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Foreword 

 

The roots of complexity in physics 

In 1979, in their famous book, La nouvelle alliance, Prigogine and Stengers claimed 

that the first step towards the theory of complexity was undertaken in 1811, when Jean-

Joseph Fourier won a prize of the Académie des Science with his Théorie analytique de 

la chaleur. A new mathematical physics was emerging besides Laplace’s mechanics: 

the new science of heat opened a wider horizon, beyond the already explored 

Newtonian land. A new tradition really emerged in the context of physical sciences, 

more specifically in the context of mathematical physics.1 A wide class of phenomena, 

in some way dealing with heat and transfer of heat, required a different physical and 

mathematical approach: equations describing fluxes of new physical entities, instead of 

equations describing forces acting between couples of particles. Prigogine and Stengers’ 

historical reconstruction would require some refinements and some specifications, but 

as a simplified outline it does not miss the point. Fourier explicitly stated that 

“mechanical theories are not suitable for phenomena involving heat” and that a new 

theory, “not less rigorously founded” than mechanics was required.2  

Inquiring into the roots of the theory of complexity requires two specifications, the 

first involving the history of science, the second involving the history of what nowadays 

we call epistemology. With regard to history of science, we should remark that no 

theory of complexity explicitly emerged at the beginning of the nineteenth century. 

Only in a very broad sense can Fourier be considered the father of the theory of 

complexity: the links between Fourier’s new approach to physics and the theory of 

complexity are definitely very loose. With regard to the history of epistemology, we 
                                                        

1 See Prigogine I. and Stengers I. 1986, pp. 166-7: “En ce qui concerne la science de la complexité, nous n’hésitons 
pas à la faire «commencer», en ce sens, dès 1811. En cette année, où les laplaciens triomphent et dominent la science 
européenne, le baron Jean-Joseph Fourier, préfet de l’Isère, remporte le prix de l’Académie pour son traitement 
théorique de la propagation de la chaleur dans les solides. […] Le rêve laplacien, à l’heure de sa plus grande gloire, a 
subi un premier échec: une théorie physique existe désormais, mathématiquement aussi rigoureuse que les lois 
mécaniques du mouvement et absolument étrangère au monde newtonien ; la physique mathématique et la science 
newtonienne ont cessé d’être synonymes.”  
2 Fourier’s treatise was a new version, published in 1822, of his 1811 essay. See Fourier J. 1822, pp. ii-iii: ”Mais 

quelle que soit l’étendue des théories mécaniques, elles ne s’appliquent point aux effets de la chaleur. Ils composent 
un ordre spécial de phénomènes qui ne peuvent s’expliquer par les principes du mouvement et de l’équilibre.”. See 
also p. xi: “Les équations différentielles de la propagation de la chaleur expriment les conditions les plus générales, et 
ramènent les questions physiques à des problèmes d’analyse pure, ce qui est proprement l’objet de la théorie. Elles ne 
sont pas moins rigoureusement démontrées que les équations générales de l’équilibre et du mouvement.” 
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should remark that epistemology as a separate subject or disciplinary curriculum was far 

beyond the intellectual horizon of the nineteenth century. In some way, physics, history 

of physics and “epistemology” were mutually entangled aspects of a very sophisticated 

research practice, which some talented physicists such as L. Boltzmann, H. Poincaré 

and P. Duhem undertook at the end of that century.  

In brief, from the historical and the epistemological point of view, our concept of 

“complexity”, or the concept of complexity which Prigogine and Stengers referred to, 

cannot be simply transferred from the second half of the twentieth century back to the 

early nineteenth century. In order to look for the roots of complexity in physics, the 

transformation of the theory of heat into Thermodynamics in the middle of the 

nineteenth century, and the subsequent theoretical researches undertaken around the end 

of the century appear now far more meaningful than Fourier’s book. In particular, 

Duhem’s theoretical contribution, at the end of the century, appears to me the most 

meaningful. 

Since we are dealing here with complexity in the specific context of physics, I shall 

assume that complexity in a physical system involves the following issues: 

1. the sensitivity to initial conditions, 

2. the impossibility to be reduced to the sum of its subsets, 

3. the existence of irreversible processes. 

In the debates on the foundations of thermodynamics which took place at the end of 

the nineteenth century, initial conditions, irreversibility, and the relationship between 

microscopic elements of a system and the macroscopic system itself appeared mutually 

connected.3 In the last decades of the nineteenth century, the theoretical models of gases 

put forward by Maxwell and Boltzmann let the following question emerge: how can we 

explain the time-irreversibility of a macroscopic amount of gas in terms of the time-

reversibility of the microscopic molecules which are its ultimate components?  

Prigogine and Stengers pointed out the deep, intrinsic novelty which thermodynamics 

introduced into the physical sciences: the behaviour of a system of many particles over 

time. If mechanical systems could experience different final states depending on the 
                                                        

3 See, for instance, the debate which developed on the review Nature between English and German physicists around 
1896, or the debate Boltzmann-Zermelo: it is reported in Brush S.G. 1976, pp. 602-40, and in Dugas R.  1959, pp. 
185-219. 
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different initial states, thermodynamic systems seemed drifted towards a 

macroscopically indistinguishable state of equilibrium.4 I find that Prigogine and 

Stengers’ analysis deserves to be further developed, in order to better understand the 

deep transformations which took place in late nineteenth century physics, and in order 

to investigate the roots of subsequent transformation experienced by physics in the 

twentieth century. I would like to inquire, in particular, into an interesting theoretical 

path underestimated by Prigogine and Stengers: Duhem’s path, which led 

thermodynamics towards a a new generalized Mechanics. Following Duhem’s third way 

we can fully appreciate one of the most outstanding achievements of late nineteenth 

century theoretical physics: a new alliance between mechanics and thermodynamics, in 

order to cope with the complexity of the physical world.  

My research will focus on some specific features of Duhem’s physics:  

• The new conceptual link between mechanics and thermodynamics, 

• The attempt at explaining the complexity of the physical world 

The time interval is specific as well: I am interested in the decade going from 1886 to 

1896. I am trying to follow the intellectual path which led Duhem from an original 

interpretation of thermodynamics to a great plan for building up a physics of “qualities”. 

We will meet a kind of physics quite difficult to enroll in whatsoever theoretical and 

meta-theoretical framework. 

Two reasons have led me to focus on the decade 1886-1896. In the first place, I have 

found that the main and most ingenious concepts of Duhem’s physics were 

accomplished before the turn of the century. Moreover, Duhem’s meta-theoretical 

remarks stemmed from Duhem’s practice as a physicist, and only subsequently they 

were expressed in a systematic way, when he dressed the clothes of historian and 

philosopher of science. In the second place, I would like to stress that those remarks 

were put forward before the best known transformations experienced by the physical 

sciences around the turn of the century. Not only am I referring here to Planck’s 

hypothesis of quanta or Einstein’s re-interpretation of mechanics and electromagnetism, 

                                                        
4 See Prigogine I. and Stengers I. 1986, p. 192: “Combien ce langage est étranger à celui de la dynamique!  Là, le 

système évolue sur une trajectoire donnée une fois pour toutes, et garde éternellement le souvenir de son point de 
départ (puisque les conditions initiales déterminent une fois pour toutes la trajectoire). Ici, au contraire, tous les 
systèmes en état de non-équilibre évoluent vers le même état d’équilibre. Arrivé à l’équilibre, le système a oublié ses 
conditions initiales, a oublié la manière dont il a été préparé.” 
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but also to experimental and theoretical researches on the new rays and the new 

particles.5 

That Duhem’s physics has been less studied than his history or his epistemology is a 

matter of fact.6 The study of his physics is demanding, because quite sophisticated are 

both conceptual and mathematical components of his theories. Some issues he raised, in 

particular the complexity of the physical world, did not attracted his contemporaries; 

only after some decades, in the second half of the twentieth century, complexity would 

have met the interest of physicists. Moreover, he dignified the tradition of Aristotle’s 

physics, a tradition which was looked upon as a black shadow threatening Galileo’s new 

science. Duhem did not trust in those mythological reconstructions of the birth of 

modern science. He revived the ancient Greek meaning of the word “physics”: not only 

science of local motion, but a general theory of material transformations, encompassing 

contemporary physics, chemistry and perhaps some aspects of sciences of life. This new 

kind of physics, a generalized physics, could account for the complexity of the physical 

world. Galileo’s modern science had to fight against the old physics of qualities, in 

order to establish itself: the complexity of the physical world had to be neglected in 

favour of a simplified world. Only geometry and mechanics could explain a 

geometrized and mechanized world. Duhem believed that, at the end of the nineteenth 

century, he could go back to that neglected world and carry it into the wider boundaries 

of a generalized Mechanics-Thermodynamics.7  

Duhem neither underrated nor refused seventeenth-century scientific revolution; he 

did not try to turn back, in order to take shelter into ancient philosophies. He aimed at 

widening the scope of physics: he synthesized his view stating that “we can express 

physical qualities by means of Algebra”. The new physics could not confine itself to 

                                                        
5 It seems to me that R. Maiocchi made a similar remark some decades ago. See Maiocchi R. 1985, p. 132: “… la 

sua riflessione epistemologica era giunta a risultati mature già nel 1894, prima ancora della semplice scoperta 
sperimentale della radioattività e non risulta in alcun modo collegata alle grandi rivoluzioni fisiche del novecento.” 

6 Although biographies and studies on Duhem history and phisophy of science have flourished in the lat decades, 
studies on his physics are scanty. Apart from the book published in 1927 by his former doctoral student O. Manville, 
I can only mention P. Brouzeng 1981 doctoral dissertation (see Bibliography). Brouzeng considered Duhem as a 
“pioneer of thermodynamics of irreversible processes”, and considered his theoretical researches as a part of a 
“chain” connecting “Carnot to Prigogine”. (Brouzeng P. 1981, pp. 73 and 157) 
7 See Duhem P. 1896, p. 205 : « … les divers changements de propriétés d’un système ne se réduisent pas au 

mouvement local ; une même science doit réunir en ses principes à la fois les lois du mouvement local  et les lois 
selon lesquelles ses transforment les qualités des corps. » See also p. 206 : « On est alors conduit à se demander s’il 
n’y a pas lieu d’appliquer aux tissus vivants une thermodynamique nouvelle ; … » 
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“local motion” but had to explain what Duhem qualified “motions of modification”: 

what had been called “generation and corruption” in peripatetic words became 

“chemical reactions” in contemporary words. It is worth mentioning that Duhem’s great 

design of unification opposed Boltzmann’s theoretical design. If Boltzmann had tried to 

proceed from “local motion” to attain the explanation of more complex transformations, 

Duhem was trying to proceed from general laws concerning general transformation in 

order to reach “local motion” as a simplified specific case.8  

When Duhem undertook his theoretical enterprise, Thermodynamics could already 

rely on a meaningful history: he saw himself as a developer of a recent specific 

tradition. More precisely, he looked upon himself as the developer of a “third way” to 

Thermodynamics. According to Duhem, the first way corresponded to the kinetic 

theory, wherein Thermodynamics was “an application of Dynamics”. Heat was 

interpreted as “a tiny and rapid motion of particles composing ordinary bodies”, and 

temperature was identified with “the average living force corresponding to that motion”. 

The second way corresponded to a phenomenological approach, wherein 

Thermodynamics was based on “typical principles”, and was “independent of whatever 

hypothesis on the nature of heat”. His third way was based on “a different relationship 

between Dynamics and Thermodynamics”, wherein “Dynamics became a specific 

instance of Thermodynamics”, and general principle encompassed “all kinds of 

transformations, from the change of place to the change of physical qualities”.9 

 

The first and second pathways to Thermodynamics 

                                                        
8 See Duhem P. 1903, in Duhem P. 1992, pp. 199 and 218-9. His more synthetic statement was: “La Mécanique 

nouvelle ne se contente pas d’être une Mécanique physique, elle est encore une Mécanique chimique.” Duhem gave a 
very abstract definition of “quantity of heat”: it was looked upon as a mere “sum of terms without any reference to 
the concepts of cold and warm”. See Duhem P. 1903, in Duhem P. 1992, pp. 233-4.  
9 Duhem P. 1894a, pp. 284-5 : « Les fondateurs de la Thermodynamique ont presque tous incliné à faire de cette 

science une application de la Dynamique ; regardant la chaleur comme un mouvement très petit et très rapide des 
particules qui constituent les corps, la température comme la force vive moyenne de ce mouvement, les changements 
d’état physique comme des modifications dans les éléments caractéristiques de ce mouvement, ils ont tenté de 
déduire les théorèmes de la Thermodynamique des théorèmes de la Mécanique rationnelle ; … Beaucoup de 
physiciens ont cherché à rendre la Thermodynamique indépendante de toute hypothèse sur la nature de la chaleur ; ils 
ont essayé d’établir non sur des théorèmes emprunté à la Mécanique rationnelle, mais sur des principes qui lui soient 
propres ; … Nous avons essayé, dans le présent travail, d’indiquer une troisième position de la Dynamique par 
rapport à la Thermodynamique ;  nous avons fait de la Dynamique un cas particulier de la Thermodynamique, ou 
plutôt, nous avons constitué, sous le nom de Thermodynamique, une science qui embrasse dans des principes 
communes tous les changements d’état des corps, aussi bien les changements de lieu que les changements de qualités 
physiques. » 
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In the 1820s, a French engineer, S. Carnot, inquiring into the relationship between 

mechanical and thermal processes in thermal engines, found a precise law ruling the 

transformations of heat into mechanical work. In the 1850s, a young Scottish natural 

philosopher, W. Thomson, tried to integrate a principle of conservation of energy with 

Carnot’s theory of thermal engines. Moreover, he tried a cosmological extrapolation, 

and imagined a Universe running towards its death because of the waste of heat, both in 

spontaneous transformations and in thermal engines. The most striking difference 

between Mechanics and Thermodynamics was perhaps the role of initial positions and 

velocities. In Mechanics, that information led to a predictable time evolution and 

trajectory. In Thermodynamics, the system forgot that information: whatever starting 

point of non-equilibrium transformed into the same condition of equilibrium.10  

In some papers published since the 1850s, Clausius abandoned Carnot’s idea that heat 

was conserved, and showed that the absolute temperature of a gas was proportional to 

the translational kinetic energy of its molecules. He put forward the second law of 

thermodynamics and associated to it a new physical concept, the entropy. Those papers 

captured the interest of Maxwell; in the 1860s, he made use of statistical concepts in 

order to obtain the distribution of molecular velocities in a gas.11 In the 1870s, L. 

Boltzmann attempted to develop a statistical theory of entropy. The most important 

novelty was the introduction of probability in physics: probability became an intrinsic 

feature of physical systems with a huge number of elementary components. Boltzmann 

tried to go far beyond Maxwell: he was not satisfied with the description of the 

equilibrium state. He looked for a law which could also described the evolution towards 

that equilibrium. He was strongly influenced by Darwin’s researches on the biological 

evolution. He imagined a law of evolution which did not involve the single molecule, or 

its individual path, but the whole system of molecules. Statistics and probability did not 

                                                        
10 A historical reconstruction of this stage of Thermodynamics can be found, among many others, in Duhem P. 

1895c, pp. 401-18, and Brush S.G. 1976, Book 2, pp. 568-71. Even though they have in common the fact of being 
both physicist and historians, Duhem and Brush put forward different interpretations of the history of 
thermodynamics, apart from the obvious time lag between their historical researches. There is not something like a 
history of Thermodynamics: there can only be many histories of Thermodynamics. 
11 See Maxwell J.C. 1860, in Maxwell J.C. 1890, vol. 1, pp. 377-83; Maxwell J.C. 1867, in Maxwell J.C. 1890, vol. 

2, p 27-45.  
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represent a sort of contrivances but the suitable intellectual tool to describe the 

evolution of a great population of molecules.12  

Boltzmann, following Maxwell’s tracks, introduced probability in physics in a new 

fundamental way: not in order to attain some useful approximation but as an intrinsic 

property of the system. Probability gained a new epistemic role, not so different from 

the role of the recently stated principles of conservation.13 In Boltzmann’s 

representation, the motion of molecules involved both continuous paths and discrete 

collisions. In some way, two different traditions were at stake: the Newtonian tradition 

of laws of motion, on the one hand, and the Cartesian and Leibnitzian tradition of 

collisions and laws of conservation, on the other hand. The behaviour and the evolution 

of the whole system required the complex interplay between these traditions. Beside the 

conceptual tension between continuous and discrete representations of physical events, 

other tensions or dichotomies were involved: macroscopic versus microscopic 

representations, reversible versus irreversible behaviour of physical systems, and 

eventually determinism versus probability.14 

Both Maxwell and Boltzmann pointed out the statistical meaning of the second law: 

that law could be locally violated, even though it preserved its validity on the large scale 

of space and time. The new, complex interplay between Mechanics and 

Thermodynamics raised a widespread debate, well-known to historians of physics.15 As 

an instance of the new horizons opened by Thermodynamic I would like to quote a 

Boltzmann’s lecture held in 1886, wherein he imagined a body moving in a definite 

direction with a given velocity as an “infinitely improbable configuration of energy”. 

According to that view, “visible motion behaves like heat of infinitely high 

                                                        
12 See, for instance, Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 316-19, 322-461, and Boltzmann L. 

1877, in Boltzmann L. 1909, II Band, pp. 167-90 e 215-23. On Boltzmann’s Darwinism, see Boltzmann L. 1905, pp. 
592-5. This stage of the history of Thermodynamics is discussed, for instance, in Duhem P. 1895c, pp. 424 and 434-
5, and more widely in Brush S.G. 1976, Book 1, chapters 4, 5 and 6.  
13 See Prigogine I. and Stengers I. 1986, p. 194: “L’innovation consistait à introduire la probabilité en physique et 

cela, non pas à titre de d’instrument d’approximation mais bien de principe explicatif, à montrer quel comportement 
nouveau un système peut adopter du fait d’être formé d’une population nombreuse ….” 
14 The conceptual tension between determinism and probability should not be interpreted as a contradiction. See 

Cassirer’ analysis in Cassirer E. 1936, p. 129: “Die geschichtliche Betrachtung sollte nur das eine lehren, dass 
zwischen den Begriffen ‘Zufall‘ und ‘Gesetzlichkeit‘ keineswegs, wie oft angenommen wird, ein Verhältnis der 
kontradiktorischen Gegensätzlichkeit besteht.“.  
15 With regard to the criticism about Boltzmann theory, in particular Loschmidt criticism, Zermelo criticism, and the 

debate between Boltzmann and british physicists, see Dugas R. 1959, pp. 160, 180, 207-8 and 212-3. Se also Brush S. 
1976, book 1, pp. 96 and 239, and Brush S. 1976, book 2, pp. 356-63. See also footnote 3. 
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temperature”, which “can be completely transformed into work”. In some way, 

Mechanics became an extreme case of Thermodynamics: this sounds quite astonishing 

when we notice that Boltmann is considered by historians an upholder of the so-called 

mechanical world-view.16 

 

A different theoretical pathway was undertaken by the Scottish engineer M. Rankine, 

and by the French engineers F. Reech and R. Massieu: they tried a highly abstract, 

mathematical re-interpretation of Thermodynamics. If the role of the former in the 

history of Thermodynamics has been acknowledged by contemporary physicists and by 

present-day historians, the latter are definitely less known. Reech was Navy engineer 

and director of the École du Genie Maritime; Massieu was mining engineer and 

professor at Rennes university. The role of Reech was discovered in the 1960s by the 

mathematical physicist and historian of physics A.C. Truesdell.  Although mentioned by 

Gibbs and Duhem, Massieu is not generally mentioned, apart from “Massieu functions” 

mentioned in some treatise of statistical mechanics and thermochemistry. He was able 

to demonstrate that some mechanical and thermal properties of physical and chemical 

systems could be derived from his two “characteristic functions”. Rankine put forward 

an abstract re-interpretation of Thermodynamics, and tried to extend the new formal 

framework to all fields of physics, giving rise to a wide design of unification he labelled 

“Energetics”.17  

Gibbs and Helmholtz developed that abstract re-interpretation of Thermodynamics, 

and relied on a structural analogy between Mechanics and Thermodynamics. Between 

1875 and 1879, in the series of papers under the common title “On the Equilibrium of 

the Heterogeneous Substnces”, J.W. Gibbs showed that Massieu’s functions played the 

role of potentials. In particular, the two functions were nothing else but the 

thermodynamic potential at constant temperature and volume, and the thermodynamic 

potential at constant temperature and pressure. In 1883 Helmholtz put forward the 

                                                        
16 Boltzmann L. 1886, in Boltzmann L. 1974, p. 22, and Cassirer E. 1936, pp. 95-6. 
17 See Massieu R. 1869a, pp. 859-60, Massieu R. 1869b, pp. 1058-60, and Massieu R. 1876, pp. 3, 8-19, and 25-35. 

See Rankine M. 1855, in Rankine M. 1881, pp. 213-4. Massieu published two short papers in 1869 and a longer one 
in 1876 on his “Fonctions caractéristiques”. The name of “Massieu” does not appear in the Dictionary of Scientific 
Biography but can be found in a modern treatise (Balian R. 1992, §  5.6, “Entropy and Massieu functions”). He is 
mentioned in Perrot P. 1998, p. 190, wherein it is said that “Massieu function … is now of only historical interest”. 
He is mentioned also in Klein M.J. 1983, p. 161, footnote 35, and Kragh H. 1993, pp. 403-31.  
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concept of “free Energy”: it was the variation of the free energy, rather than the whole 

delivery of heat, to correspond to the actual direction of chemical transformations.18 

 

Duhem third pathway 

This was Duhem’s scientific background when he published Le potentiel 

thermodynamique et ses applications à la mécanique chimique et à la théorie des 

phénomènes électriques in 1886. In the first pages of the book he showed that entropy 

and volume of a physical system corresponded to some derivative of a potential . 

Other derivatives allowed him to obtain coefficient of dilatation and compressibility, as 

well as the specific heat at constant pressure.19  Since 1886, Duhem’s design of a new 

physics evolved through three subsequent steps: 

1. the cross-fertilization among mechanics, thermodynamics and chemistry, 

2. the rephrasing of Thermodynamics according to the syntax of Analytical 

Mechanics, and the foundation of Mechanics on the principles of Thermodynamics, 

3.  the unification of “local motion”, thermal phenomena, electromagnetic 

phenomena, and transformations of matter in the context of a generalized Mechanics. 

What in Gibbs was a development of a mathematical analogy, became in Duhem a 

wide-scope program of research. In 1891, in the essay ”Equations générales de la 

Thermodynamique”, he generalized the concept of “virtual work” under the action of 

“external actions” by taking into account both mechanical and thermal actions. In 1894 

the design of a generalized Mechanics based on thermodynamics was further 

developed : ordinary mechanics had by now become “a particular case of a more 

general science”.20 

In 1896, in the very long essay “Théorie thermodynamique de la viscosité, du 

frottement et des faux équilibres chimiques”, he proceeded to a detailed reconstruction 

of some physical and chemical processes neglected or underestimated by physicists 

                                                        
18 See Gibbs J.W. 1875-1879, pp. 55-6, 62-9, 87-93, 115-6, 138, 184-5, 209-14, and 354-5. See Helmholtz H. 1882, 

p. 960. 
19 Duhem P. 1886, pp. 11-13. 
20 See, for instance, Duhem P. 1894a, p. 285 : « […] si la science des mouvements cesse d’être, dans l’ordre logique, 

la première des Sciences physiques, pour devenir seulement un cas particulier d’une science plus générale embrassant 
dans ses formules toutes les modifications des corps, la tentation sera moindre, pensons-nous, de ramener l’étude des 
tous les phénomènes physiques à l’étude du mouvement ; … ». 
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because of their complexity. In the equations of his generalized Mechanics-

Thermodynamics, some new terms had to be introduced, in order to account for the 

intrinsic viscosity and friction of the system.21 In the meanwhile, starting from 1895, in 

a series of essays under the common title ”Les déformations permanentes et 

l’hysteresis”, he had began to develop a theory which took into account the permanent 

modifications of bodies. This ambitious design was hindered by many difficulties, both 

theoretical and experimental. 

Even though I have stated that I am focusing on Duhem’s physics, I am aware that 

theoretical physics, history of physics and meta-theoretical remarks are mutually 

interconnected in Duhem’s actual praxis. In his papers and books the historical 

awareness is always a fundamental feature. In his search for a new generalized 

Mechanics, Duhem acknowledged the existence of different stages in the history of 

Mechanics, and the necessity of those stages. They were fruitful and meaningful, even 

though, at the end of the nineteenth century, science called for a new stage, namely his 

generalized Mechanics-Thermodynamics. His design of re-interpretation of Aristotelian 

physics could be pursued only by a scientist endowed with a deep knowledge of 

physics, a wide knowledge of history, and a subtle meta-theoretical sensitivity.22 

Both historians and philosophers of science have made use of scholarly words in order 

to describe Duhem’ scientific heritage: some words are energetics, thermodynamic view 

of nature, anti-mechanism and conventionalism. Are them suitable words, or merely 

“consolations for specialists”?23 With regard to the first label “energetics”, we can 

notice that Duhem gave it the meaning of generalized Thermodynamics, rather than the 

meaning of a world-view or a general meta-theoretical commitment. We find a 

                                                        
21 Duhem P. 1896, p. 205 : « La doctrine que le présent mémoire cherche à faire prévaloir est, en résumé, la 

résultante de deux idées fondamentales : la première est celle que nous trouvons déjà indiquée par Navier, dans un 
cas particulier : la viscosité et le frottement ne sont pas toujours des termes fictifs introduites dans les équations du 
mouvement des systèmes pour tenir compte sommairement de perturbations compliquées et mal connues ; ce sont 
souvent, dans ces équations, des termes essentiels, irréductibles et primitifs ; la seconde est celle que Rankine 
formulait dans son immortel écrit sur l’Énergétique : les diverses changements de propriétés d’un système ne se 
réduisent pas au mouvement local ; … » 

22 In the time span we are interested in, Duhem published some papers on history and philosophy of science in the 
Belgian journal Revue des questions scientifiques. See Duhem P. 1892b, 1893c, 1893d, 1893e, 1894c, 1896b. 
23 I am referring to Feyerabend’s famous essay: “Consolations for the Specialist”, in Lakatos I. and Musgrave A. 

(eds.) 1970, Criticism and the Growth of Knowledge, Cambridge Uniersity Press, Cambridge UK, pp. 197-230. With 
regard to the debate on the rate of conventionalism, realism, “phenomenism”, or “phenomenalism” in Duhem, see, 
for instance, Maiocchi R. 1985, second chapter, Redondi P. 1978, first chapter, Stoffel J-F. 2002, second and third 
part, … 
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remarkable conceptual distance between Duhem and some upholder of “energetics” like 

G. Helm and W. Ostwald. If Duhem developed a sophisticated mathematical theory of 

thermodynamics, the latter insisted on the principle of conservation of energy as the 

sole foundation of physics. In particular, Ostwald developed a physical world-view 

wherein, in Ostwald’s words, “the concept of matter, which has become indefinite and 

contradictory, has to be replaced by the concept of energy”.24 In no way the name of 

Duhem can be associated to that kind of “energetism”.  

With regard to the second label “thermodynamic world-view”, we can notice that in 

reality Duhem tried to found all physics on the two principles of Thermodynamics but, 

at the same time, translated thermodynamics into the language of analytic Mechanics. 

We could say that we find in Duhem both a mechanical foundation of thermodynamics 

and a thermodynamic foundation of mechanics. I find that this label would suit more 

Rankin than Duhem. With regard to the third label “anti-mechanism”, we can notice 

that he refused to make use of specific mechanical models of heat but, at the same time, 

made recourse to mechanical analogies in order to describe other physical phenomena. 

An instance of these analogies can be found in Duhem’s analysis of chemical “false 

equilibrium”, wherein the comparison with the motion along an inclined plane with 

friction is put forward.25  

With regard to the fourth label “conventionalism”, we should distinguish the different 

nuances of meaning which we find in primary and secondary literature. But, even 

though this analysis could be undertaken here, I would find it pointless. The fact is that 

Duhem had a dynamical conception of science, a conception which have always poked 

fun at historians and philosophers who have tried to classify him. We can notice that his 

conception had much in common with Boltzmann’s conception, a physicist who 

undertook an opposite way to thermodynamics, wherein specific mechanical models of 

                                                        
24 See Ostwald W. 1896, pp. 159-60: “Ihren schärfsten Ausdruck hat dies erkenntnisstheoretische Postulat durch 

meinen Hinweis erhalten, dass der unbestimmt und wider spruchsvoll gewordene Begriff der Materie durch den der 
Energie zu ersetzen ist, da nur auf solchem Wege die Uebereinstimmung zwischen dem, was wir durch unsere 
Formeln zum Ausdruck bringen, und dem, wovon wir zu reden pflegen, hergestellt werden kann.” W. Ostwald held 
the sole German chair of physical chemistry, at the University of Leipzig, from 1887 until his retirement. On the 
debate on energetism, see Helm G. 1895, and Helm G. 1898; see also McCormmach R., Jungnickel C. 1986. Vol. II, 
p. 220, and Harman P.M. 1982, p. 147. 
25 See Duhem P. 1896, p. 8: “Les false équilibres que l’ont rencontre en mécanique chimique ont leurs analogues 

parmi les équilibres purement mécaniques.” The analogy is developed in pp. 8-9. 
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heat were involved.26 I find that some epistemological analogies between Duhem and 

Boltzmann are at least as meaningful as those between Duhem and Poincaré, Mach or 

Hertz.27 

I would not like here to enter the land of epistemology in its widest sense: I would like 

to enter the narrower land of Duhem’s Thermodynamics, and let specific theoretical, 

and meta-theoretical issues stem from it. The fact is that much literature has been 

published on Duhem as historian and philosopher of science whereas much less is 

available on Duhem as a physicist. This sounds quite astonishing when we realize that 

he published an immense number of papers and books about physics.28 

At the end of an inquiry into ten years of Duhem’s theoretical researches, we should 

wonder: what remains now of those theories? Have they been fruitful? I have tried to 

answer this question in the Afterword to the present dissertation, but I find that some 

specifications are required now.  

In the first place, I am aware that the scientific fruitfulness can be found at different 

levels: the level of the specific theoretical models, the level of the general theoretical 

streams, or at the level of meta-theoretical commitments. In the tradition of theoretical 

physics, just emerged in the last decades of the nineteenth century, we should 

distinguish these different levels. The first level corresponds to the choice of equations, 

of the class of phenomena under investigation, and of the specific hypothesis and 

deductions applied to that class of phenomena. The second level corresponds to the 

choice of the more general principle and hypotheses, and to their interplay. Eventually, 

the third level corresponds to features and aims of the scientific enterprise. I must offer 

some instances. In the case of Duhem’s last essay, investigated in the last chapters of 

                                                        
26 Boltzmann thought that theoretical physics dealt with ”certain disputed questions which existed from the 

beginning” and which “will live as long as the science”. Physical theories cannot be looked upon as “incontrovertibly 
established truths”, for they are based on hypotheses which “require and are capable of continuous development”. See 
Boltzmann L. 1905, pp. 592-5. We must point out that, at the same time, he could not rely on pure “mathematical 
phenomenology”. See Boltzmann L. 1899, in Boltzmann L. 1974, p. 95. 
27 For the latter analogies, see, for instance, Maiocchi R. 1985, chapter V, “Duhem nella cultura del suo tempo: 

alcuni raffronti”, pp. 293-344. 
28 Jaki’s scientific biography, for instance, devotes only one sixth of its content to Duhem’s physics: see Jaki S.L 

1984, pp. 259-318. We can find a reliable summary of Duhem’s physics in Manville already mentioned book. 
Roughly thirty pages of the book are devoted to the list of Duhem’s papers and books. Among that overshadowing 
heritage, my dissertation concentrates on the following texts belonging to the span of a decade: Duhem P. 1886, 
Duhem P. 1888, Duhem P. 1891, Duhem P. 1892a, Duhem P. 1893a, Duhem P. 1893b, Duhem P. 1894a, Duhem P. 
1894b, Duhem P. 1895a, Duhem P. 1895b, Duhem P. 1896a.  
. 
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the present dissertation, the peculiar choice of Lagrangian equations, the peculiar 

interpretation of “viscosity” and “friction”, and the peculiar choice of phenomena to be 

described (for instance “false chemical equilibrium”), are instances of first-level 

options. That mechanics, thermodynamics and chemistry could experience a unified 

mathematical processing, or that the natural world should be described by continuous 

models, are instances of second-level options. As an instance of Duhem’s third-level 

option I could mention his commitment to overcome Galilean reductionism, and to open 

physics to the complexity of the physical world, but also the awareness of the intrinsic 

historicity of the scientific enterprise.29 

 

Duhem in context: historical and historiographical remarks  

I will inquire into the net of general hypotheses, specific models and mathematical 

tools which emerged in the last decades of the nineteenth century and which found its 

more sophisticated expression in the texts of some outstanding natural philosophers and 

physicists: Maxwell, Boltzmann, Rankine, Gibbs, ... apart from Duhem himself. I have 

qualified them in a double way, as natural philosophers and as physicists, for a specific 

reason.  What we call physics, namely a definite field of knowledge and a definite 

professional appointment after a definite academic training, was an outcome of a 

historical process which took place just in the last decades of the nineteenth century.30 

I will concentrate my inquiry into the field of theoretical physics, rather than physics 

in general, because theoretical physics was the field where Duhem excelled in. In a 

wider perspective, if the emergence of physics as a definite academic discipline was a 

heritage of late nineteenth century, the emergence of theoretical physics was the most 

original element of that heritage. I will take into account both equations and 

philosophical reflexions, in particular specific mathematical models and more general 

theoretical and meta-theoretical remarks. In the perspective of the history of science, the 

fruitful alliance between the tradition of mathematical physics and the most speculative 

                                                        
29 This historiographical sketch suits the specific season of theoretical physics we are dealing with, and perhaps the 

decades going roughly since 1880s till 1920s: it cannot be extended upon a longer time span. 
30 On the process of specialization and professionalization taking place at the end of the nineteenth century, see, for 

instance, Ross S. 1964, p. 66. In Italy and Great Britain, for instance, physics was also practiced by scholars 
appointed to chairs of mathematics. 
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side of the tradition of natural philosophy was perhaps the most distinctive hallmark of 

late nineteenth century theoretical physics.31 

To describe what really theoretical physics was in that time span, is a very demanding 

task, because both intellectual and institutional events were involved. I only confine 

myself to single out some distinctive feature, in order to better understand the context 

wherein Duhem undertook his scientific practice. Theoretical physics emerged in the 

last decades of the nineteenth century as a fruitful and original alliance between two 

different traditions: the tradition of applied mathematics and the tradition of natural 

philosophy. In particular, the tradition of Lagrange’s and Hamilton’s mathematical 

physics merged with the most speculative side of early nineteenth century philosophy of 

nature. Even though the academic recognition of theoretical physics was achieved only 

in German speaking countries, and in a very contradictory way, theoretical physics as an 

actual new practice in physics can also be found in France, Great Britain and then in 

Italy. We can mention Duhem and H. Poincaré in France, H. Hertz, M. Planck and L. 

Boltzmann in German speaking countries, J.J. Thomson and J. Larmor in the British 

islands, and V. Volterra in Italy.  

Some of them had been trained as mathematicians; some others were engineers. From 

the academic point of view, Poincaré was a mathematician. Duhem considered himself 

physicist and mathematician: after the rejection of his doctoral dissertation, the new one 

was accepted in the section of mathematics, and his physics was appreciated by 

mathematicians rather than by physicists. J.J. Thomson and J. Larmor had passed the 

highly selective Cambridge Mathematical Tripos, even though J.J. Thomson had gained 

his first degree as an engineer. V. Volterra was a mathematician. We cannot forget that, 

among the first physicists who built up theoretical thermodynamics, M. Rankine and R. 

Massieu had been trained as engineers, and held chairs of engineering in Scotland and 

France. 

The main hallmark of late nineteenth century theoretical physics was the awareness 

that the alliance between the mathematical language and the experimental practice 

celebrated by Galileo had to be updated. Besides “definite demonstrations” and “sound 

                                                        
31 On the emergence of theoretical physics at the end of the nineteenth century, see McCormmach R. and Jungnickel 

C. 1986, vol. 2, pp. 33, 41-3, 48, and 55-6, and Bordoni S. 2008, pp. 35-45. On the concept of theoretical physics, see 
Boltzmann L. 1892, in Boltzmann L. 1974, pp. 5-11, and Boltzmann L. 1899, in Boltzmann L. 1974, p. 95. 
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experiments” there was a third component, which we could label conceptual or 

theoretical: it dealt with principles, models and patterns of explanation. That conceptual 

component, neither formal nor empirical, was looked upon as a fundamental component 

of scientific practice. Different theories could share the same mathematical framework 

and refer to the same kind of experiments: the difference among them could be found 

just at the conceptual level.32 Conversely, a given set of phenomena could be 

consistently described by different theories making reference to different conceptual 

models. The history of electro-dynamic theories in the second half of the nineteenth 

century had shown the relevance of the debate between the conceptual models of action 

at a distance and contiguous action. Moreover, the emergence of theoretical physics 

corresponded to a new sensitivity to meta-theoretical issues. Physicists committed 

themselves to explicit designs of unification, and explicit methodological remark, as 

well as explicit questioning of the foundations of physics. In that season, all these 

cogitations were looked upon as intrinsic aspects of the scientific practice. Scientists did 

not entrust philosophers with the reflection on aims and methods of science any more: 

meta-theoretical remarks began to emerge from inside science, and not addressed to 

science from the outside.33  

We have many instances of that widening of horizon in physics. An early instance was 

offered by Rankine design of abstract generalisation of Thermodynamics. In the last 

decades of the century, we find Larmor and the theoretical and meta-theoretical role 

played by invisible entities like aether. We find Poincaré and the legitimate use of a 

plurality of theories in the interpretation of a given set of phenomena. Eventually we 

find Duhem and the subtle interplay between mathematical, empirical, conceptual, 

historical and methodological aspects. What all these physicists had in common was a 

                                                        
32 It seems to me that a similar point of view has been put forward in Giannetto E. 1995, pp. 165-6. 
33 See Cassirer E. 1950, pp. 82-4: “From the middle of the nineteenth century onward the demand for reflective 

criticism in the natural sciences was urged with ever mounting emphasis. […] Now not only does the picture of 
nature show new features, but the view of what a natural science can and should be and the problems and aims it 
must set itself  undergoes more and more radical transformation. In no earlier period do we meet such extensive 
argument over the very conception of physics, and in none is the debate so acrimonious. […] When Mach or Planck, 
Boltzmann or Ostwald, Poincaré or Duhem are asked what a physical theory is and what it can accomplish we receive 
not only different but contradictory answers, and it is clear that we are witnessing more than a change in the purpose 
and intent of investigation.” 
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sort of double attitude towards their own practice: there was an original combination of 

confidence and disenchantment about science.34  

With regard to the meta-theoretical debates, two different models of scientific 

knowledge were at stake. On the one hand, the attempt at going beyond the shield of 

visible phenomena, in order to catch their true microscopic nature. On the other hand, 

only mathematical representations, without pursuing whatsoever kind of subtler 

explanation. We find the Britons Larmor, J.J. Thomson, G.F. FitzGerald and O. Lodge, 

but also Lorentz and Boltzmann deployed on the first front. On the second front we find 

G. Kirchhoff, E. Mach, G. Helm, W. Ostwald and Duhem. Among those who swung 

from the one to the other meta-theoretical option we find H. Hertz and then Planck, who 

followed Rankine, J.C. Maxwell, R. Clausius and Helmholtz’s similar attitude. Poincaré 

looked at the two complementary attitudes with Olympic detachment. Roughly 

speaking, Duhem belonged to the set of phenomenologist physicists, but the role of 

theory and meta-theory was so important in his actual scientific practise that we should 

not put him beside Mach, Helm or Ostwald without the above specifications on 

Mechanism and Energetism. We could associate him to Hertz, but we could find in his 

conception of science even meaningful analogies with Boltmann’s historical and 

evolutionary conceptions.35 This could sound quite astonishing, when we consider that 

Boltzmann’s route to Thermodynamics through discontinuous and microscopic 

mechanical models was far from Duhem’s route, which aimed at an abstract 

generalisation, wherein Mechanics of continuous media had to merge with 

Thermodynamics. Nevertheless, this astonishingly gap can be properly understood if we 

distinguish the first and second level from the third one. 

We can find deep differences between Duhem and Boltzmann on the first and second 

level, but some meaningful analogies on the third level. In the late nineteenth century, at 

the third or meta-theoretical level, the debate involved Helm against Planck, and 

FitzGerald against Ostwald.36 Boltzmann and Poincaré managed to clearly describe the 
                                                        

34 See, for instance, Boltzmann L. 1890, in Boltzmann L. 1974, pp. 33 and 35-6, Poincaré H. 1889, pp. II, III, and 2, 
Poincaré H. 1890, pp. VIII, and XIV-XV, Poincaré H. 1892, pp. XIV, and Larmor J. 1897, pp. 207 and 215. 

35 On Boltzmann evolutionism see Boltzmann L. 1892, in Boltzmann L. 1974, pp. 7-11, Boltzmann 1899, pp. 79-80, 
and Boltzmann L. 1905, pp. 592-5. 

36 In Germany the debate was quite sharp, mainly around 1895, when the energetists were the chief characters of 
the annual conference of German scientists and physicians held in Lübeck. One of those characters, G. Helm, in a 
book published in 1898, pointed out the relevant features of the more radical energetism. The debate continued after 
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two meta-theoretical attitudes: explanations by means of specific mechanical models, or 

descriptions in terms of a formal language. Duhem took part to the debate with an 

original point of view. He did not appreciate the mechanical models, and undertook a 

wide design of generalisation of physics, relying on the explanatory power of a 

generalised Analytic Mechanics. In some way, he pursued a sort of sophisticated, 

abstract Mechanism, quite different from the Mechanism of British physicists. We 

could say that his Mechanism was a sort of structural Mechanism, far beyond 

whatsoever kind of mechanical model. He spoke of his design in terms of Energetics, 

but even his Energetics was quite different from Helm or Ostwald’s. It was quite close 

to Rankine Energetics, in the sense of a generalised, abstract Thermodynamics.  

 

The emergence of theoretical physics was accompanied by deep transformations in the 

field of physical sciences. We could say that, in Kuhn’s terms, there was some kind of 

revolution, even though no physicist was then claiming that he was making a 

revolution.37 In reality, from 1860s on, physics had been experiencing two important 

transformations: in simplified terms, we could say that the first was internal and the 

second external to the scientific practice. The former consisted in the mathematisation 

and systematisation of previously scattered researches on heat and electricity. The latter 

consisted in a sort of social success of science: science had finally managed to realize 

part of Bacon’s dream, and the myth of scientific progress was emerging.  

We should analyse the two transformations separately. With regard to the former 

(internal) transformation, the second law of Thermodynamics and the concept of 

entropy let “the distinction between reversible and irreversible processes” emerge as “a 

basic feature in all natural events”, as Cassirer remarked more than a half century ago. 

At the same time, “the Faraday-Maxwell field concept … stood in sharp contrast at the 

                                                        
the conference, through the pages of Annalen der Physik, between 1895 and 1896. See McCormmach R. and 
Jungnickel C. 1986, vol. 2, pp. 219-20, and Cassirer E. 1950, pp. 96-7. For a short account of the complex conceptual 
net involving Boltzmann, Ostwald and Planck’s approaches to thermodynamics see Harman P.M. 1982, pp. 147-8. 
For the points of view of the characters involved, see Ostwald W. 1896, Boltzmann L. 1896, Planck M. 1896, Helm 
G. 1895, and Helm G. 1898, p. 362 (English edition: Helm G. 1992, p. 401) For FitzGerald defence of specific 
theoretical models against Ostwald energetism, see FitzGerald G.F. 1896, pp. 441-2. 

37 Kuhn’s historiographical theses are too known to be discussed here. See, for instance, Kuhn T.S. 1996, 92-135.  I 
remind the reader that, according to I.B. Cohen, we should not state that there was a revolution. On his four criteria 
for a revolution, see Cohen I.B. 1985, chapter II. 
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outset with the Newtonian idea of force”. In other words, the new concepts of 

“electromagnetic field” and “entropy” challenged the explanatory patterns developed 

since the end of the seventeenth century.38  

With regard to the latter (external) transformation, I must remind the reader that the 

last decades of the nineteenth century saw the spread of electromagnetic technologies: 

indeed those technologies managed to improve everyday life of ordinary people. Not 

only did electric light inside houses and on the roadside of the towns modify the 

landscape of urban life, but supplied a cleaner source of energy. Electric energy 

appeared as a healthy kind of energy when compared to oil or gas lamps. The 

advantages of the electric energy consisted also in its versatility and portability: since 

the end of the 1860s, the world, mountains and ocean included, was crossed by hundred 

thousand miles of telegraph cables. It was in that social and technological context that 

the myth of the scientific progress emerged. At the same time, the wider-scope myth of 

the social progress triggered off by the scientific progress also emerged.39 

 

This is the context wherein Duhem developed his researches: starting from a bold 

design of generalisation and unification of physics, he subsequently arrived at original 

theses on meaning and limitations of the scientific enterprise. The specific 

epistemological remarks, together with the more general philosophical cogitations, he 

had began to express in the 1890s were subsequently collected in the famous book he 

published in 1906, La théorie physique, son objet, et sa structure. It is worth noticing 

that, in the last decades of the nineteenth century, debates on the relationship between 

science and theology also took place, and the second Principle of Thermodynamics 

brought a fascinating topic to that debate. Duhem did not appreciate the cosmological 

interpretations of the two Principles of Thermodynamics, nor he found interesting the 

cogitations on the relationship between energy conservation and free will. He was a 

firm believing and, at the same time, “an independent mind”: he disliked transforming 

                                                        
38 Cassirer E. 1950, p. 85. The concept has been recently revived by Renn J. and Rauchhaupt U. 2005, pp. 31-2. 
39 With regard to the awareness of the scientific progress in the words of contemporaries, see Lami E.O. (ed.) 1881-

91, Supplement,1891, pp. 743. For a recent analysis, see Galison P. 2003, pp. 174-80. 
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scientific contents into apologetic arguments, and always insisted on “a sharp separation 

between science and faith”.40  

 

                                                        
40 See Kragh H. 2008, pp. 113-7. I find Kragh brief reconstruction substantially exact. See, in particular, pp. 116-7: 

“According to Duhem, the controversy between catholic thought and modern science was essentially a 
misunderstanding based in a failure to appreciate the separate domains of the two fields.” Kragh also noticed that 
Duhem conceptions “made him a target from some Catholics, who suspected him of philosophical scepticism”. 
(Ibidem, p. 117) 



 



 

 

 

 

 

 

 

 

 

 

 

FIRST PART 

Two pathways to Thermodynamics 

 

 



 



 

 

1. From Mechanics to Statistics 

 

In September 1859, Maxwell, young professor of Natural Philosophy at Marischal 

College in Aberdeen, read a paper at the Meeting of the British Association for the 

Advancement of Science, held at Aberdeen. Then he sent the paper to the Philosophical 

Magazine, a scientific journal which had already hosted dynamical theories of matter 

and heat. The paper, “Illustration of the Dynamical Theory of Gases”, consisted of three 

parts: the first, “On the Motion and Collisions of Perfectly Elastic Spheres”, dealt with 

both mechanical and statistical models of gases. The stating point was the basic 

assumption of every kinetic theory of heat: matter consists of a huge number of 

microscopic particles. These “minute parts are in rapid motion, the velocity increasing 

with the temperature”, being the temperature proportional to vis viva (or kinetic energy) 

of such particles. The equation of “perfect gases”, as well as other “relations between 

pressure, temperature and density”, could be derived by a theoretical model involving 

microscopic particles in motion “with uniform velocity in straight lines”. In that model, 

the pressure of the gas was the effect of the strikes of the particles “against the sides of 

the containing vessel”.  

Maxwell reminded the reader that Clausius had already deduced both the “mean 

length of path” of a particle and the “distance between the centres of two particles when 

collisions take place”. He intended to deepen Clausius’ theoretical investigation, which 

should have been based on “strict mechanical principles”. His specific theoretical model 

was based on “an indefinite number of small, hard, and perfectly elastic spheres acting 

on one another only during impact”.1 

He relied on a standard scientific method, wherein the results drawn from the model 

had to be compared with the results of “experiments on gases”, in order to ascertaining 

whether “the phenomena of gases” were explained or not by the model. According to 

Maxwell’s view, the purely kinetic model could have been replaced by a dynamical 

model. In other words, instead of “hard, spherical and elastic” particles in motion, we 

could imagine particles as “centres of forces”. The fact is that the two models stemmed 

from very different conceptual models: matter and motion on the one hand, and matter 

                                                        
1 Maxwell J.C. 1860, in Maxwell J.C. 1890, vol. 1, p. 377. 
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and forces on the other. Although two different mechanical traditions were involved, at 

that stage Maxwell did not seem worried by the theoretical mismatch. He claimed it was 

“evident” that a suitable arrangement of the second model could lead to results quite 

close to the first. He imagined forces which were “insensible except at a certain small 

distance” but, at a smaller distance from a particle, a force “suddenly appears as a 

repulsive force of very great intensity”. He did not give mathematical details, so that the 

reference to the second model was purely qualitative. Then he proceeded to develop 

“the assumption of perfectly elastic spherical bodies”.2   

The subject is structured in a series of “Propositions”. After having analysed a 

collision between two spheres “moving in opposite direction with velocities inversely as 

their masses”, Maxwell inquired into the effect of many collisions on the distribution of 

vis viva among the particles of a gas. He was looking for “some regular law”, allowing 

him to compute “the average number of particles whose velocity lies between certain 

limits”. 

He defined a function f(x) such that 

€ 

N f (x) dx  was the number of particles whose 

velocity lies between x and x+dx, where f(x) is the fraction of such particles, N is the 

total number of particles and x, y, z are the Cartesian components of the particle 

velocity. He thought that “the existence of the velocity x does not in any way affect that 

of the velocities y or z”, since the three components are “all at right angles to each other 

and independent”.3 According to that hypothesis, Maxwell could write down the 

number of particles in a gas whose velocity “lies between x and x+dx, and also between 

y and y+dy, and also between z and z+dz: 

 

N f(x) f(y) f(z) dx dy dz.4 

                                                        
2 Maxwell J.C. 1860, in Maxwell J.C. 1890, vol. 1, p. 378. Clausius had already shown that, in case of non-spherical 
particles, “the rotatory motion of the system” should have been taken also into account, and rotation would “store up 
a certain proportion of the whole vis viva”. In the paper, he treated the more general case in the short third part, “On 
the Collision of Perfectly Elastic Bodies of any Form”. See Ibidem, p. 405. 
3 The fact is that the claimed independence among the components does not hold good: the conservation of 
momentum and energy does not allow to choose any value of y and z components for whatever choice of x 
component. See Brush S.G. 1976, book 2, pp. 587-8: “Maxwell assumed in his 1860 paper that the probability of a 
molecule having a certain value of the x-component of velocity is not affected by knowledge of its y-component of 
velocity. He did not recognize that this assumption cannot be true in a finite system with fixed total energy (if one 
component of velocity is so large that it corresponds to nearly the entire kinetic energy of the system, then the other 
components cannot have similarly unrestricted values).” 
4 Maxwell J.C. 1860, in Maxwell J.C. 1890, vol. 1, p 380. 
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Another simplification arose from the rotational symmetry in the space of velocities: 

the law of velocities distribution must be insensitive to the direction of velocities: a sort 

of isotropy in the space of velocities let the distribution of velocity depend only on the 

length of the vector velocity.  

 

“But the directions of the coordinates are perfectly arbitrary, and therefore this 

number must depend on the distance from the origin alone, that is 

€ 

f (x) f (y) f (z)=φ x 2 + y 2 + z 2( ). 

Solving this functional equation, we find 

€ 

f (x) =CeAx
2
,           

€ 

φ (r 2) =C 3 eAr
2
.” 

 

The constant A must be negative, otherwise the number of particle with a given 

velocity would dramatically increase with the value of velocity, and the integration over 

the whole range of velocities would dramatically diverge. After a simple procedure of 

normalisation,  Maxwell obtained  

 

€ 

f (x) =
1

α π
e
−
x 2

α 2 . 

 

The mathematical law for the distribution of velocities in a gas would therefore be 

nothing else but the statistical law of distribution of casual errors in every physical 

process of measurement.  

 

“It appears from this proposition that the velocities are distributed among the 

particles according to the same law as the errors are distributed among the 

observations in the theory of the ‘method of least squares’. The velocities range 
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from 0 to 

€ 

∞, but the numbers of those having great velocities is comparatively 

small.”5  

 

Apart from the soundness of the hypotheses Maxwell had assumed, in which sense is 

this kind of law a physical law rather than a simple statistical law? The choice of a 

function depending only on the square of velocity, for instance, is not without 

consequences from the dynamical point of view. It means that a time-symmetry is 

tacitly assumed: transforming t into –t, and therefore v into –v, the distribution of 

velocities cannot change. In Maxwell’s words, “the direction of motion of every particle 

… may be reversed without changing the distribution of velocities”.6 In any case, the 

deduction of the mathematical law of distribution did not involve specific mechanical 

laws as, for instance, the laws of elastic collisions. It involved only some global 

properties or symmetries of a huge number of particles.  

Nevertheless, when in the “Proposition VI” Maxwell tried to deduce one of the effect 

of the drift towards the equilibrium, namely the uniform distribution of vis viva between 

two sets of particles having two different kinds of mass, he resorted to the laws of 

mechanics. Let P the mass of the first kind and p the average velocity in the first set of 

particles; let Q the mass of the second kind and q the corresponding average velocity. 

After the impact between two particles of different kind, masses and velocities became 

P’, p’, Q’ and q’. In few passages Maxwell showed that, after the first impact, 

 

 

€ 

Pp'2 −Qq'2 =
P−Q
P+Q
 

 
 

 

 
 

2

Pp2 −Qq2( ). 

 

Since the term involving the masses 

€ 

P−Q
P+Q
 

 
 

 

 
 

2

 is less than 1, the expression 

€ 

Pp2 −Qq 2( )  undergoes a progressive decrease.7 

                                                        
5 Maxwell J.C. 1860, in Maxwell J.C. 1890, vol. 1, p 381. 
6 Maxwell J.C. 1860, in Maxwell J.C. 1890, vol. 1, p 383. 
7 Maxwell J.C. 1860, in Maxwell J.C. 1890, vol. 1, p 383. 
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We see that a global macroscopic approach, relying on statistical laws, was put 

forward alongside a local microscopic approach, relying on mechanical laws. 

 

After seven years, Maxwell published a more massive and demanding paper, “On the 

Dynamical Theory of Gases”, in the Philosophical Transaction, the official review of 

the Royal Society.8 The subject was introduced by nine pages of general remarks and 

historical notes on matter, elasticity and kinetic theory. A series of short section 

followed, ranging over many issues, from dynamical action between two molecules to 

diffusion, viscosity and thermal conductivity in a gas.  

In the first lines of the paper, Maxwell mentioned the long-lasting competition 

between the two general models of matter: matter as a continuous medium, and matter 

endowed with a discrete, molecular structure. He assumed that molecules move along 

“sensibly rectilinear” paths before entering “the sphere of sensible action of the 

neighbouring molecules”. Starting from this theoretical model, Maxwell thought to be 

able to account for the law of gases and the known physical and chemical phenomena. 

 

“I propose in this paper to apply this theory to the explanation of various 

properties of gases, and to shew that, besides accounting for the relations of 

pressure, density, and temperature in a single gas, it affords a mechanical 

explanation of the known chemical relation between the density of a gas and its 

equivalent weight, commonly called the Law of Equivalent Volumes. It also 

explain the diffusion of one gas through another , the internal friction of a gas, and 

the conduction of heat through gases.”9 

 

After having acknowledged the role of Clausius in the establishment of “the most 

complete dynamical theory of gases”, Maxwell faced another long-lasting competition 

between general theoretical models regarding interactions: discontinuous impacts or 

continuously acting forces. Some experiments on viscosity had led him to prefer a 

                                                        
8 In 1860 he had been appointed to the chair of Natural Philosophy at King’s College in London, but in 1865 he left 
London and returned to his Scottish estate. In 1871 he would have accepted the offer from Cambridge to become the 
first Professor of Physics of Cavendish Laboratory. 
9 Maxwell J.C. 1867, in Maxwell J.C. 1890, vol. 2, p 27. 
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dynamical approach to a purely kinetic one, and to choose a precise mathematical law 

of force. 

 

“In the present paper I propose to consider the molecules of a gas, not as elastic 

spheres of definite radius, but as small bodies or groups of smaller molecules 

repelling one another with a force whose direction always passes very nearly 

through the centres of gravity of the molecules, and whose magnitude is 

represented very nearly by some function of the distance of the centres of gravity. 

I have made this modification of the theory in consequence of the results of my 

experiments on the viscosity of air at different temperatures, and I have deduced 

from these experiments that the repulsion is inversely as the fifth power of the 

distance.”10 

 

The effect of this kind of force would be “the deflection of the path of one particle by 

another when they come near one another”. According to Maxwell, the huge number of 

subsequent deflections is the process leading to uniform, or completely disordered, 

spatial distribution of molecular velocities. This is a very important issue, and all 

Maxwell’s words and passages deserve to be carefully quoted. He started from a causal 

relationship: if “the velocities … were independent of one another”, then “the pressure 

at any point of the gas need not be the same in all directions”. This is a relationship of 

the kind: if A, then not necessarily B follows. But, Maxwell wrote, “we must suppose 

some cause equalizing the motion in all directions” in order to account for “the 

observed equality of pressure in all directions”. In other words, B necessarily happens, 

and we need a mechanism bringing about the equalisation. The mechanism would be 

                                                        
10 Maxwell J.C. 1867, in Maxwell J.C. 1890, vol. 2, p 29. In the following decade Maxwell would have specified his 
concept of “molecule” and “atom”. In 1873, in a short paper published in Nature, he wondered whether matter could 
be infinitely divisible. He stated that “(a)ccording to Democritus and the atomic school, we must answer in the 
negative”, and that the answer was common to “the atomic doctrine of Democritus, Epicurus, and Lucretius, and, I 
may add, of your lecturer”. In 1875, when he wrote the voice “Atom” for the Encyclopaedia Britannica, he upheld 
the theoretical model of atom as hydrodynamic ring. He stated that, although the “small hard body imagined by 
Lucretius, and adopted by Newton, was invented for the express purpose of accounting for the permanence of the 
properties of bodies”, it failed “to account for the vibrations of a molecule as revealed by the spectroscope”. On the 
contrary, “the vortex ring of Helmholtz, imagined as the true form of atom by Thomson, satisfies more of the 
conditions than any atom hitherto imagined”. According to Maxwell, the main satisfactory features of the model were 
its “permanent” and, at the same time, pliable structure. (Maxwell J.C. 1873, p. 437, and Maxwell J.C. 1875, in 
Maxwell J.C. 1890, vol. 2, pp. 470-1) 
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nothing else but that “deflection of the path of one particle by another”. The first 

conditional sentence is not so definite from the logical point of view. If it had the simple 

logical structure A  not(B), we should conclude that B  not(A), namely molecular 

velocities cannot be “independent” of one another. But this is not Maxwell’s 

conclusion: he does not state that velocities cannot be independent. It does not seem that 

Maxwell were interested in putting forward a clear, definite chain of logical statements.  

We cannot specify what definite logical relationship Maxwell held among equalisation 

of the pressure in all directions, uniform spatial distribution of velocities, and 

“independence” of velocities of different molecules. From the physical point of view, 

the question is: uniformity of pressure seems consistent with mutual independence of 

molecular velocities. This independence should be made consistent with the existence 

of a precise mathematical law of interaction (“the repulsion is inversely as the fifth 

power of the distance”) among the molecules. At that stage, Maxwell did not inquire 

into these logical and physical consequences of his model. Moreover, pressures could 

be equalised “only in the case of a gas at rest”; if it were not the case, the process of 

equalisation would give rise to “the phenomena of viscosity or internal friction”.11 In 

this model, viscosity consisted of a local drift of layers of molecules endowed with 

different velocities. It appeared as an effect to be found at an intermediate spatial scale, 

between the macroscopic scale of the gas as a whole and the microscopic scale of every 

couple of interacting molecules. 

Another query involved the role of the vessel containing the gas. It was assumed that 

the gas deserved a microscopic analysis, whilst the vessel did not. In other words, the 

gas was assumed as a complex set of microscopic components whilst the vessel as a 

simple geometrical object. But, consistently with the hypothesis that matter, whether 

solid or gaseous, has got a microscopic structure, even the vessel would deserve such a 

detailed, microscopic investigation. Dynamical or purely kinetic interactions between 

the molecules of the gas and the molecules of the vessel should be taken into account. 

Maxwell noticed that it was the existence of a huge number of molecular scattering that 

allowed the theorist to assure le gaseous behaviour of the gas itself, and to neglect the 

detailed behaviour of the sides of the vessel. In order to synthetically discuss the query, 

                                                        
11 Maxwell J.C. 1867, in Maxwell J.C. 1890, vol. 2, p 30. 
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Maxwell put forward a very peculiar model of gas. He imagined a rectangular vessel 

“with perfectly elastic sides”, with molecules inside having “no action on one another”: 

molecules cannot collide with each other or “cause each other to deviate from their 

rectilinear paths”. In such a model, the pressures on the different sides of the vessel 

would be “perfectly independent of each other”, so that the vessel could experience 

different tensions in different direction of space. In some way, the gas would not behave 

as a fluid but as “an elastic solid”.12  

In this model, the vessel cannot be looked upon as a mere geometrical entity any 

more. It would be a physical entity, and its complex interaction with the gas could not 

be neglected. The “rigidity”, or the elastic reaction of the system gas-vessel, Maxell 

concluded, “cannot be directly observed” just because of the mechanism of equalisation 

of pressures in all directions represented by molecular collisions which “deflect each 

other from their rectilinear courses”. The equalisation cannot be an instantaneous 

process: the transient inequality of pressure is exactly what “constitutes the 

phenomenon of viscosity”. Another effect of molecular collisions, “when molecules of 

different kinds are present”, is the equalisation of vis viva among the different kinds. He 

reminded the reader about his 1860 paper, where he had shown that the subsequent 

impacts between molecules of different masses lead to the equalisation of their kinetic 

energies.13  

In the last two pages of introductory remarks, with his usual synthetic but 

conceptually dense approach, Maxwell devoted some passages to the concept of 

“molecule”. He held that, in his model of gas, molecules are “those portions of it which 

move about as a single body”. Maxwell was aware that that very general definition 

could only be considered as a first stage: many different, specific models could be 

drawn from it. Among them, there were the models of molecules as “mere points”, or 

“pure centres of force endowed with inertia”. But molecules could have an internal 

structure, as a collection of “several such centres of force, bound together by their 

mutual actions”. On the other hand, we could imagine molecules as “small solid bodies 
                                                        
12 With regard to the representation of a gas as a solid, Brush, Everitt and Garber remarked that we expect that, “if a 
fluid ever acts like a solid, it would only do so at high densities”, whereas Maxwell “discovered” that “[a] rarefied 
gas behaves like an elastic solid!”. (Brush S., Everitt C.W.F. and Garber E. 1986c, p. 25) The fact is that the 
integrated connection of gas and vessel, not the gas in itself, behave like  a solid. Moreover, the vessel must be 
looked upon as a physical (“let the walls be flexible and rough”) rather than a geometric entity. 
13 Maxwell J.C. 1867, in Maxwell J.C. 1890, vol. 2, pp. 32-3. 
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of a determinate form”, but a new query would arise from this specific model: what 

kind of new forces should we imagine, in order to bind “the parts of these small bodies 

together”? In this case, Maxwell remarked, “a molecular theory of the second order” 

would be required. In any case, without giving further details on the structure of 

molecules, he took for granted that their energy could be split into two parts: the energy 

of their centres of mass, and the energy of rotations or oscillations around the centres of 

mass. As a consequence, a collision between two molecules would entail a re-

distribution of these two components of energy. In the model of molecules as centres of 

force, the second component cannot come into play, but in the other models it cannot be 

neglected. Nevertheless Maxwell thought he could resort to a Clausius’ previous 

hypothesis, namely that the two components had, on average, a well definite ratio 

“depending on the nature of the molecules”.14 

 

In the following sections, Maxwell proceeded to discuss the interactions between 

couples of molecules, and the law ruling the distribution of velocities among the 

molecules. When compared to his previous paper (1860), we see that, in 1867, Maxwell 

put forward a completely different demonstration, but he retained the same result, and 

made reference to a similar property of mutual independence among the velocities of 

the molecules.15 

In the first section, “On the Mutual Action of Two Molecules”, he assumed explicitly 

that molecules are “simple centres of force”, and that the forces mutually acting on a 

couple of them make them describe “a plane curve” about their centres of mass. This is 

not, of course, the purely kinematic model put forward in 1860: now intermolecular 

forces are at work. The dynamical analysis starts from two molecules travelling on 

straight lines, then undergoing a sudden repulsive force, and finally, if their velocities 

allow them “to carry them out of the sphere of their mutual action”, departing from the 

                                                        
14 Maxwell J.C. 1867, in Maxwell J.C. 1890, vol. 2, pp. 33-4. 
15 On the difference between the conditions of independence in Maxwell’s 1860 and 1867 papers, see Brush S. 1976, 
book 2, pp. 587-8: “The number of encounters of molecules having two particular values of the velocity vector is 
then assumed to be proportional to n1n2, the product of the numbers having those values separately; but Maxwell does 
not explain why such an assumption of independence of the velocities of two molecules is any more acceptable than 
his previous assumption of the independence of different components of the velocity of the same molecule. There is 
one important difference which becomes clear only in Boltzmann’s later work: Maxwell’s second assumption makes 
it possible to describe an irreversible time evolution of the velocity distribution function.” 
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interaction, following a progressively rectilinear path defined by two asymptotes. The 

curves described by the two molecules should be “symmetrical with respect to the line 

of apses”. The motion of a couple was specified by two geometrical parameters: the 

distance b “between two parallel asymptotes, one in each orbit”, and the angle 

€ 

θ  

between the pair of asymptote of each molecule and the line of apses.16 This is a typical 

mechanical analysis of the motion of two bodies ruled by a central force. Besides the 

geometrical parameter Maxwell introduced a physical parameter, the relative velocity 

between the two molecules. He arranged the three parameters in such a way that the 

angle 

€ 

θ  was a function of b and the relative velocity: the form of the function depended 

on the law of force between the molecules.17 A detailed geometrical and kinematical 

analysis followed: 

 

“Let V be the velocity of M1 relative to M2, then the components of V are 

 

€ 

ξ1 −ξ2 , η1 −η2 , ζ1 −ζ2 . 

 

The plane of the orbit is that containing V and b. Let this plane be inclined 

€ 

φ  to a 

plane containing V and parallel to the axis of x; then, since the direction of V is 

turned round an angle of 

€ 

2θ  in the plane of the orbit, while its magnitude remains 

the same, we may find the value of 

€ 

ξ1 after the encounter, Calling it 

€ 

ξ1' , 

 

€ 

ξ1' =ξ1 +
M2

M1+M2
ξ2 −ξ1( )2sin2θ + η2 −η1( )2 + ζ 2 −ζ1( )2 sin2θ cosφ

 
 
 

 
 
 

    (1).”18 

 

Similar expression should be written for the other components of M1 velocity. 

