91826 0.66871 0.8762

p = 3 LM 0.34213 0.20205 0.16713 0.019909 0.002732
pval 0.5586 0.65308 0.68268 0.88779 0.95831

p = 4 LM 0.31699 0.23361 0.24655 0.087709 0.040775
pval 0.57342 0.62886 0.61952 0.76711 0.83997

Panel B

p = 0 LM 10.155 LMK 48.357
pval 0.001439 pval 3.00E-09

p = 1 LM 8.9621 LMK 12.561
pval 0.002756 pval 0.027855

p = 2 LM 1.0671 LMK 3.6541
pval 0.30159 pval 0.6002

p = 3 LM 0.029004 LMK 0.99808
pval 0.86477 pval 0.96272

p = 4 LM 0.14536 LMK 1.5699
pval 0.70301 pval 0.90487
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Table 2.49: Nielsen (2005) LM test for spreads. For the univariate case, we set d = 1 in eq. (2.18). For the multivariate case, we set d = ι in eq.
(2.21). Panel A reports univariate tests whereas Panel B reports multivariate tests for spreads over Treasury only.

Panel A

sAaa sAa sA sBaa sAaaAa sAaaA sAaaBaa sAaA sAaBaa sABaa

p = 0 24.31339 20.0056 11.77286 2.852134 56.06828 10.53994 0.000524 1.78096 0.631179 8.051394
8.19E-07 7.72E-06 0.000601 0.091253 6.99E-14 0.001168 0.981734 0.182031 0.426923 0.004547

p = 1 6.097408 3.493377 4.736794 0.958987 11.85417 0.744657 0.069806 0.003883 0.620024 3.682575
0.013538 0.061615 0.029524 0.327442 0.000575 0.388173 0.791619 0.950312 0.431038 0.054984

p = 2 1.965735 0.430146 0.75116 0.022034 1.748351 0.000364 0.394406 0.00677 0.272301 0.055102
0.160901 0.511917 0.386109 0.881996 0.186084 0.984788 0.529993 0.934424 0.601792 0.814412

p = 3 0.008452 0.013447 0.033195 0.000772 0.362768 0.241951 0.03548 0.229294 0.0001 0.213746
0.926748 0.907685 0.85543 0.977834 0.546973 0.6228 0.850593 0.632048 0.99201 0.643847

p = 4 0.001935 0.08217 0.028961 0.207774 0.03761 0.331287 0.065499 0.033083 0.260934 0.788442
0.964913 0.774378 0.864869 0.648517 0.846228 0.564902 0.798006 0.855671 0.609479 0.374572

Panel B

p = 0 LM 25.33604 LMK 28.98468
pval 4.82E-07 pval 7.87E-06

p = 1 LM 12.97074 LMK 13.03932
pval 0.000316 pval 0.011085

p = 2 LM 1.23618 LMK 2.509452
pval 0.266209 pval 0.642944

p = 3 LM 0.227847 LMK 0.292957
pval 0.633125 pval 0.990264

p = 4 LM 0.335473 LMK 1.22171
pval 0.562454 pval 0.874511
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Table 2.50: Cointegration analysis: unit root and stationarity tests for bivariate systems. Cointegration analysis is performed for all possible
bivariate systems X − Y . For each pair of variables X and Y , the Dickey-Fuller with the constant (DF), augmented Dickey-Fuller with the constant

(ADF), Phillips-Perron with the constant (PP), a two KPSS tests without trend are carried out on the estimated OLS residuals of the regression of Y

on X and a constant. In the first KPSS test the Bartlett kernel with bandwidth parameter
[
4
(

n
100

)1/4
]

is chosen for the estimation of the long run

variance. In the second test the automatic bandwidth selection procedure of Hobijn et al. (1998) is considered.

T - Aaa T - Aa T- A T - Baa Aaa - Aa Aaa - A Aaa - Baa Aa - A Aa - Baa A - Baa

DF -1.7982 -1.8528 -1.9715 -2.9225* -2.479 -1.5925 -3.1137* -1.8512 -3.546** -5.3516**
ADF1 -1.6988 -1.7673 -1.9387 -2.8895* -2.2334 -1.6715 -3.104* -1.9196 -3.5216** -5.2946**
ADF2 -1.642 -1.7077 -1.8504 -3.1018* -2.0687 -1.6382 -3.4195* -1.8036 -3.8791** -5.9872**
ADF3 -1.5731 -1.666 -1.8045 -3.095* -2.035 -1.6134 -3.4449** -1.752 -3.9115** -6.1183**
ADF4 -1.5627 -1.6539 -1.7772 -3.1314* -1.987 -1.581 -3.4707** -1.7518 -3.9604** -6.2317**
ADF5 -1.5363 -1.6476 -1.7814 -2.3416 -1.9766 -1.6322 -2.4037 -1.769 -2.7033 -4.4134**
PP -1.5876 -1.6955 -1.8444 -2.6246 -2.1118 -1.669 -2.7963 -1.841 -3.1658* -5.0413**

KPSS 3.1** 3.2061** 4.2174** 5.0121** 3.3863** 4.9844** 5.4244** 4.8348** 4.9929** 2.8503**
KPSS HFO 0.82996** 0.86036** 1.1332** 1.3654** 0.91777** 1.3418** 1.4873** 1.3098** 1.3829** 0.84248**
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Credit Default Swaps and Constant Maturity

Credit Default Swaps

3.1 Introduction

Credit derivatives are derivative securities whose payoff depends on the credit quality (measured by the credit
rating of the issuer or by the yield spread of his bonds over the yield of a comparable default-free bond) of a
certain issuer. The payoff is conditioned on the occurrence of a credit event. Credit events typically include
bankruptcy, failure to pay, default or restructuring. Credit derivatives widely used in practice include total
return swaps, spread options, and credit default swaps1. The credit derivatives market has seen a phenomenal
growth over the last few years: the British Bankers’ Association (BBA) estimates in $20 trillion the total
gross notional value of outstanding credit derivatives at the end of 2006 and predicts that at the end of 2008
the global credit derivatives market will have expanded to $33 trillion (BBA(2006)).

Credit default swaps (CDS) are the most common type of credit derivative: they account for around a
third of the credit market as at the first quarter of 2006 (BBA(2006)). They provide insurance against the
risk of a default by particular company. The first party to the contract, the protection buyer, wishes to
insure against the possibility of default on a bond issued by a particular company whereas the second party
to the contract, the protection seller, is willing to bear the risk associated with default by the reference entity
issuing the bond. Thus the buyer of the insurance obtains the right to sell a particular bond issued by the
company for its par value when a credit event occurs. The buyer of the CDS makes periodic payments to
the seller until the end of the life of the CDS or until a credit event occurs. The swap is then settled by
either physical delivery or in cash. If the contract requires cash settlement, the protection buyer receives the
difference between the par value of the reference obligation and its market value after default. If physical
delivery is required by the contract, the swap buyer delivers the bonds to the seller in exchange for their
par value. In the case of either physical or cash settlement, the buyer would be required to make a final
payment to the seller equal to the amount accrued since the most recent premium payment. The premium
(called the CDS spread) in a CDS spread contract is determined by matching the discounted cash flows of
a fixed leg paid by the protection buyer and a loss leg which corresponds to the net payment made by the
protection seller to the protection buyer in case of default. As discussed in more detail in Duffie (1999) and
Hull and White (2000), the credit default swap spread should be very close to the credit spread of a par yield
bond issued by the reference entity over the par yield risk-free rate. This can be shown using a no arbitrage
argument. Buying a par yield bond and a CDS on the reference entity an investor eliminates almost all the
credit risk associated with default on the bond. This means that, denoting with y the yield on a T -year
par yield bond issued by a reference entity, with r the yield on a T -year par yield riskless bond, and with
S the T -year CDS spread (i.e. S is the periodical premium paid by the the protection buyer), the following
relationship should hold:

S = y − r.

In fact, if S is less than y−r, buying a corporate bond and the credit default swap and short selling a riskless

1For an overview of credit derivatives see Tavakoli (1998); Schönbucher (2003)
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bond will result in an arbitrage. If S is greater than y− r, then an arbitrageur will find it profitable to short
a corporate bond, sell the credit default swap, and buy a riskless bond2.
The validity of the theoretical equivalence of CDS prices and credit spreads is tested in Blanco et al. (2005).
They use a dataset which consists of 33 U.S. and European investment-grade firms and find that this parity
relation holds on average over time for most companies, suggesting that the bond and CDS markets price
credit risk equally. Deviation from parity are found only for three European firms, for which the authors
find that CDS prices are substantially higher than credit spreads for long periods of time. These cases are
attributed to a combination of both imperfections in the contract specification of CDSs and measurement
errors in computing the credit spread. For all the other companies they find only short-lived deviations
from parity in the sample. This is because CDS prices lead credit spreads in the price discovery process,
meaning that the CDS market leads the bond market in determining the price of credit risk. The relationship
between credit default swaps and corporate spreads is investigated also in Longstaff et al. (2005). After
developing closed-form expressions for corporate bond prices and credit default swap premium within the
familiar Duffie and Singleton (1997, 1999) framework, they use the information in credit default swaps to
obtain direct measures of the size of the default and nondefault components in corporate spreads. In other
words they investigate what proportion of corporate yield spreads is directly attributable to default risk and
how much of the spread depend on other factors such as liquidity and taxes. To answer these questions
they use the information in credit default swap premia to provide direct measures of the size of the default
and nondefault components in corporate yield spreads. Using CDS premia for 5-year contracts and the
corresponding corporate bond prices for 68 firms traded during the period March 2001–October 2002, they
find that the default component represents the majority of corporate spreads, accounting for more than 50% of
the total corporate spread, even for the highest-rated investment-grade firms. Also the nondefault component
is found to have a significant impact on corporate spreads. In particular, the nondefault component is time
varying and mean reverts rapidly and can be explained by measures of bond-specific illiquidity such as the
bidask spread and the outstanding principal amount. Finally, taxes don’t seem to play an important role in
explaining the nondefault component.

In Norden and Weber (2004) traditional event study methodology is applied to examine whether and to
what extent stock and CDS markets responded to rating announcements during the years 2000-2002. Rating
announcement events are collected from the three major rating agencies (Standard & Poor’s, Moody’s and
Fitch) to find that CDS markets anticipate rating downgrades and that anticipation starts approximately 60
to 90 days before the announcement day. This result is consistent with Hull et al. (2004), in which credit
default swap changes conditional on a ratings announcement are examined. Reviews for downgrade are found
to contain significant information. However this is not the case when downgrades and negative outlooks are
considered. The main conclusion is that significantly positive CDS spread changes happen before negative
rating events, but positive rating events are much less significant. The latter conclusion, however, even
though consistent with the results of studies on the relationship between rating events and bond yields, may
be influenced by the limited number of positive rating events in the sample studied.

An investigation of the US corporate credit default swap market is provided in Schneider et al. (2007).
The paper, in order to explain both the cross-section and the time series of CDS premia and to accomodate
simultaneous as well as individual jumps in the risk-free and credit-risky state variables, proposes a three-
factor observable jump-diffusion model for the riskless short rate and a two-factor jump-diffusion model for
the default intensity of an obligor. The stochastic long-run mean of the intensity, as well as the default
intensity itself, are found to be extremely persistent. The number of estimated jump events in the credit-
risky components per year ranges between two and fifteen. Furthermore, the number of jumps in credit
spreads is bigger for lower rated obligors. The number of jumps in the risk-free term structure is estimated in
approximately four per year. As far as simultaneous jumps of the risk-free and the credit-risky components
are concerned, their number is found to be approximately 0.3 per year. Pan and Singleton (2008) use a full
term structure of sovereign CDS spreads to derive the market-implied default intensity and also the implicit
loss rate. They argue that a lognormal process for the default intensity (as opposed to a square-root process
used in Longstaff et al., 2005) is capable of capturing most of the variation in the term structure of spreads.

2 Some assumptions and approximations are to be made in this arbitrage argument (see Hull et al., 2004).
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The data used in the paper involves three countries (Mexico, Turkey, and Korea) with different credit ratings
and covers the period March 2001–August 2006. Using MLE, the risk-neutral default intensity are found to be
highly persistent and significant differences are found between the parameters in the process for the default
intensity under the risk-neutral and the historical measures. This implies substantial market risk premia
due to unpredictable changes in the default intensity. Furthermore, it is found for the 5-year maturity that
these risk premia can be explained by measures of global risk, financial market volatility and macroeconomic
policy, such as the CBOE VIX volatility index, the spread between the US Industrial 10-year BBB Yield and
the 6-month Treasury bill yield and the own-country implied currency option volatility. Berndt et al. (2005)
assume a lognormal model for the default intensity using a dataset of corporate CDS spreads from three
sectors (broadcasting and entertainment, healthcare, and oil and gas) for the period 2000–2004. The main
conclusions of the paper are that 5-year Moody’s KMV EDFs explain over 74% of the variation in 5-year
CDS rates across issuers and time, and that risk premia changed dramatically over time, from peaks in the
third quarter of 2002, to a significant decrease at the end of 2003. In order to derive the credit risk premia,
the vector of parameters governing the evolution of the default intensity process under the actual probability
measure is estimated from the EDF data, whereas the vector of parameter governing the risk-neutral intensity
process is estimated from 1-year and 5-year CDS rates and from 1-year EDFs.

A new class of credit derivatives is represented by constant maturity credit default swaps (CMCDS). They
are very similar to CDS, in that, in exchange for protection, the buyer pays a spread. The essential difference
between a CMCDS and CDS arises in the payment leg: while in a CDS the spread is fixed, in a CMCDS the
spread is floating and calculated according to an indexing mechanism. In particular the spread is set equal to
the prevailing reference CDS spread at each reset date times a factor known as the participation rate (PR).
As a consequence, in a CMCDS contract the loss leg is paired with a floating leg, where spread payments are
indexed against a reference constant maturity CDS spread at each reset date. Floating cash flows are linked
to a constant-maturity term that goes under the name of constant maturity tenor. The reference constant
maturity CDS spread does not have to have the same nominal maturity as the maturity of the contract itself.
Hence one could trade a 5-year CMCDS referenced by the 3-year or 7-year CDS spread. The main attraction
of CMCDS is that they offer investors access to floating credit spreads. Similar to constant maturity swaps
(CMS) in fixed income market, they allow investors to take curve views and when they are combined with
a CDS position, they give the investor the capability to express views on credit spreads with no default risk
exposure. As a matter of fact, a short CMCDS long CDS position allows investors to isolate spread risk
(i.e. the risk of changes in the premium not related to an actual credit event) and to hedge default risk.
Also, CMCDS are useful for protection sellers to hedge against spread widening risk. Recall that in a CDS
contract the protection seller is bound to receive a constant premium until maturity or until the occurrence
of a credit event. However, if before maturity CDS spreads increase, implying that protection has become
more expensive, he or she still receives the spread agreed upon at the beginning of the contract, even though
the market conditions are changed. If the protection seller is worried by such a possibility, a reasonable
solution could be a short position in a CMCDS contract. The investor could also benefit from the fact that
the CMCDS contract has a lower mark to market than a similar CDS contract when spreads widen.

The scope of this chapter is to identify possible imbalances that may exist in the credit markets when
pairing CDS and CMCDS on the same name. The general idea is to form a swap type of trading strategy
whereby a fixed premium payment is netted against a floating one, both representing protection premia
against default. This strategy has the advantage that default risk is eliminated and only counterparty risk
is taken. A large database of single-name CDS premia is then used to produce the corresponding CMCDS
prices using common market models. In doing this we use the full term structure of CDS spreads to infer
default information as in Pan and Singleton (2008). In other words, single-name CDS spread data is used
to replicate as much as possible the would have been CMCDS spreads and to investigate the possible paired
trading strategy of going long CDS and shorting CMCDS and analyse the profit-loss profile across the
database. The applied literature on CDS so far has focused either on issues like the validity of the theoretical
equivalence of CDS prices and credit spreads or the determinants of credit default swap changes. In this
paper, instead, using a dataset of CDS spreads that is large both in terms of the cross section of obligors
included and in terms of the period covered, we try to identify, by the means of a statistical arbitrage analysis,
trading strategies which employ CDS and CMCDS.
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3.2 Pricing Credit Default Swaps

For the evaluation of a CDS contract when the payoff is contingent on default by a single reference entity in
what follows we present the methodology of Hull and White (2000).

Let θt be the risk neutral default probability density3 at time t, so that the probability of default in [0, T ]

is
∫ T

0
θtdt. Clearly, the probability, πt that no credit event occurs up to time t is

πt = 1 −
∫ t

0

θudu.

Consider a CDS contract with maturity T and periodic premium S to be paid at s1 < s2 < . . . < sn = T .
Then the expected present value of the payments made by the protection buyer for a unit notional principal
is

S

[
n∑

i=1

(si − si−1)πsi
e−rsi +

∫ T

0

aue−ruθudu

]
, (3.1)

where au is the accrual payment at time u. The first term is the discounted present value of the expected
payments made at time si, provided the reference entity survives until si. The second term represents the
present value of the accrual payments. Denoting by R the recovery rate, the expected present value of the
payoff received by the protection buyer is equal to:

(1 −R)

∫ T

0

e−ruθudu. (3.2)

To find the periodic premium to be paid by the buyer of the CDS, simply equal (3.1) and (3.2) to get

S =
(1 −R)

∫ T

0
e−ruθudu

∑n
i=1(si − si−1)πsi

e−rsi +
∫ T

0
aue−ruθudu

. (3.3)

It is also interesting to present the pricing framework considered in Longstaff et al. (2005). Let rt denote
the riskless rate, λt the intensity of the Poisson process governing default, and γt a convenience yield or
liquidity process that will be used to capture the extra return investors may require, above and beyond
compensation for credit risk, from holding corporate rather than riskless securities. Again, to simplify the
model, each of the processes rt, λt, and γt is stochastic but they evolve independently of each other. Moreover,
bondholders recover a fraction 1−q of the par value of the bond in the event of default. Consider a corporate
bond with coupon rate c which pays coupon continuously. In this model its price in t is given by the sum of
the present value of the coupons promised by the bond, the present value of the promised principal payment,
and the present value of recovery payments in the event of a default:

CB(t, T ) = E
Q
t

[
c

∫ T

t

exp

(
−
∫ v

t

(ru + λu + γu)du

)
dv

]

+ E
Q
t

[
exp

(
−
∫ T

t

(ru + λu + γu)du

)]

+ E
Q
t

[
(1 − q)

∫ T

t

λv exp

(
−
∫ v

t

(ru + λu + γu)du

)
dv

]
.

3θt is not the same as the hazard rate λt. In fact θt∆t is the probability of default between t and t+∆t as seen at time zero.
Thus θt and λt are related by

θt = λte
−
∫ t
0 λudu.
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Observe that in each term of the sum, corporate cash flows are discounted at the adjusted discount rate
rt + λt + γt. Now, since the contractual4 nature of credit default swaps makes them far less sensitive to
liquidity or convenience yield effects, it is reasonable to assume that the convenience yield or illiquidity
process γt is applicable to the cash flows from corporate bonds, but not to cash flows from credit default
swap contracts. With this in mind and assuming that the premium is paid continuously, since e−

∫ v
t

λudu is
the probability of no default up to time v conditional to no default up to time t, the present value of the
payments made by the protection buyer in a credit default swap contract equals

E
Q
t

[
S

∫ T

t

exp

(
−
∫ v

t

(ru + λu)du

)
dv

]
.

As λve−
∫ v

t
λudu is the probability of default between v and v + dv as seen at time t, the present value of the

expected payoff from the CDS is

E
Q
t

[∫ T

t

qλv exp

(
−
∫ v

t

(ru + λu)du

)
dv

]
.

Therefore the premium is

S =
E

Q
t

[
q
∫ T

t
λv exp

(
−
∫ v

t
(ru + λu)du

)
dv
]

E
Q
t

[∫ T

t
exp

(
−
∫ v

t
(ru + λu)du

)
dv
] (3.4)

and can be interpreted as a present-value-weighted average of qλv where the weights are given by

exp

(
−
∫ v

t

(ru + λu)du

)
.

A more formal framework for valuation of single-name credit derivatives (including credit default swaps
and swaptions) is given in Jamshidian (2004) in which the general subfiltration approach of Jeanblanc and
Rutkowski (2000) to modelling default risk, which includes the Cox-process setting of Lando (1998), is
integrated with a numéraire invariant approach5.

The model presented so far is quite elegant but in order to be applied one has to approximate somehow
the integrals in (3.3). In what follows we describe how many banks price CDS in practice6.

Consider again a CDS contract starting at time 0 with maturity T and periodic premium S(0, T ) to be
paid at s1 < s2 < . . . < sn = T . Suppose we have a Libor discount curve {DF (t)}t≥0 and the sequence of
survival probabilities {SP (si)}i=0,1,....

The loss leg from the CDS is

(1 −R)

∫ T

0

DF (t)SP (t)λ(t)dt

where R is the recovery rate and λ is the default intensity.
Setting q = 1 −R, the integral can be approximated by

q
∑

j=1

DF (τj)P (default between τj−1 and τj)

= q
∑

j=1

DF (τj)[SP (τj−1) − SP (τj)]

4Credit default swap are contracts, not securities.
5The increasing expanding literature on credit default swaps pricing include also Ben Ameur et al. (2006); Bielecki et al.