According to Maxwell, the solution of the mechanical problem would proceed through 

four steps: the determination of V from the velocities of M2 and M1, the determination 

of 

€ 

b, the determination of 

€ 

φ , and, finally, the determination of 

€ 

θ , “if we know the law 

                                                        
16 Maxwell J.C. 1867, in Maxwell J.C. 1890, vol. 2, p. 35. 
17 Maxwell J.C. 1867, in Maxwell J.C. 1890, vol. 2, pp. 35-6. 
18 Maxwell J.C. 1867, in Maxwell J.C. 1890, vol. 2, p. 36. 
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of force”. As I have already noticed, the model was not a purely kinetic one: in some 

way, the latter was an approximation of the former. Maxwell imagined a force that acts 

only during a very narrow interval of time, when the two molecules are very close to 

each other. Out of this range, the molecules can be looked upon as free molecules. We 

can neglect, Maxwell wrote, “both the time and the distance described by the molecules 

during the encounter”, when compared with the time spent and the space travelled by 

the particle outside the range of the repulsive force. A further approximation would 

require that the fraction of impacts among more than two molecules be really 

negligible.19 

In the following section, “On the Mutual Action of Two Systems of Moving 

Molecules”, Maxwell imagined two kinds of molecules in the same vessel. His 

approach was statistical rather than mechanical: following the same path of his 1860 

paper, he introduced a function of velocity f(v) whose values corresponded to the 

statistical weight of the corresponding velocities. Maxwell labelled with N1 the number 

of molecules of a certain kind in unit of volume, and N2 the number of molecules of a 

different kind, and with 

€ 

(ξ1 ,η1 ,ζ1)  and 

€ 

(ξ2 ,η2 ,ζ 2)  two specific values of velocity for 

molecules of the corresponding kind. He was looking for a simple mathematical 

expression representing the number of particles of the first kind having velocities in the 

infinitesimal three-dimensional interval lying between 

€ 

ξ1 ;ξ1+dξ1[ ] , 

€ 

η1 ;η1+dη1[ ]  and 

€ 

ζ1 ;ζ1+dζ1[ ] . Maxwell expressed that number by means of the required function f(v), in 

the following way: 

 

€ 

dN1 = f1 ξ1;η1;ζ1( )dξ1 dη1 dζ1. 

 

A similar expression can be written down for the number of molecules of the second 

kind having velocities in the interval lying between 

€ 

ξ2 ;ξ2 +dξ2[ ] , 

€ 

η2 ;η2 +dη2[ ]  and 

€ 

ζ2 ;ζ 2 +dζ2[ ] . Maxwell’s specification that those number were expressed in such a way 

“[o]n account of the mutual actions of the molecules” is quite misleading, because the 

interactions among the molecules have no place neither in that deduction nor in the 

                                                        
19 Maxwell J.C. 1867, in Maxwell J.C. 1890, vol. 2, p. 37. 
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search of the function f(v) pursued in the following sections. Skipping Maxwell’s 

further three-dimensional computation, we simply quote that “the number of encounters 

of the given kind between the two systems” should be proportional to dN1 dN2.20   

Then he devoted five pages to the procedures of integration with regard to the various 

parameters. In particular, the integration with regard the angle 

€ 

θ  required the 

knowledge of the law of force acting between every couple of molecules. Having 

assumed a force proportional 1/rn, the expression to be integrated contained the term  

 

€ 

V
n−5
n−1 .  

 

Experimental data on viscosity suggested n=5; from the mathematical point of view, 

this choice made easier the computation of the mentioned integral.21 

In the next section, “On the Final Distribution of Velocity among the Molecules of 

Two Systems acting on one another according to any Law of Force”, Maxwell returned 

to the determination of the function of distribution for velocities. The title of the section 

is misleading once again, since no law of force was involved in the determination of the 

distribution. In the last passage of the preceding section he had reminded the reader 

about his previous paper (1860) on the same subject: he acknowledged that some 

assumptions there contained “may appear precarious” to him now. He would have 

determined “the form of the function in a different manner”. He explicitly confined 

himself to distributions globally constant over time, wherein “the number of molecules 

whose velocity lies within given limits remains constant”.22 

Among Maxwell’s notes and drafts stored in “Cambridge University Library” there 

are few reference to the law of velocities distribution. In a manuscript which could be 

dated from 1862 to 1866, “On the Conduction of Heat in Gases”, we read that he would 

have retained “the methods used in my former paper except when obliged to compare 

them with those of M. Clausius”. Then he added that, if a great number of particles “are 

in motion in the same vessel”, they cannot all have the same velocity, but “the average 

                                                        
20 Maxwell J.C. 1867, in Maxwell J.C. 1890, vol. 2, pp. 37-8. 
21 Maxwell J.C. 1867, in Maxwell J.C. 1890, vol. 2, pp. 40-1. 
22 Maxwell J.C. 1867, in Maxwell J.C. 1890, vol. 2, p. 43. 
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number of particles whose velocity lies within the limits v and v+dv” will follow the 

well-known law of errors 

 

€ 

N 4
α 3 π

v 2 e
−
v 2

α 2 dv     (1) 

 

where N is the number of particles and 

€ 

α  a constant with the physical dimension of 

velocity. He specified that “velocities range through all possible values” even though 

“more particles have a velocity = 

€ 

α  than any other given velocity”. The fact that, in the 

manuscript, he spoke of “particles”, “elastic spheres” and “small elastic particles” rather 

than “molecules” suggests us that he was dealing with a mathematical model which, 

from the outset, was imagined as a statistical ensemble following the Gaussian law of 

errors.23  

In another manuscript, “Encounter of Two Molecules”, Maxwell insisted on “a step of 

philosophical importance” which “cannot be overestimated”; the passage from absolute 

certainty” to “high probability”.  When we are dealing with a “medium” consisting of 

“multitudes of moving molecules”, we have to cope with “our limited powers of 

observation and even of imagination”. These limitations force us “to abandon the strict 

dynamical method” and “to adopt the statistical method”. If the former would require 

tracing “the course of every molecule”, the latter is satisfied with “dividing the 

molecules into groups according to some system” and then “confining our attention to 

the number of molecules in each group”. According to Maxwell, the passage from “the 

motion of a single molecule” to “groups of molecules which are continuously 

exchanging molecules one with another”, entails the passage from “axioms absolutely 

certain” to “nothing more than a high probability”.24 Here Maxwell did not specify what 

kind of uncertainty he was dealing with. In other words, does the uncertainty refer to an 

intrinsic lack of knowledge, or to the use of probabilistic algorithms, which are, in 

themselves, as “certain” as mechanical “axioms” or algorithms? 

                                                        
23 Maxwell Manuscript Collection, Cambridge University Library; reproduced in Brush G., Garber E. and Everitt 
C.W.F. (eds.) 1986a, pp. 339-40. 
24 Maxwell Manuscript Collection, Cambridge University Library; reproduced in Brush G., Garber E. and Everitt 
C.W.F. (eds.) 1986a, p. 400. 
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 In the following passages of the manuscript, Maxwell made reference to an 

intermediate spatial dimension, to be found between the microscopic level of molecules 

and the macroscopic level of the whole gas. He focussed on “a group of molecules” 

contained in “a given region bounded by a closed surface”, a mathematical abstraction 

indeed, which was “large enough to contain a very great number of molecules”. It 

seems that, in some way, Maxwell tried to bridge the gap between the physics of 

particles and the physics of continuous media. Accordingly, a sort of conceptual bridge 

between actions at a distance and contiguous actions was outlined. In fact, he imagined 

the action going on between “the group of molecules” and the surrounding molecules as 

an action taking place “through the bounding surface” or “through a small portion of the 

bounding surface”. The transfer of matter and energy did not prevent “[t]he state of the 

medium” from remaining “the same”; it was exactly that continuous transfer, involving 

a huge number of molecules, which let the gas reach its state of “movable equilibrium 

as regards the matter, the momentum, and the energy”. The gas would experience local 

and continuous fluctuations ruled by some continuous law. 

But, shortly afterward, he took into account the effects on a molecule due to “the 

action of another molecule which comes near it in its course”. He put forward a 

simplified model of a collision between a couple of molecules, namely “two molecules 

moving with equal momentum in opposite directions”, in order to let their centre of 

mass at rest”. The remaining part of the manuscript develops almost the same 

mechanical analysis then published in his 1867 paper.25 The physical picture we receive 

from these passages is a sort of precarious balance between different theoretical models. 

On the one hand, discrete events, taking place at the microscopic level, and ruled by the 

laws of mechanics; on the other hand, continuous transformations, taking place at a 

different spatial scale, and ruled by the laws of statistics and probability. 

If we return to the section of Maxwell’s 1867 paper devoted to the law of distribution 

of velocities, we see that he started, once again, from the collision between two 

particles, but then the mechanical analysis gives way to statistical and probabilistic 

remarks. If a and b are the velocities of two molecules of different kind before the 

collision, a’ and b’ are the velocities after the collision, and f(v) is the required 
                                                        
25 Manuscript Collection, Cambridge University Library; reproduced in Brush G., Garber E. and Everitt C.W.F. (eds.) 
1986a, pp. 401-2. 
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distribution of velocities, then the number of molecules of the first kind endowed with 

the velocity a should be  

 

€ 

n1 = f1 a( )dV , 

 

where dV is an element of volume. A similar expression is valid for the molecules of 

the second kind: 

 

€ 

n2 = f2 b( )dV .26 

 

The key passage consists of two steps. First, Maxwell assumed that “the number of 

encounters of the given kind between these two sets of molecules” is proportional to 

€ 

f1 a( ) f2 b( ). Then he assumed that “the number of pairs of molecules which change their 

velocities” from a and b to a’ and b’ “is equal” to the number of couples (or collisions) 

wherein velocities are transformed from a’ and b’ into a and b. The first step 

corresponds to a hypothesis of independence between physical events: the members of a 

couple have no correlation. Molecules are looked upon as free particles: they have 

neither interactions nor history. This is quite strange from the point of view of physics: 

collisions are ruled by physical laws, and a definite law of force had been assumed by 

Maxwell himself. In other words, the statistical approach looks upon molecules and 

collisions as sets of casual events. The second step corresponds to a hypothesis of 

uniformity or equalisation over time: the fluctuations in the distribution of velocities are 

assumed to preserve the state of equilibrium. In some way, the equilibrium is assumed 

rather than deduced from the theory. The corresponding relationship, 

 

€ 

f1 a( ) f2 b( ) = f1 a'( ) f2 b'( ), 

 

together with the principle of conservation of energy,  

                                                        
26 Maxwell J.C. 1867, in Maxwell J.C. 1890, vol. 2, p. 44. 
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€ 

M1a
2 + M2 b

2 = M1a'
2 + M2 b'

2 

 

led to distributions of the form 

 

€ 

f1 a( ) =C1 e
−
a 2

α 2    and   

€ 

f2 b( ) =C2 e
−
b 2

β 2 , 

 

where 

€ 

M1α
2 = M2 β

2 . 

Therefore, “the number of molecules whose component velocities are between” 

€ 

ξ1 and ξ1+dξ1, … 

€ 

ξ1 ;ξ1+dξ1[ ] , 

€ 

η1 ;η1+dη1[ ]  and 

€ 

ζ1 ;ζ1+dζ1[ ] is 

 

€ 

dN1 =
N1

α 3π
3
2

e
−
ξ 2 +η 2 +ζ 2

α 2 dξ dη dζ .27 

 

Maxwell felt obliged to specify that the above distribution was only “a possible form 

of the final distribution”. But, he added, it “is also the only form”; for another form, the 

exchange between a and a’ “would not be equal”.28 The statement does not appear so 

convincing from the logical point of view: the fact that one of the hypothesis, 

€ 

f1 a( ) f2 b( ) = f1 a'( ) f2 b'( ), was necessary for the deduction of that distribution does not 

mean that another distribution should be incompatible with the hypothesis of the equal 

exchange between a and a’.  

Even though Maxwell’s 1867 deduction of the law of distribution is really different 

from his 1860 deduction, it makes reference to the same probabilistic law: the product 

of probabilities for independent events. As already noticed, he assumed the mutual 

independence between n1 and n2, namely the absence of whatsoever dynamical 

correlation between the molecules with velocity a and the molecules with velocity b. It 

                                                        
27 Maxwell J.C. 1867, in Maxwell J.C. 1890, vol. 2, pp. 44-5. 
28 Maxwell J.C. 1867, in Maxwell J.C. 1890, vol. 2, p. 45. 
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seems that Maxwell firmly believed in the necessity of a distribution of the kind 

distribution of errors, pivoted around its average value, and was looking for the better 

way to deduce it. When he got rid of his 1860 deduction while preserving the same 

result, no experiment suggested one law of distribution rather than another: he expected 

a Gaussian law of distribution only on theoretical grounds. 
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The motion of molecules appears as locally predictable and ruled by definite laws of 

motion, but globally unpredictable, even though leading to a distribution statistically 

uniform over time.29 

                                                        
29 It is worth remarking that Maxwell devoted two papers to gas theory after 1867. Brush, Everitt and Garber 
remarked that, in the end, “gas theory and electromagnetic theory underwent in Maxwell’s hands closely similar 
developments from the use of a specific model to the successive reformulation of the original ideas in more and more 
abstract terms”. (See Brush S., Everitt C.W.F. and Garber E. 1986c, pp. xvii and xxiii) Although the authors stated 
that “[t]he attempt with electromagnetic fields was more successful because all known phenomena could be brought 
within the formulation”, Maxwell’s more abstract (Lagrangian) approach to electromagnetic phenomena was not so 
general as the authors claimed. See Stein H. 1981, pp. 311-2, and D’Agostino S. 2000, p. 117. 



 

 

2. Swinging between discrete and continuous theoretical models 

 

In the 1870s, the Austrian physicists Ludwig Boltzmann tried to go far beyond 

Maxwell’s microscopic interpretation of equilibrium in rarefied gases. At the time he 

held the chair of theoretical physics in Graz, and had already published some papers on 

different subjects. I will analyse only two fundamental papers he published in 1872 and 

1877 in the Wiener Berichte: they represent two milestones in the history of 

Thermodynamics. Boltzmann theoretical pathway pursued a microscopic mechanical 

interpretation of the macroscopic features of a gas. As we will see, he managed to 

deepen and widen Maxwell approach: just like Maxwell, he did not manage to base his 

theory on purely mechanical hypotheses.1  

In the first lines of his 1872 paper, he reminded the reader about the foundations of the 

mechanical theory of heat. Molecules were always in motion, but the motion was 

invisible and undetectable: only the “average values” could be detected by human 

senses. The unpredictable motions he assume at the microscopic level gave rise to “well 

definite laws” at the macroscopic level, which involved those average values. The 

observable macroscopic processes were the result of unobservable microscopic events. 

Our limited perceptions allowed us to appreciate “no more than average values”, 

because of “the huge number of molecules in a body”, and their “swift motions”. 

Nevertheless, this subjective limitation did not represent an objective hindrance to a 

complete physical knowledge, for even “the most irregular processes” at the 

microscopic level led “to the same average values”.2 

A thermodynamic theory required therefore two different levels: a microscopic 

invisible, and a macroscopic visible one. Statistics and probability could bridge the gap 

between the two levels. For every process, the ratio of the number of molecules whose 

properties “lie within a given range” to the total number of molecules had to be 

computed. Just at the end of the first page, Boltzmann sharply stated that “[p]roblems 

                                                        
1 Boltzmann’ scientific career began with researches on electricity, in particular the relationship between 
electromagnetism and optics. Together with other German-speaking physicists (A. Föppl for instance), he then 
introduced the Continental scientific community to Maxwell’s electromagnetic theory. See Dugas R. 1959, p. 135, 
Brush 1976, book 1, p. 244, and Buchwald J.Z. 1985, pp. 189 and 197. 
2 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, p. 316. The expression Wiener Berichte is usually used as a 
short form of “Sitzungsberichte der kaiserlichen Akademie der Wissenschaften – mathematisch-
naturwissenschaftliche Classe”. 



Stefano Bordoni 

 

50 

emerging from the mechanical theory of heat are probabilistic problems”. He was aware 

that the concept and the practice of probability echoed some kind of uncertainty and 

deficiency in natural knowledge. He was aware that the introduction of probability in 

physics raised both theoretical and meta-theoretical questions. In this case, probability 

was not a mere contingent tool, but had to be acknowledged as an intrinsic feature of the 

processes under investigation. He claimed that probability did not mean uncertainty: the 

presence of the laws of probability in the mechanical theory of heat did not represent a 

flaw in the foundations of the theory. Probabilistic laws were ordinary mathematical 

laws as certain as the other mathematical laws: we should not have confused an 

“incomplete demonstration” with a “completely demonstrated law of the theory of 

probability”.3 Probabilistic laws satisfied the well-known requirements of mathematical 

laws associated to a physical theory: they had to be logically consistent in themselves, 

and had to explain, or at least describe, the corresponding physical phenomena. 

 

Die Bestimmung von Durchschnittwerten ist Aufgabe der 

Wahrscheinlichkeitsrechnung. Die Probleme der mechanischen Wärmetheorie 

sind daher Probleme der Wahrscheinlichkeitsrechnung. Es wäre aber ein Irrtum, 

zu glauben, dass der Wärmetheorie deshalb eine Unsicherheit anhafte, weil 

daselbst die Lehrsätze der Wahrscheinlichkeitsrechnung in Anwendung kommen. 

Man verwechsle nicht eine unvollständig bewiesenen Satz, dessen Richtigkeit 

infolgedessen problematisch ist, mit einem vollständig erwiesenen Satze der 

Wahrscheinlichkeitsrechnung; letzterer stellt, wie das Resultat jedes anderen 

Kalküls, eine notwendig Konsequenz gewisser Prämissen dar, und bestätigt sich, 

sobald diese richtig sind, ebenso in der Erfahrung, wenn nur genügend viele Fälle 

der Beobachtung unterzogen werden, was bei der enormen Anzahl der 

Körpermoleküle in der Wärmetheorie immer der Fall ist.4 

                                                        
3 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 317-8. 
4 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 316-7. With regard to the relationship between Boltzmann 
and what Cassirer called “Laplace’sche Geist” (title of the first chapter of Cassirer 1936 book), Cassirer himself 
emphasised that “objectivity (Gegenständlichkeit)” or objective “reality (Wirklichkeit)” did not require certainty or 
exact predictability but simply “legality (Gesetzlichkeit)”. (Cassirer E. 1936, p. 194) It seems to me that Cassirer 
managed to fully understand Boltzmann’s point of view. He assumed that the concept of “physical theory” was close 
to the concept of “objectivity”, and the latter, in its turn, close to the concept of “legality”. In some way, probability 
in the context of physics could not represent a problem in itself, provided that probability be ruled by some kind of 
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The statistic procedures involved the computation of average values for both “a given 

molecule over very long time-span”, and “many molecules at a given time”. In other 

words, the statistical sample required a very great number of molecules, and time-

intervals much greater than the time of interaction among the molecules. These 

requirements seemed to Boltzmann reasonable and intrinsically satisfied by a real gas. 

The mathematical model he put forward dealt with ideal entities: every molecule was 

represented by “a single material point”.5 

Before undertaking the building up of the theory, Boltzmann listed other 

approximations and idealisations. He assumed that “every molecule spends most of its 

time flying with uniform rectilinear motion”. He made no assumption about the nature 

of interactions pushing molecules apart when they came very close to each other. He 

spoke of “collisions”, even though he did not necessarily make reference to “elastic 

bodies” nor excluded “arbitrary forces” acting between the molecules. According to 

Boltzmann’s model, collisions among molecules attained three effects. Firstly, a wide 

range of velocities was realised in the gas: “all possible velocities, from zero to very 

high velocities” could be represented. Second, collisions would have allowed the 

spectrum of velocities to be preserved over time “without any further change”. This is a 

very important assumption, as Boltzmann imagined that collisions must lead to a 

dynamical equilibrium, to a sort of homeostasis which would have preserved both the 

variety of motions at the microscopic level, and the equilibrium at the macroscopic 

level. Third, the mathematical law describing the state of equilibrium corresponded to 

Maxwell’s law of velocities distribution, which was nothing else but the distribution of 

probability “for the different errors in the theory of least squares method”. He made 

explicitly reference to Maxwell’s theoretical researches: the number of molecules 

“whose velocities laid between 

€ 

v  and 

€ 

v+dv  was represented by the function 

 

€ 

F(v) = Av2 e−Bv
2

 

                                                        

mathematical law. Cassirer found that Boltzmann’s theory satisfied this requirement, and this makes us sure that we 
are dealing with a reliable physical theory. 
5 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 317-8. 
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wherein A and B had constant values.6  

According to Boltzmann, a question waited for a satisfactory answer: did every initial 

distribution of velocities tend towards Maxwell distribution over time? This was quite a 

demanding task, and he needed some other assumptions in order to undertake it. The 

walls of the vessel containing the gas reflected the molecules just like “elastic balls”. 

Every direction in space was equally probable for every molecule “after a very long 

time”. Indeed, a stronger assumption was immediately put forward: “from the outset, 

every direction was equally probable”. An even stronger one required that “the 

distribution of velocity was uniform at the beginning”.7  

The most important mathematical entity was “the number of molecules whose living 

force lies between x and 

€ 

x + dx , at a given time t, in a given space r”: Boltzmann 

labelled 

€ 

f (x,t) dx  this differential function. He was looking for a mathematical strategy 

suited to “a double-step task”: the “determination of a differential equation for 

€ 

f (x,t)”, 

and the subsequent “integration”. He assumed that “the variation of the function 

stemmed only from the collisions” between couples of molecules.8 The keystone of the 

whole procedure was therefore the computation of the collisions. That a differential 

equation, namely a mathematical structure based on a continuous variation over time, 

depended on an intrinsically discontinuous process like a collision, sounds quite 

astonishing. Much more than the specific mathematical steps, this was the crucial 

challenge Boltzmann had to cope with. Moreover, the function 

€ 

f (x,t) did not belong to 

the tradition of mathematical physics, even though it would have been processed by 

means of mathematical procedure belonging to the same tradition. In some way, a re-

interpretation of the concepts of dynamic equation and evolution of a physical system 

was at stake. The function 

€ 

f (x,t) represented a bridge between two different traditions 

of Mechanics: on the one hand, the laws of scattering between solid bodies, on the other 

the equations of motions. If the former dealt with discontinuous processes, the latter 

dealt with continuous ones. In the specific context of Boltzmann theory, the former was 

                                                        
6 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 318-9. 
7 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 320-21. 
8 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, p. 322. 
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confined at the invisible, microscopic level of interacting molecules; the latter ruled the 

macroscopic, observable behaviour of the whole gas.  

 

Wollen wir daher die Veränderung dieser Funktion während einer sehr kleinen 

Zeit 

€ 

τ  erfahren, so müssen wir die Zusammenstöße während dieser Zeit der 

Betrachtung unterziehen. Betrachten wir einen Zusammenstoß, vor welchem die 

lebendige Kraft des einen der stoßenden Moleküle zwischen x und 

€ 

x + dx , die des 

anderen zwischen x’ und 

€ 

x' + dx' liegt. Dadurch ist natürlich die Natur des 

Zusammenstoßes noch keineswegs vollkommen bestimmt. Je nachdem derselbe 

ein zentraler oder mehr oder weniger schiefer ist, kann vielmehr die lebendige 

Kraft des einen der stoßenden Moleküle nach dem Zusammenstoße noch gar 

mannigfaltige Werthe haben. Setzen wir voraus, dieselbe liege nach dem 

Zusammenstoße zwischen 

€ 

ξ  und 

€ 

ξ + dξ ; dann ist aber die lebendige Kraft des 

zweiten Moleküls nach dem Zusammenstoße bestimmt. Bezeichnen wir letztere 

mit 

€ 

ξ ', so ist nämlich nach dem Prinzip der Erhaltung der lebendigen Kraft 

(1)    

€ 

x + x' =ξ +ξ '; 

die Summe der lebendigen Kraft beider Moleküle vor dem Stoße ist gleich der 

Summe der lebendigen Kraft beider Moleküle nach demselben.9 

 

A simple grid allowed Boltzmann to show the structure of the collision under 

consideration, wherein a is the first and b the second particle. 

 

 a b 

Before the collision 

€ 

x, x + dx  

€ 

x' , x'+dx' 

After the collision 

€ 

ξ ,ξ + dξ   

 

                                                        
9 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 322-3. 
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This kind of collision strikes out a particle with living force lying between x and 

€ 

x + dx : as a consequence, the function 

€ 

f (x,t) dx  decreases by one. Boltzmann labelled 

€ 

dn  the number of these collisions in the unitary volume in the time 

€ 

τ , and assumed that 

 

(2)     

€ 

dn = τ ⋅ f (x,t) dx f (x' ,t)ψ(x,x' ,ξ) dx'dξ  

(3)     

€ 

dn∫ = τ ⋅ dx f (x,t) f (x' ,t)ψ(x,x' ,ξ) dx'dξ
0

x+x'

∫
0

∞

∫ , 

 

wherein the function 

€ 

ψ(x,x' ,t)  “depends on the law of interaction” between a couple 

of particles.10  

If some collisions destroy an amount of living force between x and 

€ 

x + dx , some 

others can create it. If the term 

€ 

dn∫  corresponded to a decrease of the function 

€ 

f (x,t) dx , there should be a term 

€ 

dν∫  corresponding to an increase of 

€ 

f (x,t) dx , in 

order that 

 

(5)     

€ 

f (x,t + dτ ) dx = f (x,t) dx− dn∫ + dν∫ . 

 

The collisions which contributed to 

€ 

dν∫  were represented by the grid 

 

 a b 

Before the collision 

€ 

u, u + du  

€ 

v, v + dv  

After the collision 

€ 

x, x + dx   

 

and 

€ 

dν  by the expression 

 

€ 

dν = τ ⋅ f (u,t) du f (v,t)ψ(u,v,x) dv dx  

                                                        
10 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 323-4. 



Swinging between discrete and continuous theoretical models 

 

55 

(11) 

€ 

dν∫ = τ ⋅dx f (ξ ,t) f (x + x'−ξ ,t)ψ(ξ ,x + x'−ξ ,x) dx'dξ
0

x+x'

∫
0

∞

∫ .11 

 

Before inserting equations (3) and (11) into equation (5), Boltzmann developed the 

left-hand side of (5) in a series of Taylor: 

 

€ 

f (x,t) dx +
∂f (x,t)
∂t

τ dx + Aτ 2 dx = f (x,t) dx− dn∫ + dν∫ , 

€ 

∂f (x,t)
∂t

=
− dn∫
τ dx

+
dν∫

τ dx
− Aτ . 

 

This procedure allowed him to attain the complex integral-differential equation 

 

€ 

∂f (x,t)
∂t

= − f (x,t) f (x' ,t)ψ(x,x' ,ξ) dx'dξ
0

x+x'

∫
0

∞

∫

+ f (ξ ,t) f (x + x'−ξ ,t)ψ(ξ ,x + x'−ξ ,x) dx'dξ
0

x+x'

∫
0

∞

∫ − Aτ

, 

 

which could be put in a more compact form, after having neglected the vanishingly 

small quantity 

€ 

τ :  

 

(12)     

€ 

∂f (x,t)
∂t

= f (ξ ,t) f (x + x'−ξ ,t)ψ(ξ ,x + x'−ξ ,x)[
0

x+x'

∫
0

∞

∫

− f (x,t) f (x' ,t)ψ(x,x' ,ξ)] dx'dξ
.12 

 

He assumed that the function 

€ 

ψ(x,x' ,t)  was symmetric with regard the exchange 

€ 

x↔ x' , namely, 

 

                                                        
11 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 326-7 and 331. 
12 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 331-2. 
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(13)     

€ 

ψ(x,x' ,ξ) =ψ(x' ,x,x + x'−ξ) , 

(14)     

€ 

x x'ψ(x,x' ,ξ) = ξ x + x'−ξ( )ψ(ξ ,x + x'−ξ ,x) . 

 

This allowed Boltzmann to give the “fundamental equation for the variation of  the 

function

€ 

f (x,t)” the new form  

 

(16)     

€ 

∂f (x,t)
∂t

=
f (ξ ,t)
ξ

f (x + x'−ξ ,t)
x + x'−ξ

 

 
 
 0

x+x'

∫
0

∞

∫ −
f (x,t)
x

f (x' ,t)
x'

 

 
 
 

⋅ x x'ψ(x,x' ,ξ) dx'dξ

.13 

 

Immediately he remarked that the choice of the stationary function  

 

(16a)     

€ 

f (x,t) = f (x) =C x e−hx , 

 

wherein C and h were constant values, let 

€ 

∂f (x,t) ∂t  vanish in equation (16). Indeed, 

in this case, 

 

€ 

∂f (x,t)
∂t

=
C ξ e−hξ

ξ

C x + x'−ξ e−h x+x'−ξ( )

x + x'−ξ

 

 
 
 0

x+x'

∫
0

∞

∫ −
C x e−hx

x
C x' e−hx'

x'

 

 
 
 

⋅ x x'ψ(x,x' ,ξ) dx'dξ =

= e−hξ e−hx−hx'+hξ[
0

x+x'

∫
0

∞

∫ − e−hx e−hx' ] ⋅ x x'ψ(x,x' ,ξ) dx'dξ = 0

 

 

The fact is that the function (16a) was nothing else but Maxwell distribution of 

velocities, and the proof that 

€ 

∂f (x,t) ∂t = 0  was “nothing else but Maxwell’s 

demonstration translated into the present denotation”. In brief, the assumption of a 

Maxwellian distribution at a given time assured that such a distribution would not have 
                                                        
13 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 332-4. 
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changed over time. Boltzmann remarked that it was just “this and nothing else to have 

been demonstrated by Maxwell”.14 

Boltzmann aimed at generalising Maxwell’s outcome: starting from “an arbitrary 

distribution of living force”, he wondered “how does it change over time”. We expect 

he should have tried to solve equation (16), but he undertook an apparent detour, for he 

focussed on another function generated by 

€ 

f (x,t), 

 

(17)     

€ 

E = f (x,t)
0

∞

∫ log f (x,t)
x

−1
 

 
 

 

 
 

 
 
 

 
 
 
dx . 

 

He rather tried to prove that E “could not increase, provided that the function 

€ 

f (x,t)  

… satisfies equation (16)”. He then began a long and demanding computation, which 

involved some transformations of the new integral 

 

€ 

dE
dt

=
∂f (x,t)
∂t

log f (x,t)
x

−1
 

 
 

 

 
 

 

 
 

 

 
 + f (x,t) x

f (x,t)
1
x
∂f (x,t)
∂t

 

 
 

 

 
 

 
 
 

  

 
 
 

  
dx

0

∞

∫

=
∂f (x,t)
∂t

log f (x,t)
x

−1
 

 
 

 

 
 

 

 
 

 

 
 +

∂f (x,t)
∂t

 
 
 

 
 
 
dx

0

∞

∫ =
∂f (x,t)
∂t

log f (x,t)
x

 

 
 

 

 
 dx

0

∞

∫
. 

 

Before undertaking the transformations, Boltzmann put the expression for 

€ 

∂f (x,t) ∂t  

inside the last integral: 

 

(18) 

€ 

dE
dt

= log f (x,t)
x

 

 
 

 

 
 dx

0

∞

∫ ⋅
f (ξ ,t)
ξ

f (x + x'−ξ ,t)
x + x'−ξ

 

 
 
 0

x+x'

∫
0

∞

∫ −
f (x,t)
x

f (x' ,t)
x'

 

 
 
 

⋅ x x'ψ(x,x' ,ξ) dx'dξ =

=
f (ξ ,t)
ξ

f (x + x'−ξ ,t)
x + x'−ξ

 

 
 
 0

x+x'

∫
0

∞

∫ −
f (x,t)
x

f (x' ,t)
x'

 

 
 
 
⋅ log f (x,t)

x

 

 
 

 

 
 

0

∞

∫

⋅ x x'ψ(x,x' ,ξ) dx dx'dξ

.15 

                                                        
14 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, p. 334. 
15 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, p. 335. 
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The transformations consisted in writing the integral in four different ways. The four 

expressions were nothing else but the same expression referred to different variables, 

provided that the functions 

€ 

f (x,t) and 

€ 

ψ(x,x' ,ξ)  were invariant under the exchange of 

kinematic variables. After having put forward a typographic simplification, in order to 

better appreciate the meaning of the transformations,  

 

€ 

f (x,t)
x

= s,     

€ 

f (x' ,t)
x'

= s',     

€ 

f (ξ ,t)
ξ

=σ ,     

€ 

f (x + x'−ξ ,t)
x + x'−ξ

=σ '. 

€ 

x x'ψ(x,x' ,ξ) = r , 

 

he showed that 

 

€ 

dE
dt

= σσ ' − s s'( ) ⋅ log s( )
0

x+x'

∫
0

∞

∫
0

∞

∫ ⋅ r ⋅ dx dx'dξ , 

€ 

dE
dt

= σσ ' − s s'( ) ⋅ log s'( )
0

x+x'

∫
0

∞

∫
0

∞

∫ ⋅ r ⋅ dx dx'dξ , 

€ 

dE
dt

= − σσ ' − s s'( ) ⋅ log σ( )
0

x+x'

∫
0

∞

∫
0

∞

∫ ⋅ r ⋅ dx dx'dξ , 

€ 

dE
dt

= − σσ ' − s s'( ) ⋅ log σ '( )
0

x+x'

∫
0

∞

∫
0

∞

∫ ⋅ r ⋅ dx dx'dξ .16 

 

The equality of the four integrals let Boltzmann write 

 

(24)    

€ 

dE
dt

=
1
4

σσ ' − s s'( ) ⋅ log s( ) + log s'( ) − log σ( ) − log σ '( )[ ]
0

x+x'

∫
0

∞

∫
0

∞

∫ ⋅ r ⋅ dx dx'dξ

=
1
4

σσ ' − s s'( ) ⋅ log s ⋅ s'
σ ⋅σ '
 

 
 

 

 
 

0

x+x'

∫
0

∞

∫
0

∞

∫ ⋅ r ⋅ dx dx'dξ

 

                                                        
16 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 343-4. 
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This was the end of the computation: the solution of Boltzmann problem consisted in 

drawing a simple algebraic conclusion about the expression 

 

  

€ 

σσ ' − s s'( ) ⋅ log s ⋅ s'
σ ⋅σ '
 

 
 

 

 
 . 

 

If 

€ 

σσ ' > s s', then 

€ 

log s ⋅ s'
σ ⋅σ '
 

 
 

 

 
 < 0 ; if 

€ 

σσ ' < s s', then 

€ 

log s ⋅ s'
σ ⋅σ '
 

 
 

 

 
 > 0 . In any case, the above 

expression is negative, and “the whole integral is necessarily negative”. This means that 

“E must necessarily decrease”. For Boltzmann excluded that “E could become infinitely 

negative”, he expected that it approached a minimum value, wherein 

€ 

dE dt = 0 . In this 

specific case, 

€ 

σσ ' = s s' (25), namely 

 

€ 

f (ξ ,t)
ξ

f (x + x'−ξ ,t)
x + x'−ξ

=
f (x,t)
x

f (x' ,t)
x'

. 

 

The condition 

€ 

dE dt = 0  corresponded to 

€ 

df dt = 0, and it was satisfied for every 

stationary function of the kind 

 

 

€ 

f (x,t) = f (x) =C x e−hx . 

 

If we accept Boltzmann assumption that the evolution of the physical system led to 

€ 

dE dt = 0 , we must accept that the system approaches Maxwell distribution of 

velocities.17  

The fact is that the mathematical proof assures us that the condition is sufficient, but 

not necessary. Nevertheless, Boltzmann thought that the mathematical result had a deep 

meaning in the context of the kinetic theory: there was a mathematical entity E which 

“could only decrease or remain constant in the course of the molecular motion”. The 
                                                        
17 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 344-5. 
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statement had an even deeper physical meaning, for it could be interpreted as “an 

analytic proof of the second principle” of Thermodynamics. He thought to have attained 

the proof of the second Principle “through a completely different pathway”. The 

quantity 

€ 

dE dt  could be associated to the integral 

€ 

dQ T∫ : what had been demonstrated 

about 

€ 

dE dt  could be translated into a statement about 

€ 

dQ T∫ . He therefore concluded 

that “

€ 

dQ T∫  is in general negative, and vanishes in the limiting case of a reversible 

cyclic process”. It seemed to Boltzmann that his theoretical method was more general in 

its nature, for it did not find difficult to cope with irreversible processes. Indeed, 

irreversible processes were the ones “really taking place in nature”, whereas the 

reversible ones were “purely ideal”.18 

In the next section of the essay, the complex interplay between mathematical 

algorithms and physical concepts was newly on the stage, for Boltzmann faced the 

opposition between continuous and discrete models. The physical side of the opposition 

involved the comparison between continuous and discrete models of matter. The 

mathematical side involved, in particular, the comparison between integrals and infinite 

sums. According to the foundations of the integral-differential calculus,  

 

€ 

f x,t( )dx = lim
ε→0; p→∞

ε ⋅ f pε,t( )
p=1

∞

∑
0

∞

∫ =

= lim
ε→0; p→∞

ε ⋅ f ε,t( ) + f 2ε,t( ) + .....+ f pε,t( ) + .....[ ]
p=1

∞

∑
 

 

It is easy to imagine that, in the physical context, Boltzmann preferred the discrete 

model, in accordance with the foundations of the kinetic theory of gases. It is more 

difficult to imagine that a physicist trained in the tradition of mathematical physics 

would have liked to replace integrals with infinite sum, but this was just what 

Boltzmann did.19 We cannot say that there was some kind of contradiction: indeed, 

                                                        
18 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 345-6. 
19 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, p. 346. 
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discrete mathematical methods suited physical discrete models more than continuous 

ones. It is worth quoting some Boltzmann passages. 

 

Die Integrale sind bekanntlich nichts anderes als symbolische Bezeichnungen für 

Summen unendlich vieler, unendlich kleiner Glieder. Die symbolische 

Bezeichnung der Integralrechnung zeichnet sich nur durch eine solche Kürze aus, 

dass es in den meisten Fällen nur zu unnützen Weitschweifigkeiten  führen würde, 

wenn man die Integrale erst als Summen von p Gliedern hinschriebe und dann p 

immer größer werden ließe. Trotzdem aber gibt es Fälle, in denen die letztere 

Methode wegen der Allgemeinheit, die sie erzielt, namentlich aber wegen der 

größeren Anschaulichkeit, in der sie die verschiedenen Lösungen eines Problems 

erscheinen lässt, nicht ganz zu verschmähen ist.20 

 

The new discrete procedure Boltzmann was undertaking required that the variable x, 

representing the living force of a molecule, could assume only a series of multiple of a 

given amount 

€ 

ε . This is perhaps the most astonishing feature of Boltzmann new 

theoretical model: energy, just like matter, had to rely on a basic unit. In other words, 

Boltzmann put forward an atomic or molecular representation of energy besides an 

atomic or molecular representation of matter. The continuous function 

€ 

f (x,t) had to be 

replaced by a series of statistical weights: the number 

€ 

w1 of molecules with energy 

€ 

ε , 

the number 

€ 

w2  of molecules with energy 

€ 

2ε , and so on. The label 

€ 

Nχλ
kl  represented “the 

number of collisions” which transformed the energies 

€ 

kε  and 

€ 

lε  of two molecules into 

the energies 

€ 

χε  and 

€ 

λε . The principle of conservation of energy required that 

 

(27)     

€ 

k + l = χ + λ .21 

 

In Boltzmann theoretical model, the discrete function 

€ 

Nχλ
kl  depended on the weights 

€ 

wk  and 

€ 

wl , on the time span 

€ 

τ , and on a function 

€ 

Aχλ
kl , according to the equation 

                                                        
20 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, p. 347. 
21 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 348-9. 
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(28)     

€ 

Nχλ
kl = τ ⋅wk ⋅wl ⋅ Aχλ

kl . 

 

The above equation was the discrete analogous of the equation (2), which defined the 

continuous function 

€ 

dn . The functions 

€ 

Aχλ
kl  was the discrete analogous of the continuous 

function 

€ 

ψ(x,x' ,t) . The discrete analogous of the symmetries expressed by equation 

(14) led Boltzmann to define a new function 

€ 

Bχλ
kl = kl Aχλ

kl , which transformed equation 

(28) into 

 

(32)     

€ 

Nχλ
kl = τ ⋅

wkwl

kl
⋅Bχλ

kl . 

 

€ 

Bχλ
kl  was the discrete analogous of the continuous function 

€ 

x x'ψ(x,x' ,ξ) , and 

enjoyed of the same properties of symmetry 

 

(31)     

€ 

Bχλ
kl = Bkl

χλ.22 

 

The collisions were the only processes which could change the statistical weights 

€ 

wp . 

For instance, the weight 

€ 

w1 increased because of collisions creating a molecule with 

energy 

€ 

ε , and decreased because of collision destroying the energy 

€ 

ε : 

 

(33)     

€ 

w1' = w1 − N22
13 − N23

14 − N32
14 − N24

15 + .....

+ N13
22 + N14

23 + N14
32 + N15

24 + .....
. 

 

Another Taylor development allowed Boltzmann to write 

 

                                                        
22 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 349-50. 



Swinging between discrete and continuous theoretical models 

 

63 

€ 

w1' = w1 + τ
dw1
dt

, 

€ 

dw1
dt

= −
w1w3
1 ⋅ 3

⋅B22
13 −

w1w4
1 ⋅ 4

⋅B23
14 −

w1w4
1 ⋅ 4

⋅B32
14 −

w1w5
1 ⋅5

⋅B24
15 − .....

+
w2w2
2 ⋅2

⋅B13
22 +

w2w3
2 ⋅ 3

⋅B14
23 +

w3w2
3 ⋅2

⋅B14
32 +

w2w4
2 ⋅ 4

⋅B15
24 + .....

.23 

 

A transformation on the couple of weights 

€ 

wk  and 

€ 

wl , which was nothing else but the 

reverse of the transformation on 

€ 

Aχλ
kl , led Boltzmann to define the new weights 

 

€ 

uk =
wk

k
 

 

and the new equations 

 

€ 

du1
dt

= − u1u3 ⋅B22
13 − u1u4 ⋅B23

14 − u1u4 ⋅B32
14 − u1u5 ⋅B24

15 − .....

+ u2u2 ⋅B13
22 + u2u3 ⋅B14

23 + u3u2 ⋅B14
32 + u2u4 ⋅B15

24 + .....
. 

 

The complete system of equations was therefore 

 

(35)     

€ 

du1
dt

= u2
2 − u1u3( ) ⋅B2213 + u2u3 − u1u4( ) ⋅ B2314 + B32

14( ) + .....

2 du2
dt

= 2 u1u3 − u2
2( ) ⋅B2213 + u1u4 − u2u3( ) ⋅ B2314 + B32

14( ) + .....

..... .....

p
dup
dt

= u2up−1 − u1up( ) ⋅ B2,p−11,p + Bp−1,2
1,p( ) + .....

. 

 

                                                        
23 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 351-2. 
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If we compare equation (35), which stemmed from a discrete model, with equation 

(16), which stemmed from a continuous model, we found a system of p ordinary 

differential equations instead of a single complex integral-differential equation.24 

Following the analogy with the continuous function 

€ 

f (x,t), Boltzmann defined the 

function  

 

€ 

E = u1 ⋅ log u1( ) + 2 u2 ⋅ log u2( ) + 3 u3 ⋅ log u3( ) + .....+ p up ⋅ log up( ), 

 

and its time derivative 

 

€ 

dE
dt

=
du1
dt

⋅ log u1( ) + u1
1
u1

du1
dt

 

 
 

 

 
 + 2 du2

dt
⋅ log u2( ) + u2

1
u2

du2
dt

 

 
 

 

 
 +

+ 3 du3
dt

⋅ log u3( ) + u3
1
u3

du3
dt

 

 
 

 

 
 + ....+ p

dup
dt

⋅ log up( ) + up
1
up

dup
dt

 

 
 
 

 

 
 
 

, 

€ 

dE
dt

=
du1
dt

⋅ log u1( ) + 2 du2
dt

⋅ log u2( ) + 3 du3
dt

⋅ log u3( ) + .....+ p
dup
dt

⋅ log up( )

+
du1
dt

+ 2 du2
dt

+ 3 du3
dt

+ .....+ p
dup
dt

. 

 

In order to shorten the length of the demonstration, Boltzmann confined himself to the 

first three terms in the above equations: the structure of the demonstration is not 

modified by this simplification. If 

 

(36)      

€ 

du1
dt

= u2
2 − u1u3( ) ⋅B2213

2 du2
dt

= 2 u1u3 − u2
2( ) ⋅B2213

3 du3
dt

= u2
2 − u1u3( ) ⋅B2213

, 

 

then 
                                                        
24 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, p. 353. 
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€ 

dE
dt

= u2
2 − u1u3( ) ⋅B2213 ⋅ log u1( ) − 2log u2( ) + log u3( )[ ] .25 

 

This is the crucial step of Boltzmann demonstration in the discrete model. The 

structure of the equation  

 

€ 

dE
dt

= B22
13 ⋅ u2

2 − u1u3( ) ⋅ log u1u3
u2
2

 

 
  

 

 
   

 

is not so different from the equation (24), which stemmed from a continuous model. 

He could therefore repeat those algebraic remarks. In the above equation, if 

€ 

u2
2 > u1u3  

then the second term is positive, and the third negative. If 

€ 

u2
2 < u1u3, then the second is 

negative, and the third positive. In any case, the derivative 

€ 

dE dt  is negative, unless 

€ 

u2
2 = u1u3 , which entails 

€ 

dE dt = 0 . In conclusion, the function E is decreasing, and it 

“approaches its minimum value”.26 

After having faced the case of polyatomic molecules, at the end of his 1872 paper, 

Boltzmann came back to the relationship between the function E and the entropy. For 

bodies “whose atoms have realised the thermal equilibrium”, he defined the function   

 

(94)     

€ 

E* = N f *∫∫ log f *( )ds dσ , 

 

wherein N was “the number of the gas molecules”, 

€ 

f * = f N , 

€ 

dσ = dx1 dy1 dz1 dx2 ... ..... dxr dyr dzr  the hyper-volume of integration over space, and 

€ 

ds = du1 dyv dw1 du2 ... ..... dur dvr dwr  the hyper-volume of integration over velocities.  

For a mono-atomic gas,  

 

                                                        
25 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, p. 354. 
26 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, p. 355. 
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€ 

f * =
1

V 4πT
3m

 

 
 

 

 
 
3/ 2 e

−
3m
4T

u 2 + v 2 + w 2( ) , 

 

wherein V was the volume of the gas, and m and T the mass and average energy of an 

atom. In this case the function 

€ 

E* becomes 

 

€ 

E* = N f *∫∫ log f *( )dx dy dz dv du dw =

= −N log V 4πT
3m

 

 
 

 

 
 
3/ 2 

 
 
 

 

 
 
 
−
3
2
N

. 

 

As Boltzmann remarked, the above expression “corresponds to the entropy of a mono-

atomic gas, apart from a constant factor and addend”.27 

At the end, two important features of Boltmann computation deserve to be 

emphasised. First, Boltzmann forced the laws of mechanics and the laws of probability 

to stay beside each other. Second, he gave up the demand that the behaviour of a 

physical system as a whole be reduced to, and explained by, the behaviour of its 

components. Every molecular component followed the laws of ordinary mechanics, but 

the whole followed statistical laws. In some way, the whole could not be considered as a 

mere sum of its microscopic parts.28 

The apparent contradiction between the reversibility of individual collisions and the 

irreversibility of the global evolution, which stemmed from the hypothesis of dynamical 

independence of the molecules, raised some debate. Some physicists began to wonder 

what should have happened in case we had managed to instantaneously reverse the 

velocity of every molecule. Could the system go upstream, and therefore away from the 

equilibrium? Apart from the huge amount of energy and information required in order 

                                                        
27 Boltzmann L. 1872, in Boltzmann L. 1909, I Band, pp. 399-400. 
28 In this conceptual gap, Cassirer saw a deep transformation of “the ideal of knowledge”. See Cassirer E. 1936, p. 97: 
“Denn eben der Umstand, dass so weitreichende Aussagen über ein physikalisches Ganze unter Verzicht auf die 
Kenntnis der einzelnen Teile möglich sind, stellt vom Standpunkt der reinen Punktmechanik eine Paradoxie dar und 
enthält eine Umbildung des Erkenntnisideals, das sie bisher durchgeführt hatte.” 
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to perform the hypothetical inversion, the fact is that collisions among dynamically 

independent molecules cannot lead the system backwards.29 

 

                                                        
29 With regard to criticism about Boltzmann theory, in particular Loschmidt criticism, see Dugas R. 1959, pp. 160 and 
180. Se also Brush S. 1976, book 1, p. 239. 





 

 

3. From mechanical models to probability 

 

In the long paper Boltzmann published in 1877, he reminded the reader that the 

function E he had introduced in his 1872 paper could never increase, and that it reached 

its minimum value at the thermal equilibrium. He also reminded the reader about a 

recently published paper, “Bemerkungen über einige Probleme der mechanischen 

Wärmetheorie”, wherein he had stated that “there are more uniform than non-uniform 

distributions” of living force among the molecules of a gas; as a consequence, a “greater 

probability that the distribution become uniform over time” followed.1  

Indeed, the relationship between the second Principle of Thermodynamics and the 

probability of the distributions of the energy was the theoretical issue underlying 

Boltzmann 1877 paper. In the second page, he put forward four hypotheses. First, in 

most cases “the initial state was an improbable one”: in other words, in the course of 

some transformation, the gas can be found in a state far from the equilibrium. Second, 

the physical system “hastens towards more probable states”. Third, it reaches its “most 

probable state, which corresponds to the thermal equilibrium”, at the end of the 

transformation. Four, the entropy of the system “can be identified with the probability 

of the corresponding state”.  

 

Es ist also damit ausgesprochen, daß man den Zustand des Wärmegleichgewichtes 

dadurch berechnen kann, daß man die Wahrscheinlichkeit der verschiedenen 

mögliche Zustände des Systems aufsucht. Der Anfangszustand wird in den 

meisten Fällen ein sehr unwahrscheinlicher sein, von ihm wird das System immer 

wahrscheinlicheren Zustände zueilen, bis es endlich den wahrscheinlichsten, d.h. 

den des Wärmegleichgewichtes, erreicht hat. Wenden wir dies auf den zweiten 

Hauptsatz an, so können wir diejenige Größe, welche man gewöhnlich als die 

Entropie zu bezeichnen pflegt, mit dem Wahrscheinlichkeit des betreffenden 

Zustandes identifizieren.2 

 

                                                        
1 Boltzmann L. 1877b, in Boltzmann L. 1909, II Band, p. 164.  
2 Boltzmann L. 1877b, in Boltzmann L. 1909, II Band, p. 165. 
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As in his 1872 paper, Boltzmann did not like to confine himself to the states of 

equilibrium: here, in particular, he tried to compute the probability of all possible 

“distributions of state”. His physical model of gas was not so far from the model he had 

put forward seven years before. The gas was “contained in a vessel with rigid and 

elastic walls”, and the molecules interacted as they were equally rigid and elastic balls. 

Another suitable model was that of “centres of force” endowed with a specific law of 

force: only “when their distances are less than a given value”, they were allowed to 

interact. This peculiar, unnatural model of force, defined by a sharp discontinuity in its 

mathematical law, allowed Boltzmann to pursue two targets. On the one hand, he tried 

to derive similar effects by two different causes, stemming from two different 

mechanical traditions: intrinsically discontinuous collisions or intrinsically continuous 

forces. On the other hand, he tried to combine two subsequent steps in molecular 

processes: the continuity of the unperturbed trajectories, and the discontinuity of sudden 

collisions.3  

The molecules could assume only discrete values of velocity: the model was qualified 

by Boltzmann himself as “fictitious” and “not corresponding to an actual mechanical 

problem”, although “much easier to handle mathematically“. The series of available 

“living forces” corresponded to an “arithmetic progression” with an upper bound 

€ 

P = pε : 

 

€ 

0, ε, 2ε, 3ε, ....., pε . 

 

These values of the energy could be “distributed over the n molecule in all possible 

ways”, provided that the sum of all energies was preserved over time, and assumed a 

given value 

 

€ 

λ ⋅ε = L .4 

                                                        
3 Boltzmann L. 1877b, in Boltzmann L. 1909, II Band, p. 166. Dugas reminded us that Boltzmann theoretical 

representation of atoms and molecules evolved over time. In his Vorlesungen über Gastheorie (1895-1898), in the 
first volume we find molecules as “elastic spheres” and then molecules as “centres of force”, whereas in the second 
volume, molecules are represented as “mechanical systems characterized by generalized coordinates”. See Dugas R. 
1959, pp. 25 and 79, footnote 5 included. 

4 Boltzmann L. 1877b, in Boltzmann L. 1909, II Band, pp. 167-9. 
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Boltzmann called “complexions” the different distribution of energy among the n 

molecules, which corresponded to the same number of molecules endowed with a given 

value of energy. In other words, a complexion was a simple permutation in a fixed state 

or distribution of energy. If a given state corresponds to “

€ 

w0  molecules with null living 

force, 

€ 

w1  molecules with living force 

€ 

ε , 

€ 

w2  with living force 

€ 

2ε , and so on”, there are 

many complexions corresponding to the state. Boltzmann labelled   

€ 

B “the number of 

complexions” or “number of permutations” or “permutability of a given distribution”. 

The discrete function   

€ 

B played in the 1877 essay the crucial role played by the discrete 

function 

€ 

Nχλ
kl  in the 1872 paper.5  

In order to better explain the meaning of   

€ 

B, Boltzmann offered a “simple numerical 

instance” wherein 

€ 

n = 7 , 

€ 

λ = 7 , 

€ 

p = 7, and therefore 

€ 

L = 7ε  and 

€ 

P = 7ε . He showed that, 

in this case, there were 15 possible states: to each of them corresponded a precise 

number of internal permutations. 

 

 state   

€ 

B 

1 0000007 7 

2 0000016 42 

3 0000025 42 

4 0000034 42 

5 0000115 105 

6 0000124 210 

7 0000133 105 

8 0000223 105 
 

 state   

€ 

B 

9 0001114 140 

10 0001123 420 

11 0001222 140 

12 0011113 105 

13 0011122 210 

14 0111112 42 

15 1111111 1 

   
 

 

In the computation, Boltzmann assumed that we could distinguish the molecules from 

each other. In the table above, in the first state, one molecule owns the energy 

€ 

7ε , and 

the others zero energy: in the complexion showed in the corresponding cell, the first six 

                                                        
5 Boltzmann L. 1877b, in Boltzmann L. 1909, II Band, pp. 169-70. 
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molecules own zero energy and the last 

€ 

7ε  energy. There are other complexions 

corresponding to the same state: the complexion wherein the first molecule owns 

€ 

7ε  

energy and the others zero, the complexion wherein the second owns 

€ 

7ε  and the others 

zero, and so on. The number of complexions corresponding to the state wherein only 

one molecule owns 

€ 

7ε  and the other zero is 7, as showed in the corresponding cell. 

 

Die erste Zustandsverteilung z. B. ist dadurch charakterisiert, daß 6 Molekülen die 

lebendige Kraft Null, einem die lebendige Kraft 

€ 

7ε  zukommt, d.h., daß 

€ 

w0 = 6, 

€ 

w7 =1, 

€ 

w1 =[ ]w2 = w3 = w4 = w5 = w6 = 0  ist. Welches der Moleküle die lebendige 

Kraft 

€ 

7ε  hat, ist dabei gleichgültig. Alle möglichen Komplexionen, welche dieser 

Zustandsverteilung entsprechen, sind daher 7 an der Zahl. Bezeichnen wir die 

Gesamtzahl aller Komplexionen, also in unserem Falle die Zahl 1716 durch J, so 

ist also die Wahrscheinlichkeit der ersten Zustandsverteilung 7/J; ebenso ist die 

Wahrscheinlichkeit der zweiten Zustandsverteilung 42/J; am größten ist die 

Wahrscheinlichkeit der zehnten Zustandsverteilung, da sich ihre Elemente am 

öftesten permutieren lassen.6 

   

The computation of the “permutability”   

€ 

B was submitted to the conservation of 

matter and energy: 

 

(1)      

€ 

w0 +w1 +w2 + ... ...+wp = n  

(2)      

€ 

0w0 +1w1 +2w2 + ... ...+ pwp = λ  

 

The table above displayed was consistent with the choice  

 

(3) 
  

€ 

B =
n!

(w0)!⋅(w1)!⋅(w2)!⋅... ...⋅ (wp)!
. 

 

                                                        
6 Boltzmann L. 1877b, in Boltzmann L. 1909, II Band, pp. 170-1. 
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For every state, the number of complexions was the number of permutation of all the 

molecules divided by the number of internal permutations of every set of molecules 

owning the same energy. We can notice that a single great value 

€ 

wk  in the denominator 

of the fraction makes the denominator greater than the case of many little values 

€ 

wk , 

provided that the sum of all 

€ 

wk  is n in any case. In other words, a very asymmetric 

distribution of energy makes the denominator of   

€ 

B a great number, whereas a very 

symmetric distribution makes the denominator much lesser. This means that the number 

of complexions   

€ 

B is little for asymmetric distributions of energy, and is great for 

symmetric distributions.7 The computation is quite easy in the two limiting cases: a 

single

€ 

wk = n , which means an extremely asymmetric distribution, and 

€ 

wk = n / p  for 

every k, which means a uniform or symmetric distribution of energies. In the first case,  

 

 
  

€ 

B =
n!

(0)!⋅(0)!⋅... ...⋅ (n)!⋅... ...⋅ (0)!
=1. 

 

In the second case, 

 

  

€ 

B =
n!

(n / p)!⋅(n / p)!⋅(n / p)!⋅... ...⋅ (n / p)!
=

n!
p ⋅ (n / p)!

 

 

If n and p are supposed to be very great numbers, as in the case of a real gas, or equal 

numbers as Boltzmann had assumed in the above table, 

 

  

€ 

B =
n!

p ⋅ (n / p)!
=

n!
n ⋅ (1)!

= n −1( )!, 

 

which would be an extremely great number for a real gas. In brief, Boltzmann 

mathematical law for the computation of the complexions entailed a great number of 

complexions for symmetric or uniform distributions of energy, and a little number of 

complexions for an asymmetric or non-uniform distribution of energy. 
                                                        

7 Boltzmann L. 1877b, in Boltzmann L. 1909, II Band, pp. 175-6. 
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After this semi-qualitative analysis, let me return to Boltzmann search for the exact 

mathematic determination of “the most probable distribution of state”. He first stated 

that the maximum of   

€ 

B was the minimum of its denominator, because the numerator “is 

constant” in any case. Then he noticed that the minimum of the denominator was the 

minimum of its logarithm, because the denominator “is a product” of factorials. The 

expression to minimise was therefore 

 

(4)     

€ 

M = ln (w0)!⋅(w1)!⋅(w2)!⋅... ...⋅ (wp)![ ]
= ln (w0)![ ] + ln (w1)![ ] + ln (w2)![ ] + ... ...+ ln (wp)![ ]

 

 

At this point, he suddenly changed his model, “in order to apply the differential 

calculus” to a computation based on the discrete structure of the integer numbers. He 

transformed the factorial function into the Gamma function, which was a generalisation 

of the factorial function, extended to continuous numerical sets. If 

 

€ 

Γ(n) = xn−1

0

∞

∫ e−x dx , 

 

we can show that 

 

€ 

Γ(n) = (n −1)!     or      

€ 

Γ(n +1) = (n)!. 

 

According to this generalisation, equation (4) was translated into 

 

(4a)      

€ 

M1 = ln Γ(w0 +1)[ ] + ln Γ(w1 +1)[ ] + ln Γ(w2 +1)[ ] + ... ...+ ln Γ(wp +1)[ ] .8 

                                                        
8 Boltzmann L. 1877b, in Boltzmann L. 1909, II Band, p. 176. In the subsequent years, Boltzmann tried to clarify the 

conceptual tension between continuous and discontinuous theoretical models. In two papers, first published in the 
Annalen der Physik und Chemie in 1897, and then in his Populäre Schriften, he claimed that “[a]tomism seems 
inseparable from the concept of the continuum”. He noticed that in the theory of heat conduction and in the theory of 
elasticity, “one first imagine a finite number of elementary particles that act on each other according to certain simple 
laws and then once again looks for the limit as this number increases. In any case, we have to start from “a finite 
number of elements” even in integral calculus. According to Boltzmann, mathematical procedure required the 
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The search for the minimum of 

€ 

M1 was performed by Boltzmann with the help of the 

procedure of Lagrange multipliers. For a given function 

€ 

f w0,w1,w2,... ...wp( ) to be 

minimized under a set of conditions 

€ 

gk w0,w1,w2,... ...wp( ) = 0, the problem of 

minimization can be carried on by the help of the stationary points of Lagrange function  

 

€ 

Λ w0,w1,w2,... ...wp;h1,h2,.. ...,hλ( ) = f w0,w1,w2,... ...wp( )+ hk ⋅ gk w0,w1,w2,... ...wp( )
k=1

λ

∑ . 

 

The set of numbers or multipliers 

€ 

hk  can be found at the end of the procedure. In the 

specific problem Boltzmann was facing, the function 

€ 

M1 was submitted to condition (1) 

and (2): therefore 

 

€ 

Λ w0,w1,w2,... ...wp;h,k( ) =

= ln Γ(w0 +1)[ ] + ln Γ(w1 +1)[ ] + ln Γ(w2 +1)[ ] + ... ...+ ln Γ(wp +1)[ ] + h ⋅ n + k ⋅ λ
. 

 

The partial derivatives of the function 

€ 

Λ w0,w1,w2,... ...wp;h,k( )  must vanish: 

 

€ 

∂ ln Γ(w0 +1)[ ]
∂w0

+ h = 0,

∂ ln Γ(w1 +1)[ ]
∂w1

+ h + k = 0,

∂ ln Γ(w2 +1)[ ]
∂w2

+ h +2k = 0,

..... .....

∂ ln Γ(wp +1)[ ]
∂wp

+ h + pk = 0.

 

 

                                                        
passage from discontinuous to continuous representations, just in this order. See Boltzmann L. 1897a, p. 44, and 
Boltzmann L. 1897b, p. 55. On the Kantian flavour of Boltzmann approach to that conceptual tension, see Dugas R. 
1959, p. 73.  
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In the series of the last equations, the differences between two subsequent derivatives 

is always k; this means that  

 

(5)     

€ 

∂ ln Γ(w1 +1)[ ]
∂w1

−
∂ ln Γ(w0 +1)[ ]

∂w0
=
∂ ln Γ(w2 +1)[ ]

∂w2
−
∂ ln Γ(w1 +1)[ ]

∂w1
=

∂ ln Γ(w3 +1)[ ]
∂w3

−
∂ ln Γ(w2 +1)[ ]

∂w2
= ..... .....

.9 

 

Another mathematical switch took place at this point, for Boltzmann re-translated the 

expression M into a discrete form, making use of the approximation 

 

€ 

wk!= 2π wk
e

 

 
 

 

 
 
wk

. 

 

The terms 

€ 

∂ ln Γ(wk +1)[ ]
∂wk

−
∂ ln Γ(wk−1 +1)[ ]

∂wk−1
 were therefore translated into  

 

€ 

∂ ln wk
e

 

 
 

 

 
 
wk 

 
 
 

 

 
 
 

∂wk
−

∂ ln wk−1
e

 

 
 

 

 
 
wk−1 

 
 
 

 

 
 
 

∂wk−1
=

∂ wk ⋅ ln
wk
e

 

 
 

 

 
 

 

 
 

 

 
 

∂wk
−

∂ wk−1 ⋅ ln
wk−1
e

 

 
 

 

 
 

 

 
 

 

 
 

∂wk−1
=  

€ 

ln wk
e

 

 
 

 

 
 +wk

e
wk

1
e
− ln wk−1

e
 

 
 

 

 
 −wk−1

e
wk−1

1
e

=

ln wk
e

 

 
 

 

 
 +1− ln

wk−1
e

 

 
 

 

 
 −1= ln wk

e
 

 
 

 

 
 − ln

wk−1
e

 

 
 

 

 
 =

 

€ 

lnwk − lne− lnwk−1 + lne = lnwk − lnwk−1. 

 

The set of equations (5) became 

 

€ 

lnw1 − lnw0 = lnw2 − lnw1 = lnw3 − lnw2 = ..... ..... 

                                                        
9 Boltzmann L. 1877b, in Boltzmann L. 1909, II Band, p. 177. From the mathematical point of view, the procedure 

yields only a necessary condition. 
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and therefore 

 

(6c)     

€ 

w1
w0

=
w2
w1

=
w3
w2

= ..... ....., 

 

because of the known properties of logarithms. This means that 

 

(7)     

€ 

w1 = x ⋅w0; w2 = x ⋅w1 = x2 ⋅w0; w3 = x3 ⋅w0; ..... ......10 

 

The fundamental laws of conservation (1) and (2) could be written as functions of x: 

 

(1)      

€ 

w0 1+ x + x2 + ... ...+ x p( ) = n  

(2)     

€ 

w0 x +2x2 + 3x3 + ... ...+ px p( ) = λ . 

 

The system contains the two variables x and 

€ 

w0 : Boltzmann managed to derive an 

equation containing only x, discussed the features of the solutions, and tried to solve the 

equation numerically in specific cases. This part of the paper is not of particular interest 

for us, because no general solution is attained.11  

More interesting is the subsequent section, wherein Boltzmann tried to develop a more 

consistent continuous model for the distribution of energy. The quantity 

€ 

ε  was 

interpreted as “a very small quantity”, and the frequencies 

€ 

w0,w1,w2,... ...wp were 

expressed by means of a continuous function f(x): 

 

(19)     

€ 

w0 = ε ⋅ f (0); w1 = ε ⋅ f (ε); w2 = ε ⋅ f (2ε); ..... ...... 

 

                                                        
10 Boltzmann L. 1877b, in Boltzmann L. 1909, II Band, p. 178. 
11 Boltzmann L. 1877b, in Boltzmann L. 1909, II Band, pp. 178-85. 
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Nevertheless he still relied on the expression for the number of distributions, which 

stemmed by the first discrete model, 

 

  

€ 

B =
n!

(w0)!⋅(w1)!⋅(w2)!⋅... ...⋅ (wp)!
, 

 

and on the approximation 

€ 

wk!= 2π wk e( )wk . In this case, the expression to be 

minimised was the already known denominator 

 

€ 

M = ln (w0
e
)w0 ⋅ (w1

e
)w1 ⋅ (w2

e
)w2 ⋅ ... ...⋅ (

wp

e
)wp

 

 
 

 

 
 

= ln(w0
e
)w0 + ln(w1

e
)w1 + ln(w2

e
)w2 + ... ...+ ln(

wp

e
)w p

 

€ 

= w0 lnw0 − lne( )+w0 lnw0 − lne( )+w0 lnw0 − lne( )+ ... ...+w0 lnw0 − lne( )
= w0 lnw0 +w1 lnw1 +w2 lnw2 + ... ...+wp lnwp − w0 +w1 +w2 + ... ...+wp( )
= w0 lnw0 +w1 lnw1 +w2 lnw2 + ... ...+wp lnwp − n

.12 

 

The new pathway from a discrete model back to a continuous one required two steps. 

In the first, he re-introduced the function f in the above expression: 

 

€ 

M = εf (0) lnεf (0) +εf (ε) lnεf (ε) +εf (2ε) lnεf (2ε) + ... ...+εf ( pε) lnεf ( pε) − n
= ε f (0) lnεf (0) + f (ε) lnεf (ε) + f (2ε) lnεf (2ε) + ... ...+ f ( pε) lnεf ( pε)[ ] − n

 

€ 

= ε f (0) ln f (0) + f (ε) ln f (ε) + f (2ε) ln f (2ε) + ... ...+ f ( pε) ln f ( pε)[ ] +

+ε f (0) lnε + f (ε) lnε + f (2ε) lnε + ... ...+ f ( pε) lnε[ ] − n
 

€ 

= ε f (0) ln f (0) + f (ε) ln f (ε) + f (2ε) ln f (2ε) + ... ...+ f ( pε) ln f ( pε)[ ] +

+ε lnε f (0) + f (ε) + f (2ε) + ... ...+ f ( pε)[ ] − n
 

€ 

= ε f (0) ln f (0) + f (ε) ln f (ε) + f (2ε) ln f (2ε) + ... ...+ f ( pε) ln f ( pε)[ ] +

+εn lnε − n
, 

 

                                                        
12 Boltzmann L. 1877b, in Boltzmann L. 1909, II Band, pp. 187-8. 
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and in the fundamental laws of conservation 

 

(1)      

€ 

ε f (0) + f (ε) + f (2ε) + ... ...+ f ( pε)[ ] = n  

(2)      

€ 

ε 0 ⋅ f (0) +ε ⋅ f (ε) +2ε ⋅ f (2ε) + ... ...+ pε ⋅ f ( pε)[ ] = L. 

 

Boltzmann neglected the term containing only n and 

€ 

ε , for “they are constant”: in 

particular, 

€ 

ε  “has the same value for all the distributions of state”. The expression M to 

be minimized could be replaced by 

 

(24)     

€ 

M '= ε f (0) ln f (0) + f (ε) ln f (ε) + f (2ε) ln f (2ε) + ... ...+ f ( pε) ln f ( pε)[ ] .13 

 

The second step consisted in replacing the last three sums with infinite integrals: 

 

(25)     

€ 

M '= f (x) ln f (x)[ ] dx
0

∞

∫  

(26)      

€ 

n = f (x) dx
0

∞

∫  

(27)      

€ 

L = x ⋅ f (x) dx
0

∞

∫ .14 

 

The procedure of Lagrange multipliers was on the stage once again, in order to 

minimize the expression (25) under the conditions (26) and (27). The search for 

stationary points was performed on the integral 

 

€ 

f (x) ln f (x)[ ] + kf (x) + hxf (x){ }dx
0

∞

∫ , 

 

                                                        
13 Boltzmann L. 1877b, in Boltzmann L. 1909, II Band, p. 188. 
14 Boltzmann L. 1877, in Boltzmann L. 1909, II Band, p. 188. 
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whose variation is 

 

€ 

f ' (x) ln f (x)[ ] + f (x) f ' (x)
f (x)

+ kf ' (x) + hf ' (x) + hxf ' (x)
 
 
 

 
 
 
dx

0

∞

∫ =

ln f (x)[ ] +1+ k + h + kx{ } f ' (x) dx
0

∞

∫
. 

 

The variation vanishes when 

€ 

ln f (x)[ ] +1+ k + h + hx = 0 or 

€ 

ln f (x)[ ] = −1− k − h − hx . The 

solution is 

 

 (28)     

€ 

f (x) = e−1−k−h−hx = e−1−k−he−kx =Ce−hx . 

 

This function was interpreted by Boltzmann in the usual way: it “would yield the 

result that, at the thermal equilibrium, the probability of a living force lying between x 

and x+dx“ is 

 

  

€ 

f (x) dx =Ce−hx dx .15 

 

After having devoted some pages to multi-atomic molecules, and much more pages to 

analysing different distributions of probability, in the last section he faced “the 

relationship between entropy and distribution of probability”. He re-defined “the 

measure of the permutability” in a slightly different way, 

 

(61)     

€ 

Ω= − f (x,y,z;u,v,w) ln f (x,y,z;u,v,w)[ ] dx dy dz du dv dw∫∫∫∫∫∫ , 

 

wherein x,y,z were spatial coordinates and u,v,w velocity coordinates. The integral 

was extended to a six-dimensional hyper-space, and the minus before the integral 

                                                        
15 Boltzmann L. 1877b, in Boltzmann L. 1909, II Band, pp. 189-90. Boltzmann showed that “the second variation of 

M’” was necessarily positive, and therefore the function (28) represented really a minimum. 
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transformed the search for the minimum into the search for the maximum. This was the 

quantity whose value had to be computed “when the gas has reached thermal 

equilibrium”. As already showed, at the equilibrium, 

 

€ 

f x,y,z;u,v,w( ) =
N

V 4πT
3m

 

 
 

 

 
 
3/ 2 e

−
3m
4T

u 2 + v 2 + w 2( ) , 

 

wherein V was the volume of the gas, m the mass of every molecule, T the average 

living force, and N the number of molecules. When we put the function into 

€ 

Ω, the 

integral yields  

 

(62)     

€ 

Ω= N log V 4πT
3m

 

 
 

 

 
 
3/ 2 

 
 
 

 

 
 
 
+
3
2
N −N lnN .16 

 

In general, from a purely mathematical point of view, the above expression could be 

written as 

 

€ 

Ω= N ln VT 3/ 2( ) +K , 

 

where K is a constant term, independent of the variables V and T. 

Apart from the reversed signs and the last constant in the right-hand side of (62), 

Boltzmann arrived essentially at the expression already found in 1872. At that time, he 

briefly stated that it corresponded essentially to “the entropy of a mono-atomic gas”. 

Seven years later, he tried to carefully compute the entropy, starting from a particular 

expression of the first Principle, and the equation of state for perfect gases: 

 

                                                        
16 Boltzmann L. 1877b, in Boltzmann L. 1909, II Band, pp. 215-6. The general solution of the integral-differential 

equation for 

€ 

f (x,t)  was found by D. EnsKog and S. Chapman in 1916-7. See Brush 1976, book 1, p. 237,  and 
Brush 1976, book 2, p. 449.  
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(63)     

€ 

dQ = NdT + pdV  

(64)     

€ 

pV =
2
3
NT . 

 

The computation of entropy required only a simple integration: 

 

 

€ 

dQ
T∫ = N dT

T∫ +
pdV
T

= N lnT +C1 +
2
3
NT
VT

dV∫∫ = N lnT +C1 +
2
3
N dV

V∫  

€ 

= N lnT +C1 +
2
3
N lnV +C2 =

2
3
N 3
2
lnT + lnV

 

 
 

 

 
 +C =

2
3
N 3
2
lnT 3/ 2 + lnV

 

 
 

 

 
 +C  

€ 

=
2
3
N ln VT 3/ 2( )+C .17 

 

Boltzmann stressed the structural similarity between the function 

€ 

Ω, representing the 

probability of a given state, and the entropy 

€ 

dQ T , in whatever “reversible change of 

state”. Apart from a constant, 

 

€ 

dQ
T∫ =

2
3
Ω : 

 

the increase of “the measure of permutability multiplied by 2/3” equals “the increase 

of entropy”.  

 

Es ist nun bekannt, daß, wenn in einem Systeme von Körpern lauter umkehrbare 

Veränderungen vor sich gehen, dann die Gesamtsumme der Entropie aller dieser 

Körper konstant bleibt. Sind dagegen unter den Vorgängen auch nicht 

umkehrbare, so muß die Gesamtenentropie aller Körper notwendig wachsen, wie 

bekanntlich aus dem Umstande folgt, daß 

€ 

dQ T über einen nicht umkehrbaren 

Kreisprozeß integriert, negativ ist.  Gemäß der Gleichung (65) muß also auch die 
                                                        

17 Boltzmann L. 1877b, in Boltzmann L. 1909, II Band, p. 216. For a comparison, see Boltzmann L. 1872, in 
Boltzmann L. 1909, I Band, pp. 399-400. 
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Summe der Permutabilitätsmaß aller Körper 

€ 

Ω∑  oder das gesamte 

Permutabilitätsmaß derselben zunehmen. Es ist daher das Permutabilitätsmaß eine 

Größe, welche für den Zustand des Wärmegleichgewichtes bis auf einen 

konstanten Faktor und Addenden mit den Entropie identisch ist, welche aber auch 

während des Verlaufes eines nicht umkehrbaren Körpers einen Sinn behält, und 

auch während eines solchen fortwährend zunimmt.18 

 

In the last pages of the paper, in many ways Boltzmann emphasised the relationship 

between the computation of the complexions corresponding to a given physical state, 

and the computation of the entropy. Although the entropy could not be computed out of 

“thermal equilibrium”, the computation of “the measure of permutability” could be 

performed in any case. Even in cases wherein “initial and final state” were not 

equilibrium states, the measure of permutability of all bodies in the course of the 

transformation “will continuously increase”, or at most “can maintain a constant value 

as long as all the bodies are in thermal equilibrium”. 

At the end, in the last passages, he acknowledged the existence of mathematical and 

physical difficulties. He had not been able to put forward “an exact mathematical 

implementation” of the theory which included solid and liquid bodies. At that stage, the 

nature of those “states of aggregation” was far less known than the nature of gases, and 

physicists could not rely on mathematical models as powerful as the kinetic theory of 

gases. Nevertheless, he found “probable” that the deep physical meaning of his 

theoretical model, and the intimate link between distributions of probability and entropy 

was not confined to gases: his theoretical model could be looked upon as “a general law 

of nature”.19  

Boltzmann was aware of the originality of his contribution to Thermodynamics; at the 

same time, he was aware that his mathematical model represented a simplification and 

an idealisation. What he did not explicitly wondered was whether he had actually 

                                                        
18 Boltzmann L. 1877b, in Boltzmann L. 1909, II Band, p. 217. Cassirer found that Boltzmann had managed to 

remove the “paradoxical and extraneous nature  (Fremdheit)” of the second Principle of Thermodynamics in the 
context of Mechanics. Just for this reason, he qualified Boltzmann as “one of the most rigorous representatives of 
classic Mechanics”. See Cassirer E. 1936, pp. 95-6. The fact is that, in Boltzmann’s theory, the second Principle did 
not stem from Mechanics, but from statistical and probabilistic hypotheses unrelated to Mechanics. Just for this 
reason, I find that Boltzmann was not a “classical physicist”.  

19 Boltzmann L. 1877b, in Boltzmann L. 1909, II Band, pp. 217-8 and 233. 
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managed or not to give a mechanical explanation of the second Principle of 

Thermodynamics. In some way, he let people believe he had managed, and this belief 

triggered off the subsequent widespread debate on the possibility or impossibility of a 

mechanical foundation of the second Principle. What he had really managed to do was 

the derivation of the second Principle from an original and questionable alliance 

between mechanics and probability.  

Boltzmnn 1877 paper raised a new and more widespread debate, mainly after 

Poincare’s recurrence theorem became known to the scientific community. Both the 

criticism of the young mathematician Zermelo, and the debate which involved some 

British physicists and the journal Nature, are well known to historians. According to 

Poincaré, Mechanics required that “all phenomena are reversible”, even though every 

experience contrasted that requirement: thermal conduction was a well-known instance 

of irreversibility. That a scientist could expect thermal irreversibility stem from the laws 

of Mechanics, seemed logically inconsistent to Poincaré: how could we rely on a theory 

wherein “we find reversibility at the outset, and irreversibility at the end”? 20 

 

 

                                                        
20 Poincaré H. 1893, pp. 534-7. For the debate, see Dugas R. 1959, pp. 207-8 and 212-3, Brush S. 1976, book 1, p. 

96, and Brush S. 1976, book 2, pp. 356-63. 



 

 

4. The mathematical physics of French engineers 

 

Besides the pathway to Thermodynamics undertaken by Maxwell and Boltzmann, 

there was a different pathway, and French scientists had an important part in it. The 

most interesting difference between them dealt with the relationship between 

Thermodynamics and Mechanics. Following the former, microscopic mechanical 

models, mixed with some extra-mechanical hypothesis, were expected to account for 

the thermodynamic behaviour of macroscopic systems. Following the latter, a general 

mathematical theory had to be pursued, without any reference to whatever kind of 

microscopic structure underlying the physical system under consideration. The meaning 

of expressions like “mechanical theory of heat” stood in the formal similarity between 

the mathematical structure of Thermodynamics and the mathematical structure of 

Mechanics, rather than in mechanical models of heat.  

In 1851, Ferdinand Reech, Navy engineer and director of the École du Genie 

Maritime, sent a short paper to the Compes Rendus de l’Académie des Sciences, in the 

section Mathématiques Appliquées. He reminded the reader of Carnot’s 1924 essay and 

Clapeyron’s 1830 paper, specifically the mathematical law 

 

€ 

S = q Γ(t' ) − Γ(t)[ ] , 

 

wherein 

€ 

S  was “the quantity of motive force”, 

€ 

q  “the quantity of caloric” exchanged 

between two “sources of heat”, and 

€ 

Γ(t)  a universal function of temperature. Both 

Carnot and Clapeyron had assumed that the motive force stemmed from the transfer of 

that amount 

€ 

q  of heat from a source 

€ 

A' at the temperature 

€ 

t' to a source 

€ 

A at the lower 

temperature 

€ 

t . The transfer of caloric – Reech remarked – could not transform into 

mechanical force completely, for “friction and passive resistance” could not be 

disregarded. Moreover, the caloric “sent out by the chimney“ and “the thermometric 

fall” in the condenser had to be taken into account too. 

Both the existence of caloric dissipation and the probable inequality between the 

amount of caloric 

€ 

q'  received by 

€ 

A' and the amount 

€ 

q  sent to 

€ 

A, as shown 



Stefano Bordoni 

 

86 

experimentally by Regnault, led Reech to assume a more general relationship between 

motive force, caloric and temperature: 

 

€ 

S = q'Γ(t' ) − qΓ(t) = q'Γ(t' ) − qΓ(t' ) + qΓ(t' ) − qΓ(t) = q' − q( )Γ(t' ) + q Γ(t' ) − Γ(t)[ ] .1  

 

In a long essay Reech published in the Journal de Mathématiques pures et appliquées 

in 1853, and reprinted as the volume Théorie générale des effets dynamiques de la 

chaleur the following year, he mentioned Joule, Thompson [sic], Rankine, Mayer and 

Clausius’ recent researches. He regretted that “mere hypotheses were given so great 

importance”, and claimed that “the logic consistency of the reasoning” should have 

been restored. The “new point of view” he announced was developed in that volume 

and summarised in a paper published in the same mathematical journal in 1856. In the 

latter he stressed the “algebraic” character of his inquiry, which was very general and 

consistent with different physical hypotheses. He aimed at deriving the most general 

and complete amount of “formulae” consistent with “the totality of future experiments” 

undertaken by physicists.2  

His theory was quite a mathematical one indeed. He started from the above equation, 

rewritten in an integral form, 

 

€ 

S = q'Γ(t' ) − qΓ(t) =
d qΓ(t)[ ]

dtt

t'

∫ dt , 

 

and stressed that the function 

€ 

Γ(t)  was the same ”for all bodies in nature”. The above 

equation replaced Carnot and Clapeyron’s equation 

 
                                                        

1 Reech F. 1851, pp. 567-8 and 570. The role of Reech was emphasised by A.C. Truesdell. In 1977, he dedicated the 
book written together with S. Bharatha to the memory of Carnot, Reech, and Duhem: “May this tractate be received 
as an expression of respectful gratitude for the legacy of the great French thermodynamicists”. See also chapters 8 
and 14 in the same book (Truesdell C., Bharatha S. 1977).  He defined a textbook Reech published in 1868 as “the 
clearest presentation of the subject I have ever seen”. (Truesdell A.C. 1980, p. 299). See also Ibidem, chapter 10, 
which is devoted to a modern rephrasing of Reech theories. 

2 Reech F. 1854, p. 1, and Reech F. 1856, p. 61. In a footnote he stressed once again the mathematical character of 
his researches: “Mon but n’a jamais étè de m’occuper de ces matières comme physicien, mais seulement comme 
logicien, particulièrement en ce qui concerne le perfectionnement de la théorie des machines motrices, …” (Reech F. 
1856, pp. 65-6) 
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(1)   

€ 

S = q dt
Ct

t'

∫ , 

 

which was consistent with the hypothesis 

€ 

q' = q , provided that 

€ 

C  represented a 

universal function of temperature. 

Then Reech made reference to two different scientific traditions, in order to show that  

 

(3)  

€ 

Γ(t) = const. 

 

He borrowed from the tradition of kinetic theories of heat the assumption that “heat 

would be equivalent to the living force”: in this case, 

€ 

S  and 

€ 

q  have the same physical 

dimension. The function 

€ 

Γ(t)cannot therefore be anything else but a constant quantity. 

Then he borrowed from Fourier tradition the mathematical theory of heat conduction. In 

this case “there is neither production of work nor any kind of waste”, and therefore 

€ 

q' = q  and 

€ 

S = 0. As a consequence, 

 

€ 

q'Γ(t' ) = qΓ(t) ,  

€ 

Γ(t' ) =Γ(t) = const. 

 

and therefore 

 

(4) 

€ 

S =G q' − q( ) 

 

It is worth remarking the integration Reech put forward between the different 

traditions of the science of heat: Fourier flow of heat without mechanical work, Carnot 

transformation of heat into mechanical work without free flow of heat, and Joule 

equivalence between heat and mechanical work.3  

                                                        
3 Reech F. 1856, pp. 59-60.  



Stefano Bordoni 

 

88 

He tried to generalize the mathematical treatment of Carnot cycle; the internal surface 

of the closed line representing the cycle in a Cartesian plane corresponded to 

€ 

S . Then 

he assumed that the isothermal transformations were expressed by the equations 

 

€ 

ϕ v, p( ) = t , 

€ 

ϕ v, p( ) = t', 

 

and the adiabatic ones by 

 

€ 

ψ v, p( ) = u , 

€ 

ψ v, p( ) = u'. 

 

For the amount of heat 

€ 

q  and 

€ 

q'  he assumed functions of the general kind 

 

€ 

q = f t,u( )
u

u'

∫ du ,  

€ 

q' = f t' ,u( )
u

u'

∫ du , 

 

which could be simplified when taking into account experimental data concerning 

“some physical properties of vapours”: 

 

(7)   

€ 

q = γ t( )
u

u'

∫ du = γ t( ) u' − u( ),  

€ 

q' = γ t'( )
u

u'

∫ du = γ t'( ) u' − u( ) . 

 

As a consequence, what Reech called “Causius’ second theorem” followed: 

 

€ 

q'
γ t'( )

=
q
γ t( )

 

 

From the equations (4) and (7), 
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(8) 

€ 

S =G q' − q( ) =G u' − u( ) γ t'( ) −γ t( )[ ] =G u' − u( ) γ t'( )
u

u'

∫ dt . 

 

The comparison between Reech equation (8) and Carnot-Clapeyron equation  

 

(1) 

€ 

S = q dt
Ct

t'

∫  

 

offered a meaningful correspondence. The abstract term 

€ 

G u' − u( )  played in the 

former the same role the quantity of heat 

€ 

q  played in the latter, and the universal 

function

€ 

γ t( ) played the role of 

€ 

1/C .4 

After thirteen years, another French engineer took the road of a mathematical 

generalisation of Thermodynamics. In two short papers published in the Comptes 

Rendus, François Massieu tried to dress Thermodynamics with the garments of a 

consistent and unifying mathematical theory. He started from the two principle 

involving energy and entropy. An infinitesimal amount of heat 

€ 

dQ received by a body 

could produce three effects: “external work” of dilatation, “internal work”, and an 

increase of body “sensible heat”. He remarked that the last two effects could not be 

identified separately. Only some kind of hypotheses would allow us to distinguish 

between work and heat inside the body. From the mathematical point of view, a single 

function 

€ 

U  accounted for the sum of “mechanical and thermal effects, which merge 

with each other due to the principle of equivalence between heat and work”. Massieu 

did not further explain this asymmetry between macroscopic and microscopic level: 

why should we distinguish heat from work at the macroscopic level, and should not at 

the microscopic? The fact is that the transfer of heat 

€ 

dQ was different from what 

Massieu labelled “sensible heat” and - he reported - “many scholars call internal heat”.  

If 

€ 

pdv  was the external work, it was “thermally equivalent” to 

€ 

A pdv , wherein 

€ 

A was 

the well-known conversion factor between mechanical and thermal measures. The first 

principle could therefore be expressed by the equation 

                                                        
4 Reech F. 1856, pp. 60-1and 65. 
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(1)   

€ 

dQ = dU + A pdv . 

 

If 

€ 

T  was the “absolute temperature” 

€ 

T = t + 273( ) , at the end of a “closed reversible 

cycle”, the result  

 

€ 

dQ
T∫ = 0 

 

followed from “Joule and Carnot combined principles”. Therefore 

€ 

dQ /T  was “the 

complete differential 

€ 

dS  of a function 

€ 

S  of the variables which are sufficient to define 

the state of the body”. The function 

€ 

S  was nothing else but Clausius’ entropy.5   

After having chosen 

€ 

v  and 

€ 

t  (volume and temperature) as independent variables, from 

the mathematical point of view,  

 

(2)   

€ 

dQ =
∂U
∂t

dt +
∂U
∂v

dv + A pdv =
∂U
∂t

dt +
∂U
∂v

+ A p
 

 
 

 

 
 dv , 

and therefore 

 

(3)   

€ 

dS =
dQ
T

=
1
T
∂U
∂t

dt +
1
T

∂U
∂v

+ A p
 

 
 

 

 
 dv . 

 

Being 

€ 

S  a complete differential, 

 

€ 

∂
∂v

1
T
∂U
∂t

 

 
 

 

 
 =

∂
∂t

1
T

∂U
∂v

+ A p
 

 
 

 

 
 

 

 
 

 

 
 . 

 

Massieu skipped some mathematical steps, which we can perform following his 

logical pathway: 
                                                        

5 Massieu F. 1869a, p. 858. 
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€ 

1
T
∂2U
∂v∂t

= −
1
T 2

∂U
∂v

+
1
T
∂2U
∂v∂t

−
1
T 2

A p +
A
T
∂p
∂t

 , 

 

€ 

1
T 2

∂U
∂v

= −
1
T 2

A p +
A
T
∂p
∂t

, 

 

(4)   

€ 

∂
∂v

U
T 2
 

 
 

 

 
 =

∂
∂t

Ap
T

 

 
 

 

 
 . 

 

This means that we can define another function 

€ 

ψ  whose differential 

 

(5)   

€ 

dψ =
U
T 2

dt +
A p
T

dv  

 

is a complete differential of the same variables. Massieu labelled “characteristic 

function of the body” the function 

€ 

ψ . The most important mathematical and physical 

step consisted in deriving “all body properties dealing with thermodynamics” from 

€ 

ψ  

and its derivatives.6 Two slightly different deductions are outlined in the short paper and 

in some pages he added subsequently. From equation (5), 

 

€ 

∂ψ
∂t

=
U
T 2

  and  

€ 

∂ψ
∂v

=
A p
T

. 

 

Therefore 

 

€ 

U = T 2 ∂ψ
∂t

  and  

€ 

p =
T
A
∂ψ
∂v

. 

 

If 
                                                        

6 Massieu F. 1869a, p. 859. In his paper, Massieu did not distinguish partial from total derivatives. 
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€ 

dS =
dQ
T

=
1
T
∂U
∂t

dt +
1
T

∂U
∂v

+ A p
 

 
 

 

 
 dv , 

 

then 

 

€ 

dS =
1
T

∂ T 2 ∂ψ
∂t

 

 
 

 

 
 

∂t
dt +

1
T

∂ T 2 ∂ψ
∂t

 

 
 

 

 
 

∂v
+ T ∂ψ

∂v

 

 

 
 
 
 

 

 

 
 
 
 

dv , 

 

€ 

dS =
1
T
2T ∂ψ

∂t
+ T 2 ∂

2ψ

∂t2
 

 
 

 

 
 dt +

1
T

T 2 ∂
2ψ

∂v∂t
+ T ∂ψ

∂v

 

 
 

 

 
 dv , 

 

€ 

dS =
∂ψ
∂t

+
∂ψ
∂t

+ T ∂
2ψ

∂t2
 

 
 

 

 
 dt + T ∂

2ψ
∂v∂t

+
∂ψ
∂v

 

 
 

 

 
 dv , 

 

€ 

dS =
∂
∂t

ψ + T ∂ψ
∂t

 

 
 

 

 
 

 

 
 

 

 
 dt +

∂
∂v

ψ + T ∂ψ
∂t

 

 
 

 

 
 

 

 
 

 

 
 dv . 

 

At the end, 

 

€ 

S =ψ + T ∂ψ
∂t

, 

 

and therefore 

€ 

S  has been expressed in terms of the characteristic function 

€ 

ψ . 

Remembering that 

 

€ 

∂ψ
∂t

=
U
T 2

, 
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we can write  

 

€ 

S =ψ +
U
T

. 

 

This means that not only can 

€ 

U  and 

€ 

S  be expressed in terms of the function 

€ 

ψ , but 

€ 

ψ  

can be expressed in terms of 

€ 

U  and 

€ 

S : 

 

€ 

ψ = S − U
T

. 

 

A more synthetic expression for 

€ 

S  is 

 

€ 

S =
∂
∂t

Tψ( ) .7 

 

Then Massieu introduced a second characteristic function 

€ 

ψ ' in terms of the two 

variables 

€ 

t  and 

€ 

p. He first defined a new function 

 

€ 

U ' =U + A pv . 

 

If 

 

€ 

dU ' = dU + A pdv + A v dp, 

 

then 

 

 

                                                        
7 Massieu F. 1869b, p. 1058. 
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€ 

dU = dU ' − A pdv − A v dp 

 

and 

 

€ 

dQ = dU + A pdv = dU ' − A pdv − A v dp + A pdv = dU ' − A v dp . 

 

If 

€ 

t  and 

€ 

p are the two independent variables, 

 

€ 

dQ =
∂U '
∂t

dt +
∂U '
∂p

dp − A v dp =
∂U '
∂t

dt +
∂U '
∂p

− A v
 

 
 

 

 
 dp ,  

 

and therefore 

 

 

€ 

dS =
dQ
T

=
1
T
∂U '
∂t

dt +
1
T

∂U '
∂p

− A v
 

 
 

 

 
 dp . 

 

The above deductive engine can be put in action for the search of 

€ 

ψ '. Being 

€ 

S  a 

complete differential, 

 

€ 

∂
∂p

1
T
∂U '
∂t

 

 
 

 

 
 =

∂
∂t

1
T

∂U '
∂p

− A v
 

 
 

 

 
 

 

 
 

 

 
 . 

 

The mathematical steps are similar to those undertaken in the search of 

€ 

ψ : 

 

€ 

1
T
∂2U '
∂p∂t

= −
1
T 2

∂U '
∂p

+
1
T
∂2U
∂p∂t

+
1
T 2

A v − A
T
∂v
∂t

 , 

 

€ 

1
T 2

∂U '
∂p

=
1
T 2

A v − A
T
∂v
∂t

, 
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€ 

∂
∂p

U '
T 2
 

 
 

 

 
 = −

∂
∂t

Av
T

 

 
 

 

 
 . 

 

This means that we can define a new function 

€ 

ψ ' whose differential 

 

€ 

dψ ' = U '
T 2

dt − A v
T

dp  

 

is a complete differential of 

€ 

p and 

€ 

t: 

€ 

ψ ' is Massieu second “characteristic function”. 

This also means that 

 

€ 

∂ψ '
∂t

=
U '
T 2

  and  

€ 

∂ψ '
∂p

= −
A v
T

, 

 

or 

 

€ 

U ' = T 2 ∂ψ '
∂t

  and  

€ 

v = −
T
A
∂ψ '
∂p

.8 

 

At this point let me skip all the mathematical steps leading from 

 

€ 

dQ = dU ' − A v dp    and   

€ 

dS =
dU '
T

−
A v dp
T

 

 

to 

 

€ 

S =ψ ' + T ∂ψ '
∂t

  or  

€ 

S =
∂
∂t

Tψ '( ) , and 

€ 

ψ ' = S − U '
T

. 

                                                        
8 Massieu F. 1869b, p. 1059. 
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In the case of ideal gases, 

 

€ 

U '
T

=
U
T

+
A pv
T

=
U
T

+ const.. 

 

This means that, except for a constant, 

€ 

ψ  and 

€ 

ψ ' are the same function.9 

Not only did Massieu claim that 

€ 

U , 

€ 

p, 

€ 

v , 

€ 

Q and 

€ 

S  could be derived by 

€ 

ψ  and 

€ 

ψ ' but 

also the specific heats at constant pressure or volume 

€ 

k  and 

€ 

k', and the coefficient of 

dilatation at constant pressure or volume 

€ 

β  and 

€ 

β '  did. Conversely he was able to give 

the specific mathematical expressions of 

€ 

ψ  and 

€ 

ψ ' in terms of 

€ 

T , 

€ 

v , 

€ 

p, and the specific 

heats 

€ 

k  and 

€ 

k', for ideal gases, saturated vapours and superheated vapours.10 

After seven years, in an essay of almost one hundred pages published in the Mémoires 

de l’Institut National de France, he resumed the subject matter, and generalised and 

deepened his theoretical approach. Indeed, compared with the previous short paper, the 

essay had a wider scope, and even a meta-theoretical commitment. At first, he regretted 

“the poor connections among the different properties of bodies, and among the general 

laws of physics“. Nevertheless, according to Massieu, this gap had began to be filled 

just by the unifying power of Thermodynamics, which he identified with “the 

mechanical theory of heat”.11 It is worth remarking that, in Massieu’s theoretical and 

meta-theoretical context, “mechanical” did not mean microscopic mechanical models in 

the sense of Maxwell and Boltzmann, but a mathematical approach on the track of the 

mathematical generalisation of Mechanics, which had been undertaken by French 

mathematicians at the turn of the nineteenth century.  

This “mechanical theory of heat” could allow mathematicians and engineer to “settle a 

link between similar properties of different bodies”. Thermodynamics could rely on a 

consistent set of general and specific laws, and his “characteristic functions” could be 

                                                        
9 Massieu F. 1869b, p. 1060. 
10 Massieu F. 1869b, pp. 860 and 1060-1.  
11 See Massieu F. 1876, p. 2: “En ce qui concerne les propriétés mécaniques et calorifiques des corps, la 

thermodynamique, ou théorie mécanique de la chaleur, a comblé la lacune. En effet, des deux principes généraux qui 
servent de base à cette science nouvelle découlent des relations qui n’avaient pu trouver antérieurement une 
expression nette et vraiment scientifique.” 
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looked upon as the mathematical and conceptual link between the general and specific 

laws.   

 

“Les principe fondamentaux de la thermodynamique peuvent être représentés par 

deux équations générales applicable à toutes les substances ; qu’on imagine, en 

outre, les formules ou équations spéciales qui expriment les diverses propriétés 

calorifiques et mécaniques d’un corps déterminé, telle que l’expérience peut les 

fournir directement, ces équations devront être compatible avec les équations 

générales de la thermodynamique, dont on pourra alors faire usage pour réduire, 

par élimination, les formules relatives à chaque corps à un nombre moindre de 

relations. Je suis parvenu à effectuer cette élimination d’une façon entièrement 

générale, et je montre, dans ce mémoire, que toutes les propriétés d’un corps 

peuvent se déduire d’une fonction unique, que j’appelle la fonction 

caractéristique de ce corps, et dont je donne l’expression pour les diverses 

fluides.”12 

 

He acknowledged that, for the successful application of his theoretical procedure, the 

scientists should have gone on asking nature in order to receive those “data which we do 

not have got yet”. At the same time, the engineer Massieu appreciated a theoretical 

practice which “goes beyond the observation”, and shows that “different properties of 

different bodies are connected to each other”. The mathematical basis of his theoretical 

thermodynamics consisted in the choice of two variables among 

€ 

v , 

€ 

t, and 

€ 

p: the third 

variable, and the other functions 

€ 

U , 

€ 

Q and 

€ 

S  are functions of them. The relationship 

between the “internal heat” or “internal energy” 

€ 

U  and 

€ 

Q was given by the usual 

fundamental law 

 

€ 

dQ = dU + A pdv , 

 

which could be generalised into 

 
                                                        

12 Massieu F. 1876, pp. 2-3. 
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€ 

Q =U −U0 + ATe + A
mw2∑
2

−
mw0

2∑
2

 

 

 
 

 

 

 
 
. 

 

The term   

€ 

Te represented “the external work performed by the body”, and the 

bracketed term represented the difference between final and initial living force 

corresponding to the “sensible motion” of the body.13  

In reversible cyclic transformations,   

 

  

€ 

Q = ATe    and    

€ 

dQ
T∫ = 0. 

 

According to Massieu, the two equations “express the two general principles of the 

mechanical theory of heat”. The two state functions 

€ 

U  and 

€ 

S , corresponding to two 

complete differentials, were not mutually independent: they could be derived by a sole 

function, namely his “characteristic function”.14 

In this essay, the deduction of the characteristic function is shorter and simpler than in 

the previous paper. From 

 

€ 

dS =
dQ
T

   and   

€ 

dQ = dU + A pdv , 

 

we have 

 

€ 

T dS = dU + A pdv . 

 

The addition of the term 

€ 

S dt = S dT  to both members gives 

 

€ 

T dS + S dT = dU + A pdv + S dT ,   

€ 

d ST( ) = dU + A pdv + S dT , 

                                                        
13 Massieu F. 1876, pp. 3-5. 
14 Massieu F. 1876, pp. 6-8. 
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or  

 

€ 

d ST −U( ) = A pdv + S dT . 

 

Since the first member is a total differential, so is the second, and we can write  

 

€ 

dH = d ST −U( ) ,   

€ 

H = ST −U , 

 

where the function H, is nothing else but the function 

€ 

ψ  of the previous paper. 

Moreover 

 

€ 

S =
dH
dt

, 

 

€ 

A p =
dH
dv

 

 

€ 

U = ST − H  

 

€ 

U = T dH
dt

− H .15 

 

An important feature of ideal gases could be derived by the mathematical properties of 

the characteristic function: internal energy cannot depend on volume but only on 

temperature. Expressions for 

€ 

k , 

€ 

k', 

€ 

β , 

€ 

β ' , and the coefficient of compressibility 

 

€ 

ε = −
1
v
dv
dp

 

                                                        
15 Massieu F. 1876, pp. 9-10. 
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were given in terms of 

€ 

H  and its derivatives. Other features of ideal gases, were 

derived by Massieu in the following pages:  

 

€ 

k − k' = A R ,   

€ 

dk
dv

=
dk'
dv

= 0 ,   

€ 

dk
dt

=
dk'
dt

. 

 

Explicit expressions for the characteristic function in terms of the independent 

variables 

€ 

t  and 

€ 

v  were given for ideal gases and saturated vapours.16 

The choice of 

€ 

t  and 

€ 

p instead of 

€ 

t  and 

€ 

v  as independent variables led to Massieu’s 

second characteristic function 

€ 

H ' , which corresponded to the function 

€ 

ψ ' of the 

previous paper. A double strategy, both mathematical and physical, was at stake. On the 

one hand, the knowledge of specific parameters and specific laws describing the 

physical system under consideration allowed the researcher to write explicit expression 

for 

€ 

U ' , 

€ 

Q and 

€ 

S , and then 

€ 

H ' .  

 

Ces formules pourront être d’un usage commode lorsque l’on connaitra un corps 

par l’expression de sa chaleur spécifique 

€ 

k  à pression constante, et par la loi qui 

lie son volume 

€ 

v  à sa pression 

€ 

p et à sa température 

€ 

t  ; elles permettrons 

d’obtenir les expressions de 

€ 

S  et de 

€ 

U ' , et par suite l’expression de la fonction 

caractéristique 

€ 

H '  de ce corps.17 

 

On the other hand, all parameters and specific equations describing the specific 

system could be derived by the knowledge of 

€ 

H ' : in Massieu’s words, from a given 

stage on, “it is only a matter of computation”. The mathematical engine allowed the 

researcher to check if specific laws were consistent with the whole of the theoretical 

structure of Thermodynamics. 

 

                                                        
16 Massieu F. 1876, pp. 10-25. 
17 Massieu F. 1876, p. 29. 
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Lors donc qu’on voudra vérifier l’exactitude d’une loi, on l’exprimera au moyen 

de la fonction caractéristique ; s’il s’agit d’une loi générale applicable à tous les 

corps, son expression devra se réduire à une identité ; s’il s’agit d’une loi 

applicable seulement à une catégorie de corps caractérisés par certaines 

propriétés, l’expression de la loi devra encore se réduire à une identité lorsqu’on 

aura tenu compte de ces propriétés.18 

 

The second half of Massieu’e essay was devoted to the application of the “general 

theory” to ideal gases and overheated vapours. The theory of vapours was developed in 

great detail, under different hypotheses on the specific heat. At the end Mssieu hinted at 

a very sensitive issue: the relationship between theory and experiments. He stressed 

both the unifying theoretical power of the characteristic function and the importance of 

accurate experimental data for the determination of the function itself.19 

 

                                                        
18 Massieu F. 1876, p. 43. 
19 See Massieu F. 1876, p. 92: “Je crois que la considération de la fonction caractéristique pourra être d’un grand 

secours le jour où l’on aura des déterminations expérimentales nouvelles. Cette fonction constitue un lien à la fois net 
et radical entre les coefficients que l’on considère habituellement dans les recherches physiques, en sorte qu’une 
connaissance plus complète d’un de ces coefficients pourrait perfectionner l’expression de la fonction caractéristique, 
et, par suite, celle des autres coefficients qu’on en déduit.” 



 



 

 

5. A Thermodynamic world-view 

 

In 1855, a Scottish engineer, already Fellow of the Royal Society since 1853, who had 

just been appointed to the chair of civil engineering in Glasgow, Macquorn Rankine, 

published a paper in the Proceedings of the Philosophical Society of Glasgow, wherein 

he put forward a unified account of mechanical and thermal effects. Rankine design was 

far beyond Reech’s: his fruitful integration between the technical tradition of thermal 

engines and the tradition of mathematical physics led to an original re-interpretation and 

unification of physics. The headline of the paper, “Outline of the Science of Energetics” 

could appear a bit astonishing in the context of mid-nineteenth-century physics. 

Rankine himself explained the term “Energetics” in the seventh section of the paper, 

“Nature of the Science of Energetics”.  The term contained the reference to both the 

universality of the concept of energy, and the design of generalisation of physics.  

 

Energy, or the capacity to effect changes, is the common characteristic of the 

various states of matter to which the several branches of physics relate; if, then, 

there be general laws respecting energy, such laws must be applicable, mutatis 

mutandis, to every branch of physics, and must express a body of principles as to 

physical phenomena in general. […] 

The object of the present paper is to present, in a more systematic form, both 

these and some other principles, forming part of a science whose subjects are 

material bodies and physical phenomena in general, and which it is proposed to 

call the SCIENCE OF ENERGETICS.1  

 

From the outset, both theoretical and meta-theoretical commitments emerges from 

Rankine paper. At first he identified two subsequent steps in scientific practice: if the 

former consisted in deriving “formal laws” from experimental data on “an entire class 

of phenomena”, the latter consisted in deriving those laws from a consistent “system of 

principles”. It was the second step which allowed scientists to reduce a scattered set of 

physical laws to “the form of science”. Then he distinguished between two kinds of 

                                                        
1 Rankine M. 1855, in Rankine M. 1881, pp. 213-4. 
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scientific practice: the “ABSTRACTIVE” and the “HYPOTHETICAL”. In the former, 

scientists confined themselves to a mathematical re-interpretation and classification of 

phenomena in physics; in the latter, they relied on models and analogies, in order to 

catch the intimate nature of phenomena or hidden structures underlying them.  

 

According to the ABSTRACTIVE method, a class of object or phenomena is defined 

by describing, or otherwise making to be understood, and assigning a name or 

symbol to, that assemblage of properties which is common to all the objects or 

phenomena composing the class, as perceived by the senses, without introducing 

anything hypothetical. 

According to the HYPOTHETICAL method, a class of object or phenomena is 

defined, according to a conjectural conception of their nature, as being 

constituted, in a manner not apparent to the senses, by a modification of some 

other class of objects or phenomena whose laws are already known. Should the 

consequences of such a hypothetical definition be found to be in accordance with 

the results of observation and experiment, it serves as the means of deducing the 

laws of one class of objects or phenomena from those of another.2  

 

Obviously, Rankine reference to the possibility of doing science without making 

recourse to “anything hypothetical” is not consistent with whatever kind of actual 

scientific practice. It seems more an idealisation or a rhetoric contrivance than an actual 

design. Moreover, the statement that science should be purified by hypotheses is, at 

least, a definite meta-theoretical hypothesis. Nevertheless, the distinction put forward by 

Rankine was not meaningless, and it would have been re-discovered at the end of the 

century in the context of the emerging theoretical physics. Rankine’s energetics was a 

sort of mathematical phenomenology interconnected with a strong commitment to 

theoretical unification. He did not distrust models and analogies in the strict sense, for 

he tried to extend the formal framework of mechanics to all physics. He distrusted too 

specific mechanical models, in particular their narrow scope. According to Rankine, the 

adjective “hypothetical” could be interpreted in a realistic or instrumental way:  the 

                                                        
2 Rankine M. 1855, in Rankine M. 1881, p. 210. 
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wave theory of light was an instance of realistic representation, whilst the concept of 

“magnetic fluid” an instance of instrumental. The fact is that Rankine did not reject the 

“hypothetical method” at any stage of the building up of a physical theory. The method 

could be useful “as a preliminary step”, before undertaking the decisive step of the 

“abstractive theory”.3  

The tradition of mechanics had provided scientists with a plenty of “mechanical” 

models or “hypotheses”. Rankine explained what a mechanical model exactly was with 

the help of  examples well-known to scientists.  

 

The fact that the theory of motions and motive forces is the only complete 

physical theory, has naturally led to the adoption of mechanical hypotheses in the 

theories of other branches of physics; that is to say, hypothetical definitions, in 

which classes of phenomena are defined conjecturally as being constituted by 

some kind of motion or motive force not obvious to the senses (called molecular 

motion or force), as when light and radiant heat are defined as consisting in 

molecular vibrations, thermometric heat in molecular vortices, and the rigidity of 

solids in molecular attractions and repulsions. 

The hypothetical motions and forces are sometimes ascribed to hypothetical 

bodies, such as the luminiferous ether; sometimes to hypothetical parts, whereof 

tangible bodies are conjecturally defined to consist, such as atoms, atomic nuclei 

with elastic atmospheres, and the like.4 

 

In reality, Rankine did not disdain the mechanical models. In 1851 he had devoted a 

paper to the relationship between heat and centrifugal forces arising from microscopic 

vortices. In 1853, in a paper on the mechanical (in a macroscopic, thermodynamic 

sense) action of heat,  he had made reference to his “supposition” of “molecular 

vortices”, to the hypothesis that “heat consists in the revolutions of what are called 

                                                        
3 Rankine M. 1855, in Rankine M. 1881, pp. 210 and 213. Rankine choice of labelling “objective” and “subjective” 

the two interpretations of the “hypothetical method” seems to me quite misleading.  
4 Rankine M. 1855, in Rankine M. 1881, p. 211. 
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molecular vortices”, more specifically that “the elasticity arising from heat is in fact 

centrifugal force”.5  

At the same time, the tradition of mechanics offered a structural analogy to Rankine: 

the whole of physics could be unified by the generalisation of the concepts of 

“Substance”, “Mass”, “Work”, and energy. He insisted that such terms had to be looked 

upon as “purely abstract”, as “names” referring to “very comprehensive classes of 

objects and phenomena” rather than to “any particular object” or “any particular 

phenomena”. He realised a further generalisation by introducing the terms “Accident” 

and “Effort”. If the former could be identified with “every variable state of substances”, 

the latter was a generalisation of the concepts of force and pressure. The concept of 

“Passive Accident” was not fundamentally different from the concept of accident, apart 

from the further qualification of “condition which an effort tend to vary”. It had to be 

distinguished by the concept of “Complex Accident”, which corresponded to “the whole 

condition or state of a substance”: “thermic condition” and “condition of strain” were 

complex accidents for they required more than one independent variables (accident) to 

be specified.6 

At the end, the concept of work was a key concept in Rankine theory. 

 

“Work” is the variation of an accident by an effort, and is a term comprehending 

all phenomena in which physical change takes place. Quantity of work is 

measured by the product of the variation of the passive accident by the magnitude 

of the effort, when this is constant; or by the integral of the effort, with respect to 

the passive accident, when the effort is variable. 

Let 

€ 

x  denote a passive accident; 

€ 

X  an effort tending to vary it; 

W the work performed in increasing 

€ 

x  from 

€ 

x0  to 

€ 

x1: then 

 
                                                        

5 See Rankin M. 1853, in Rankine M. 1881, p. 310. In his 1851 paper, he reminded the reader about a model he had 
put forward the year before, before putting forward a mathematical generalisation. See also Rankine 1851, in Rankine 
M. 1881, p. 49: “In that paper the bounding surfaces of atoms were defined to be imaginary surfaces, situated 
between and enveloping the atomic nuclei, and symmetrically placed with respect to them, and having this property – 
that at these surfaces the attractive and repulsive actions of the atomic nuclei and atmospheres upon each particle of 
the atomic atmosphere balance each other.” 

6 Rankine M. 1855, in Rankine M. 1881, pp. 214-6. 
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€ 

W = X dx
x0

x1

∫ , and

W = X x1 − x0( ), if X is const.

 

 
  

 
 
 

. 

 

Work is represented geometrically by the area of  a curve, whereof the abscissa 

represents the passive accident, and the ordinate, the effort.7 

 

The generalisation of the concept of work entailed the generalisation of the concept of 

energy, which was the core of Rankine energetics. The concept of “Actual energy” was 

a generalisation of mechanical living force: it included “heat, light, electric current”, and 

so on. The concept of “Potential energy” was extended far beyond gravitation, 

elasticity, electricity and magnetism. It included “chemical affinity of uncombined 

elements”, and “mutual actions of bodies, and parts of bodies” in general: 

 

€ 

U = X dx
x1

x0

∫ = −W .  

 

In general, work is the result of “of the variation of any number of independent 

accident, each by the corresponding effect: 

 

€ 

W = X dx + Y dy + Z dz + .......8 

 

Rankine was aware that the concept of potential energy was problematic, and that a 

sharp split between actual and potential energy could not catch the complexity of some 

phenomena. The fact is actual energy “may possess the characteristics of potential 

energy also”: it can be accompanied “by a tendency or effort to vary relative accidents”. 

According to Rankine, heat represented an instance of actual energy, because of its 

specific feature of flowing from hot to cold bodies. But heat, “in an elastic fluid, is 

                                                        
7 Rankine M. 1855, in Rankine M. 1881, pp. 216-7. 
8 Rankine M. 1855, in Rankine M. 1881, pp. 217 and 222. 
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accompanied by a tendency to expand”, namely “an effort to increase the volume of the 

receptacle” containing the elastic fluid. The concept of potential energy was more 

suitable for the case of “mutual actions” or forces acting symmetrically on pairs of 

bodies.9 

Rankine submitted energy and work, the key concepts of his Energetics, to three 

“Axioms”. The first concerned the universality and convertibility of energy: these two 

features were treated separately although being tightly interwoven. Universality was 

expressed in two ways: “any kind of energy may be made the means of performing any 

kind of work”, or, more formally, “All kinds of Work and Energy are Homogeneous”. 

This homogeneity was remarkable: although “efforts and passive accidents to which the 

branches of physics relate are varied and heterogeneous”, all works and energies, the 

result of the multiplication between every effort and the corresponding accident, were 

physical quantity of the same kind. It was just this homogeneity which allowed energy 

to be transformed from one form into another. Rankine looked upon transformation and 

transference as different aspects of the same property. 

 

… to transform energy, means to employ energy depending on accidents of one 

kind in putting a substance into a state of energy depending on accidents of 

another kind; and to transfer energy, means to employ the energy of one 

substance in putting another substance in a state of energy, both of which are 

kinds of work, and may, according to the axiom, be performed  by means of any 

kind of energy.10 

 

The second axiom concerned conservation: the total energy of a substance “can be 

varied by external efforts alone”, and “cannot be altered by the mutual actions of its 

parts”. According to Rankine, “of the truth of this axiom there can be no doubt”, for it 

                                                        
9 Rankine M. 1855, in Rankine 1881, p. 218. In 1867, in response to John Herschel criticism, Rankine devoted a 

short paper to the meaning of the expression “potential energy”. There he distinguished between “energy of activity 
and energy of configuration”. Potential energy meant the “power of performing work which is due to configuration, 
and not to activity”. More specifically, he mentioned the relational character of potential energy: it was the “power of 
doing work dependent on mutual configurations”. The term “actual energy” would have been subsequently replaced 
with “kenetic energy” by Thomson and Tait. See Rankine M. 1867, in Rankine 1881, pp. 229-31. The Aristotelian 
flavour of words like accident, actual and potential would deserve a further analysis: on Rankine knowledge of 
classic philosophy see Tait P. G. 1880, p. xxi.  

10 Rankine M. 1855, in Rankine M. 1881, p. 218. 
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could rely both on ”experimental evidence” and on an independent theoretical 

“argument”. The argument had a cosmological implication: “the law expressed by this 

axiom is essential to the stability of the universe, such as it exists”. Rankine saw a 

logical link between first and second axiom. The second would imply the first: “all 

work consists in the transfer and transformation of energy alone” because “otherwise 

the total amount of energy would be altered”.11 

Rankine third axiom is quite difficult to explain, but it is definitely the most original, 

and allows us to better understand his Energetics. Rankine whole design required the re-

interpretation of thermodynamic transformations in terms of transformations of actual 

energy, and then a powerful generalisation, in order to extend that re-interpretation to all 

physical sciences. In his 1855 paper, the passages wherein he displayed his ambitious 

design are extremely synthetic. If we want to understand and appreciate the complex net 

of assumptions and derivations, we must first browse two papers he had read before the 

Philosophical Society of Glasgow in January 1853, and then return to his 1855 paper. In 

the second 1853 paper, whose title is “On the General Law of the Transformation of 

Energy”, Rankine started from a thermodynamic system formed by an unspecified 

substance “occupying the bulk 

€ 

V  under the pressure 

€ 

P , and possessing the absolute 

quantity of thermometric heat whose mechanical equivalent is 

€ 

Q”. The substance could 

experience “the indefinitely small increase of volume 

€ 

dV . He investigated the process 

when “the thermometric heat” of the substance was maintained constant by the supply 

of heat from an external source: we are dealing with an isothermal transformation. He 

inquired into the transformations of heat, in particular “how much heat becomes latent, 

or is converted into expansive power”. We must remember that, according to Rankine 

view, heat was a sort of actual energy with the tendency to transform into work in virtue 

of its “expansive power”, which was a sort of potential energy. What he labelled 

“thermometric” or “latent” heat was to be distinguished from the fluxes of heat between 

the substance and the surrounding bodies. The former was “the heat possessed by the 

body” 

€ 

Q, and the pressure 

€ 

P  was a function of it.12  

                                                        
11 Rankine M. 1855, in Rankine M. 1881, p. 218. Rankine traced back the cosmological implication of the theoretical 

argument to Newton’ Principia, in particular the “Scolium to the Laws of Motion”. 
12 Rankine M. 1853, in Rankine M. 1881, p. 311. The identification of heat or “free heat” with the living force had 

already been put forward by Helmholtz in his Ueberhaltung der Kraft, in 1847. The “latent heat”, or “chemical forces 
of attraction” played the role of “tension forces”. See Bevilacqua F. 1993, pp. 324-5. 
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The core of the computation was the determination of “the portion of the mechanical 

power 

€ 

PdV  which is the effect of heat: in other words, the fraction of actual energy 

transformed into work. Rankine defined “the development of power for the expansion 

€ 

dV , caused by each indefinitely small portion 

€ 

dQ of the total heat possessed by the 

body” as 

 

€ 

dQ ×
dP
dQ

dV . 

 

The whole “mechanical power” was therefore expressed by  

 

  

€ 

Q ×
dP
dQ

dV . 

 

This amount of energy had to be imagined as composed of two parts: the macroscopic, 

visible work performed by the substance, and the microscopic, invisible work 

“expended in overcoming molecular attraction”. The latter was therefore expressed by 

 

€ 

Q ×
dP
dQ

dV − PdV = Q ×
dP
dQ

− P
 

 
 

 

 
 dV .13   

  

Molecular attraction – Rankine remarked – must be derived by a potential 

€ 

S , which is 

a function of 

€ 

V  and 

€ 

Q. In this case, the above equation implies that 

 

€ 

dS(V ) = Q ×
dP
dQ

− P
 

 
 

 

 
 dV    or   

€ 

∂S
∂V

=Q ×
dP
dQ

− P . 

 

The integration with regard 

€ 

V  leads to 

 

                                                        
13 Rankine M. 1853, in Rankine M. 1881, p. 312. 
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€ 

S = Q ×
dP
dQ

− P
 

 
 

 

 
 dV∫ +φ(Q) , 

 

where the function 

€ 

φ  depends on 

€ 

Q only. The derivation with regard 

€ 

Q leads to 

 

€ 

∂S
∂Q

=
∂Q
∂Q

×
dP
dQ

+Q ×
d 2P
dQ2

−
dP
dQ

 

 
 

 

 
 dV∫ +φ ' (Q)  

€ 

∂S
∂Q

dQ = Q d 2P
dQ2
 

 
 

 

 
 dV∫ +φ ' (Q)

 

 
 
 

 

 
 
 
dQ 14 

 

In the framework of Rankine thermodynamics, the whole heat “which is consumed” 

would consist of the sum of two terms: sensible heat and latent heat. In its turn, the 

latter could be split into two terms: the fraction of latent heat “which disappears in 

overcoming molecular action”, and the fraction “equivalent to the visible mechanical 

effect”. The whole consumed heat would correspond to the flux of heat coming from 

outside, which we could call 

€ 

q . From the mathematical point of view,  

 

€ 

dq = dQ + dS + PdV = dQ +
∂S
∂Q

dQ +
∂S
∂Q

dV + PdV = 1+
∂S
∂Q

 

 
 

 

 
 dQ +

∂S
∂Q

+ P
 

 
 

 

 
 dV =

= 1+Q d 2P
dQ2
 

 
 

 

 
 dV∫ +φ ' (Q)

 

 
 
 

 

 
 
 
dQ + Q ×

dP
dQ

− P + P
 

 
 

 

 
 dV =

= 1+Q d 2P
dQ2
 

 
 

 

 
 dV∫ +φ ' (Q)

 

 
 
 

 

 
 
 
dQ + Q ×

dP
dQ

 

 
 

 

 
 dV

 

 

Not only can this sum be divided into sensible heat and latent heat, but also divided 

into the internal heat and work, on the one hand, and the external work, on the other. 

The first component, which Rankine had labelled 

€ 

Ψ  in a previous paper, was “the sum 

of the heat of the body and of the potential of its molecular actions”. This function 

would correspond to “the total amount of power which must be exercised on a body”, 

                                                        
14 Rankine M. 1853, in Rankine M. 1881, pp. 312-3. 
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both in form of heat or mechanical power, “to make it pass from a one volume and 

temperature to another”. In other words, it was a state function.15 

The previous paper wherein he had qualified the function 

€ 

Ψ  is the paper he had 

published in 1851 on the centrifugal theory of elasticity and its application to the theory 

of heat.  

 

This quantity consists partly of expansive or compressive power, and partly of 

heat, in proportions depending on the mode in which the intermediate changes of 

temperature and volume take place; but the total amount is independent of these 

changes.  

Hence, if a body be made o pass through a variety of changes of temperature and 

volume, and at length be brought back to its primitive volume and temperature, 

the algebraical sum of the portions of power applied to and evolved from the 

body, whether in the form of expansion or compression, or in that of heat, is equal 

to zero.16 

 

Going back to Rankine 1853 paper, the balance of energy, and the computation of the 

fraction of actual energy transformed into macroscopic work, led to both applications 

and abstract generalisations. With regard to applications, Rankine remarked that the 

thermal engine with the best efficiency must correspond to a cycle operating by two 

isothermal and two adiabatic transformations, just as in Carnot model.17 

With regard to abstract generalisations, he claimed that the above computation could 

be applied “not only to heat and expansive power, but to any two convertible forms of 

physical energy”, provided that one was actual and the other potential. Then he gave 

“the principles of the conversion of energy in abstract”, which realised the passage from 

Thermodynamics to Energetics.   

 

Let 

€ 

Q denote the quantity of a form of actual physical energy present in a given 

body; 
                                                        

15 Rankine M. 1853, in Rankine M. 1881, pp. 313 and 317.  
16 Rankine M. 1851, in Rankine M. 1881, p. 62. 
17 Rankine M. 1853, in Rankine M. 1881, p. 315. 
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€ 

V , a measurable state, condition, or mode of existence of the body, whose 

tendency to increase is represented by 

€ 

P , a force, depending on the condition 

€ 

V , the energy 

€ 

Q, and permanent 

properties of the body, so that 

€ 

PdV  is the increment of a form of potential energy, corresponding to a small 

increment 

€ 

dV  of the condition 

€ 

V . 

Let 

€ 

dS  be the quantity whereby the increment of potential energy 

€ 

PdV  falls short 

of the quantity of actual energy of the form 

€ 

Q, which is converted into the 

potential form by the change of condition 

€ 

dV . 

Then … 

€ 

∂S
∂V

=Q ×
dP
dQ

− P  

an equation from which all those in the previous articles are deducible, and which 

comprehends the whole theory of the mutual conversion of the actual form of 

energy 

€ 

Q, and the potential form 

€ 

PdV∫ , whatsoever those forms may be, when 

no other form of energy interferes.18  

 

This generalisation leads to the third axiom Rankine tried to explain with great detail 

in his 1855 paper, the axiom he labelled “GENERAL LAW OF THE TRANSFORMATION OF 

ENERGY”. Returning to this paper, it is worth remarking that he introduced a continuous 

representation of actual energy: “a quantity 

€ 

Q, of a particular kind of actual energy, 

uniformly distributed”. In reality, under the label “transformation” he encompassed both 

transformations from actual energy into work and exchanges of actual energy. If the 

first process lead to the concept of “METAMORPHIC FUNCTION”, the second led to the 

concept of “METABATIC FUNCTION”.  

With regard to the first process, Rankine defined “the rate of transformation” of 

actual energy into work corresponding to a given accident 

€ 

x : 

 

€ 

dH =Q dX
dQ

dx =Q d 2W
dQdx

dx =Qd dW
dQ

 

 
 

 

 
 . 

                                                        
18 Rankine M. 1853, in Rankine M. 1881, p. 318. 
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In general, when the work 

€ 

W  depends on many forces 

€ 

X , 

€ 

Y , 

€ 

Z , …  

 

€ 

dH =Q dX
dQ

dx +
dY
dQ

dy +
dZ
dQ

dz + ...
 

 
 

 

 
 =Qd

dW
dQ

 

 
 

 

 
  

 

The above expression can be integrated in order to obtain 

€ 

dW dQ or 

€ 

H . In the first 

case, 

 

€ 

d dW
dQ

 

 
 

 

 
 =

dH
Q
; dW

dQ
=

dH
Q∫ = F . 

 

The function 

€ 

F  was called “METAMORPHIC FUNCTION” by Rankine: it corresponded 

to the fraction of actual energy transformed into work. In the second case,  

 

€ 

H = Qd dW
dQ

 

 
 

 

 
 ∫ = QdF∫  

 

corresponded to the amount of actual energy transformed into work.19 

With regard to exchanges of actual energy between two substances 

€ 

A and 

€ 

B, Rankine 

tried to generalise the mathematical interpretation of processes of heat exchange. He 

associated an effort 

€ 

X  of unspecified nature to the “tendency of one substance to 

transfer actual energy of the kind 

€ 

Q to another”, and re-introduced the fraction of effort 

“caused by that actual energy” 

 

€ 

Q dX
dQ

. 

 

                                                        
19 Rankine M. 1855, in Rankine M. 1881, pp. 220-2. 
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Then he wrote down the conditions of equilibrium: the equilibrium was interpreted as 

the final consequence of the fluxes of actual energy: 

 

€ 

XA = XB    and   

€ 

QA
dXA
dQA

=QB
dXB
dQB

. 

 

As a consequence, 

 

€ 

dQA
QA

=
dQB
QB

, 

 

and the subsequent integration yielded 

 

€ 

log QA( ) − log QA0( ) = log QB( ) − log QB0( ),   

€ 

log QA( ) − log QB( ) = log QA0( ) − log QB0( ),    

€ 

log QA
QB

 

 
 

 

 
 = log

QA0
QB0

 

 
  

 

 
  ,   

€ 

QA
QB

=
QA0
QB0

=
KA
KB

,   

€ 

QA
QB

=
KA
KB

=θ . 

 

The constants 

€ 

KA  and 

€ 

KB  were the generalisation of specific heats: Rankine named 

them  “SPECIFIC ACTUAL ENERGIES” of 

€ 

A and 

€ 

B. The function 

€ 

θ , which “expresses the 

condition of equilibrium of the actual energy 

€ 

Q between them“, was labelled 

“METABATIC FUNCTION”. It was a generalisation of the concept of “absolute 

temperature”.20  

The physical processes leading to metamorphic and metabatic functions were the 

generalisation of two different kinds of thermodynamic processes: transformation of 

heat into macroscopic mechanical work, and free flow of heat. They had been translated 

into a mathematical theory from Carnot and Fourier respectively. At the time Rankine 

wrote his paper on Energetics, the two theory represented distinct sections of the theory 

of heat. It is quite remarkable that Rankine had dared a unified mathematical 

interpretation of both processes.  

                                                        
20 Rankine M. 1855, in Rankine M. 1881, pp. 223-5. 
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The generalisation of Thermodynamics was further carried on by Rankine, and a 

second “METAMORPHIC FUNCTION” introduced, in accordance with the proportionality 

just established between 

€ 

Q and 

€ 

θ . Indeed, 

 

€ 

Q ∂
∂Q

=θ
∂
∂θ

 

 

and therefore 

 

€ 

dH = θ d dW
dθ

 

 
 

 

 
 . 

 

If we define a new metamorphic function 

€ 

φ  proportional to 

€ 

F , 

 

€ 

φ = KF    or   

€ 

F =
φ
K

, 

 

then  

 

 

€ 

H = QdF∫ = Kθ d φ
K
 

 
 

 

 
 ∫ = θ dφ∫ . 

 

In other words, the integral relationship between the metabatic and metamorphic 

functions 

€ 

θ  and 

€ 

φ  gives “the quantity of actual energy of a given kind 

€ 

Q transformed to 

the kind of work 

€ 

W  during any finite variation of accidents“.21  

Metabatic and metamorphic functions allowed Rankine to re-interpret the operation of 

engines in general, on the track of Carnot ideal engine. 

 

In a perfect engine the cycle of variations is thus: 

                                                        
21 Rankine M. 1855, in Rankine M. 1881, pp. 225-6. 
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I. The metabatic function is increased, say from 

€ 

θ0  to 

€ 

θ1, 

II. The metamorphic function is increased by an amount 

€ 

Δφ , 

III. The metabatic function is diminished from 

€ 

θ1 back to 

€ 

θ0 , 

IV. The metamorphic function is diminished by the amount 

€ 

Δφ . 

During the second operation, the energy received by the working substance, and 

transformed from the actual to the potential form is 

€ 

θ1Δφ . During the fourth 

operation energy is transformed back, to the amount 

€ 

θ0 Δφ . So that the energy 

permanently transformed during each cycle is 

€ 

θ1 −θ0( )Δφ , and the efficiency of 

the engine 

€ 

θ1 −θ0( )Δφ .22  

 

Rankine tried to unify the conceptual and mathematical approach to the two 

fundamental processes: transformations of actual energy into work, and “equable 

diffusion of actual energy”. The key concept was “irreversibility”, namely the tendency 

to the transfer of actual energy “until the value of the metabatic function becomes 

uniform”. 

 

Hence arises the impossibility of using the energy reconverted to the actual form 

at the lower limit of the metabatic function in an engine. 

There is an analogy in respect to this property of irreversibility, between the 

diffusion of one kind of actual energy and certain irreversible transformations of 

one kind of actual energy to another, called by Professor William Thomson, 

“Frictional Phenomena” – viz., the production of heat by rubbing, and agitation, 

and by electric currents in a homogeneous substance at a uniform temperature.23  

 

                                                        
22 Rankine M. 1855, in Rankine M. 1881, p. 226. Rankine qualified an engine in general as “a contrivance for 

transforming energy, by means of the periodical repetition of a cycle of variations of the accidents of a substance”. 
Then he qualified the “efficiency” of an engine in general as “the proportion which the energy permanently 
transformed to a useful form by it, bears to the whole energy communicated to the working substance”. 

23 Rankine M. 1855, in Rankine M. 1881, p. 227. Rankine qualified an engine in general as “a contrivance for 
transforming energy, by means of the periodical repetition of a cycle of variations of the accidents of a substance”. 
Then he qualified the “efficiency” of an engine in general as “the proportion which the energy permanently 
transformed to a useful form by it, bears to the whole energy communicated to the working substance”. 
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According to Rankine, dissipation of energy and transformations of energy in general 

had an intrinsic connection with the measure of time. He thought that the inquiry into 

the connection “between energy and time” was “an important branch of the science of 

energetics”, although, “at present” he was “prepared to state on this subject” nothing 

more than a “DEFINITION OF EQUAL TIMES”. He therefore stated that, “under wholly 

similar circumstances”, equal time spans were “the times in which equal quantities of 

the same kind of work are performed by equal and similar substances”.24   

The “science of energetics” aimed at a re-interpretation “of physical phenomena in 

general”: it was an “abstract theory”, namely a general and universal theory, able to 

encompass the whole of phenomena. This confidence in the generality and universality 

of a physical theory stemmed from an open-minded attitude, from the awareness that 

the scientific practice is an endless enterprise. In the last lines of his paper, Rankine 

emphasised that the subjects of physical sciences were “boundless” and that “they never 

can, by human labours, be exhausted, nor the science brought to perfection”.25 

 

 

                                                        
24 Rankine M. 1855, in Rankine M. 1881, p. 227. 
25 Rankine M. 1855, in Rankine M. 1881, p. 228. 



 

 

6.  From mechanical to thermodynamic equilibrium 

 

An abstract approach to Thermodynamics, and the choice of wide-scope 

generalisations were also the hallmarks of J. Willard Gibbs, an American engineer who 

had accomplished his scientific training in Paris, Berlin and Heidelberg. He held the 

chair of mathematical physics at Yale since 1871, and published a series of fundamental 

papers under the common title “On the equilibrium of heterogeneous substances” in the 

Transactions of the Connecticut Academy since 1875 till 1878.  

In the first lines of his thick collection, Gibbs stated that he was interested in a very 

wide subject, although based only on two fundamental principles. The subject was “the 

laws which govern any material system”, and the two principles involved the two basic 

entities energy and entropy, whose “varying values” would “characterize in all that is 

essential” the transformations of that system. His more general mechanics dealt with a 

“thermodynamic system”, because “such as all material systems are”: Thermodynamics 

was looked upon as a generalisation of the ordinary mechanics. In the building up of his 

general theory, he followed the analogy with “theoretical mechanics”, which took into 

account “simply mechanical systems … which are capable of only one kind of action”, 

namely “the performance of mechanical work”. In this specific case, there is a function 

“which expresses the capability of the system for this kind of action”, and the condition 

of equilibrium requires that “the variation of this function shall vanish”.  In his more 

general mechanics, there were two functions corresponding to “the twofold capability of 

the system”. According to Gibbs, every system “is capable of two different kinds of 

action upon external systems”, and the two functions “afford an almost equally simple 

criterion of equilibrium”.1 

Immediately he put forward two complementary criteria of equilibrium for isolated 

systems, the first under the condition of constant energy 

€ 

ε , and the second under the 

condition of constant entropy 

€ 

η . 

 

“I. For the equilibrium of any isolated system it is necessary and sufficient that 

in all possible variations of the state of the system  which do not alter its energy, 

                                                        
1 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, pp. 55-6. 
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the variation of its entropy shall either vanish or be negative. … the condition of 

equilibrium may be written 

€ 

δη( )ε ≤ 0    (1) 

II. For the equilibrium of any isolated system it is necessary and sufficient that 

in all possible variations of the state of the system  which do not alter its entropy, 

the variation of its energy shall either vanish or be positive. This condition may 

be written 

€ 

δε( )η ≥ 0   (2)”2 

 

In other words, in transformations taking place at constant energy, the equilibrium 

corresponds to the maximum entropy, whereas in transformations taking place at 

constant entropy, the equilibrium corresponds to the minimum energy. The second form 

of the criterion of equilibrium seemed to Gibbs more suitable for applications. As first 

application, he considered “a mass of matter of various kinds enclosed in a rigid and 

fixed envelope”, impermeable to both matter and heat fluxes. It was a very simplified 

case, wherein “Gravity, Electricity, Distorsion of the Solid Masses, or Capillary 

Tensions” were excluded.3 For every “homogeneous part of the given mass” Gibbs 

wrote down the equation 

 

€ 

dε = t dη − pdv    (11), 

 

which is nothing else but the first principle of thermodynamics. The first term in the 

second member is “the heat received”, and the second term is “the work done”. The 

equation is written in order to emphasize that homogeneous mass’ “energy 

€ 

ε  is a 

function of its entropy 

€ 

η , and its volume v”; as usual, “t denotes the absolute 

temperature of the mass, and p its pressure”. As Gibbs was not confining himself to 

“simply mechanical systems”, he let “the various substances S1, S2, … Sn of which the 

mass is composed” change their mass. As a consequence, the energy 

€ 

ε  of the 

                                                        
2 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, p. 56. 
3 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, p. 62. 
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homogeneous component of the system can also depend on the corresponding variable 

masses m1, m2, … mn: 

 

€ 

dε = t dη − pdv + µ1 dm1 + µ2 dm2 + ... µn dmn    (12) 

 

wherein 

€ 

µ 1, 

€ 

µ2, … 

€ 

µ n denote “the differential coefficients of 

€ 

ε  taken with respect to 

m1, m2, … mn”. In general, Gibbs remarked, it would have been necessary to take also 

into account “component substances which do not initially occur in the homogeneous 

mass considered”.4 It is becoming increasingly apparent that Gibbs’ generalized 

mechanics is intended to account for chemical as well as for physical phenomena. The 

“general condition of equilibrium” for “the whole mass” was synthetically written as 

 

€ 

δε' +δε' ' + etc.≥ 0    (14) 

 

and analytically as 

 

€ 

t'dη ' − p'dv' + µ'1 dm'1 + µ'2 dm'2 + ... µ'n dm'n
+ t' 'dη ' ' − p' 'dv' ' + µ' '1 dm' '1 + µ' '2 dm' '2 + ... µ' 'n dm' 'n
+ etc.≥ 0

.   (15) 

 

Gibbs showed that, for the equilibrium, “it is evidently necessary and sufficient that” 

the conditions of thermal, mechanical and chemical equilibrium were simultaneously 

fulfilled. In detail: 

 

€ 

t' = t' ' = t' ' ' = etc.
p' = p' ' = p' ' ' = etc.
µ1' = µ1' ' = µ1' ' ' = etc. µ2 ' = µ2 ' ' = µ2 ' ' ' = etc. ...... µn ' = µn ' ' = µn ' ' ' = etc.