(2005); Chu and Kwok (2003); O’Kane and Turnbull (2003)
6The widely employed discretized valuation formula can be found in standard textbooks like Lando (2004, chap. 8) or

Schönbucher (2003, chap. 3), Arvanitis and Gregory (2001) and Cherubini et al. (2004)
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where {τ1, τ2, . . .} is a partition (fine enough) of the interval (0, T ). Typically using a monthly grid results
in a good approximation.

The payment leg is given by

S(0, T )

(
n∑

i=1

∆(si, si−1)DF (si)SP (si) +

n∑

i=1

∫ si

si−1

∆(s, si−1)DF (s)SP (s)λ(s)ds

)

where the second term is the accrual payment between si−1 and si and ∆ denotes the time accrual exposure
with an Actual/360 convention. If we assume that the default will arrive on average in the middle of the
interval, the second term can be approximated with

S(0, T )

n∑

i=1

∆(si, si−1)DF (si)
1

2
[SP (si−1) − SP (si)].

Thus the fixed payment leg can be calculated as

S(0, T )

n∑

i=1

∆(si, si−1)DF (si)
1

2
[SP (si−1) + SP (si)].

The credit default swap expressed in basis point at time 0 is easily calculated by equating loss and payment
legs:

S(0, T ) =
q
∑

j=1DF (τj)[SP (τj−1) − SP (τj)]∑n
i=1 ∆(si, si−1)DF (si)

1
2 [SP (si−1) + SP (si)]

.

3.3 Pricing Constant Maturity Credit Default Swaps

In this section we discuss how to price CMCDS in the framework presented in the last part of section 3.2. A
more formal pricing framework can be found in Brigo (2005), in which an approximated no-arbitrage market
valuation formula for CMCDS is derived. The formula for CMCDS derived in Brigo (2005) is the analogous
of the formula for constant maturity swaps in the default free swap market under the Libor market model.
Closed-form solutions for Constant Maturity Credit Default Swaps, as well as Credit Default Swaps and
Credit Default Swaptions, are derived also in Krekel and Wenzel (2006), where a Libor market model with
default risk is used. Further details on CMCDS pricing can be found in Rajan et al. (2007) and in Brigo and
Mercurio (2006).

To derive the participation rate, we simply exploit the fact that since the loss leg from a CMCDS is
identical to the loss leg from a CDS on the same obligor and same maturity, the fixed payment legs must be
identical too. Hence, when the reference CDS has maturity m,

PR
n∑

i=1

E0[S(si−1, si−1 +m)]∆(si, si−1)DF (si)
1

2
[SP (si−1) + SP (si)]

= S(0, T )

n∑

i=1

∆(si, si−1)DF (si)
1

2
[SP (si−1) + SP (si)].

Therefore, denoting by d(si) = ∆(si, si−1)DF (si) we find

PR =
S(0, T )

∑n
i=1 d(si)[SP (si−1) + SP (si)]∑n

i=1 E0[S(si−1, si−1 +m)]d(si)[SP (si−1) + SP (si)]
. (3.5)

The next step is to evaluate the expected value of future spreads in the denominator. It is clear that, when
spreads evolve in a completely deterministic setting, future realised spreads will be completely determined
from today’s spread curve and thus the expected value equals the corresponding forward spread. However
for high volatility names or long maturities a convexity adjustment is required.
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3.3.1 The Forward CDS Spread

A long position in a forward default swap gives a credit protection that is active for a period of time in the
future at a premium agreed upon today, but paid only during the active period of the contract.

The price for a forward contract for default protection during the time period (t, t+m) is derived in Berd
(2003):

FS(t, t+m) =
S(0, t+m) − δ(t, t+m)S(0, t)

1 − δ(t, t+m)
(3.6)

where

δ(t, t+m) =

∫ t

0
exp

(
−
∫ v

0
(ru + λu)du

)
dv

∫ t+m

0
exp

(
−
∫ v

0
(ru + λu)du

)
dv

≡ RiskyPV01(0, t)

RiskyPV01(0, t+m)

and rt and λt are the risk-free rate and the hazard rate respectively.
The derivation of (3.6) is given in section A.1.

3.3.2 The Convexity Adjustment

The usual discrepancy between the realised future rate and the current forward rate is attributed to a
convexity effect. This adjustment is important mainly for long maturity contracts.

It is commonly assumed that the default intensity is described by a Ornstein-Uhlenbeck (OU) process:

dλt = (k − αλt)dt+ σdBt. (3.7)

The solution to the SDE (3.7) is given by

λt = λ0e
−αt +

k

α

(
1 − e−αt

)
+ σ

∫ t

0

eα(u−t)dBu. (3.8)

Since as t→ ∞ E[λt] → k
α , this quantity has to be understood as the long term mean, whereas α is the mean

reversion speed. The exact discretisation of the process leads to the the Gaussian autoregressive process

λt+1 = µ+ βλt + ǫt, (3.9)

where {ǫt} is a sequence of i.i.d. N(0, η2) random variables and

β = e−α (3.10a)

µ =
k

α

[
1 − e−α

]
(3.10b)

η = σ

[
1 − e−2α

2α

] 1
2

. (3.10c)

For the time series the sequence {λt}t=1,...,T , the parameters in (3.9) can be estimated by ML yielding

β̂ =
Cov

[
λ(1), λ(T )

]

Var
[
λ(T )

] =
(T − 1)

∑T−1
t=1 λtλt+1 −

∑T−1
t=1 λt

∑T−1
t=1 λt+1

(T − 1)
∑T−1

t=1 λ2
t −

(∑T−1
t=1 λt

)2

µ̂ = λ̄(1) − β̂λ̄(T ) =

∑T−1
t=1 λt+1

T − 1
− β̂

∑T−1
t=1 λt

T − 1

η̂ =

√∑T−1
t=1 ǫ̂2t
T − 1

with λ(j) and λ̄(j) denoting the series of interest without the jth observation and its mean and ǫ̂t are the
estimated residuals from (3.9). To obtain the estimates for the parameters of the original model (3.7) it is
sufficient to plug this estimates in (3.10) and solve for α, k and σ.
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It can be shown that under (3.7) an approximated formula for the expected value of the future spread is

E0[S(si, si +m)] ≈ FS(si, si +m) +
1

2
σ2Ci[FS(si, si +m) − S(0,m)] (3.11)

with

Ci =
1 − e−αsi

kα
.

Using the above results we can write (3.5) as

PR =
S(0, T )

FS(0, T ) + σ2

2
C(0,T )
D(0,T )

(3.12)

where

D(0, T ) =

n∑

i=1

d(si)
1

2
[SP (si−1) + SP (si)]

C(0, T ) =
n∑

i=1

d(si)
1

2
[SP (si−1) + SP (si)]Ci[FS(si−1, si−1 +m) − S(0,m)]

and FS(0, T ) is a weighted average of the forward CDS spreads over the reset dates:

FS(0, T ) =

∑n
i=1 d(si)[SP (si−1) + SP (si)]FS(si−1, si−1 +m)∑n

i=1 d(si)[SP (si−1) + SP (si)]
.

Equation (3.12) suggests an approximated formula for the participation rate of a CMCDS with maturity T
and with constant maturity tenor m:

PR =
S(0, T )

1
n

∑n
i=1 FS(si−1, si−1 +m)

. (3.13)

3.4 Bootstrapping Survival Probabilities

The most delicate issue related to CMCDS pricing is the derivation of the survival probabilities. In this section
we present a number of techniques, both parametric and nonparametric, to infer survival probabilities from
CDS market quotes.

3.4.1 Fitting the CDS Curve Using a OU Process for the Hazard Rate

It is well known that when the hazard rates are stochastic then the survival probability up to a time t is
given by

SP (t) = E0

[
exp

(
−
∫ t

0

λsds

)]
. (3.14)

When the hazard rate follows an OU process such as that in (3.8) we can calculate the expectation in closed
form:

SP (t) = exp[a(t) + b(t)λ0] (3.15)

with

a(t) = − (b(t) + t)(αk − σ2

2 )

α2
− σ2

4α
b(t)2 (3.16a)

b(t) =
e−αt − 1

α
. (3.16b)
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We derive (3.15)–(3.16) in section A.2 (see also Vasicek, 1977; Luciano and Vigna, 2006).

Note that the above equation automatically satisfies the initial condition SP (0) = 1. There are four
parameters to calibrate k, α, σ and λ0.

This means that in order to calibrate the Vasicek model for the credit spreads we need only four points
on the survival probability curve or, equivalently, four CDS spread values, for the same obligor.

Since there may be more than four values on the survival curve we propose to estimate the obligor
individual parameters by minimising the residual error between the model implied SP values in (3.15) and
the values obtained from the CDS market. This is done in subsection 3.4.4.

3.4.2 Piecewise Constant Hazard Rates

The survival probabilities can also be bootstrapped from

S(0, sn = T ) =
q
∑n

i=1DF (si)[SP (si−1) − SP (si)]

RiskyPV01(0, sn)
(3.17)

considering the recovery rate 1 − q fixed. However, when there are less maturities for traded contracts than
the entire set of time points for which survival probabilities must be calculated, this commonly used method
does not work. A solution to this shortcoming can be bootstrapping the survival probabilities from the
hazard rates curve as proposed by O’Kane and Turnbull (2003). This is done as follows. Suppose that for
a given obligor the CDS contracts with maturities 6m, 1y, 2y, 3y, 5y, 7y and 10y are available (this is the
typical situation). For τ = T − tv the survival probability SP (tv, T ) ≡ SP (τ) is

SP (τ) =

=





exp[−λ0,0.5τ ] 0 < τ ≤ 0.5

exp[−0.5λ0,0.5 − λ0.5,1(τ − 0.5)] 0.5 < τ ≤ 1

exp[−0.5λ0,0.5 − 0.5λ0.5,1 − λ1,2(τ − 1)] 1 < τ ≤ 2

exp[−0.5λ0,0.5 − 0.5λ0.5,1 − λ1,2 − λ2,3(τ − 2)] 2 < τ ≤ 3

exp[−0.5λ0,0.5 − 0.5λ0.5,1 − λ1,2 − λ2,3 − λ3,5(τ − 3)] 3 < τ ≤ 5

exp[−0.5λ0,0.5 − 0.5λ0.5,1 − λ1,2 − λ2,3 − 2λ3,5 − λ5,7(τ − 5)] 5 < τ ≤ 7

exp[−0.5λ0,0.5 − 0.5λ0.5,1 − λ1,2 − λ2,3 − 2λ3,5 − 2λ5,7 − λ7,10(τ − 7)] τ > 7

i.e. the hazard rate curve is assumed to be piecewise constant. We use a monthly time grid 0 = t0 < t1 <
. . . < tn = T with ti = i/12 for each n ∈ M , M being the set of available maturities in months. For instance,
with the above contracts we have M = {6, 12, 24, 36, 60, 84, 120}.

The previous function can be easily generalized to the case in which we have CDS maturing at T1, . . . , TM ,
M > 1. With the convention λ1 = λ0,T1

, λi = λTi−1,Ti
, i = 2, . . . ,M , the function SP (τ) is such that

− logSP (τ) = λ1τI[0,T1)(τ) +

M−2∑

i=1




i∑

j=1

(λj − λj+1)Tj + λi+1τ


 I[Ti,Ti+1)(τ)

+




M−1∑

j=1

(λj − λj+1)Tj + λi+1τ


 I[TM−1,∞)(τ). (3.18)

In the previous case M = 7, T1 = 0.5, . . . , T7 = 10.

The function above can be easily implemented in Matlab as in Listing B.4.
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Next, for each n ∈ M , using a numerical searching algorithm, we solve iteratively the equations

1

2

S(0, n
12 )

q

n
3 −1∑

j=0

∆(tn−3j , tn−3(j+1))DF (tn−3j)[SP (tn−3(j+1)) + SP (tn−3j)]

=
n∑

i=1

DF (ti)[SP (ti−1) − SP (ti)] (3.19)

for λi, i = 1, . . . ,M . Note that the pro-rata payment due to settlement date outside quarterly market
calendar is not included here. The Matlab code for this function is reported in Listing B.5.

For instance, when T = 0.5 (n = 6) we solve

1

2

S(0, 0.5)

q

1∑

j=0

∆(tn−3j , tn−3(j+1))DF (tn−3j)[e
−2λ0,0.5tn−3(j+1) + e−2λ0,0.5tn−3j ]

=

6∑

i=1

DF (ti)[e
−2λ0,0.5ti−1 − e−2λ0,0.5ti ]

for λ0,0.5.
Having done that, we move to T = 1 (n = 12) and solve for λ0.5,1

1

2

S(0, 1)

q

1∑

j=0

∆(tn−3j , tn−3(j+1))DF (tn−3j)[e
−λ0,0.5−2λ0.5,1(tn−3(j+1)−0.5)

+e−λ0,0.5−2λ0.5,1(tn−3j−0.5)]

+
1

2

S(0, 1)

q

3∑

j=2

∆(tn−3j , tn−3(j+1))DF (tn−3j)[e
−2λ0,0.5tn−3(j+1) + e−2λ0,0.5tn−3j ]

=

6∑

i=1

DF (ti)[e
−2λ0,0.5ti−1 − e−2λ0,0.5ti ]

+

12∑

i=7

DF (ti)[e
−λ0,0.5−2λ0.5,1(ti−1−0.5) − e−λ0,0.5−2λ0.5,1(ti−0.5)]

Basically we use the CDS with maturity Tj to compute all the intensities up to λj . The Matlab code is
reported in Listing B.6.

Finally we need to derive the RiskyPV01 in order to compute the forward spread. This is done taking
into account a pro-rata payment that arises from the fact that n ≥ 3k = 3

[
n
3

]
. The RiskyPV01 is given by

the following formula

RiskyPV01(0, tn) =
1bp

2

{
∆0 ×DF (t1) × [1 + SP (t1)]

+
k−1∑

j=0

∆(tn−3j , tn−3(j+1))DF (tn−3j)[SP (tn−3(j+1)) + SP (tn−3j)]
} (3.20)

where

∆0 =

[
t1 − tv
t1 − t0

]

ACT/360

and [j/k]ACT/360 is the date fraction j/k converted into an ACT/360 convention. The Matlab code can be
found in Listing B.7.

Having done this it is straightforward to compute the theoretical CDS premia implied in the survival
probabilities derived above (see Listing B.8).
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3.4.3 Nelson-Siegel Interpolation

Many models assume that default is given by the arrival time of a Poisson process with the corresponding
hazard rate constant over time.

If SP (t) is the survival probability up to time t and λ(·) is the hazard rate then

SP (t) = E0

[
exp

(
−
∫ t

0

λsds

)]

We assume here that the hazard rate is deterministic time-varying such that
∫ t

0

λ(s)ds = Ψ(t)t (3.21)

The role of function Ψ(t) is to capture any term structure variation.
One of the common choices for function Ψ(t) is the Nelson-Siegel (see Nelson and Siegel, 1987) function7

Ψ(t) = α0 + (α1 + α2)

(
1 − exp(− t

α3
)

t
α3

)
− α2 exp

(
− t

α3

)
(3.22)

This function can generate all sorts of curve shapes. The parameter α0 is the long term mean of the default
intensity. Parameter α1 is the deviation from the mean, with α1 > 0 implying a downward sloping intensity
and α1 < 0 implying an upward sloping term structure. In addition the reversion rate toward the long-term
mean is negatively related to α3 > 0.

The parameter α2 is responsible for generating humps when it is different than zero. In practice Bluhm
et al. (2003) advocate not using humps as this may lead to overfitting problems. This means that here we
shall assume that α2 = 0 and estimate α0, α1, α3 from CDS spread data. The survival function becomes

SP (t) = exp

[
−
[
α0 + α1

(
1 − exp(− t

α3
)

t
α3

)]
t

]
(3.23)

This function is implemented in Matlab as in Listing B.9.
The CDS pricing equation are then used to estimate the parameters from CDS spread data using a

nonlinear optimization algorithm for a suitable minimization function such as sum of squared errors or sum
of absolute errors.

3.4.4 Details on Parameter Estimation

OU Process

Given a set of CDS spreads with maturities {tn}n∈M , in order to estimate the vector of parameters θ =
(λ0, σ, k, α)′, we first compute the theoretical CDS, S(0, tn; θ) using (3.17) and then calculate8

arg min
θ

∑

n∈M

[S(0, tn) − S(0, tn; θ)]
2

or
arg min

θ

∑

n∈M

|S(0, tn) − S(0, tn; θ)| .

The optimization is done under the constraints

θ > 0

SP ′(TM ) < 0

7Markit Partners are using a similar approach based on Nelson-Siegel interpolation to produce theoretical credit curves in
the situations where liquidity of data is very low

8Also the weighted objective functions of the form (3.28)–(3.29) have been considered.
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where TM is the last maturity (20yr) of the available CDS data and

SP ′(t) =
k

α
(1 − e−αt) + λ0e

−αt − σ2

2α2
(1 − e−αt)2

Nelson-Siegel

Given α = (α0, α1, α3)
′ and the parameter space Uα ⊂ R3, in the first case we compute

α̃ = arg min
α∈Uα

∑

n∈M

[S(0, tn) − S(0, tn;α)]
2

= arg min
α∈Uα

f̃(α)

and in the second
ᾰ = arg min

α∈Uα

∑

n∈M

|S(0, tn) − S(0, tn;α)| = arg min
α∈Uα

f̆(α)

where S(0, tn;α) denotes the theoretical CDS spread maturing at time tn when using a Nelson-Siegel function
with parameter α. The optimization should be done under the following constraints which identify Uα:

α3 > 0 (3.24)

SP (t) − SP (t+ 1) ≥ 0 ∀ t > 0. (3.25)

Note that the formulation (3.23) automatically ensures SP (0) = 1.
Moreover condition (3.25) is equivalent to

α0 + α1 exp

(
− t

α3

)
≥ 0 (3.26)

which is obtained by imposing that the function Ψ(t) × t is not increasing.
However, we define Uα ⊂ R3 by the set of constraints:

α0 > 0 (3.27a)

α1 ≥ −α0 exp

(
TM

α3

)
(3.27b)

α3 > 0 (3.27c)

Note that (3.27a) can be obtained by letting t→ ∞ in (3.25), whereas condition (3.27b) implies

α0 + α1 exp

(
− t

α3

)
≥ 0 ∀t ≤ TM

As far as the choice of the function to be minimized, in practice we set α̂ = α̃ unless

f̃ (ᾰ) < f̃ (α̃)

or

f̆ (ᾰ) < f̆ (α̃) .

To reflect the fact that CDS contracts with different maturities may have different levels of liquidity (for
instance, typically a 5 year contract is more traded than a 30 year contract on the same name) we use the
“weighted” objective functions and compute:

α̃w = arg min
α∈Uα

∑

n∈M

wn [S(0, tn) − S(0, tn;α)]
2

= arg min
α∈Uα

f̃w(α) (3.28)
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or

ᾰw = arg min
α∈Uα

∑

n∈M

wn |S(0, tn) − S(0, tn;α)| = arg min
α∈Uα

f̆w(α). (3.29)

In particular, provided that the number, N , of contracts at some point time is bigger than 6 (which is the
number of maturities with bigger weights) we attach to each observation the weights given by Table 3.1.

Table 3.1: Weights.

Maturity tn (Months) wn

60 40%
36 30%
12 15%
84 6%
120 4%
24 3%

All the Others 2
N−6%

To implement the above we first need a code for the RiskyPV01 (Listing B.10).
This allows to compute the theoretical CDS premia S(0, t; α̂), implemented in Listing B.11.
Now, the function to be minimized is reported in Listing B.12
Finally α̂ is computed as in Listing B.13.

3.5 Implementation and Recap of the Algorithm

Suppose a Libor discount curve {DF (t)}t≥0 and the sequence of survival probabilities {SP (ti)}i=0,1,... are
given. The pricing time grid is described by n monthly periods given by t0 < t1 < t2 < . . . < tn = T , with
ti = i/12 for all i ∈ {1, 2, . . . , n} and T denoting the maturity of the CMCDS contract. The contract is traded
initially at time tv ∈ [t0, t3). The schedule of fixed payments is quarterly as this is the dominating market
standard. The number of quarters fitting into the pricing time grid until maturity T is equal to k =

[
n
3

]
. It

is evident that k = n
3 only if tv = t0 ≡ 0. The first premium is paid at time tn−3k+3 (which coincides with

t3 when n is a multiple of 3). A cash flow diagram is reported in Figure 3.1.

Figure 3.1: Cash flow diagram for constant maturity credit default swaps

t0 t3tv t6 tn

PR × S(t0, t0 + m) PR × S(t3, t3 + m) PR × S(tn−3, tn−3 + m)

· · · · · ·

Hence the participation rate when tv ≡ 0 and the reference CDS has maturity m months is

PR =
S(0, T )

∑k−1
j=0 ∆(tn−3j , tn−3(j+1))DF (tn−3j)[SP (tn−3(j+1)) + SP (tn−3j)]

∑k−1
j=0 E0[S(tn−3(j+1), tn−3(j+1) +m)]∆(tn−3j , tn−3(j+1))DF (tn−3j)[SP (tn−3(j+1)) + SP (tn−3j)]

.

where the expectation, given by (3.11) depends on the forward CDS (3.6).
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Table 3.2: Calculation of discount factors from USD Libor rates on 1st March 2004.

month No days Libor % Discount factor
1 31 1.1 0.999053674
2 61 1.11 0.998122698
3 92 1.12 0.997145947
4 122 1.13 0.996185164
5 154 1.15 0.995136271
6 184 1.17 0.994055548
7 214 1.19375 0.99295382
8 245 1.22125 0.991757223
9 275 1.25 0.990541702

10 306 1.29 0.989153927
11 337 1.32875 0.987714241
12 365 1.3675 0.986324677

Some care is needed in calculating the first coupon. There are some differences caused by whether the
current settling day is within a month of the day of the first calendar coupon day or not. Again, tv is the
current valuation day and t0 is the calendar coupon payment day prior to tv.

If t3 − tv > 1mth then9 the first coupon is equal to S(0, T ) × ∆(t3, tv) and it is going to be paid at t3 so
it is going to be discounted by 1

2DF (t3)[1 + SP (t3)].
If t3 − tv ≤ 1mth then the first payment is delayed until the next coupon date and is coupled with a full

coupon for the period. Thus the first coupon is equal to S(0, T ) × [1 + ∆(t3, tv)] and it is going to be paid
at t6 so it is going to be discounted by 1

2DF (t6)[SP (t3) + SP (t6)].
In order for this procedure to be implemented, a discount curve, the survival probability curve and the

RiskyPV01 are needed as inputs.
The standard choice for the risk-free rate is the Libor rates up to one year and swap rates after one year

up to 10 years. The first step is to compute the discount factors from the Libor/Swap rates.

3.5.1 Calculation of Discount Factors from Libor rates

The Libor rates over one week are spot rates. If L is the Libor rate for some maturity and there are exactly
N days from today tv until the maturity of the Libor contract then the discount factor is calculated as

DF =
1

1 + N
360 × L

. (3.30)

This is easily implemented as in Listing B.1.
The following example (Table 3.2) shows how the discount rates are calculated from the USD Libor rates

on March 1, 2004.

3.5.2 Calculation of Discount Factors from swap rates

The calculation of discount factors from swap rates is done via bootstrapping.
The swap rates are par rates so the discount factor could be bootstrapped from the term structure of swap

rates. However, due to various factors such as frequency of payments semiannual or quarterly or monthly or
even by the lack of market information for intermediary tenors, the system of equations is undetermined.

For exemplification consider the hypothetical market information in Table 3.3.

9Please note that Actual/360 is the day count convention and the number of days in one month may differ from month to
month
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Table 3.3: Hypothetical information about swap rates.

Maturity in years swap rate %
1 3.20
2 3.65
3 4.15
5 4.55

10 4.85
15 5.00
20 5.10

Assuming that all swaps pay only annually we get the following system of equations

(100 + 3.20)DF (1) = 100

3.65DF (1) + (100 + 3.65)DF (2) = 100

4.15DF (1) + 4.15DF (2) + (100 + 4.15)DF (3) = 100

4.55DF (1) + 4.55DF (2) + 4.55DF (3) + 4.55DF (4) + (100 + 4.55)DF (5) = 100

4.85

10∑

i=1

DF (i) + 100DF (10) = 100

5.00

15∑

i=1

DF (i) + 100DF (15) = 100

5.10
20∑

i=1

DF (i) + 100DF (20) = 100

The first three equations can be solved easily. The system is clearly under-determined due to jumps in tenors.
In order to determine the discount factors we must resort to constraints or assumptions.

Here are several methods used in the market to bootstrap the discount factors.
Linear Swap rates

This method is based on the assumption that each “missing” swap rate lies on a straight line between the
given swap rates before and after the required tenor. So for example the 4 year swap rate would be calculated
as the linear combination of the 3 year swap rate and the 5 year swap rate and it would be equal to 4.35%.
Similarly the rates between 5 and 10 years would be 4.61%, 4.67%, 4.73%,4.79%.

This method can produce occasionally unrealistic implied forward rate curves.
Constant Forward Rates

Another possibility is to assume that the one year forward rate is flat between the tenors where swap
rates are missing. With our constructed example that would mean for example that the forward rate between
3 and 4 years F3,4 is equal to the forward rate between 4 and 5 year F4,5. Denoting for convenience this
rate with F then DF (4) = DF (3)/(1 + F ) and DF (5) = DF (3)/(1 + F )2. Replacing these into the third
equation above gives

4.55
DF (3)

1 + F
+ 104.55

DF (3)

(1 + F )2
= 100 − 4.55[DF (1) +DF (2) +DF (3)]

and because DF (3) is known this equation can be solved.
The procedure continues similarly for the other tenors.
Matlab code is reported in Listing B.2.
The discount factors corresponding to the previous example are reported in Table 3.4.
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Table 3.4: Calculation of discount factors from Swap data with the Linear Swap rates (LSR) and the Constant
Forward Rates (CFR) methods.

Maturity (Years) LSR CFR
1 0.96899 0.96899
2 0.93066 0.93066
3 0.88446 0.88446
4 0.84225 0.84051
5 0.79866 0.79874
6 0.76093 0.75899
7 0.724 0.72123
8 0.68792 0.68534
9 0.6527 0.65124
10 0.61836 0.61884
11 0.58733 0.58688
12 0.55743 0.55657
13 0.52861 0.52783
14 0.50085 0.50057
15 0.47414 0.47472
16 0.44947 0.44946
17 0.42581 0.42555
18 0.40314 0.4029
19 0.3814 0.38147
20 0.36058 0.36117

In practice the swaps pay semiannually and thus the equations we look at are of the form

SWj

2

2j−1∑

k=2

DF (k/2) +

(
100 +

SWj

2

)
DF (j) = 100 − SWj

2
DF (1/2) (3.31)

where SWj denotes the swap rate for maturity j years, and j takes values in some set, typically j ∈
{1, 2, . . . , 5, 7, 10, 20, 30}. Note that in (3.31) the unknowns we solve for are DF (k/2), k = 2, 3, . . . and
DF (1/2) is treated as given, as it is recovered from the Libor data.

3.5.3 Discount Factors for Intermediary Points between Tenors

The main problem in calculating the discount factors is the calculation at intermediary points between the
tenors of Libor or swap rates. Suppose we know the value of the risk-free discount factors for 0 = T0 < T1 <
. . . Tr A very popular way to obtain the intermediary discount factors is to use log-linear interpolation. The
discount factor for t ∈ [Tj , Tj+1], DF (t) will be given by

log (DF (t)) =
Tj+1 − t

Tj+1 − Tj
log (DF (Tj)) +

t− Tj

Tj+1 − Tj
log (DF (Tj+1)) .

Matlab code is reported in Listing B.3.
In calculating the CMCDS premium the following steps are followed daily

1. Determine the Libor-swap discount curve

2. For each name build the survival probabilities with piecewise constant hazard rates or the ones from
Nelson-Siegel interpolation

3. For each name calculate the numerical values of corresponding RiskyPV01 using (3.20)
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4. Calculate the entire family of CDS forward curves using (3.6)

5. Calculate the participation rate PR using

PR =
S(0, T )

∑k−1
j=0 ∆(tn−3j , tn−3(j+1))DF (tn−3j)[SP (tn−3(j+1)) + SP (tn−3j)]

∑k−1
j=0 FS(tn−3(j+1), tn−3(j+1) + m)∆(tn−3j , tn−3(j+1))DF (tn−3j)[SP (tn−3(j+1)) + SP (tn−3j)]

.

The last two points can be implemented in Matlab using the codes Listing B.14–Listing B.17.

3.5.4 Example 1: NS+Piecewise Constant HR

In this example we consider the firms Abitibi Consol Inc and Tesco PLC on October 3rd 2005. As it is clear
from Table 3.5, we have

a. a firm with big CDS premia and all maturities available

b. a firm with small CDS premia and few maturities available

c. a firm with small CDS premia and all maturities available

Table 3.5: CDS spreads – October 3rd 2005.

Maturity (Months) Abitibi Consol Inc Microsoft Corp Tesco PLC

6 0.012841 0.000613
12 0.016526 0.000689
24 0.023347 0.000450015 0.001129
36 0.030028 0.00051501 0.001465
48 0.03499 0.001893
60 0.039373 0.000508335 0.00229
84 0.04251 0.003199
120 0.045291 0.000866685 0.004254
180 0.045355 0.00442
240 0.045828 0.001065644 0.004403
360 0.046868 0.0048
q 0.60714 0.6 0.606

We report the α estimates in Table 3.6.

Table 3.6: α Estimates. Panel A reports α̂ and Panel B α̂w.

Panel A

Abitibi Consol Inc Microsoft Corp Tesco PLC

α̂0 0.007039 0.001153 0.084241
α̂1 -0.02284 0 -0.1783
α̂3 0.162935 0.153387 0.099982

Panel B

Abitibi Consol Inc Microsoft Corp Tesco PLC

α̂0 0.005082 — 0.079385
α̂1 -0.01392 — -0.14482
α̂3 0.141648 — 0.078568
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Figure 3.2: Bootstrapped Survival Probabilities and CDS spreads for Abitibi Consol Inc.
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Figure 3.3: Bootstrapped Survival Probabilities and CDS spreads for Microsoft Corp.
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Figure 3.4: Bootstrapped Survival Probabilities and CDS spreads for Tesco PLC.
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The corresponding survival probabilities and the ones bootstrapped as in the previous section are plotted
in Figure 3.2–Figure 3.4 along with the theoretical and observed CDS spreads.

Finally we report in Table 3.7 the Participation Rates for a contract with maturity T = 5 years written
against a reference spread with maturity m = 5 years.

Table 3.7: Participation Rates for a CMCDS with T = m = 5 using the bootstrapping procedure (row lambda),
the Nelson-Siegel interpolation (NS) and the NS interpolation with weights in the objective function (NS w).

PR Abitibi Consol Inc Microsoft Corp Tesco PLC

NS 0.780191 0.739188 0.544214
NS w 0.826868 — 0.752114

lambda 0.773298 0.589349 0.519317

3.5.5 Example 2: OU + Convexity adjustment

We use the same data from the previous example. Theoretical CDS and observed CDS are plotted in
Figure 3.5–Figure 3.7 and parameters estimation is reported in Table 3.8. Notice that, given the limited
number of observations for Microsoft, the fit is quite poor and this results in σ̂ = 0.

Participation rates are reported in Table 3.9.

Table 3.8: θ Estimates.

Abitibi Microsoft Tesco

k 0.038 0.0037 0.004
α 0.3749 2.6806 0.2919
λ0 0.0498 0 0.0001
σ 0.0087 0 0.026

Table 3.9: Participation Rates with and without convexity adjustment.

PR Abitibi Microsoft Tesco

With C.A. 0.7415 0.6163 0.6493
Without C.A. 0.7398 0.6163 0.4998

3.6 Statistical Arbitrage Analysis

Having derived the time series of participation rates for a specific name and a reference CDS contract with
maturity m years (typically 5 years) we can analyse the properties of the time series {yt}t=tv,tv+1,..., where

yt = PRtv × S(t, t+m) − S(tv, tv + T ),

tv is the date we are interested in and PRtv is the participation rate on that day.
We express each yt in basis points.

As a first example we consider the issuer AT&T, m = 5 years and the analysis is performed for the day
January, 02 2003. In Table 3.10 we report the descriptive statistics for the series y computed using the three
approaches described before.
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Figure 3.5: CDS spreads for Abitibi using OU for the HR.
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Table 3.10: AT&T – January, 02 2003: descriptive statistics for the time series y (basis points).

mean median std min max 95% Range 99% Range

NS -37.2535 -39.6678 9.5306 -46.517 4.4133 39.3184 45.6049
NSw -33.4328 -35.6085 8.2444 -42.7188 0.5009 34.4122 39.9939

lambda -37.031 -39.1492 9.023 -46.3233 -2.5512 38.6349 40.9442



3.6 Statistical Arbitrage Analysis 149

Figure 3.6: CDS spreads for Microsoft using OU for the HR.
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Figure 3.7: CDS spreads for Tesco PLC using OU for the HR.
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Figure 3.8: Time series and Empirical Density for AT&T – January, 02 2003.
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As a second example we consider the issuer Goldman Sachs Gp Inc, m = 5 years and the analysis is
performed for the day January, 02 2003.

In Table 3.11 we report the descriptive statistics for the series y computed using the three approaches
described before.

Table 3.11: Goldman Sachs Gp Inc – January, 02 2003: descriptive statistics for the time series y (basis points).

mean median std min max 95% Range 99% Range

NS -39.2847 -40.6095 7.227 -58.6667 -15.0316 27.2412 32.3140
NS w -33.7759 -35.1025 7.7681 -58.6667 -7.744 29.7924 34.9852

lambda -37.9413 -39.6047 8.1287 -58.6667 -11.2436 31.4027 35.1944

Another time series we are interested in is10

ztv
=

k−1∑

j=0

∆(tn−3j , tn−3(j+1))
[
PRtv × S(tn−3(j+1), tn−3(j+1) +m) − S(tv, tv + T )

]
.

In the previous formula we adopt the convention t0 ≡ tv.

In Table 3.12–Table 3.13 we report the descriptive statistics for the series z computed using the three
different approaches for m = T = 5.

Since we have data from 02/01/2001 to 01/11/2006 the last CDS contract we can follow for 5 years is the
one initiated on 19/12/2001 (first payment is due on 20/12/2001, the last payment is due on 20/09/2006).

Thus for both AT&T and Goldman Sachs Gp Inc we have 249 observation for the time series z.

Table 3.12: AT&T: descriptive statistics for the time series z (basis points).

mean median std min max 95% Range 99% Range

NS -101.3401 -100.8064 42.1469 -238.0150 38.4999 180.8113 228.5471
NSw -83.2894 -84.6771 45.1470 -222.2393 9.8727 200.0312 219.0970

lambda -101.8800 -95.4455 39.5045 -232.8395 -46.2014 174.9253 185.1914

Table 3.13: Goldman Sachs Gp Inc: descriptive statistics for the time series z (basis points).

mean median std min max 95% Range 99% Range

NS -133.1578 -121.4141 59.9921 -282.7775 -29.8505 225.0086 252.8016
NSw -101.3201 -76.2454 56.2825 -250.3429 -25.0121 198.5655 224.8415

lambda -137.3474 -122.5757 52.1769 -274.8442 -60.2887 191.4644 213.0837

The empirical densities are plotted in Figure 3.10.

10Actually we compute the first term of the summation as follows:

∆(t3, tv)I{t3−tv>1mth} [PRtv × S(t3, t3 + m) − S(tv , tv + T )]

+∆(t3, tv)I{t3−tv≤1mth} [PRtv × S(t6, t6 + m) − S(tv , tv + T )]

= ∆(t3, tv)
[
PRtv

(
S(t3, t3 + m)I{t3−tv>1mth} + S(t6, t6 + m)I{t3−tv≤1mth}

)
− S(tv , tv + T )

]

to take into account the different behavior of the first coupon.
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Figure 3.9: Time series and Empirical Density for Goldman Sachs Gp Inc – January, 02 2003.
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Figure 3.10: Time series z: Empirical Densities
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3.6.1 Data Description

Our dataset consists of daily single-name composite spreads for the period January 2001–November 2006
with maturities 6m, 1y, 2y, 3y, 4y, 5y, 7y, 10y, 15y, 20y, 30y.

The composite spread is the average spread for an instrument provided to Markit by its contributors11

after prices and spreads failing the data quality tests have been removed from the sample set. The cleaning
process includes testing for Stale, Flat curves and Outlying data12. There are 2250 companies in the dataset.
In some cases there are missing values, especially for not very liquid maturities. For each day and for each
name also a recovery rate is reported. Additional informations like sector, rating and country are reported
as well.

The number of companies in each sector and rating category are displayed in Table 3.14.

Table 3.14: Number of companies available for each sector and rating. NA means that the rating is not
available.

Sector No of Companies

Basic Materials 156
Consumer Goods 229

Consumer Services 336
Financials 556

Government 66
Health Care 88
Industrials 279
Oil & Gas 131
Technology 80

Telecommunications 110
Utilities 212

Rating No of Companies

AAA 59
AA 178
A 533

BBB 636
BB 285
B 234

CCC 56
D 4

NA 258

Summary statistics regarding the whole sample are reported in Table 3.15. Statistics regarding the
different sectors and ratings are given in Table 3.16 and Table 3.17.

In Figure 3.11 we report for each payment date (the 20th of March, June, September and December) the
number of companies for which we have the 5-years CDS spread and the recovery rate.

As far as the construction of the discount factor is concerned, we use Libor rates with maturities 1 month
to 11 months and swap rates with maturities 1y, 2y, 3y, 4y, 5y, 7y, 10y, 20y, 30y. Libor-Swap data spans the
same interval we have CDS data for.

11Markit only builds composites when there are at least three contributors to each composite.
12On average Markit rejects approximately 45% of the CDS data received due to failure under any combination of the three

criteria above.
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Table 3.15: Summary statistics for CDS Data. The table display summary statistics for CDS spreads for
maturities 1y, 3y, 5y, 7y, and 10y.

Mean CDS Spreads

mean median std min max 95% Range 99% Range

1y 0.009847 0.002218 0.041555 9.17E-05 0.850294 0.047849 0.241539
3y 0.012076 0.003799 0.036753 0.000117 0.71018 0.053921 0.236742
5y 0.014637 0.005607 0.035076 0.000132 0.709107 0.061784 0.236483
7y 0.014311 0.006127 0.03074 0.000192 0.608353 0.059071 0.198261
10y 0.014702 0.006992 0.027667 0.000272 0.619683 0.058565 0.178252

Skewness in CDS Spreads

mean median std min max 95% Range 99% Range

1y 1.180305 1.101156 1.604095 -8.74103 20.49202 6.096927 12.51488
3y 0.97082 0.93535 1.704507 -8.57648 16.78911 6.13819 14.82796
5y 0.880433 0.863844 1.865777 -10.8887 16.79208 7.579692 16.50355
7y 0.889122 0.818754 1.820572 -9.37944 21.05178 6.365396 15.99307
10y 0.815531 0.729948 1.793077 -9.37363 22.80157 6.354377 15.22473

Kurtosis in CDS Spreads

mean median std min max 95% Range 99% Range

1y 6.564576 4.163205 8.70691 1.066845 111.2795 24.24266 63.55712
3y 5.915394 3.951006 8.182648 1.339658 123.9829 18.40068 54.23267
5y 5.936898 3.840767 11.72973 1.095111 340.5836 20.72231 42.03766
7y 6.078371 3.757899 16.5301 1.086447 509.6383 17.33197 73.8173
10y 6.138454 3.881449 18.02118 1.16189 570.8451 17.06132 61.71578



3.6 Statistical Arbitrage Analysis 157

Table 3.16: Summary statistics for CDS Data. The table display summary statistics for CDS spreads for
different sectors.