(19, 20, 21) 

 

                                                        
4 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, p. 63. 
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To the coefficients 

€ 

µ x Gibbs attributed the qualification of “potential for the substance 

Sx”.5 Each homogeneous sub-set depends on the (n+2) variables t, v, m1, m2, … mn, and 

the whole system depends on (n+2)

€ 

ν , wherein 

€ 

ν  is “the number of homogeneous parts 

into which the whole mass is divided”. The last series of equations involving t, p, and 

€ 

µ 1, 

€ 

µ 2, … 

€ 

µn contains exactly (

€ 

ν -1)(n+2) conditions among the (n+2)

€ 

ν  variables. The 

remaining unknown variables are (n+2). If the volume of “the whole mass” and “the 

total quantities of the various substances” are known, namely additional (n+1) 

conditions are available. It therefore remains only one unknown variable, but the 

knowledge of “the total energy of the given mass”, or alternatively “its total entropy”, 

would allow us to have “as many equations as there are independents variables”.6 Apart 

from the algebraic problem, which Gibbs showed to be solvable, from the physical 

point of view we have a very general procedure, which allows us to process mechanical, 

thermal and chemical properties of a given physical system.  

In the following pages, Gibbs proceeded to widen the scope of his thermodynamic 

mechanics. If the substances S1, S2, … Sn “are not all independent of each other” but 

“some of them can be formed out of others”, other conditions are required. If 

€ 

Σa, 

€ 

Σb, 

€ 

Σk 

… denote the units of certain substances Sa, Sb, Sk … among the S1, S2, … Sn, which 

undergo this kind of qualitative transformation, a new kind of ”qualitative as well as 

quantitative equivalence” must be satisfied:  

 

€ 

αΣa + βΣb + etc.=κΣk + λΣl + etc.   (30)7 

 

In the subsequent section, “Definition and Properties of Fundamental Equations”, 

Gibbs developed Massieu’s researches on thermodynamic properties of fluid systems. 

Gibbs was looking for other “fundamental equations” concerning a thermodynamic 

system, and involving new thermodynamic functions. The adjective “fundamental” 

meant that “all its thermal, mechanical, and chemical properties” of the system could be 

derived from them. He defined three functions 

€ 

ψ , 

€ 

χ , and 

€ 

ζ , which he defined starting 

from 

€ 

ε  and the already known equation 
                                                        

5 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, pp. 64-5. 
6 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, p. 66. 
7 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, pp. 67-9. 
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€ 

dε = t dη − pdv + µ1 dm1 + µ2 dm2 + ... µn dmn    (86). 

 

He first defined the function                                                

 

€ 

ψ = ε − tη    (87). 

 

By differentiation and comparison with equation (86) we obtain 

 

€ 

dψ = −η dt − pdv + µ1 dm1 + µ2 dm2 + ... µn dmn    (88) 

 

He then defined 

 

€ 

χ = ε + pv    (89), 

 

which through equation (86) became 

 

€ 

dχ = t dη + v dp + µ1 dm1 + µ2 dm2 + ... µn dmn    (90) 

 

Eventually he defined the function  

 

€ 

ζ = ε − tη + pv    (91), 

 

which led to 

 

€ 

dζ = −η dt + v dp + µ1 dm1 + µ2 dm2 + ... µn dmn    (92).”8 

 
                                                        

8 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, p. 87. 
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The integration of the first fundamental equation (86) led to a finite expression 

 

€ 

ε = tη − pv + µ1m1 + µ2 m2 + ... µn mn    (93). 

 

The differentiation of the latter “in the most general manner” led to 

 

€ 

dε = t dη +η dt − pdv − vdp+ µ1 dm1 + µ2 dm2 + ... µn dmn + m1 dµ1 + m2 dµ2 + ... mn dµn

dε = t dη − pdv + µ1 dm1 + µ2 dm2 + ... µn dmn( )+η dt − vdp+ m1 dµ1 + m2 dµ2 + ... mn dµn

dε = dε( )+η dt − vdp+ m1 dµ1 + m2 dµ2 + ... mn dµn

 

and then to  

 

€ 

0 = η dt − vdp+ m1 dµ1 + m2 dµ2 + ... mn dµn

vdp = η dt + m1 dµ1 + m2 dµ2 + ... mn dµn

dp =
η
v
dt +

m1
v
dµ1 +

m2
v
dµ2 + ... mn

v
dµn

   (97, 98). 

 

This is another fundamental equation, which Gibbs added to the equations already 

displayed.9 Other equations, he noticed, corresponding to other “sets of quantities” 

might be added.  

Under specific conditions, the functions 

€ 

ψ , 

€ 

χ , and 

€ 

ζ  assumed specific meanings, and 

led to new conditions of equilibrium.  

 

“The quantity 

€ 

ψ  has been defined for any homogeneous mass by the equation 

€ 

ψ = ε − tη    (105). 

We may extend this definition to any material system whatever which has a 

uniform temperature throughout. 

If we compare two states of the system of the same temperature, we have 

€ 

ψ ' −ψ"= ε' −ε"− t η ' −η"( )   (106). 

                                                        
9 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, pp. 87-8. 
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If we suppose the system brought from the first to the second of these states 

without change of temperature and by a reversible process in which W is the 

work done and Q the heat received by the system, then 

€ 

ε' −ε"=W −Q    (107), 

and  

€ 

t η"−η '( ) =Q  (108). 

Hence 

€ 

ψ ' −ψ"=W    (109); 

and for an infinitely small reversible change in the state of the system, in which 

the temperature remains constant, we may write 

€ 

− dψ = dW ”10 

 

In other words, the function 

€ 

ψ  is “the force function of the system for constant 

temperature”, in brief the mechanical work done, “just as -

€ 

ε  is the force function for 

constant entropy”. The system under consideration does not experience purely thermal 

(calorimetric) transformations. In this case, the function 

€ 

ψ  plays the role of the internal 

energy 

€ 

ε , and the condition of equilibrium becomes  

 

€ 

δψ( )t ≥ 0    (111). 

 

The equivalence between the condition (2) and the condition (111), for a 

transformation with equal temperature in the initial and final states, was demonstrated 

by Gibbs in the following passages. 

Gibbs showed that the function 

€ 

ζ  plays a similar role for transformations maintaining 

equal temperature and pressure in their initial and final states, so that  

 

€ 

δζ( )t,p ≥ 0  

 
                                                        

10 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, p. 89. 
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Also the function 

€ 

χ  could assume a specific meaning under specific conditions: when 

“the pressure is not varied”,  

 

€ 

dχ = dε + pdv = dQ − dW + pdv = dQ. 

 

In other words, the function 

€ 

χ  can be qualified as “the heat function for constant 

pressure”, and its decrease represents “the heat given out by the system”. The system 

undergoes a purely thermal transformation, and also in this case Gibbs stressed the 

analogy with the internal energy 

€ 

ε , which “might be called the heat function for 

constant volume”.11  

 

Gibbs was weaving a net of mechanic-thermodynamic functions and relationship, in 

order to plot a more general mechanics. He followed the track of the narrower-scope 

analytic mechanics, but aimed at a wider-scope mechanics, able to encompass 

mechanics, thermodynamics and chemistry.  

This generalisation led Gibbs to the generalisation of the concept of “potential”. Every 

term 

€ 

µ 1, 

€ 

µ 2, … 

€ 

µ n, among “the differential coefficients of 

€ 

ε  taken with respect to m1, 

m2, … mn”. was qualified by Gibbs as “potential for that substance in the mass 

considered”. As he had already shown some pages before, the potentials 

€ 

µ i assumed the 

same differential aspect, independently of the choice of the fundamental function:  

 

€ 

µ1 =
dε
dm1

 

 
 

 

 
 
η ,v,m

=
dψ
dm1

 

 
 

 

 
 
t,v,m

=
dχ
dm1

 

 
 

 

 
 
η ,p,m

=
dζ
dm1

 

 
 

 

 
 
t,p,m

 

 

The subscript letters denote the quantities which remain constant in the differentiation, 

“m being written for brevity for all the letters m1, m2, … mn, except the one occurring in 

the denominator”. In this way, the fundamental functions 

€ 

ε , 

€ 

ψ , 

€ 

χ , and 

€ 

ζ  partake in a 

sort of symmetry: 

€ 

ε  as function of volume and entropy can be replaced by 

€ 

ψ  as 

                                                        
11 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, pp. 89-91. 
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function of temperature and volume, by 

€ 

χ  as function of entropy and pressure, and by 

€ 

ζ  as function of temperature and pressure.12 

Another aspect of the symmetry underlying the fundamental functions was pointed out 

by Gibbs in the subsequent section “Geometrical Illustrations”. He made reference to 

his “method … of  representing the thermodynamic properties of substances … by 

means of surfaces”. In brief, every fundamental function, associated to its two 

independent variables, defines a threefold system of co-ordinates, wherein the graph of 

the corresponding function 

€ 

z = f x,y( ) can be drawn. We can define a function 

€ 

ε = fε v,η( )  

as well as a function 

€ 

ζ = fζ t, p( ) .  

 

“Comparing the two methods, we observe that in one 

 

€ 

v = x, η = y, ε = z,

p = −
dz
dx
, t =

dz
dy
, µ =ζ = z − dz

dx
−
dz
dy
; 

and in the other  

€ 

t = x, p = y, µ =ζ = z,

η = −
dz
dx
, v =

dz
dy
, ε = z − dz

dx
−
dz
dy
. 

Now 

€ 

dz
dx  and 

€ 

dz
dy  are evidently determined by the inclination of the tangent 

plane, and 

€ 

z − dz
dx

x − dz
dy

y
 is the segment which it cuts off on the axis of Z. The two 

methods, therefore, have this reciprocal relation, that the quantities represented 

in one by the position of a point in a surface are represented in the other by a 

position of a tangent plane.”13 

 

We have in front of us a sort of symmetry, which transforms the space 

€ 

v,η,ε( ) into the 

space 

€ 

t, p,ζ( ), and the values of one function into the position of a tangent plane. 

                                                        
12 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, pp. 89 and 93. See, in particular p. 93: “In the above definition we may 

evidently substitute for entropy, volume, and energy, respectively, either temperature, volume, and the function 

€ 

ψ ; 
or entropy, pressure, and the function 

€ 

χ ; or temperature, pressure, and the function 

€ 

ζ .” 
13 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, p. 116. 
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In the section “The Conditions of Internal and External Equilibrium for Solids in 

Contact with Fluids with regard to all possible States of Strain of the Solids”, Gibbs 

dealt with solids in “state of strain”, and tried to deduce some mechanical properties 

from his fundamental equations. The task required more than thirty pages of heavy 

mathematics, wherein he made use of the fundamental equations involving 

€ 

ε  and

€ 

ψ , as 

well as “the differential coefficients” 

€ 

dx
dx'
, dx
dy'
, ...... dz

dz '
 connecting “the strained and the 

unstrained states” of the solid.14 After some approximation, he managed to reach some 

mathematical expression for “the elasticity of volume and the rigidity”, under two 

different conditions: constant temperature or constant entropy. I will not try to 

reconstruct the whole deduction, but will confine myself only to outlining the main 

steps.  

He labelled r1, r2, and r3 “the ratios of elongation for the three principal axes of 

strain”, and r0 “the common value of r1, r2, r3 which will make the stress vanish at any 

given temperature”. Then he wrote the first fundamental equation “for an isotropic 

solid”, represented “with sufficient accuracy by the formula”  

 

€ 

εV ' = i ' +e' E + f 'F + h' H ,   (443) 

 

where i’, e’, f’, and h’ “denote functions of

€ 

ηV '”, whereas E, F, and H are expressions 

involving the differential coefficients, and are mathematically linked to of r1, r2, r3. The 

second fundamental equation is 

  

€ 

ψV ' = i +e E + f F + h H ,  (444) 

 

where i, e, f, and h “denote functions of t”. Gibbs defined the elasticity of volume and 

density under the condition of constant temperature, V and R, as 

 

                                                        
14 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, pp. 184-5. 
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€ 

V = − v dp
dv
 

 
 

 

 
 
t

r0 R=
d 2ψV '

d dx
dy'

 

 
 

 

 
 

2 . 

 

Whit the help of the relationship 

 

€ 

p = −
dψ
dv

 

 
 

 

 
 
t
, 

 

he arrived at  

 

€ 

V = −
2
3
e
r0

+
4
3
f r0 R=

2e
r0

+ 2 f r0 . 

 

For V’ and R’, the elasticity of volume under the condition of constant entropy, he 

arrived at the similar expression 

 

€ 

V ' = − 2
3
e'
r0

+
4
3
f ' r0 R' = 2e'

r0
+ 2 f ' r0.15 

 

Beyond the specific deduction and the specific mathematical steps, it is worth noticing 

the commitment to a unified mechanic-thermodynamic approach to physical 

phenomena.  

 

Here we are far from Boltzmann’s commitment to reduce macroscopic 

thermodynamics to a microscopic mechanics involving invisible molecules. Gibbs’ 

conceptual path is, in some way, the reverse of Boltzmann’s: if the latter tried to reduce 

thermodynamics to a molecular dynamics, the former looked upon classic mechanics as 

a sub-set of a more general thermodynamics-mechanics. Gibbs briefly mentioned 

                                                        
15 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, pp. 209-14. 
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molecules in the first lines of the short section “On Certain Points relating to the 

Molecular Constitution of Bodies”. He started from the distinction between “proximate 

components” and ultimate components, namely “components which would be sufficient 

to express its ultimate components”, in a body. For instance, in “a mixture at ordinary 

temperatures of vapor of water and free oxygen and hydrogen”, we have three “sorts of 

molecules”, namely hydrogen, oxygen and water, and therefore three kinds of 

proximate components. At the same time, we know that water can be reduced to the 

ultimate components hydrogen and oxygen. In this case, Gibbs noticed, the number of 

proximate components “exceeds” the number of ultimate components. He made 

reference to “other cases”, wherein “we suppose a great number of different sorts of 

molecules, which differ in composition”. Molecules, proximate components and 

ultimate components were put on the same level, as different representations of a body 

made of different components. He went on making reference to “other cases” which 

“are explained” by molecules: there are “molecules which differ in the quantity of 

matter which they contain, but not in the kind of matter”, There are also other cases, 

wherein “there appear to be different sorts of molecules”: they “differ neither in the 

kind nor in the quantity of matter which they contain, but only in the manner in which 

they are constituted”. He did not put bodies and their “components” on the one hand, 

and molecules on the other: he did not look upon the latter as qualitatively different 

from the former. He did not see the explanations in terms of “components” as 

qualitatively different from the explanations in terms of “molecules”: all cases “are 

essentially the same in principle”.16 This is a very different approach from Boltzmann’s. 

There is not any gap between a visible, macroscopic level and an invisible, microscopic 

level, which would represent the explanation of the former. Neither tried Gibbs to 

devise any kind of model with regard to molecules, nor tried to make remark or 

assumptions on the geometrical or dynamical relationships among hypothetical 

molecules. 

 

In a subsequent abstract published in the American Journal of Science in 1878, Gibbs 

did not mention molecules. From the outset he stressed the role of entropy, whose 

importance, he claimed, “does not appear to have been duly appreciated”. According to 
                                                        

16 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, p. 138. 
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Gibbs, “the general increase of entropy … in an isolated material system” would 

“naturally” suggest that the maximum of entropy be identified with “a state of 

equilibrium”. Besides the functions 

€ 

ε  and 

€ 

η , and the corresponding condition of 

equilibrium, the role of the function 

€ 

ψ  is stressed. When “we assume that the 

temperature of the system is uniform”, the condition of equilibrium “may be expressed 

by the formula” 

 

€ 

δψ( )t ≥ 0 . 

 

On the one hand, this formula seems to Gibbs suitable for equilibrium in “a purely 

mechanical system”, as a mechanical system is nothing else but “a thermodynamic 

system maintained at a constant temperature”. On the other hand, this formula would 

allow us to realize a conceptual “transition” from “ordinary mechanics” to 

thermodynamics. In Gibbs view, the functions -

€ 

ε  and -

€ 

ψ  “may be regarded as a kind of 

force-function”, namely a generalisation of the concept of mechanical potential. The 

conditions of equilibrium 

€ 

δε( )η ≥ 0 and 

€ 

δψ( )t ≥ 0 would represent “extensions of the 

criterion employed in ordinary statics to the more general case of a thermodynamic 

system”.17 This is indeed the keystone of Gibbs theoretical researches collected into the 

papers published between 1875 and 1878. Mechanics is a part of thermodynamics: 

thermodynamics plays the role of a generalised mechanics. 

As remarked by Truesdell some decades ago, Gibbs built up a remarkable “axiomatic 

structure”, but he was committed to a sort of generalised Statics rather a generalised 

Dynamics: his theory was “no longer the theory of motion and heat interacting, no 

longer thermodynamics, but only the beginnings of thermostatics”. 18 

                                                        
17 Gibbs J.W. 1875-8, in Gibbs J.W. 1906, pp. 354-5. 
18 Truesdell C. 1984, p. 20. The same concept is re-stated in Truesdell C. 1986, p. 104. Nevertheless Truesdell 

appreciated Gibbs commitment to give a deep physical meaning to the entropy. Truesdell C. 1984, p. 26: “While he 
made his choice of entropy and absolute temperature as primitive concepts because that led to the most compact, 
mathematically efficient formulation of special problems as well as of the structure of his theory, of course he knew 
that entropy was not something obvious, not something that comes spontaneously to the burnt child who is learning 
to avoid the fire.” 



 



 

 

7. The “free energy” in Physics and Chemistry 

 

After having published many papers on physics and physiology since the middle of 

the nineteenth century, in 1882 Helmholtz put forward a mathematical theory of heat 

encompassing physical and chemical phenomena. He was a scientific authority: it is 

worth stressing that, in the scientific community of the time, he played a role quite 

different from Massieu, Rankine and Gibbs. His theoretical remarks were not 

completely original, for he followed the pathway of the mathematisation of 

Thermodynamics in accordance with the tradition of Analytic Mechanics. Although this 

pathway had already been undertaken by Massieu and Gibbs, his original contribution 

dealt with the concept of “free energy”.1  

From the outset he put forward a unified theoretical approach for physical and 

chemical processes, based on the two principles of Thermodynamics. In particular, he 

found that thermo-chemical processes could not be interpreted in terms of mere 

production or consumption of heat in production or dissolutions of compounds. A more 

satisfactory theory had to take into account the fact that an amount of heat was not 

indefinitely convertible into an equivalent amount of work, according to Clausius 

interpretation of Carnot law.  

 

Die bisherigen Untersuchungen über die Arbeitswerthe chemischer Vorgänge 

beziehen sich fast ausschliesslich auf die bei Herstellung und Lösung der 

Verbindungen auftretenden oder verschwindenden Wärmemengen. Nun sind aber 

mit den meisten chemischen Veränderungen Aenderungen des Aggregatzustandes 

und der Dichtigkeit der betreffende Körper unlöslich verbunden. Von diesen 

letzteren aber wissen wir schon, dass sie Arbeit in zweierlei form zu erzeugen oder 

zu verbrauchen fähig sind, nämlich erstens in der Form von Wärme, zweitens in 

Form anderer, unbeschränkt verwandelbarer Arbeit. Ein Wärmevorrath ist nach dem 

von Hrn. Clausius präciser gefassten Carnot’schen Gesetze nicht unbeschränkt in 
                                                        
1 After an academic career as a physiologist at Königsberg and Heidelberg universities, he had been appointed 

professor of physics at Berlin university in 1871, and then rector for the academic year 1877-8. He had delivered 
scientific lectures in many German universities and even in English universities and institutions, not to mention the 
honours received by French and English institutions. For a brief scientific biography, see Cahan D. 1993b, p. 3. For a 
general account of Helmholtz’s contributions to Thermodynamics and Thermo-Chemistry, see Bierhalter G. 1993, 
and Kragh H. 1993. 
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andere Arbeitsäquivalente verwandelbar; wir können das immer nur dadurch und 

auch dann nur theilweise erreichen, dass wir den nicht verwandelten Rest der 

Wärme in einen Körper niederer Temperatur übergehen lassen.2 

 

Confining himself to chemical processes going on by themselves, without any 

external driving force, Helmholtz tried to go beyond the interpretation of the heat sent 

out as a measure of “the strength of chemical affinity”. It was not important that a 

stronger release of heat be accompanied by a stronger affinity, as far as the latter is 

revealed by the establishment or dissolution of chemical bonds: the two things did not 

necessarily coincide. The fact is that chemical actions could give birth to “other kinds of 

energy besides mere heat”, and even in chemical processes the separation between the 

component corresponding to work and the component corresponding to heat should 

have been taken into account. He qualified the two kinds of energy as “free and bound 

energy”.  

Helmholtz had found that processes taking place spontaneously in systems at rest and 

at constant temperature, without the help of external work, could only go on “in the 

direction of decreasing free energy”. According to Clausius’ “universal law”, it was just 

the amount of the free energy, and not that of the “whole energy”, which decided in 

what direction affinity operated. The second law allowed Helmholtz to go beyond the 

unsatisfactory interpretation of chemical processes in terms of heat gained or lost. He 

tried to weave a unified theoretical net involving thermal, chemical and electrodynamic 

processes: it was just that complex interplay among different phenomena to have led 

him to the concept of free energy. 

 

Die Berechnung der freien Energie lässt sich der Regel nach nur bei solchen 

Veränderungen ausführen, die im Sinne der thermodynamischen Betrachtungen 

vollkommen reversibel sind. Dies ist der Fall bei vielen Lösungen und Mischungen, 

die innerhalb gewisser Grenzen nach beliebigen Verhältnissen hergestellt werden 
                                                        
2 Helmholtz 1882, pp. 958-9. It is worth remarking that, since the 1860s, Thermo-Chemistry “rested on the 

Thomsen-Berthelot principle”. According to that principle, chemical reactions “were accompanied by heat 
production”, and in these processes “the most heat was produced”. In the same years, Helmholtz himself and W. 
Thomson had put forward the “general idea that in a galvanic cell chemical energy was completely transformed into 
electric energy”. Helmholtz realized that the second Principle of Thermodynamics required a reassessment of his 
previous point of view. See Kragh H. 1993, pp. 404 and 409.  
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können. [...] Für die nach festen Aequivalenten geschlossenen chemischen 

Verbindungen im engeren Sinne dagegen bilden die elektrolytischen Processe 

zwischen unpolarisirten Elektroden einen wichtigen Fall reversibler Vorgänge. In 

der That bin ich selbst durch die Frage nach dem Zusammenhange zwischen der 

elektromotorischen Kraft solcher Ketten und den chemischen Veränderungen, die in 

ihnen Vorgehen, zu dem hier zu entwickelnden Begriffe der freien chemischen 

Energie geführt worden.3  

 

The galvanic cell was indeed the case Helmholtz tried to describe in thermodynamic 

terms. He reminded the reader that processes taking place in a galvanic cell were 

“completely reversible”: the development of heat in a closed wire was proportional to 

the resistance and the squared electric current. In a galvanic cell at uniform temperature 

€ 

ϑ , where an “electric quantum” 

€ 

dε  passes through, the state can change if a chemical 

change proportional to 

€ 

dε  occurs. We look upon the state of the cell as defined by the 

amount of electricity 

€ 

ε , which has passed through in a given definite direction. If we 

connect the two ends of the battery to the plates of a high capacity condenser, which is 

charged at the difference of potential p, then the passage of 

€ 

dε  from the negative to the 

positive plate would correspond to the increase 

€ 

p ⋅ dε  in the amount of the available 

electrostatic energy. Helmholtz labelled dQ the amount of heat which we must supply 

(or withdraw, if negative) in order to keep constant the temperature 

€ 

ϑ  at the passage of 

€ 

dε . If we label   

€ 

J  the mechanical equivalent of the unity of heat, and U the total energy, 

which can be considered as function of 

€ 

ϑ  and 

€ 

ε , the law of conservation of energy 

leads to  

 

  

€ 

J ⋅ dQ = dU + p ⋅ dε ,     or       

€ 

J ⋅ dQ = dU + dW . 

 

In this case, the term qualified as external or macroscopic mechanical work was in 

reality an electric work. A simple mathematical development allowed Helmholtz to 

write 

 
                                                        
3 Helmholtz 1882, p. 960. 
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€ 

J ⋅ dQ =
∂U
∂ϑ

⋅ dϑ +
∂U
∂ε

⋅ dε + p ⋅ dε ,  

  

€ 

J ⋅ dQ =
∂U
∂ϑ

⋅ dϑ +
∂U
∂ε

+ p
 

 
 

 

 
 ⋅ dε    (1).  

 

On the other hand, according to Carnot-Clausius’ principle, there was a function of 

€ 

ϑ  

and 

€ 

ε , which Clausius called the entropy of the system, whose variation was 

 

  

€ 

dS =
1
ϑ
⋅ J ⋅ dQ =

1
ϑ
⋅
∂U
∂ϑ

⋅ dϑ +
1
ϑ
⋅
∂U
∂ε

+ p
 

 
 

 

 
 ⋅ dε    (1a), 

 

where 

 

€ 

∂S
∂ϑ

=
1
ϑ
⋅
∂U
∂ϑ

     and     

€ 

∂S
∂ε

=
1
ϑ
⋅
∂U
∂ε

+ p
 

 
 

 

 
 .4 

 

The following results required more complex mathematical steps. The expression for 

the second derivative 

€ 

∂2S ∂ϑ ⋅∂ε ≡∂2S ∂ε ⋅∂ϑ  could be derived from both of the above 

equations. From the first, we have 

 

€ 

∂2S
∂ϑ ⋅∂ε

=
1
ϑ
⋅
∂2U
∂ϑ ⋅∂ε

. 

 

From the second, we have 

 

€ 

∂2S
∂ϑ ⋅∂ε

= −
1
ϑ 2 ⋅

∂U
∂ε

+ p
 

 
 

 

 
 +
1
ϑ
⋅

∂2U
∂ϑ ⋅∂ε

+
∂p
∂ϑ

 

 
 

 

 
 . 

 

When we compare the last two expressions, we find  

                                                        
4 Helmholtz 1882, pp. 961-2. 
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€ 

1
ϑ
⋅
∂2U
∂ϑ ⋅∂ε

= −
1
ϑ 2 ⋅

∂U
∂ε

+ p
 

 
 

 

 
 +
1
ϑ
⋅
∂2U
∂ϑ ⋅∂ε

+
1
ϑ
⋅
∂p
∂ϑ

, 

€ 

1
ϑ 2 ⋅

∂U
∂ε

+ p
 

 
 

 

 
 =
1
ϑ
⋅
∂p
∂ϑ

, 

€ 

ϑ ⋅
∂p
∂ϑ

=
∂U
∂ε

+ p. 

 

Now we can write the equation (1) as 

 

  

€ 

J ⋅ dQ =
∂U
∂ϑ

⋅ dϑ +ϑ ⋅
∂p
∂ϑ

⋅ dε   (1*), 

 

where the last term corresponded to the mechanical equivalent of heat which we must 

supply to the galvanic cell, during the passage of 

€ 

dε , “in order to keep constant the 

temperature”. Indeed, if we let the variation of temperature 

€ 

dϑ  vanish, then 

 

  

€ 

ϑ ⋅
∂p
∂ϑ

⋅ dε = J ⋅ dQ .5 

 

In processes taking place at constant temperature, the combination of the first and 

second Principles of Thermodynamics allows us to compute the balance between 

electric and thermal contributions required in order to maintain the thermal equilibrium. 

After a very detailed analysis of experimental hindrances involving the complex 

interplay between electromotive force and dilution, Helmholtz undertook “a theoretical 

discussion” regarding “a preliminary general analysis of the principles of 

thermodynamics”.   Indeed, in the next section, he arrived at Thermodynamics after a 

short detour through the “great simplification and generality” reached by Analytic 

Mechanics or “Dynamics”. He focussed on a key-concept, which could be labelled 

“potential energy”, “function of force” (Kräftefunction),  “tension force” (Quantität der 

                                                        
5 Helmholtz 1882, p. 962. 
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Spannkräfte), or “Ergal”, and which could be associated to the names of Clausius, 

C.G.J. Jacobi, and himself. In the first applications of this concept, “variations of 

temperature had not been taken into account”, mainly because the force and the 

corresponding work did not depend on the temperature, as in the case of gravitation. In 

other cases, “the temperature in the course of the processes under investigation could be 

looked upon as constant”, or as “function of certain mechanical entities”, like gas 

density in the case of the velocity of sound. The fact is that “some constant physical 

entities” appearing in the “Ergal”, like density and coefficients of elasticity, “really 

changed with temperature”. The right mathematical procedure could not stem but “from 

the two equations of thermodynamics put forward by Clausius”.6  

Following Clausius pathway, at first Helmholtz confined himself to the simple case of 

a body whose state depended “only on temperature and on another parameter”. In the 

more complex case of systems depending on “many other parameters besides 

temperature”, the procedure was “founded on the same principles”. He labelled 

€ 

ϑ  the 

absolute temperature, and 

€ 

pα  the parameters defining the state of the body: they neither 

depended on each other nor on temperature. If Clausius could rely on “two functions of 

temperature and another parameter, which he called the Energy U and the Entropy S”, 

Helmholtz showed that “both of them can be expressed as differential quotients of a 

completely defined Ergal” or thermodynamic potential. As already shown by Massieu 

and Gibbs, all thermodynamic properties of a given system could be derived by a single 

function.  

Helmholtz labelled 

€ 

Pα  the external forces corresponding to the parameter 

€ 

pα , and 

€ 

Pα ⋅ dpα  the corresponding work. If the total external work was  

 

€ 

dW = Pα ⋅ dpα( )
α

∑ , 

 

the first principle could be written as 

 

                                                        
6 Helmholtz 1882, pp. 965-6. 
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€ 

J ⋅ dQ = dU + Pα ⋅ dpα( )
α

∑ , 

  

€ 

J ⋅ dQ =
∂U
∂ϑ

⋅ dϑ +
∂U
∂pα

⋅ dpα
 

 
 

 

 
 

α

∑ + Pα ⋅ dpα( )
α

∑ . 

 

Ich nehme zunächst ein beliebig zusammengesetztes System von Massen an, welche 

alle dieselbe Temperatur 

€ 

ϑ  haben und alle auch immer die gleichen 

Temperaturänderungen erleiden. Der Zustand des Systems sei durch 

€ 

ϑ  und eine 

Anzahl von unabhängigen Parametern 

€ 

pα  vollständig bestimmt.  

Ich bezeichne, wie Hr. Clausius, die bei einer verschwindend kleinen Aenderung im 

Zustande des Körpers hinzutretende Wärmemenge mit dQ, die innere Energie mit U. 

Das Gesetz von den Costanz der Energie erhält dann die Forme 

  

€ 

J ⋅ dQ =
∂U
∂ϑ

⋅ dϑ +
∂U
∂pα

+ Pα
 

 
 

 

 
 ⋅ dpα

 

 
 

 

 
 

α

∑ ,              (1) 

   Hierin bezeichnet   

€ 

J  das mechanische Aequivalent der Wärmeeinheit und 

€ 

Pα ⋅ dpα  

die ganze bei der Aenderung 

€ 

dpα  zu erzeugende, frei verwandelbare Arbeit, welche 

theils auf die Körper der Umgebung übertragen, theils in lebendige Kraft der 

Massen des Systems verwandelt werden kann. Diese letztere ist eben auch als eine 

den inneren Veränderungen des Systems gegenüberstehende äussere Arbeit zu 

betrachten.7 

 

Beside this generalisation of the first principle, Helmholtz put forward a similar 

generalisation of the second law. At first he reminded the reader that, in case of 

reversible closed cycles, the second law stated that 

 

€ 

dQ
ϑ∫ ⋅ dϑ = 0 . 

 

Then he defined the entropy S as 

                                                        
7 Helmholtz 1882, pp. 966-7. 
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€ 

1
ϑ
⋅ dQ = dS =

∂S
∂ϑ

⋅ dϑ +
∂S
∂pα

⋅ dpα
 

 
 

 

 
 

α

∑    (1a). 

 

From equation (1) we can write 

 

  

€ 

J ⋅
dQ
ϑ

=
1
ϑ
∂U
∂ϑ

⋅ dϑ +
1
ϑ

∂U
∂pα

+ Pα
 

 
 

 

 
 ⋅ dpα

 

 
 

 

 
 

α

∑ , 

 

and from (1a) it follows that 

 

  

€ 

J ⋅
dQ
ϑ

= J ⋅
∂S
∂ϑ

⋅ dϑ + J ⋅
∂S
∂pα

⋅ dpα
 

 
 

 

 
 

α

∑ . 

 

When we compare the right-hand sides of the last two equations, we find 

 

  

€ 

J ⋅
∂S
∂ϑ

=
1
ϑ
⋅
∂U
∂ϑ

     and     
  

€ 

J ⋅
∂S
∂pα

=
1
ϑ
⋅
∂U
∂pα

+ Pα
 

 
 

 

 
 . 8  [*]. 

 

The last equation can be written as 

 

  

€ 

J ⋅
∂S
∂pα

−
1
ϑ
⋅
∂U
∂pα

=
1
ϑ
⋅Pα      or     

  

€ 

Pα = J ⋅ϑ ⋅
∂S
∂pα

−
∂U
∂pα

. 

 

In the end, Helmholtz arrived at the very meaningful equation 

 

  

€ 

Pα =
∂
∂pα

⋅ J ⋅ϑ ⋅ S −U( )   (1b).    

                                                        
8 Helmholtz 1882, p. 967. 
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If we put 

 

    

€ 

F =U − J ⋅ϑ ⋅ S    (1e), 

 

equation (1b) transforms into 

 

  

€ 

Pα = −
∂F
∂pα

   (1f), 

 

wherein   

€ 

F  is a definite function of 

€ 

ϑ  and 

€ 

pα , just like U and S, apart from “an 

arbitrary additive constant   

€ 

α − β ⋅ J ⋅ϑ ”.9 According to Helmholtz, the function   

€ 

F  

represented the potential energy or the “Ergal”. If we derive equation (1e) with regard to 

temperature, we obtain 

 

    

€ 

∂F
∂ϑ

=
∂U
∂ϑ

− J ⋅ S − J ⋅ϑ ⋅
∂S
∂ϑ

. 

 

Making use of equation (*), namely 

 

  

€ 

J ⋅
∂S
∂ϑ

=
1
ϑ
⋅
∂U
∂ϑ

, 

 

we find that  

 

    

€ 

∂F
∂ϑ

= − J ⋅ S    (1g). 

 

Finally, from (1e) and (1g), Helmholtz arrived at 

                                                        
9 Helmholtz 1882, p. 968. 
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€ 

U = F -ϑ ⋅
∂F
∂ϑ

   (1h).10 

 

As I have shown in chapter 4, the last two equations had already been derived by the 

French engineer Massieu: Helmholtz seemed not aware of Massieu result, which had 

probably not crossed France borderlines. 

From the expressions of the functions U and S in terms of   

€ 

F  derivatives, “another 

interpretation” of equation (*) emerged. From the derivation of equation (1h), it follows 

that 

 

  

€ 

∂U
∂ϑ

=
∂F
∂ϑ

- ∂F
∂ϑ

-ϑ ⋅
∂2F
∂ϑ 2 = -ϑ ⋅

∂2F
∂ϑ 2 . 

 

From the derivation of equation (1g), it follows that 

    

€ 

∂2F
∂ϑ 2 = − J ⋅

∂S
∂ϑ

. 

 

Helmholtz could conclude that 

 

    

€ 

∂U
∂ϑ

= -ϑ ⋅
∂2F
∂ϑ 2 = J ⋅ϑ ⋅

∂S
∂ϑ

.11 

 

In the specific case of constant parameters 

€ 

pα , equation (1) becomes  

 

  

€ 

J ⋅ dQ =
∂U
∂ϑ

⋅ dϑ , 

 

                                                        
10 Helmholtz 1882, pp. 968-9. 
11 Helmholtz 1882, p. 969. 
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and the quantity 

€ 

∂U ∂ϑ  represents “the thermal capacity of the system when the 

parameters are constant”. Helmholtz labelled 

€ 

Γ this capacity, and expressed it in terms 

of   

€ 

F  derivatives: 

 

    

€ 

J ⋅Γ =
∂U
∂ϑ

= -ϑ ⋅
∂2F
∂ϑ 2    (1i). 

 

Since 

€ 

Γ and 

€ 

ϑ  “are necessarily positive quantities”, it follows that   

€ 

∂2F ∂ϑ 2  is 

necessarily negative. Equations (1g) and (1h) suggest that   

€ 

−∂F ∂ϑ  (namely   

€ 

J ⋅ S) and 

  

€ 

F −ϑ ⋅∂F ∂ϑ  (namely U) must increase “in the case of increasing temperature and 

stationary parameters”.12  

The function   

€ 

F  represented the “free energy”, namely the component of the internal 

energy which could be transformed into every kind of work. If U represented the total 

internal energy, the difference between U and   

€ 

F , namely   

€ 

J ⋅ϑ ⋅ S , represented the 

“bound energy”, namely the energy stored in the system as a sort of entropic heat. 

 

Die Funktion   

€ 

F  fällt, wie wir gesehen haben, für isotherme Veränderungen mit dem 

Werthe der potentiellen Energie für die unbeschränkt verwandelbaren Arbeitswerthe 

zusammen. Ich schlage deshalb vor, diese Grösse die freie Energie des 

Körpersystems zu nennen. 

Die Grösse 

    

€ 

U = F −ϑ ⋅
∂F
∂ϑ

= F + J ⋅ϑ ⋅ S  

könnte, wie bisher, als die gesammte (innere) Energie bezeichnet werden; die etwa 

vorhandene lebendige Kraft der Massen des Systems bleibt von   

€ 

F  wie von U 

ausgeschlossen, so weit sie zu den frei verwandelbaren Arbeitsäquivalenten gehört, 

und nicht zu Wärme geworden ist. Dann könnte man die Grösse: 

 
    

€ 

U −F = −ϑ ⋅
∂F
∂ϑ

= J ⋅ϑ ⋅ S  

                                                        
12 Helmholtz 1882, p. 969. 
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als die gebundene Energie bezeichnen. 

Vergleicht man den Werth der gebundene Energie: 

    

€ 

U −F = J ⋅ϑ ⋅ S , 

mit der Gleichung (1a): 

€ 

dQ =ϑ ⋅ dS ; 

so ergiebt sich, dass die gebundene Energie das mechanische Aequivalent 

derjenigen Wärmemenge darstellt, die bei der Temperatur 

€ 

ϑ  in den Körper 

eingeführt werden müsste, um der Werth S seiner Entropie hervorzubringen.13 

 

According to Helmholtz, another term should have appeared in the list of the energies: 

the living force or current energy (“actuelle Energie”). It corresponded specifically to 

“the living force of the ordered motion”, not to be confused with “the work-equivalent 

of heat”, which could be considered as “living force of hidden molecular motions”. Not 

so easy appeared to Helmholtz the distinction between ordered and disordered motions 

from the mechanical point of view, wherein some kind of spatial correlations were at 

stake. He only found “good reasons” to assume that thermal motion was of the 

disordered kind, and that entropy was “a measure of disorder”. The transformations of 

energy taking place in “living tissues” appeared to Helmholtz even more difficult to 

tackle, despite they were of particular importance for a scientist who had begun his 

career as a physiologist.14   

In the second section of his paper, Hemholtz tried to “rephrase the other two quantities 

dW and dQ which appears in Clausius’ equations”, and for this purpose he found 

necessary to introduce two differential operators. He labelled 

€ 

δ  the variation of 

whatever function 

€ 

ϕ  when the parameters 

€ 

pα  changed but the temperature did not, 

whereas the symbol 

€ 

d  was reserved to a complete variation, wherein the temperature 

also changed. For a function 

€ 

ϕ  of 

€ 

pα  and 

€ 

ϑ , he wrote 

  

                                                        
13 Helmholtz 1882, p. 971. 
14 Helmholtz 1882, pp. 971-2, footnote included. 
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€ 

δϕ =
∂ϕ
∂pα

δpα
 

 
 

 

 
 

α

∑       and      

€ 

dϕ =δϕ +
∂ϕ
∂ϑ

dϑ . 

 

What he called “freely convertible external work” could be expressed in term of the 

potential   

€ 

F  when we remember that   

€ 

Pα = −∂F ∂pα : 

 

    

€ 

dW = Pα ⋅ dpα( )∑ = −δF =

−dF +
∂F
∂ϑ

⋅ dϑ = −dF − J ⋅ S ⋅ dϑ
   (1m).15 

 

According to the new symbols, the first principle, namely equation (1), assumed the 

form 

 

    

€ 

J ⋅ dQ = dU −δF . 

 

With the help of the expression of U in equation (1h), namely   

€ 

U = F -ϑ ⋅∂F ∂ϑ , 

 

    

€ 

J ⋅ dQ = dF −d ϑ ⋅
∂F
∂ϑ

 

 
 

 

 
 −δF . 

 

Since 
  

€ 

dF =δF +
∂F
∂ϑ

δϑ , 

 

    

€ 

J ⋅ dQ =
∂F
∂ϑ

⋅ dϑ −d ϑ ⋅
∂F
∂ϑ

 

 
 

 

 
 =

∂F
∂ϑ

⋅ dϑ −
∂F
∂ϑ

⋅ dϑ −ϑ ⋅ d ∂F
∂ϑ

 

 
 

 

 
 =

−ϑ ⋅ d ∂F
∂ϑ

 

 
 

 

 
 =ϑ ⋅ J ⋅ dS

     (1n), 

 

                                                        
15 Helmholtz 1882, pp. 972-3. 
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in accordance with equation (1g). This appeared to Helmholtz an interesting 

conclusion, for he had found that “the fundamental equations” (1) and (1a), as well as 

all the “conclusions derived by Clausius and other physicists”, were satisfied “even in 

the case of more parameters”.16  

Then he tried to specify the concept of “bound energy” or “bound work”, which he 

labelled   

€ 

G . From the mathematical point of view, the sum of   

€ 

F  and   

€ 

G  had to equal the 

total energy U: 

 

  

€ 

F +G =U      (°). 

 

From equation (1e),     

€ 

F =U − J ⋅ϑ ⋅ S , and the term   

€ 

G  could not be different from 

 

    

€ 

G =  J ⋅ϑ ⋅ S . 

 

From the computation of its variation,  

 

    

€ 

dG =  J ⋅ϑ ⋅ dS + J ⋅ S ⋅ dϑ =  J ⋅ dQ + J ⋅ S ⋅ dϑ      (°°), 

 

Helmholtz found that   

€ 

G  grew firstly “at the expense of the entering heat dQ”, and 

secondly “at the expense of the free energy” (by   

€ 

J ⋅ S ⋅ dϑ ), when temperature rose. 

 

On the other hand, the variation of   

€ 

F , 

 

    

€ 

dF =δF +
∂F
∂ϑ

⋅ dϑ = −dW − J ⋅ S ⋅ dϑ      (°°°), 

 

showed that the  free energy decreased by that amount   

€ 

J ⋅ S ⋅ dϑ , and by the amount of 

external work, in accordance with the equation (1g) 

                                                        
16 Helmholtz 1882, pp. 972-3. 
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€ 

−
∂F
∂ϑ

⋅ dϑ = J ⋅ S ⋅ dϑ .17 

 

As Helmholtz remarked, when temperature increases, “free energy transforms into 

bound energy by the specified amount”   

€ 

J ⋅ S ⋅ dϑ . In particular, in purely “dissipative 

processes” giving rise to “irreversible transformations”, dW = 0; equation (°°°) became 

    

€ 

dF = − J ⋅ S ⋅ dϑ , and the complementary equation (°°) yielded     

€ 

dG =  J ⋅ dQ − dF . 

If we invert equations (°°) and (°°°), 

 

    

€ 

J ⋅ dQ =  dG − J ⋅ S ⋅ dϑ      (°°), 

    

€ 

dW = −dF − J ⋅ S ⋅ dϑ      (°°°), 

 

we have a mathematical and conceptual alternative to the first principle expressed in 

terms of W and Q:   

€ 

F +G =U   instead of   

€ 

J ⋅ dQ = dU + dW . The new form of equations 

(°°) and (°°°) allows us to understand Helmholtz statement “all the external work is 

supplied at the expense of the free energy, and heat at the expense of the bound energy”. 

Indeed, if dQ’ represented the heat sent out by the system, we should invert the signs in 

(°°), and therefore 

 

    

€ 

J ⋅ dQ'  = − dG + J ⋅ S ⋅ dϑ .18 

 

In the specific case of adiabatic transformations, dQ = 0, and therefore 

    

€ 

dG =  J ⋅ S ⋅ dϑ . Equation  (°°°) becomes   

€ 

dF = −dW − dG  or    

 

  

€ 

dW = −dF − dG , 

                                                        
17 Helmholtz 1882, p. 975. 
18 Helmholtz 1882, pp. 975-6. Helmholtz theoretical re-interpretation of the first Principle of Thermodynamics can 

be looked upon as an important stage in the reshaping of chemical thermodynamics, even tough A.F. Horstmann and 
Gibbs had already acknowledged the role of entropy in chemical processes. In France, the influential chemist M. 
Berthelot went on with relying on the old Thermo-Chemistry. See Kragh H. 1993, pp. 417-8, and 423.  
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letting Helmholtz conclude that, in this case, “work is produced at the expense of both 

free and bound energy”. In the same kind of transformations, dS = 0, and  

 

  

€ 

0 = J ⋅ dQ = J ⋅ϑ ⋅ dS = d(J ⋅ϑ ⋅ S) − J ⋅ S ⋅ dϑ , 

    

€ 

0 = dG − J ⋅ S ⋅ dϑ = d U −F( ) − J ⋅ S ⋅ dϑ , 

    

€ 

d U −F( ) = J ⋅ S ⋅ dϑ . 

 

The last equation allows us to decode Helmholtz statement, “the entropy S can be 

looked upon as the thermal capacity when heat is produced at the expense of the free 

energy” in adiabatic transformations. Provided that the expression “heat is produced” 

did not mean the heat exchanged dQ = 0, but the internal heat or internal energy, the 

left-hand side of the last equation would correspond to “heat produced at the expense of 

the free energy”. 

In the specific case of isothermal transformations, 

€ 

dϑ = 0 , and equations (°°°) and (°°) 

become 

 

  

€ 

dW = −dF  

    

€ 

dG =  J ⋅ dQ . 

 

In this case, as Helmholtz stated, “work is performed at the expense of the free 

energy”, and “bound energy changes at the expense of the entering or leaving heat”.19 

In the last short section of the paper, he briefly discussed “the conditions of 

equilibrium” and “the direction of spontaneous transformations”. The quantity   

€ 

δF  was 

independent of temperature, and he stated that “any positive value of   

€ 

δF , increasing 

with time, cannot occur”, provided that “any access to reversible external work” could 

not occur as well. This was the case of chemical phenomena like “dissociation of 

                                                        
19 Helmholtz 1882, p. 975. 



The “free energy” in Physics and Chemistry 

 

149 

chemical bonds”. Only when “  

€ 

δF  begins to move from a nil to a negative value”, the 

phenomenon of dissociation “could take place”.  

Apart from some questionable combination of partial temperature-derivatives and 

differential operators 

€ 

δ , Helmholtz restated the same concept: “the derivative   

€ 

∂F ∂ϑ  

can only change by the supply of new heat dQ”, wherein the “new heat” corresponded 

to heat coming “from surrounding bodies”, or from the “transformation of freely 

convertible work”.20 

It is worth remarking that, in 1882, Helmholtz put forward a mechanical approach to 

Thermodynamics in accordance with the tradition of Analytic Mechanics. In the 

subsequent years, he tried to follow a slightly different pathway, wherein some 

hypotheses on the mechanical nature of heat were put forward. In some way, he tried to 

give a microscopic explanation of heat, without any recourse to specific mechanical 

models. This point deserves to be emphasised. In 1884, in the paper “Principien der 

Statik monocyklischer Systeme”, Helmholtz follow an intermediate pathway, which 

was neither Boltzmann neither Massieu-Gibbs pathway. He introduced a microscopic 

Lagrangian coordinate, corresponding to a fast, hidden motion, and a set of macroscopic 

coordinates, corresponding to slow, visible motions. If the energy associated to the 

former coordinate corresponded to thermal energy, the energy associated to the latter 

corresponded to the external thermodynamic work.21 

As I have already pointed out, different mechanical theories of heat were on the stage 

in the last decades of the nineteenth century, and different meaning of the adjective 

mechanical were at stake. This plurality of theories and meanings shows us how 

interesting the landscape of the contemporary theoretical physics was.  

 

 

                                                        
20 Helmholtz 1882, pp. 976-8. 
21 Buchwald noticed that Helmholtz put forward an analytic mechanical approach to the microscopic level “without 

simultaneously adopting a fully reductionist atomism”. (Buchwald J.Z. 1993, pp. 335). See also Cahan D. 1993b, p. 
10. For a detailed analysis of Helmholtz’s 1884 paper, and similar researches collected in the sixth volume of his 
Vorlesungen über Theoretische Physik, see Bierhalter G. 1993, pp. 437-42. 



 



 

 

 

 

 

 

 

 

 

 

 

SECOND PART 

Duhem third pathway 

 

 



 



 

 

8. Thermodynamics as a new Mechanics 

 

In 1886, the young physicist Duhem published a book whose complete title was Le 

potentiel thermodynamique et ses applications à la mécanique chimique et à l’étude des 

phénomènes électriques. The content of the book corresponded to the doctoral 

dissertation he had submitted to the faculty late in 1884, before the achievement of the 

aggregation in physics. This was an unusual procedure, but the faculty let the talented 

student present his dissertation, which however was rejected because of the 

astonishingly new approach to theoretical thermodynamics, and because of the criticism 

it contained about M. Berthelot chemical theories.1   

In the “Introduction”, he remarked that ordinary mechanics could not solve problems 

concerning chemical equilibrium. Although he claimed that the nature of those 

problems was outside the scope of mechanics, they exhibited “several analogies with 

equilibrium problems in statics”. We find here two meta-theoretical feature of Duhem’s 

early scientific research: the commitment to widen the scope of Mechanics, and, at the 

same time, the trust in the mathematical structures of Analytic Mechanics. According to 

Duhem, “les physiciens” should have made use of procedures similar to those used by 

“les mécaniciens” in the context of statics.2 

Duhem was also committed to bridge the gap between physics and chemistry: this 

kind of unification led to the building up of a new generalised mechanics. He was 

looking for structural analogies between this generalized mechanics and principles 

already developed in the context of rational mechanics, in particular “the principle of 

virtual velocities and Lagrange’s theorem”. According to his sensitivity to history and 

historical reconstructions of physics, he briefly marshalled the theoretical contributions 

to thermodynamics and thermo-chemistry put forward by M. Berthelot, A. Horstmann, 

and W. Strutt (Lord Rayleigh) in the 1870s. He mentioned, in particular, F. Massieu, 

who had put forward two “distinctive functions” endowed with a remarkable property: 

quantities representing “physical and mechanical properties of bodies (specific heat, rate 

of expansion, bulk modulus, ..)” could be deduced from it. Massieu’s distinctive 
                                                        

1 As well-known to historians, Duhem’s criticism about Berthelot and G.J. Lippmann’s theories entailed unpleasant 
consequences: he never managed to be committed to a chair in Paris. For detailed information about the events linked 
to that dissertation, see Jaki S.L. 1984, pp. 50-2. 

2 Duhem P. 1886, p. I. 
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functions involved both energy and entropy, the most meaningful entities in 

thermodynamics. The first function depended on temperature and volume, and the 

second on temperature and pressure.3 

 

“Dans le premier cas, si l’on désigne par T la température absolue, par S 

l’entropie du corps, par U l’énergie interne, le corps admet pour fonction 

caractéristique la quantité 

H = TS – U. 

Dans le second cas, si l’on garde les notations précédents, et si l’on désigne en 

outre par A l’équivalent calorifique du travail, par v le volume du corps, et par p la 

pression qu’il supporte, le corps admet pour fonction caractéristique la quantité  

H’ = TS – U - Apv”4 

 

Duhem remarked that Massieu had made use of the two functions in the context of a 

theoretical foundation of Thermodynamics, and J.W. Gibbs in the context of thermo-

chemistry. Then he shortly recollected the main steps of Gibbs’ logical pathway, after 

having listed the two laws of equilibrium, and the two functions  

 

€ 

ψ = E U −TS( ) ,        

€ 

ζ = E U −TS( ) + pv , 

 

 similar to Massieu’s functions, which played the role of potentials.5 He then remarked 

that, in 1882, in the context of thermo-chemistry, Helmholtz had put forward “the 

distinction between two kinds of energy, the free energy … and the bound energy”. The 

former could also be transformed into mechanical work, the latter could only be 

transformed into heat. Helmholtz’s free energy F, Duhem noticed, was nothing else but 

Gibbs’ function 

€ 

ψ , proportional to Messieu’s “fonction caractéristique” H: 
                                                        

3 Duhem P. 1886, pp. II-V. The expression “les propriétés physiques et mécaniques” cast some light upon the 
relationship between “physics” and “mechanics” in Duhem’s view: physics encompassed the set of physical sciences 
outside Mechanics. 

4 Duhem P. 1886, p. V. 
5 Duhem P. 1886, p. VI. The coefficient E is nothing else but “l’équivalent mécanique de la chaleur”. The 

relationship between mechanical equivalent of heat (E) and thermal equivalent of mechanical work (A) is of course 
EA = 1. At this stage, physical remarks and historical reconstructions are tight linked to each others: it is one of the 
long-lasting hallmarks of Duhem’s scientific practice.  
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€ 

F = E U −TS( ) =ψ = −EH  

 

Although Helmholtz’s function F and Gibbs’ function 

€ 

ψ  were the same entity, 

Duhem noticed that their applications were quite different: Helmholtz’s was interested 

in the complex interplay among chemical, thermal, and electric effects in Volta’s cells, 

in particular the relationship between the so-called “Voltaic heat” and “chemical heat”. 

The first chapter of Duhem’s 1886 book concerns the relationship between 

mechanical and thermal properties of a physical-chemical system. His starting point was 

nothing else but the two principles of thermodynamics: the basic entities were energy 

and entropy, the two entities which “take part in the expression of thermodynamic 

potential”. Duhem wrote the first principle as 

 

(1)    

€ 

dQ + Ad mv2

2∑ = − dU + Adτ e ,     

 

where dQ was a quantity of heat, 

€ 

Ad mv2

2∑  the variation of living force, d

€ 

τ e  the 

variation of the external work, A the thermal equivalent of the mechanical work, and dU 

“represents the total differential of a function well specified apart from a constant”. 

With regard to the second principle, Duhem reminded the reader of Clausius 

mathematical and conceptual steps: at first he mentioned the concept of dQ/T as “unit of 

transformation or merely transformation”, and the corresponding theorem, “The sum of 

transformations throughout a close eversible cycle is nought”. Then he mentioned the 

extension of Clausius’ theorem to reversible “transformations different from a closed 

cycle”: the integral 

 

€ 

dQ
T0

1

∫  
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between an initial state (0) and a final state (1) “depends only on the initial and final 

state of the system”. Clausius had widened the scope of the “second principle of the 

mechanical theory of heat”, including non-reversible closed cycles: “The algebraic sum 

of transformations occurring in a non-reversible closed cycle must be positive”. 

Subsequently Clausius had further widened the scope of the principle, including the 

general case of “whatsoever series of non-reversible transformations”. The keystone of 

this conceptual path appeared to Duhem the concept of “transformation non 

compensée”, which he tried to synthetically explain by some mathematical steps. He 

took into account the following cycle: a system pass from the initial state (0) to the final 

state (1) through different steps, at least one of them being non-reversible. Then the 

system comes back to (0) through a series of reversible (r) steps. At the end of the cycle, 

 

€ 

dQ
T∫ > 0   namely   

€ 

dQ
T0

1

∫ +
(r)

dQ
T1

0

∫ > 0  

 

From the definition of entropy S, 

€ 

(r)

dQ
T1

0

∫ = S1 − S2 , Duhem could write 

 

(4)     

€ 

dQ
T0

1

∫ + S1 − S2 = N > 0 . 

 

The quantity N is just what Duhem, following Clausius, called “la somme des 

transformations non compensées”. In the specific case of isothermal transformations, 

Duhem could write 

 

(5)    

€ 

N =
A
T
τ . 
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Going on with the generalisation of mechanical analogies, he interpreted 

€ 

τ  as “an 

amount of work which can be naturally qualified as non-compensated work”.6 From this 

analogy, he could infer some statements about reversibility and equilibrium. 

 

“Aucune modification isothermique ne peut correspondre à un travail non 

compensé négatif. 

Si une modification isothermique correspond à un travail non compensé positif, 

elle est possible, mais non réversible. 

Pour qu’une modification isothermique soit réversible, il faut et il suffit que le 

système qui subit cette modification n’effectua aucun travail non compensé. 

Un système est certainement en équilibre si l’on ne peut concevoir aucune 

modification isothermique de ce système qui soit compatible avec les liaisons 

auxquelles ce système est assujetti et qui entraine un travail non compensé positif.  

Ces théorèmes rappellent, par leur forme et par leur objet, le principe des vitesses 

virtuelles. En thermodynamique, le travail non compensé joue, à certains points 

de vue, le même rôle que le travail en mécanique.”7 

 

For systems without any macroscopic living force, equation (1) would become 

 

€ 

dQ = −dU + Adτ e , 

 

and, for isothermal transformations, equations (4) and (5) become 

 

                                                        
6 Duhem P. 1886, pp. 3-7. It is worth noticing that the role of the statement about entropy or “transformation”, 

corresponding to the second principle of thermodynamics, shifted from “theorem” to “principle”. It is also worth 
noticing that the word “transformation” could assume two different meanings: its general meaning of “change”, and 
its specific, technical meaning of “entropy” 

7 Duhem P. 1886, p. 7. In the following passage, Duhem specified the restrictions to be made on those statements: 
“Remarquons toutefois que le théorème de thermodynamique n’a pas exactement la même portée que le théorème de 
mécanique. Le principe des vitesse virtuelles indique les conditions nécessaires et suffisantes pour qu’un système soit 
en équilibre. Le théorème de thermodynamique indique que, dans certaines circonstances, un système demeure 
nécessairement invariable ; on ne saurait prétendre que le système ne puisse rester invariable que dans ces 
conditions.” This specification is important in itself, and with regard to Duhem’s subsequent theoretical researches. 
See chapter 11 of the present dissertation. 
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€ 

τ = ETN ,      

€ 

N = S1 − S0 +
1
T

dQ
0

1

∫ . 

. 

The last three equations allowed Duhem to give a mathematical expression for the 

non-compensated work 

€ 

τ  : 

 

(6)     

€ 

τ = ET S1 − S0( ) − E U1 −U0( ) + dτ e
0

1

∫ . 

 

If we assume that “external forces stem from a potential W”, the last equation 

becomes 

 

€ 

τ = ET S1 − S0( ) − E U1 −U0( ) +W0 −W1, 

 

and we can imagine a more general potential 

€ 

Ω corresponding to the non-

compensated work 

€ 

τ  : 

 

(7)   

€ 

Ω= E U − TS( ) +W ,       

€ 

τ =Ω0 −Ω1.   (8) 

 

In Duhem’s words, “non-compensated work … is equal to the opposite of the 

variation of 

€ 

Ω” in an isothermal transformation. The analogy between mechanics and 

thermodynamics suggested Duhem to choose the name “thermodynamic potential of the 

system” for the function 

€ 

Ω.8 The previous statements concerning reversibility and 

equilibrium could be expressed in terms of the new potential. 

 

“Il n’existe pas de modification isothermique ayant pour effet d’accroitre le 

potentiel thermodynamique du système. 

                                                        
8 Duhem P. 1886, pp. 7-8. 



Thermodynamics as a new Mechanics 

 

159 

Une modification isothermique qui a pour effet de faire décroitre le potentiel 

thermodynamique du système est possible, mais non réversible. 

Pour qu’une modification réversible soit réversible, il faut et il suffit que le 

potentiel thermodynamique demeure constant pendant toute la durée de cette 

modification. 

Lorsque le potentiel thermodynamique est minimum, le système est dans un état 

d’équilibre stable.”9 

 

In two specific instances, either constant volume or constant pressure, Duhem’s 

thermodynamic potential had important consequences from the theoretical point of view 

as well as from the point of view of “applications”. In the first case, W = 0, and the 

potential 

€ 

Ω becomes  

 

€ 

F = E U − TS( ) , 

 

which is “Helmholtz’s free energy” or Gibbs’ 

€ 

ψ  function. In the second case, dW = 

pdv = d(pv), and the potential 

€ 

Ω becomes  

 

€ 

Φ= E U − TS( ) + pv , 

 

which is “nothing else but Gibbs’ 

€ 

ζ  function”.10 

The following section is definitely the most interesting from the point of view of the 

relationship between Mechanics and Thermodynamics. On the track of F. Massieu, 

Duhem expressed “all the parameters specifying the physical and mechanical properties 

of a system” in terms of the partial derivatives of Massieu’s H and H’ functions, 

corresponding to Gibbs’ 

€ 

ψ  and 

€ 

ζ  functions, and to Duhem’s F and 

€ 

Φ. The function F 

had to be considered as a function of volume and temperature, whereas the function 

€ 

Φ 

                                                        
9 Duhem P. 1886, p. 9.  
10 Duhem P. 1886, pp. 9-10. 
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had to be considered as a function of pressure and temperature.11 In order to analyse in 

detail the second function, Duhem took into account a body “in a condition of 

equilibrium” and the two law of thermodynamics: 

 

€ 

dS = −
dQ
T

   and   

€ 

dQ = − dU + A pdv( ) . 

 

The first mathematical step consisted in eliminating dQ and expressing S as a function 

of p and T:  

 

€ 

dS =
1
T
−dQ( ) =

1
T
dU + A pdv( ) =

1
T

∂U
∂T

dT +
∂U
∂p

dp + Ap ∂v
∂T

dT + Ap∂v
∂p
dp

 

 
 

 

 
 =

1
T

∂U
∂T

dT + Ap ∂v
∂T

dT
 

 
 

 

 
 +
1
T

∂U
∂p

dp + Ap∂v
∂p
dp

 

 
 

 

 
 =
1
T

∂U
∂T

+ Ap ∂v
∂T

 

 
 

 

 
 dT +

1
T

∂U
∂p

+ Ap∂v
∂p

 

 
 

 

 
 dp

. 

 

In other words,  

 

(11)   

€ 

∂S
∂T

=
1
T

∂U
∂T

+ Ap ∂v
∂T

 

 
 

 

 
 

∂S
∂p

=
1
T

∂U
∂p

+ Ap∂v
∂p

 

 
 

 

 
 

 

 

 
 

 

 
 

.12 

 

The second mathematical step consisted in taking into account the derivatives of the 

potential 

€ 

Φ with regard p and T: 

 

€ 

dΦ= E dU − ET dS − E S dT + pdv + v dp , 

€ 

∂Φ
∂T

= E ∂U
∂T

− ET ∂S
∂T

− ES + p ∂v
∂T

∂Φ
∂p

= E ∂U
∂p

− ET ∂S
∂p

+ p∂v
∂p

+ v

 

 
  

 
 
 

 

                                                        
11 Duhem P. 1886, p. 10. 
12 Duhem P. 1886, p. 11. There are some misprints in the text. 
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From the comparison between the last equations and equations (11), and from EA = 1, 

it follows that 

 

€ 

∂Φ
∂T

= E ∂U
∂T

− ET 1
T

∂U
∂T

+ Ap ∂v
∂T

 

 
 

 

 
 − ES + p ∂v

∂T
= E ∂U

∂T
− E ∂U

∂T
+ EAp ∂v

∂T
− ES + p ∂v

∂T

∂Φ
∂p

= E ∂U
∂p

− ET 1
T

∂U
∂p

+ Ap∂v
∂p

 

 
 

 

 
 + p∂v

∂p
+ v = E ∂U

∂p
− E ∂U

∂p
+ EAp∂v

∂p
+ p∂v

∂p
+ v

 

 

 
 

 

 
 

 

 

In brief, 

 

(12) 

€ 

∂Φ
∂T

= −E S    and   (13) 

€ 

∂Φ
∂p

= v . 

 

Entropy and volume could be expressed as derivative of the potential 

€ 

Φ, and this 

result allowed Duhem to undertake the third step: the deduction of some mechanical and 

thermal properties of the system. He introduced “the coefficient 

€ 

α  of dilatation under 

constant pressure” and “the coefficient 

€ 

ε  of compressibility”. From the mathematical 

point of view, 

 

(*)  

€ 

α =
1
v
∂v
∂T

   and   

€ 

ε = −
1
v
∂v
∂p

. 

 

From equation (13), 

€ 

∂v
∂T

=
∂
∂T

∂Φ
∂p

 and 

€ 

∂v
∂p

=
∂ 2Φ
∂p2

, and therefore 

 

(14) 

€ 

α =

∂ 2Φ
∂p∂T
∂Φ
∂p

   and   (15) 

€ 

ε =

∂ 2Φ
∂p2

∂Φ
∂p

. 

 



Stefano Bordoni 

 

162 

The coefficient making reference to “the coefficient 

€ 

α '  of dilatation under constant 

volume” was deduced as well. If 

 

€ 

α ' = 1
p
∂p
∂T

, 

 

we need an expression for 

€ 

∂p ∂T  in term of the above derivatives. This can be done in 

the following way: from equations (*),  

 

€ 

∂v
∂T

=α v    and   

€ 

∂p
∂v

= −
1
ε v

, 

 

while 

€ 

∂p
∂T

=
∂p
∂v

∂v
∂T

 and then 

€ 

∂p
∂T

= −
∂p
∂v

∂v
∂T

.13 Inserting 

€ 

∂v ∂T  and 

€ 

∂p ∂v  in the latter, 

 

€ 

α ' = 1
p
∂p
∂T

= −
1
p
∂p
∂v

∂v
∂T

= −
1
p
−
1
ε v

 

 
 

 

 
 α v( ) =

α
ε

=

∂ 2Φ
∂p∂T
∂ 2Φ
∂p2

.14 

 

Specific heats were also deduced by Duhem in the same way. Specific heat at constant 

pressure is nothing else but 

 

€ 

C =
dQ
dT

=
∂U
∂T

+ Ap ∂v
∂T

. 

 

In this case, we must express the function U in terms of the potential 

€ 

Φ. This can be 

done resorting to equation (12) and (13), which offer 

 

                                                        
13 The fact is that p = p(T) and v = v(T) are growing functions whereas p = p(v) is a decreasing function. If the 

former have positive derivative, the latter has a negative derivative. 
14 Duhem P. 1886, pp. 11-12. 
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€ 

S = −
1
E
∂Φ
∂T

  and  

€ 

v =
∂Φ
∂p

. 

 

After having inserted them into the equation which define the potential 

€ 

Φ, Duhem 

was able to achieve the expression for C. I am showing in detail all the first 

mathematical steps.  

 

(18)   

€ 

Φ= EU − ETS + pv = EU − ET −
1
E
∂Φ
∂T

 

 
 

 

 
 + p∂Φ

∂p
= EU − T ∂Φ

∂T
+ p∂Φ

∂p . 

 

Therefore 

 

€ 

U =
1
E

Φ− T ∂Φ
∂T

− p∂Φ
∂p

 

 
 

 

 
  and 

€ 

∂U
∂T

= A ∂Φ
∂T

−
∂Φ
∂T

− T ∂
2Φ

∂T 2
− p ∂

2Φ
∂T∂p

 

 
 

 

 
 = A − T ∂

2Φ

∂T 2 − p
∂ 2Φ
∂T∂p

 

 
 

 

 
 . 