Mean CDS Spreads

mean median std min max 95% Range 99% Range

Basic Materials 0.013115565 0.005847 0.01769 0.000778 0.129974 0.053576 0.116799
Consumer Goods 0.017914838 0.005195 0.064818 0.00033 0.850294 0.098179 0.548034

Consumer Services 0.021290725 0.008618 0.041802 0.000546 0.35549 0.152033 0.292399
Financials 0.004670969 0.003398 0.00508 0.000265 0.054019 0.018962 0.029933

Government 0.001231071 0.000721 0.001137 9.17E-05 0.004672 0.00408 0.004527
Health Care 0.007821398 0.00418 0.010616 0.00025 0.059477 0.047891 0.056071
Industrials 0.010791964 0.005321 0.01593 0.000478 0.164012 0.040733 0.146708
Oil & Gas 0.008422083 0.004349 0.014015 0.000417 0.100294 0.047868 0.091808
Technology 0.017950102 0.012335 0.018573 0.000362 0.101037 0.0646 0.099862

Telecommunications 0.015466806 0.007201 0.023648 0.000976 0.149589 0.070958 0.147704
Utilities 0.017529436 0.004858 0.06227 0.000492 0.619683 0.139286 0.556189

Skewness in CDS Spreads

mean median std min max 95% Range 99% Range

Basic Materials 1.115199503 1.029712 0.829437 -1.09909 4.629681 3.233034 5.161346
Consumer Goods 1.199036878 1.060946 0.980106 -1.37137 7.583861 3.652261 7.907668

Consumer Services 1.226283353 1.128451 0.94509 -0.89613 8.128643 3.921055 5.341681
Financials 1.403494921 1.327875 1.435624 -3.93968 22.80157 4.577992 9.011403

Government 0.695333971 0.740212 1.001448 -3.39659 6.958991 3.950653 9.287309
Health Care 1.317245699 1.093989 1.213208 -2.71774 6.741141 4.935727 7.877284
Industrials 1.314711934 1.16284 1.065581 -3.2334 10.18853 3.900957 8.151431
Oil & Gas 1.187319361 1.180794 0.836157 -1.43266 5.802308 3.191153 5.038656
Technology 1.386277668 1.384586 1.103867 -5.01219 5.111549 4.257138 7.644472

Telecommunications 1.778714737 1.986945 1.103029 -0.32964 6.529731 3.892549 6.118368
Utilities 1.755516246 1.471207 1.336556 -1.75104 8.444239 5.204834 8.890933

Kurtosis in CDS Spreads

mean median std min max 95% Range 99% Range

Basic Materials 4.725374464 3.433504 4.712496 1.633169 66.23901 13.0316 23.50079
Consumer Goods 5.219657413 3.504127 6.329019 1.095111 68.43056 17.1359 52.72311

Consumer Services 5.180144076 3.638552 6.020843 1.37034 111.2795 15.56479 27.96076
Financials 7.261781756 4.419179 24.23604 1.339658 570.8451 22.51721 72.77808

Government 4.143783346 3.00651 5.582496 1.297846 64.39082 10.61637 52.15812
Health Care 6.399099549 3.867713 7.946202 1.066845 60.0065 30.17454 55.54095
Industrials 5.733085643 3.796261 7.739467 1.166231 129.3136 18.29561 51.70547
Oil & Gas 4.610600866 3.800453 3.248152 1.522167 38.73359 9.662182 17.92033
Technology 6.1141031 4.846896 5.464049 1.212769 45.98889 21.85722 37.8039

Telecommunications 7.363434391 6.601662 5.67587 1.356503 47.47271 17.217 38.66052
Utilities 8.515696087 4.423587 12.74694 1.630686 123.9829 33.55957 107.619
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Table 3.17: Summary statistics for CDS Data. The table display summary statistics for CDS spreads for
different rating.

Mean CDS Spreads

mean median std min max 95% Range 99% Range

AAA 0.001396 0.000876 0.00132 9.17E-05 0.00649 0.004714 0.006061
AA 0.002159 0.001925 0.001404 0.000171 0.010347 0.005657 0.008021
A 0.003646 0.003271 0.002566 0.00047 0.031592 0.00816 0.020505

BBB 0.006941 0.005796 0.005136 0.000634 0.058662 0.019564 0.032704
BB 0.018396 0.017343 0.010343 0.001091 0.05519 0.039997 0.052501
B 0.03816 0.032265 0.025126 0.005806 0.178413 0.114188 0.170583

CCC 0.137578 0.129972 0.125269 0.007735 0.619683 0.562641 0.611948
D 0.372192 0.3057 0.16753 0.163037 0.850294 0.687257 0.687257

NA 0.013966 0.007319 0.01518 0.00033 0.077251 0.054285 0.07308

Skewness in CDS Spreads

mean median std min max 95% Range 99% Range

AAA 1.085749 1.075072 1.159891 -3.39659 6.958991 4.730811 9.184179
AA 1.030061 0.983449 1.045906 -2.34701 8.215932 3.929237 8.266868
A 1.371482 1.244432 1.304575 -3.93968 22.80157 3.852406 8.143102

BBB 1.475064 1.333242 1.057831 -2.71774 8.444239 4.098936 7.465631
BB 1.312732 1.160984 1.069793 -0.73072 10.18853 3.617585 7.786574
B 1.055297 0.877724 1.137551 -5.01219 6.735526 4.232044 6.698706

CCC 1.307536 0.899755 1.730187 -1.75104 7.583861 7.610114 9.334898
D 1.871435 1.490808 1.654872 -0.65624 6.356648 7.012892 7.012892

NA 1.1715 1.084081 1.064639 -3.2334 7.269395 4.282904 6.94283

Kurtosis in CDS Spreads

mean median std min max 95% Range 99% Range

AAA 5.863425 3.679848 7.639128 1.066845 64.39082 31.44679 55.25506
AA 5.119389 3.60366 8.014238 1.297846 107.4008 14.34381 75.1934
A 6.608426 3.999403 22.00189 1.375873 570.8451 16.95701 53.79945

BBB 6.238616 4.232175 7.070783 1.334403 109.6464 20.25037 50.68356
BB 5.724678 3.870099 7.988599 1.2595 129.3136 17.16115 55.38361
B 5.276405 3.358172 6.561089 1.207794 75.41828 21.73929 50.79833

CCC 8.101289 3.160812 13.65959 1.552613 68.43056 64.83355 66.87795
D 11.66408 4.812727 13.93133 1.095111 57.73114 56.63602 56.63602

NA 5.755597 3.778785 8.624497 1.166231 110.9138 20.43657 67.45183
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Figure 3.11: Number of companies for which we have the 5-years CDS spread and the recovery rate in each
payment date (the 20th of March, June, September and December).
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3.6.2 Analysis 1

In this first analysis we compute for all the companies for which we have the required data the profit (or
loss) that an investor would have realized being long a CMCDS with maturity 5 years (the maturity of the
reference CDS is 5 years as well) and short a CDS with both the contracts initiated on 20/09/2001. With
this choice we can perform this analysis for a number of companies between 200 and 204, depending on the
method used to compute the participation rate. In other words for j = 1, 2, . . . we compute the vector z with
components

zj =

k−1∑

i=0

∆(tn−3i, tn−3(i+1))
[
PRtv

j × Sj(tn−3(i+1), tn−3(i+1) +m) − Sj(tv, tv + T )
]
.

where, as usual ti denotes a payment date, tv is 20/09/2001 and Sj(u, u + m) denotes the CDS spread at
time u with maturity m for company j and PRtv

j is the participation rate13 for company j at time tv. An
illustration is given in Figure 3.12.

We first compute the participation rate using the Nelson-Siegel interpolation. Descriptive statistics are
reported in Table 3.18 and a stem plot of vector z is reported in Figure 3.13.

Using this method 173 observations out of 203 are negative (85.22%).

Table 3.18: Descriptive statistics for the vector of observations z (Nelson Siegel).

Observations mean median std min max 95% Range 99% Range

203 -172.344 -146.141 410.7125 -1450.21 1221.589 2102.138 2658.712

Next, we repeat the same analysis in the case in which the participation rate is calculated using the
method which employs piecewise constant hazard rates.

13To be precise this should read PRtv
j (m, T ).



160 Credit Default Swaps and Constant Maturity Credit Default Swaps

Figure 3.12: Illustration of the statistical arbitrage analysis.

t0 tv
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t6
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tn

S(tv , tv + T )

Using this method 181 observations out of 204 are negative (88.7%).

Table 3.19: Descriptive statistics for the vector of observations z (Piecewise Constant Hazard Rates).

Observations mean median std min max 95% Range 99% Range

204 -181.013 -156.096 382.8685 -1485.07 1121.221 2035.425 2515.842

When the participation rate is calculated assuming a OU process for the evolution of the hazard rate, we
obtain for the vector of observations z the descriptive statistics reported in Table 3.20. A plot of vector z is
reported in Figure 3.15. It is interesting to notice that the vector z has 181 negative components out of 200
(90.5%).

Table 3.20: Descriptive statistics for the vector of observations z (OU process for Hazard Rates).

Observations mean median std min max 95% Range 99% Range

200 -184.272 -157.282 408.5472 -1476.73 1366.107 2149.537 2816.082

Using this method we can also evaluate the impact of the convexity adjustment. Table 3.21 reports the
descriptive statistics for the vector of observations z when a OU process for Hazard Rates is used and the
convexity adjustment is taken into account, while Figure 3.16 gives a graphical representation. In this case
the vector z has 171 negative components out of 200 (85.5%).

To summarize the results of this first analysis, we report (Table 3.22) for each method how many companies
have a zj positive (negative), bigger than 500 bp (smaller than −500 bp) and bigger than 1000 bp (smaller
than −1000 bp).

It is interesting to sort the companies according to their zj . First of all we report (Table 3.23) a list of
the companies with zj < −500 bp (Panel A) and those with zj > 500 bp (Panel B) for all the methods used.
In Table 3.24 we do the same for the −1000 and 1000 bp bounds.

In Table 3.25 we report for each method the five companies with the most negative zj (Panel A) and the
first five companies with the biggest zj (Panel B).

According to three methods out of four (the exception is the Nelson-Siegel method) Hasbro Inc is the
company for which the loss (−zj) that an investor would have realized being long a CMCDS with maturity
5 years and short a CDS with both the contracts initiated on 20/09/2001 is maximum.

On the other hand using three methods (the exception being the one with piecewise constant hazard rates)
Global Marine Inc is the company with maximum profit zj . It is interesting to notice that every method
include General Motors and Ford among the five companies with the biggest zj .
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Figure 3.13: Vector of observations z (Nelson Siegel): Stem plot.
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Table 3.21: Descriptive statistics for the vector of observations z (OU process for Hazard Rates with the
convexity adjustment).

Observations mean median std min max 95% Range 99% Range

200 -165.075 -152.346 422.681 -1474.86 1366.107 2073.687 2815.146

Table 3.22: This table reports for each method how many companies have a zj positive (negative), bigger than
500 bp (smaller than −500 bp) and bigger than 1000 bp (smaller than −1000 bp).

NS lambda OU OU conv

pos 30 23 19 29
neg 173 181 181 171

> 500 bp 11 10 10 11
< −500 bp 23 23 23 23
> 1000 bp 5 4 4 4
< −1000 bp 9 7 8 8
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Figure 3.14: Vector of observations z (Piecewise Constant Hazard Rates): Stem plot.
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Table 3.23: Panel A reports for each method the companies for which zj < −500 bp according to all methods.
Panel B reports for each method the companies for which zj > 500 bp according to all methods.

Panel A Panel B
Aetna Inc. Ford Mtr Co

Arrow Electrs Inc Ford Mtr Cr Co
CNA Finl Corp GA Pac Corp

Cap One Bk GATX Finl Corp
Cap One Finl Corp Gen Mtrs Corp

Hasbro Inc Gillette Co
J C Penney Co Inc Global Marine Inc

LA Pac Corp Toys R Us Inc
Motorola Inc Williams Cos Inc

NOVA Chems Corp Wyeth
Nabors Inds Inc
Nordstrom Inc

Pennzoil Quaker St Co
Raytheon Co

Reebok Intl Ltd
Roche Hldgs Inc
ServiceMaster Co
Shaw Comms Inc

Sherwin Williams Co
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Figure 3.15: Vector of observations z (OU process for Hazard Rates): Stem plot.
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Table 3.24: Panel A reports for each method the companies for which zj < −1000 bp according to all methods.
Panel B reports for each method the companies for which zj > 1000 bp according to all methods.

Panel A Panel B
CNA Finl Corp Ford Mtr Co

Cap One Bk Gen Mtrs Corp
Cap One Finl Corp Gillette Co

Hasbro Inc Global Marine Inc
J C Penney Co Inc

LA Pac Corp
Pennzoil Quaker St Co
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Figure 3.16: Vector of observations z (OU process for Hazard Rates with the convexity adjustment): Stem
plot.
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Table 3.25: Panel A reports for each method the five companies with the most negative zj . Panel B reports for
each method the five companies with the biggest zj .

Panel A

NS lambda OU OU conv

Lucent Tech Inc Hasbro Inc Hasbro Inc Hasbro Inc
LA Pac Corp Pennzoil Quaker St Co LA Pac Corp LA Pac Corp

Pennzoil Quaker St Co LA Pac Corp Pennzoil Quaker St Co Pennzoil Quaker St Co
Hasbro Inc CNA Finl Corp Cap One Bk Lucent Tech Inc

CNA Finl Corp Cap One Bk Cap One Finl Corp Cap One Bk

Panel B

NS lambda OU OU conv

Finl Sec Assurn Inc Wyeth Wyeth Wyeth
Ford Mtr Co Gen Mtrs Corp Ford Mtr Co Ford Mtr Co

Gen Mtrs Corp Gillette Co Gen Mtrs Corp Gen Mtrs Corp
Gillette Co Global Marine Inc Gillette Co Gillette Co

Global Marine Inc Ford Mtr Co Global Marine Inc Global Marine Inc
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Note that we also applied a cap on the floating payment and computed

ztv,cap
j =

k−1∑

i=0

∆(tn−3i, tn−3(i+1))
[
min

{
800bp,PRtv

j × Sj(tn−3(i+1), tn−3(i+1) +m)
}

−Sj(tv, tv + T )
]

but the results are exactly the same.

3.6.3 Analysis 2

In the analysis that follows for each company j we look at

ztv
j =

k−1∑

i=0

∆(tn−3i, tn−3(i+1))
[
PRtv

j × Sj(tn−3(i+1), tn−3(i+1) +m) − Sj(tv, tv + T )
]

for each day tv between 02/01/2001 and 19/12/2001 for which we have the data required. Given company
j, we denote by nj the number of days tv for which we can derive ztv

j .
The output of the present analysis is the vector z̄ with elements

z̄j =
1

nj

nj∑

tv=1

ztv
j .

Using the Nelson-Siegel interpolation to compute the participation rate, we obtain the descriptive statistics
reported in Table 3.26 and a stem plot reported in Figure 3.17 for the vector z̄.

Using this method 160 observations out of 213 are negative (75.12%).

Table 3.26: Descriptive statistics for the vector of observations z̄ (Nelson Siegel).

Observations mean median std min max 95% Range 99% Range

213 -109.54 -112.407 298.6551 -1494.8 1129.924 1222.977 2349.756

When we use the method of the piecewise constant hazard rates 183 observations out of 213 are negative
(85.92%).

Descriptive statistics for the vector z̄ are reported in Table 3.27 and a stem plot reported in Figure 3.18

Table 3.27: Descriptive statistics for the vector of observations z̄ (Piecewise Constant Hazard Rates).

Observations mean median std min max 95% Range 99% Range

213 -153.432 -146.417 274.2414 -1090.6 1100.494 1239.63 2131.705

Next, we compute the participation rate assuming a OU process for the evolution of the hazard rate. For
the vector of observations we obtain z̄ the descriptive statistics reported in Table 3.28. A plot of vector z is
reported in Figure 3.19. The negative components in the vector z̄ are 187 out of 213 (87.79%).

Table 3.28: Descriptive statistics for the vector of observations z̄ (OU process for Hazard Rates).

Observations mean median std min max 95% Range 99% Range

213 -169.898 -157.106 277.3286 -1475.95 1048.465 1191.47 2310.164
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Figure 3.17: Vector of observations z̄ (Nelson Siegel): Stem plot.
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Figure 3.18: Vector of observations z̄ (Piecewise Constant Hazard Rates): Stem plot.
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Figure 3.19: Vector of observations z̄ (OU process for Hazard Rates): Stem plot.
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Figure 3.20: Vector of observations z (OU process for Hazard Rates with the convexity adjustment): Stem
plot.
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Finally, using this method we take into account the impact of the convexity adjustment. Table 3.29 reports
the descriptive statistics for the vector of observations z̄ while Figure 3.20 gives a graphical representation.
In this case the vector z̄ has 155 negative components out of 213 (72.77%).

Table 3.29: Descriptive statistics for the vector of observations z̄ (OU process for Hazard Rates with the
convexity adjustment).

Observations mean median std min max 95% Range 99% Range

213 -40.6761 -76.3784 445.3035 -1294.75 2592.18 1947.012 3505.057

As a summary of the results of this analysis we include Table 3.30, in which for each method are reported
how many companies have a z̄j positive (negative), bigger than 500 bp (smaller than −500 bp) and bigger
than 1000 bp (smaller than −1000 bp).

In Table 3.31 we report a list of the companies with z̄j < −500 bp (Panel A) and those with z̄j > 500 bp
(Panel B) for all the methods used. In Table 3.32 we do the same for the −1000 and 1000 bp bounds.

In Table 3.33 we report for each method the five companies with the most negative z̄j (Panel A) and the
first five companies with the biggest z̄j (Panel B).

3.7 Conclusions

In this chapter a large database of single-name CDS premia has been used to produce the corresponding CM-
CDS prices. In order to derive the participation rate needed to calculate the CMCDS prices, we implemented
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Table 3.30: This table reports for each method how many companies have a z̄j positive (negative), bigger than
500 bp (smaller than −500 bp) and bigger than 1000 bp (smaller than −1000 bp).

NS lambda OU OU conv

pos 53 30 26 58
neg 160 183 187 155

> 500 bp 7 6 5 11
< −500 bp 13 14 16 12
> 1000 bp 2 2 2 10
< −1000 bp 3 3 3 3

Table 3.31: Panel A reports for each method the companies for which z̄j < −500 bp according to all methods.
Panel B reports for each method the companies for which z̄j > 500 bp according to all methods.

Panel A Panel B
Aetna Inc. Ford Mtr Co
Agrium Inc Ford Mtr Cr Co

CNA Finl Corp Gen Mtrs Corp
Hasbro Inc Toys R Us Inc

J C Penney Co Inc Williams Cos Inc
LA Pac Corp
Mattel Inc

Pennzoil Quaker St Co
SUPERVALU INC
ServiceMaster Co

Table 3.32: Panel A reports for each method the companies for which z̄j < −1000 bp according to all methods.
Panel B reports for each method the companies for which z̄j > 1000 bp according to all methods.

Panel A Panel B
Hasbro Inc Gen Mtrs Corp

J C Penney Co Inc Williams Cos Inc
Pennzoil Quaker St Co

Table 3.33: Panel A reports for each method the five companies with the most negative z̄j . Panel B reports for
each method the five companies with the biggest z̄j .

Panel A

NS lambda OU OU conv

J C Penney Co Inc Hasbro Inc J C Penney Co Inc J C Penney Co Inc
Hasbro Inc Pennzoil Quaker St Co Hasbro Inc Pennzoil Quaker St Co

Pennzoil Quaker St Co J C Penney Co Inc Pennzoil Quaker St Co Hasbro Inc
Aetna Inc. ServiceMaster Co ServiceMaster Co ServiceMaster Co

ServiceMaster Co Aetna Inc. Aetna Inc. Aetna Inc.

Panel B

NS lambda OU OU conv

Ford Mtr Cr Co Ford Mtr Cr Co Ford Mtr Cr Co Textron Inc
Toys R Us Inc Toys R Us Inc Toys R Us Inc Wyeth
Ford Mtr Co Ford Mtr Co Ford Mtr Co Gen Mtrs Corp

Williams Cos Inc Williams Cos Inc Williams Cos Inc Williams Cos Inc
Gen Mtrs Corp Gen Mtrs Corp Gen Mtrs Corp Wells Fargo & Co
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both parametric (the Nelson-Siegel interpolation and the hazard rates described by an Ornstein-Uhlenbeck
process) and nonparametric methods (piecewise constant hazard rates). For each day and for each name all
these methods utilize the term structure of single-name CDS prices along with information regarding the
recovery rate and the discount factors bootstrapped from the Libor/Swap rates to return the corresponding
participation rate. This allowed us to build a database of single-name CMCDS premia that was used to
identify possible imbalances that may exist in the credit markets when pairing CDS and CMCDS on the
same name. The general idea is to form a swap type of trading strategy whereby a fixed premium payment
is netted against a floating one, both representing protection premia against default. This strategy has the
advantage that default risk is eliminated and only counterparty risk is taken. We have then computed for
all the companies for which we have the required data the profit (or loss) that an investor would have re-
alized being long a CMCDS with maturity 5 years and short a CDS with both the contracts initiated on
20/09/2001. Then we have done the same analysis for a contract initiated between the beginning of our
sample and 01/11/2001. In both cases and for each method implemented we have reported for how many
companies the above strategy produces a gain or a loss bigger than 500 or 1000 bp. It appears that, in
general, it would have been more profitable to sell CDS and to buy CMCDS. Considering all the methods
implemented, at least 85% of the names analysed had a negative cumulative net trading profit/loss over
the 5 years period considered. Also when a convexity adjustment has been taken into account, we reached
substantially the same conclusion. The method which involves convexity adjustment seems only to reduce
the loss that an investor would have incurred in by buying CDS and selling CMCDS over the 5 years period
considered. The percentage of names for which the above strategy would have led to a loss, however, does
not change dramatically. Also a cap on the floating payment was introduced, but this did not change the
results. We have also reported the names for which the strategy gives a gain or a loss bigger than 500 or 1000
bp no matter what the method used to compute the participation rate. Interestingly the strategy involving
the company “Ford Mtr Co” leads to a profit bigger than 1000 bp in the first analysis and between 500
bp and 1000 bp for the second analysis. On the other hand, for both the analysis considered, the trading
strategy involving the company “Gen Mtrs Corp” leads to a profit bigger than 1000 bp for all the methods
implemented. In general, these two companies appear among those with the biggest profit, in both the first
and the second statistical arbitrage analysis.
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4

True vs. Spurious Long Memory in Credit Default

Swaps and Credit Spreads

4.1 Introduction

As pointed out by Dolado et al. (2005) and by Mikosch and Stărică (2004) for the case of multiple breaks,
the long memory feature of financial time series could be a spurious effect caused by the presence of one
or more structural breaks. The first study presents a simple example to illustrate the source of confusion
between a long memory process and a short memory one subject to structural breaks. Consider the sequence
{Yt}t=1,...,T with the following data generating process

Yt = α1 + (α2 − α1)DUt(λ) + ut =

{
α1 + ut t ≤ TB

α2 + ut t > TB

(4.1)

where ut is a zero-mean I(0) process with autocovariances γu(j) and DUt(λ) = I(t>TB) ≡ I(t>λT ) with λ the
fraction of the sample where the break occurs and TB the date of the break.