 

At the end, even C could also be expressed in terms of the derivatives of the potential 

€ 

Φ: 

 

(19)   

€ 

C =
∂U
∂T

+ Ap ∂v
∂T

= A − T ∂
2Φ

∂T 2 − p
∂ 2Φ
∂T∂p

 

 
 

 

 
 + Ap

∂
∂T

∂Φ
∂p

= − AT ∂
2Φ

∂T 2
.15 

 

The general meaning of this achievement was stressed by Duhem at the end of the 

section. 

 

“Ainsi tous les coefficients qu’il est utile de connaitre dans l’étude thermique 

d’un corps peuvent s’exprimer au moyen de 

€ 

Φ et de ses dérivées premières et 

                                                        
15 Duhem P. 1886, pp. 12-13. 
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secondes par rapport à la pression et à la tenpérature, purvu que l’on suppose le 

corps placé dans un état d’équilibre.”16 

 

As already remarked, also the potential function F, together with its first and second 

derivatives with regard to v and T, could be as suitable as 

€ 

Φ in order to express the 

above coefficients.17 

 

In 1888 Duhem, at that time Maitre de Conférences in the Faculty of Science of Lille 

University, was allowed to discuss his new dissertation, L’aimantation par influence, at 

Paris faculty of Science. He was awarded “Docteur en Sciences Mathématiques” by a 

authoritative academic board: the president was the mathematician G Darboux, and the 

examiners were H. Poincaré, then professor of probability calculus and mathematical 

physics, and E. Bouty, professor of physics. It is worth mentioning that Duhem’s 

second dissertation, its title and content notwithstanding, was presented in the class of 

mathematics rather than in the class of physics. In the meanwhile Duhem had published 

many papers on various subjects involving electromagnetism, thermo-electricity, 

thermo-chemistry, capillarity, osmosis, and phenomena dealing with vapours and 

chemical solutions.18 

Since the “Introduction” he expressed his intellectual dissatisfaction with the lack of 

generality and the “lack of rationale” in previous theories about magnetism. He found 

that “Poisson’s conceptual path” suffered from at least three “difficulties”: 

complications in “basic hypotheses”, a specific weakness in “mathematical deductions”, 

and some disagreement with “facts”. He acknowledged that W. Thomson and G. 

Kirchhoff had subsequently tried to overcome those difficulties, but they had merely 

assumed, at the outset, Poisson’s equations, without any attempt at deriving the 

equations from “more general theories” or at least some “empirical law”. According to 

Duhem, both theoretical and experimental flaws threatened the logical and physical 
                                                        

16 Duhem P. 1886, p. 13. 
17 See Duhem P. 1886, p. 13: “On pourrait montrer d’une manière analogue que si l’on a soin d’exprimer la fonction 

F au moyen des variables v et T, les dérivées partielles de cette fonction permettent d’exprimer tous les coefficients 
dont la connaissance est utile dans l’étude thermique ou mécanique du corps.” 

18 The word “thermodynamics”, which would have upset influential scientists like Berthelot and G.J. Lippmann, did 
not appear in the title of Duhem’s second dissertation. For further details, see Jaki S.L. 1984, pp. 78-9, and 437-9. For 
a complete bibliography of Duhem scientific, historical and philosophical works, see Manville O. 1927, pp. 437-64, 
and Jaki S.L. 1984, pp. 437-55. For an essential chronology of Duhem’s life, see Brouzeng P. 1987, pp. 161-5. 
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foundations of the received magnetic theories. He would have founded his theory on the 

“unquestioned laws” ruling the interactions between magnets, and on the as much 

“unquestioned principles” ruling thermodynamics.19   

The first chapter, “Potentiel thermodynamique d’un système qui renferme des 

aimantes”, was opened by a very general section dealing with “Quelques propositions 

de Thermodynamique”. If dQ is the heat given out in a “basic transformation”, 

€ 

dτ e the 

work done by “external forces”, T the absolute temperature of all elements of the 

physical system “when the transformation takes place”, U the internal energy, and S the 

entropy, once again the “simple” and fundamental laws of Thermodynamics could be 

write down as 

 

€ 

dQ = − dU +Adτ e   and 

€ 

dQ
T

= − dS+AdN . 

 

The term A was nothing else but “the thermal equivalent of work”, and dN represented 

“an infinitely small quantity”, always positive apart from the case of a “reversible” 

transformation: in such a case the term vanished. It was the term Duhem had already 

called “transformation non compensée”.20  

He credited Clausius with having shaped the two propositions expressing “the 

equivalence between heat and work” and “Carnot’s principle”, and credited Gibbs with 

having drawn “an almost immediate consequence”, whose “fruitfulness” seemed to 

Duhem more and more evident. If we introduce a function 

€ 

τ , which gets the properties 

of energy or work, and is linked to the function N by the relation 

€ 

dN = dτ /T , we can 

rephrase the two laws of Thermodynamics in order to put 

€ 

τ  in prominence. That term 

was named “travail non compensé”, or better “the uncompensated work accomplished 

in the course of a isothermal transformation”. If E=1/A, then 

 

€ 

dQ
T

+ dS = AdN ,   

€ 

1
A

dQ
T

+ dS
 

 
 

 

 
 =

dτ
T

,   

                                                        
19 Duhem 1888, p. 1. 
20 See Duhem 1888, p. 3. 
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€ 

dτ = E dQ+ T dS( ),   

€ 

dτ = E −dU +Adτ e + T dS( ) ,   

€ 

dτ = −E dU − T dS( ) +dτ e ,  and 

€ 

dτ = −E d U − TS( ) +dτ e,  

 

being the last step consistent with the choice of isothermal transformations.  In the 

case of external forces stemming from a potential W, 

 

 

€ 

dτ e = − dW ,   

€ 

dτ = −E d U − TS( ) −dW ,    

€ 

dτ = − d E U − TS( ) +W[ ] , and 

€ 

dτ = − dΩ, 

 

wherein 

€ 

Ω was the potential or the function “of state” he had introduced in 1886.21  

The relationships among 

€ 

τ , N, and 

€ 

Ω, in the context of isothermal transformations 

was summarized by Duhem in the following passages. 

 

“… le travail non compensé effectué durant une transformation isothermique est 

alors la variation changé de signe d’une fonction de l’état du système 

€ 

Ω. 

Nous donnerons à cette fonction 

€ 

Ω le nome de potentiel thermodynamique du 

système. 

Moyennant ces conventions, la condition d’après laquelle dN doit toujours être 

positif peut s’énoncer ainsi : 

Pour qu’un système dont tous les points sont à la même température absolue soit 

en équilibre stable, il suffit que le potentiel thermodynamique de ce système ait la 

plus petite valeur qu’il peut prendre à la température considérée.”22 

 

According to a theoretical approach which borrowed names, concepts and procedures 

from analytic mechanics, Duhem followed Gibbs in stating that “the formal expression 

of the thermodynamic potential” was the first step towards the “determination of 

equilibrium for whatsoever system”. The well-known tradition of analytic mechanics 

                                                        
21 Duhem 1888, pp. 3-4. 
22 Duhem 1888, p. 4. 
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became a specific instance of a more general mechanics, wherein temperature and 

“chemical state” were as important as pure mechanical quantities. The usual physical 

quantities, like shape, position and velocities, could account for the displacement of a 

physical system, but could not account for its transformations or “change of state”.  

 

“Pour connaître complètement l’état du système, il faudra connaître la position de 

l’origine de chacun de ces systèmes d’axes et l’orientation des axes. En général, il 

faut aussi connaître un certain nombre d’autres quantités : forme e volume, état 

physique et chimique dans lequel il se trouve, température qu’il possède en ses 

divers points, etc. Lorsque les premières quantités varierons seules, les autres 

demeurant invariables, nous dirons que l’on déplace les uns par rapport aux 

autres les divers corps du système sans changer leur état.”23 

 

According to Duhem, when a physical system did not change its “state”, an 

infinitesimal displacement could however change the quantity 

€ 

E U − TS( ) , which he 

called “internal thermodynamic potential” or 

€ 

τ i . The work done by “the internal 

mechanical actions” of a system undergoing no change of “state” corresponded to the 

change of that potential with the negative sign. The uncompensated work became the 

sum of two different terms: internal work and external work, according to the relation 

€ 

dτ = dτ i +dτ e .24 

Oonce again Duhem pointed out the intimate connection he was trying to establish 

between “rational Mechanics and Thermodynamics”: the latter required an analytic 

approach. Only in this way Thermodynamics could succeed where ordinary mechanics 

failed, namely when “a change of state is associated to a displacement”. The key-entity 

in that re-interpretation of Thermodynamics was “the uncompensated work”, a quantity 

and a concept which “would be vain to look for” in ordinary mechanics. Duhem 

specified that the “internal potential” could not be identified with the “internal energy” 

U, apart from the very particular case of “displacement without change of state”. In 

general, namely for transformation involving both displacements and changes of state, 

                                                        
23 Duhem 1888, p. 5. 
24 Duhem 1888, pp. 5-6 and 8. 
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the internal potential was the suitable physical quantity for representing the conditions 

of equilibrium of a system.25 

Consistently with specified the strong conceptual link “tying Mechanics to 

Thermodynamics”, Duhem tried to deduce the Principle of virtual velocities from “the 

fundamental principle of Thermodynamics”. In general, he wrote, from the 

thermodynamic point of view, a physical system “is definitely in stable equilibrium” 

when, in isothermal transformations, “the uncompensated work … 

€ 

−E δ U − TS( ) +δτ e  is 

negative or vanishes”.  If the external forces derived from a potential W, the stable 

equilibrium would be assured when the “thermodynamic potential 

€ 

Ω= E U − TS( ) +W  is 

minimum at the given temperature”. In the specific case of “rational Mechanics”, the 

stable equilibrium was assured by the following statement: 

 

“L’équilibre d’un système dont les diverses parties sont susceptibles de se 

déplacer, mais non d’éprouver des changements d’état, est assuré si le travail 

effectué dans tout déplacement virtuel de ce système par toutes les forces qui 

agissent sur lui est nul ou négatif. 

[…] 

L’équilibre stable d’un système soumis à des forces extérieures qui admettent un 

potentiel est assuré lorsque le potentiel total des forces, tant intérieures 

qu’extérieures, est minimum.” 

 

The last statement, Duhem noted, is nothing else but the criterion of stability put 

forward by Lagrange, even though “a slight difference” was at stake. That difference 

dealt with a typical feature of Thermodynamics, which deeply differentiate 

Thermodynamics from Mechanics: the key-point was equilibrium, in particular 

necessary and sufficient conditions for equilibrium. As Duhem remarked, in pure 

Mechanics the principle of virtual velocities is both necessary and sufficient condition 

for mechanical equilibrium. On the contrary, in Thermodynamics, the second Principle 

is a sufficient but not necessary condition for equilibrium. A physical system cannot 

experience “a change of state contrary to Carnot-Clausius’ principle”: if the virtual 
                                                        

25 Duhem 1888, pp. 10-11. 
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transformations of the system “opposed that principle, the system would be inevitably 

in equilibrium”. Nevertheless, if the system “can experience a virtual transformation 

consistent with that principle, we do not know whether that transformation will really 

take place or not”.26  

The most interesting consequence of that subtle difference was the possibility of 

widening the scope of ordinary mechanics. Even in “mechanical”, but not purely 

mechanical systems, equilibrium could persist when the principle of virtual velocities, 

as assumed in rational Mechanics, is not satisfied.  

 

“J’ajouterai que le principe des vitesses virtuelles, présenté par la 

Thermodynamique comme condition suffisante, mais non nécessaire, de 

l’équilibre est toujours conforme à l’expérience, tandis que l’expérience nous 

présente chaque jour des cas d’équilibre contraires au principe des vitesses 

virtuelles tel qu’on l’admet en Mécanique rationnelle ; on dit alors qu’il y a 

frottement, et le principe des vitesses virtuelles suppose un système soumis à des 

liaisons dépourvues de frottement.”27   

 

In the subsequent years, Duhem would have developed the structural analogy between 

Mechanics and Thermodynamics. At the same time, he would have further widened the 

scope of the mathematical structures stemmed from the tradition of Analytic Mechanics, 

by means of concept and laws stemmed from Thermodynamics. In the last years of the 

1880s, he began to specify his theoretical pathway: a very general theory, based on the 

two principle of Thermodynamics, and translated into the language of Analytic 

Mechanics, by means of differential equations more general than Lagrange’s.  

                                                        
26 Duhem 1888, pp. 12-13. 
27 Duhem 1888, p. 13. 



 



 

 

9. The “general equations” 

 

After three years, while he was lecturing at Lille university, Duhem began to outline a 

systematic design of rephrasing Thermodynamics. He published a paper in the official 

revue of the Ecole Normale Supérieure, wherein he displayed what he called the 

“general equations of Thermodynamics”. Apart from Clausius, who “had already 

devoted a paper to a systematic review on the equations of Thermodynamic”, four 

scientists were credited by Duhem with having done “the most important researches on 

that subject”: F. Massieu, J.W. Gibbs, H. von Helmholtz, and A. von Oettingen. If 

Massieu had managed to derive Thermodynamics from a “characteristic function and its 

partial derivatives”, Gibbs had managed to show that Massieu’s functions “could play 

the role of potentials in the determination of the states of equilibrium” in a given 

system. If Helmholtz had put forward “similar ideas”, Oettingen had given “an 

exposition of Thermodynamics of remarkable generality”. Duhem did not claim he 

would have done “better” than the scientists quoted above, but he thought that there was 

real “interest” in putting forward “the analytic development of the mechanical Theory 

of heat”, making recourse to “very different methods”.1 

In the first section, “Etude thermique d’un système dont on se donne les équations 

d’équilibre”, he took into account a system whose elements had the same temperature: 

the state of the system could be completely specified by giving its temperature 

€ 

ϑ  and n 

other independent quantities 

€ 

α , 

€ 

β , …, 

€ 

λ . He then introduced some “external forces”, 

depending on 

€ 

α , 

€ 

β , …, 

€ 

λ  and 

€ 

ϑ , and holding the system in equilibrium. Such forces 

should perform a virtual work  

 

€ 

dτ e = A ⋅δα +B ⋅δβ + ...L ⋅δλ +Θ⋅δϑ . 

 

A set of n+1 equations would correspond to the condition of equilibrium of the 

physical system: 

                                                        
1 Duhem 1891, pp. 231-2. Duhem specified that the paper stemmed from his activity as a lecturer “de la Faculté de 

Sciences de Lille”. See Ibidem, p. 232. From Duhem theoretical context it is clear that the expression “mechanical 
Theory of heat” cannot be interpreted in the sense of Maxwell and Boltzmann. I will discuss briefly the question at 
the end of the present chapter.  
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2 

 

From the thermodynamic point of view, every infinitesimal transformation involving 

the generalized displacements 

€ 

δα , 

€ 

δβ , …, 

€ 

δλ  and 

€ 

δϑ , obeys to the first law  

 

€ 

dQ = − dU +
1
E
dτ e ,    

 

which becomes 

 

€ 

dQ = −
∂U
∂α

⋅δα +
∂U
∂β

⋅δβ + ...∂U
∂λ

⋅δλ +
∂U
∂ϑ

⋅δϑ
 

 
 

 

 
 +
1
E

A ⋅δα +B ⋅δβ + ...L ⋅δλ +Θ⋅δϑ( ) . 

 

Duhem rewrote the last equation as  

 

€ 

dQ = −
∂U
∂α

−
A
E

 

 
 

 

 
 ⋅δα +

∂U
∂β

−
B
E

 

 
 

 

 
 ⋅δβ + ... ∂U

∂λ
−
L
E

 

 
 

 

 
 ⋅δλ +

∂U
∂ϑ

−
Θ
E

 

 
 

 

 
 ⋅δϑ

 

 
 

 

 
 , or  

€ 

dQ = − Rα ⋅δα +Rβ ⋅δβ + ... Rλ ⋅δλ +Rϑ ⋅δϑ[ ] ,  

 

wherein  

 

                                                        
2 Duhem 1891, pp. 233-4. 

€ 

A = fα α ,β ,.....,λ ,ϑ( )
B= fβ α ,β ,.....,λ ,ϑ( )
... ...
L = fλ α ,β ,.....,λ ,ϑ( )
Θ = fϑ α ,β ,.....,λ ,ϑ( )
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(2)   

€ 

Rα =
∂U
∂α

−
A
E

Rβ =
∂U
∂β

−
B
E

... ...

Rλ =
∂U
∂λ

−
L
E

Rϑ =
∂U
∂ϑ

−
Θ
E

 

 

 
 
 
 
 

 

 
 
 
 
 

. 3 

 

The new alliance between Mechanics and Thermodynamics led to a re-interpretation 

of dQ: heat became some kind of generalized work, or the sum of all kinds of work, 

mechanical as well thermal. In Duhem’s hands, the new alliance led to a sort of 

symmetry between thermal and mechanical quantities. The Lagrangian parameters 

€ 

α , 

€ 

β , …, 

€ 

λ , and the temperature 

€ 

ϑ , played the same role, and the n+1 functions  

 

€ 

Rα , 

€ 

Rβ , …, 

€ 

Rλ , 

€ 

Rϑ  

 

played the role of generalized thermal capacities. In order to display those functions 

in a way closer to thermodynamic lexical habits, Duhem wrote the above series as 

 

€ 

Rα , 

€ 

Rβ , …, 

€ 

Rλ , C, 

 

wherein the last term C was nothing else but the ordinary thermal capacity: in some 

way, the latter typographical choice re-established the pre-previous asymmetry.4 

At this stage of Duhem’s scientific design, we find a double interpretation of the 

functions 

€ 

Rα , 

€ 

Rβ , …, 

€ 

Rλ , and 

€ 

Rϑ . According to the mechanical interpretation, at least 

from the point of view of analytic or rational Mechanics, they are generalized forces. 

According to the thermal interpretation, they are generalized thermal capacities. The 

double interpretation allows us to look upon the two terms in the right side of the 

                                                        
3 Duhem 1891, p. 234. 
4 Duhem 1891, p. 234. 



Stefano Bordoni 

 

174 

equation expressing the first principle, 

€ 

dQ = − dU + 1 E( )dτ e, as quantities of the same 

nature. From the mechanical point of view, they are both generalized works; from the 

thermal point of view, they are both different kinds of heat. It must be stressed that the 

mechanical interpretation of the term dU is a macroscopic interpretation, far from the 

mechanical interpretation in terms of microscopic molecular motions, which makes 

sense in the context of the kinetic theory of heat.  

Duhem’s mathematical and conceptual rephrasing of Thermodynamics let both 

symmetries and asymmetries between mechanical and thermal interpretations unfold. 

He associated the functions 

€ 

Rα , 

€ 

Rβ , …, 

€ 

Rλ , and C to the unifying label “thermal 

coefficients of the system”, even though one among them, C, had “specific properties”, 

and deserved the specific label “thermal capacity of the system of variables  

€ 

α , 

€ 

β , …, 

€ 

λ , and 

€ 

ϑ ”.5 

In the following pages Duhem inquired into the connection between the mathematical 

and the physical sides of the principle of equivalence. He started from some derivatives 

of the functions  

€ 

Rα , 

€ 

Rβ , …, 

€ 

Rλ , and 

€ 

Rϑ . From the equations (2), 

 

€ 

∂Rα
∂β

−
∂Rβ
∂α

=
∂
∂β

∂U
∂α

−
1
E
∂A
∂β

−
∂
∂α

∂U
∂β

−
1
E
∂B
∂α

 

 
 

 

 
 =

∂
∂β

∂U
∂α

−
∂
∂α

∂U
∂β

−
1
E
∂A
∂β

+
1
E
∂B
∂α

∂Rα
∂ϑ

−
∂C
∂α

=
∂
∂ϑ

∂U
∂α

−
1
E
∂A
∂ϑ

−
∂
∂α

∂U
∂ϑ

−
1
E
∂Θ
∂α

 

 
 

 

 
 =

∂
∂ϑ

∂U
∂α

−
∂
∂α

∂U
∂ϑ

−
1
E
∂A
∂ϑ

+
1
E
∂Θ
∂α

 

 

Because of the mathematical features of the function U, 

 

(3)   

€ 

∂Rα
∂β

−
∂Rβ
∂α

= −
1
E

∂A
∂β

−
∂B
∂α

 

 
 

 

 
  

(3’)  

€ 

∂Rα
∂ϑ

−
∂C
∂α

= −
1
E

∂A
∂ϑ

−
∂Θ
∂α

 

 
 

 

 
  

 

The last equations can be looked upon as the mathematical consequences of the 

principle of equivalence, or first principle of Thermodynamics. The physical 
                                                        

5 Duhem 1891, pp. 234-5. 



The “general equations” 

 

175 

equivalence between work and heat was transformed into a mathematical equivalence 

between their differential coefficients. 

Conversely, we could start from the two sets of n+1 functions A, B, …, L, 

€ 

Θ, and 

€ 

Rα , 

€ 

Rβ , …, 

€ 

Rλ , C. If they are the differential coefficients of the virtual work,  

 

 

€ 

dτ e = A ⋅δα +B ⋅δβ + ...L ⋅δλ +Θ⋅δϑ ,    

 

and of the emitted heat, 

 

€ 

dQ = − Rα ⋅δα +Rβ ⋅δβ + ... Rλ ⋅δλ +Rϑ ⋅δϑ[ ] ,  

 

then equations (3) express a sort of mathematical equivalence. The differential 

expressions dQ and 

€ 

dτ e are equal for less than “a uniform function of 

€ 

α , 

€ 

β , …, 

€ 

λ , and 

€ 

ϑ , so that 

 

€ 

E dQ+ dU( ) = dτ e” 

 

From the physical point of view, the differential expressions dQ and 

€ 

dτ e “will be 

subjected to the principle of equivalence between work and heat”.6 

Another set of equations showed to be useful in the building up of Duhem’s 

Thermodynamics. The Lagrangian parameter 

€ 

ϑ  could be chosen with no restriction: it 

should not have been necessarily identified with the absolute temperature. In general, 

the absolute temperature will be a given function 

€ 

F ϑ( )  of 

€ 

ϑ . This means that the 

function entropy, a “uniform, finite, and continuous function of 

€ 

α , 

€ 

β , …, 

€ 

λ , and 

€ 

ϑ ”, 

had to be defined as 

 

                                                        
6 Duhem 1891, p. 235. 
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€ 

dS =
dQ
F ϑ( )

=
− Rα ⋅δα +Rβ ⋅δβ + ... Rλ ⋅δλ +Rϑ ⋅δϑ[ ]

F ϑ( )
=

−
Rα
F ϑ( )

⋅δα −
Rβ
F ϑ( )

⋅δβ − ... Rλ
F ϑ( )

⋅δλ −
Rϑ
F ϑ( )

⋅δϑ

 . 

 

This equation can be written separately for every differential coefficient: 

 

(4)   

€ 

Rα
F ϑ( )

= −
∂S
∂α

Rβ
F ϑ( )

= −
∂S
∂β

... ...
Rλ
F ϑ( )

= −
∂S
∂λ

Rϑ
F ϑ( )

= −
∂S
∂ϑ

 

 

 
 
 
 
 
 

 

 
 
 
 
 
 

 

 

The mathematical feature of the differential form dS corresponds to the vanishing of 

its crossed derivatives. In fact, 

 

€ 

∂
∂β

Rα
F ϑ( )

= −
∂
∂β

∂S
∂α

∂
∂α

Rβ
F ϑ( )

= −
∂
∂α

∂S
∂β

. 

 

In other words,  

 

(5)   

€ 

∂
∂β

Rα
F ϑ( )

=
∂
∂α

Rβ
F ϑ( )

,   

€ 

∂
∂β

Rα
F ϑ( )

−
∂
∂α

Rβ
F ϑ( )

= 0 ,   

and   

€ 

1
F ϑ( )

∂Rα
∂β

−
∂Rβ
∂α

 

 
 

 

 
 = 0 . 
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If we take into account the parameters 

€ 

α  and 

€ 

ϑ  instead of 

€ 

α  and 

€ 

β , the resulting 

equation will be more complicated, since 

€ 

F ϑ( )  is sensitive to the derivation with regard 

€ 

ϑ :  

 

(5’) 

€ 

1
F ϑ( )

∂Rα
∂ϑ

−
F ' ϑ( )
F ϑ( )

Rα
 

 
  

 

 
  =

1
F ϑ( )

∂C
∂α

.7 

 

Also in this case, we could reverse all mathematical and physical steps. If we start 

from the differential form dQ and the equations (5), then “a uniform function S of the 

state of the system” must exist, and its form is  

 

€ 

dS =
dQ
F ϑ( )

. 

 

According to Duhem, from the physical point of view, that system “satisfies Carnot’s 

principle”.  

As a summary of the complex interplay between mathematics and physics, I quote the 

passage: 

 

“Prenons un système dont l’équilibre est assuré par des forces ayant pour travail 

virtuel la quantité 

€ 

dτ e = A ⋅δα +B ⋅δβ + ...L ⋅δλ +Θ⋅δϑ , 

et dans lequel une transformation élémentaire à partir d’un état d’équilibre 

dégage une quantité de chaleur 

€ 

dQ = − Rα ⋅δα +Rβ ⋅δβ + ... Rλ ⋅δλ +Rϑ ⋅δϑ[ ] ; 

pour que ce système vérifie les deux principes fondamentaux de la 

Thermodynamique, il faut et il suffit que les deux quantités 

€ 

Rα +
A
E

 

 
 

 

 
 ⋅δα + Rβ +

B
E

 

 
 

 

 
 ⋅δβ + ... Rλ +

L
E

 

 
 

 

 
 ⋅δλ + C+

Θ
E

 

 
 

 

 
 ⋅δϑ , 

                                                        
7 Duhem 1891, pp. 235-6. The asymmetry between mechanical and thermal parameters emerges once again. 
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€ 

Rα
F ϑ( )

⋅δα +
Rβ
F ϑ( )

⋅δβ + ... Rλ
F ϑ( )

⋅δλ +
Rϑ
F ϑ( )

⋅δϑ  

soient deux différentiels totales.”8 

 

Equations (3) and (5) had an even more important consequence from both the 

mathematical and physical points of view. In fact, they led to a series of equations of the 

kind 

 

(6)   

€ 

∂A
∂β

−
∂B
∂α

= 0 . 

 

As Duhem remarked, equation (6) says that the n+1 functions 

€ 

fα , 

€ 

fβ , …, 

€ 

fλ , and 

€ 

fϑ , 

which define the differential coefficients A, B, …, L, and 

€ 

Θ, “could not be chosen 

arbitrarily”. Moreover equation (6) says that “a uniform, finite, and continue function 

  

€ 

F α ,β ,...,λ ,ϑ( ) of n+1 parameters 

€ 

α , 

€ 

β , …, 

€ 

λ , and 

€ 

ϑ  there exist”. In terms of vector 

calculus, if K=( A, B, …, L) and 

€ 

∇ ×K = 0, according to equation (6), then   

€ 

K =∇F , just 

because   

€ 

∇ ×∇F = 0  for every   

€ 

F . The gradient of   

€ 

F  can be written component by 

component, taking care of the specific behaviour of the component 

€ 

Θ, which is 

“independent of the function   

€ 

F ”, because of difference between the equation (5’) and 

(5): 

 

(7)   

  

€ 

A =
∂
∂α

F α ,β ,...,λ ,ϑ( )

B=
∂
∂β

F α ,β ,...,λ ,ϑ( )

... ...

L =
∂
∂λ

F α ,β ,...,λ ,ϑ( )

Θ = fϑ α ,β ,...,λ ,ϑ( )

 

 

 
 
 
 
 

 

 
 
 
 
 

.9 

                                                        
8 Duhem 1891, p. 236. Duhem acknowledged that his mathematical and physical approach had already been outlined 

by Clausius, Kirchhoff, and Reech in the 1850s and 1860s. See Ibidem, p. 237. 
9 Duhem 1891, pp. 237-8. 
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From the equations (3’) and (5’) another interesting outcome could be drawn. Starting 

from (5’), we have  

 

€ 

∂Rα
∂ϑ

−
∂C
∂α

 

 
 

 

 
 =

F ' ϑ( )
F ϑ( )

Rα ; 

 

then (3’) yields 

 

€ 

F ' ϑ( )
F ϑ( )

Rα = −
1
E

∂A
∂ϑ

−
∂Θ
∂α

 

 
 

 

 
 . 

 

Component by component, Duhem expressed “all the thermal coefficients of the 

system, apart from the thermal capacity”, in terms of “the equations of equilibrium of 

the system”, namely A, B, …, L, and 

€ 

Θ: 

 

(8)   

€ 

Rα =
1
E
F ϑ( )
F ' ϑ( )

∂Θ
∂α

−
∂A
∂ϑ

 

 
 

 

 
 

Rβ =
1
E
F ϑ( )
F ' ϑ( )

∂Θ
∂β

−
∂B
∂ϑ

 

 
 

 

 
 

... ...

Rλ =
1
E
F ϑ( )
F ' ϑ( )

∂Θ
∂λ

−
∂L
∂ϑ

 

 
 

 

 
 

 

 

 
 
 
  

 

 
 
 
 
 

 

 

What about the function 

€ 

Rϑ =C , which could not be derived by the same procedure? 

The fact is that equation (3’), together with its similar equations, and equations (8) 

allow us to compute the derivatives of C. Duhem first step consisted of redrafting the 

equations of the kind (3’):  
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€ 

∂C
∂α

=
∂Rα
∂ϑ

+
1
E

∂A
∂ϑ

−
∂Θ
∂α

 

 
 

 

 
 

∂C
∂β

=
∂Rβ
∂ϑ

+
1
E

∂B
∂ϑ

−
∂Θ
∂β

 

 
 

 

 
 

... ...
∂C
∂λ

=
∂Rλ
∂ϑ

+
1
E

∂L
∂ϑ

−
∂Θ
∂λ

 

 
 

 

 
 

 

 

 
 
 
 

 

 
 
 
 

. 

 

The second step required the derivatives of the functions 

€ 

Rα , 

€ 

Rβ , …, 

€ 

Rλ , and led to 

quite complicated expressions for the derivatives of C: 

 

(9) 

€ 

∂C
∂α

=
1
E

∂A
∂ϑ

−
∂Θ
∂α

 

 
 

 

 
 1−

∂
∂ϑ

F ϑ( )
F ' ϑ( )

 

 
 
 

 

 
 
 
−
F ϑ( )
F ' ϑ( )

∂2A
∂ϑ 2 −

∂2Θ
∂α∂ϑ

 

 
 

 

 
 

 
 
 

  

 
 
 

  

∂C
∂β

= ... ... ... ...

... ...
∂C
∂λ

= ... ... ... ...

 

 

 
 
 
 

 

 
 
 
 

 

 

The last set of equations shows how deeply entangled were thermal and mechanical 

properties of a physical system. The knowledge of “equilibrium equations of a system” 

allowed Duhem to compute the partial derivatives of the thermal capacity with regard to 

all the parameters which described the state of the system, “apart from its derivative 

with regard to temperature”. The thermal capacity were therefore known “except for an 

unspecified function of temperature”.10  

The complex net of equations developed by Duhem could be simplified by an 

appropriate choice of the Lagrangian parameters, in accordance with a well-known 

analytic procedure. In particular, if we choose the absolute temperature as thermal 

parameter, namely 

€ 

ϑ =T, then F(T)=T, and the last set of equations let  simpler 

expressions for C derivatives emerge: 

 

                                                        
10 Duhem 1891, pp. 238-9. 
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(11) 

€ 

∂C
∂α

=
T
E

∂2Θ
∂α∂ϑ

−
∂2A
∂ϑ 2

 

 
 

 

 
 

∂C
∂β

=
T
E

∂2Θ
∂β∂ϑ

−
∂2B
∂ϑ 2

 

 
 

 

 
 

... ...

∂C
∂λ

=
T
E

∂2Θ
∂λ∂ϑ

−
∂2L
∂ϑ 2

 

 
 

 

 
 

 

 

 
 
 
  

 

 
 
 
 
 

 

 

A further simplification could be attained by choosing the parameters 

€ 

α , 

€ 

β , …, and 

€ 

λ  in order to keep at rest the whole system when the parameter 

€ 

ϑ  changed. In this case, 

“the mere change of 

€ 

ϑ  cannot involve any work done by external forces”: Duhem 

realised a sort of split between thermal and mechanical features of the system. The 

corresponding mathematical condition 

€ 

Θ = 0 transformed equations (8) and (9) into 

“very simple equations”: 

 

 

(14)   

€ 

Rα = −
T
E
∂A
∂T

Rβ = −
T
E
∂B
∂T

... ...

Rλ = −
T
E
∂L
∂T

 

 

 
 
  

 

 
 
 
 

     and     (15) 

€ 

∂C
∂α

= −
T
E
∂2A
∂T 2

∂C
∂β

= −
T
E
∂2B
∂T 2

... ...

∂C
∂λ

= −
T
E
∂2L
∂T 2

 

 

 
 
 
 

 

 
 
 
 

.11 

 

In the last system of equations, the existence of mathematical links between the 

mechanical derivatives of the thermal scalar C and the thermal derivatives of the 

mechanical vector (A, B, …, L) shows us the persistence of the deep connection between 

mechanical and thermal effects, even when we break the formal symmetry between 

them. 

 

In the third section, “Du potentiel thermodynamique”, Duhem took newly into 

account the “uncompensated work” and thermodynamic potentials: unfortunately, a 
                                                        

11 Duhem, pp. 239-41. 
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different mathematical notation with regard his 1888 dissertations makes the equations a 

bit puzzling. Nevertheless, at the end of the fourth section, Duhem rephrased his 1886 

and 1888 equations in a consistent way. He wrote the “transformation non compensée” 

as 

 

€ 

P =
1

F ϑ( )(1)

(2)

∫ dQ+
1
E
δ

mv2

2∑
 

 
 

 

 
 +S2 −S1, 

 

and remarked that it would vanish in case of “reversible” transformations. The term 

€ 

δ
mv2

2∑  was nothing else but the infinitesimal change of the “living force” of the 

system as a whole. The principle of “equivalence between heat and work” could be 

written as 

 

€ 

dτ e = E dQ+δ
mv2

2∑ +EδU , 

 

and the “uncompensated work” as 

 

€ 

P =
1
E

1
F ϑ( )(1)

(2)

∫ dτ e −EδU( ) +S2 −S1. 

 

When the transformation is isothermal, 

€ 

F ϑ( )=const., and the last equation becomes 

 

€ 

E F ϑ( )P = E U1−F ϑ( )S1[ ]−E U2 −F ϑ( )S2[ ]+ dτ e
(1)

(2)

∫ , 

 

The uncompensated work is the sum of two terms: the work done by external forces, 

and “the opposite of the variation of a uniform function qualifying the state of the 
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system”. The uniform function was nothing else but a generalisation of the potential 

Duhem had introduced in 1886, namely 

 

  

€ 

F = E U −F ϑ( )S[ ] .  

 

He reminded the reader that this generalised “potentiel thermodynamique interne” 

corresponded to Massieu’s “fonction caractéristique”, Gibbs’ “fonction de force à 

température constante”, and Maxwell and Helmholtz’s “énergie libre”.12 

A specific law of equilibrium followed: 

 

“Dans toute transformation réalisable, le travail non compensé est positif. Par 

conséquent, si un système, dont la température est maintenue constante, se trouve 

dans un état tel que toute modification isothermique virtuelle entraine un travail 

non compensé négatif, le système est assurément en équilibre.” 

 

According to a proven procedure, Duhem went on with a further refinement: when 

even external forces depends on a potential 

€ 

Ω, the uncompensated work becomes 

 

€ 

E F ϑ( )P = E U1−F ϑ( )S1[ ]+Ω1−E U2 −F ϑ( )S2[ ]−Ω2 , 

 

and a new potential 

€ 

Φ can be introduced: 

 

€ 

Φ= E U −F ϑ( )S[ ]+Ω   and 

€ 

E F ϑ( )P =Φ1−Φ2 . 

 

Both the uncompensated work and equilibrium could be expressed in terms of the new 

potential 

€ 

Φ: 

 

                                                        
12 Duhem 1891, pp. 245-7. See also Duhem 1886, pp. 9-10. 



Stefano Bordoni 

 

184 

 “Le travail non compensé accompli dans une modification isothermique 

quelconque est alors la variation changée de signe d’une fonction uniforme de 

l’état du système ; nous donnerons à cette fonction le nom de potentiel 

thermodynamique du système. 

D’après cette définition, si un système, dont la température est maintenue 

constante, se trouve dans un état tel que son potentiel thermodynamique ait une 

valeur minimum parmi toutes celles qu’il peut prendre à la meme température, le 

système est en équilibre.” 

 

As Duhem remarked, the functions U, S and 

€ 

Ω, being state functions, are well-defined 

except for an arbitrary constant; therefore the two potential   

€ 

F  and 

€ 

Φ are defined apart 

from an expression of the kind 

€ 

AF ϑ( )+B , wherein A and B are arbitrary constants.13 

In the next section, “Etude d’un système dont le potentiel thermodynamique est 

supposé connu”, Duhem confined himself to “infinitesimal, reversible, isothermal 

transformations”: as a consequence,  

 

€ 

E F ϑ( )dP = 0,   or     

€ 

-δF + dτ e = 0 . 

 

The last equation could be further developed: 

 

  

€ 

A ⋅δα +B ⋅δβ + ...+ L ⋅δλ − ∂F
∂α

⋅δα +
∂F
∂β

⋅δβ + ...+ ∂F
∂λ

⋅δλ
 

 
 

 

 
 = 0, 

  

€ 

A−∂F
∂α

 

 
 

 

 
 ⋅δα + B−∂F

∂β

 

 
 

 

 
 ⋅δβ + ...+ L−∂F

∂λ

 

 
 

 

 
 ⋅δλ = 0 . 

 

The procedure led to a set of equations already displayed by Duhem in the first 

section: 

 

                                                        
13 Duhem 1891, pp. 247-8. In 1888 the potential of external forces was W: see Duhem 1888, pp. 3-4. 
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(25) 

  

€ 

A =
∂
∂α

F α ,β ,...,λ ,ϑ( )

B=
∂
∂β

F α ,β ,...,λ ,ϑ( )

... ...

L =
∂
∂λ

F α ,β ,...,λ ,ϑ( )

 

 

 
 
  

 

 
 
 
 

 ,          (26) 

€ 

Θ = fϑ α ,β ,...,λ ,ϑ( ),  and    

(27) 

€ 

Rα =
1
E
F ϑ( )
F ' ϑ( )

∂Θ
∂α

−
∂A
∂ϑ

 

 
 

 

 
 

Rβ =
1
E
F ϑ( )
F ' ϑ( )

∂Θ
∂β

−
∂B
∂ϑ

 

 
 

 

 
 

... ...

Rλ =
1
E
F ϑ( )
F ' ϑ( )

∂Θ
∂λ

−
∂L
∂ϑ

 

 
 

 

 
 

 

 

 
 
 
  

 

 
 
 
 
 

.14 

 

According to Duhem, “the mechanical determination of the system” required firstly 

the specification of the function   

€ 

F , and then the deduction of the generalized forces A, 

B, …, L, and 

€ 

Θ, and the “thermal coefficients” 

€ 

Rα , 

€ 

Rβ , …, and 

€ 

Rλ . Duhem’s 

vocabulary swung freely between the mechanical and the thermal poles: the fact is that 

both the series of generalized forces and generalized thermal coefficients had 

mechanical and thermal components. In Duhem’s representation, physical events took 

place in a sort of abstract hyper-space at n+1 components: n mechanical components 

€ 

α , 

€ 

β , …, and 

€ 

λ , and one thermal component 

€ 

ϑ . The n+1 functions A, B, …, L, and 

€ 

Θ, 

and the n+1 functions 

€ 

Rα , 

€ 

Rβ , …, 

€ 

Rλ , and 

€ 

Rϑ  depended on the whole set of parameters  

€ 

α , 

€ 

β , …, 

€ 

λ  and 

€ 

ϑ .  

The formal resemblance between thermodynamics and mechanics was even deeper 

than Duhem explicitly stated. The Lagrangian generalization of space-time mechanical 

representation required n generalized parameters 

€ 

α , 

€ 

β , …, and 

€ 

λ , and a time 

component t. In mechanical tradition, the parameter t played a double role: as an 

independent parameter, placed alongside the spatial parameters, and as basic parameter, 

which all the spatial parameters depended on. At that stage, Duhem did not explicitly 

take into account time: it played merely the role of basic implicit parameter. The role of 

                                                        
14 Duhem 1891, pp. 249-50. 
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independent parameter, on equal terms with regard mechanical parameters, was played 

by the thermal parameter 

€ 

ϑ . 

Duhem was then ready to attain a satisfactory generalization of the design outlined in 

1886: the derivation of mechanical and thermal feature of the system from the potential 

  

€ 

F  and the function 

€ 

Θ = fϑ α ,β ,...,λ ,ϑ( ). Apart from generalized forces and generalized 

thermal coefficients, three physical quantities waited for being derived: U, S and 

€ 

Rϑ =C.  

An unaccountable missing sign in the equation for entropy led Duhem to compute, in 

a relatively easy way, the expressions for U, S and C. The fact is that the mistaken sign 

makes too easy the derivation: the right computation leads to differential equations for 

U and S, which are not so easy to solve. The qualitative features of Duhem’s design are 

not threatened by the wrong derivation, and its conclusion is qualitatively correct: 

 

“On voit donc que, si l’on connaît le potentiel thermodynamique interne d’un 

système et si l’on connaît en outre la fonction 

€ 

fϑ , on sait déterminer les 

conditions d’équilibre du système, l’énergie, l’entropie et les coefficients 

calorifiques du système en équilibre, en sorte que l’étude mécanique et thermique 

du système en équilibre est complète. 

Les égalités (27), (28), (29), (30) ont été démontrées en supposant que les égalités 

(25) et (26) étaient vérifiées, c’est-à-dire que le système était soumis aux forces 

extérieures qui en assurent l’équilibre.  

Cette restriction devra toujours être observée  lorsqu’on voudra faire usage des 

égalités (27) and (30). Mais nous allons voire que les égalités (28) et (29) peuvent, 

au contraire,  être démontrées sans faire aucune hypothèse sur les forces 

extérieures auxquelles le système est soumise”15 

 

Once again, at the end of the section, Duhem took into account the simplified case of 

purely thermal transformations, wherein the variation of 

€ 

ϑ  did not affect the other 

parameters, and 

€ 

Θ = fϑ = 0. That choice, combined with the choice 

€ 

ϑ =T and 

€ 

F ϑ( )  = T, 

                                                        
15 Duhem 1891, pp. 250-1. Duhem’s mistake stems from the difference between the definition 

€ 

dQ F ϑ( ) = dS  (p. 
236) and the different definition 

€ 

δS = −dQ F ϑ( )  (p. 251). The analysis of Duhem’s derivations and the correct 
derivations can be found in the Appendix. 
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led to the a set of very simple equation for the functions 

€ 

Rα , 

€ 

Rβ , …,

€ 

Rλ , and C, already 

deployed at the end of the first section. There was, nevertheless, an important 

difference: consistently with the content of the present section, those functions were 

expressed in terms of the potential   

€ 

F :  

 

  

€ 

Rα = −
T
E
∂2F
∂α∂T

Rβ = −
T
E
∂2F
∂β∂T

... ...

Rλ = −
T
E
∂2F
∂λ∂T

C = −
T
E
∂2F
∂T 2

 

 

 
 
 
 
 
 

 

 
 
 
 
 
 

. 

 

Moreover, as expected, 

 

  

€ 

U =
1
E

F −T ∂F
∂T

 

 
 

 

 
 

S = −
1
E
∂F
∂T

.16 

 

In the last section of his 1891 paper, “D’un changement de variable”, Duhem outlined 

an even more abstract analytic approach to thermodynamics. He had followed a 

procedure which, starting from the configuration of the system, corresponding to the 

choice of the n+1 parameters 

€ 

α , 

€ 

β , …, 

€ 

λ  and 

€ 

ϑ , had led to the equations of 

equilibrium for the n+1 functions A, B, …, L, and 

€ 

Θ, and the n+1 functions 

€ 

Rα , 

€ 

Rβ , …, 

€ 

Rλ , and 

€ 

Rϑ . That procedure could be reversed: there was a sort of symmetry between 

initial and final steps. Instead of starting from the geometrical-thermal parameters 

€ 

α , 

€ 

β , …, 

€ 

λ  and 

€ 

ϑ , in order to arrive at the dynamical conditions of equilibrium for A, B, 

…, and L, Duhem showed that we can start from the dynamical-thermal parameters A, 

                                                        
16 Duhem 1891, p. 257. 
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B, …, L, and 

€ 

ϑ , in order to arrive at the geometrical equations of equilibrium on 

€ 

α , 

€ 

β , 

…, and 

€ 

λ .17 

The methods of Analytic Mechanics, or rational mechanics, were fully exploited by 

Duhem in the perspective of a rational thermodynamics. Had something like crisis of 

mechanics ever troubled physicists at the end of the nineteenth century, that alleged 

crisis would not have dwelled at Duhem’s home. Since the 1880s, Duhem had pursued a 

new alliance between Lagrangian mechanics and the science of heat, and that pursuit 

was not an isolated task. In the same years, in Britih islands, G.F. FitzGerald, J.J. 

Thomson and J. Larmor were looking for a new alliance between Lagrangian mechanics 

and the science of electromagnetic phenomena. On the Continent, H.A. Lorentz was 

undertaking a similar task, which would have led him to a sort of a geometrization of 

time in 1895. A new alliance between Analytic Mechanics and a field theory purified by 

the concept of force led Hertz to a wider-scope, although very formal, design of 

geometrization of physics in 1894.18 

The fact is that, in the history of mechanics, we see two different traditions: the 

tradition of mechanical models and machinery, on the one hand, and Lagrange and 

Hamilton’s abstract mechanics, on the other. In its turn, the former could be split into 

different sub-traditions: the kinetic model of matter and motion, the theoretical model of 

forces between microscopic particles, and the theoretical model of fields of force having 

their set in space. As Hertz remarked in 1892, even intermediate models were at stake in 

the context of electromagnetic theories.19 Duhem can be definitely enrolled in the latter 

                                                        
17 Duhem 1891, pp. 259-61. 
18 Hertz main aim was the reduction of all physics to a generalised new mechanics. Fundamental laws and 

concepts of mechanics had to be clarified, in order to rebuild a reliable theoretical framework, where “the ideas 
of force and the other fundamental ideas of mechanics appear stripped of the last remnant of obscurity”. He 
was not principally interested in mathematical details: what he considered new and more interesting in his 
reconstruction of mechanics was “the logical and philosophical aspect of the matter”. On the one hand, he set 
up a theory by means of definitions, theorems and differential equations. On the other hand, he acknowledged 
that a theory required a conceptual representation, or a rational invention, in order to be put in correspondence 
with nature. A theory is a good representation, he stated, when the relationships among the abstract symbols of 
the representation correspond to the relationships among the real entities associated to those symbols. In the 
end, physics was reduced to mechanics and mechanics was reduced to geometry and kinematics. This new 
physics appeared in accordance with the theoretical model of contiguous action.  See Hertz H. 1894, in Hertz H. 
1956, “Author’s Preface”, p. 1, and p. 41. 

19 Hertz deployed four theoretical models: the first consisted of traditional action at a distance, and the second 
corresponded to the so-called “potential theory”, where “an acting body is still both the seat and the source of 
the force”. The third took into account the polarisation of the medium and “is represented by Helmholtz’s 
theory”. Nevertheless, that model could be further split into two sub-models (say 3a and 3b), according to the 
relative weight given to “an influence due to direct action-at-a-distance, and an influence due to the intervening 
medium”. In the limiting case (3b), when polarisation overwhelmed action at a distance, ”the whole of the 
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tradition, whereas the British Rankine, Maxwell, J.J. Thomson and Larmor, as well as 

other Continental physicists, skipped from the former to the latter. If something like a 

crisis of Mechanics can be found in the late nineteenth century, it was only a crisis of 

the former tradition. As mentioned in the “Foreword”, the meta-theoretical debate 

between the upholders of the two traditions was one of the consequences of the 

emergence of theoretical physics, which triggered off the widening of the scientific 

horizon. That meta-theoretical debate seems to me something more complex than a 

mere crisis, even though the choice of the label crisis could be looked upon as a 

convenient simplification.  

Duhem’s design had a double target: the unification of physics under the principles of 

thermodynamics, and the translation of that unified physics into a sophisticated 

mathematical language. The specific features of Duhem’s design were quite different 

from the specific features of Boltzmann’s design: if the latter had tried to give a 

microscopic mechanical explanation of the macroscopic laws of Thermodynamics, 

Duhem assumed those macroscopic laws as starting point. There is a great difference 

between their theoretical procedures indeed, even though we cannot find a great 

difference in their general perspectives or meta-theoretical commitments: neither 

Boltzmann nor Duhem’s general attitudes towards Mechanics can be associated to 

whatsoever crisis of mechanics. 

 

                                                        
energy” was in the medium. According to Hertz, this case resembled Maxwell’s theory, but, he claimed, the 
resemblance was misleading. Maxwell’s theory corresponded to a fourth model, where actions at a distance 
had to be definitely denied. See Hertz H. 1892, in Hertz H. 1962, pp. 22-6. For a discussion of theoretical and meta-
theoretical issues in Hertz classification, see Bordoni S. 2008, pp.  80-3. 



 



10. The generalised Mechanics of a “complex system” 

 

In 1892 Duhem submitted to the Journal de mathématiques pures et appliquées a long 

paper with the very general title “Commentaires aux principes de la 

Thermodynamique”. It was the first part of a sort of trilogy whose second and third part 

were hosted by the mathematical journal in 1893 and 1894 respectively. The set of the 

three papers, when considered as a whole, was nothing less than a treatise on 

thermodynamics. The first passages of the first paper let a wide historical and 

philosophical perspective emerge: the history of science appeared as a periodical series 

of complementary trends of innovations and applications. 

 

“Toute science avance comme par une série d’oscillations. 

A certaines époques, on discute les principes de la science ; on examine les 

hypothèses qu’ils supposent, les restrictions auxquelles ils sont soumis. Puis, pour 

un temps, ces principes semblent bien établis : alors les efforts des théoriciens se 

portent vers la déduction des conséquences ; les applications se multiplient, les 

vérifications expérimentales deviennent nombreuses et précises. 

Mais ce développement, d’abord rapide et facile, devient par la suite plus lent et 

plus pénible ; le sol. Trop cultivé, s’appauvrit ; alors surgissent des obstacles, que 

les principe établis ne suffisent pas à lever, des contradictions qu’ils ne 

parviennent pas à résoudre, des problèmes qu’ils sont incapable d’aborder. A ce 

moment, il devient nécessaire de revenir aux fondements sur lesquels repose la 

science, d’examiner à nouveaux leur degré de solidité, d’apprécier exactement ce 

qu’ils peuvent porter sans se dérober. Ce travail fait, il sera possible d’édifier de 

nouvelles conséquences de la théorie.”1  

 

According to Duhem, in the last “thirty years”, many “applications” had stemmed 

from the researches on Thermodynamics: at that time, the end of the nineteenth century, 

                                                        
1 Duhem 1892a, p. 269. Duhem’s representation of the history of science as a periodical series of ordinary 

applications and deep transformations has been subsequently exploited by historians of science. After seventy years, 
in the course of a very different season of history of science, Kuhn’s representation of a periodical series of “normal” 
science and “revolutionary” science followed objectively Duhem’s track. See, for instance, Kuhn T.S. 1962, in Kuhn 
T.S. 1996, pp. 10 and 111. 
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a deep “reconsideration of the principles was needed”. He was trying to submit such a 

review “to the readers of the Journal de mathématiques”. Before developing his 

theoretical design, Duhem expressed some meta-theoretical cogitation, even though 

they could be looked upon as “more philosophical than mathematical”. The “logical 

order” of a physical theory could only rest upon “a certain number of definitions and 

hypotheses, which are, to some extent, arbitrary”. Duhem acknowledged that different 

theoretical approaches to Thermodynamics could be “equally satisfactory, even more 

satisfactory” than his own. There was a plurality of theories able to describe a given set 

of phenomena in a consistent way.2  

In the first chapter, “Définitions préliminaires”, dealing with the geometrical and 

kinematical foundations of physics, we find the equivalence between different 

theoretical representations of a given set of phenomena once again. In particular, 

Duhem found arbitrary every hypothesis on the ultimate representation of matter, and 

basically equivalent the opposite theoretical models of continuity and discontinuity, 

even though he preferred the former. 

 

“En Physique, il nous est à la fois impossible et inutile de connaître la 

constitution réelle de la matière. Nous cherchons simplement à concevoir un 

système abstrait qui nous fournisse une image des propriétés des corps. Pur 

construire ce système, nous sommes libres de représenter un corps qui nous 

semble continu soit par une distribution continue de matière dans un certain 

espace, soit par un ensemble discontinu d’atomes très petits. Le première mode de 

représentation conduisant, dans toutes les parties de la Physique, à des théories 

plus simples, plus claires et plus élégantes, nous l’adopterons de préférence au 

second.”3 

 

                                                        
2 Duhem 1892a, p. 270. It seems to me useful to quote Duhem’s complete passage: “Toute théorie physique repose 

sur un certain nombre de définitions et d’hypothèses qui sont, dans une certaine mesure, arbitraires ; il est donc 
permis de chercher à exposer une semblable théorie dans un ordre logique ; mais prétendre qu’on a lui donné le seul 
ordre logique dont elle soit susceptible serait une prétention injustifiable. Cette prétention, nous nous garderons bien 
de l’avoir. Nous sommes convaincu que l’ont peut enchainer les principes de la Thermodynamique d’une manière 
autre que celle que nous avons adoptée et cependant aussi satisfaisante, plus satisfaisante peut-être. Nous n’oserions 
même espérer qu’aucune lacune ne subsiste dans l’enchainement que nous avons cherché à établir.” 

3 Duhem 1892a, p. 272. 
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Duhem remarked that, sometimes, some theoretical representation was unjustified 

from the empirical point of view. The concept of “an isolated body placed in an 

unlimited and empty space” was one of them. Nevertheless, those representations could 

be useful simplifications: physics could not part with those kinds of abstraction.4  

He stressed the difference between the physical quantities which preserved their 

values over time and those which did not: mass and electric charge belonged to the first 

set, kinematical parameters to the second one. He qualified the former as those which 

“define the nature of the system”, and the latter as those which “define the state”. He 

labelled A, B, …, and L the elements of the first set, and 

€ 

α , 

€ 

β , …, and 

€ 

λ  the elements 

of the second set. He called “virtual transformation” the “purely intellectual procedure” 

representing the continuous series of steps leading from a given initial state to a given 

final state.  

A given fragment of matter could be geometrically identified by functions of 

€ 

α , 

€ 

β , 

…, 

€ 

λ , and its velocity by their corresponding time derivatives: 

 

(1) 

€ 

x =ϕ α ,β ,...,λ( )
y =ψ α ,β ,...,λ( )
z = χ α ,β ,...,λ( )

 

 
 

 
 
 

,    and   (2) 

€ 

dx
dt

=
dϕ
dα

dα
dt

+
dϕ
dβ

dβ
dt

+ ......+ dϕ
dλ

dλ
dt

dy
dt

=
dψ
dα

dα
dt

+
dψ
dβ

dβ
dt

+ ......+ dψ
dλ

dλ
dt

dz
dt

=
dχ
dα

dα
dt

+
dχ
dβ

dβ
dt

+ ......+ dχ
dλ

dλ
dt

 

 

 
 
 

 

 
 
 

 

 

Among the state quantities Duhem distinguished those which explicitly appear in the 

above equations from those which do not appear. He reserved the labels 

€ 

α , 

€ 

β , …, and 

€ 

λ  for the former, and introduced new labels a, b, …, l for the latter: in some way he 

separated geometrical quantities from other quantities.5 

In the latter subset Duhem placed temperature, a quantity which would have played “a 

remarkable role in the present work”. According to Duhem, temperature was not a 

“quantitative feature” of a physical system: a given value of temperature could be 

“reproduced, increased and decreased”, but temperature was not an additive quantity. 

                                                        
4 Duhem 1892a, p. 274. 
5 Duhem 1892a, pp. 276 and 278-9,  
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Temperature could not literally measure, but only locate the different levels of heat. 

Moreover, temperature could not be univocally defined: if we called it 

€ 

ϑ , every 

continuous and increasing function 

€ 

Θ = f ϑ( )  could play the role of temperature. 

However defined, temperature could replace the concept of “equally warm” in the 

definition of equilibrium: “if an isolated system is in equilibrium, the temperature 

€ 

ϑ  

has the same value everywhere”.6 

In the second chapter, Duhem tried to clarify some basic physical concepts: closed 

cycle, work, kinetic and potential energies, internal energy, the additive property of 

work, and the principle of conservation of energy. He stressed the status of “physical 

hypothesis” of that principle: it was submitted to experience, and it could not be 

demonstrated, but only put forward by means of some physical considerations.7 

In the third chapter he started from a complex system 

€ 

Σ, which was isolated in space, 

and could be looked upon as the composition of two “independent systems” S and S’. If 

the kinetic energy of 

€ 

Σ was simply the sum of the kinetic energies   

€ 

T  and   

€ 

T'  of S and 

S’, the potential energy could not consist only of the sum of the two isolate potential 

energies U and U’ of S and S’, but had to contain a term of interaction. 

 

(1)   

€ 

Υ =U α ,β ,...,λ;a,b,...,l( )
+U ' α ' ,β ' ,...,λ ';a' ,b' ,...,l'( )
+Ψ α ,β ,...,λ;a,b,...,l;α ' ,β ' ,...,λ ';a' ,b' ,...,l'( )

 

 

The total energy of 

€ 

Σ was therefore  

 

(2) 
  

€ 

ε =Υ+
1
E

T +T '( ). 

 

Then Duhem defined two sets of quantities derived from the potential of interaction 

€ 

Ψ : 

                                                        
6 Duhem 1892a, pp. 284 and 286-8. According to Duhem, temperature stemmed from the concept of “equally 

warm”, and the equilibrium of an isolated system required that “every material component of the system be equally 
warm”. 

7 Duhem 1892a, pp. 291-307. 
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(4)   

€ 

E ∂Ψ
∂α

= −A,

E ∂Ψ
∂β

= −B,

... ...

E ∂Ψ
∂λ

= −L,

 

 

 
 
  

 

 
 
 
 

     

  

€ 

E ∂Ψ
∂a

= −A ,

E ∂Ψ
∂bβ

= −B,

... ...

E ∂Ψ
∂l

= −L,

 

 

 
 
  

 

 
 
 
 

 

 

The first set corresponded to “the forces”, and the second set to “the influences 

exerted by the system S’ on the system S”: Duhem called “actions” the ensemble of 

forces and influences. The separation of actions into forces and influences followed 

necessarily from the separations of Lagrangian parameters into geometrical parameters 

and state parameters. After having defined the generalized velocities  

 

€ 

u=
dα
dt
, v=

dβ
dt
, ... w=

dλ
dt
, and ϕ =

da
dt
, χ =

db
dt
, ... ψ =

dl
dt

, 

 

Duhem could therefore represent the works done by forces and influences as 

 

€ 

A ⋅ u+B ⋅ v+ ...+L ⋅w( )dt    and     

€ 

A ⋅ϕ +B ⋅ χ + ...+L ⋅ψ( )dt .8 

 

The potential of interaction 

€ 

Ψ  deserved some additional mathematical and physical 

remarks: 

 

“Ainsi le travail des actions du système S’ sur le système S n’est pas, en générale, 

une différentielle totale, mais le travail des actions mutuelles des deux systèmes S 

et S’ est toujours la différentielle totale d’une fonction qui est définie d’une 

manière uniforme lorsqu’on connaît l’état du système 

€ 

Σ constitué par l’ensemble 

de deux systèmes S and S’. 

                                                        
8 Duhem 1892a, pp. 308-9 and 311. Unfortunately, the “forces” and the parameters representing the “nature” of the 

system were labelled by the same letters.  
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La fonction E

€ 

Ψ , dont la différentielle totale, changée de signe, donne le travail 

des actions mutuelles des deux systèmes S et S’, se nomme le potentiel de ces 

actions.”9 

 

In the more complex case of three “partial systems S1, S2, S3”, the potential 

€ 

Ψ  became 

the sum of three couples of interaction:

€ 

Ψ = Ψ1−2 +Ψ2−3+Ψ1−3. In the following pages, 

Duhem generalized definitions and remarks to the case of a system 

€ 

Σ composed of “n 

independent systems S1, S2, …, Sn”. Conversely, those definitions and remarks allowed 

Duhem to begin to draft, at least in part, the features of a “complex system”. 

 

“Dans un système complexe, formé de plusieurs systèmes indépendants, chacun 

de ces dernières subit certaines actions de la parte de l’ensemble des autres ; 

toutes ces actions, prise ensemble, admettent un potentiel. 

Ce potentiel E

€ 

Ψ  dépend des propriétés des divers systèmes indépendants qui 

composent le système complexe, et de leur position relative ; il ne dépend pas de 

la position absolue que le système complexe occupe dans l’espace.”10 

 

The key entity was the total energy  

 

  

€ 

ε =Υ+
1
E

T +T '( )=U +U '+Ψ+
1
E

T +T '( ) , 

 

 and the key procedure was the correct computation of the variations 

€ 

δΥ and 

  

€ 

δ T +T '( ). In accordance with a well-known procedure in analytic mechanics, the 

second variation took the form 

 

  

€ 

δ T +T '( ) =

−
∂T
∂α

−
d
dt
∂T
∂u

 

 
 

 

 
 u+ ...+ ∂T

∂λ
−
d
dt
∂T
∂w

 

 
 

 

 
 w+

∂T'
∂α '

−
d
dt
∂T'
∂u'

 

 
 

 

 
 u'+ ...+

∂T'
∂λ '

−
d
dt
∂T'
∂w'

 

 
 

 

 
 w'

 

 
 

 

 
 dt

. 

                                                        
9 Duhem 1892a, pp. 312-3. 
10 Duhem 1892, p. 315. 
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Obviously, the kinetic terms depended only on the geometrical parameters 

€ 

α , 

€ 

β , …, 

and 

€ 

λ , while the potential terms also depended on the state parameters a, b, …, and l. 

As a consequence, to the variation 

€ 

δΥ  corresponded quite a complicated expression: 

 

€ 

δΥ =

∂U
∂α

+
∂Ψ
∂α

 

 
 

 

 
 u+ ... ...+ ∂U

∂λ
+
∂Ψ
∂λ

 

 
 

 

 
 w+

∂U
∂a

+
∂Ψ
∂a

 

 
 

 

 
 ϕ + ... ...+ ∂U

∂l
+
∂Ψ
∂l

 

 
 

 

 
 ψ

+
∂U '
∂α '

+
∂Ψ
∂α '

 

 
 

 

 
 u' ... ...+

∂U '
∂λ '

+
∂Ψ
∂λ '

 

 
 

 

 
 w'+

∂U '
∂a'

+
∂Ψ
∂a'

 

 
 

 

 
 ϕ '+ ... ...+

∂U '
∂l'

+
∂Ψ
∂l'

 

 
 

 

 
 ψ '

 

 

 
 
 
 

 

 

 
 
 
 

dt  

 

The expanded form of 

€ 

δε = 0 therefore became 

 

(3)   

  

€ 

δε =
∂U
∂α

+
∂Ψ
∂α

 

 
 

 

 
 −
1
E

∂T
∂α

−
d
dt
∂T
∂u

 

 
 

 

 
 

 

 
 

 

 
 u+ ... ... + ∂U

∂a
+
∂Ψ
∂a

 

 
 

 

 
 ϕ + ... ...

+
∂U '
∂α '

+
∂Ψ
∂α '

 

 
 

 

 
 −
1
E

∂T’
∂α '

−
d
dt
∂T’
∂u'

 

 
 

 

 
 

 

 
 

 

 
 u'+ ... ... +

∂U '
∂a'

+
∂Ψ
∂a'

 

 
 

 

 
 ϕ '+ ... ... = 0

.11 

 

Three kinds of contribution to energy were at stake: a kinetic or inertial contribution, 

involving the derivatives of the living forces   

€ 

T  and   

€ 

T ', internal energies, involving the 

derivatives of U and U’, and energy of interaction, involving the derivatives of the 

interaction potential 

€ 

Ψ . The second and third contribution split into two components: 

an ordinary mechanical component and a component corresponding to the physical state 

of the system. The partial systems S and S’ contributed to energy in a symmetric way: 

€ 

δε = dQ+dQ' , and therefore 

€ 

dQ+dQ' = 0 . Duhem was following the track of his 1891 

paper, wherein heat was the sum of both mechanical and thermal work. In 1892 he 

generalized the concept, and heat became the sum of the effects due to inertial actions, 

forces, and influences of every kind. Both ordinary motions and changes of state 

contributed to heat, according to a more general rational mechanics. 

Heat had a relational nature: in a “complex isolated system, consisting of two 

independent systems S and S’, … one of them send out as much heat as the other 

                                                        
11 Duhem 1892a, p. 310. 
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receive”. The concept of an isolated body placed in an empty space, and sending out or 

receiving heat, seemed to Duhem “not consistent with the definition given above”. 

According to Duhem, heat means exchange of heat: heat requires some sort of 

interaction between different bodies, or at least between a body and the surrounding 

aether.12 

Consistently with the separation between geometrical and “state” parameters, he 

introduced two sets of “thermal coefficients”, 

€ 

Rα , 

€ 

Rβ , …, 

€ 

Rλ , and   

€ 

Ra ,   

€ 

Rb , …,   

€ 

Rl , 

such that  

 

(12)   
  

€ 

E Rα = E ∂U
∂α

−A
 

 
 

 

 
 −

∂T
∂α

−
d
dt
∂T
∂u

 

 
 

 

 
  , 

         
  

€ 

ERa = E ∂U
∂a

−A
 

 
 

 

 
 ,  

 

(13)   
  

€ 

dQ = − Rα ⋅δα +Rβ ⋅δβ + ... Rλ ⋅δλ( )+ Ra ⋅δa+Rb ⋅δb+ ...+Rl ⋅δl( )[ ] . 

 

In the right side of the last equation, the first bracket contains the effect of mechanical 

actions, and the second the effects of other kinds of influences: they were a 

generalization of the term 

€ 

Rϑ  Duhem had introduced in 1891. In Duhem’s words, those 

coefficients depended on “the properties of the system S”, on “velocities and 

accelerations” of every point of S, and on “the actions of the system S’ on S”.  

In its turn, the virtual work depended on both the “actions exerted on the system S” 

and “inertial forces” on S. In reality, virtual work was the sum of three components, 

since actions split into forces and influences. We have therefore 

€ 

dτ = dτ1+dτ 2 +dτ 3, 

wherein 

 

(14)     

€ 

dτ1= A ⋅δα + ...( ) ,   

€ 

dτ 2 = A ⋅δa+ ...( ) ,  

(15)   
  

€ 

dτ 3=
∂T
∂α

−
d
dt
∂T
∂u

 

 
 

 

 
 δα + ...

 

 
 

 

 
 . 

                                                        
12 Duhem 1892a, pp. 319-20. 
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The comparison between equations(12/13) and (14/15) led to the fundamental 

equation, 

 

(16)   

€ 

E dQ+δU( ) = dτ , 

 

which was nothing else but the first principle of Thermodynamics or “the law of 

equivalence between heat and work”.13 

Once again, in the last part of the chapter, Duhem stressed the relational conception of 

heat.  

 

“Lorsqu’un système est formé de plusieurs parties indépendantes, la quantité de 

chaleur qu’il dégage dans une modification virtuelle quelconque est égale à la 

somme algébrique des quantités de chaleur que ses diverses parties dégagent 

dans la même modification. 

Ce théorème nous sera utile dans le suite. 

Ici vient naturellement se placer une réflexion semblable à celle que nous a 

suggéré la définition du travail : on ne peut parler de la quantité de chaleur 

dégagée par chacune des parties d’un système qu’autant que chacune de ces 

parties peut être considérée comme un système indépendant. Lorsque les diverses 

parties d’un système ne sont pas indépendantes les unes des autres, le mot : 

quantité de chaleur dégagée par chacune d’elles n’a aucun sense.”14 

 

According to Duhem’s design, his generalised Mechanics was, at the same time, an 

Analytic Thermodynamics, and ordinary mechanics should have been nothing else but 

one of its specific applications. In order to derive ordinary mechanics from that wide-

scope Mechanics/Thermodynamics, he assumed that 

€ 

dQ = 0 , and all “thermal 

coefficients” vanish. 