The sample ACF of an I(d) and an I(0) with a structural break processes can be found in Figure 4.1.
A straightforward application of the ergodic theorem allows us to derive the asymptotic behavior of the

sample autocovariance of {Yt}

γ̂Y (j) =
1

T

T∑

t=j+1

(Yt − Yt−j) − (ȳT )2 → γu(j) + λ(1 − λ)(α2 − α1)
2 a.s.

and thus, even though γu(j) approaches 0 as j ↑ ∞ because ut is I(0),

lim
j↑∞

γ̂y(j) = λ(1 − λ)(α2 − α1)
2.

As long as α2 6= α1, the limit is not zero and thus the autocovariance function of the process mimics a slow
hyperbolic decay characteristic of a long memory process. To verify empirically the validity of this result we
present a small Monte Carlo study in which 5000 series of sample size T = 2500 are generated according to
(4.1). We set α1 = 0, λ = 0.5 (so that the break comes in the middle of the sample) and ut ∼ n.i.d.(0, 1).
Three different break sizes are considered: α2 − α1 = 0.0 (no break), α2 − α1 = 0.3 (small break) and
α2 −α1 = 0.6 (large break). In Table 4.1 the estimates of the long memory parameter d for different value of
he bandwidth parameter and for different sizes of the break are reported. From the table we can see that the
estimates of d increase monotonically with the size of the shift in the mean, and, when the break is present,
they seem to increase as the bandwidth parameter decreases1.

1The possibility of confusing spurious long memory with genuine long memory aggravates even more when the DGP contains
a break in the trend. A Monte Carlo experiment in Dolado et al. (2005) using the GDP

Yt = α1 + β1(t − TB)I(TB+1≤t≤T ) + ut

with β1 = 0.1, yields estimates of d in the range (1.008, 1.0310).
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Figure 4.1: Sample ACF of an I(d) and an I(0) with a structural break processes.
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Table 4.1: GPH estimates of the parameter d in (4.1) for different values of the break. One asterisk denotes
significance at 5% level and two asterisks denote significance at 1% level for the null hypothesis d = 0.

T 0.5 T 0.45 T 0.4 T 0.35

α2 − α1 = 0.0 -0.0015 -0.0013 -0.0033 -0.0027
α2 − α1 = 0.3 0.199* 0.2873* 0.3788** 0.4811**
α2 − α1 = 0.6 0.3226** 0.4388** 0.5482** 0.6589**
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The fact that long memory and structural change are easily confused is pointed out in many papers
in the econometric literature. Mayoral (2006) develops a time-domain test of I(d) versus I(0) plus trends
and/or breaks, and reports an empirical application that analyzes US inflation. The conclusions are that the
null of I(d) cannot be rejected. Diebold and Inoue (2001) provide both theoretical justification and Monte
Carlo evidence to support the claim that a time series with structural breaks can induce a strong persistence
in the autocorrelation function and hence generate spurious long memory. In Granger and Hyung (2004)
two time series models, an occasional-break model and an I(d) model to analyze S&P 500 absolute stock
returns are compared. In their empirical analysis, the authors find that both the models can equally well
explain the absolute stock returns series and that long memory models have better out-of-sample forecasting
performance than the occasional break models, but the evidence is statistically insignificant. Choi and Zivot
(2007) estimate the long memory parameter d monthly forward discount series for five G7 countries after
adjusting for breaks in their mean. They find that multiple breaks in the mean are present and that after
adjusting for structural breaks, the persistence in the forward discount is considerably reduced. However,
they find that when one allows for structural breaks there is still evidence of long memory. Ohanissian et al.
(2007) develop a test to distinguish between true long memory and spurious long memory based on invariance
of the long memory parameter for temporal aggregates of the process under the null of true long memory
and find that the long memory property in exchange rate volatility is generated by a true long memory
process. Dolado et al. (2005) proposes a time-domain test of a process being I(d) under the null, against the
alternative of being I(0) with deterministic components subject to structural breaks at known or unknown
dates. The proposed test is used for two empirical applications. The first one deals with the log of the time
series of U.S. real GNP for the period 1869 to 2001. The authors conclude that for this data the null of I(d)
cannot be rejected at the conventional significance levels. The second empirical application employs the test
to study the long memory properties of returns from the S&P 500 composite stock index over the period
1953–1977. They conclude that the null hypothesis of I(d) cannot be rejected for moderate values of d when
either the absolute values or squares of the returns are considered. Two simple tests for true versus spurious
long memory are proposed also in Shimotsu (2006). The tests are applied to the daily realized volatility of
the S&P 500 index to show some evidence of infrequent structural breaks in the data. The results, however,
don’t provide strong evidence against the hypothesis of true long memory.

In this chapter several tests recently proposed in the econometric literature to detect if a time series is
truly long memory are illustrated and then applied to the data of chapter 2 and to the CDS data used in
chapter 3.

4.2 Statistical Tests

4.2.1 A Test Based on Temporal Aggregation

A direct implication of scaling and self-similarity properties of the fractional Brownian motion (see Mandelbrot
and Van Ness, 1968) is that the process will have the same memory at all levels of sampling frequency. This
result is confirmed by Beran and Ocker (2000) who study Gaussian arfima(p, d, q) models. They show
that aggregation acts to modify only the short memory properties whereas the long memory parameter does
not change across temporal aggregation. The same ideas are employed in Andersen and Bollerslev (1997)
and Andersen et al. (2001) in the study of realized volatility to conclude that their estimated long memory
parameters, using different frequency data don’t change too much, implying true long memory. A formal
test procedure which exploits the invariance of the long memory parameter for temporal aggregates of the
process under the null of true long memory is proposed by Ohanissian et al. (2007). Their test is applicable
to a stationary mean zero Gaussian long-memory time series {Yt}. As usual, the spectral density is assumed
to be f(λ) = |1 − e−iλ|−2df∗(λ), 0 < d < 0.5, where f∗(·) denotes the spectral density of the short memory
component of {Yt}t=1,...,T and is assumed to be continuous, bounded above, bounded away from zero, twice
differentiable with the second derivative bounded in a neighborhood of zero. This assumption allows the
use of the GPH estimator which is used in order to avoid many potential mis-specification issues involving
the short memory component. Given the integer n such that T/n is integer, the n-period non-overlapping
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aggregates of the time series Yt are defined as

Z(n)
s =

n∑

τ=1

Yn(s−1)+τ for 1 ≤ s ≤ T

n
.

With the convention that a superscript (n) on any statistic represents the corresponding statistic for the
n-temporally aggregated data, let

I
(n)
j =

n

2πT

∣∣∣∣∣∣

T/n∑

s=1

Z(n)
s exp

(
is2π

jn

T

)∣∣∣∣∣∣

2

.

denote the periodogram of an n-temporally aggregated series. Note that this can be rewritten as

I
(n)
j =

n

2πT

∣∣∣∣∣
T∑

s=1

Ys exp

(
i
[ s
n

]
2π
jn

T

)∣∣∣∣∣

2

=
n

2πT

T∑

s=1

T∑

t=1

YsYt cos

(
2π
jn

T

([ s
n

]
−
[
t

n

]))
.

This means that I
(n)
j can be written in terms of the periodogram of the entire series, I

(1)
j :

I
(n)
j = nI

(1)
j + Y ′BjY

where Y = (Y1, . . . , YT )′, Bj = [bj(s, t)]1≤s,t≤T and

bj(s, t) =
n

2πT

(
cos

(
2π
jn

T

([ s
n

]
−
[
t

n

]))
− cos

(
2π

j

T
(s− t)

))
.

Given the bandwidth parameter m(n), the GPH estimate of the long memory paramenter for the n-temporally
aggregated data is

d̂(n) = − 1

2
∑m(n)

j=1

(
a
(n)
j

)2

m(n)∑

j=1

a
(n)
j log I

(n)
j ,

with

a
(n)
j = log

∣∣∣∣2 sin

(
π
jn

T

)∣∣∣∣−
1

m(n)

m(n)∑

j=1

log

∣∣∣∣2 sin

(
π
jn

T

)∣∣∣∣ .

Note that number of ordinates used in the GPH estimator depends on the length of the series and since
temporal aggregation decreases the length of the series, we have

m(n1) > m(n2) for n1 < n2

and also the frequencies are note the same:

λ
(n1)
j 6= λ

(n2)
j for n1 6= n2

and λ
(kn)
j = λ

(n)
kj .

Let N denote the fixed, but arbitrarily large, number of aggregation levels and (n1, n2, . . . , nN ) denote the
fixed, but arbitrarily large, aggregation levels for the N series such that n1 < n2 < . . . < nN . In Ohanissian
et al. (2007) it is shown that, if for any fixed, but arbitrarily large, aggregation level n, the growth rate of
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the number of ordinates used for the GPH estimation is such that m(n) = o(T
2−4d

3 ) as T → ∞, then the joint
distribution of the GPH estimates obtained using the temporally aggregated series is asymptotically normal.
Furthermore, they prove that, asymptotically, the covariance between any two GPH estimates obtained using
temporally aggregated series equals the variance of the lesser aggregated series:

4m(ni)
(
Cov(d̂(ni), d̂(nj)) − Var(d̂(ni))

)
= o(1) as T → ∞ for 1 ≤ i < j ≤ N. (4.2)

Given that the GPH is known to have an asymptotic normal distribution:

√
4m(ni)(d̂(ni) − d)→dN

(
0,
π2

6

)

eq. (4.2) allows us to compute the theoretical covariance matrix. When the time series of interest is relatively
small, as confirmed by a simulation study in Deo and Hurvich (2001), the approximation suggested by Geweke
and Porter-Hudak (1983) should be used:

Varapprox.(d̂
(ni) − d) =


24

m(ni)∑

j=1

(
a
(ni)
j

)2



−1

π2.

Now, let d̂N = (d̂(n1), d̂(n2), . . . , d̂(nN ))′ be the N -dimensional vector of our estimated long memory param-
eters, and dN = (d(n1), d(n2), . . . , d(nN ))′ be the constant N -dimensional vector of the actual long memory
parameters. The null hypothesis is

H0 : d(n1) = d(n2) = . . . = d(nN ) = d

and it can be tested by considering the quadratic form
(
d̂N − dN

)′
Λ−1

(
d̂N − dN

)

where Λ is the asymptotic covariance matrix whose structure was discussed above. Note that in order for
the asymptotic covariance matrix to be invertible the asymptotic variance of each individual GPH estimate
must be different. This can be achieved by using a different number of ordinates for the estimation of each
temporally aggregated series. The test statistic above is asymptotically distributed as χ2(N). However,
in practice, d will not be known so the mean value of the estimates is used. Hence the test statistic to
implemented is

ŴN = (P d̂N )′(PΛP ′)−1(P d̂N )

where

P =




1 − 1
N − 1

N − 1
N · · · − 1

N − 1
N

− 1
N 1 − 1

N − 1
N · · · − 1

N − 1
N

· · · · · · · · · · · · · · · · · ·
− 1

N − 1
N − 1

N · · · 1 − 1
N − 1

N


 .

Since P d̂ is N(0, PΛP ′), the test statistic Ŵ has an asymptotic χ2(N − 1) distribution under H0. In a

simulation study Ohanissian et al. (2007) show that the distribution of d̂ does not depend on the value of the
long memory parameter and that there is significant size distortion when using the theoretical variances for
short series. Thus, they suggest to use simulated and approximated variances instead of theoretical variances.

4.2.2 The Structural Break–Fractional Dickey–Fuller Test

The Structural Break–Fractional Dickey–Fuller (SB–FDF) Test is developed in Dolado et al. (2005). The null
is that the process of interest is I(d), d ∈ (0, 1). Under the alternative the process is I(0) with one structural
break. To account for structural breaks, the process is assumed to be described by the following equation:

Yt = AB(t) +
atI(t>0)

∆d − φL
(4.3)
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where AB(t) is a linear deterministic trend function that may contain breaks at the unknown date TB , at

is a stationary I(0) process, L the lag operator and ∆ = 1 − L. The null now corresponds to the case
φ = 0, whereas φ < 0 means that the process is I(0) and it is subject to the regime shifts defined by AB(t).
Rearranging (4.3) yields:

∆dYt = φYt−1 + ∆dAB(t) − φAB(t− 1) + εt (4.4)

where εt = atI(t>0). The SB–FDF test of I(d) vs. I(0) in the presence of structural breaks is simply given
by the t-ratio of the coefficient φ in the regression model (4.4). The definition of AB(t) we consider is2

AB(t) = µ0 + (µ1 − µ0)DUt(λ)

which corresponds to the so-called crash hypothesis. Dolado et al. (2005) prove that for a process generated
by (4.3) with at ∼ i.i.d(0, σ2) the asymptotic distribution of the test statistic under the null of φ = 0, when
φ is estimated by OLS, is given by:

tφ̂(λ)→d




N(0, 1) if d ∈ (0, 0.5)∫ 1

0
B∗

d(λ,r)dB(r)

(
∫ 1
0

B∗

d(λ,r)2dr)
1/2 if d ∈ (0.5, 1)

where B∗
d(λ, r) is the L2 projection residual from the corresponding continuous time regressions associated

to model (4.4):
Bd(r) = α̂0 + α̂1du(λ, r) + α̂2r

−d + α̂3r
−ddu(λ, r)B∗

d(λ, r)

where Bd(r) is Type–I fBM as defined in Marinucci and Robinson (1999) and du(λ, r) = 1 if r > λ and 0
otherwise.

When, more realistically, the break date TB is unknown, the idea is to choose the break point that gives
the least favorable result for the null hypothesis of I(d) using the SB-FDF test in (4.4). Therefore, using the
same range of Andrews (1993) the t-statistic of the coefficient φ is computed for the values of λ ∈ (0.15, 0.85)
and the most negative value is chosen:

t̂φ̂ = inf
λ∈(0.15,0.85)

tφ̂(λ). (4.5)

Again, Dolado et al. (2005) show that under the null and when µ0 = µ1 so that ∆d(yt − µ0) = at,

t̂φ̂→d




N(0, 1) if d ∈ (0, 0.5)

infλ∈(0.15,0.85)

∫ 1
0

B∗

d(λ,r)dB(r)

(
∫ 1
0

B∗

d(λ,r)2dr)
1/2 if d ∈ (0.5, 1)

.

The simulated critical values are provided by Dolado et al. (2005) in their Appendix B. The test reject the
null of genuine long memory when

t̂φ̂ < kinf,α,

where kinf,α is the simulated critical value at the significance level α.

4.2.3 A Test Based on Sample Splitting

A formal statistical test based on sample splitting is proposed by Shimotsu (2006). Under the null of true
long memory each subsample of the time series also follows an I(d) process with the same value of the long
memory parameter d. Hence a simple test can be constructed by splitting the sample into b subsamples,

2 In Dolado et al. (2005) also the changing growth hypothesis

AB(t) = µ0 + β0t + (β1 − β0)(t − TB)I(TB+1≤t≤T )

and a combination of the crash and changing growth hypothesis

AB(t) = µ0 + β0t + (µ1 − µ0)DUt(λ) + (β1 − β0)I(TB+1≤t≤T )

are considered.
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estimating d for each subsample and computing how these estimates differ from the full sample estimate.
Assuming that both b and T/b are integer, the sample {Ys}s=1,...,T is split into b blocks, so that each block has
T/b observations. The author suggests to compute the local Whittle estimator for each block of observations
using m/b periodogram ordinates, m being the number of the periodogram ordinates used for the estimation
of d in the full sample. More formally, let d̃ be the local Whittle estimator of d ∈ (−0.5, 0.5) computed from
the whole sample and d̃(a), a = 1, . . . , b, be the local Whittle estimator of d computed from the ath block of
the observations, {Yt : t = (a− 1)T/b+ 1, . . . , aT/b}:

d̃(a) = arg min
− 1

2 <d< 1
2



log


 b

m

m/b∑

j=1

̟2d
j I

(a)
j


− 2d

b

m

m/b∑

j=1

log̟j



 a = 1, . . . , b

̟j = 2π
jb

T
j = 1, . . . , T/b

I
(a)
j =

b

2πT

∣∣∣∣∣∣

aT/b∑

s=(a−1)T/b+1

Ys exp (is̟j)

∣∣∣∣∣∣

2

.

The test statistic for the null of genuine long memory is then given by

W̃b = (Ad̂b)
′(AΥA′)−1(Ad̂b)

where d̃b is a the b+ 1 vector

d̃b =




d̃− d

d̃(1) − d
...

d̃(b) − d




Υ is the covariance matrix of d̃b and A is the b× (b+ 1) matrix

A =




1 −1 · · · 0
...

...
. . .

...
1 0 · · · −1


 .

The test statistic W̃b has a chi-squared limiting distribution with b− 1 degrees of freedom.
The covariance matrix Υ is derived in a simulation exercise in which 2000 series of dimension T = 2500

following an I(4) process3 have been generated.
In Table 4.2–Table 4.3 we report the simulated covariance matrices AΥA′ corresponding to different levels

of the bandwidth parameter m and for b = 2 or b = 4.

4.2.4 Test using dth Differencing

This test developed in Shimotsu (2006) exploits the fact that if an I(d) process is differenced d times, then
the resulting time series is trivially an I(0) process but this is not the case when spurious long-memory
processes are taken into account. To implement the test, thus, it suffices to demean the data and apply the
Phillips-Perron (PP) unit root test or the KPSS test to its d̂th difference, d̂ being a consistent estimate of
d. Some care is needed in demeaning the data. Assuming that Yt follows a truncated I(d) process with
initialization at t = 0:

Yt − µ = (1 − L)−dutI(t≥1)

3This exercise has also shown that the particular choice of d in the I(d) process used in the simulations does not change the

covariance matrix of d̃b significantly.
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Table 4.2: Covariance matrices AΥA′ corresponding to different values of the bandwidth parameter m for
b = 2.

m = T 0.5 m = T 0.45

(
0.010603 −0.00693
−0.00693 0.010701

) (
0.01854 −0.01086
−0.01086 0.019642

)

m = T 0.4 m = T 0.35

(
0.034114 −0.01774
−0.01774 0.037391

) (
0.078889 −0.03246
−0.03246 0.085082

)

Table 4.3: Covariance matrices AΥA′ corresponding to different values of the bandwidth parameter m for
b = 4.

m = T 0.5




0.042856 −0.00649 −0.00757 −0.00644
−0.00649 0.039942 −0.00732 −0.00691
−0.00757 −0.00732 0.042047 −0.00641
−0.00644 −0.00691 −0.00641 0.04403




m = T 0.45




0.082302 −0.01039 −0.00948 −0.01082
−0.01039 0.078555 −0.00894 −0.01124
−0.00948 −0.00894 0.0821 −0.01181
−0.01082 −0.01124 −0.01181 0.078604




m = T 0.4




0.196986 −0.02074 −0.01317 −0.01896
−0.02074 0.198046 −0.01792 −0.03186
−0.01317 −0.01792 0.204205 −0.01246
−0.01896 −0.03186 −0.01246 0.187643




m = T 0.35




0.628313 −0.02831 −0.04251 −0.02825
−0.02831 0.610207 −0.04966 −0.0399
−0.04251 −0.04966 0.688979 −0.03042
−0.02825 −0.0399 −0.03042 0.577297



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where µ is the mean Yt when d < 1/2, we have T−1
∑T

t=1 Yt − µ = OP(T d−1/2) and as shown by Shimotsu
(2006)

(1 − L)−d

(
Yt − T−1

T∑

t=1

Yt

)
= ut + OP(T d−1/2t−d).

Hence, If d ≥ 1, the second term on the right has a nonnegligible effect on the sample statistics of the dth
differenced demeaned data.

To circumvent the problem, the author suggests to estimate µ using a linear combination of the sample
mean and Y1:

µ̂(d) =
w(d)

T

T∑

t=1

Yt + (1 − w(d))Y1 (4.6)

where w(d) is a is a smooth weight function such that w(d) = 1 for d ≤ 1/2 and w(d) = 0 for d ≥ 3/4. One
choice of the weight function could be

w(d) =





1 for d ≤ 1/2

1/2 (1 + cos(4πd)) for d ∈ (1/2, 3/4)

0 for d ≥ 3/4

.

Once the data has been demeaned using (4.6) to estimate the mean, it is possible to compute the d̂th
differenced series ut:

Ut = (1 − L)d̂(Yt − µ̂(d̂)) =
t−1∑

k=0

Γ(k − d̂)

Γ(−d̂)k!
(Yt−k − µ̂(d̂)).

Finally we can calculate the test statistics on the series Ut. The test regression for the PP tests is

∆Ut = c+ πUt−1 + ξt

where ξt is I(0) and may be heteroskedastic. The test statistic is constructed in a way that any serial
correlation and heteroskedasticity in the errors ξt are corrected for. The test statistic is

Zt = tπ=0 ×
(
σ̂2

λ̂2

)1/2

− λ̂2 − σ̂2

2λ̂2

SE(π̂)

σ̂2/T
(4.7)

The quantities σ̂2 and λ̂2 are consistent estimates of the variance parameters

σ2 = lim
T→∞

T−1
T∑

t=1

E(ξ2t )

λ2 =

+∞∑

j=−∞
E(ξtξt−j)

and are given by the sample variance of the least squares residual ξ̂t, and the Newey-West estimate of the
long-run variance of ξt using ξ̂t respectively:

σ̂2 =
1

T

T∑

t=1

e2t

λ̂2 =
1

T

T∑

t=1

e2t +
2

T

l∑

s=1

(
1 − s

l + 1

) T∑

t=s+1

etet−s
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with

et = ξ̂t −
1

T

T∑

t=1

ξ̂t.

Using the same notation, the KPSS test statistic is given by

η̂µ =

∑T
t=1 S

2
t

T 2λ̂2
, St =

t∑

k=1

ek. (4.8)

4.3 A Monte Carlo Study

In this section we compare the four different tests for the null of true long memory versus the alternative
of spurious long memory induced by a structural break, using simulated data. We simulate 5000 series of
dimension T = 2500 using the three data generating processes:

1. An I(0.4) process

2. The process (4.1) with α1 = 0, α2 = 0.3 and TB = T/2

3. The process (4.1) with α1 = 0, α2 = 0.6 and TB = T/2

In brief, we consider a genuine long memory process, a process with a small break and one with a large break
in the middle of the sample. As confirmed by Table 4.1, the last two are spurious long memory processes.

Table 4.4 reports the rejection frequencies for the four test using a 1% confidence level. Every time
the GPH estimation is involved the bandwidth parameter used is mj =

[√
Tj

]
, where Tj is the number of

observations in the (sub)sample. For the “Temporal Aggregation” test of Ohanissian et al. (2007) the number
of aggregation levels is set to N = 4 and the aggregation levels are nj = 2j for j = 0, . . . , N − 1. For the
“Sample Splitting” test of Shimotsu (2006) the number of subsamples considered is b = 4.

Table 4.4: Rejection frequencies at a 1% confidence level. For each test the null is true long memory.
“Temporal Aggregation” denotes the test of Ohanissian et al. (2007) described in subsection 4.2.1. “SB–FDF”

denotes the test developed in Dolado et al. (2005) and described in subsection 4.2.2. Finally the last two
columns report the rejection frequencies for the two tests of Shimotsu (2006) (subsection 4.2.3 and

subsection 4.2.4). In the latter case the KPSS test is used. Every time the GPH estimation is involved the
bandwidth parameter used is mj =

[√
Tj

]
, Tj being the number of observations in the (sub)sample.

Temporal SB–FDF Sample dth Differencing
Aggregation Splitting

I(0.4) 0.0174 0.395 0.0438 0.0688
Small Break 0.0454 0.6002 0.7752 0.8766
Large Break 0.0554 0.873 0.9978 0.9484

The first thing to notice in the table is that for each method the number of rejections, correctly, increases
moving from the top to the bottom of the table. From the table it is also clear that overall the test based on
sample splitting has the best performance in terms of both power and size: in the experiment, in fact, it is the
one with the smallest rejection frequency when the DGP is the one of a genuine long memory process and is
the one with the rejection frequency closest to 99% when a process with a large break is considered. The test
based on dth differencing seems to be second best. It performs worse than the test based on sample splitting
when the true long memory process and the process with a large break are considered, but it does better with
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the small break process. The test based on temporal aggregation appears to have excellent size properties but
it is way too conservative when the processes with a structural break are considered. The rejection frequency
is only about 4.5% for the data with a small break and only about 5.5% for the data with a large break.
The explanation for such a poor performance could be due to the fact that the number of aggregation levels
(N = 4 in the experiment) considered is not big enough. However, given that the number of observations is
2500, increasing N results in a number of observations in the aggregated series which would be too limited
for the GPH estimator to be valid. This is the reason why in Ohanissian et al. (2007) the simulation study
is conducted on I(0.4) process with a number of observations which equals 610,304. Finally the structural
break–fractional Dickey–Fuller test, although performing better than the one based on temporal aggregation
under the alternative hypothesis of spurious long memory (second and third row of the table), rejects too
often the null even when the null is true. When the I(0.4) process is considered, the null is rejected 1975
times out of 5000 (39.5%). The number of rejection grows to 3001 (60.02%) for the small break case and to
4365 (87.3%) for the large break case. Even though the rejection frequency increases significantly moving
from the small to the large break case, still the two frequencies are too low if compared to tests based on
sample splitting and on dth differencing. The reason for this not so brilliant performance could be due to
the fact that the test is not capable to detect the structural break unless this is sufficiently large. From the
table it is possible to guess that considering a break size of α2 − α1 = 0.8 or α2 − α1 = 0.9 would lead to a
correct rejection frequency of 99%.

4.4 Empirical Applications

In this section the tests of section 4.2, are applied firstly to the datasets used in chapter 2, for which some
evidence of long memory was found. Next the long memory properties of CDS spreads from a large number
of issuers are studied and the test are applied to those series for which evidence of long memory is found.

4.4.1 Application to Credit Spreads

Since form the analysis of chapter 2 credit spreads can be described by long memory nonstationary processes,
we could use the test presented in the previous section to verify whether this property is true or whether it is
induced by a structural break, which is not a remote possibility, given that we are dealing with credit data.
The only tests we apply are the one based on dth differencing and the SB-FDF test.

The two datasets used are

a) 30-year Historical US Treasury Constant Maturity Yields and Moody’s Aaa, Aa, A and Baa Long-Term
Corporate Bond Yield Averages. The data covers the period from December 1992 to November 2003, for
2703 observations.

b) Lehman Brothers Eurodollar Aaa, Aa, A and Baa Indices and U.S. Global Treasury Index. The indices
include primarily corporates bonds (even though they can include government-related and securitized
bonds). The data covers the period from June 1996 to July 2006, for 2613 observations.

Spreads are calculated as the difference between corporate yields and Treasury yields, as well as between
different corporate yields. Thus we have 15 series: Treasury yields (denoted by T), corporate yields (Aaa,
Aa, A, and Baa), spreads over Treasury (sTAaa, sTAa, sTA, and sTBaa), spreads between corporate yields
(sAaaAa, sAaaA, sAaaBaa, sAaA, sAaBaa, and sABaa).

Table 4.5 reports the results for the data from Moody’s and Table 4.6 the results for the Lehman Brothers
Eurodollar indeces.

As far as the first dataset is concerned, we can see that the yields are genuine long memory processes
according to both the tests procedures. Further, the test based on dth differencing never rejects the null of
true long memory also for the credit spreads series. The SB–FDF test, on the other hand, rejects the null
for the series sAaaA, sAaaBaa, sAaA and sABaa at the 1% confidence level. In Table 4.7 the fraction of the
sample where the break occurs is reported for the time series for which there is a rejection of the null using
the SB–FDF test. The quantity λ∗ is the λ ∈ (0.15, 0.85) that achieves the minimum in (4.5).
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Table 4.5: True vs. Spurious Long Memory tests for Moody’s credit spreads data. The test statistics (4.8) and (4.5) are calculated for yields and
spreads. One asterisk denotes significance at 5% level and two asterisks denote significance at 1% level.

Yields

T Aaa Aa A Baa

η̂µ 0.043741 0.06237 0.070139 0.087256 0.094507

t̂φ̂ -2.58427 -2.1995 -1.98075 -1.50977 -1.03776

Spreads

sAaa sAa sA sBaa sAaaAa sAaaA sAaaBaa sAaA sAaBaa sABaa

η̂µ 0.280007 0.302545 0.33116 0.235645 0.057505 0.056918 0.046218 0.044615 0.244622 0.035814

t̂φ̂ -2.15794 -2.03361 -2.49965 -3.26767 -3.23292 -4.06801** -4.62083** -5.20612** 1.090709 -4.50789**
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Table 4.6: True vs. Spurious Long Memory tests for Lehman Brothers’ credit spreads data. The test statistics (4.8) and (4.5) are calculated for
yields and spreads. One asterisk denotes significance at 5% level and two asterisks denote significance at 1% level.

Yields

T Aaa Aa A Baa

η̂µ 0.50502* 0.184451 0.210992 0.241603 0.107743

t̂φ̂ -3.60927 -3.47558 -3.04849 -0.64383 -2.56709

Spreads

sAaa sAa sA sBaa sAaaAa sAaaA sAaaBaa sAaA sAaBaa sABaa

η̂µ 0.231533 0.225268 0.287408 0.163766 0.134201 0.288276 0.207318 0.284206 0.190325 0.080241

t̂φ̂ -2.01807 -1.85178 -1.06949 -2.59922 -2.51649 -0.57434 -1.0361 1.285724 -0.4855 -0.84174
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Table 4.7: Moody’s credit spreads data: fraction of the data in which the break is estimated to occur.

sAaaA sAaaBaa sAaA sABaa

λ∗ 0.668341 0.782584 0.633002 0.81241

The results regarding the second dataset do not lend themselves to any difficulty in the interpretation.
Apart from some limited evidence of spurious long memory for the U.S. Global Treasury Index (the null is
rejected at the 5% level according to the test based on dth differencing, but it is not rejected by the SB–FDF
test, if not at the 10% level), we can safely conclude that both yields and spreads are genuine long memory
processes.

4.4.2 Application to CDS Data

The dataset consists of daily single-name composite spreads for the period January 2001–November 2006
with maturities 1y, 3y, 5y, 7y and 10y. The data used is the same as chapter 3 and was provided by
Markit Partners. In the empirical application we use the first differences of the log-CDS quotes for the
above maturities. Only obligors with at least 1000 consecutive daily observations are considered. For each
maturity considered, Table 4.8 reports the number of companies left after those that don’t satisfy the above
requirement are filtered out.

Table 4.8: The table lists for each maturity the number of obligors for which there are more than 1000
consecutive daily observations.

Maturity (Years) No of Obligors

5 638
3 545
7 530
1 511
10 484

When for a time series we have Tj observations, the bandwidth parameter mj in the long memory
parameter estimation is chosen to be mj = [T ρ

j ]. The exponent ρ takes on values between 0.3 and 0.6 with
increments of 0.05. The results of the GPH estimates are reported in Table 4.13–Table 4.13.

Table 4.9: GPH estimates for the first differences of 5 years CDS log-spreads: descriptive statistics. The last
two columns report the number of obligors for which the estimate of the d parameter is statistically different

from zero and bigger than zero respectively at the 1% confidence level.

ρ mean median std min max 95% Range 99% Range #(d 6= 0) #(d > 0)

0.6 0.0025864 0.01558 0.12822 -0.50158 0.3657 0.51093 0.65755 125 54
0.55 -0.0012582 0.01073 0.13641 -0.50025 0.41607 0.54959 0.78029 79 32
0.5 0.0074436 0.01454 0.15672 -0.61333 0.36466 0.62284 0.7923 69 30
0.45 -0.0098929 0.002 0.1846 -0.60609 0.49867 0.73228 0.93106 51 17
0.4 -0.0062103 0.00958 0.22825 -0.82588 0.64538 0.9117 1.222 54 19
0.35 -0.06046 -0.06372 0.28406 -1.0983 0.779 1.1691 1.5725 58 18
0.3 -0.095057 -0.07628 0.3318 -1.2561 0.99806 1.3648 1.7742 43 6

The first thing to notice in the tables is that for all the maturities, the long memory parameter is,
on average, very close to zero, at least when the most popular choices for the exponent determining the
bandwidth parameter (i.e. ρ = 0.6 or ρ = 0.5) are considered. The only exception is given by the 1 year
maturity, for which the average d is close to −0.09 and the median is approximately −0.09. Therefore, it
seems that there is little evidence of long range dependence in CDS log-spreads. First differencing appears to
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Table 4.10: GPH estimates for the first differences of 3 years CDS log-spreads: descriptive statistics. The last
two columns report the number of obligors for which the estimate of the d parameter is statistically different

from zero and bigger than zero respectively at the 1% confidence level.

ρ mean median std min max 95% Range 99% Range #(d 6= 0) #(d > 0)

0.6 -0.025851 -0.00488 0.1324 -0.50129 0.2658 0.49676 0.67678 112 29
0.55 -0.019674 -0.00415 0.14058 -0.56885 0.31381 0.54213 0.66549 83 24
0.5 -0.0074618 0.01104 0.15452 -0.566 0.38478 0.59336 0.7859 51 14
0.45 -0.026191 -0.01251 0.17418 -0.527 0.43121 0.69404 0.89744 42 10
0.4 -0.023417 -0.00533 0.21642 -0.71501 0.67028 0.82197 1.1277 41 11
0.35 -0.076107 -0.05796 0.27057 -0.99449 0.89772 1.1021 1.5426 37 8
0.3 -0.10753 -0.11208 0.33698 -1.2794 0.90919 1.4073 1.7738 35 6

Table 4.11: GPH estimates for the first differences of 7 years CDS log-spreads: descriptive statistics. The last
two columns report the number of obligors for which the estimate of the d parameter is statistically different

from zero and bigger than zero respectively at the 1% confidence level.

ρ mean median std min max 95% Range 99% Range #(d 6= 0) #(d > 0)

0.6 -2.89E-05 0.01376 0.1191 -0.37637 0.33527 0.47358 0.60237 83 34
0.55 0.0020043 0.00607 0.12562 -0.45423 0.38122 0.51109 0.66892 52 22
0.5 0.013071 0.02014 0.15101 -0.50453 0.456 0.60988 0.79348 53 27
0.45 -0.0049766 0.00731 0.1741 -0.47497 0.54431 0.72107 0.89854 44 17
0.4 0.0012121 0.01242 0.22113 -0.59375 0.61224 0.89971 1.1252 44 19
0.35 -0.048014 -0.04192 0.27917 -0.98171 0.82635 1.1167 1.4769 43 12
0.3 -0.069552 -0.05982 0.3479 -1.2598 1.2234 1.3877 2.0458 34 9

Table 4.12: GPH estimates for the first differences of 1 year CDS log-spreads: descriptive statistics. The last
two columns report the number of obligors for which the estimate of the d parameter is statistically different

from zero and bigger than zero respectively at the 1% confidence level.

ρ mean median std min max 95% Range 99% Range #(d 6= 0) #(d > 0)

0.6 -1.35E-01 -0.12566 0.13243 -0.57798 0.19389 0.52411 0.71042 190 3
0.55 -0.11196 -0.10832 0.1427 -0.66407 0.28544 0.56542 0.74165 130 9
0.5 -0.094321 -0.08614 0.15937 -0.74935 0.32344 0.63186 0.78532 86 2
0.45 -0.099257 -0.10385 0.18666 -0.80756 0.44377 0.73638 0.9789 60 6
0.4 -0.088001 -0.08551 0.21874 -0.80299 0.59009 0.85193 1.1598 42 6
0.35 -0.12967 -0.11959 0.26403 -1.0033 0.87386 1.0467 1.5414 44 7
0.3 -0.14531 -0.11419 0.3424 -1.4286 0.73669 1.3502 1.8443 38 3

Table 4.13: GPH estimates for the first differences of 10 years CDS log-spreads: descriptive statistics. The last
two columns report the number of obligors for which the estimate of the d parameter is statistically different

from zero and bigger than zero respectively at the 1% confidence level.

ρ mean median std min max 95% Range 99% Range #(d 6= 0) #(d > 0)

0.6 -2.50E-02 -0.01509 0.12723 -0.45313 0.31131 0.50036 0.69007 88 20
0.55 -0.018875 -0.01051 0.13511 -0.49988 0.39541 0.52831 0.77583 57 17
0.5 -0.0068585 -0.00076 0.15252 -0.56555 0.37933 0.60018 0.77261 44 14
0.45 -0.019492 -0.00088 0.17731 -0.79848 0.46821 0.68993 0.91074 38 12
0.4 -0.0075678 0.00776 0.21632 -0.73368 0.57988 0.86062 1.1038 35 7
0.35 -0.037314 -0.03285 0.26173 -1.0021 0.68582 1.0167 1.4242 25 3
0.3 -0.049611 -0.03266 0.3371 -1.6922 0.94317 1.3861 1.9316 32 10
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be sufficient to achieve stationarity. Another interesting feature of the results is that, generally, the average
mean decreases as the exponent ρ increases. Further, as one would expect, both the standard deviation
and the 95% and the 99% range of the d estimates increase as the exponent ρ increases. Some comments
are in order for the last two columns of Table 4.13–Table 4.13, in which, using a 1% confidence level, the
number of obligors for which the estimate of the d parameter is statistically different from zero and bigger
than zero, is reported. If we focus on the first column, the maturity with the biggest rejection frequency and
also the biggest absolute number of rejections is 1 year for which 190 time series out of 511 (37.2%) have a
parameter d statistically different from zero. For this particular maturity the difference between the number
of rejections of the null d = 0 and the number of rejections of the null d ≤ 0 is extremely large. In the
latter case there are only 3 companies for which the test rejects the null. Therefore these results suggest that
approximately a third of the time series of the log-CDS with maturity 1 year have associated a long memory
parameter d falling in the interval (0.75, 1). If one were to list the rejection frequencies of the null d = 0 for
the different maturities, one would next find the 3 years one (112 rejections out of 545, 20.5%), the 5 years
one (125 rejections out of 638, 19.6%), the 10 years maturity (88 rejections out of 484, 18.2%) and finally the
7 years maturity with 83 rejections out of 511 and a frequency of 15.6%. On the other hand the number of
rejections in the test with null d ≤ 0 is achieved for the most liquid maturity, i.e. 5 years for which there are
54 rejections (8.5%). The 5 years maturity is followed by the maturities 7 years (34 rejections–6.4%), 3 years
(29 rejections–5.3%), 10 years (20 rejections–4.1%) and 1 year for which, as mentioned, the test rejects only
3 times (0.58%). This numbers pretty much confirm that log-CDS spreads, after first differencing, become
stationary series for which there is few evidence of long memory.

Despite the most common choice for the bandwidth parameter is m = [T 0.5], we now take into account
the results for the case ρ = 0.6 and run the tests of section 4.2 for the obligors whose time series seem to be
long memory with this choice of the bandwidth parameter. The reason for this choice are essentially two: we
want to run the tests of true vs. spurious long memory on as many obligors as possible and the estimates
using ρ = 0.6 are sufficiently reliable. In Table 4.14 are thus reported the descriptive statistics regarding the
GPH estimates for the time series for which d is statistically bigger than zero for this choice of the bandwidth
parameter.

Table 4.14: GPH estimates for the first differences of CDS log-spreads which exhibit long range dependence:
descriptive statistics.

Maturity Observations mean median std min max 95% Range 99% Range

5Y 54 0.2103 0.1999 0.042539 0.15975 0.3657 0.16056 0.20595
3Y 29 0.19217 0.18944 0.02118 0.15955 0.2658 0.096228 0.10625
7Y 34 0.19963 0.19012 0.034471 0.1563 0.33527 0.14647 0.17897
1Y 3 0.18709 0.18998 0.008627 0.17738 0.19389 0.016507 0.016507
10Y 20 0.20665 0.20305 0.033185 0.17685 0.31131 0.13446 0.13446

The mean of the d parameter estimated only for the series that seem to display the long memory property
is close to 0.2 for all maturities with a maximum of 0.2103 (5 years) and a minimum of 0.18709 (1 year).
The latter number, however, is only based on a sample of three issuers. This makes also the 1 year maturity
the one with the smallest standard deviation. The median is not far from the mean, but apparently closer
to 0.19 than to 0.2.

Table 4.15 reports the results of the statistical tests of true vs. spurious long memory, run only on the
time series for which d is statistically bigger than zero at the 1% confidence level, when d is estimated using
the GPH method with bandwidth parameter mj = [T 0.5

j ].

The table confirms once again that the test based on temporal aggregation is way too conservative. It
never rejects the null of true long memory except in one case for the 10 years maturity. Of course one must
be careful when commenting the results regarding the 1 year maturity because these are based only on 3
data points. This is the explanation for the fact that, for instance the SB–FDF jumps to a zero rejection
frequency and the test based on dth differencing always rejects. If we look at the 5 years data, we can see
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Table 4.15: Rejection frequencies at 1% confidence level. For each test the null is true long memory.
“SB–FDF” denotes the test developed in Dolado et al. (2005) and described in subsection 4.2.2. “dth

Differencing” is the test of Shimotsu (2006) (subsection 4.2.4). which uses the KPSS test statistic. Every time
the GPH estimation is involved the bandwidth parameter used is mj =

[√
Tj

]
, Tj being the number of

observations in the (sub)sample.