                                                        
13 Duhem 1892a, pp. 320-1. 
14 Duhem 1892a, p. 323. 
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In this case, equations (12) become  

 

(18)       
  

€ 

E ∂U
∂α

−A
 

 
 

 

 
 −

∂T
∂α

−
d
dt
∂T
∂u

 

 
 

 

 
 = 0 , 

(18bis)  
  

€ 

E ∂U
∂a

−A = 0 . 

 

Since the first equation corresponds to Lagrange’s equation of rational mechanics, the 

derivation seems successfully achieved. Nevertheless, a question arose: could the 

physical derivation be reversed? In other words, are we sure that, when ordinary 

mechanics is at stake, then all thermal coefficients vanish? At that stage, Duhem could 

not satisfactorily answer the question, and further theoretical investigations were 

required.  

 

“On reconnaît les équations du mouvement d’un système dans lequel les 

frottements sont nuls ; dans le cas que l’on étudie ordinairement en Mécanique, il 

n’existe pas d’autres variables que celles qui figurent dans les équations (1) du 

chapitre I ; il n’existe donc pas d’équations du type (18bis) ; toutes les équations 

qui régissent le mouvement du système ont la forme (18), donnée, on le sait, par 

Lagrange. 

On voit que les lois de la Dynamique rentrent, comme cas particulier, dans les 

lois de la Thermodynamique ; elles se déduisent de  ces dernières en supposant 

tous les coefficients calorifiques du système égaux à 0 ; mais dans quel cas cette 

hypothèse est-elle vérifiée? C’est une question qui reste à examiner et que rien, 

dans ce que nous avons dit jusqu’ici, ne permet de résoudre. Dans la plupart des 

cas, elle n’est résolue que par vois d’hypothèse, directe ou indirecte. D’ailleurs, 

nous verrons plus tard qu’il existe une autre manière, distincte de celle-là, de faire 

dériver les équations de la Dynamique des équations de la Thermodynamique.”15 

 

                                                        
15 Duhem 1892a, p. 324. 
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Indeed, it is questionable whether the vanishing of the “thermal coefficients” and the 

condition 

€ 

dQ = 0  are equivalent statements. At the end of Duhem 1892 paper, the nature 

of the relationship between Mechanics and Thermodynamics was waiting for a 

complete clarification. 

 

The following year Duhem published the second part of his Commentaire. As in the 

1892 first part, the first chapter was devoted to some preliminary definitions and 

remarks. He faced the apparently inconsistent concept of “transformations which consist 

of a series of states of equilibrium”. He tried to give it “a logic meaning”, by making 

resort to the difference between geometrical parameters and state parameters. A 

physical system can experience a transformation without any change in its shape and 

position: under this condition, the transformation could be looked upon as a series of 

states of equilibrium.16 

The last issue concerned “the concept of reversible transformation”, one of “the most 

important and, at the same time, most problematic to be defined in Thermodynamics”, 

as Duhem remarked. He summarized his view by assuming a “fundamental hypothesis”: 

“Il existe des systèmes pour lesquels toute modification, réelle ou virtuelle, qui est une 

suite continue d’états d’équilibre, est une modification réversible.”17 

In reality, the whole 1893 Commentaire consists of a net of preliminary specifications 

and detailed remarks on heat, entropy, and the second Principle of Thermodynamics. 

There are “infinite reversible transformations” leading a physical system from a state 

(

€ 

α , 

€ 

β , …, 

€ 

λ , and 

€ 

ϑ ) to a new state (

€ 

α ’, 

€ 

β ’, …, 

€ 

λ ’, and 

€ 

ϑ ’). For every reversible 

transformation, the integral 

 

                                                        
16 See Duhem 1893a, pp. 302-4, in particular p. 304: “Pour qu’une modification réelle soit une succession d’états 

d’équilibre, il est nécessaire, mais non suffisant, que tous les points du système gardent une position invariable dans 
l’espace pendant toute la durée de cette modification. 
Or est-il absurde d’admettre l’existence d’une modification durant laquelle tous les points du système gardent une 

position invariable ? Evidemment non ; on est parfois amené, en Physique, à imaginer de semblables modifications. 
Prenons, par exemple, un récipient renfermant un mélange d’hydrogène et de chlore ; la combinaison se produit ; une 
modification, un changement d’état a lieu ; cependant, on peut fort bien admettre que la matière qui remplissait 
chacun des éléments de volume du récipient au début de la combinaison est demeurée dans le même élément de 
volume pendant toute la durée de la modification”. 

17 Duhem 1893a, pp. 305-7, in particular p. 307. 
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€ 

dQ
F ϑ( )∫  

 

has the same value: in case of reversible cycles, the integral vanishes. It is nothing else 

but the entropy of the system.  

The specific case of ordinary mechanics was looked upon by Duhem as particularly 

important, for it was a specific application of his generalized 

Mechanics/Thermodynamics. Once again, when 

€ 

Rα = Rβ = ...= Rλ = 0, automatically dQ 

= 0, and  

 

€ 

A = E ∂U
∂α
, B= E ∂U

∂β
, ... ..., L = E ∂U

∂λ
. 

 

This was the case of “classical rational Mechanics”, wherein no reference to heat or 

temperature is taken.18 The fact is that, in this case, the concept of entropy and the 

second Principle lost their meaning: if the mathematical derivation of Mechanics from 

Thermodynamics could be successfully performed, the conceptual relationship between 

Mechanics and Thermodynamics was an open question.  

It is worth mentioning that, in the same year, Poincaré published some notes just on 

that conceptual relationship. In a short paper sent to a philosophical journal which had 

just started to be published, Revue de Métaphysique et de Morale, he compared the 

foundations of Mechanics and Thermodynamics. He found that “the mechanical 

conception of the universe” assumed two “different forms”: the mechanics of shocks 

and the mechanics of forces. In the first case, physicists imagined “atoms moving along 

a right line, because of their inertia”: amount and direction of their velocity could not 

change unless “two atoms collide”. In the second case, atoms are imaged as submitted a 

mutual “attraction (or repulsion), depending on their distance, and according to some 

law”. For he saw the first conception as a “particular case of the second”, he would have 

disregarded the distinction in the course of the paper. Moreover, he would have 

                                                        
18 Duhem 1893a, pp. 337, 345, 355, and 357-8. 
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confined himself to the comparison between the “hindrances faced by the mechanists” 

and “experimental data”.19 

According to Poincaré, Mechanics required that “all phenomena are reversible” with 

regard to time: in a sharper way, “reversibility is a necessary consequence of every 

mechanical hypothesis”. The fact is that any experiences contrasted that requirement: 

thermal conduction was a well-known instance of irreversibility. That “a cold body 

gives back the heat it received”, had never been observed. In this specific case, neither 

“direct reversibility” nor “indirect reversibility” could take place after a physical system 

had passed “from a state A to a state B through a given path”. In other words, the 

system cannot pass from B to A, “neither through the same path, nor through a different 

path”. The attempts to escape this contradiction appeared “not sufficient” to Poincaré, 

Helmholtz hypothesis of “hidden motions” included.20 

The recent developments of Mechanics, due to Poincaré himself, had showed that “a 

closed system submitted to the laws of mechanics” could repeatedly be found “near its 

initial state” over time. On the contrary, according to some cosmological interpretations 

of the second Principle of Thermodynamics, the whole universe should drift towards “a 

given final state, where it will never come back from”. If a radical thermodynamic 

world-view envisioned a sort of thermal death, wherein “all bodies will be found at rest 

at the same temperature”, according to a radical mechanical world-view, we will be able 

to see “a flow of heat from a cold body to a warm one”, provided that we have “a little 

patience”. That Maxwell had expected thermal irreversibility stem from the laws of 

Mechanics, seemed to Poincaré a basic inconsistence: no logical procedure let us 

assemble a deduction wherein “we find reversibility at the outset, and irreversibility at 

the end”.21 

In 1894, in the third part of the Commentaire, Duhem returned to 1891 “general 

equations of Thermodynamics”, unfortunate typographical ambiguities included. In the 

first chapter, he started from a physical system defined by the set of parameters 

€ 

α , 

€ 

β , 

…, 

€ 

λ  and 

€ 

ϑ , which seemed a step backward with regard to the more general choice of 

                                                        
19 Poincaré H. 1893, p. 534. 
20 Poincaré H. 1893, pp. 534-5. 
21 Poincaré H. 1893, pp. 536-7. 
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parameters

€ 

α , 

€ 

β , …, 

€ 

λ , a, b, …, l he had introduced in 1892.22 Nevertheless, soon 

afterwards, he tried another kind of generalization: he took into account a “complex 

system” consisting of two “different and independent components”, whose internal 

energy, entropy, and thermodynamic potential were respectively 

 

 
  

€ 

Υ1 α1,β1,...,λ1,ϑ1( ), Σ1 α1,β1,...,λ1,ϑ1( ), F1 α1,β1,...,λ1,ϑ1( )
Υ2 α2,β2,...,λ2,ϑ 2( ), Σ1 α2,β2,...,λ2,ϑ 2( ), F1 α2,β2,...,λ2,ϑ 2( )

. 

 

As in Duhem’s 1892 approach, the internal energy U of the complex system involved 

an interaction term 

€ 

X1/ 2: 

 

€ 

U =Υ1 α1,β1,...,λ1,ϑ1( )+Υ2 α2,β2,...,λ2,ϑ 2( )+X1/ 2 α1,β1,...,λ1,ϑ1;α2,β2,...,λ2,ϑ 2( ). 

 

Then he undertook a step forward: he took into account “foreign bodies” or “external 

bodies”, in some way some kind of environment. The global internal U energy had 

another kind of interaction term 

€ 

Ψ :  

 

  

€ 

U =U +U '+Ψ , 

 

wherein U’ was the internal energy of the environment.23  

When we take into account the forces acting on each components of the complex 

system, we find both the potentials 

€ 

X1/ 2 and 

€ 

Ψ : 

 

(11)   

€ 

A1 = −E ∂
∂α1

X1/ 2 +Ψ( ),... ...,Θ1 = −E ∂
∂ϑ1

X1/ 2 +Ψ( )

A2 = −E ∂
∂α2

X1/ 2 +Ψ( ),... ...,Θ2 = −E ∂
∂ϑ 2

X1/ 2 +Ψ( )
. 

                                                        
22 Duhem 1894, pp. 208-10. 
23 Duhem 1894a, pp. 210-11. The new term 

€ 

X1/ 2  corresponded to the old term 

€ 

Ψ  Duhem had used in 1892. The 
old term was now reserved to express the interaction of the complex system with the external world. This symbolic 
mismatch is quite puzzling indeed. 
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The equilibrium of the complex system required, on the one side, that 

 

(12)   

€ 

ϑ1 =ϑ 2 =ϑ , 

 

wherein 

€ 

ϑ  was the temperature of the rest of the environment: this assured thermal 

equilibrium, or the thermal side of equilibrium. On the other side, there were the 

mechanical/thermodynamic conditions of equilibrium expressed in terms of the 

thermodynamic potentials. In other words, 

 

(13)   

  

€ 

∂F1
∂α1

= −E ∂
∂α1

X1/ 2 +Ψ( ),... ...,∂F1
∂ϑ1

= −E ∂
∂ϑ1

X1/ 2 +Ψ( )−E F ' ϑ1( )Σ1

∂F2
∂α2

= −E ∂
∂α2

X1/ 2 +Ψ( ),... ...,∂F2
∂ϑ 2

= −E ∂
∂ϑ 2

X1/ 2 +Ψ( )−E F ' ϑ 2( )Σ2
 

 

When the equilibrium is satisfied, Duhem noticed, a single “internal thermodynamic 

potential”   

€ 

F  and a single entropy S can be associated to the complex system. Since   

€ 

F1 

does not depend on 

€ 

α2,β2,...,λ2,ϑ 2( ), as well as   

€ 

F2  does not depend on 

€ 

α1,β1,...,λ1,ϑ1( ), 

equations (13) become 

 

  

€ 

E ∂Ψ
∂α1

= −
∂
∂α1

EX1/ 2 +F1 +F2( ),... ...,E ∂Ψ
∂ϑ1

= −
∂
∂ϑ1

E X1/ 2 +F1 +F2( )−E F ' ϑ1( )Σ1

E ∂Ψ
∂α2

= −
∂
∂α2

EX1/ 2 +F1 +F2( ),... ...,E ∂Ψ2
∂ϑ 2

= −
∂
∂ϑ 2

EX1/ 2 +F1 +F2( )−E F ' ϑ 2( )Σ2
.24 

  

If we define     

€ 

F = F1+F2 +E X1/ 2 , then we have 

 

  

€ 

E ∂Ψ
∂α1

= −
∂F
∂α1

, ... ... ... ...; E ∂Ψ
∂α2

= −
∂F
∂α2

... ... ... .... 

 

                                                        
24 Duhem 1894a, pp. 212-5. 
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“Lorsqu’un système est formé de plusieurs parties indépendantes, toutes à la 

même température, le potentiel thermodynamique interne du système s’obtient en 

faisant la somme des potentiels thermodynamiques internes des parties, et en y 

ajoutant l’une des déterminations du potentiel des actions mutuelles de ces 

parties, celle qui s’annule lorsqu’on éloigne infiniment ces parties les unes des 

autres.”25 

 

In the second chapter, Duhem returned to the more general choice of parameters

€ 

α , 

€ 

β , 

…, 

€ 

λ , a, b, …, l he had introduced in 1892, in the first part of the Commentaire. The 

first passage of the chapter strikes the reader because of the reference to an Aristotelian 

conception of the word “motion”: not only was motion looked upon as a kinematic 

process, but as transformation in general. It is worth quoting Duhem’s passage:  

 

“Nous prenons, dans ce Chapitre, le mot mouvement pour désigner non seulement 

un changement de position dans l’espace, mais encore un changement d’état 

quelconque, lors même qu’il ne serait accompagné d’aucun déplacement. Ainsi, il 

y aurait mouvement si les variables que nous avons désignées par a, b, …, l … 

variaient seules, les variables 

€ 

α , 

€ 

β , …, 

€ 

λ  gardant des valeurs fixes. De la sorte, 

le mot mouvement s’oppose non pas au mot repos, mais au mot équilibre.”26 

 

Duhem reminded the reader about the equation for the equilibrium for a mechanical-

thermodynamic system he had introduced in the third chapter of 1892 first Part, apart 

from the usual symbolic difference: 

 

(1)   
  

€ 

A'−∂F
∂α

+
∂T
∂α

−
d
dt
∂T
∂α '

 

 
 

 

 
 = 0, ... ..., L'−

∂F
∂λ

+
∂T
∂λ

−
d
dt
∂T
∂λ '

 

 
 

 

 
 = 0 .27 

 

                                                        
25 Duhem 1894a, p. 217. 
26 Duhem 1894a, p. 222. 
27 Duhem 1894a, p. 223. When comparing these equations with those appearing in Duhem’s 1892 paper, the external 

forces A, B, …, L are now replaced by A’, B’, …, L’, and the coordinates derivatives u, v, …, w by 

€ 

α' ,β' ,...,λ' . The 
slight difference between the forces A and A’ can be found in the explicit dependence on time in the latter. 
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Then he opened another pathway: instead of starting form general equations, and then 

imposing the conditions for equilibrium, he started from the equations in the case of 

equilibrium, and tried to generalize them to the case of non-equilibrium. He introduced 

new functions 

€ 

fα , fβ , ..., fλ , which generalized the last equations in the following way: 

 

(2)   
  

€ 

A'−∂F
∂α

+
∂T
∂α

−
d
dt
∂T
∂α '

 

 
 

 

 
 = − fα , ... ..., L'−

∂F
∂λ

+
∂T
∂λ

−
d
dt
∂T
∂λ '

 

 
 

 

 
 = − fλ . 

 

The reader could be stunned by the labels attached to the terms expressing non- 

equilibrium: “passive resistances to be overcome by the system”. Those resistance 

depended on the basic parameters 

€ 

α , 

€ 

β , …, 

€ 

λ , 

€ 

ϑ , their time derivatives 

€ 

α ' ,β ' ,...,λ '  and 

the time t: from the mathematical point of view, they were “resistances” in the usual 

mechanical sense. In this perspective, equilibrium was disturbed by some kind of 

generalized friction: a corresponding work 

€ 

fα ⋅ dα + fβ ⋅ dβ + ...+ fλ ⋅ dλ  could be 

associated to that kind of forces. Although the subject Duhem was facing dealt with a 

generalized thermodynamic, he choose the traditional tools of rational Mechanics and 

the traditional mechanical lexicon. This choice could be looked upon as a short-sighted 

approach, but the fact is that he had just transformed the meaning of mechanical 

concepts into a new, generalized, and Aristotelian-flavoured physics.28 

The formal reduction of a generalized thermodynamic problem to a generalized 

mechanical problem, even though in a rephrased Aristotelian perspective, could not give 

the solution of the problem. The fact is that the n last equations depend on the n+1 

Lagrangian parameters  

€ 

α , 

€ 

β , …, 

€ 

λ , and 

€ 

ϑ , and Duhem had not at his disposal a 

mechanical generalization for the equation corresponding to the parameter 

€ 

ϑ . 

 

“Lorsque l’état des corps extérieures est donné à chaque instant t, les résistances 

passives deviennent des fonctions des variables 

€ 

α , 

€ 

β , …, 

€ 

λ , 

€ 

ϑ , 

€ 

α ' ,β ' ,...,λ ' , t. 
                                                        

28 Duhem 1894a, pp. 223-4. In this case the symbolic mismatch seems even more puzzling: in 1891 Duhem had 
made use of the functions 

€ 

fα , fβ , ..., fλ  in order to express explicitly the dependence of external forces on the basic 
parameters, namely 

€ 

A = fα α,β,...,λ,ϑ( ) and so on. In 1894, the new dissipative forces 

€ 

fα , fβ , ..., fλ  had to be added 
to the already existing forces A’, B’, …, L’. 
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Les équations (2) deviennent lors des équations différentielles du seconde ordre, 

qui détermineraient les valeurs des variables 

€ 

α , 

€ 

β , …, 

€ 

λ , 

€ 

ϑ , en fonction de t, et, 

partant, le mouvement du système, si elles étaient en nombre suffisant ; mais le 

nombre des variables dont il faut déterminer la valeur à chaque instant excède 

d’une unité le nombre des équations du mouvement fournies par la 

Thermodynamique ; il faudra donc, pour compléter la mise en équations du 

problème, emprunter une dernière équation à une théorie physique étrangère à la 

Thermodynamique ; telle serait, par exemple, l’équation 

 

€ 

ϑ =ϕ t( ) 

qui ferait connaître à chaque instant la température du système.”29 

 

Duhem was forced to look for the lacking equation outside the field of his generalized 

Mechanics/Thermodynamics. The fact is that purely thermal processes, involving only 

temperature change over time, were hard to include in his generalisation. 

Nevertheless, he tried to attain a further generalization of the “thermal coefficients” he 

had introduced in 1891, and generalized in the third chapter (eq. 12) of the first Part of 

his Commentaire. 1891 and 1892 versions of thermal coefficients were respectively 

 

€ 

Rα =
∂U
∂α

−
A
E
,... ... ...   and   

  

€ 

E Rα = E ∂U
∂α

−A
 

 
 

 

 
 −

∂T
∂α

−
d
dt
∂T
∂u

 

 
 

 

 
 ,... ... ..., 

 

and the updated version was only slightly different, in order to account for the new 

generalized resistances: 

 

(3)   
  

€ 

E R'α = E ∂U
∂α

−A'
 

 
 

 

 
 −

∂T
∂α

−
d
dt
∂T
∂u

 

 
 

 

 
 + fα ,... ... .... 

 

The equivalent 1891 version 

 

                                                        
29 Duhem 1894a, pp. 224-5. 
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€ 

Rα
F ϑ( )

= −
∂S
∂α
,... ... ..., Rϑ

F ϑ( )
= −

∂S
∂ϑ

 

 

became in 1894 nothing more than 

 

(4)   

€ 

E R'α = E F ϑ( ) ∂S
∂α

+ fα ,... ... ..., EC' = E F ϑ( ) ∂S
∂ϑ

,  

 

namely (5)

€ 

R'α = Rα +
fα
E
,... ... ..., C' =C . 

 

In the last series of equations, in the 

€ 

ϑ  component, the term representing the passive 

resistance was missing. It was not put forward at the beginning, and it could not be 

found at the end. Duhem overestimated the result: the fact that the thermal capacity of a 

system, differently from the other thermal coefficients, was not affected by the 

difference between equilibrium and “motion” (in the generalized sense), was a mere 

consequence of his formal choice. In some way, purely thermal processes had been left 

out of the door from the outset.30 

According to the conceptual framework of a generalized Mechanics, he put forward a 

“fundamental hypotheses” on the passive resistances 

€ 

fα , fβ , ..., fλ : the work done by 

those resistances could be only null or negative. That hypothesis allowed Duhem to 

attain a meaningful result concerning the second Principle of Thermodynamics. In fact, 

from the last set of equations, 

 

(9)   

€ 

dQ
F ϑ( )

=
− R'α ⋅δα + ... R'λ ⋅δλ +C ⋅δϑ[ ]

E F ϑ( )
 

€ 

=
− E F ϑ( )dS+ fα ⋅ dα + ...+ fλ ⋅ dλ[ ]

E F ϑ( )

= −dS− fα ⋅ dα + ...+ fλ ⋅ dλ
E F ϑ( )

. 

                                                        
30 Duhem 1894a, pp. 225-6. 
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For a closed cycle, 

€ 

dS = 0∫ , and therefore  

 

€ 

dQ
F ϑ( )∫ = −

fα ⋅ dα + ...+ fλ ⋅ dλ
E F ϑ( )∫ .  

 

If  

 

(8)     

€ 

fα ⋅ dα + fβ ⋅ dβ + ...+ fλ ⋅ dλ ≤ 0,  

 

then  

 

(10)   

€ 

dQ
F ϑ( )∫ ≥ 0 .  

 

Duhem identified the work 

€ 

fα ⋅ dα + fβ ⋅ dβ + ...+ fλ ⋅ dλ  with Clausius’ “uncompensated 

work”. 

 

“Cette inégalité célèbre est due à Clausius. 

Clausius a donnée à la quantité 

€ 

− fα ⋅ dα + fβ ⋅ dβ + ...+ fλ ⋅ dλ( ) , qui est égale au 

travail des résistances passives changé de signe, et qui, par conséquent, n’est 

négative dans aucune modification réelle du système, le nom de travail non 

compensée accompli durant cette modification. La quantité 

€ 

E F ϑ( )dS  est au 

contraire, pour lui, le travail compensé accompli durant cette même 

modification.”31 

 

A second meaningful result concerned entropy as well: in an isolated system, dQ=0, 

and equation (9) offered 
                                                        

31 Duhem 1894a, pp. 228-9. 
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€ 

dS = −
fα ⋅ dα + ...+ fλ ⋅ dλ

E F ϑ( )
. 

 

Because of the positive value of the second side of the equation, the first side, namely 

entropy, was positive as well. No transformation involving an isolated system could 

therefore “make the entropy of the system increase”.32 

In the new theoretical framework, the generalization of the concept of passive 

resistances, or viscosity, or friction, paved the way leading from a generalized 

Mechanics to the core of Thermodynamics, namely the second Principle. The concept 

of thermal dissipation in natural phenomena was physically and mathematically dressed 

with the clothes of mechanical dissipation. 

The second principle of Thermodynamics had therefore received a mechanical 

interpretation. But the interpretation was mechanical in a sense to be carefully specified. 

As I have already stressed, we are not dealing here with a microscopic mechanical 

explanation of macroscopic thermodynamic effects. We find here a macroscopic 

mechanical re-interpretation, linked to a re-interpretation of the word “motion” in the 

context of a new Aristotelian perspective. 

At the end of the third Part of his Commentaire, Duhem drafted some general 

“Conclusions”, wherein he put his approach to Mechanics and Thermodynamics into a 

historical perspective. He found two different trends in the relationship between 

Mechanics and Thermodynamics. On the one hand, most of the founding fathers of 

Thermodynamics had tried to transform Thermodynamics into “an application of 

Dynamics”. They had interpreted heat as “the microscopic and very fast motion of 

particles which form ordinary bodies”, and temperature as the “average living force” 

corresponding to those motions. On the other hand, other physicists had tried to found 

Thermodynamics “on its own principles”. They had not put forward “hypotheses on the 

nature of heat”; neither had they borrowed theorems from rational Mechanics”.  

What had the former attained? They had managed to successfully interpret the first 

Principle, namely the Principle of conservation of energy, but had failed to explain the 

                                                        
32 Duhem 1894a, p. 229. 
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second Principle, “Carnot’s Principle”. In spite of the “daring efforts” of Clausius, 

Boltzmann and Helmholtz, “they had not managed to make Carnot’s principle stem 

from the laws of Dynamics in a satisfactory way”. According to Duhem, the latter had 

had more success: Kirchhoff had shown that Clausius’ preference for “Thermodynamics 

as an independent science” could be successfully pursued.33 

Duhem saw himself walking on a third pathway: Thermodynamics as a generalized 

Mechanics, as a theory of transformations in a wide sense. 

 

“Nous avons essayé, dans le présent travail, d’indiquer une troisième position de 

la Dynamique par rapport à la Thermodynamique ; nous avons fait de la 

Dynamique un cas particulier de la Thermodynamique, ou plutôt, nous avons 

constitué sous le nom de Thermodynamique, une science qui embrasse dans des 

principes communs tous les changements d’état des corps, aussi bien les 

changement de lieu que les changements de qualités physiques.”34 

 

According to Duhem, the “principles” of his “science” were based on the 

“experimental laws” established and “clarified” by Carnot, Mayer, Joule, Clausius, W. 

Thomson and Helmholtz. The mathematical shape had been outlined by Clausius and 

“improved” by Massieu, Gibbs and Helmholtz: their efforts had given Thermodynamics 

“analytic features” similar to Lagrange’s Mechanics. That similarity assured Duhem 

that, at the theoretical level, his attempt was in continuity with the tradition of physics 

rather than in competition with it. Nevertheless, at the meta-theoretical level, an 

interesting discontinuity appeared. Only a carefully distinction between the two 

traditions emerged in the history of Mechanics allows us to understand Duhem’s design 

of a generalised Mechanics/Thermodynamics. His design can be looked upon as a 

reduction of physics to the language of Analytic Mechanics, but, at the same time, as an 

anti-reductionist design, wherein the widening of the scope of that language was at 

stake. We could definitely say that Duhem opposed a short-sighted mechanical world-

view. 

                                                        
33 Duhem 1894a, pp. 284-5. 
34 Duhem 1894a, p. 285. 
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“Il nous semble qu’une conclusion générale se dégage de cette étude : si la 

science des mouvements cesse d’être, dans l’ordre logique, la première des 

Sciences physiques, pour devenir seulement un cas particulier d’une science plus 

générale embrassant dans ses formules toutes les modifications des corps, la 

tentation sera moindre, pensons-nous, de ramener l’étude de tous les phénomènes 

physique à l’étude du mouvement ; on comprendra mieux que le changement de 

lieu dans l’espace n’est pas une modification plus simple que le changement de 

température ou de quelque autre qualité physique ; on fuira dès lors plus 

volontiers ce qui a été jusqu’ici le plus dangereux écueil de la Physique théorique, 

la recherche d’une explication mécanique de l’Univers.”35 

 

Only the distinction between the theoretical and the meta-theoretical level allows us to 

understand and appreciate the coexistence of a mechanical approach, in the sense of 

Lagrange’s mathematical physics, and the rejection of “a mechanical explication of the 

Universe” in Duhem’s “more general science”. 

 

                                                        
35 Duhem 1894a, p. 285. 



 



 

 

11. A new “chemical mechanics” 

 

In the meanwhile, early in the in 1890s, Duhem had undertaken another theoretical 

pathway: it was apparently a different pathway, but it was, in reality, a different branch 

in the same design of unification. We are dealing here with chemistry, in particular the 

links between chemistry and physics. Three issues were at stake: the attempt at unifying 

physics and chemistry, the role of Thermodynamics in that unification, and the already 

outlined design of a generalized physics, which should have managed to describe every 

kind of material transformation. These issues were mutually intertwined: could the 

design of a physics of generalized “motions” not entail some sort of unification between 

physics and chemistry? In the first lines of the book Duhem published in 1893, 

Introduction à la mécanique chimique, he pointed out experimental and theoretical 

advancements of chemistry in the last two decades. He mentioned, on the one hand, the 

experimental researches on dissociations, and, on the other hand, the “theoretical 

developments of thermodynamics”.1 

In accordance with a typical meta-theoretical attitude, which was one of the hallmarks 

of his scientific practice, Duhem put forward a historical rather than “logical” outline of 

chemistry in the last century. He deployed the scientific achievements in their 

chronological order: “the content of a physical law” could have been better appreciated 

keeping the reader in contact with both the “efforts” required and the “mistakes” dodged 

for attaining it.  

The key-concepts of the history of “chemical mechanics” revolved around the 

dichotomy exothermic-endothermic. In the first stage, corresponding to the fist half of 

the nineteenth century, exothermic transformations were identified with chemical 

combinations, and endothermic transformations with chemical decompositions. In the 

second stage, around the middle of the century, the theoretical link between the couples 

exothermic-endothermic and combination- decomposition was broken: exothermic 

transformations were identified with spontaneously occurring chemical reactions, and 

the endothermic with “indirect” reactions. In the third stage, corresponding to the time 

wherein Duhem was writing, the role of temperature was given prominence: an 

                                                        
1 Duhem 1893b, p. v. 
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“exothermic compound should undergo an increasing dissociation”, as well as an 

“endothermic compound should be more easily formed” when temperature rises.2 

In the first chapter of the book, the historical review focussed on the relationship 

between chemistry and physics, in particular on the relationship between the chemical 

key-concept of “affinity” and the physical key-concept of “cohesion”. Berthollet was 

credited by Duhem with having been the first to have “heralded the possibility” of a 

“chemical Mechanics” based on the same general “principles” of Newton’s “celestial 

Mechanics” and Laplace and Poisson’s “physical Mechanics”. Duhem traced back the 

conceptual root of that commitment to Newton’s famous XXXI Query to be found at 

the end of his Opticks. There the grand savant had envisaged short-range forces beside 

the long-range universal gravitation. Duhem translated Newton’s view into a 

mathematical law of the kind 

 

€ 

F = mm' K
r 2

+ f (r)
 

  
 

  
, 

 

wherein “the term 

€ 

K mm'
r 2

 represents Newtonian attraction” and the second term 

€ 

mm' f (r) represents “what is named molecular attraction”.3 

Duhem emphasised two main features of Berthollet’s theory: first, the explanation of 

“changes of state” taking place in matter in term of molecular attractions. Second, but 

more important in Duhem perspective, the attempt at giving a unified explanation for 

both “changes of physical states like fusion, vaporisation, …” and “chemical 

phenomena in the strict sense”. The label “affinity” could encompass both of them. 

Although Duhem did not trust in the specific mechanical models Laplace and Poisson 

had put forward, he shared, at least in general terms, Berthollet’s meta-theoretical 

expectation that “more the principles stemming from the chemical theory will be 

general, more they will look like those of mechanics”.4 

                                                        
2 Duhem 1893b, pp. vi-vii. 
3 Duhem 1893b, pp. 2 and 8. Duhem made reference, in particular, to Bethollet’s 1803 Essai de statique chimique. 

Apart from the  
4 Duhem 1893b, pp. 9 and 11. The last quotation was excerpted by Bertollet 1803, p. 2. It is worth comparing that 

passage with a more cautious passage of Duhem himself: “Mais, cette nature des actions moléculaires nous est à peu 
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If the first chapter let the first two characters of Duhem’s historical reconstruction 

emerge, namely chemistry and mechanics, the third character, namely the theories of 

heat, appeared on the stage in the second chapter. Duhem credited Lavoisier and 

Laplace with having been the first to leave aside the various “philosophical ideas of 

scholars on the nature of caloric”, because “the physical consequences drawn from them 

are the same”. The distinction between “free caloric” and “latent caloric” did not 

depend on the different representations of caloric. In the course of the nineteenth 

century, there had been a first stage, wherein heat had been assumed to undergo some 

kind of conservation over time: in particular, in a closed cycle, its value should have not 

changed. It had been Clausius in 1850 to change the view, and put heat into a different 

perspective. In the general equation 

 

  

€ 

EQ = T+
mv2

2∑ −
mv'2

2∑ +E U1−U2( ), 

 

the first term on the right-hand side represented “the work done by external forces”, 

followed by the difference between initial and final “living force”. The third term, 

which W. Thomson would have subsequently named “internal energy”, was assumed to 

have the property “attributed to heat by the ancient physicists”: it had to depend only on 

the initial and final state of the transformation. This was “the radical difference between 

the modern theory of heat and the ancient theory of caloric”.5  

The third chapter started from the theoretical link between chemistry and the theory of 

heat put forward in the last decades of the eighteenth century, and went on with the 

modifications undergone by that ancient theory. Duhem theoretical design of a 

generalized physics, or a physics of generalized “motions”, had to unify mechanics, 

thermodynamics and chemistry. He was looking for traces and clues of that possibility 

of unification in the history of science. The ancient theory had assumed that 

                                                        
près inconnue ; c’est donc l’observation seule, et non l’application, par voie de déduction, des lois de la mécanique 
rationnelle, qui doit nous révéler les lois de la mécanique chimique. Toutefois, il est à prévoir que ces loi, une fois 
établies par l’expérience, s’offrirons a nous sous une forme qui rappellera les principes de la mécanique rationnelle, 
dont, logiquement elles sont conséquences.” (Duhem 1893b, p. 10) It seems that, at that stage, Duhem had more 
confidence in “observations” than in “deductions”. 

5 Duhem 1893b, pp. 12-7. Duhem specified that the term “living force” dealt only with “the living force of sensible 
motions”, namely macroscopic motions. In no way could it be associated to “the living force of the hypothetical 
motions by which many physicists explain heat”. (See Ibidem, p. 16, footnote 1) 
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atmospheres of caloric surrounded molecules of ordinary matter, because caloric 

attracted matter. The atmospheres, on the contrary, would have repelled with each other, 

while matter attracted matter. From the thermal point of view, chemical combinations 

were looked upon as the defeat of thermal repulsion by material attraction, followed by 

“the spreading out of part of latent caloric”. The victory of thermal repulsion on 

material attraction would have given place to decompositions: “the amount of latent 

caloric would grow at the expense of body’s free caloric or caloric coming from 

surrounding bodies”. If combinations sent out caloric, decompositions absorbed caloric, 

according to a theoretical representation of caloric as some kind of substance endowed 

with some kind of power.6 

Once again, Duhem credited Berthollet with having modified the ancient view, calling 

into play the superposition of physical cohesion and chemical affinity. In other words, 

chemical processes like combination and decomposition could be accompanied by 

physical processes like contraction and dilatation. Since both chemical and physical 

processes involved heat and transfers of heat, their superposition could change the 

increase or decrease of heat expected from the point of view of purely chemical 

processes. According to Duhem’s translation of Berthollet’s theory, the identification of 

compositions with exothermic processes was suitable “only for energetic 

compositions”. The more sophisticated theory could account for “various experiences” 

involving oxygen and nitrogen, and their combination into or decomposition from 

nitrogen protoxide. In the process of decomposition, for instance, a given amount of 

heat was sent out. The emerging oxygen was supposed to be in a “peculiar allotropic 

state, formed against the forces of cohesion of oxygen itself”, and therefore intrinsically 

unstable. The re-establishment of the ordinary state had to involve an outflow of heat. In 

some way, the internal cohesion of oxygen must be destroyed by a given amount of 

heat, in order to let it undergo the affinity with nitrogen. From the macroscopic point of 

view, the dismantled cohesion of oxygen had to correspond to a change of volume: 

actually, the volume of nitrogen protoxide is double the volume of free oxygen.7  

In Duhem historical reconstruction, Clausius’ theory represented a re-interpretation of 

the ancient “antagonism between molecular attraction and heat”. The amount of heat 

                                                        
6 Duhem 1893b, pp. 28-9. 
7 Duhem 1893b, pp. 19-24 
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entering a body could trigger off three different processes: an increase of “free heat” or 

temperature, macroscopic or external work, and microscopic work done by “molecular 

forces”. In more ancient words, the last two terms would correspond to the increase of 

“latent caloric”. Clausius’ internal energy U was nothing else but the sum of “free heat” 

H and W=w/E, “the ratio between the potential of molecular actions and the mechanical 

equivalent of heat”: U = H + W. In other words, or in a mechanical perspective, E(U1 – 

U2) was “the work done by internal forces”.8  

At that theoretical stage, when the sum of internal and external work was positive, the 

transformation could actually occur. In the case of negligible variations of macroscopic 

living force, this means that  

 

  

€ 

T+E U1−U2( ) > 0 , and therefore

€ 

EQ > 0 .9 

 

The remaining part of the fourth chapter was devoted to criticize this theory, or 

Berthelot’s theory, which could not attain a satisfactory generality. It is worth 

mentioning that, at that time, Marcelin Berthelot was perhaps the most authoritative 

scientist of the Third French Republic. The fact is that the recent alliance between 

physics and chemistry was put in danger by the existence of simple phenomena which 

Duhem qualified as “merely physical”. Ice melts, water vaporises, and a salt dissolves 

in a solution, “even though these phenomena absorb heat”. In the “second stage of this 

history”, the first way out consisted in distinguishing “chemical affinities from physical 

affinities”. The fact is that thermodynamics required a sort of symmetry between 

chemistry and physics: from the point of view of Duhem’s design of unification, there 

was “nothing more arbitrary than this distinction between chemical and physical 

forces”.10 

                                                        
8 Duhem 1893b, pp. 26 and 29. 
9 See Duhem 1893b, p. 35: “Pour qu’une réaction chimique puisse se produire à une température déterminée, il faut 

qu’elle entraine un dégagement de chaleur. 
Si nous appliquons des considérations analogues au principe des vitesse vrtuelles, nous voyons sans aucune peine 

que celui-ci nous donne la proposition suivante : 
Prenons un système dans un certain état chimique ; si toute réaction virtuelle, produite à partir de cet état, entraine 

un phénomène thermique nul ou une absorption de chaleur, le système est en équilibre chimique”. 
10 Duhem 1893b, pp. 52, 56 and 58. 
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He credited Sainte-Claire Deville with having restored the unity between physics and 

chemistry: he had paid attention “on phenomena which occur at temperature of 1000 or 

2000 degrees”. In such conditions, we can observe many reactions occurring “with 

absorption of heat”, without any kind of chemical or physical compensation.11 An 

example was offered by reactions involving oxygen, hydrogen and water. 

 

“Ainsi, lorsqu’on se donne les conditions physiques d’une expérience, la 

température et la pression, ces conditions déterminent une certaine composition 

qui assure l’équilibre du mélange hydrogène, oxygène, vapeur d’eau. Lorsque 

l’oxygène et l’hydrogène sont portés à cette température, il ne se combinent pas 

intégralement : la combinaison s’arrête au moment où l’équilibre est atteint. 

Lorsque la vapeur d’eau est portée à cette température, elle ne se décompose pas 

totalement ; sa dissociation s’arrête lorsque l’équilibre est atteint. A une 

température donnée, selon la valeur de la pression et la composition du mélange, 

on peut observer aussi bien la combinaison de l’oxygène et de l’hydrogène, 

phénomène qui dégage de la chaleur, que la décomposition de l’eau, phénomène 

qui absorbe de la chaleur. L’état limite vers lequel, en toutes circonstances, tend le 

système, n’est pas l’état dont la formation dégagerait le plus de chaleur, c’est à 

dire l’état où l’oxygène et l’hydrogène seraient intégralement combinés.”12 

 

Duhem mentioned other “experiences” performed at “high temperature”: they had 

shown that “exothermal compounds split, whereas endothermic compounds set up“. In 

those processes Sainte-Claire Deville had emphasised the strong analogy between “the 

mechanism of chemical reactions and the mechanism of physical changes of state”.13  

The sixth chapter ended with some pages devoted to Berthelot, who upheld the old 

thermo-chemistry, and opposed Sainte-Claire Deville’s new approach. Two short 

chapters were then devoted by Duhem to the “kinetic theory of gases put forward by 

Krönig and Claudius, and perfected by Boltzmann and Maxwell”. The “kinetic” theory 

and the theory of “molecular attraction” stemmed from the same attitude towards 

                                                        
11 Duhem 1893b, p. 68. 
12 Duhem 1893b, p. 69. 
13 Duhem 1893b, pp. 74-5. 
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physics, which consisted of starting from some hypotheses on the hidden structure of 

matter and its transformations. An invisible world, described by specific microscopic 

mechanical models had to explain those macroscopic effects “appreciated by our 

senses”.14 Duhem’s struggle against mechanical models was very passionate. 

 

“Pourquoi chercher à remplacer par des constructions mécaniques les corps et 

leurs modifications, au lieu de les prendre tel que les sens nous les donnent, ou 

plutôt tels que notre faculté d’abstraire, travaillant sur les données des sens, nous 

les fait concevoir ? Pourquoi se représenter la température comme la quantité d’un 

certain fluide libre ou comme la force vive d’un certain mouvement, au lieu de la 

regarder simplement comme cette propriété qu’a un corps de nous paraître plus ou 

moins chaud, de faire monter plus ou moins haute le mercure du thermomètre ? 

Pourquoi chercher à se figurer les changements d’état comme des déplacements, 

des juxtaposition de molécules, des variation de trajectoires, au lieu de se 

caractériser un changement d’état par le trouble qu’il apporte dans les propriétés 

sensibles et mesurables du corps : augmentation ou diminution de densité, 

absorption ou dégagement de chaleur, etc… ? Pourquoi vouloir que les axiomes 

sur lesquels toute théorie doit reposer soient des propositions fournies par la 

statique ou la dynamique, au lieu de prendre pour principes des lois fondées sur 

l’expérience et formulées par l’induction, quelle que soit d’ailleurs la forme de ces 

lois, quelle que soit la nature des concepts auxquelles elles font appel ?”15 

 

He would have turned upside down the “method” or the “ideal” of mechanical 

models. He suggested giving up the two pillars of that method, the first being 

theoretical, and the second meta-theoretical: a set of “few, simple mechanical 

hypotheses” and the belief that they are “real explanations”. His method did not aim at 

“explaining the phenomena but classing them”.16  

                                                        
14 Duhem 1893b, pp. 81 e 87. It is worth mentioning that, in 1880, in a brief Note sent to Comptes Rendus de 

l’Académie des Sciences, Sainte-Claire Deville claimed that he could accept “neither atoms, nor molecules, nor 
forces”: he could not rely on entities he could “neuither see nor imagine”. (Sainte-Claire Deville H. 1880, p. 342) 

15 Duhem 1893b, p. 88. 
16 Duhem 1893b, p. 89. 
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The ninth chapter represents in some way the turning point of the book: the second 

Principle of Thermodynamics takes centre stage, accompanied by the “critical” concept 

of “reversible transformation” or “series of states of equilibrium”. Although that kind of 

transformation were “actually unworkable” and “very abstract”, Duhem acknowledged 

that it was “impossible to make use of thermodynamics without making constantly use 

of it”. For a series of transformations leading to a state a to a state b, he expressed the 

second Principle as 

 

€ 

Q1
T1

+
Q2
T2

+ ...+Qn
Tn

+Sb −Sa > 0   or   

€ 

Q1
T1

+
Q2
T2

+ ...+Qn
Tn

= Sa −Sb +P, 

 

where the always positive quantity P corresponded to Clausius’ “uncompensated 

work”.17  

According to the Principle, an isolated physical system is in equilibrium “if all 

possible transformations cannot increase its entropy”. Duhem stressed that he Principle 

is universal, and every design of “chemical mechanics” must take it into account. In the 

case of isothermal transformations, the last equation can be written as 

 

€ 

Q1+Q2 + ...+Qn
T1

= Sa −Sb +P   or 

€ 

Q
T

= Sa −Sb +P    or   

€ 

Q = T Sa −Sb( )+T P . 

 

On the right-hand side, the first term could be interpreted as “the amount of 

compensated heat”, and the second term as “the amount of uncompensated heat”. From  

the mechanical point of view, the corresponding quantities 

 

€ 

ϑ = ET Sa −Sb( )   and   

€ 

τ = ET P  

 

could be interpreted as “compensated work” and “uncompensated work”. It seemed to 

Duhem that the second Principle could restore the symmetry between physics and 

                                                        
17 Duhem 1893b, pp. 93, 96 and 100. 
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chemistry: if mechanical equilibrium required that “all virtual modifications” performed 

a vanishing or negative work, thermodynamic equilibrium required that “all virtual 

isothermal modifications” performed a vanishing or negative uncompensated work.18 

The analogy could be strengthened by the recourse to thermodynamic potentials. In 

fact, if  

 

€ 

τ = EQ−ET Sa −Sb( ),   and     

€ 

EQ = T+E Ua −Ub( ),  

 

then the uncompensated work could be written as  

 

  

€ 

τ = T+E Ua −Ub( )−ET Sa −Sb( ) = E Ua −TSa( )−E Ub −TSb( )+ T . 

 

Since   

€ 

F = E U −T S( ) , 

 

the uncompensated work became 

 

  

€ 

τ = Fa −Fb( )+ T. 

 

It seemed “natural” to Duhem that the term (Fa –Fb) received the name of “internal 

uncompensated work”.19 

He stressed the structural analogy between physics and thermodynamics as an 

intermediate stage, in order to state a structural analogy between mechanics and 

chemistry. If the external forces could be derived by a potential 

€ 

Ω, the uncompensated 

work could be written as the difference between initial and final values of a “total 

thermodynamic potential” 

€ 

Φ= F +Ω: 

 

€ 

τ = Fa +Ωa( )− Fb +Ωb( )    or   

€ 

τ =Φa −Φb . 

                                                        
18 Duhem 1893b, pp. 104 and 106-8. 
19 Duhem 1893, pp. 108-10. 
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According to Duhem, at this stage, the analogy between analytic mechanics and 

thermodynamics, as well as between analytic mechanics and chemistry could be 

considered actually accomplished. 

 

“Un système est en équilibre stable si la valeur du potentiel thermodynamique 

total de ce système est un minimum parmi toutes les valeurs que la même quantité 

peut prendre à la même température.  

Cette proposition est analogue à celle que l’on démontre en mécanique et qui 

s’applique aux systèmes soumis à des forces admettant un potentiel : Un tel 

système est en équilibre stable lorsque le potentiel des forces auxquelles il est 

soumis a un valeur minima.  

L’analogie entre la statique chimique et la statique mécanique est complète.”20 

 

He then showed that the structural analogy between analytic mechanics and 

thermodynamics could be exploited right to the end, at least for isothermal 

transformations. If the system is looked upon as “a source of work”   

€ 

T' = − T ,  

 

  

€ 

T'= Fa −Fb( )−τ , 

 

and the work done by the system is always less than “the decrease of the internal 

thermodynamic potential”, because “

€ 

τ  is positive”. He remarked that the analytical-

mechanical interpretation of the second Principle was consistent with Maxwell and 

Helmholtz’s lexical choices of “available energy” and “freie Energie” respectively. He 

thought that his re-interpretation could “shed light on the close analogy between the 

laws of thermodynamics and the laws of statics” better than “Gibbs, Maxwell and von 

Helmholtz methods”. The old “thermo-chemistry” should have given way to a 

“chemical mechanics based on thermodynamics”.21 

                                                        
20 Duhem 1893, pp. 112-3. As already stressed, that structural analogy was quite different from the contemporary 

attempts at transferring specific mechanical models from mechanics to thermodynamics and chemistry. 
21 Duhem 1893, pp. 114-6. 
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In the last chapters of the book, Duhem widened the scope of his theoretical, meta-

theoretical and historical inquiry. The complex interplay among analytical mechanics, 

thermodynamics and chemistry was extended to electricity. In a battery connected to an 

electric circuit, whose resistances are 

€ 

r  and 

€ 

R respectively, heat send out by “chemical 

reactions taking place inside battery in unit time” was 

 

€ 

Q =
1
E
r+R( )J 2, 

 

where 

€ 

J  is both the amount of electric current in the wire, and the amount of 

electricity travelling through the battery in unit time. From Faraday’s law, if 

€ 

L is the 

heat sent out in the chemical reaction corresponding to the “the passage of an amount of 

unit electricity”, we also have 

 

€ 

Q = L J    and therefore   

€ 

1
E
r+R( )J = L . 

 

According to Ohm’s first law, we could write 

 

  

€ 

E = r+R( )J    and therefore     

€ 

E = E L. 

 

The hypothesis corresponding to the equation 

€ 

Q = L J  was expressed by Duhem in the 

following way: “in a battery, voltaic heat equates chemical heat”.22  

Nevertheless, this theoretical result, put forward by Joule, Helmholtz and E. 

Becquerel, seemed falsified by experiments subsequently performed by other scientists: 

Favre, Hirn, Raoulr, Edlund, … In some experiments, as Duhem summarized, 

                                                        
22 Duhem 1893b, pp. 118-20. It is worth mentioning that the identifications of electric currents with dissipative 

effects was consistent with the electromagnetic interpretations put forward by some scientists in the last decade. In 
the wake of Maxwell, the British Poynting and Heaviside looked upon electric currents in conductors as the side-
effect of a mechanical breakdown, namely a loss of elasticity, in the passage from dielectric media to conducting 
media. Heaviside’s specific model of aether as elastic medium stemmed from a conceptual trend quite far from 
Duhem structural analogies based on analytic mechanics. Nevertheless, from the point of view of energy and its 
properties, their interpretations were mutually consistent. See Poynting J.H. 1885, pp. 278 and 284, and Heaviside O. 
1893, p. 17. 



Stefano Bordoni 

 

226 

“chemical heat is greater than voltaic heat” whereas, in other experiments, on the 

contrary, “chemical heat is smaller than voltaic heat”. The second Principle offered the 

solution even in this case, because chemical heat was the algebraic sum of 

“compensated heat and uncompensated heat”. What was called “voltaic heat” was 

nothing else but “chemical uncompensated heat”. More criticl appeared the opposite 

case, when voltaic heat was greater than chemical heat. How could a positive part of the 

total heat, namely its uncompensated component, be greater than the whole? The fact is 

that – Duhem remarked – “chemical uncompensated heat is positive when the reaction 

taking place inside battery occur by itself”, in some spontaneous way. In other cases, the 

uncompensated heat could be zero or negative. He did not explain the query in detail, 

but we can make reference to a thermal engine operating in a reversed way. In a thermal 

engine, the dissipated heat is assumed to be positive; when the engine is forced to 

operate as a refrigerating engine, the uncompensated heat must be negative.23 

What differentiated Duhem’s “theory of the thermodynamic potential” from the old 

“thermo-chemistry” could be summarized as follows: the former “replace the 

uncompensated heat to total heat”. In particular – Duhem specified - only when we are 

dealing with “very energetic reactions, the amount of uncompensated heat is close to 

the amount of total heat”, and they have the same sign. Moreover, very energetic 

reactions “occur by themselves”, and send out heat: in other words, they are exothermic. 

The old thermo-chemistry represented only “a limiting case”, when chemical reactions 

are particularly “violent”.24 

The last chapter dealt with a different query, emerging from the already mentioned 

experiments performed at high temperature: the question of “false equilibrium”. What is 

a “false” equilibrium? Thermodynamics forbids some transformations, and nobody has 

ever observed such kind of forbidden transformations. On the contrary, when some 

transformation is foretold by the theory, sometimes it does not happen. In some way, 

                                                        
23 Duhem 1893b, pp. 123 and 131. The analogy between the voltaic cell and the thermal engine was put forward by 

Duhem himself in order to justify the fact that the heat developed in the chemical reaction could not be totally 
transformed into electric energy. See Ibidem, p. 121: “On peut donc espérer, en prenant des piles de résistance 
intérieure extrêmement faible, de transformer en travail toute la chaleur que la réaction chimique est susceptible de 
produire. On sait, au contraire, que si l’on employait cette réaction chimique à échauffer le foyer d’une machine à 
feu, une partie seulement de la chaleur dégagé par cette réaction serait transformée en travail. La proposition énoncée 
par M. Joule, par M. H. von Helmholtz, par Edm. Becquerel, établit donc entre les électromoteurs et les machines a 
feu une différence, toute à l’avantage des premiers, qui amènerait nécessairement l’industrie à préférer les 
électromoteurs aux machines à feu.” 

24 Duhem 1893b, pp. 137 and 139. 
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the system keeps itself in equilibrium even when it should not: that equilibrium is 

Duhem “false” equilibrium. In other words, when “the system should be in equilibrium, 

it actually stay in equilibrium”, but it can stay in equilibrium “even when, according to 

the theory, it should not”. The former was called “true equilibrium”, while the latter 

“false equilibrium”.25  

Duhem pointed out that the Principles of thermodynamics “are exact”, but an auxiliary 

hypothesis which scientists had made use of had prevented them from understanding 

those “false” equilibriums. In order to explain that hidden hypothesis, Duhem took into 

account a certain amount 

€ 

M  of water at 100°C under atmospheric pressure. Let us 

imagine water in two different physical states: as a cup of water, and as a huge 

collection of infinitesimal drops scattered throughout space. In the latter state, water has 

an “internal thermodynamic potential” 

€ 

F = Mϕ , where 

€ 

ϕ  depends only on water 

temperature and density. In the former, not only the potential depends on temperature 

and density, but also on “the order of different elements”, and therefore on the “shape” 

of M. This contribution could be summarized by the term 

€ 

Ψ  in the expression 

€ 

F = Mϕ +Ψ . Duhem pointed out that the underestimation of the additional term was not 

justified in general, even though “the classical theories of hydrostatic, hydrodynamic 

and elasticity” just did it.26 

Following the track of Gibbs, Duhem generalized the model to “a system containing a 

certain number of homogeneous bodies”: he labelled M, M’, … be their masses, and S, 

S’, … the surfaces of contact with each other or with the external bodies. He assumed a 

thermodynamic potential of the kind 

 

€ 

F = Mϕ +M 'ϕ '+ ......+AS+A'S'+ ...... , 

 

wherein “

€ 

ϕ  depends only on the state of the mass M, 

€ 

ϕ '  on the state of the mass M’ 

…”, and “A depends on the nature of bodies separated by S, …”. The terms of the first 

                                                        
25 Duhem 1893b, pp. 157-9. In the previous pages Duhem had described some processes giving rise to “false” 

equilibrium. See Ibidem, p. 155: “La décomposition de l’eau absorbe de la chaleur ; lors donc que l’on élève la 
température d’un mélange d’oxygène et d’hydrogène, et si nous faisons croitre graduellement sa température, nous 
n’y déterminerons tout d’abord aucune réaction chimique ; puis, tiut à coup, lorsque la température atteindra environ 
+500°C, une partie du mélange gazeux passera avec explosion à l’état de vapeur d’eau.” 

26 Duhem 1893b, pp. 162-4. 
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kind in the right side of the above equation depend on the cube of the linear dimensions 

of every body. The terms of the second kind depend on the square of their linear 

dimensions. Simple geometrical considerations followed: for dimensions greater than a 

given unitary dimension, the former overwhelm the latter, but for dimension smaller 

than the given unity, the former are overwhelmed by the latter.27  

What are the consequences of that apparently line of reasoning? In the case of water 

vaporisation, when a mass of water is in contact with a mass of steam, if we are dealing 

with great masses, only terms of the first kind are at stake, and “the classic theory of 

vaporisation” will follow. In other words, “liquid and steam are in equilibrium only at a 

specific pressure”, namely “the tension of saturated steam”; for smaller pressures, the 

liquid vaporise, and for greater pressures, steam condense. Quite different should be the 

case of “a small bubble of steam surrounded by liquid”: the terms of the second kind 

will become much greater, leading to “conclusions” quite different from the other case.  

 

“Pour qu’une bulle de vapeur pousse croitre au dépens du liquide qui l’environne, 

il ne suffit pas que la pression en un point voisin de cette bulle soit inférieure à la 

tension de vapeur saturée ; il faut encore que le rayon de la bulle surpasse un 

certain limite, limite qui dépend d’ailleurs de la température et de la pression ; 

lorsque le rayon de la bulle est inférieur à cette limite, non seulement la bulle ne 

peut grossir au dépens du liquide qui l’environne, mais encore la vapeur qu’elle 

renferme se condense forcément ; la bulle se résorbe.”28 

 

The concept of “false” equilibrium allowed Duhem to interpret another class of 

phenomena: chemical systems “at a temperature lower than the point of reaction”. 

When the reaction takes place, it leads the system “to its true equilibrium”; at the same 

time, “the reaction is accompanied by a powerful release of heat”. We are dealing with 

an explosion. Cases of this kind are in no way unusual: a mixture of hydrogen and 

oxygen, or hydrogen and chlorine. When they reach their “true” equilibrium, namely 

water and muriatic acid, they release a so great amount of heat to trigger an explosion. 

In Duhem’s theoretical framework, an explosion was therefore a passage “from a state 
                                                        

27 Duhem 1893b, pp. 165-6. 
28 Duhem 1893b, p. 168. 
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of false equilibrium to a state of true equilibrium”, wherein “a remarkable amount of 

heat” was released. The theory was “fruitful”: it could account for sudden and 

disruptive events left unexplained by the old theories.29 

At the end of this detailed and demanding inquiry into the history of Mechanics, 

Thermodynamics and Chemistry, Duhem realized how complex was the net of theories 

inherited by contemporary science. He drew two conclusions, wherein historical and 

meta-theoretical remarks were mutually interconnected. On the one hand, he remarked 

that scientific theories, although definitely provisional, are notwithstanding fruitful, 

both the old-fashioned and the more recent ones.  

 

“L’histoire du développement de la physique nous montre qu’une théorie serait 

bien présomptueuse en se flattant d’être définitive ; nous ne voyons guère les 

théorie s’élever que pour crouler. Mais, en s’écroulant, une théorie qui a été 

construite avec le désir sincère de parvenir au vrai, ne disparaît jamais 

complètement ; parmi ses débris se trouvent toujours des matériaux propres à 

entrer dans la composition de quelque autre système plus parfait et plus 

durable.“30 

 

On the other hand, the scientific practice could have not survived without theoretical 

frameworks, no matter how they were provisional, incomplete and even flawed. This 

fact explained why scientists had sometime tried to save at any cost a flawed theory 

when a better theory was not at hand yet.  

 

“Il est rare que les contradictions de l’expérience suffisent à débarrasser la 

science d’une théorie erronée ; les partisans de cette théorie trouvent toujours 

quelque faux-fuyant pour tourner, en feignant de les interpréter, les faits qui les 

convainquent d’erreur; l’amour-propre d’inventeur, l’attachement obstiné aux 

idées reçues, le respect exagéré de l’autorité sont souvent pour beaucoup dans ces 

procédés peu logiques ; mais il faut les attribuer surtout au besoin qu’a l’esprit 

                                                        
29 Duhem 1893b, pp. 173-4. 
30 Duhem 1893b, p. 176. 
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humain de grouper tant bien que mal les phénomènes qu’il observe autour de 

quelque idées ; lorsqu’il a ainsi construit un système, il le conserve, en dépit des 

démentis que les faits lui infligent, tant qu’une théorie plus complète, groupant 

dans un ordre plus satisfaisant de plus nombreuses données expérimentales, ne lui 

a été proposée.”31 

   

Meta-theoretical issues were really at stake in the contemporary debate on thermo-

chemistry, and physical chemistry in general, even though triggered off by specific 

theoretical issues like the reliability mechanical models of matter and the role of 

entropy. In 1894 and 1895 Berthelot faced explicitly the second issue, and Wilhelm 

Ostwald the first one.  

In 1894, Berthelot sent a paper to Comptes Rendus de l’Académie des Sciences, 

dealing with thermo-chemistry, in particular the thermodynamic interpretation of some 

chemical reactions. From the outset, he tried to face some “contradictions” involving 

the widespread point of view that “chemical actions are frequently accompanied by 

release of heat”. He stressed that the words “endothermic” and “exothermic” had been 

introduced only recently, and in the course of his researches. Provided that there were 

chemical “combinations realised by release of heat” and “combinations realised by 

absorption of heat”, Berthelot put forward his fundamental issue: the nature of the 

different kinds of heat had to be taken into account. In brief, he established the 

distinction between “heat of purely chemical nature” and “heat of different nature” 

(“quantités de chaleur étrangères”).32 

Among the different kinds of “outsider heat”, he listed “external mechanical work”, 

and “purely physical changes of state”. These kinds of heat had to be subtracted to “the 

rough heat”, in order to compute “the chemical heat in its strict sense”. It was just by 

means of the purely chemical heat that chemical phenomena could be classed, whenever 

the system was “on the threshold of dissociation”. He therefore defended his 

“experimental principle of maximum work”, wherein the word “work” had the same 

meaning as “energy” or “heat”. For the moment he confined himself to solid bodies, as 

heat released in the combination was “noticeably independent from temperature”.  
                                                        

31 Duhem 1893b, p. 176. 
32 Berthelot M. 1894, pp. 1378-9. 
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Si donc nous envisageons plusieurs systèmes différents de combinaisons solides, 

engendrées par la combinaison des mêmes éléments, soient Q, Q’, Q‘’, … les 

quantités de chaleur dégagées par la formation de chacun de ces systèmes 

respectifs, le principe de travail maximum signifie que le système définitif vers 

lequel tendra la combinaison des éléments sera celui pour lequel Q est le plus 

grand possible : Q > Q’ > Q’’ ….33 

 

According to Berthelot, in a transformation from a state (a) to a state (b), the heat 

released K was submitted to the inequality 

 

€ 

K > T Sa − Sb( ) , 

 

and the quantity 

€ 

K −T Sa − Sb( )  corresponded to “the energy transformable into work”. 

The introduction of entropy led only to “a new utterance” for the old “principle”: rather 

than deducting “latent heat of fusion, evaporation, and dissociation” from “total heat”, 

we can deduct “heat not transformable into mechanical work”, whose most component 

was just “latent heats”. In brief, what he had labelled “chemical heat” was “noticeably 

equivalent to heat transformable into work”.34 

Nevertheless, the mathematical equivalence did not convince Berthelot of the 

conceptual equivalence: he found that the law expressed in terms of entropy had a 

“more limited” scope, and its previsions were “more obscure”. Some chemical systems 

had not “computable entropy”: entropy was a physical quantity suitable for “people 

dealing with computation in the context of mathematical physics”. The intrinsic 

“discontinuity” of chemical processes did not allow scientists to “… them within the 

framework of a mathematical approach”. Even in subsequent passages Berthelot 

insisted on the gap between mathematical algorithms and experimental practice: entropy 

                                                        
33 Berthelot M. 1894, p. 1381. 
34 Berthelot M. 1894, p. 1382. 
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was “an obscure concept”, and a quantity “disconnected from experience in most cases” 

and unsuitable for “the interpretation of most chemical phenomena”.35   

In the last passages of the paper, Berthelot acknowledged that entropy played “an 

essential role”, and led to “predictions which elude the original principle of maximum 

work”. Nevertheless, he found that the old principle should not have been abandoned, 

and “existence and importance” of “previous laws” should not have been “neglected”. 

In some way, he left the field of specific theoretical explanations, and entered the field 

of meta-theoretical or epistemological remark. He claimed that “the discoveries of 

experimental sciences form a continuous chain”, and “the positive facts and relations 

achieved in Thermo-chemistry today could not be overthrown”. He went on with the 

same kind of reasoning, and stressed the possibility to improve old theory by means of 

“new facts and concepts”.36  

Why and how the acknowledgement of the role of entropy could have impaired the 

continuity of the scientific practice, he did not say. Why and how entropy would have 

hampered the improvement of Thermo-chemistry, he did not say as well. Probably 

Berthelot chose the meta-theoretical level because he knew that the most conclusive 

effects of the scientific debate stood on that level. That the feeble link between 

mathematical physics and thermo-chemistry could be transformed into a fruitful 

alliance, was believed by Duhem, and was denied by Berthelot. 

In a paper sent to Revue générale des Sciences pures et appliquées in 1895, Ostwald, 

then professor of Physical Chemistry at Leipzig University, criticised sharply scientists 

who believed in “the Mechanics of atoms” as an intellectual “key” for the 

comprehension of the physical world. To this mechanical world-view, which Ostwald 

qualified as “physical materialism”, he opposed “a new theory” he labelled 

“energetics”. Although he claimed that he would have confined himself to “positive 

science”, namely “exact sciences”, in a subsequent passage he did not manage to 

restrain from stating that the rejection of a mechanical world-view was an attack to “the 

general materialistic view”. In general, however, the paper appears as an unmistakable 

but balanced act of faith in his science of energy. Rather than relying on atoms 

submitted to “laws of motions demonstrated for cosmic bodies”, Ostwald relied on the 

                                                        
35 Berthelot M. 1894, pp. 1383 and 1385. 
36 Berthelot M. 1894, p. 1392. 
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discovery of “invariants”, namely physical entities which preserved their values in the 

course of a physical transformation. He found that the pretension to explaining “all 

known physical phenomena by means of Mechanics” was “a vain enterprise”. He 

reminded the reader about the discovery of polarisation in optical phenomena: the 

mechanical models of aether endowed with some properties of solid bodies, which 

would have explained the polarisation, were physically inconsistent.37 

In the second half of the paper, Ostwald raised some crucial questions. As stressed by 

Poincaré in his 1893 paper, the most serious hindrance Mechanics had face was 

represented by the irreversibility of real phenomena. Mechanics could not explain the 

temporal direction of natural processes, because “the processes of rational Mechanics 

can both follow and go back up the course of time”. He thought that mechanical models 

could be easily skipped in favour of some kind of direct approach to experience, which 

would have allowed us “to see directly” the world, without “any picture, any symbol”. It 

seems a very naïve point of view: no physical theory can avoid some kind of “symbols” 

or representations. In reality, Ostwald intended something definitely less dramatic: 

science had to confine itself to quantitative relationships among “entities which could 

be handled and measured”. The most important of these entities was “the most general 

invariant, the energy”, or, better, any difference of energy.38  

In Ostwald foundation of physics, energy assumed the role played previously by 

matter. To anybody who had thought that energy is “an abstraction” whereas “matter is 

the reality”, he claimed that it was “just the contrary”. According to Ostwald, matter 

was “a mental creation” put forward in order to “represent what is constant in the 

transformations”, whereas the material effects of those transformations on our senses 

was actually linked to the energy. The concept of “mass”, one of the concept stemming 

from the concept of matter, was nothing more than “the capacity of kinetic energy”; the 

concept of “impenetrability”, nothing more than “energy of volume”; the “weight”, 

nothing more than “energy of position”; eventually “the chemical properties”, nothing 

more than “chemical energy”. In brief, matter corresponded to “a set of different 

                                                        
37 Ostwald W. 1895a, p. 953-5. 
38 Ostwald W. 1895a, p. 955-7. 
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energies” whose mutual relationships were submitted to a sole hypothesis: a general law 

of conservation.39 

According to Ostwald, the concept of energy could explain “what had been explained 

by means of the entities matter and force, and even more”. Forces, “whose existence we 

cannot demonstrate”, acting on atoms, “which we cannot see”, had to be replaced by 

“the quantities of energy at stake in the phenomenon under consideration”. The 

conceptual and mathematical framework for every kind of phenomena required the 

specification of space, time and energy. This passionate hymn to energy was 

accompanied by a more sober meta-theoretical attitude towards the scientific practice. 

He quoted Kirchhoff and his preference for “the description of facts” rather than “the 

explanation of Nature”. This phenomenological attitude stood beside an evolutionary 

conception of science: “the advantages of the energetic theory over the mechanic 

theory” notwithstanding, energetics had not to be looked upon as the final stage of 

science. In an unspecified future, Ostwald expected a wider-scope theory, wherein 

energetics would have appeared as “a specific instance of more general relations”. He 

was “loath to fix“ any a-priori “boundary to the progress of science”.40 

When we compare Ostwald with Duhem energetics, we find a remarkable difference: 

the unifying power of very general mathematical structures in the latter, and the 

unifying power of a specific physical entity in the former. In a brief letter Ostwald sent 

to the same journal after some weeks as a response to the criticism of the French 

physicist M. Brillouin, he stressed synthetically the same view put forward in the 

previous paper. With regard the meta-theoretical level, he insisted on his radical 

phenomenology: energetics dealt with mathematical symbols which expressed “nothing 

else but the facts to be represented”. With regard the theoretical level, he reminded the 

reader that, after having spent ten years “in building up a mechanical theory of chemical 

affinities”, he had decided to “give up looking for any mechanical analogy”.41 On both 

theoretical and meta-theoretical levels, we can appreciate the distance between Ostwald 

and Duhem energetics. 

 
                                                        

39 Ostwald W. 1895a, pp. 956-7. In order to show that energy was something more palpable than matter, Ostwald 
asked: “Vous recevez un coup de bâton. Que ressentez-vous, le bâton ou son énergie?“ (Ibidem, p. 957) 

40 Ostwald W. 1895a, pp. 957-8. 
41 Ostwald W. 1895b, pp. 1070-1. 



12. Looking for a theory of permanent deformations 

 

In 1894 Duhem sent to a Belgian scientific journal a long paper under the title Sur les 

déformations permanentes et l’hystérésis. The following year he sent two other papers 

under the same title, but with the sub-titles Les modifications permanentes du soufre, 

and Théorie générale des modifications permanentes. In 1896, L’Académie Royale de 

Belgique published the three papers in the same volume as a series of Première 

Mémoire, Deuxième Mémoire, and Troisième Mémoire.  

The first paper begins with a short historical account of “infrequent” attempts at 

“making the different kinds of permanent deformations match with the principles of 

thermodynamics”. Duhem devoted some pages, in particular, to criticize the theory M. 

Brillouin had outlined in 1888 and 1889. According to Duhem, the difficulties in coping 

with permanent deformations stemmed from “the restrictive hypothesis” which 

preceded “the demonstration of Carnot’s theorem” or the second Principle of 

thermodynamics. The hypothesis assumed the existence of “reversible transformations” 

or transformations which could be looked upon as “a continuous series of states of 

equilibrium”. The restriction to reversible transformations led naturally to the exclusion 

of phenomena like magnetic hysteresis. In this kind of phenomena, “a continuous series 

of states of equilibrium is not a reversible transformation”, and the second Principle of 

thermodynamics could not be called into play. The only theoretical pillar at disposal 

was ”the principle of equivalence between heat and work”, namely the first Principle of 

Thermodynamics. At the end of the “Introduction”, Duhem pointed out the limited 

theoretical grounds he could rely on: the first Principle “is the only principle of 

thermodynamics we are allowed to apply”.1 

The first chapter is the longest of the paper, and it is also its theoretical core. He 

started from a simplified physical system defined by a temperature T and a single 

“normal variable x”, and applied to it “the classic propositions of thermodynamics”. 

Among them, the first Principle, the definition of internal thermodynamic potential, the 

relationship between internal energy and internal potential, and the condition of 

equilibrium under an external force X: 

                                                        
1 Duhem 1894b, pp. 3 and 7. 
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€ 

F = E U −TS( ) ,      (5)  
  

€ 

EU x,T( ) = F (x,T )−T ∂F (x,T )
∂T

,   and    

  

€ 

X =
∂F (x,T )

∂x
. 

 

As a consequence, 

 

(7) 
  

€ 

dX =
∂2F (x,T )

∂x2
dx+

∂2F (x,T )
∂x∂T

dT .2 

 

Although dealing with irreversible phenomena, Duhem assumed that “a function 

  

€ 

F (x,T ) , which we still call internal thermodynamic potential” did exist, and which the 

“internal energy” could be derived from it. As a further hypothesis, equation (7) was 

replaced by a slightly different one, wherein a new term was added: 

 

(8) 
  

€ 

dX =
∂2F (x,T )

∂x2
dx+

∂2F (x,T )
∂x∂T

dT + f x,T ,X( ) dx . 

 

The function 

€ 

f x,T ,X( ) was an unspecified “uniform and continuous function of the 

three variables 

€ 

x,T ,X ”. It was just the existence of a term depending on 

€ 

dx  that assured 

that “a continuous series of states of equilibrium of the system is not, in general, a 

reversible transformation”. In this way, the mathematical model became sensitive to the 

direction of the transformation. At that stage, Duhem confined himself to isothermal 

transformations, for he was interested mainly in mechanical deformations. Therefore the 

last equations assumed the simplified form 

 

(8bis) 
  

€ 

dX =
∂2F (x,T )

∂x2
dx+ f x,T ,X( ) dx . 

 
                                                        

2 Duhem 1894b, pp. 7-8. 
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If x>0, when the physical system undergoes some kind of generalized motion, the 

equation gives rise to “the family of ascending curves”: 

 

  

€ 

dX
dx

=
∂2F (x,T )

∂x2
+ f x,T ,X( ). 

 

If x<0, when the system comes back from the point of view of that generalized 

motion, the equation gives rise to “the family of descending curves”: 

 

  

€ 

dX
dx

=
∂2F (x,T )

∂x2
− f x,T ,X( ).3 

 

Duhem assumed that “for every point M of the plane (X, x), only an ascending curve 

and a descending curve are allowed”. 

 

 

Picture 1 (Duhem 1894b, p. 9) 

 

From the point of view of analytic geometry, the last two equations are nothing else 

but the reciprocals of the angular coefficients 

€ 

α  and 

€ 

β  of the tangent lines to ascending 

and descending curves:  
                                                        

3 Duhem 1894b, pp. 8-10. 
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€ 

1
α

=
∂2F (x,T )

∂x2
+ f x,T ,X( )   and   

  

€ 

1
β

=
∂2F (x,T )

∂x2
− f x,T ,X( ).4 

 

Since he could not rely on Carnot’s principle for reversible transformations, Duhem 

was looking for “a new hypothesis”. He thought he could rely on the following one: for 

“states of equilibrium infinitely close to each other, corresponding to a same 

temperature T of the system”, 

 

€ 

dX dx > 0 . 

 

From the geometrical point of view, the hypothesis was consistent with the two curves 

drawn above: “every ascendant curve” goes up from left to right”, and “every 

descendant curve goes down from right to left”. From the analytic point of view, it had 

two consequences:  

 

  

€ 

∂2F (x,T )
∂x2

+ f x,T ,X( ) > 0,   
  

€ 

∂2F (x,T )
∂x2

− f x,T ,X( ) > 0, 

 

and therefore 

 

  

€ 

∂2F (x,T )
∂x2

> 0. 

 

He assumed the existence of a new kind of closed cycle, a cycle of hysteresis, 

consisting of “a descendant curve and an ascending curve meeting at two points”. This 

was “the most simple closed cycle we can conceive”, namely “a simple closed cycle”. 

Every closed cycle had to be composed of whatsoever number of simple cycle. The new 

                                                        
4 Duhem 1894b, pp. 9-10. 
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kind of cycle was, in some way, the fundamental entity of the new thermodynamics of 

permanent, irreversible transformations.5 

In a simple closed cycle, on the ascending curve there is a point wherein a curve 

belonging to the bundle of descending curves is tangent. A similar point can be found 

on the descending curve of the cycle. Such kinds of points were labelled by Duhem 

“natural states”, and he proceeded to demonstrate that, in every isothermal closed cycle, 

“we can find at least two natural states of the system”. 

 

 

Picture 2 (Duhem 1894b, p. 14) 

 

Why were they qualified as “natural”? In those point of the graph, 

€ 

α = β  and therefore  

 

€ 

f x,T ,X( ) = 0 . 

 

In some way, in those points the effects of the new irreversible 

Mechanics/Thermodynamics are not operating, and ordinary thermodynamics is at 

stake. The behaviour of the physical system in those states emerges in a clearer way 

when we show the relationship between the external force and the transformations 

experienced by the “normal” parameter x. Let us assume that the external force X act 

                                                        
5 Duhem 1894b, pp. 11 and 13. 
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along a given direction and then in the opposite, with the same intensity. From equation 

(8bis), 

 

  

€ 

0 = dX−dX =
∂2F (x,T )

∂x2
dxk

k=1

2

∑ + f x,T ,X( ) dxk
k=1

2

∑    or   

 

 (16) 

  

€ 

dxk
k=1

2

∑ = −
f x,T ,X( )
∂2F (x,T )

∂x2

dxk
k=1

2

∑ .6 

 

When the sum of applied forces vanishes, the physical system does not return to its 

initial conditions: it has experienced an irreversible strain 

€ 

x1− x0( ). Only if 

€ 

f x,T ,X( ) = 0 , 

the system can dodge an irreversible transformation: only in natural states the system do 

not suffer permanent transformations. 

 

“Cette égalité (16)  nous montre que 

€ 

x1− x0( ) n’est pas nul en général. Lorsqu’à 

la fin d’une modification isothermique infiniment petite, l’action extérieure 

reprend sa valeur primitive, la variable normale x ne reprend pas sa valeur 

primitive, la variable normale x ne reprend pas sa valeur primitive ; elle éprouve 

une variation permanente. 

Il y a exception à cette règle dans le cas où 

€ 

f x,T ,X( ) = 0 . 

Dans ce cas, l’égalité (16) devient 

€ 

x1− x0 = 0 . 

Une modification infiniment petite, accomplie au voisinage d’un état naturel, 

n’entraine aucune modification permanente. Si donc on n’étudie que des 

modifications très petite autour d’un état naturel du système, on pourra leur 

appliquer les lois ordinaires de la thermodynamique ; …”7 

                                                        
6 Duhem 1894b, p. 17. I have slightly modified Duhem’s formalism. 
7 Duhem 1894b, pp. 17-8. 
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After a series of long mathematical steps, Duhem showed the existence of two kinds 

of permanent deformations, corresponding to two slightly different graphs:  

 

 

Picture 3 (Duhem 1894b, p. 29) 

 

 Picture 4 (Duhem 1894b, p. 29) 

 

In spite of the very slight difference in their geometrical representations, systems of 

the “first category” and systems of the “second category” behaved in a very different 

way with regard to stability. In order to explain the different behaviour, Duhem choose 

a physical system swinging “with small amplitude around a fixed point x0”, when 

temperature undergoes “small variations around a fixed value T0”. He took into account 

processes more general than purely isothermal ones: it could therefore be 

€ 

dT ≠ 0. The 

integration over space of the general equation (8), in the case of “very slow variations” 

and “very great number of oscillations”, let “infinitely small quantities” vanish, and “a 

finite value for 

€ 

dx∫ “ emerge. In other words, after many slow oscillations 

€ 

dX = 0 and 

€ 

dT = 0, and only two kinds of terms survived: 

 

  

€ 

∂F (x1,T0)
∂x1

−
∂F (x0,T0)

∂x0

 

 
 

 

 
 + f x,T ,X( ) dx∫ = 0, 
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wherein 

€ 

x0  and 

€ 

x1 are initial and final values of the geometrical parameter. After 

other mathematical steps (and some misprint) Duhem found that the first kind of system 

approaches “the natural state 

€ 

ξ ,X0, T0( ) corresponding to the temperature 

€ 

T0 and the 

external action 

€ 

X0”. The system is therefore stable. On the contrary, systems of the 

second kind are not stable: they “change endlessly” when submitted to “an external 

force and a temperature THEREABOUTS constant“. This difference involved even “natural 

states”: they were “stable states for system of the first category” but “instable states for 

the systems of the second category”.8  

Duhem made use of the general equation (8) in order to describe simple mechanical 

systems: “a homogeneous cylinder submitted to a traction”, or “torsion”, or “flexion”. 

All these instances of “very simple and marked permanent deformations” would 

correspond to systems of the “second category”. The other kind of permanent 

deformations, belonging to the “first category”, corresponded to processes like 

quenching. If traction, torsion and flexion represented the mechanical side, quenching 

represented the thermal side of Duhem’s theory of permanent deformations. If elastic 

deformations could be mathematical represented in an abstract plane (X, x), thermal 

processes like quenching could better be represented in an abstract plane (T, x).9 

A slightly different approach was required in the case of magnetic permanent 

deformations, namely the phenomena known as “magnetic hysteresis”. The concept of 

“external action” did not suit “a magnetic element placed inside a magnet”. Differently 

from the mechanical case, there was both a “magnetism” acting on the element as well 

as on the “surrounding magnets”, and the “magnetic intensity” or “the magnetic state” 

or “the state of magnetisation” of the given element. The first magnetic action H could 

be derived by a “potential function   

€ 

V “, according to the law 

 

  

€ 

H = −
∂V
∂x

,− ∂V
∂y

,− ∂V
∂z

 

 
 

 

 
 , 

 

                                                        
8 Duhem 1894b, pp. 33-4 and 37-8. 
9 Duhem 1894b, pp. 38 and 44-5. 
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and could play the role of the external force X. The second magnetic action   

€ 

M, in the 

specific case of “perfectly soft bodies”, could be put in a simple, even though recursive, 

relationship with H: 

 

      

€ 

M= F M,T( )H , 

 

wherein the function     

€ 

M= F M,T( )H  was “the magnetising function”. In the 

theoretical framework of Duhem’s theory,   

€ 

M played the role of a “normal variable”. 

Both H and   

€ 

M were submitted to other specific “restrictions”, and Duhem 

acknowledged that his mathematical model was “very specific”: he looked upon it as “a 

first step towards the general theory of magnetic hysteresis”. The action H was assumed 

to have “a constant direction”, and the magnetisation   

€ 

M was supposed to act in the 

same direction as H: these restrictions allowed Duhem to make use of a scalar rather 

than vector “normal variable”.10 

The formal analogy between mechanical and magnetic processes led Duhem to 

marshal a series of equations leading to his “fundamental equation of magnetic 

hysteresis”. From  

 

    

€ 

H = M
F M,T( )

 

 

he derived the expression for dH: 

 

  

€ 

dH =
1

F M,T( )
−

M

F M,T( )[ ]2
∂F M,T( )

∂T

 

 

 
 

 

 

 
 
dM−

M

F M,T( )[ ]2
∂F M,T( )

∂T
dT . 

 

If we formally put 

 

                                                        
10 Duhem 1894b, pp. 51-3. 
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€ 

G M,T( ) =
1

F M,T( )
−

M

F M,T( )[ ]2
∂F M,T( )

∂T

g M,T( ) = −
M

F M,T( )[ ]2
∂F M,T( )

∂T

 

 

 
  

 

 
 
 

 

 

then we have an equation corresponding formally to (7): 

 

(52)   

€ 

dH =G M,T( )dM+g M,T( )dT . 

 

As Duhem himself specified, this equation could only represent “magnetic bodies 

which are perfectly soft”. When we are dealing with bodies “endowed with a coercive 

force”, the equation must be generalized in accordance to (8): 

 

(53)   

€ 

dH =G M,T( )dM+g M,T( )dT + f M,H ,T( ) dM . 

 

The structure of equation (53) is similar to the structure of equation (8), but the 

content of the differential coefficients in the two right sides are quite different. 

Moreover, in this case, Duhem did not pursue the physical/mathematical approach in 

terms of internal thermodynamic potential. It was just “the experience” to show that “a 

magnetised body is a system of the first category”.11   

Duhem was aware of the tentative and provisional nature of his theory. It could 

account for “the most important experimental outcomes”, and reduced the description of 

a magnetic body “to the experimental specification of the two functions   

€ 

F M,T( ) and 

  

€ 

f M,H ,T( )”. On the other hand, the theory lacked in generality: it could not account, for 

instance, for “the influence of mechanical actions or elastic deformations on 

magnetisation”. A more general theory, “depending on more than one normal variable”, 

                                                        
11 Duhem 1894b, pp. 53 and 59. 
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was required: among the expected “great difficulties”, Duhem mentioned the 

impossibility of relying on simple “geometrical representations”.12  

The second paper Duhem devoted to permanent deformations deals with a specific 

chemical-physical phenomenon: “the permanent modifications sulphur experiences 

under the influence of heat”. Chemists knew that, when heated, “soluble sulphur in 

carbon sulphide is transformed in part … into insoluble sulphur”. Liquid sulphur is, in 

general, “a mixture of two substances …, one being the allotropic state of the other”: it 

can solidify both “in the octahedral state and in the prismatic state”. Solid sulphur also 

“is not a well definite substance”, but a mixture of “different sulphurs” in variable 

proportions.13 Temperature and concentration were critical parameters for the 

transformations involving the two kinds of sulphur. 

 

“Le soufre octaédrique peut se transformer en soufre prismatique au contact 

d’une parcelle de soufre prismatique ; il suffit, pour cela, que la température soit 

supérieure à une certaine limite Z(x), variable avec la concentration x, mais 

toujours supérieure à 97,2°. Ce point de transformation s’élève lorsque la 

concentration x augmente.”14 

 

Duhem was dealing here with phenomena placed outside the explanatory scope of 

ordinary mechanics, thermodynamics and chemistry. He saw an analogy between the 

change of physical state of sulphur and the process of quenching: both of them were 

transformations occurring “at variable temperature under a constant external action”. 

For the moment however the approach was quite formal, since he introduced two 

“normal parameters”: the volume 

€ 

v  of the system and “a third variable 

€ 

x , whose nature 

will be left unspecified at the moment”. A “normal and uniform pressure” 

€ 

Π  was the 

external force” corresponding to the parameter 

€ 

v : it was indeed the one and only force 

which the system was submitted to. Under a constant temperature, the conditions of 

equilibrium are 
                                                        

12 Duhem 1894b, p. 61. 
13 Duhem 1895a, pp. 4 and 54. Liquid sulphur had a very peculiar behaviour with regard temperature. See p. 38: “Si, 

après avoir fondu du soufre, on porte le liquide à des températures variables, pour le refroidir ensuite et en déterminer 
la solidification …, on trouve que la température de solidification, au lieu d’ être fixe, comme pour la plupart des 
liquides, dépend des températures par lesquelles on a fait passer le soufre liquide : …” 

14 Duhem 1895b, pp. 70-1. 
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€ 

∂F (x,v,T )
∂v

=Π    and   
  

€ 

∂F (x,v,T )
∂x

= 0 . 

 

The differentiation of the last equation offers 

 

  

€ 

∂2F (x,v,T )
∂x∂v

δv+
∂2F (x,v,T )

∂x∂T
δT +

∂2F (x,v,T )
∂2x

δx = 0. 

 

This is the equation which Duhem generalised in order to take into account permanent 

transformations: 

 

  

€ 

∂2F (x,v,T )
∂x∂v

δv+
∂2F (x,v,T )

∂x∂T
δT +

∂2F (x,v,T )
∂2x

δx+ f (x,v,Π,T ) δx = 0 .15 

 

The legacy of “ascending”, “descending” and “natural” curves, as well as “first” and 

“second” category closed cycles, were transferred unchanged in the new kind of 

physical-chemical permanent transformation. The physical and geometrical approach 

became more sophisticated, since Duhem took into account “endothermic” and 

“exothermal” transformations, and a new sub-division into “clockwise” and 

“anticlockwise” transformations. At the end he displayed eight families of closed 

cycles, according to the three binary parameters: the “category”, the direction of the 

path, and the sign of the heat exchanged.  

 

                                                        
15 Duhem 1895a, pp. 4-5 and 8-9. 
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Picture 5 (Duhem 1895a, p. 36) 

 

Duhem showed that if “Clausius’ inequality”  

 

€ 

dQ
T∫ > 0 

 

had been assumed as a further hypothesis, the eight families of closed cycles would 

have become four. In particular, endothermic cycles could only be clockwise, and 

exothermal ones only anticlockwise.16 

In the following chapters, Duhem developed a detailed experimental analysis, and 

tried to compare his graphs with experimental data. But it was only in the third paper 

that he put forward a general theory of permanent transformations. In the 

“Introduction”, he briefly recollected the specific processes studied in the first two 

papers: mechanical deformations, magnetic hysteresis, quenching, and sulphur 

transformations. Then he stressed the necessity of “a more general point of view”, 

                                                        
16 Duhem 1895a, pp. 27, 33 and 35-6. As Duhem remarked, an irreversible cycle does not fulfil the conditions 

required by the demonstration of “Clausius’ inequality”. (See Ibidem, p. 35)  
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which he would have developed in three different directions: systems described “by any 

number of normal parameters”, simultaneous variations of temperature and external 

actions, and the theoretical integration with the theory outlined in the Commentaire aux 

principes de la thermodynamique.17 

Duhem tried to further generalize the generalized Mechanics/Thermodynamics he had 

put forward in his 1891 “Sur les équations générales de la Thermodynamique”, and in 

the subsequent three-part Commentaire. First of all he reminded the reader that 

transformations could be “workable” or “purely virtual”: workable transformations split 

into “reversible” and “not reversible”. Then he summarise the theory put forward on 

reversible transformations in the Commentaire. He had started from the choice of the 

“normal” parameters 

€ 

α ,β ,......,ν , which, together with temperature the T specified “the 

state of the system”. A, B, … … N were “the external actions” associated to those 

parameters. An “internal thermodynamic potential”   

€ 

F α ,β ,......,ν ,T( ) could be defined as 

“uniform and continuous function”, and the internal energy 

€ 

U α ,β ,......,ν ,T( ) could be 

defined in terms of   

€ 

F α ,β ,......,ν ,T( ): 

 

  

€ 

EU α ,β ,......,ν ,T( ) = F α ,β ,......,ν ,T( )−T ∂
∂T

F α ,β ,......,ν ,T( ) . 

 

The equilibrium of the system was assured by necessary and sufficient conditions: 

 

  

€ 

A =
∂
∂α

F α ,β ,......,ν ,T( )

B=
∂
∂β

F α ,β ,......,ν ,T( )

... ...

N =
∂
∂ν

F α ,β ,......,ν ,T( )

.18 

 

                                                        
17 Duhem 1895b, p. 4. 
18 Duhem 1895b, pp. 6-7. 
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The thermodynamics of reversible processes had a too narrow scope, and processes of 

permanent deformations called into play “a wider, more comprehensive 

thermodynamics”.  On the other hand, the former should have been looked upon “as a 

specific instance” of the latter. In the set of Lagrangian parameters 

€ 

α ,β ,......,ν  he defined 

two subset 

€ 

α ,β ,......,λ  and 

€ 

µ,......,ν . To the second subset he associated a series of old 

conditions of equilibrium 

 

(III.4) 

  

€ 

M =
∂F
∂µ

... ...

N =
∂F
∂ν

 

 

 
  

 

 
 
 

or   

  

€ 

dM =
∂2F
∂α∂µ

dα + ... +∂
2F
∂2µ

dµ + ...+ ∂2F
∂ν ∂µ

dν

... ...

dN =
∂2F
∂α∂ν

dα + ... + ∂2F
∂µ∂ν

dµ + ...+∂
2F
∂2ν

dν

 

 

 
 
 

 

 
 
 

. 

 

Duhem specified that the conditions were necessary but not sufficient. To the first 

subset of parameters he associated a series of new conditions of equilibrium 

 

(III.5) 

  

€ 

dA =
∂2F
∂α 2

dα + ... + ∂2F
∂λ∂α

dλ +
∂2F
∂µ∂α

dµ + ...+ ∂2F
∂ν ∂α

dν +
∂2F
∂T ∂α

dT +gα α ,...,ν ,T( ) dα

... ...

dL =
∂2F
∂α∂λ

dα + ... +∂
2F
∂λ2

dλ +
∂2F
∂µ∂λ

dµ + ...+ ∂2F
∂ν ∂λ

dν +
∂2F
∂T ∂λ

dT +gλ α ,...,ν ,T( ) dλ

 

 

 
  

 

 
 
 

 

 

Only these parameters were affected by irreversible effects: he loaded the burden of 

irreversibility exclusively on the shoulders of 

€ 

α ,β ,......,λ . With regard to the function 

  

€ 

F α ,β ,......,ν ,T( ), he specified that its existence depended on the choice of the 

parameters 

€ 

α ,β ,......,ν : for the moment he confined himself to state that they had to be 

“CONVENIENTLY CHOSEN”.19 

                                                        
19 Duhem 1895b, pp. 8-9. The physical and logical relationship between new and old theory, as well as the 

mathematical difficulty associated to the existence of the function   

€ 

F α,β,......,ν ,T( )  would have briefly clarified in 
the following pages.  



Stefano Bordoni 250 

The introduction of two subsets of parameters assured formally that “the theory 

deduced from the new hypothesis contains the old thermodynamics“: the reduction of 

the new to the old theory took place when the system did not depend on the subset of 

Lagrangian parameters 

€ 

α ,β ,......,λ . Nevertheless, physical and logical objections could 

be raised against that reduction, although the mathematical generalisation had been 

apparently accomplished. Duhem was aware that the relationship between his 

generalized 1891-94 Mechanics/Thermodynamics and his 1895 irreversible 

Mechanics/Thermodynamics was a very delicate issue. He devoted only a short passage 

to it, but he acknowledged that the two theories were in some way contradictory.  He 

remarked that they were “in general, incompatible”, for they were based on the 

incompatible hypotheses of reversibility and irreversibility, even though “the new 

hypothesis gives rise to the old hypothesis in this specific case“. The logical 

incompatibility could only be removed by a sort of logical somersault leading to look 

upon reversibility as a specific instance of irreversibility.20 

There was a very delicate issue even from the mathematical point of view, specifically 

with regard to the choice of parameters. In fact, the structure of equations (III.5) is not 

invariant under a general transformation of parameters of the kind 

 

€ 

α = a α ' ,β ' ,......,ν '( )
β = b α ' ,β ' ,......,ν '( )
... ...
ν = n α ' ,β ' ,......,ν '( )

. 

 

The replacement of the set of parameters 

€ 

α ,β ,......,ν  by the set 

€ 

α ' ,β ' ,......,ν ', changes 

the structure of the terms 

€ 

gα dα , … …, 

€ 

gλ dλ  in (III.5). Only a transformation less 

general, which does not mix the parameters associated to irreversibility,  

 

                                                        
20 Duhem 1895b, p. 10. 
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€ 

α = a α '( )
... ...
λ = l λ '( )
µ = m µ' ,......,ν '( )
... ...
ν = n µ' ,......,ν '( )

 

 

could save the invariance of the equations. The mathematical description of the 

physical system was sensitive to the choice of the parameters: there was, in some way, a 

sort of mathematical instability of the equations.21  

Nevertheless Duhem went on with other generalisations. The concept of “natural 

state” was generalised into the concept of “space of natural states”. It was an abstract 

space, more specifically a sub-space of the 

€ 

2n+1( )-dimensional space defined by the 

€ 

2n+1( ) parameters 

€ 

α ,β ,......,ν ,T . Natural states corresponded to the conditions 

€ 

gα = gβ = ... ...= gλ = 0  associated to the equations (III.4):  

 

(III.20) 

  

€ 

gα α ,...,ν ,T ,A,B,...,N( ) = 0

... ...
gλ α ,...,ν ,T ,A,B,...,N( ) = 0

M =
∂F
∂µ

... ...

N =
∂F
∂ν

 

 

 
 
 
 
 

 

 
 
 
 
 

 

 

There are exactly 

€ 

n  equations, and they define a 

€ 

n+1( )-dimensional sub-space of the 

€ 

2n+1( )-dimensional space of the states of the system: it is the space of “natural states”.22 

Also the generalization of the concept of closed cycle was based on the equations 

(III.4-5). Duhem imagined “an infinitely small transformation” after which “the 

temperature T and the external forces A, B, …, N regain their initial values”. If 

                                                        
21 Duhem 1895b, pp. 11-2. 
22 Duhem 1895b, p. 21. 
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€ 

α0,β0,......,ν0  are the initial values of the parameters 

€ 

α ,β ,......,ν , their final values will 

generally be different from 

€ 

α0,β0,......,ν0 : he called them 

€ 

α1,β1,......,ν1. The smallness of 

the transformation allowed him to perform an approximate integration of the differential 

equations (III.4-5): 

 

  

€ 

∂2F
∂α 2

α1−α0( )+ ... ...+ ∂2F
∂ν ∂α

ν1−ν0( )+gα dα = 0∫
... ...

∂2F
∂α∂λ

α1−α0( )+ ... ...+ ∂2F
∂ν ∂λ

ν1−ν0( )+gλ dλ∫ = 0

∂2F
∂α∂µ

α1−α0( )+ ... ...+ ∂2F
∂ν ∂µ

ν1−ν0( ) = 0

... ...

∂2F
∂α∂ν

α1−α0( )+ ... ...+∂
2F
∂2ν

ν1−ν0( ) = 0

 

 

 
 
 
 
 
  

 

 
 
 
 
 
 
 

 

 

The role of the functions 

€ 

gα ,gβ ,...,gλ  is quite clear from the mathematical point of 

view: they prevent the mathematical system of equations to become a homogeneous 

system. If 

€ 

gα = gβ = ... ...= gλ = 0 , the mathematical system would be homogeneous, and 

it would offer only the trivial solution 

€ 

α1−α0( ) = ... ...= ν1−ν0( ) = 0 . On the contrary, if 

some of the functions 

€ 

gα ,gβ ,...,gλ  does not vanish, the system is inhomogeneous, and it 

can offer some non-vanishing solutions for the set of deformations 

€ 

α1−α0( ), ... ..., ν1−ν0( ). In the first case, the Lagrangian parameters regain the initial 

values at the end of the cycle; in the second case they do not. In the first case, the 

physical system does not experience permanent deformations; in the second case it 

does.23 

As Duhem himself wrote in the short “Conclusion” at the end of his third paper on 

permanent deformations, he had shown a possibility: he had outlined a mathematical 

theory submitted to various specific conditions. Although provisional, the theory 

                                                        
23 Duhem 1895b, pp. 22-3. 
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sketched in these papers “cast some light” on a very demanding subject matter.24 

Nevertheless, the questions the theory raised were as important as the specific answers 

it offered. He went on publishing other four papers on the same subject, and under the 

same title Sur les déformations permanentes et l’hystérésis, till 1901. At the same time, 

he tried to insert the theory of permanent deformations into his Energetics or 

generalised Mechanics. A long essay he published in 1896 represented a further effort 

of generalisation: it is the subject of the next chapters. 

                                                        
24 See Duhem 1895b, pp. 54-5: “La présente étude montre que l’on peut énoncer, pour les états naturels qui sont 

stables, des propositions semblables de tout point à celles dont les états d’équilibre stable des systèmes dépourvus de 
modifications permanentes sont, depuis longtemps, l’objet. Il nous semble qu’elle jette par là un jour nouveau sur les 
relations qui existent entre la thermodynamique classique et la théorie des déformations permanentes, telle que nous 
l’avons exposée dans les deux précédentes publications.” 



 



 

 

 

 

 

 

 

 

 

 

 

 

THIRD PART 

Towards a general theory of transformations 

 

 



 



 

 

13. A structural analogy 

 

In 1896, the Parisian librarian and publisher A. Hermann sent to the printing press a 

long essay Duhem had written for the Mémoires de la Société des Sciences physiques et 

naturelles de Bordeaux. The essay, Théorie thermodynamique de la viscosité, du 

frottement et des faux équilibres chimiques, represented in some way the final stage of 

Duhem’s theoretical, meta-theoretical and historical journey through the complex net of 

connections involving analytic mechanics, thermodynamics and chemistry. The 

structural analogy based on analytic mechanics, when exploited till its extreme 

consequences, showed to be deficient in generality. At that stage, Duhem had no other 

choice that widen the original structure, and put forward a wider Mechanics expressed 

by more general equations. Lagrange’s original design of rephrasing mechanics in a 

more general and abstract way maintained its fruitfulness but, at the end of the 

nineteenth century, Duhem realized that he had to go a step further. 

The Introduction to the essay was a theoretical and historical summary intensely 

focussed on the concept of “false equilibrium” he had introduced three years ago in his 

Introduction à la mécanique chimique. The starting point concerned chemistry, in 

particular the series of thermo-chemical theories subsequently put forward in the course 

of that century. Duhem reminded the reader that the more ancient theory had identified 

chemical combinations with exothermal reactions, and chemical decompositions with 

endothermic ones. Then a “law of displacement of equilibrium“ had come forward: 

“exothermal combinations takes spontaneously place at low temperatures” but 

“decompose spontaneously at high temperature”. Endothermic combinations should 

have exhibited the opposite behaviour. The fact was that the law seemed “in opposition 

with a huge number of specific instances”. As in his 1893 book, Duhem chose as 

example the case of oxygen, hydrogen and water: “gaseous water is produced at the 

expense of oxygen and hydrogen, and accompanied by a great release of heat”. We 

would expect that, at low temperatures, “most of the gas under consideration be in the 

state of steam”, and, when temperature increases. “the amount of steam in the system 

decrease”. Nevertheless, the expected behaviour had been really observed only at high 

temperature. On the contrary, at low temperatures, under a given threshold, “a mixture 

of oxygen, hydrogen and steam can be in equilibrium, irrespective of its composition”. 
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Only under the threshold, at a temperature “close to sombre red”, the mixture underwent 

combination.1  

In other words, there was a wide region of temperature wherein the equilibrium was 

maintained by a sort of laziness of the system: only over and under that strip the system 

became sensitive to temperature. Similar “contradictions” were even offered by 

“endothermic combinations”: silver oxide, for instance, “is produced at the expense of 

oxygen and silver, and accompanied by an absorption of heat”. At high temperatures, 

the oxide is produced as expected, but, “at temperatures less than 100°C, silver oxide 

did not decompose” as expected. The situation which chemists were facing around the 

middle of the century was thus summarized by Duhem: 

 

“Lorsque les propositions de la thermodynamique classique font prévoir qu’un 

système sera en équilibre dans certaines conditions, il demeure, en effet, en 

équilibre lorsqu’on le place dans ces conditions ; mais il peut arriver qu’il 

demeure effectivement en équilibre dans les conditions où, selon la 

thermodynamique classique, il devrait subir certaines transformations. 

Cette règle générale peut s’énoncer da la manière suivante : 

Toutes les fois que la thermodynamique classique nous annonce l’impossibilité, 

pour un corps, de subir une certaine modification, la modification dont il s’agit ne 

peut, en effet, être réalisée expérimentalement ; mais lorsque la thermodynamique 

classique annonce qu’un corps passera nécessairement d’un état à un autre, il 

arrive souvent que la modification annoncée ne se réalise pas.”2 

 

Duhem aimed at “developing and completing thermodynamic theories” in order to 

account for both “true” and “false” equilibrium. What was the more or less hidden 

“hypothesis” which the exclusion of “false” equilibrium derived from? He thought he 

had found it in a specific point of his Commentaires, just “after having developed the 

principle of conservation of energy, and before developing Carnot’s principle”. There 

he had stated that a system defined by its absolute temperature 

€ 

T  and its “normal” 

                                                        
1 Duhem 1896a, pp. 2-4. 
2 Duhem 1896a, p. 5. 
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Lagrangian parameters 

€ 

α , 

€ 

β , …, 

€ 

λ , is kept in equilibrium by “external actions” A, B, 

…, L, which “are specified, without any ambiguity in terms of 

€ 

α , 

€ 

β , …, 

€ 

λ  and 

€ 

T ”.3 

From the mathematical point of view, the flaw was in the system of 

€ 

n  equations in 

€ 

n +1 

parameters 

 

  

 

 

 

 

 

When inverted, the system should give the set of values of the parameters 

€ 

α , 

€ 

β , …, 

and 

€ 

λ  corresponding to “a state of equilibrium for the material system, when kept at the 

temperature T, and submitted to the external forces A, B, …, L”: 

 

 

 

 

. 

 

 

 

According to Duhem, even when the last mathematical system gives rise to “an 

infinity” of solutions, we are not sure that the solutions correspond to “a continuous set 

of solutions”.4 

The lack of continuity in the set of solutions was the key concept in Duhem’s 

comparison between theory and experiments.  

                                                        
3 Duhem 1896a, p. 6. The choice of the bold font for the expression “without any ambiguity” is consistent with the 

importance Duhem attributed to it. 
4 Duhem 1896a, pp. 6-7. 

€ 

A = fα α ,β ,.....,λ ,T( )
B= fβ α ,β ,.....,λ ,T( )
... ...
L = fλ α ,β ,.....,λ ,T( )

 

 

 
 

 

 
 

€ 

α = hα A,B,.....,L,T( )
β = hβ A,B,.....,L,T( )
... ...
λ = hλ A,B,.....,L,T( )
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“Or, cette supposition est contraire aux propriétés des systèmes qui présentent des 

états de faux équilibre; prenons, par exemple, à 200°C, un système qui renferme 

de la vapeur d’eau et les éléments de cette vapeur d’eau, oxygène et hydrogène, 

sous la pression invariable de l’atmosphère ; quelle que soit la fraction du système 

qui a passé à l’état de combinaison, quelle que soit celle qui est demeurée libre, le 

système est en équilibre ; nous pouvons donc, à la même température de 200°C, 

sous la même pression d’une atmosphère, observer une infinité d’états d’équilibre 

du système, et ces états d’équilibre forment une suite continue.”5 

 

The second part of the Introduction is devoted to the structural analogy between 

chemical “false” equilibrium and mechanical “friction”. Duhem took into account a 

very simple configuration: a body sliding on an inclined plane. According to “theorems 

of classic mechanics”, the body cannot be in equilibrium “under the action of gravity”. 

In reality, for every real plane, “there will be equilibrium when the inclination of the 

plane is under a certain limiting value”. Duhem remarked that, in order to explain “this 

contradiction”, it is said that “the body rubs against the plane”, and “classic mechanics 

does not take into account friction”. He realized that, in very general terms, the situation 

could be described by words not so different from the words employed to describe 

chemical false equilibriums: 

 

“Toutes les fois que la mécanique classique classique, où l’on fait abstraction du 

frottement, fait prévoir qu’un état du système étudié est un état d’équilibre, 

l’expérience confirme cette conclusion ; mais il peut arriver que le système soit en 

équilibre dans des états qui ne sont pas des états d’équilibre pour la mécanique 

des corps sans frottement.”6 

 

The analogy appeared to Duhem not so astonishing as long as “mechanics of bodies 

without friction is a specific instance of classic thermodynamics”. The existence of a 

                                                        
5 Duhem 1896a, p. 7. 
6 Duhem 1896a, p. 8. 

Fa 
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limiting value in the plane inclination 

€ 

α  comes easily out from the ordinary procedure 

of solution of the problem under consideration, in terms of the forces applied to the 

body. The forces are: “the weight P of the body”, namely the force of gravity acting on 

it, “the pressure N of the body on the plane”, which is nothing but else the opposite of 

the normal component of P, and a force of friction Fa, which is imagined as a force 

acting upside along the plane. This kind of force is commonly assumed to depend on N 

and on a coefficient f, which in turn depends on the unspecified “nature of the body and 

the plane”. The translation of friction into a force is one of the commonplaces in 

Mechanics. 

 

 

 

 

 

 

 

 

 

 

The specific expressions for the forces are: 

€ 

P = m g , 

€ 

N = m gcosα , and 

€ 

Fa = f N = f m gcosα . The forces acting along the plane are the horizontal component of 

gravity 

€ 

F = m gsinα  and the force of friction 

€ 

Fa = f N = f m gcosα : they have opposite 

directions. Equilibrium is attained whenever the force of friction is greater than the 

horizontal component of gravity: 

 

€ 

f m gcosα ≥m gsinα    or   

€ 

tgα ≤ f .7 

                                                        
7 Duhem 1896a, p. 9. 

P 

F 

P 
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Duhem made two remarks: the condition of equilibrium is expressed by an inequality 

rather than equality, and “the study of friction and the study of false equilibriums show 

a very close analogy”. More specifically, the two fields of science, although belonging 

to different fields of science, physics and chemistry, exhibited a formal analogy. 

 

“Les conditions d’équilibre d’un système à frottement s’expriment, non par des 

équations entre les forces agissantes et les variables, mais par des inégalités. 

Par conséquent, lorsque les forces agissantes sont données, l’état d’équilibre du 

système n’est pas déterminé ; mais on peut observer une infinité d’états 

d’équilibre formant un ensemble continu.”8 

 

At that point, an important issue emerged from the core of mechanics: is friction a 

fundamental phenomenon or simply “a fictitious term”, roughly describing those 

“various and complex actions which explain friction” itself? In other words, could 

“friction” be only a label stuck on a set of “actions whose explicit and detailed analysis 

is impossible”? Duhem was aware that he was reporting a “widespread opinion”, and he 

tried to better describe it, in order to better contrast it. According to that opinion, “the 

equations of mechanics which disregard friction are really general”. Experiments are at 

variance with the equations only because “natural bodies are more or less rough and 

pliable”; the disagreement would disappear if only we took into account those 

“roughness and pliability”. Duhem did not reject completely that “opinion”, since some 

effects due to friction could be removed by polishing the planes and choosing stiffer 

bodies. Nevertheless, not all phenomena structurally similar to friction could be reduced 

to a mere “appearance”, and could be completely described by “classic mechanics”.9   

He had to overcome both Gibbs’ approach to thermodynamics and his own previous 

beliefs, for instance the theory of false equilibriums he had outlined in his 1893 

Introduction à la mécanique chimique. He honestly acknowledged that his “judgement” 

had changed “on this point”. The “more complex way of representation” he had put 

                                                        
8 Duhem 1896a, p. 9. 
9 Duhem 1896a, pp. 9-11. 
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forward in 1893 called into play “very energetic actions, even though effective only at 

small distances”, among “elementary masses”. Those actions corresponded to a new 

term, an interaction term, which could be introduced in the thermodynamic potential. 

That conceptual and mathematical approach appeared now deficient in generality with 

regard to false equilibrium, although it could account for phenomena like capillarity. It 

could also explain “why a bubble of steam cannot begin to grow inside a liquid”, 

whereas “the liquid can vaporize where a bubble of steam or gas already pre-exist”. The 

same theory could explain “delays in boiling”, “delays in condensation”, 

“oversaturation in gaseous solutions”, and “delays in decompositions”.10   

According to Duhem, those phenomena could be classified as “seeming false 

equilibriums”. They were in accordance with “classic thermodynamic”, provided that 

we did not confine ourselves to “a too simplified representation of bodies”. 

Nevertheless, in general, could he be satisfied by that approach? He was aware that he 

was facing a far-reaching meta-theoretical issue: can we look upon “laws of mechanics 

and classic thermodynamics” as “logic consequence of unquestioned hypotheses”? 

Duhem saw a sharp alternative: to save classic thermodynamics, and apply it to a more 

sophisticated representation of physical systems, or modify classic mechanics, in order 

to attain a more general comprehension of complex phenomena. In other words, we can 

load the burden of complexity on the description of physical systems or on the 

equations of the theory. He was aware that he was dealing with “hypotheses”, or meta-

theoretical options, which could not be “disputed”: both of them were rightful meta-

theoretical options. 

 

“Si la réponse à cette question est affirmative, une contradiction entre le lois de la 

thermodynamique classique et l’expérience ne pourra jamais être qu’apparente ; 

elle pourra toujours se lever non point par l’introduction d’un terme 

complémentaire dans les équations fondamentales de la thermodynamique, mais 

par un plus grande complexité du système abstrait, reproduction schématique  des 

corps sur lesquels on expérimente, auquel on applique ces équations. 

                                                        
10 Duhem 1896a, pp. 12-13. 
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Si, au contraire, on répond à cette question par la négative ; si l’on regard 

l’établissement des lois de la mécanique et de la thermodynamique classique 

comme exigeant l’emploi de certaines hypothèses arbitraires, il ne sera nullement 

interdit de renoncer à ces hypothèses pour les remplacer par des suppositions plus 

compréhensive, de compléter les équations généralement admises  par 

l’introduction de nouveaux termes et l’on pourra s’efforcer de rendre compte, au 

moyen de ces termes complémentaires, de classes de phénomènes jusqu’ici 

inexpliqués.”11  

 

The hypothesis on the “conditions of equilibrium” in a physical system could be 

rejected or accepted. We can rightfully reject the possibility of “determining without 

any ambiguity” the external actions keeping the system in equilibrium. We are therefore 

allowed to put into the laws of mechanics and thermodynamics statements which 

“exclude that possibility”, in order to account for the phenomena of “false equilibrium 

and friction”. As Duhem remarked, he had already tried to pursue this theoretical 

pathway in a series of papers published between 1894 and 1895 under the common title 

Sur les déformations permanentes et l’hystérésis. He had introduced “a new term in the 

equations of statics”, in order to explain “permanent elastic strains”, “magnetic 

hysteresis”, and other phenomena wherein irreversible processes were involved. For the 

explanation of “friction and false equilibrium” he would have followed “a similar but 

distinct way”. He would have followed the structural analogy between analytic 

mechanics on the one hand, and mechanical, thermodynamic and chemical phenomena, 

on the other. He would have widened the structure of the equations of analytic 

mechanics, in order to account for those mechanical, thermodynamic and chemical 

phenomena too complex to be given a suitable description in the framework of classic 

science.12 

 

In the first chapter of the first part of the book, Duhem aimed at resuming “in a more 

detailed way” the previously sketched “study of viscosity”. He reminded the reader that 

“the equations of hydrodynamics deduced from D’Alambert principle do not fit the 
                                                        

11 Duhem 1896a, pp. 14-5. 
12 Duhem 1896a, pp. 15-6. 
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experience”, and that fluids are labelled “viscous” just when they do not follow those 

equations. Then he shortly outlined the history of the interpretations of viscosity in last-

century mechanics. He saw essentially two points of view: Navier, and subsequently 

Poisson, on the one side, and Stokes on the other. Navier had imagined a fluid as a 

collection of a huge number of “material points” submitted to “molecular forces”. 

Poisson had made use of molecular actions too, and he had tried to “explain” viscosity 

as well as “rigidity of elastic solids”. Stokes, on the contrary, had confined himself to 

introduce “terms corresponding to viscosity in the equations of hydrodynamics”, and 

had not tried to explain “the origin of these terms”. Duhem found that the distinction 

between “actual viscosity” and “seeming viscosity” he had put forward in the 

Commentaire, held still true. In other words, there was a kind viscosity which could be 

reduced to hidden mechanical effects, or “small local perturbations which we do not 

like to analyse in detail”. But there was also an intrinsic viscosity, which could not be 

reduced to hidden mechanical effects: it corresponded to mathematical terms which had 

to “necessarily and essentially appear in the equations of motion” of a physical system.13 

Duhem proceeded step by step, following a by now well-known procedure: he started 

from a simple situation or process and, at every step, put forward further 

generalisations. He took into account “a system independent of external bodies, with the 

same temperature in every point”, in some way an abstract system. The state of the 

system was defined by its temperature and a set of “normal parameters” 

€ 

α ,β ,......,λ . As 

usual, in the mathematical-physical toolbox, Duhem put the force vive   

€ 

T , the internal 

thermodynamic potential   

€ 

F α ,β ,......,λ ,T( ), and the external forces A, B, …, L. To those 

basic functions he added the “passive resistances” or “viscous resistances” 

€ 

fα , fβ ,......, fλ, depending on the parameters 

€ 

α ,β ,......,λ ,T  and the time derivatives 

€ 

α ' = dα
dt
,β ' = dβ

dt
,......,λ ' = dλ

dt
. As Duhem remarked, the work done by the “resistances” 

 

€ 

fα
dα
dt

+ fβ
dβ
dt

+ ......+ fλ
dλ
dt

 

 
 

 

 
 dt  

 

                                                        
13 Duhem 1896a, pp. 17-9. 
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“cannot be but negative”. 

The generalized Lagrangian equations contained terms of three kinds: purely 

mechanical, 
  

€ 

A+
∂T
∂α

−
d
dt
∂T
∂α '

, classic thermodynamical, 
  

€ 

∂F
∂α

, and new viscous ones, 

€ 

fα . 

The system was therefore described by the equations 

 

(3)    

    

€ 

A+
∂T
∂α

−
d
dt
∂T
∂α '

−
∂F
∂α

+ fα = 0

... ...

L+
∂T
∂λ

−
d
dt
∂T
∂λ '

−
∂F
∂λ

+ fλ = 0

.14 

 

For this kind of system, wherein “all the points have the same temperature”, and no 

influence is exerted by “external bodies”, the heat sent out in an infinitely small 

transformation was given by the expression 

 

(4)     

€ 

dQ = − Rα ⋅ dα +Rβ ⋅ dβ + ... Rλ ⋅ dλ +C ⋅ dT( ) 

 

already put forward by Duhem in 1891. The first Principle of thermodynamics, or 

what Duhem called “the principle of conservation of energy” offered 

 

€ 

dQ = − dU +
1
E
dτ e    or   

€ 

E dQ = −EdU +dτ e. 

 

Therefore the differential coefficients 

€ 

Rα ,Rβ ,......,Rλ , C  had to obey to the equations 

 

                                                        
14 Duhem 1896a, pp. 20-1. 
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(5)     

  

€ 

E ∂U
∂α

−A−∂T
∂α

+
d
dt
∂T
∂α '

= E Rα

... ...

E ∂U
∂λ

−L−∂T
∂λ

+
d
dt
∂T
∂λ '

= E Rλ

E ∂U
∂T

= EC

. 

 

The only difference with regard the equations put forward in 1891 was the presence of 

the living force   

€ 

T  of the system as a whole.15 

The introduction of the internal potential   

€ 

F α ,β ,......,λ ,T( ) by means of the 

fundamental relationship 

 

  

€ 

EU = F −T ∂F
∂T

 

 

allowed Duhem to express equations (5) in terms of   

€ 

F : 

 

    

€ 

∂F
∂α

−T ∂2F
∂α∂T

−A−∂T
∂α

+
d
dt
∂T
∂α '

= E Rα

... ...

∂F
∂λ

−T ∂2F
∂λ∂T

−L−∂T
∂λ

+
d
dt
∂T
∂λ '

= E Rλ

∂F
∂T

−T ∂
2F
∂T 2

= EC

. 

 

The most important mathematical and physical step was the transformation of 

equations (3) into equations for the determination of the functions 

€ 

fα , fβ ,......, fλ: 

 

                                                        
15 Duhem 1896a, p. 21. See also Duhem 1891, p. 234. In 1891 Duhem had started from a set of external forces A, B, 

L, 

€ 

Θ . Afterwards, in the next sections of the paper, he confined himself to a simpler case, the separation of 
mechanical and thermal effects: the variation of 

€ 

ϑ  did not affect the other parameters, and 

€ 

Θ = fϑ = 0 . That 
choice was combined with the choice 

€ 

ϑ =T. 
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€ 

fα = −A−∂T
∂α

+
d
dt
∂T
∂α '

+
∂F
∂α

... ...

fλ = −L−∂T
∂λ

+
d
dt
∂T
∂λ '

+
∂F
∂λ

. 

 

Equations (5) could therefore be expressed in terms of   

€ 

F  and 

€ 

fα , fβ ,......, fλ: 

 

(6)     

  

€ 

−T ∂2F
∂α∂T

+ fα = E Rα

... ...

−T ∂2F
∂λ∂T

+ fλ = E Rλ

.16 

 

The other fundamental relationship deduced in 1891, 

 

  

€ 

E S = −T ∂F
∂T

, 

 

let Duhem to express the generalised thermal coefficients in terms of entropy S and 

the functions 

€ 

fα , fβ ,......, fλ: 

 

(7) 

€ 

Rα = T ∂S
∂α

+
fα
E

... ...

Rλ = T ∂S
∂λ

+
fλ
E

.17 

 

                                                        
16 Duhem 1896a, pp. 21-2. Duhem added an equation for the thermal coefficient 

€ 

C  to the set of equations (6), but 
the deduction is deficient in mathematical accurateness. Firstly, he could not rely on a corresponding equation in the 
set of equations (3), and second, he let a term vanish, without any explanation, when he expressed 

€ 

∂U /∂T  in terms of 
  

€ 

F . 
17 Duhem 1896a, p. 22. With regard to the expression for the thermal coefficient 

€ 

C , see the previous footnote. We 
must remind the reader that even the relationship between S and   

€ 

F  emerged from a net of misprints, as already 
discussed in chapter 9 of the present dissertation. 
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The presence of irreversibility, corresponding to the presence of the mathematical 

functions 

€ 

fα , fβ ,......, fλ, made questionable an exact definition of entropy, as Duhem 

himself had remarked in the papers on permanent deformations. He probably relied on 

the fact that, in the equations (3) and (6), reversible and irreversible terms could be 

mathematically separated. In some way, the burden of irreversibility was loaded on the 

shoulder of the functions 

€ 

fα , fβ ,......, fλ. This mathematical way out let Duhem to 

transform equation (4) into the sum of two terms with the help of equations (7): 

 

€ 

dQ = − +T ∂S
∂α

dα +
fα
E
dα + ......+T ∂S

∂λ
dλ +

fλ
E
dλ

 

 
 

 

 
 =

= −T dS− 1
E

fα
dα
dt

+ fβ
dβ
dt

+ ......+ fλ
dλ
dt

 

 
 

 

 
 dt

. 

 

The subsequent step was the integration along a closed cycle of the expression 

 

€ 

dQ
T

= −dS− 1
ET

fα
dα
dt

+ fβ
dβ
dt

+ ......+ fλ
dλ
dt

 

 
 

 

 
 dt . 

 

The term containing entropy vanished, and the integral reduced to 

 

€ 

dQ
T∫ = −

1
E

1
T

fα
dα
dt

+ fβ
dβ
dt

+ ......+ fλ
dλ
dt

 

 
 

 

 
 dt∫ . 

 

Being negative the work done by dissipative forces 

€ 

fα , fβ ,......, fλ, the integral was 

positive, and it was consistent with “Clausius’ notable inequality” 

 

€ 

dQ
T∫ > 0.18 

 

                                                        
18 Duhem 1896a, p. 23. 
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The section ended with a sort of recollection and generalisation of the “general 

theory” he had put forward in 1891. It was in some way a preliminary task, devoted to 

build up a structure as general as pliable, which could undergo further generalisations. 

In the following section Duhem widened the structure tuned in the first section, in 

order to graft the generalisation put forward in the Commentaire: the interaction 

between the components of a given physical system. He assumed that the system was 

composed of two parts which Duhem qualified as “independent of each other”, but then 

interacting in some way. The internal energy and the internal thermodynamic potential 

of each part considered in itself were labelled   

€ 

Y1 and   

€ 

Y2, and   

€ 

F1 and   

€ 

F2 . The whole 

system had internal energy and thermodynamic potential which could not simply be the 

sum of the two functions, because of the unspecified interaction between them. There 

was a sort of potential of interaction 

€ 

Ψ  such that, for the whole system, 

 

  

€ 

U =Y1+Y2 +Ψ    and     

€ 

F = F1 +F2 +EΨ .19 

 

The “fundamental expression” giving rise to the equations of motion for the two parts 

considered as “independent systems” was  

 

(11)     

    

€ 

A1+
∂T1

∂α
−
d
dt
∂T1

∂α '
−
∂F1
∂α

+ fα1
 

 
 

 

 
 δα1 +

+ ... ...
+ ... ...

+ L2 +
∂T2

∂λ
−
d
dt
∂T2

∂λ '
−
∂F2
∂λ

+ fλ2
 

 
 

 

 
 δλ2 = 0

. 

 

At this point Duhem invited us to “imagine” that some “bilateral” link or contact 

between the parts 1 and 2 come into play. He was putting forward, in some way, a 

geometrisation of the interaction between the two subsets of the physical system. He 

imagined a series of links or bonds expressed by a series of equations of the kind 

 

                                                        
19 Duhem 1896a, p. 24. 
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(12) 

€ 

M1δα1+ ......+P1δλ1+M2δα2 + ......+P2δλ2 = 0
M '1δα1+ ......+P'1δλ1+M '2δα2 + ......+P'2δλ2 = 0
...... ......

 . 

 

In order to specify the links or bonds acting between the subsets, Duhem introduced 

the word “welding” (“soudure”) for the geometrical-physical action corresponding to 

the first equation. Duhem did not specify which kind of geometrical or physical action 

corresponded to the other equations: he confined himself to state that he would have 

made use of “a similar language for the other bonds.20 

He imagined a hierarchy of bonds which were activated one after the other when the 

two subsets approached to each other. Every bond, when activated, triggered a new kind 

of “viscous resistance”, and a new term appeared in the equations of motion. There was 

a hierarchy of “viscosities” 

 

€ 

fα1 +Fα1 +F 'α1 + ...

... ...
fλ1 +Fλ1 +F 'λ1 + ...

fα 2
+Fα 2

+F 'α 2
+ ...

... ...
fλ2 +Fλ2 +F 'λ2 + ...

, 

 

which corresponded to a series of waste of energy expressed by the inequalities 

 

€ 

fα1
dα1
dt

+ ...+ fλ1
dλ1
dt

 

 
 

 

 
 dt ≤ 0

fα 2

dα2
dt

+ ...+ fλ2
dλ2
dt

 

 
 

 

 
 dt ≤ 0

, 

€ 

Fα1
dα1
dt

+ ...+Fλ1
dλ1
dt

+Fα 2

dα2
dt

+ ...+Fλ2
dλ2
dt

 

 
 

 

 
 dt ≤ 0

F 'α1
dα1
dt

+ ...+F 'λ1
dλ1
dt

+F 'α 2

dα2
dt

+ ...+F 'λ2
dλ2
dt

 

 
 

 

 
 dt ≤ 0

. 

 
                                                        

20 Duhem 1896a, pp. 25-6. Duhem made use of the word “soudure” besides “liaison” and “contact”. 
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There was a subtle difference in the viscosities of the hierarchy: the original terms 

€ 

fα , fβ ,......, fλ were of a different kind, since they were the “intrinsic viscosities” of the 

single subsets. They required two different inequalities, since they did not deal with the 

interactions between the two subsets. There was an intrinsic “viscosity” followed by a 

hierarchy of “viscosities” corresponding to the hierarchy of bonds. The fact is that, in 

Duhem theory, the word “viscosity” had a very wide meaning and a corresponding wide 

scope.  

The fundamental equation describing the system was therefore generalized to 

 

(14)     

    

€ 

A1+
∂T1

∂α
−
d
dt
∂T1

∂α '
−
∂F1
∂α

+ fα1 +Fα1 +F 'α1 + ...
 

 
 

 

 
 δα1 +

+ ... ...
+ ... ...

+ L2 +
∂T2

∂λ
−
d
dt
∂T2

∂λ '
−
∂F2
∂λ

+ fλ2 +Fλ2 +F 'λ2 + ...
 

 
 

 

 
 δλ2 = 0

.21 

 

The physical relationship between the conditions (12) and (14) could be expressed by 

a mathematical relationship, which was nothing else but a linear combination of them: 

 

(16)     

    

€ 

A1+
∂T1

∂α
−
d
dt
∂T1

∂α '
−
∂F1
∂α

+ fα1 +Fα1 +F 'α1 + ... +ΠM1+Π'M '1+ ... = 0

... ...

... ...

L2 +
∂T2

∂λ
−
d
dt
∂T2

∂λ '
−
∂F2
∂λ

+ fλ2 +Fλ2 +F 'λ2 + ...+ΠM1+Π'M '1+ ... = 0

 

 

 
 
 

 

 
 
 

, 

 

where 

€ 

Π,Π' ,... were the coefficients of the linear combination. Was that complex set 

of equations really useful? They were generalised equations of motion, and they had to 

be solved in order to attain an actual, rather than formal, description of the physical 

system. As in every classic Lagrangian equation, the only terms containing the second 

time-derivatives  

                                                        
21 Duhem 1896a, pp. 28-9. 
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€ 

d 2α1
dt2

, ......, d
2λ1
dt2

, d
2α2
dt2

, ......, d
2λ2
dt2

 

 

were the 

€ 

n1+n2( ) terms 
  

€ 

d
dt
∂T
∂α '

. The set of equations (16) could therefore be 

considered as a system of 

€ 

n1+n2( ) equations with regard to the 

€ 

n1+n2 + p( )  unknown 

quantities  

 

(17) 

€ 

d 2α1
dt2

, ......, d
2λ1
dt2

, d
2α2
dt2

, ......, d
2λ2
dt2

, Π,Π' ,.... 

 

What about the missing 

€ 

p equations? They were offered by the double time-derivative 

of the set of 

€ 

p equations (12): as Duhem remarked, they become “

€ 

p linear equations in 

€ 

d 2α1
dt2

, ......, d
2λ1
dt2

, d
2α2
dt2

, ......, d
2λ2
dt2

”.22  

According to Duhem, the mathematical problem associated to a “viscous” physical 

system had a solution, since it consisted of “a system of 

€ 

n1+n2 + p( )  linear equations in 

the 

€ 

n1+n2 + p( )  unknown quantities (17)”. The solution would have allowed us to 

determine those quantities as functions of the parameters 

€ 

α1,β1,......,λ1,T1, 

€ 

α2,β2,......,λ2,T2  and their time-derivatives 

€ 

dα1
dt
, dβ1
dt
,......, dλ1

dt
, 

€ 

dα2
dt
, dβ2
dt
,......, dλ2

dt
. This 

was the output of the complex mathematical machinery, which required an as much 

complex input. Duhem reminded the reader that we should know “the analytic 

expression” of 

€ 

A1,......,L2, M1,...,P2, M '1 ,...,P'2 ,   

€ 

T ,   

€ 

F , 

€ 

fα1 , ... ..., fλ1 , fα 2
, ... ..., fλ2 , 

€ 

Fα1 ... ...,Fλ1 , Fα 2
, ... ...,Fλ2 , and 

€ 

F 'α1 , ... ...,F 'λ1 ,F 'α 2
, ... ...,F 'λ2 .

23 

The specific thermodynamic account followed the pathway already outlined in the 

previous section: at first the total heat expressed in terms of mechanical and thermal 

coefficients, 

                                                        
22 Duhem 1896a, pp. 30-1. 
23 Duhem 1896a, pp. 31-2. 
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€ 

dQ = − Rα1 ⋅ dα1+Rβ1 ⋅ dβ1+ ... Rλ1 ⋅ dλ1+C1 ⋅ dT1( )
− Rα 2

⋅ dα2 +Rβ2 ⋅ dβ2 + ... Rλ2 ⋅ dλ2 +C2 ⋅ dT2( )
, 

 

and then the expressions for every coefficient: 

 

  

€ 

E ∂U
∂α1

−A1−
∂T
∂α1

+
d
dt

∂T
∂α '1

= E Rα1

... ...
. 

 

At the end, the total heat was expressed in terms of entropy and “viscous forces”: 

 

€ 

dQ = −T1 dS1−T2 dS2

−
1
E

fα1
dα1
dt

+ fβ1
dβ1
dt

+ ......+ fλ1
dλ1
dt

 

 
 

 

 
 dt

−
1
E

fα 2

dα2
dt

+ fβ2
dβ2
dt

+ ......+ fλ2
dλ2
dt

 

 
 

 

 
 dt

, 

€ 

dQ = −
1
E

Fα1
dα1
dt

+Fβ1
dβ1
dt

+ ......+Fλ1
dλ1
dt

+Fα 2

dα2
dt

+Fβ2
dβ2
dt

+ ......+Fλ2
dλ2
dt

 

 
 

 

 
 dt

−
1
E

F 'α1
dα1
dt

+F 'β1
dβ1
dt

+ ......+F 'λ1
dλ1
dt

+F 'α 2

dα2
dt

+F 'β2
dβ2
dt

+ ......+F 'λ2
dλ2
dt

 

 
 

 

 
 dt

. 

 

Because of the negative sign of the “work done by viscous forces”,  

 

€ 

dQ ≥ −T1 dS1−T2 dS2 , 

 

in accordance with the second Principle of Thermodynamics. The result could be 

generalised to a system composed of 

€ 

q  rather than 2 parts: 

 

€ 

dQ ≥ −T1 dS1−T2 dS2 − ......−Tq dSq . 
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In the specific case of an isolated system, 

€ 

dQ = 0 , and the previous inequality gives the 

new inequality 

 

€ 

T1 dS1+T2 dS2 + ......+Tq dSq ≥ 0 , 

 

which Duhem looked upon as a “generalisation” of Clausius’ statement on the 

variation of entropy in “an isolated system whose points have the same temperature”.24 

In the next section, Duhem put forward a further generalisation: a system which was 

not isolated from “external bodies”. In order to reduce the new configuration to the 

previous one, Duhem made the system under consideration correspond to the sub-

system labelled “1”, and “external bodies” to “bodies considered as such in the previous 

section, and added to body 2”. In the “equations of motion” of the system, there was 

nothing different from the previous case: 

 

    

€ 

A1+
∂T1

∂α
−
d
dt
∂T1

∂α '
−
∂F1
∂α

+ fα1 +Fα1 +F 'α1 + ... +ΠM1+Π'M '1+ ... = 0

... ...

... ...
. 

 

The forces 

€ 

ΠM1+Π'M '1+ ...( ), ... , Π P1+Π'P'1+ ...( ) were labelled by Duhem “bond 

forces”, and 

€ 

Fα1 +F 'α1 + ...( ), ..., Fλ1 +F 'λ1 + ...( ) were labelled “viscous forces”, both of 

them being “fictive forces” corresponding to “the bonds of the system with external 

bodies”. The only important difference could be found in the work done by those fictive 

forces. In the equation 

 

                                                        
24 Duhem 1896a, pp. 33-6. In the texts there are some misprints in equations and inequalities involving dQ.  
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(37) 

€ 

E dQ
T1

= −E dS1−
1
T1

fα
dα
dt

+ fβ
dβ
dt

+ ......+ fλ
dλ
dt

 

 
 

 

 
 dt

−
1
T1

Fα
dα
dt

+Fβ
dβ
dt

+ ......+Fλ
dλ
dt

 

 
 

 

 
 dt

−
1
T1

F 'α
dα
dt

+F 'β
dβ
dt

+ ......+F 'λ
dλ
dt

 

 
 

 

 
 dt

,25 

 

“viscous” works had not the same fundamental features. Apart from the term  

 

€ 

fα1
dα1
dt

+ ...+ fλ1
dλ1
dt

, 

 

 which corresponded to the “intrinsic viscosity” of the system, and having therefore a 

negative sign, the other “works” had an unpredictable sign. As Duhem remarked, we 

have “no information” about the sign of the expressions  

 

€ 

Fα1
dα1
dt

+ ...+Fλ1
dλ1
dt

+F 'α1
dα1
dt

+ ...+F 'λ1
dλ1
dt

. 

 

He did not further inquire into this important issue: why cannot we foresee the sign? 

The fact is that, differently from an isolated system, wherein the fluxes of energy are 

submitted to definite conditions, a body in interaction with external bodies could give 

and receive energy in many different ways. 

 

 “Ainsi, lorsqu’on un système de température uniforme présente avec les corps 

extérieures des liaison bilatérales, il n’est plus juste de dire, en général, que la 

transformation compensée 

€ 

−E dS1 dt( )dt  qui accompagne une modification réelle 

de ce système ne peut surpasser la valeur totale de transformation 

€ 

dQ1 T1 ; la 

transformation non compensée peut être négative. 

En intégrant l’équation (37) pour un cycle fermé, on parvient à la proposition 

suivante : 
                                                        

25 Duhem 1896a, p. 44. In this page there are some misprints, Duhem’s plus/minus dysgraphie included. 
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Lorsqu’on un système, de température à chaque instant uniforme, qui présente 

avec les corps extérieures des liaison bilatérales, parcourt un cycle fermé réel, il 

peut se faire que l’intégrale 

€ 

dQ1 T1∫ , étendue à ce cycle, ait une valeur négative. 

Les théorèmes célèbres de R. Clausius pourraient donc conduire à des résultats 

erronés si on les appliquait à un système tel que celui qui nous occupe ; …”26 

 

                                                        
26 Duhem 1896a, pp. 44-5. 



 



 

 

14. Further generalisations and astonishing differences  

 

As Duhem remarked, he had already introduced the mathematical terms 

corresponding to viscosity in the third part of his Commentaire. The first Part of his 

1896 essay was essentially a formal development or “the natural consequence” of the 

assumptions there introduced. On the contrary, the second Part of the present essay tried 

to go “beyond a fundamental hypothesis” which the theory had been based on, namely 

the unambiguous determination of the equilibrium. Before putting forward the new 

generalisation, Duhem introduced a purely mathematical transformation on the 

Lagrangian parameters 

€ 

α ,β ,......,λ : at the moment, it was a very general linear 

transformation, devoid of any physical meaning. The non-singular transformation and 

its reverse were represented by the two linear systems  

 

(82) 

€ 

δa = µ11δα +µ12δβ + ......+µ1n δλ

δb = µ21δα +µ22δβ + ......+µ2n δλ

... ...
δl = µn1δα +µn2δβ + ......+µnn δλ

   and   (82’) 

€ 

δα = µ'11δa+µ'12δb+ ......+µ'1n δl
δβ = µ'21δa+µ'22δb+ ......+µ'2n δl
... ...
δλ = µ'n1δa+µ'n2δb+ ......+µ'nn δl

1 

 

The forces A, B, …, L, the gradient of the potential   

€ 

F , viscous forces, and the 

Lagrangian terms involving   

€ 

T  were transformed as well according to the following 

typographic choice: 

 

  

€ 

A,B,... ...,L→A ,B,... ...,L
∂F
∂α

,∂F
∂β

,... ...,∂F
∂λ

→Φa ,Φb ,... ...,Φl
 

  

€ 

fα , fβ ,... ..., fλ →ϕα ,ϕβ ,... ...,ϕλ

∂T
∂α

−
d
dt
∂T
∂α '

, ∂T
∂β

−
d
dt
∂T
∂β '

,... ..., ∂T
∂λ

−
d
dt
∂T
∂λ '

→ Ja ,Jb ,... ...,Jl
. 