SB–FDF dth Differencing

5Y 0.203704 0.277778
3Y 0.137931 0.551724
7Y 0.264706 0.470588
1Y 0 1
10Y 0.05 0.6

that the test based on sample splitting and the one based on dth differencing have exactly the same rejection
frequency: 15 series out of 54 can be viewed as being spurious long memory whereas the remaining 39 can
be viewed as true long memory. The number of rejections reduces to 11 when the SB–FDF is used. Only
for the 5 years maturity the results of tests, apart from the one based on temporal aggregation, seem to be
quite robust. For the other maturities, the difference in the rejection frequencies of two different test can be
as large as 55%, like in the 10 years maturity case. For the 3 years maturity case, the rejection frequencies
for the SB–FDF test and the test based on sample splitting are comparably (13.8% and 20.7%), but when
the test based on dth differencing this frequency is equal to 55%. Also for the 7 years maturity, the first two
test have rejection frequencies not too far away (26.5% and 20.6%) but the last one has a rejection frequency
much bigger (47%). Therefore only for the 5 years maturity the results are unambiguous and we can conclude
that among the 54 time series between 39 and 43 are true long memory processes. In the other cases the
conclusions from different tests are not always consistent.
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Conclusions and Further Developments

This thesis proposes a fractional version of two well-know structural models to credit risk pricing: the
Merton and Black and Cox models. In the classical formulation of these models the firm value is assumed
to be driven by a geometric brownian motion. A consequence is that the models do not take into account
the dependency structure of credit spreads over time and thus fail to predict credit spreads sufficiently close
to those observed in the market. To correct for this drawback, we propose the fractional version of the
aforementioned models, in which the firm value is driven by a fractional geometric brownian motion. In
Chapter 2 the sensitivity analysis performed in order to understand the properties of the proposed models
has shown that the theoretical spreads predicted by the fractional models are bigger that those predicted by
the classical structural models and closer the empirical ones. The validity of the models has been confirmed
by the fact that credit spreads are long memory processes. The study of the long memory properties of yields
and credit spreads has been done in Chapter 2, in which a number of estimators and their properties have
been presented. Mainly semiparametric estimator are used, in particular the GPH and the Whittle estimator
and their extensions. All these estimation procedures and the related statistical test show that credit spreads
can be described by a non-stationary long memory process. Further, several tests recently proposed in the
econometric literature to detect the presence of fractional cointegration, have been studied and implemented.
We find evidence of fractional cointegration in the bivariate systems of yields. This implies that there still
exists a long run equilibrium relationship between yields, and deviations from the fractionally cointegrating
relationship are mean reverting, so that a shock to the system will eventually die out. Formal tests for the null
of true long memory versus the alternative of long memory induced by one or more structural break, described
in details in Chapter 4 and run on time series of credit spreads, tell us that, at least for the datasets used, the
long memory characteristics of credit spreads are genuine. The result of the last chapter appear reasonably
robust, given that four different tests lead to the same conclusion of true long memory, at least for the second
database studied. The tests of Chapter 4 have been also applied to the CDS data of Chapter 3, after having
determined how many obligors for the most liquid maturities display the property of long range dependence.
The result show that, estimating the fractional differencing parameter with the GPH estimator for the first
difference of CDS quotes, results in a rather small proportions of obligors having observations which are long
memory. However the vast majority of obligors whose time series seem to display long memory features,
have been shown to be genuine long memory by the four tests above. A possible extension of this chapter
would be the study of the long memory properties of CMCDS contracts. The idea is to first construct a large
database with the theoretical CMCDS prices, determined using the different methods implemented. Once the
database is available it is possible to apply the estimators of the long memory parameter to the constructed
quotes and carry on the statistical tests for the null of true versus spurious long memory. Further extensions
include the study of the long memory properties in the volatility of CDS/CMCDS quotes. Since long memory
processes have been used extensively in modeling the strong persistence observed in volatility of asset prices
(see for instance Baillie et al., 1996; Andersen and Bollerslev, 1997; Bollerslev and Mikkelsen, 1996; Breidt
et al., 1998), it could be interesting to verify whether this feature is common to this kind of credit data as
well. In Chapter 3, single-name CDS spread data is used to replicate the would have been CMCDS spreads.
These, in turn, are used to study paired trading strategy of going long CDS and shorting CMCDS and
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analyse the profit-loss profile across the database of obligors considered. The idea was to investigate whether
historically investors are better off trading in one type of instrument versus the other (CMCDS vs CDS).
On average the aforementioned strategy would have led to a loss. In other words it would have been more
profitable to sell CDS and to buy CMCDS. Considering all the methods implemented for the calculation of
the participation rates, at least 85% of the names analysed had a negative cumulative net trading profit/loss
over the 5 years period considered. The convexity adjustment is found to have some effect over the trading
strategies considered, because it appears to reduce the loss that an investor would have incurred in by buying
CDS and selling CMCDS over the 5 years period considered. However, the percentage of names for which the
above strategy would have led to a loss is not influenced significantly when the convexity adjustment has been
taken into account. Further, introducing a cap on the floating payment does not have a significant impact on
the results. The results are also quite robust, because the average losses across the database corresponding to
the different (parametric and non-parametric) methods implemented to compute the participation rates and
hence the CMCDS theoretical quotes don’t change too much. The next step of the research was to “sieve”
the list of obligors in the database in order to find the names for which the strategy gives a gain or a loss
bigger than 500 or 1000 bp no matter what the method used to compute the participation rate. Interestingly
the strategies involving the companies “Ford Mtr Co” and “Gen Mtrs Corp” lead to a profits bigger than
500 bp and bigger than 1000 bp respectively for all the methods implemented.

An interesting research question would be: how bigger are the credit spreads from the fractional models
than those predicted by the classical models? In other words it would be interesting to understand how
close they are to the credit spreads observed in the market. To answer this question a calibration exercise is
needed. The difficulties related to this exercise are the same that a researcher faces during the calibration
of the classical Merton model, i.e. the non-observability of the firm value process V and the need to restrict
the attention to firms with a particularly simple debt structure. This difficulties exacerbate in the case of
fractional models, because for the estimation of the Hurst parameter a sufficient number of observation are
needed in order to have a reliable estimate and usually it is not easy to find accounting informations with the
desired frequency. Many extension of the work developed in Chapter 3 are possible. First of all, it could be
very interesting to solve the problem of the convexity adjustment by evaluating in a lattice payment and loss
leg and hence the participation rate. This method is briefly introduced in Section A.3, but still some work is
needed to calibrate and implement the proposed method. This additional tool would be important because so
far only one method which allows for the convexity adjustment has been identified and implemented. Another
method will make the results more robust and the conclusions regarding the trading strategies stronger. Of
course there are many issues to consider in these approach, for instance the choice of the process for the
hazard rate, the calibration of the tree and the parameter estimation. For instance it is not clear at the
moment if it is better to use for the intensity rate the one-factor Hull and White model in order to exploit the
results in Grant and Vora (2002) as far as the calibration of the tree is concerned and make the computations
faster, rather than the BK model as suggested by Pedersen and Sen (2004). Some other issues that could be
investigated as an extension of this research include the effect of the different maturities of the CMCDS on the
statistical arbitrage analysis, the impact of rating and sector category. Replicating the statistical arbitrage
analysis studying a three years contract starting at the end of 2003 with a three years reference CDS, would
be something worth trying. This would be a way to verify if also in this case the same pattern is observed,
i.e. investors are better off selling CDS and buying CMCDS and if the obligors for which the strategy leads
to a profit (loss) are the same that led to a profit (loss) for the 5 years contract indexed to the 5 years CDS.
The importance of this further analysis is in the fact that there are much more companies in the dataset
for which this can be done, making the conclusions more robust, even though the 3 years CDS contract is
less liquid than the 5 years one. Furthermore, a possible extension could be the study of the impact of the
convexity adjustment on different maturities. For instance it could be interesting to verify empirically if the
convexity adjustment has a bigger impact for longer maturities, as one would expect.
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Technical Proofs

A.1 Analytic Formula for Forward CDS Spreads

Consider a forward contract for default protection during the time period (t, T ) The buyer will enter this
contract at time t if the default has not occurred by that date. Once again, the pricing equation for forward
CDS is written by equating the estimated values of the protection and premium leg of the contract as of
starting date t assuming that the debt issuer survived until that time. If there is a credit event prior to t
the forward CDS contract ceases to exist and, hence, the equality is trivial with no payments made on either
side. If we do not consider accrual, FS(0, t, T ) = FS(t, T ), satisfies

FS(t, T )

∫ T

t

exp

(
−
∫ v

t

(ru + λu)du

)
dv = q

∫ T

t

λv exp

(
−
∫ v

t

(ru + λu)du

)
dv.

Multiplying both sides by exp
(
−
∫ t

0
(ru + λu)du

)
, taking this under the integral and splitting the integral in

∫ T

t
=
∫ T

0
−
∫ t

0
, gives

FS(t, T )

[∫ T

0

exp

(
−
∫ v

0

(ru + λu)du

)
dv −

∫ t

0

exp

(
−
∫ v

0

(ru + λu)du

)
dv

]

= q

[∫ T

0

λv exp

(
−
∫ v

0

(ru + λu)du

)
dv −

∫ t

0

λv exp

(
−
∫ v

0

(ru + λu)du

)
dv

]
.

Denoting by δ(t, T ) =
∫ t
0

exp (−
∫ v
0

(ru+λu)du)dv
∫ T
0

exp (−
∫ v
0

(ru+λu)du)dv
≡ RiskyPV01(0,t)

RiskyPV01(0,T ) and dividing both the left and right hand side

by
∫ T

0
exp

(
−
∫ v

0
(ru + λu)du

)
yields

FS(t, T )

[
1 −

∫ t

0
exp

(
−
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0
(ru + λu)du

)
dv

∫ T

0
exp

(
−
∫ v

0
(ru + λu)du

)
dv

︸ ︷︷ ︸
δ(t,T )

]
= q
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0
λv exp
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−
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0
(ru + λu)du

)
dv

∫ T

0
exp
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−
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0
(ru + λu)du

)
︸ ︷︷ ︸
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− q
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0
λv exp
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−
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(ru + λu)du

)
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0
exp
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−
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0
(ru + λu)du

)
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×
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0
exp
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0
(ru + λu)du

)
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∫ T

0
exp
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−
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0
(ru + λu)du

)
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δ(t,T )

and thus

FS(t, T ) =
S(0, T ) − δ(t, T )S(0, t)

1 − δ(t, T )
.
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A.2 Survival Probabilities under a OU Process for the Hazard

Rate

From (3.14) we have

SP (t) = E0

[
exp

(
−
∫ t

0

{
λ0e

−αs +
k

α

(
1 − e−αs

)
+ σ

∫ s

0

eα(u−s)dBu

}
ds

)]

= exp

[
−kt
α

− 1 − e−αt

α
(λ0 −

k

α
)

]
E0

{
exp

[
−σ
∫ t

0

(∫ s

0

eα(u−s)dBu

)
ds

]}

Denoting by Y the term inside the first exponential under the expectation we have to calculate E0(exp(Y )).
Now Y is Gaussian distributed with mean 0 and variance equal to

var(Y ) = σ2

∫ t

0

e2αu

(∫ t

u

e−αsds

)2

du = −σ2 3 + e−2αt − 4e−αt − 2tα

2α3

The expectation is easy to calculate because it is the mean of a lognormal variable. Hence

SP (t) = exp

[
−kt
α

− 1 − e−αt

α
(λ0 −

k

α
)

]
exp[var(Y )/2]

= exp

[
−kt
α

− 1 − e−αt

α
(λ0 −

k

α
) − σ2 3 + e−2αt − 4e−αt − 2tα

4α3

]
.

Rearranging, we get (3.15)–(3.16).
Another way to derive this formula is to express the stochastic intensity λ as a function Λ of an affine

process X whose dynamics is given by the SDE:

dXt = f(Xt)dt+ g(Xt)dB̃t

where B̃ is a multidimensional Brownian motion and the drift f(Xt) and the covariance matrix g(Xt)g(Xt)
′

have affine dependence on Xt (see Duffie et al., 2003). It is possible to show that that, under technical
conditions (see Duffie and Singleton, 2003), for any ω ∈ R

Et

[
e
∫ T

t
−Λ(Xu)du+ωXT

]
= ea(T−t)+b(T−t)Xt (A.1)

where the coefficients a(·) and b(·) satisfy generalized Riccati ODEs. If we assume that the intensity itself is
an affine process like in (3.7), then we can apply (A.1) with ω = 0 and Λ(x) = x. In this case the ODEs can
be solved analytically yielding (3.16).

A.3 Valuation of CMCDS in a Lattice

As an alternative to the approach which assumes a OU process for the default intensity, we could construct
a lattice (or recombining tree) for the hazard rate which can be used to value the denominator of (3.5).

In this respect, we can exploit the analogy to interest rate models. In interest rate models we specify a
stochastic process for the instantaneous interest rate, rs and value the price at time zero of a bond maturing
at t as

B(0, t) = E0

[
exp

(
−
∫ t

0

rsds

)]
.

If in the RHS we replace rs with λs we get the formula for the survival probability (3.14).
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Since we know how to implement and calibrate short-rate models in a lattice, it is possible to do the same
for the hazard rate.

In particular, following Pedersen and Sen (2004), we implement the Black-Karasinski (BK) model (see
Black and Karasinski, 1991) on a trinomial lattice with a constant hazard rate volatility. The BK process is
lognormal with mean reversion.

First a trinomial lattice like the one for the Hull-White (HW) model for interest rates is considered. Then,
a simple modification allows us to build the tree for hazard rates following a BK model.

The steps are:

1. Fit a piece-wise constant hazard rate model to a curve of CDS spreads and the chosen recovery-given-
default (See section 3.4). Produce a curve of risk-neutral survival probabilities.

2. Estimate the hazard rate volatility parameter σ and the mean reversion speed a and build a tree for x
following the process

dx = −axdt+ σdB. (A.2)

Suppose we are interested in an interval of length T . The length of the time step is ∆t = T
n and spacing

between x is ∆x = σ
√

3∆t. The value of x at the node (i, j), i = 0, 1, . . . , n, where time is i∆t, is
xij = j∆x where j is a positive or negative integer.

The tree is not standard, because of the mean reversion. In particular we have special branching at the
top and bottom nodes when j > jmax and j < jmin (See Figure A.1).

Following Hull and White (1994, 1996) we set

jmax =

⌈
0.184

a∆t

⌉
, jmin = −jmax.

Branch probabilities are chosen so that at all nodes the first two moments of these discrete model and
first two moments of the continuous process (A.2) coincide. Define by pu, pm and pd the probabilities
of the highest, middle and lowest branches emanating from the node. Then at a node like the one in
Figure A.1–(a) we have

pu =
1

6
+
a2j2∆t2 − aj∆t

2

pm =
2

3
− a2j2∆t2

pd =
1

6
+
a2j2∆t2 + aj∆t

2

If the branching is like the one in Figure A.1–(b)

pu =
7

6
+
a2j2∆t2 − 3aj∆t

2

pm = −1

3
− a2j2∆t2 + 2aj∆t

pd =
1

6
+
a2j2∆t2 − aj∆t

2

Finally if the branching has the form shown in Figure A.1–(c)

pu =
1

6
+
a2j2∆t2 + aj∆t

2

pm = −1

3
− a2j2∆t2 − 2aj∆t

pd =
7

6
+
a2j2∆t2 + 3aj∆t

2
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Figure A.1: The three branching types of the Hull-White trinomial tree. (a) is the standard branching
method at inner nodes of the tree, (b) is used at the upper edge of the tree (j > jmax), and (c) is used at

the lower edge of the tree (j < jmin).

(a) (b) (c)

3. Create a new default node for each time slice in the lattice and an extra branch from each original node
to the default state on the next time slice to obtain a tree like the one in Figure A.2. Switch from a
tree for x to a tree for λ by setting the hazard rate at a given node to λij = exp(xij). The probability
of going to the default state is set to p = 1 − exp(−λij∆t) where λij is the hazard rate at that node.
For each node, the branch probabilities to the original nodes are multiplied by 1 − p, where p is the
default probability for that node.

Figure A.2: Tree for the process x. The layer above the tree is the default state.

4. Calibrate the model to ensure it fits the curve of survival probabilities found in step 1 above. For each
time slice in the lattice we shift the hazard rates at all nodes on that time slice by the same relative
amount to match the default probabilities from the data. This is done iteratively. The hazard rate at
node (0, 0) is

λ∗0,0 = − logSP (∆t)

∆t

where SP (∆t) is the survival probability from step 1.

If calibration has been done up to time i−1, we set the probability of having a default between i∆t and
(i + 1)∆t from the tree equal to the corresponding observed probability. This results in the following
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equation:
ℓ∑

j=−ℓ

p∗(i,j)P ((i, j) → def) = 1 − SP ((i+ 1)∆t|i∆t) = 1 − SP ((i+ 1)∆t)

SP (i∆t)
(A.3)

where ℓ = min(i, jmax), 1 − SP ((i+ 1)∆t|i∆t) is the observed probability of having a default between
(i + 1)∆t and i∆t, and p∗(i,j) is the already adjusted probability (as seen from the initial node) of
reaching node j at time i∆t. For a given time slice these probabilities only depend on the already fitted
hazard rates at previous time slices. Denoting by hi the shift in the hazard rates at time i∆t, we write
the probability of defaulting from node (i, j) as

P ((i, j) → def) = 1 − exp [−(λij + hi)∆t]

so that we can solve (A.3) for hi.

Equation (A.3) implies

e−hi∆t
ℓ∑

j=−ℓ

p∗(i,j)e
−λij∆t =

ℓ∑

j=−ℓ

p∗(i,j) − 1 +
SP ((i+ 1)∆t)

SP (i∆t)
.

Now, since
ℓ∑

j=−ℓ

p∗(i,j) = SP (i∆t)

we have for i = 1, . . . , n− 1

hi = − 1

∆t
log


SP (i∆t) − 1 + SP ((i+1)∆t)

SP (i∆t)∑ℓ
j=−ℓ p

∗
(i,j)e

−λij∆t




Note that this equation holds true for i = 0 as well. The last hi we compute is the one for time T −∆t
because we don’t need the values of λ at the final time slice.

If instead of a BK model for the intensity rate, we use a one-factor Hull and White model (see Hull
and White, 1990), we can exploit the results in Grant and Vora (2002) as far as the calibration of the
tree is concerned. In this paper an analytical solution for the mean interest rate at each date in the
tree for the Hull and White model is provided. We can apply the same results when we build the tree
for the hazard rate.

Assume the hazard rate evolves according to

dλt = [µt + α(γt − λt)] dt+ σtdBt. (A.4)

The discrete-time analogue of (A.4) is

∆λt = λt+∆t − λt = [µt + (1 − k)(γt − λt)] ∆t+ bσt∆Bt (A.5)

where

k = e−α∆t (A.6)

b =

(
1 − e−2α∆t

2α

)1/2

(A.7)

γt = γ0 +

t−1∑

j=0

µj (A.8)
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and ∆Bt has a normal distribution with mean 0 and variance ∆t.

When ∆t = 1 from (A.5) and (A.8) it follows

λt = γt + kt[λ0 − γ0] + b

t−1∑

j=0

kt−j−1σj∆Bj , (A.9)

i.e. λt has a normal distribution.

The calibration of the tree entails

SP (t) = E0


exp


−

t−1∑

j=0

λj




 .

Using the fact that if X is normally distributed,N(µ, σ2), then

E0 [exp (−X)] = e−µ+ 1
2 σ2

we can conclude

E0 [λt] = f(t) +
1

2
Var




t∑

j=1

λj


− 1

2
Var



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j=1

λj




with {
f(0) = λ0

f(t) = log SP (t)
SP (t+1)

.

Assuming a constant volatility σ we have

Var




t∑
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λj


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

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kj−i−1∆B(i)
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

= b2σ2Var


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
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


= b2σ2
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Var(∆B(i))


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kj−i−1




2

= b2σ2
t−1∑

i=0




t∑

j=i+1

kj−i−1




2

.

Extension to the case ∆t 6= 1 are straightforward.

The knowledge of E0 [λt] for each time slice and the increment ∆λ =
√

3∆t allows us to build the
calibrated tree for the hazard rate.

5. When the lattice has been calibrated, we have all the branch probabilities. We then find the one-step
Libor discount factors between each pair of adjacent time slices. These are the forward discount factors
from a curve fitted to current Libor/swap rates. The one step discount factors are used together with
the branch probabilities when we value a security by calculating expected discounted values at each
node backwards though time.

To value the floating premium leg on a CMDS, we consider a different lattice for each payment date. To
value the payment set at date si (and paid at si+1) we construct the lattice out to si +m, where m is the
constant maturity tenor (typically m = 5 years). The valuation is done by first discounting back in the
lattice from si + m to si to obtain at each node on the si time slice the values of RiskyPV01(si, si + m),
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RiskyPV01(si, si+1) and PVP01(si, si + m), where PVP01(si, si + m) is the value of the protection leg for
the interval (si, si +m) assuming a premium of 1bp.

We can therefore compute the value of the forward spread at each node as:

PVP01(si, si +m)

RiskyPV01(si, si +m)
.

Since this is paid at time si+1 we need to further multiply by RiskyPV01(si, si+1) to have the value at time
si of the payment.

Note that the use of the lattice allows us also to include the accrual payment when valuing the present
value of future payments.

The value at time zero of the payment set at date si is then obtained by discounting back in the lattice
up to time zero.

Finally, the value of the floating premium leg is the sum of the present values of the individual payments.
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B

Listings

Listing B.1: Calculation of Discount Factors from Libor rates: Matlab Code

1 function df=rates2discount_curveL (rates ,date)

2 % LiborSwap=rates2discount_curve(rates ,date)

3 % Computes the discount curve

4 % from the Libor rates for maturities 0:1:12 months

5 % on the day date with format 'dd/mm/yyyy '.

6

7 %Computing the vector N

8 %with the number of days

9 %to maturity

10 v=datevec(date ,'dd/mm/yyyy ');

11 temp=v;

12

13 for i=1:12

14 temp (2)= temp (2)+1;

15 s=datestr(temp);

16 N(i)= datenum(s)-datenum(v);

17 end

18

19

20 df=zeros (12 ,1);

21 df (1)=1;

22 for i=1:12

23 df(i+1)=1/(1+ rates(i)/100*N(i)/360);

24 end
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Listing B.2: Calculation of Discount Factors from Swap rates: Matlab Code

1 function [dfLSR ,dfCFR ]= rates2discount_curveS (rates ,Maturities)

2 % [dfLSR ,dfCFR ]= rates2discount_curveS (rates ,Maturities)

3 % Computes the discount curve from the Swap rates for a vector of

4 % maturities , for instance [12;24;36;48;60;84;120;240;360] months.

5 % Both the "Linear Swap rates" and the "Constant Forward Rates" methods

6 % are used. The first maturity need be 12m.

7

8 Maturities=Maturities /12;

9 N=length(Maturities );

10

11 %Linear Swap rates

12 temp =[];% this will be the vector with

13 %the missing value replaced by

14 %interpolated swap rates.

15

16 for i=2:N

17 inc=( rates(i)-rates(i -1))/( Maturities(i)-Maturities (i -1));

18 temp2 =[];

19 for j=0: Maturities(i)-Maturities(i-1)-1

20 temp2(j+1)= rates(i-1)+ inc*j;

21 end

22 temp2=temp2 ';

23 temp=[temp;temp2 ];

24 end

25 temp=[temp;rates(N)];

26

27 %solving the linear system

28 A=diag(temp +100);

29 for i=1: Maturities(N)-1

30 A(i+1: Maturities(N),i)=temp(i+1: Maturities(N));

31 end

32 dfLSR=A\(100* ones(Maturities(N),1));

33

34 %Constant Forward Rates

35 dfCFR (1)=100/(100+ rates (1));

36 for i=2:N

37 d=Maturities(i)-Maturities(i-1);

38 if d==1

39 temp =(100- rates(i)*sum(dfCFR ))/(100+ rates(i));

40 else

41 F_star=fzero(@(F) helperCFR(F,rates(i),dfCFR ,d),1);

42 temp =[];

43 for j=1:d

44 temp(j)= dfCFR(length(dfCFR ))*(1+ F_star )^(-j);

45 end

46 temp=temp ';

47 end

48 dfCFR =[ dfCFR;temp];

49 end

50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

51 function f=helperCFR(F,r,df ,d)

52

53 N=length(df);

54 f=-100+r*sum(df )+...

55 r*df(N)*sum ((1+F).^( -(1:d -1)))+...

56 (100+r)*df(N)*(1+F)^(-d);
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Listing B.3: Libor-swap Discount curve: Matlab Code

1 function DF=discount_curve(LiborSwap ,Maturities)

2 % Computes the discount curve

3 % DF(i)=DF(t_i)=DF(i/12), interpolating

4 % from the vector LiborSwap , which contains

5 % the Libor or Swap rates for the maturities

6 % given by the vector Maturities.

7 % Maturities =[0;(1:12) ';24;36;48;60;84;120;240;360]

8 % and , for instance LiborSwap =[1;0.997;0.995;...]

9

10 for i=2: length(Maturities)

11 for j=Maturities(i -1)+1: Maturities(i)

12 DF(j)=exp(( Maturities(i)-j )/( Maturities(i)-Maturities(i -1))...

13 *log(LiborSwap(i -1))+...

14 (j-Maturities(i -1))/( Maturities(i)-Maturities(i -1))...

15 *log(LiborSwap(i)));

16 end

17 end

Listing B.4: Survival Probabilities with piecewise constant hazard rates: Matlab Code

1 function s=SP_lambda(tau ,Tenors ,lambda)

2 % SP_lambda(tau ,Tenors ,lambda)

3 % Survival probabilities with piecewise constant hazard rates lambda.

4 % Tau is time to maturity (in years), lambda is the vector of

5 % hazard rates and Tenors is the vector of maturities (months)

6 % available for CDS contracts. Tau can be a vector.

7

8 Tenors=Tenors /12;

9 M=length(Tenors );

10

11 for t=1: length(tau)

12

13 for i=1:M-1

14 innersums(i)= Tenors (1:i)'* ( lambda (1:i) - lambda (2:i+1))+...

15 lambda(i+1)* tau(t);

16 I(i)= (tau(t)>=Tenors(i)) *(tau(t)<Tenors(i+1));

17 end

18

19 s(t)=exp(-(lambda (1)* tau(t)*( tau(t)<Tenors (1))...

20 +innersums (1:M-1)*I(1:M-1) '...

21 +( innersums(M-1) )*( tau(t)>=Tenors(M))));% This is for tau >T_M

22

23 end

24 s=s';
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Listing B.5: Objective Function used to bootstrap survival probabilities: Matlab Code

1 function f=obj_lambda(S,q,Tenors ,n,DF ,lambda)

2 % f=obj_lambda(S,q,Tenors ,n,DF ,lambda)

3 % This is the function whose

4 % zero we are looking for when the

5 % maturity of the CDS is n (months ).

6 % n is in Tenors =[6;12;24;36;60;84;120].

7 % S is a length(Tenors)-vector with the available

8 % cds for the contracts maturing in n months.

9 % DF is the vector of discount factors.

10

11 k=(1: length(Tenors ))*(n== Tenors );

12 % k is the element of S we are interested in

13 % for instance if n=60, k=5

14 Delta =1/4;

15 f=S(k)/(2*q)* Delta*sum(DF(n: -3:3).*...

16 (SP_lambda ((n-3: -3:0) '/12 , Tenors ,lambda )+...

17 SP_lambda( (n:-3:3)' /12,Tenors ,lambda ))) -...

18 sum( DF(1:n).* ( SP_lambda ((0:n-1) '/12, Tenors ,lambda )-...

19 SP_lambda ((1:n)'/12,Tenors ,lambda )));

Listing B.6: Derivation of hazard rates: Matlab Code

1 function lambda=bootstrapped_lambda (S,q,DF ,Tenors)

2 % lambda=bootstrapped_lambda (S,q,DF ,Tenors)

3 % Returns the vector of hazard rates lambda

4 % given the vector of CDS premiums S with

5 % maturities (months) Tenors , the recovery rate 1-q

6 % and the discount factors vector DF.

7

8 M=length(Tenors );

9

10 lambda (1)=...

11 fzero(@(x) obj_lambda(S,q,Tenors ,Tenors (1),DF ,[x;zeros(M-1 ,1)]) ,0.5 );

12

13 for i=2:M-1

14 lambda(i)=fzero(@(x) obj_lambda(S,q,Tenors ,Tenors(i),DF ,...

15 [lambda;x;zeros(M-i,1)]) ,0.5 );

16 if i==2

17 lambda=lambda ';

18 end

19 end

20

21 lambda(M)= fzero(@(x) obj_lambda(S,q,Tenors ,Tenors(M),DF ,[ lambda;x]) ,0.5);
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Listing B.7: RiskyPV01 when using Survival Probabilities with piecewise constant hazard rates: Matlab Code

1 function RPV=RPV01_lambda(T,DF ,Tenors ,lambda)

2 % RPV=RPV01(T,DF ,Tenors ,lambda)

3 % T: Time in years

4 % DF is the vector with the discount curve

5 % Tenors ,lambda are used to compute the

6 % survival probabilities SP

7

8 n=floor(T*12); %Time in months

9 k=floor(n/3);

10 Delta =1/4;

11 Delta0 =1;

12

13 if T==0

14 RPV=1;

15 else

16 RPV= .5*( Delta0*DF (1)*(1+ SP_lambda (1/12, Tenors ,lambda ))+...

17 Delta*sum(DF(n:-3:n-3*k+3).*...

18 (SP_lambda ((n:-3:n-3*k+3) '/12, Tenors ,lambda )+...

19 SP_lambda ((n-3:-3:n-3*k)' /12,Tenors ,lambda ))));

20 end

Listing B.8: Theoretical CDS premiums when using Survival Probabilities with piecewise constant hazard
rates: Matlab Code

1 function S=CDS_lambda(T,DF ,q,Tenors ,lambda)

2 % S=CDS_NS(T,DF ,alpha) computes

3 % the theoretical CDS spread for

4 % maturity T (years)

5 % using the bootstrapped

6 % survival probabilities .

7

8 for i=1: length(T)

9 if T(i)==0

10 S=1;

11 else

12 n=floor(T(i)*12); %Time in months

13 S(i)=q/RPV01_lambda(T(i),DF ,Tenors ,lambda )*...

14 sum(DF(1:n).*( SP_lambda ((0:n-1)/12 , Tenors ,lambda )...

15 -SP_lambda ((1:n)/12,Tenors ,lambda )));

16 end

17

18 end

19 S=S';
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Listing B.9: Survival Probabilities with the Nelson-Siegel function: Matlab Code

1 function s=SP_NS(t,alpha)

2 % s=SP_NS(t,alpha)

3 % Survival probabilities using

4 % the Nelson -Siegel function.

5 % t is time to maturity (in years),

6 % alpha is the vector of parameters:

7 % alpha (1)= alpha_0;

8 % alpha (2)= alpha_1;

9 % alpha (3)= alpha_3.

10

11 for i=1: length(t)

12 s(i)= alpha (1)*t(i)+ alpha (2)* alpha (3)*(1 - exp(-t(i)/ alpha (3)));

13 s(i)=exp(-s(i));

14 end

15 s=s';

Listing B.10: RiskyPV01 when using Survival Probabilities with the Nelson-Siegel function: Matlab Code

1 function RPV=RPV01_NS(T,DF ,alpha)

2 % RPV=RPV01_NS(T,DF ,alpha)

3 % Risky PV with the Nelson -Siegel function.

4 % T: Time in years

5

6 n=floor(T*12); %Time in months

7 k=floor(n/3);

8 Delta =1/4;

9 Delta0 =1;

10

11

12 if T==0

13 RPV =1;

14 else

15 RPV= .5*( Delta0*DF (1)*(1+ SP_NS (1/12, alpha ))+...

16 Delta*sum( DF(n:-3:n-3*k+3).*...

17 (SP_NS( (n:-3:n-3*k+3) '/12, alpha )+...

18 SP_NS( (n-3:-3:n-3*k)' /12, alpha ))));

19 end
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Listing B.11: Theoretical CDS premiums when using Survival Probabilities with the Nelson-Siegel function:
Matlab Code

1 function S=CDS_NS(T,DF ,q,alpha)

2 % S=CDS_NS(T,DF ,q,alpha) computes

3 % the theoretical CDS spread for

4 % maturity T (years)

5 % given a SP function

6 % with parameters alpha , a Discount curve

7 % and a loss rate q.

8

9 for i=1: length(T)

10 if T(i)==0

11 S=1;

12 else

13 n=floor(T(i)*12); %Time in months

14 S(i)=q/RPV01_NS(T(i),DF ,alpha )*...

15 sum(DF(1:n).*( SP_NS ((0:n-1)/12 , alpha)-SP_NS ((1:n)/12, alpha )));

16 end

17

18 end

19 S=S';

Listing B.12: Objective Function for the Nelson-Siefel interpolation: Matlab Code

1 function f=obj_NS(S,Tenors ,DF ,q,alpha)

2 % f=obj_NS(S,Tenors ,DF ,q,alpha)

3 % Computes the sum of squared residuals.

4 % Residuals are computed as the difference

5 % between thepretical and observed

6 % CDS spreads.

7 % S is the vector of observed spreads

8 % with maturity given by the vector Tenors.

9 % DF is the discount curve.

10 % q is the loss rate.

11 % The theoretical CDS spreads

12 % are computed with a NS function

13 % with parameters alpha.

14

15

16 theo=CDS_NS(Tenors /12,DF ,q,alpha );

17 f=(theo -S)'*(theo -S);
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Listing B.13: Derivation of α̂: Matlab Code

1 function [alpha_star ,fval]= alpha_NS(S,Tenors ,DF ,q)

2 % alpha_star=alpha_NS(S,Tenors ,DF ,q)

3 % computes the parameter alpha_star

4 % which minimizes the sum of squared

5 % residuals (res=theo CDS - obs CDS)

6 % or the sum of absolute residuals

7 % subject to the survival probabilites

8 % being non increasing and alpha_3 >0.

9 % The theoretical CDS spreads are calculated

10 % using the Nelson -Siegel function.

11

12 warning off;

13 options=optimset('display ','off ');

14 [alpha_star ,fval]= fmincon(@(alpha) obj_NS(S,Tenors ,DF ,q,alpha ),...

15 .5* ones (3,1),[],[],[],[], zeros (3,1),[],[], options );

16

17 [b,fval2 ]= fmincon(@(alpha) obj_NS(S,Tenors ,DF ,q,alpha ),...

18 .5* ones (3,1),[],[],[],[],[0;- Inf;0],[],@mycon ,options );

19 if fval2 <fval

20 alpha_star=b;fval=fval2;

21 end

22

23 [temp ,fvalabs ]= fmincon(@(alpha) obj_NSabs(S,Tenors ,DF ,q,alpha ),...

24 .5* ones (3,1),[],[],[],[], zeros (3,1),[],[], options );

25

26 [b,fval2abs ]= fmincon(@(alpha) obj_NSabs(S,Tenors ,DF ,q,alpha ),...

27 .5* ones (3,1),[],[],[],[],[0;- Inf;0],[],@mycon ,options );

28 if fval2abs <fvalabs

29 temp=b;fvalabs=fval2abs;

30 end

31

32 if obj_NSabs(S,Tenors ,DF ,q,temp)<obj_NSabs(S,Tenors ,DF ,q,alpha_star )...

33 ||...

34 obj_NS(S,Tenors ,DF ,q,temp)<obj_NS(S,Tenors ,DF ,q,alpha_star)

35 alpha_star=temp;fval=fvalabs;

36 end

37 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

38 function [c,ceq] = mycon(alpha)

39 % Constraint on alpha_1

40 c = -alpha (1)- alpha (2)* exp(-20/ alpha (3));

41 ceq =[];
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Listing B.14: Forward CDS when Survival Probabilities with piecewise constant hazard rates are used: Matlab
Code

1 function FS=FS_lambda(t,T,DF ,q,Tenors ,lambda)

2 % FS=FS_lambda(t,T,DF ,alpha)

3 % Forward CDS spreads

4 % using the bootstrapped

5 % survival probabilities .

6 % Time in years.

7

8 for i=1: length(t)

9 if t(i)==0

10 FS(i)= CDS_lambda(T(i),DF ,q,Tenors ,lambda );

11 else

12 delta=RPV01_lambda(t(i),DF ,Tenors ,lambda )/...

13 RPV01_lambda(T(i),DF ,Tenors ,lambda );

14 FS(i)=( CDS_lambda(T(i),DF ,q,Tenors ,lambda )-...

15 delta*CDS_lambda(t(i),DF ,q,Tenors ,lambda ))/(1- delta );

16 end

17 end

18 FS=FS ';

Listing B.15: Participation Rate when Survival Probabilities with piecewise constant hazard rates are used:
Matlab Code

1 function PR=PR_lambda(m,T,S,Tenors ,DF ,q)

2 % PR=PR_lambda(m,T,S,Tenors ,DF ,q)

3 % Participation rate for

4 % a CMCDS contract with

5 % maturity T (years)

6 % with a reference CDS contract

7 % maturing in m years and a

8 % function for the SP with piecewise constant

9 % hazard rates.

10 % S is the vector of avaliable

11 % CDS spreads maturing at the

12 % time given by the vector Tenors (months ).

13 % DF is the vector of discount factors

14 % and q the loss rate.

15

16 warning off;

17 lambda=bootstrapped_lambda (S,q,DF ,Tenors );

18 n=floor(T*12); %Time in months

19 k=floor(n/3);

20 Delta =1/4;

21

22

23

24 j=(1: length(Tenors ))*(m*12== Tenors );

25

26 NUM=S(j)* Delta*sum( DF(n:-3:n-3*k+3).*...

27 (SP_lambda ((n:-3:n-3*k+3)' /12,Tenors ,lambda )+...

28 SP_lambda ((n-3:-3:n-3*k)' /12,Tenors ,lambda )));

29

30

31 DEN=Delta*sum (...

32 FS_lambda ((n-3:-3:n-3*k)'/12,(n-3:-3:n-3*k) '/12+m,DF ,q,Tenors ,lambda ).*...

33 DF(n:-3:n-3*k+3).* (SP_lambda ((n:-3:n-3*k+3)' /12,Tenors ,lambda )+...

34 SP_lambda ((n-3:-3:n-3*k)' /12,Tenors ,lambda )));

35 PR=NUM/DEN;
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Listing B.16: Forward CDS when Nelson-Siegel interpolation is used: Matlab Code

1 function FS=FS_lambda(t,T,DF ,q,Tenors ,lambda)

2 % FS=FS_lambda(t,T,DF ,q,Tenors ,lambda)

3 % Forward CDS spreads

4 % using the bootstrapped

5 % survival probabilities .

6 % Time in years.

7

8 for i=1: length(t)

9 if t(i)==0

10 FS(i)= CDS_lambda(T(i),DF ,q,Tenors ,lambda );

11 else

12 delta=RPV01_lambda(t(i),DF ,Tenors ,lambda )/...

13 RPV01_lambda(T(i),DF ,Tenors ,lambda );

14 FS(i)=( CDS_lambda(T(i),DF ,q,Tenors ,lambda )-...

15 delta*CDS_lambda(t(i),DF ,q,Tenors ,lambda ))/(1- delta );

16 end

17 end

18 FS=FS ';

Listing B.17: Participation Rate when Nelson-Siegel interpolation is used: Matlab Code

1 function PR=PR_NS(m,T,S,Tenors ,DF ,q)

2 % PR=PR_NS(m,T,S,Tenors ,DF ,q)

3 % Participation rate for

4 % a CMCDS contract with

5 % maturity T (years)

6 % with a reference CDS contract

7 % maturing in m years and a

8 % Nelson -Siegel function for the SP.

9 % S is the vector of avaliable

10 % CDS spreads maturing at the

11 % time given by the vector Tenors (months ).

12 % DF is the vector of discount factors

13 % and q the loss rate.

14

15 alpha_star=alpha_NS(S,Tenors ,DF ,q);

16 n=floor(T*12); %Time in months

17 k=floor(n/3);

18 Delta =1/4;

19

20

21

22 j=(1: length(Tenors ))*(m*12== Tenors );

23

24 NUM=S(j)* Delta*sum( DF(n:-3:n-3*k+3).*...

25 (SP_NS( (n:-3:n-3*k+3)' /12, alpha_star )+...

26 SP_NS( (n-3:-3:n-3*k)' /12, alpha_star )));

27

28

29 DEN=Delta*sum (...

30 FS_NS ((n-3:-3:n-3*k)'/12,(n-3:-3:n-3*k) '/12+m,DF ,q,alpha_star ).*...

31 DF(n:-3:n-3*k+3).* (SP_NS( (n:-3:n-3*k+3)' /12, alpha_star )+...

32 SP_NS( (n-3:-3:n-3*k)' /12, alpha_star )));

33 PR=NUM/DEN;
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Peltier, R. F. and J. Lévy Véhel (1995). Multifractional Brownian motion: definition and preliminary results. Rapport
de recherche n.2645, INRIA, Le Chesnay Cedex.

Peters, E. E. (1994). Fractal Market Analysis. John Wiley & Sons.

Prigent, J.-L., O. Renault, and O. Scaillet (2001). An empirical investigation in credit spread indices. Journal of

Risk 3, 27–55.

Rajan, A., G. McDermott, and R. Roy (2007). The Structured Credit Handbook. John Wiley & Sons.

Robinson, P. M. (1994). Semiparametric analysis of long-memory time series. Annals of Statistics 22 (1), 221–238.

Robinson, P. M. (1995a). Gaussian semiparametric estimation of long range depedence. Annals of Statistics 23 (5),
1630–1661.

Robinson, P. M. (1995b). Log-periodogram regression of time series with long-range dependence. Annals of Statis-

tics 23 (3), 515–539.

Robinson, P. M. (2005). The distance between rival nonstationary fractional processes. Journal of Economet-

rics 128 (2), 283–300.

Robinson, P. M. and D. Marinucci (2001). Narrow-band analysis of nonstationary processes. Annals of Statistics 29 (4),
947–986.
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