 

The equations of motion were then formally expressed by the equations 

                                                        
1 Duhem 1896a, pp. 67-8 and 70. 
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€ 

A −Φa +Ja +ϕa = 0
B−Φb +Jb +ϕb = 0
... ...
L−Φl +Jl +ϕ l = 0

 

 
 
 

 
 
 

.2 

 

From a very general point of view, every equation consisted of the sum of four terms: 

generalised forces or actions, derivatives of the thermodynamic potential, “inertial” 

terms, and “viscous” terms. At this point Duhem introduced a new “FUNDAMENTAL 

HYPOTHESIS”, corresponding to the introduction of a new term in the equations of 

motion: 

 

(93)     

  

€ 

A −Φa +Ja +ϕa +ga
a'
a'

= 0

B−Φb +Jb +ϕb +gb
b'
b'

= 0

... ...

L−Φl +Jl +ϕ l +gl
l'
l'

= 0

 

 

 
 
 
 

 

 
 
 
 

. 

 

The new functions 

€ 

ga ,gb ,... ...,gl  were negative functions, and depended on the 

Lagrangian parameters 

€ 

a,b,... ...,l , their time-derivatives 

€ 

a' ,b' ,... ...,l', and the forces 

  

€ 

A ,B,... ...,L . Differently from the “viscous” forces 

€ 

fα , fβ ,... ..., fλ (or 

€ 

ϕα ,ϕβ ,... ...,ϕλ), 

they could not vanish when the velocities 

€ 

a' ,b' ,... ...,l' vanished: on the contrary, they 

tended to the limiting functions 

€ 

γα ,γβ ,... ...,γλ , which depended only on 

€ 

a,b,... ...,l and 

  

€ 

A ,B,... ...,L . The terms of the kind 

€ 

ga ⋅ a' a'  generalised the static friction of Mechanics 

discussed in the Introduction. This explains why they could not vanish with the 

generalised velocities. As expected, the “work done by friction”, 

 

                                                        
2 Duhem 1896a, pp. 70-2. 
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€ 

ga
a'2

a'
+gb

b'2

b'
+ ... ...+gl

l'2

l'

 

 
  

 

 
  dt , 

 

was negative.3  

At this point, Duhem also explained the physical meaning of the linear mathematical 

transformation on the Lagrangian parameters 

€ 

α ,β ,......,λ . He was looking for a 

transformation which could split the mathematical representation of the physical system 

into two complementary sub-representations: the parameters corresponding to the 

mechanical “motion” of the system as a whole, on the one hand, and the parameters 

corresponding to the other generalised “motions”, on the other. 

 

 “Parmi les n quantités infiniment petites 

€ 

δa,δb,......,δl , données par les égalités 

(82), il en est six 

€ 

δm, .....,δn  qui jouissent de la propriété suivante : lorsque celles-

là seules diffèrent de zéro, le système éprouve un déplacement d’ensemble dans 

l’espace, sans que ses diverses parties éprouvent ni changement d’état, ni 

changement de position relative ; celles des quantités 

€ 

ga ,gb ,... ...,gl  qui leur 

correspondent sont identiquement nulles.4 

 

As a consequence of the choice of the parameters 

€ 

a,b,... ...,l , which should have 

allowed Duhem to split the physical phenomenon into two qualitatively different 

processes, two different sets of conditions of equilibrium emerged. The first set 

corresponded to the parameters and the external actions suffering friction; the second 

set corresponded to the six parameters describing the purely mechanical motion “of the 

system as a whole”. The latter was nothing else but the condition of equilibrium for a 

“invariable solid body”.  

 

“Pour qu’un système entouré de corps extérieurs invariables, de même 

température que lui, et dont il est indépendant, soit in équilibre, il faut et il suffit 

que l’on ait les conditions 
                                                        

3 Duhem 1896a, pp. 72-5. 
4 Duhem 1896a, p. 74. 
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(98) 

  

€ 

γa ≤A −Φa ≤ −γa
γb ≤B−Φb ≤ −γb
... ...
γ l ≤ L−Φl ≤ −γ l

 

 
 
 

 
 
 

   and   (95) 

  

€ 

M−Φm = 0
... ...
N −Φn = 0

 

 
 

 
 

.”5   

 

The first set of inequalities described the “infinities of states of equilibrium, which 

classic thermodynamics was not able to foresee”. It is not strange that they were 

expressed by inequalities when we make still reference to the structural analogy with 

static friction put forward in the Introduction. 

The remaining part of the chapter offered no surprise: the “total transformation” 

€ 

dQ T was the sum of the “compensated” term 

€ 

−dS  and the “uncompensated” term 

corresponding to “viscosity” and “friction”: 

 

€ 

dQ
T

+dS = −
1
ET

ϕa a'+ϕ b b'+ ... ...+ϕ l l'( )dt

−
1
ET

ga
a'2

a'
+gb

b'2

b'
+ ... ...+gl

l'2

l'

 

 
  

 

 
  dt

. 

 

“Si, avec Clausius, on donne le nom de transformation totale correspondant à la 

modification considérée, au quotient 

€ 

dQ T  ; le nom de transformation compensée 

à la quantité 

€ 

−dS ; enfin le nom de transformation non compensée à l’excès de la 

transformation totale sur la transformation compensée, on voit que l’on peut 

énoncer la proposition suivante : 

La transformation non compensée qui accompagne une modification réelle ne 

peut jamais être négative ; en général elle est positive.”6 

 

The last section of the chapter was devoted to systems “composed of independent 

parts with different temperatures”. Apart from the presence of the potential of 

interaction 

€ 

Ψ , submitted to the same linear transformation operating on the Lagrangian 

parameters, the equations of motion had the same structure: 
                                                        

5 Duhem 1896a, p. 77. 
6 Duhem 1896a, pp. 83-4. 
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€ 

A1 −EΨa1
−Φa1

+Ja1
+ϕ a1

+ga1

a'1
a'1

= 0

B1 −EΨb1
−Φb1

+Jb1
+ϕ b1

+gb1
, b'1
b'1

= 0

... ...

L1 −EΨl1 −Φl1 +Jl1 +ϕ l1 +gl1
l'1
l'1

= 0

 

 

 
 
 
 

 

 
 
 
 

. 

 

A similar set of equations had to be written for the part 2 of the system, and the same 

mathematical procedure led to “Clausius’ inequality extended to the system under 

consideration”.7 

Duhem had found a sufficiently general and pliable mathematical structure, which 

could fit the specific features of specific systems, and could be enlarged in order to 

account for phenomena of increasing complexity. 

In the second chapter of the second Part, he tried a specific application, and, at the 

same time, tried to bridge the gulf between physics and chemistry. The “specific 

systems”, which he devoted his attention to, were those “usually studied in the context 

of chemical mechanics”. He imagined a system composed of two parts of “masses” 

€ 

M1 

and 

€ 

M2 ; then he defined a set of “normal” parameters T, 

€ 

α ,β ,......,λ , and 

€ 

v1,v2 , the 

“specific volumes” of the two masses. He assumed that, in general, 

€ 

M1 and 

€ 

M2  could 

depend on 

€ 

α ,β ,......,λ . The only external action acting on the whole system was “a 

normal and uniform pressure 

€ 

P”. The volume 

€ 

V  of the system could be expressed in 

terms of the two parameters 

€ 

v1,v2:  

 

€ 

V =V1+V1 = M1 v1+M2 v2 . 

 

The external work   

€ 

dt  performed by the external force 

€ 

P  was 

 

                                                        
7 Duhem 1896a, pp. 84-8. 
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€ 

dt = −PdV = −PM1 dv1−PM2 dv2 −Pv1 dM1−Pv2 dM2 =

= −PM1 dv1−PM2 dv2

−Pv1
∂M1
∂α

dα + ... ...+∂M1
∂λ

dλ
 

 
 

 

 
 

−Pv2
∂M2
∂α

dα + ... ...+∂M2
∂λ

dλ
 

 
 

 

 
 

. 

 

If we assemble the terms corresponding to every parameter, the expression for the 

work reduced to 

 

  

€ 

dt = −PM1 dv1−PM2 dv2

−P v1
∂M1
∂α

dα + v2
∂M2
∂α

dα
 

 
 

 

 
 

− ... ...

−P v1
∂M1
∂λ

dλ + v2
∂M2
∂λ

dλ
 

 
 

 

 
 

. 

 

The only “external force”, the ordinary pressure 

€ 

P , gave therefore rise to a series of 

“external actions” 

€ 

Π1,Π2,A,B,... ..., L , corresponding to the parameters 

€ 

v1,v2  and 

€ 

α ,β ,......,λ : 

 

(137) 

€ 

Π1,= −PM1

Π2 = −PM2

A = −P v1
∂M1
∂α

+ v2
∂M2
∂α

 

 
 

 

 
 

... ...

L = −P v1
∂M1
∂λ

+ v2
∂M2
∂λ

 

 
 

 

 
 

.8 

 

After having applied the mathematical transformations (82) to the parameters 

€ 

α ,β ,......,λ , Duhem assumed that “viscosity and friction” corresponding to the 

parameters 

€ 

v1,v2  could be neglected, and the “inertial force” could be neglected too. He 

                                                        
8 Duhem 1896a, pp. 89-90. 
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expressed the equation of motion for the parameters 

€ 

v1,v2  in accordance with the old 

mathematical representation: 

 

  

€ 

PM1+
∂F
∂v1

= 0

PM2 +
∂F
∂v2

= 0
. 

 

On the contrary, the equations corresponding to 

€ 

α ,β ,......,λ  were expressed in the 

transformed representation: 

 

(139) 

  

€ 

A −Φa +ϕa +ga
a'
a'

= 0

B−Φb +ϕb +gb
b'
b'

= 0

... ...

L−Φl +ϕ l +gl
l'
l'

= 0

 

 

 
 
 
 

 

 
 
 
 

.9 

 

At this point Duhem called into play the thermodynamic potential   

€ 

H = F +PV , a 

suitable potential for physical-chemical processes taking place at constant pressure. He 

showed that 

 

  

€ 

∂H
∂α

=
∂F
∂α

+
∂ PV( )
∂α

=
∂F
∂α

+P
∂ M1 v1+M2 v2( )

∂α
=

=
∂F
∂α

+P v1
∂M1
∂α

dα + v2
∂M2
∂α

dα
 

 
 

 

 
 

, 

 

                                                        
9 Duhem 1896a, pp. 90-1. When we compare the set of equations (139) with the set (93), we notice the lack of the 

original Lagrangian terms Jk as a consequence of Duhem simplifications. See Ibidem, p. 90: “Enfin nous négligerons 
les variations de la force vive et, partant, les forces d’inertie.” This fact is quite problematic, because the new 
generalised mechanics could be looked upon as a replacement rather than a generalisation of the old one. The 
dramatic consequences will emerge in the next chapter of Duhem essay. 
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 since the parameters 

€ 

v1,v2  are independent of 

€ 

α . From the equations (137) we have 

that 

 

(147) 
  

€ 

∂H
∂α

=
∂F
∂α

−A  

 

After having submitted 

€ 

∂H ∂α  and the other derivatives to the linear transformation 

(82),  

 

€ 

∂H
∂α
,∂H
∂β
,... ...,∂H

∂λ
→ηa ,ηb ,... ...,η l , 

 

equation (147) became  

 

  

€ 

ηa = −A +Φa

... ...
ηl = −L +Φl

, 

 

and the equations of motion (139) assumed the more simplified structure 

 

(150) 

€ 

ηa −ϕ a −ga
a'
a'

= 0

... ...

ηl −ϕ l −gl
l'
l'

= 0

 

 

 
  

 

 
 
 

.10 

 

These equations seemed to Duhem “very convenient” with regard two points of view. 

On the one hand, they would have allowed him to “demonstrate statements which 

assume the existence of viscosity and friction” without any “detailed knowledge” of 

those effects, namely without making recourse to specific mechanical models. On the 

                                                        
10 Duhem 1896a, pp. 92-3. Duhem’s potential 

€ 

H  corresponded to Massieu’s potential 

€ 

H  and Gibb’s potential 

€ 

Φ. 
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other hand, the equations above displayed could offer an invariant structure, 

“independent of” the choice of the parameters and the specific expressions for 

€ 

ϕα ,ϕβ ,... ...,ϕλ  and 

€ 

ga ,gb ,... ...,gl . In the last section of the chapter, Duhem outlined a 

similar mathematical procedure for a set of Lagrangia parameters 

€ 

α ,β ,......,λ , T, V, 

instead of 

€ 

α ,β ,......,λ , T, P.11  

For the subsequent analysis of some chemical processes, it was important to take note 

of some inequalities involving 

€ 

∂H ∂α ,...,∂H ∂λ . From the set of equations (150), 

 

€ 

ηa =ϕ a +ga
a'
a'

... ...

ηl =ϕ l −gl
l'
l'

 

 

 
  

 

 
 
 

   and   

€ 

ηa
da
dt

=ϕ a
da
dt

+ga
a'
a'
da
dt

... ...

ηl
dl
dt

=ϕ l
dl
dt
−gl

l'
l'
dl
dt

 

 

 
  

 

 
 
 

. 

 

The sum of all these equations led to the single equation 

 

€ 

ηa
da
dt

+ ... ...+η l
dl
dt

=ϕ a
da
dt

+ ... ...+ϕ l
dl
dt

+ga
a'
a'
da
dt

+ ... ...+gl
l'
l'
dl
dt

. 

 

Since the dissipative terms perform a negative work, the right side of the last equation 

is negative:  

 

€ 

ηa
da
dt

+ ... ...+η l
dl
dt

< 0. 

  

 

When expressed in terms of 

€ 

∂H ∂α ,...,∂H ∂λ  and the old parameters 

€ 

α ,β ,......,λ , the 

inequality can be written as 

                                                        
11 Duhem 1896a, pp. 95 and 98. At the end, he emphasised once again how “convenient” the procedure was, and he 

found meaningful to add that he had made “a wide use of it in teaching at Bordeaux Faculty of Science”. See Ibidem, 
p. 98. 
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(154) 

€ 

∂H
∂α

dα
dt

+ ... ...+∂H
∂λ

dλ
dt

< 0 .12 

 

In the third chapter, Duhem claimed he was dealing with “systems already studied in 

the previous chapter”, but he rather resumed the graphical methods put forward in the 

papers on permanent deformations and hysteresis. From the outset he confined himself 

to systems described by only one Lagrangian parameter 

€ 

α , apart from “a uniform and 

constant pressure 

€ 

P” and “a variable temperature 

€ 

T ”. Making use in part of non-

transformed functions and in part of transformed ones, Duhem wrote the equation of 

motion once again: 

 

(169) 

€ 

∂H P,α ,T( )
∂α

−ϕ P,α ,T ,α '( )−g P,α ,T ,α '( ) α '
α '

= 0 . 

 

When friction corresponding to the parameter 

€ 

α  vanished, the equation was reduced 

to 

 

(168) 

€ 

∂H P,α ,T( )
∂α

= 0 .13 

 

It represents a curve in the plane 

€ 

T ,α( ): Duhem reminded the reader that it is “the 

curve of true equilibrium” under the constant pressure 

€ 

P . In general, friction does exist, 

and tends towards the negative function 

€ 

γ P,α ,T( ) when 

€ 

α  tends to zero. The condition 

of equilibrium for the system under consideration was a “specific instance” of the 

inequalities (98): 

 

 (170) 

€ 

γ P,α ,T( ) ≤
∂H P,α ,T( )

∂α
≤ −γ P,α ,T( ). 

                                                        
12 Duhem 1896a, pp. 94-5. 
13 Duhem 1896a, pp. 99-100. 
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Duhem pointed out that the two curves in the plane 

€ 

T ,α( ) corresponding to the 

equations 

 

(170’) 

€ 

∂H P,α ,T( )
∂α

+γ P,α ,T( ) = 0    and   (170’’) 

€ 

∂H P,α ,T( )
∂α

−γ P,α ,T( ) = 0  

 

were as important as the curve of “true equilibrium”. They represent the boundaries of 

the “region of false equilibrium”, wherein the conditions (170) are satisfied.14 

The curves of true equilibrium can be ascending or descending curves, according to 

the endothermic or exothermic behaviour of the physical system. Starting from a state 

of true equilibrium under constant pressure and temperature, represented by a point on 

the curve, let us increase the parameter 

€ 

α . If the system undergoes an absorption of heat 

(

€ 

Rα > 0), then the new point of equilibrium will be found on the right and above the 

previous one: the curve of true equilibrium “will rise from left to right”. The opposite 

behaviour will be expected when the transformation will lead to an emission of heat 

(

€ 

Rα < 0). 

The curve represented by equation (170’) will be always found above the curve of true 

equilibrium, because the function 

€ 

γ P,α ,T( ) is always negative. For the same reason, the 

curve corresponding to equation (170’’) will be always found below the curve of true 

equilibrium. To sum up, “the curve of true equilibrium is completely plotted inside the 

region of false equilibrium”. Outside that region, the system is out of equilibrium: it will 

undergo a transformation.15 

Because of equation (170’), on the corresponding curve, 

 

€ 

∂H P,α ,T( )
∂α

= −γ P,α ,T( )   and   

€ 

∂H P,α ,T( )
∂α

> 0 . 

 

For the same reason, on the other curve, 
                                                        

14 Duhem 1896a, pp. 100-1. 
15 Duhem 1896a, pp. 100-1. 
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€ 

∂H P,α ,T( )
∂α

= +γ P,α ,T( )   and   

€ 

∂H P,α ,T( )
∂α

< 0 . 

 

Duhem also remarked that, below the curve corresponding to (170’’), 

€ 

∂H P,α ,T( )
∂α

< 0 , 

and a series of deductions led him to state that 

€ 

α ' = dα
dt

> 0. In a simpler way, we can 

notice that, from equation (154), when the system is only described by a parameter 

€ 

α , 

 

€ 

∂H
∂α

dα
dt

< 0 . 

 

If, below the curve corresponding to (170’’), 

€ 

∂H P,α ,T( )
∂α

< 0 , then 

€ 

α ' > 0; if, above the 

curve corresponding to (170’), 

€ 

∂H P,α ,T( )
∂α

> 0 , then 

€ 

α ' < 0.16 

Similar “considerations” could be applied to transformations taking place at constant 

volume, and described by the potential 

€ 

F V ,α ,T( ). The condition of equilibrium would 

correspond to the inequalities 

 

€ 

Γ V ,α ,T( ) ≤
∂F V ,α ,T( )

∂α
≤ −Γ V ,α ,T( ) , 

 

and the condition of true equilibrium to the equation 

 

€ 

∂F V ,α ,T( )
∂α

= 0.17 

 

                                                        
16 Duhem 1896a, p. 101. 
17 Duhem 1896a, pp. 101-2. 
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At this stage, some phenomenological remarks came into play, and Duhem gave them 

the form of a “hypothesis”. The exact shape of the region of false equilibrium could not 

be specified by the theory, but by experiments: they had shown that the width of the 

region decreased with temperature. 

 

“HYPOTHESE - Lorsque la variation de la variable 

€ 

α  constitue un changement 

d’état chimique, les deux fonctions positives  

€ 

−γ P,α ,T( ),  

€ 

−Γ V ,α ,T( ) 

décroissent sans cesse lorsque la température croit ; elles ont des très grand 

valeurs à basse température et tendent vers 0 lorsque la température s’élève.  

Cette hypothèse peut s’énoncer de la manière suivante : 

Soit sous pression constante, soit sous volume constant, les deux lignes qui 

limitent la région des falses équilibres sont, à basse température, extrêmement 

éloignées de la ligne des équilibres véritables ; lorsque la température s’élève, 

elles se rapprochent de cette dernière ligne et tendent asymptotiquement vers elle 

lorsque la température croit au delà de toute limite.”18  

 

The region of false equilibrium was wide at low temperatures, and became narrower 

when temperature increased; for high temperatures, the region was reduced to nothing 

else but a thin strip around the curve of true equilibrium. As Duhem had already pointed 

out in his 1893 Introduction à la mécanique chimique, it was at low temperature that 

“states of equilibrium extremely different from those expected on the basis of classic 

thermodynamics” really occurred. Classic thermodynamics did not take into account the 

generalisation of the concept of “friction”: therefore it could only account for real 

phenomena at high temperature. For this reason, as Duhem remarked, “chemical 

mechanics gives place to simpler laws at high rather low temperatures”. 

The concept of “friction” in Duhem’s generalized physics stemmed from a structural 

analogy between Mechanics and Chemistry. The word “friction” made sense in the 

                                                        
18 Duhem 1896a, p. 104. 



Stefano Bordoni 

 

292 

context of Chemistry only after a re-interpretation of the ordinary meaning. The 

behaviour of thermo-chemical processes with regard to temperature transformed the 

formal analogy into a more realistic analogy: the increase of temperature played in 

Chemistry the same role of the increase of smoothness in Mechanics. High temperature 

dissolved chemical friction as well a better smoothness dissolved mechanical friction. 

Duhem remarked that modern Mechanics was born when Galileo decided to neglect 

mechanical friction. He had given birth to a very simplified physics: Duhem was 

accomplishing the demanding task of realising a more complete and realistic physics. 

 

“On peut remarquer, d’ailleurs, que la dynamique, elle aussi, n’est parvenue à se 

constituer que du jour où les physiciens, et en particulier Galilée, ont osé faire 

abstraction du frottement et énoncer des lois dynamiques telles que la loi de 

l’inertie ; sans doute, la dynamique qu’ils ont ainsi crée est une dynamique trop 

simplifiée ; mais elle a frayé la voie à la dynamique plus complète où il est tenu 

compte du frottement.”19 

 

In this third chapter of the second part of his essay, Duhem faced for the first time a 

specific chemical problem, with the help of phenomenological 

€ 

T ,α( ) diagrams. He took 

into account a chemical “compound together with the elements coming from its 

decomposition”. Then he labelled the mass of the compound 

€ 

m , and “the greater mass 

of the compound consistent with the constitution of the system” 

€ 

M . The Lagrangian 

parameter  

 

€ 

α =
m
M

 

 

was a measure of the degree of combination of the chemical system. From the 

mathematical point of view, 

€ 

α  was a parameter changing with continuity between 0 and 

1: 

€ 

α = 0 corresponded to the “complete dissociation”, and 

€ 

α =1 to a combination “as 

                                                        
19 Duhem 1896a, p. 105. 



Further generalisations and astonishing differences 

 

293 

complete as possible”. Duhem assumed, in particular, that the chemical process were 

exothermic (

€ 

Rα < 0) and took place at constant volume.  

 

20 

In Duhem’s graph, EE’ is the curve of “true equilibrium”, and FF’ and ff’ are curves 

describing the boundaries of the region 

€ 

A of “false equilibrium”. The region 

€ 

B “is the 

seat of a dissociation”, and the region 

€ 

C  is “the seat of a combination”. For every given 

temperature, different initial states of the system led to different final states of 

equilibrium. The previous history of the physical system influenced the result of the 

transformation. 

 

“Si l’on porte à une certaine température T un système qui, au début, ne renferme 

pas trace du composé, il s’y produira une combinaison jusqu’à ce que 

€ 

α  atteigne 

la valeur

€ 

α1, ordonnée du point d’abscisse T sur la ligne ff’. Si, au contraire, on 

porte à la même température T un système qui, au début, ne contient que le 

composé, il s’y produira une dissociation, jusqu’à ce que 

€ 

α  soit réduit à la 

valeur

€ 

α2 , ordonnée du point d’abscisse T sur la ligne FF’. On a surement 

€ 

α2 >α1. 

Le système, maintenu à une température donnée, ne tend donc pas vers le même 

état limite, selon qu’il était au début à l’état de mélange ou à l’état de 

                                                        
20 From Duhem 1896a, p. 106. 
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combinaison. C’est seulement à températures élevées que les deux limites sont 

sensiblement égales entre elles.”21 

 

The same kind of considerations are suitable for endothermic processes taking place at 

constant volume, as well as for both exothermic and endothermic processes taking place 

at constant pressure. Once again, Duhem pointed out that the exact shape of curves ff’ 

and FF’ could not be determined by his theory, but had to be derived by experiments. 

 

 

22 

 

The existence of states of false equilibrium corresponded to a sort of laziness of the 

system: it did not start its motion until the friction withholding the system was 

overwhelmed by the forces acting on it. The mechanical analogy suggested by Duhem 

in the first pages of this essay is clear: a body cannot slide along an inclined plane until 

the horizontal component of the gravitational force overwhelm the static friction 

between the body and the plane. In the chemical side of the analogy, a chemical 

compound is placed in presence of its components: the mixture is in equilibrium until 

the chemical forces become so strong to trigger a chemical reaction of combination or 

decomposition.  

                                                        
21 Duhem 1896a, pp. 106-7. 
22 From Duhem 1896a, p. 107. 
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Following the geometrical representation of this kind of processes, Duhem imagined a 

chemical system “in a state of false equilibrium at a very low temperature”. When we 

“increase gradually” the temperature at constant volume or pressure, the “representative 

point” of the system describes a line which is “parallel to the axe OT”. The system will 

remain in the region of false equilibrium for a while, until its representative line will 

cross the curve ff’ or FF’. Duhem called 

€ 

ϑ  the temperature corresponding to this 

intersection: if we increase the temperature of the system beyond 

€ 

ϑ , the system will 

undergo a combination or decomposition.  

 

“Nous pouvons donc énoncer les théorèmes suivants : 

Un système, pris avec une composition initiale donnée

€ 

α , est chauffé sous le 

volume constant 

€ 

V  ; il n’éprouve aucune modification tant que la température est 

inférieure à une certaine valeur 

€ 

ϑ α ,V( ) ; lorsque la température surpasse la 

valeur

€ 

ϑ α ,V( ), il éprouve soit une combinaison soit une dissociation. 

Un système, pris avec une composition initiale donnée

€ 

α , est chauffé sous le 

volume constant 

€ 

P  ; il n’éprouve aucune modification tant que la température est 

inférieure à une certaine valeur 

€ 

Θ α ,P( ) ; lorsque la température surpasse la 

valeur

€ 

Θ α ,P( ), il éprouve soit une combinaison soit une dissociation.”23 

 

The concept of false equilibrium was tightly close to the concept of “point of 

reaction”. The temperature 

€ 

ϑ α ,V( ) was “the point of reaction under constant volume 

€ 

V  

of the system of composition 

€ 

α ”, while 

€ 

Θ α ,P( ) was “the point of reaction under 

constant pressure 

€ 

P“. The point of reaction depended obviously “on the initial 

composition 

€ 

α  of the system”, both at constant volume and pressure. Among the 

infinite point of reaction of the given system, Duhem stressed the importance of two of 

them: “the point of combination” corresponding to the initial value 

€ 

α = 0, and “the point 

of decomposition” corresponding to 

€ 

α =1. The mixture of oxygen and hydrogen offered 

an easy observation of the point of combination. When heated either at constant volume 

                                                        
23 Duhem 1896a, p. 109. 
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or pressure, the two gases “remain blended” in a state of false equilibrium until a certain 

temperature is reached: after that the combination begins.24 

The points of reaction could be found at very different temperatures: for some 

mixtures, the point was placed at very high temperatures, and the chemical system 

“appears always to us in a state of false equilibrium”. According to Duhem, the mixture 

of hydrogen and nitrogen offered an instance of such behaviour. Others chemical 

reactions were very active at ordinary temperatures, since their point of reaction was 

placed at very low temperatures. Instances of the latter, shortly discussed by Duhem, 

were “the mixture of frozen sulphuric acid and caustic soda, or the mixture of 

“sulphuric acid and potassium”.25 

The remaining part of the chapter was devoted to a detailed analysis of different kinds 

of chemical reactions in physical systems wherein “the different points have different 

temperatures”.  

In the fourth chapter, the formal analogy between Mechanics and Chemistry 

underwent a critical stress. Duhem focused his attention in particular on the concept of 

“velocity”, and the chapter headline was indeed “Velocity of reactions”. He reminded 

the reader that, in the “region of combination”, placed below the curve ff’, 

€ 

α ' > 0; in the 

“region of decomposition”, above the curve FF’, 

€ 

α ' < 0. In both regions, the 

transformations, or chemical “reactions” had to obey to the generalised equation of 

motion (169): 

 

€ 

∂H P,α ,T( )
∂α

−ϕ P,α ,T ,α '( )−g P,α ,T ,α '( ) α '
α '

= 0 . 

 

Nevertheless, in the region of combination, 

€ 

α ' = +α ' , and therefore the equation of 

motion becomes 

 

(176) 

€ 

∂H P,α ,T( )
∂α

−ϕ P,α ,T ,α '( )−g P,α ,T ,α '( ) = 0 . 

                                                        
24 Duhem 1896a, pp. 109-10. 
25 Duhem 1896a, pp. 110-11. 
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On the contrary, in the region of decomposition, 

€ 

α ' = −α ' , and the equation of motion 

becomes 

 

(176’) 

€ 

∂H P,α ,T( )
∂α

−ϕ P,α ,T ,α '( )+g P,α ,T ,α '( ) = 0 .26 

 

From these equations, Duhem tried to derive “the velocity of transformation of the 

system”, or in other words, the velocity of the chemical reaction. The derivation seemed 

too complex, and he dared to put forward some simplifications involving the two 

dissipative functions 

€ 

ϕ P,α ,T ,α '( ) and 

€ 

g P,α ,T ,α '( ) . He assumed that 

€ 

g P,α ,T ,α '( )  did not 

depend on 

€ 

α ' , and then that  

 

€ 

g P,α ,T ,α '( ) ≈γ P,α ,T( ), 

 

being the limiting function 

€ 

γ P,α ,T( ) independent of 

€ 

α ' . Then he assumed that the 

function 

€ 

ϕ P,α ,T ,α '( ), expressing the “viscosity” of the system, depended on 

€ 

α '  in a 

very simple way: 

 

€ 

ϕ P,α ,T ,α '( ) ≈Φ P,α ,T( )α ' . 

 

Even though the first simplification was quite sharp, both of them appeared to Duhem 

“the simplest”, and “definitely verified” for small values of 

€ 

α ' . According to these 

simplifications, equations (176) and (176’) became 

 

€ 

∂H P,α ,T( )
∂α

−γ P,α ,T( )−Φ P,α ,T( )α ' = 0 ,  

                                                        
26 Duhem 1896a, pp. 127-8. 
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€ 

∂H P,α ,T( )
∂α

+γ P,α ,T( )−Φ P,α ,T( )α ' = 0 .27 

 

The simplified equations allowed him to give a simple expression for the “velocity” of 

reaction in chemical processes, because 

€ 

α '  appears only in the factorisation of the third 

term: 

 

(179) 

€ 

α ' =

∂H P,α ,T( )
∂α

−γ P,α ,T( )
Φ P,α ,T( )

,  

(179’) 

€ 

α ' =

∂H P,α ,T( )
∂α

+γ P,α ,T( )
Φ P,α ,T( )

. 

 

Duhem’s simplified theory entailed a predictable behaviour of “velocity”. It could 

increase because of two different effects: the increase of the numerator or the decrease 

of the denominator. The numerator increased when the system drifted away from the 

two borderlines ff’ and FF’ of the region of false equilibrium, wherein  

 

€ 

∂H P,α ,T( )
∂α

= +γ P,α ,T( )   and   

€ 

∂H P,α ,T( )
∂α

= −γ P,α ,T( ). 

 

The denominator decreased when “viscosity” decreased, namely when the system 

approached classic thermodynamic behaviour.28  

The structural analogy between Mechanics and Thermo-Chemistry required that 

increasing smoothness in the first field corresponded to increasing temperature in the 

second field. In other words, increasing temperatures smoothed dissipative effects. The 

simplification Duhem had introduced in this context was not structurally different from 

the hypothesis he had introduced in the previous chapter, provided that the function 

€ 

Φ P,α ,T( ) decreased with temperature.   

                                                        
27 Duhem 1896a, p. 128. 
28 Duhem 1896a, pp. 129 and 131. There is a plus/minus misprint in the equation (170ter). 
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“L’expérience nous apprend que la valeur absolue de la vitesse d’une réaction 

donnée croit extrêmement lorsqu’on élève la température ; ainsi, selon M. 

Berthelot, la vitesse de transformation d’un alcool en éther par un acide est 22,000 

fois plus grande à +200°C qu’au voisinage de +7°C : Ces résultats de l’expérience 

nous conduisent à énoncer l’HYPOTHESE suivante : 

La valeur absolue de la fonction 

€ 

Φ P,α ,T( ), grande à basse température, devient 

extrêmement petite lorsque la température s’élève suffisamment.”29 

 

The two dissipative effects Duhem had introduced in the equations of motion, namely 

“viscosity” and “friction”, had the same behaviour with regard temperature: the 

intensity of temperature freed the system from dissipative effects. Although Duhem’s 

generalised physics, which included mechanics, thermodynamics and chemistry, was 

based on the structural analogy between physics and chemistry, he acknowledged the 

“essential differences” between “the theory of motion of systems as taught by 

Dynamics” and his “theory on the modification of a system”. The difference dealt 

mainly with the role of “velocity”. In classic Dynamics, velocity was an initial 

information, to be given together with force, in order to solve the differential equation 

involving acceleration. In Duhem’s theory of false equilibrium, velocity was the 

outcome of a mathematical procedure starting from the knowledge of forces. 

 

“Lorsque l’on considère un système dépendant d’une variable 

€ 

α  et dont la force 

vive varie avec 

€ 

α , l’équation du mouvement du système a pour objet immédiat de 

déterminer 

€ 

d 2α
dt2

 lorsque l’on connaît non seulement l’état du système à l’instant t 

et l’action extérieure qui le sollicite à cet instant, mais encore la valeur de 

€ 

dα
dt

, 

c’est à dire la vitesse des divers points du système à cet instant. 

Au contraire, la théorie de la modification d’un système, lorsqu’on néglige les 

variations de force vive que ce système peut éprouver, nous montre que la vitesse 

                                                        
29 Duhem 1896a, p. 131. Duhem’s previous hypothesis concerning the thermo-chemical behaviour of a system with 

regard temperature can be found at page 104. 
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de transformation 

€ 

dα
dt

 est déterminée à un instant donné lorsqu’on ne connaît, à 

cet instant, l’état du système et l’action extérieure qui la sollicite. La notion 

d’inertie ne s’étend pas à des semblables modifications.”30 

 

The last sentence of Duhem’s passage refers probably to the mathematical and 

conceptual partnership between “inertia” and acceleration in Newton’s second law. He 

had looked upon his generalised physics as a generalisation of classic dynamics, 

involving systems undergoing dissipation, but now he realised that he had arrived at a 

sharp mathematical and conceptual gap between mechanics and chemistry. In the 

outcome of his theory of chemical false equilibrium he saw a contrast rather than a 

generalisation. He realised that, starting from a structural analogy, he had reached a 

structural difference between classic dynamics and his generalised physics.  

In the mathematical model of false equilibrium, two issues were at stake. First, the 

role played by acceleration in ordinary mechanics was played by velocity in chemistry. 

Second, when the generalised viscosity vanished, velocity became infinite: this limiting 

case did not correspond to modern mechanics but to Aristotle mechanics. In order to 

better explain the theoretical break, Duhem compared a pendulum undergoing free 

oscillations with a damped pendulum. Starting from free oscillations, we could imagine 

gradually increasing viscosity acting on the pendulum, until it becomes critically 

damped, and it approaches asymptotically the position of equilibrium without any 

oscillation. Velocity assumes oscillating finite values decreasing with the increasing 

viscosity, until it vanishes asymptotically. In the ordinary mechanical framework, 

whatever case of infinite velocity is excluded. On the contrary, in Duhem framework, 

the starting point was represented by a system strongly damped: the velocity of the 

process increases with decreasing viscosity, until it becomes infinite when viscosity 

vanishes. We are facing two theoretical frameworks which cannot be reduced to each 

other. In particular, processes like swinging pendulum cannot be looked upon as 

specific instances of Duhem generalised processes. 

 If we try to reverse Duhem process, starting from “motions” free from viscosity, we 

have an infinite velocity. When we increase viscosity, the velocity diminishes, but 
                                                        

30 Duhem 1896a, p. 130. 
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cannot vanish unless the system is found on the boundaries of the region of false 

equilibrium. This is what we can deduce by Duhem mathematical model, at least in the 

simplified version expressed by equations (179) and (179’). In those equations, velocity 

vanishes only when the numerator vanishes. On the contrary, when the numerator has a 

finite value, and the denominator vanishes, “velocity” becomes infinite: the equations 

cannot account for the limiting case of motion without dissipation. In other words, the 

equations do not represent a generalisation of classic Dynamics: motion without 

viscosity would make sense only if the numerator vanished as well, namely only “when 

the representative point describes one of the curves FF’ or ff’”.31 

When Duhem emphasised the “essential differences” between his general theory and 

classic Dynamics, he had in mind the above outlined creaks at the borderline between 

mathematical structure and physical phenomena. In some way, the role of “velocity” in 

Duhem’s theory of dissipative systems was consistent with another structural analogy: 

Aristotle’s theory of motion as a theory of material transformations. In the context of 

Aristotle’s physics, it is not strange that velocity be determined by the knowledge of 

forces. Moreover it is not strange that, in absence of some kind of resistance by an all-

pervading medium, velocity becomes infinite. 

However, those difficulties did not prevent Duhem from inquiring into chemical 

reactions with the help of his theory. 

 

                                                        
31 Duhem 1896a, pp. 130-1. 



 



15. From explosions down to mechanical friction  

 

In the last two chapters of his 1896 essay, Duhem tried to cope with two phenomena 

to be found at the opposite ends of his broad-spectrum physics: explosive reactions in 

chemistry, and dissipative effects in purely mechanical motions. In the first case, he 

started from the study of stability of chemical systems. Duhem remarked that the region 

of false equilibrium, wherein 

€ 

dα
dt

= 0, was a region of “indifferent” equilibrium. The 

region of combination, placed below the curve ff’ (in the case of exothermic reactions), 

was a seat of stability, since 

€ 

dα dt > 0: the point representative of the system moves 

upside, towards the region of false equilibria. The region of dissociation, placed above 

the curve FF’, was a seat of stability as well. In fact, 

€ 

dα dt < 0, and the point 

representative of the system must move downside. Duhem then wondered whether a 

state corresponding to the “limiting state of false equilibrium”, defined by the equations 

 

(170’) 

€ 

∂H P,α ,T( )
∂α

+γ P,α ,T( ) = 0    or   (170’’) 

€ 

∂H P,α ,T( )
∂α

−γ P,α ,T( ) = 0 , 

 

were a “stable” or “indifferent” state. He analysed two kinds of transformation, 

isothermal and adiabatic, and concluded that, in isothermal transformations, “every 

limiting state of false equilibrium is stable or indifferent”, while in adiabatic 

transformations, the situation was more complex and “interesting”.1  

First of all Duhem demonstrate the stability of isothermal transformations which start 

from a state represented by a point 

€ 

M0 α0,T0( ) on the curve ff’: the co-ordinates of the 

starting point satisfy equation (170’’). According to Duhem, the final point 

€ 

M1 α1,T1( ) 

could be found in three different places: inside the region of false equilibrium, still on 

the curve ff’, or in the region of combination. For the first and the second case, he wrote 

 

€ 

∂H P,α1,T1( )
∂α1

+γ P,α1,T1( ) > 0      and     

€ 

∂H P,α1,T1( )
∂α1

+γ P,α1,T1( ) = 0  

                                                        
1 Duhem 1896a, pp. 139-40 and 142. 
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respectively. In both cases, the “disturbance” of the system did not move it away from 

equilibrium: in summary, “the equilibrium of the system is indifferent”. In the third 

case, the point 

€ 

M1 α1,T1( ) is in the region of combination, wherein 

€ 

dα dt > 0. This means 

that the value of the parameter 

€ 

α  must increase, leading the representative point upside, 

towards its starting point, the curve ff’ of the limiting states of false equilibrium. In 

summary, “the equilibrium is stable”. Not so different remarks would lead to the 

stability of a transformation starting from a state represented by a point on the curve 

FF’.2 

In the case of adiabatic transformations, “the law of variation of temperature” was 

required. Both the first Principle of Thermodynamics and Duhem’s expression for 

€ 

dQ 

in terms of its thermal coefficients lead to 

 

€ 

dQ = − Rα dα −C dT( ) . 

 

In adiabatic transformations, 

€ 

dQ = 0 , and therefore 

 

(185) 

€ 

Rα dα =C dT    or   

€ 

dT
dt

= −
Rα
C

dα
dt

= −
Rα
C
α '. 

 

Duhem assumed that the representative point 

€ 

M0  was on the curve FF’, wherein  

 

€ 

∂H P,α ,T( )
∂α

+γ P,α ,T( ) = 0 , 

 

                                                        
2 Duhem 1896a, p. 141. Duhem’s choice of symbols is quite unfortunate. In an isothermal transformation, the 

representative point of the system must move along a vertical line in the plane 

€ 

T ,α( ) : therefore we have 

€ 

M 0 α0,T0( )  
and 

€ 

M1 α1,T1( ) . Moreover the derivative 

€ 

∂H P,α1,T1( ) ∂α1  should be written as 

€ 

∂H P,α,T( ) ∂α[ ]α=α1
. 
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and that the subsequent point 

€ 

M1 was not inside the region of false equilibrium, 

wherein the system did not undergo further transformations, and the stability was 

assured. He therefore assumed that

€ 

M1 was in the region of dissociation, wherein 

 

€ 

∂H P,α ,T( )
∂α

+γ P,α ,T( ) > 0    and   

€ 

dα
dt

< 0 . 

 

In the region of false equilibrium, there was a transition form the condition 

 

€ 

∂H P,α ,T( )
∂α

+γ P,α ,T( ) = 0 ,  

 

corresponding to the line FF’, to the condition 

 

€ 

∂H P,α ,T( )
∂α

= 0 , 

 

corresponding to the central line of “true” equilibrium. The condition corresponding 

to such a region was therefore 

 

€ 

∂H P,α ,T( )
∂α

+γ P,α ,T( ) < 0 . 

 

As a consequence, Duhem assumed that the stability of the system was assured by the 

condition 

 

€ 

d
dt

∂H P,α ,T( )
∂α

+γ P,α ,T( )
 

 
 

 

 
 < 0 , 

 

namely the condition that, starting from the state represented by 

€ 

M1, the expression   
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€ 

∂H P,α ,T( )
∂α

+γ P,α ,T( ) 

 

could only decrease. Under this condition, every adiabatic transformation will be 

“impossible”, and the system will keep its stability. After having developed the 

derivation, the condition of stability becomes 

 

€ 

d
dα

∂H P,α ,T( )
∂α

+γ P,α ,T( )
 

 
 

 

 
 
dα
dt

+
d
dT

∂H P,α ,T( )
∂α

+γ P,α ,T( )
 

 
 

 

 
 
dT
dt

< 0 .3 

 

Equation (185) helps us to remove the time-derivative of temperature: 

 

€ 

d
dα

∂H
∂α

+γ
 

  
 

  
dα
dt

+
d
dT

∂H
∂α

+γ
 

  
 

  
−
Rα
C

dα
dt

 

 
 

 

 
 < 0 , 

€ 

∂2H
∂α 2

+
∂γ
∂α

 

 
 

 

 
 
dα
dt

−
Rα
C

∂2H
∂α∂T

+
∂γ
∂T

 

 
 

 

 
 
dα
dt

< 0 , 

€ 

C ∂2H
∂α 2

+
∂γ
∂α

 

 
 

 

 
 −Rα

∂2H
∂α∂T

+
∂γ
∂T

 

 
 

 

 
 

 

 
 
 

 

 
 
 

dα
dt

< 0 . 

 

Being 

€ 

M1 in the region where 

€ 

dα dt < 0, the condition of stability becomes 

 

(186) 

€ 

C ∂2H
∂α 2

+
∂γ
∂α

 

 
 

 

 
 −Rα

∂2H
∂α∂T

+
∂γ
∂T

 

 
 

 

 
 > 0 . 

 

Duhem summarised the results in the following way: 

 

“Ainsi, un état de faux équilibre limite en lequel l’égalité 

                                                        
3 Duhem 1896a, pp. 142-3. 
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(170’) 

€ 

∂H P,α ,T( )
∂α

+γ P,α ,T( ) = 0  

est vérifiée sera un équilibre stable si le système est maintenu dans une enveloppe 

imperméable à la chaleur et si en cet état l’égalité [sic] (186) est vérifiée. 

On démontrerait de même qu’un état de faux équilibre en lequel l’égalité 

(170’’) 

€ 

∂H P,α ,T( )
∂α

−γ P,α ,T( ) = 0  

est vérifiée sera un équilibre stable si le système est maintenu dans une enveloppe 

imperméable à la chaleur et si en cet état l’inégalité 

(186’) 

€ 

C ∂2H
∂α 2

−
∂γ
∂α

 

 
 

 

 
 −Rα

∂2H
∂α∂T

−
∂γ
∂T

 

 
 

 

 
 > 0. 

est vérifiée.”4 

 

Duhem found that inequalities (186) and (186’), which expressed mathematically the 

stability of a system under adiabatic transformations, were also involved in the study of 

“explosive reactions”. Nevertheless, in this case he followed “another pathway”. He 

tried to estimate “the acceleration of the reaction”: a positive “acceleration” entailed a 

velocity of reaction continuously increasing, and therefore an explosive reaction. In this 

different approach, the starting point was represented by the simplified equations for the 

“velocity of reaction” Duhem had discussed in the previous chapter. Those equations 

represented a very critical stage in the building up of his generalised physics, but had 

shown to be useful in the context of Chemistry. The two equations  

 

(179) 

€ 

α ' =

∂H P,α ,T( )
∂α

−γ P,α ,T( )
Φ P,α ,T( )

   and   (179’) 

€ 

α ' =

∂H P,α ,T( )
∂α

+γ P,α ,T( )
Φ P,α ,T( )

, 

 

corresponded to “combination” and “dissociation” regions, wherein 

€ 

dα dt > 0 and 

€ 

dα dt < 0 respectively. The two equations can be synthesised in the single equation 

 

                                                        
4 Duhem 1896a, p. 144. 
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(179’’) 

€ 

dα
dt

=

∂H P,α ,T( )
∂α

−γ P,α ,T( ) α '
α '

Φ P,α ,T( )
, 

 

which became the starting point for the computation of the acceleration. After the 

time-derivation, Duhem found 

 

(187) 

€ 

d 2α
dt2

=
1
Φ

∂2H
∂α 2

−
∂γ
∂α

α '
α '

 

 
  

 

 
  
dα
dt

+
∂2H
∂α∂T

−
∂γ
∂T

α '
α '

 

 
  

 

 
  
dT
dt

 

 
 
 

 

 
 
 
−

∂H
∂α

−γ
α '
α '

Φ2
∂Φ
∂α

dα
dt

−
∂Φ
∂T

dT
dt

 

 
 

 

 
 . 

 

Under the hypothesis that the representative point of the state of the system was 

“infinitely close to the two curves ff’ or FF’, which enclosed the region of false 

equilibrium”, the term 

€ 

∂H
∂α

−γ
α '
α '

 could be considered “infinitely small”. Therefore 

equation (187) came down to  

 

(188) 

€ 

d 2α
dt2

=
1
Φ

∂2H
∂α 2

−
∂γ
∂α

α '
α '

 

 
  

 

 
  
dα
dt

+
∂2H
∂α∂T

−
∂γ
∂T

α '
α '

 

 
  

 

 
  
dT
dt

 

 
 
 

 

 
 
 
.5 

 

As already shown, equation (185) helps us to remove the time-derivative of 

temperature: 

 

(191) 

€ 

d 2α
dt2

=
1
CΦ

C ∂2H
∂α 2

−
∂γ
∂α

α '
α '

 

 
  

 

 
  −Rα

∂2H
∂α∂T

−
∂γ
∂T

α '
α '

 

 
  

 

 
  

 

 
 
 

 

 
 
 

dα
dt

. 

 

In the “region of combination”, 

€ 

dα dt > 0 and 

€ 

Φ< 0 : 

€ 

d 2α
dt2

 has the same sign of the 

expression 

                                                        
5 Duhem 1896a, pp. 151-2. 
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€ 

− C ∂2H
∂α 2

−
∂γ
∂α

 

 
 

 

 
 −Rα

∂2H
∂α∂T

−
∂γ
∂T

 

 
 

 

 
 

 

 
 
 

 

 
 
 
. 

 

Therefore 

€ 

d 2α
dt2

> 0  when 

€ 

C ∂2H
∂α 2

−
∂γ
∂α

 

 
 

 

 
 −Rα

∂2H
∂α∂T

−
∂γ
∂T

 

 
 

 

 
 < 0, and 

€ 

d 2α
dt2

< 0 when 

€ 

C ∂2H
∂α 2

−
∂γ
∂α

 

 
 

 

 
 −Rα

∂2H
∂α∂T

−
∂γ
∂T

 

 
 

 

 
 > 0 . In the first case, the positive “velocity” of the 

chemical reaction increases, and becomes “explosive”; in the second case the reaction 

slows down. This is consistent with the condition of stability (186’) already discussed 

by Duhem in the first section of the chapter. 

In the “region of dissociation”, 

€ 

dα dt < 0 and 

€ 

Φ< 0 : 

€ 

d 2α
dt2

 has the same sign of the 

expression 

 

€ 

C ∂2H
∂α 2

+
∂γ
∂α

 

 
 

 

 
 −Rα

∂2H
∂α∂T

+
∂γ
∂T

 

 
 

 

 
 

 

 
 
 

 

 
 
 
. 

 

Therefore 

€ 

d 2α
dt2

> 0  when 

€ 

C ∂2H
∂α 2

+
∂γ
∂α

 

 
 

 

 
 −Rα

∂2H
∂α∂T

+
∂γ
∂T

 

 
 

 

 
 > 0, and 

€ 

d 2α
dt2

< 0 when 

€ 

C ∂2H
∂α 2

+
∂γ
∂α

 

 
 

 

 
 −Rα

∂2H
∂α∂T

+
∂γ
∂T

 

 
 

 

 
 < 0 . In the first case, the negative “velocity” of the 

chemical reaction changes positively, and the reaction becomes milder; in the second 

case it becomes explosive. Once again, this is consistent with Duhem’s condition of 

stability (186).6 

 

                                                        
6 Duhem 1896a, p. 154. There is a misprint in Duhem equation (191): the term C is missing immediately after the 

squared brackets. The conditions for explosive or mild reactions in the case of dissociations, when compared to the 
case of combinations, could appear somehow puzzling. It could be useful a graphic interpretation, wherein 
“acceleration of reaction” is nothing else but the concavity of a function. For increasing functions, a positive second 
derivative means a sharper increase; for decreasing functions, a positive second derivative means a milder decrease. 
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“Un système, enfermé dans une enveloppe imperméable à la chaleur, est dans un 

état voisin d’un faux équilibre limite ; la valeur absolue de la vitesse de la 

modification dont le système est le siège est une fonction croissante ou 

décroissante du temps, selon que le faux équilibre limite au voisinage duquel se 

trouve le système est instable ou stable dans les conditions considérées. 

Convenons désormais de nommer explosion une réaction dont la vitesse croit en 

valeur absolue avec le temps lorsque le système est maintenu dans une enveloppe 

imperméable à la chaleur ; réaction modérée, une réaction dont la vitesse, dans les 

même conditions, décroit en valeur absolue lorsque le temps croit ; nous pourrons 

énoncer comme suit le théorème précédent : 

Au voisinage d’un faux équilibre limite stable, le système est le siège d’une 

réaction modérée : au voisinage d’un faux équilibre limite instable, le système est 

le siège d’une explosion.”7 

 

When Duhem tried to extend his inquiry to states represented by points far from the 

region of false equilibrium, the theory became more phenomenological. He made 

recourse to other hypotheses, and tuned the results of the theory with the available 

experimental results. He found that, in exothermic reactions, the region of combination 

split into two complementary sub-regions. The upper side, closer to the region of false 

equilibria, was the seat of “mild” reactions, while the lower side was the seat of 

“explosive” reactions. 

 

                                                        
7 Duhem 1896a, p. 155. 
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Picture 1 (Duhem 1896a, p. 160) 

 

Picture 2 (Duhem 1896a, p. 163) 

 

“Si le point figuratif est assez voisin de la ligne ff’, on a assurément 

€ 

d 2α
dt2

< 0, et le 

système est le siège d’une combinaison modérée. Il peut arriver que, dans cette 

région de combinaison, on puisse tracer une ligne définie par l’équation 

€ 

d 2α
dt2

= 0 . 
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Au dessus de cette ligne 

€ 

ηη ' (fig. 15), on a 

€ 

d 2α
dt2

< 0 et la combinaison est 

modérée ; au-dessous de cette ligne, on a 

€ 

d 2α
dt2

> 0 et la combinaison est 

explosive.”8 

 

The line 

€ 

ηη ' corresponded to the condition  

 

€ 

C ∂2H
∂α 2

−
∂γ
∂α

 

 
 

 

 
 −Rα

∂2H
∂α∂T

−
∂γ
∂T

 

 
 

 

 
 = 0 . 

 

In the case of endothermic reactions, the region of dissociation split in the same way: 

the lower side, closer to the region of false equilibrium, was the seat of “mild” 

reactions, while the upper side, farther from equilibrium, was the seat of “explosive” 

reactions. 

 

 

Picture 3 (Duhem 1896a, p. 162)  

 

                                                        
8 Duhem 1896a, p. 163. 
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Picture 4 (Duhem 1896a, p. 166)  

 

 “… il peut arriver que, dans cette région de décomposition, il existe un ligne 

€ 

ηη ' 

(fig. 16) définie par l’égalité 

€ 

d 2α
dt2

= 0; au-dessous d’une telle ligne, on a 

€ 

d 2α
dt2

> 0 

et la décomposition du système, au sein d’une enveloppe imperméable à la 

chaleur, est une décomposition modérée ; au-dessous d’une telle ligne, on a 

€ 

d 2α
dt2

< 0  et la décomposition du système est explosive.”9  

 

Duhem was aware that the hypotheses and simplifications put forward in the course of 

the last chapters did not allow him to describe in a satisfactory way the complexity of 

phenomena. He was aware, in particular, that physical-chemical systems do not have 

“the same temperature in every point”, nor the same pressure; that the living force does 

not undergo “negligible variations”. In sudden and violent phenomena like explosions, 

those simplifications were definitely unsuitable. In order to realise a better refinement, 

he imagined the system under consideration as a collection of small sub-systems to be 

analysed in accordance with the already known mathematical procedure. 

 

                                                        
9 Duhem 1896a, p. 165. 
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“Pour aborder avec plus de rigueur les phénomènes explosifs, il faut diviser le 

système étudié en éléments de volume, tenir compte des différences de pression 

sur les différentes faces de cet élément, des forces d’inertie, des actions de 

viscosité qui résultent de son mouvement, et appliquer seulement aux 

modifications qui se produisent à l’intérieur de chaque élément de volume des 

considérations analogues à celles qui précèdent.”10 

 

With the help of three new hypotheses, Duhem rephrased the study of combinations, 

in particular the propagation of “WAVES OF COMBINATION”. Nevertheless, at the end, he 

found that even the new theoretical inquiry was based on “hypotheses which could not 

be realised”: for instance, neither viscosity nor “diffusion” could be neglected in real 

chemical reactions, which are not purely adiabatic. Taming complexity was found too 

hard to be pursued in a completely satisfactory way. The general equations of the kind 

(93) had shown to be potentially fruitful in order to describe a wide set of phenomena, 

but the theory creaked under the weight of so many specific applications.  

When, in the last chapter, Duhem undertook the conceptual path leading him back, 

from chemical reaction to ordinary mechanics, he did not tried to insist on specific 

applications. He discussed the structure of his general equations but, at the end, he 

invited the reader to make reference to a brief bibliography for assumptions. 

 

“Nous ne développerons davantage l’étude du frottement de roulement, de 

glissement et de pivotement ; il nous suffit d’avoir montré comment cette étude se 

relie à la théorie générale que nous avons esquissée dans ce travail ; le lecteur 

soucieux de suivre les propriétés du frottement de deux corps en contact trouvera 

de précieux renseignements dans les écrits suivants : ….”11 

 

He rather tried to widen the scope of his general equations describing two interacting 

bodies, by removing a previous “restriction” on the bonds between the bodies: in fact, 

surfaces of separation had been assumed “welded together”. He described the first body 

                                                        
10 Duhem 1896a, p. 168. 
11 Duhem 1896a, p. 178. 
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by means of a set of 

€ 

n1 parameters, apart from its temperature 

€ 

T1: some of them, 

€ 

a1,......,l1, described the internal state of the system, and suffered friction, while at least 

six of them, 

€ 

m1,......,n1, described the system as a whole, and were free from friction. 

The second body was described by a similar set of 

€ 

n2  parameters, and by its 

temperature 

€ 

T2 . 

 

“Les modifications virtuelles principales … pour lesquelles il n’y a pas de 

frottement, peuvent être plus ou moins nombreuses ; mais leur nombre ne peut 

être inferieure à 6 ; parmi elles, en effet, se trouvent forcément six modifications 

qui déterminent un changement de position absolue dans l’espace du système 

formé par l’ensemble des corps 1 and 2, sans changement d’état et sans 

changement de situation relative de ses diverses parties.”12 

  

The internal energy and therefore the internal thermodynamic potential depended on a 

term of interaction 

€ 

Ψ , which was independent of the temperature 

€ 

T1 and 

€ 

T2: 

 

€ 

U =U1+U2 +Ψ    and     

€ 

F = F1+F2 +EΨ . 

 

The “virtual work” done by “external actions” applied to systems 1 and 2 were 

respectively 

 

  

€ 

A1+A '1( )δa1+ ... L1+L'1( )δl1+ ... N 1+N '1( )δn1 

  

€ 

A2 +A '2( )δa2 + ... L2 +L'2( )δl2 + ... N 2 +N '2( )δn2 . 

 

Notwithstanding the complexity of the physical system, and the interaction between 

the two bodies, Duhem assumed that the system was separable in two senses. In the first 

sense, the generalised motion of the system could be split into a change of state and a 

change of position, corresponding to two separate sub-sets of parameters. In the second 

                                                        
12 Duhem 1896a, p. 188.  
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sense, the virtual work could be split into the work done by truly external actions, and 

the work done by forces of interactions between the two parts of the system. If the first 

contribution was 

 

  

€ 

A1δa1+ ...+ L1δl1+ ...+N 1δn1 + A2δa2 + ...+ L2δl2 + ...+N 2δn2 , 

 

the second corresponded to the potential of interaction 

€ 

Ψ : 

 

  

€ 

A'1δa1+ ...+ L'1δl1+ ...+N'1δn1 + A'2δa2 + ...+ L'2δl2 + ...+N'2δn2 .13 

 

The theory Duhem had put forward in the first and third chapter of the essay entailed 

three sets of equations: two equations of motion of the kind equation (93), and an 

equation for the bonds, of the kind equation (12). In symbols, 

 

(213) 

  

€ 

A1 +A'1 −
1Φa1 +Ja1 +ϕ a1 +ga1

a1'
a'1

= 0

... ...

L1 +L'1 −
1Φl1 +Jl1 +ϕ l1 +gl1

l1'
l'1

= 0

M1 +M'1 −
1Φm1

+Jm1
+ϕm1

= 0

... ...

N 1 +N'1 −
1Φn1 +Jn1 +ϕ n1 = 0

 

 

 
 
 
 
 

 

 
 
 
 
 

,    

(213’) 

  

€ 

A2 +A’2 −
2Φa2 +Ja2 +ϕ a2 +ga2

a2'
a'2

= 0

... ...

L2 +L’2 −
2Φl2 +Jl2 +ϕ l2 +gl2

l2'
l'2

= 0

M2 +M’2 −
2Φm2

+Jm2
+ϕm2

= 0

... ...

N 2 +N’2 −
2Φn2 +Jn2 +ϕ n2 = 0

 

 

 
 
 
 
 

 

 
 
 
 
 

, 

                                                        
13 Duhem 1896a, pp. 184-5. Duhem choice of symbols was unfortunate and quite puzzling. I have tried to simplify 

the notation, in order to make it consistent with the remaining part of the essay. 
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and 

 

(215) 

  

€ 

a1δα1+ ......+ l 1δλ1+a2δα2 + ......+ l 2δλ2 + pδp+ ......+qδq+ rδr+ ......+ sδs = 0
a’1δα1+ ......+ l’’1δλ1+a’2δα2 + ......+ l’2δλ2 + p’δp+ ......+q’δq+ r’δr+ ......+ s’δs = 0
...... ......

. 

 

Duhem specified that the terms 

€ 

1Φa1 , …, in equation (213) depended only on the 

potential   

€ 

F1, as well as 

€ 

2Φa2 , …, depended only on the potential   

€ 

F2. The equations 

corresponding to parameters of the kind 

€ 

m1,......,n1 did not contain the term of “friction”. 

In equations (215), the new parameters 

€ 

p,...,q , and 

€ 

r,...,s  were introduced by Duhem in 

a pure mathematical way as “linear and homogeneous functions” of 

€ 

m1,......,n1 and 

€ 

m2,......,n2.14 

The physical meaning of the new parameters emerged when he tried to write 

equations of motion of the greatest generality. Instead of two sets of equations, one for 

the parameters of the kind 

€ 

a1,......,l1, and the other for the parameters of the kind 

€ 

m1,......,n1, he wrote three kinds of equations: one for 

€ 

a1,...,l1,a2,...,l2, one for 

€ 

p,...,q , and 

one for 

€ 

r,...,s. Moreover, he introduced the new functions 

 

   

€ 

Φa1 = 1Φa1 −A '1,   

€ 

Φa2 = 2Φa2 −A’2, … …,  

€ 

Ga1 ,......,Gl1 ,Ga2 ,......,Gl2 ,Gp ,......,Gq . 

 

The functions 

€ 

Ga1 ,......,Gl1 ,Ga2 ,......,Gl2  could be identified with the old functions 

€ 

ga1 ,......,gl1 , ga2 ,......,gl2 . The new functions 

€ 

Gp ,......,Gq  depended on the generalised 

forces   

€ 

A1 ,...,L1,A2 ,...,L2,P ,...,Q,R ,...,S  only through the coefficients 

€ 

Π,Π' ,...... of the 

linear combination of equations (215). The general equations had the following 

structure: 

 
                                                        

14 Duhem 1896a, pp. 185-7. 
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€ 

A1 +Πa1+Π'a'1+ ......−Φa1 +Ja1 +ϕa1 +Ga1
a1'
a'1

= 0

... ...

L1 +Π l 1+Π' l'1 + ......−Φl1 +Jl1 +ϕ l1 +Gl1
l1'
l'1

= 0

A2 +Πa2 +Π'a'2 + ......−Φa2 +Ja2 +ϕa2 +Ga2
a2'
a'2

= 0

... ...

L2 +Π l 2 +Π' l'2 + ......−Φl2 +Jl2 +ϕ l2 +Gl2
l'2
l'2

= 0

 

 

 
 
 
 
 
 

 

 
 
 
 
 
 

 

    

€ 

P +Π p +Π'p'+ ......−Φp +J p +ϕ p +Gp
p'
p'

= 0

... ...

Q +Πq+Π'q' + ......−Φq +Jq +ϕ q +Gq
q'
q'

= 0

 

 

 
  

 

 
 
 

 

    

€ 

R +Π r +Π' r' + ......−Φr +Jr +ϕ r = 0
... ...
S +Π s+Π' s' + ......−Φs +Js +ϕ s = 0

 

 
 

 
 

.15 

 

The first set of equations for 

€ 

a1,...,l1,a2,...,l2 corresponded to transformations 

undergoing some kind of intrinsic friction. The second set of equations for 

€ 

p,...,q  

corresponded to transformations wherein only the bonds gave place to some kind of 

friction. The third set of equations for 

€ 

r,...,s  corresponded to transformations free from 

friction. 

The great effort of generalisation led to the usual generalisation of the concept of heat 

as the sum of all effects of all kinds of transformations. Once again, Duhem final step 

was the proof of the inequality 

 

(238) 

€ 

dS+
dQ
T∑ > 0 

 

for whatsoever transformation, and to “Clausius’ inequality” for closed cycles: 

                                                        
15 Duhem 1896a, pp. 187, 189-90. 
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(239) 

€ 

dQ
T∑∫ > 0 .16 

 

The summary Duhem outlined in his “Conclusion” was, in some way, a plan for 

further researches. The first passages were just devoted to “Clausius’ inequalities”: 

generalised viscosity and friction, because of the corresponding negative work, led 

naturally to inequalities (238) and (239). Permanent elastic deformations, magnetic 

hysteresis, and quenching were other instances of phenomena described by 

mathematical laws consistent with “Clausius’ inequalities”. In other words, the second 

Principle of Thermodynamics had a satisfactory explanation in the negative work 

performed by dissipative actions and permanent deformations. At this point Duhem 

asked the fundamental question: what is the specific feature “the term of viscosity, the 

term of friction, and the term of hysteresis” have in common, and differentiate them 

from the other “terms already contained” in the equations? According to Duhem, the 

specific feature is the behaviour with regard time, in particular time-symmetry.  

Under the transformation 

€ 

t→− t , the first time-derivatives 

€ 

dα
dt
,... ..., dλ

dt
 transform into 

€ 

−
dα
dt
,... ...,− dλ

dt
, whereas the second time-derivatives 

€ 

d 2α
dt2

,... ..., d
2λ

dt2
 remains invariant. 

Purely mechanical equations of the kind 

 

    

€ 

A+
∂T
∂α

−
d
dt
∂T
∂α '

−
∂F
∂α

= 0

... ...

L+
∂T
∂λ

−
d
dt
∂T
∂λ '

−
∂F
∂λ

= 0

 

 

contain only quadratic terms in 

€ 

dα
dt
,... ..., dλ

dt
, and therefore they are invariant under the 

transformation 

€ 

t→− t , even though 

€ 

dα
dt
,... ..., dλ

dt
 are not. In summary, equations of 

ordinary Mechanics are invariant under time-symmetry. 
                                                        

16 Duhem 1896a, p. 196. 
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“Il résulte de là que si un système peut éprouver une modification déterminée, …, 

il peut également, sous l’influence des même actions, parcourir en ordre inverse 

la même suite d’états, en ayant en chacun d’eux des vitesses égales en valeur 

absolue, mais contraires en signe, à celles qu’il possédait au moment où, dans la 

première modification, il a traversé le même état. Cette faculté laissée aux 

systèmes que régissent les seules équations de la thermodynamique classique, 

faculté que les oscillations d’une pendule nous manifestent sous la forme la plus 

simple, est celle que Helmholtz désigne comme la capacité d’éprouver des 

modifications réversibles.”17 

 

This invariance, or reversibility, does not occur in physical systems affected by 

“viscosity”, “friction” or “permanent transformations”. The mathematical terms 

corresponding to “these three classes of actions” change their sign when generalised 

“velocities” 

€ 

dα
dt
,... ..., dλ

dt
 change their sign under time-symmetry. These physical 

systems are affected by time-irreversibility: this feature “differentiates deeply” them 

from purely mechanical systems. Duhem found that this deep difference represented an 

“insuperable hindrance” to reducing “complete thermodynamics … to classic 

dynamics”.  

How could be explained the presence of such terms in the equations of motion? Two 

alternatives were at stake: independent mathematical terms describing intrinsic features 

of the physical world, or fictitious terms roughly expressing the consequence of “hidden 

motions”. Duhem dismissed the second alternative, and therefore he was “forced to 

acknowledge” that “the fundamental equations of dynamics” are “more complex than 

Lagrange’s equations”. He looked upon his “doctrine” as a theoretical contribution to be 

placed in a conceptual stream recently established by Rankine. From that stream, which 

could be labelled Energetics, two main issues emerged: the intrinsic existence of 

dissipative effects, and the necessity of a more general science of transformations. 

 

                                                        
17 Duhem 1896a, p. 202. 
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“La doctrine que le présent mémoire cherche à faire prévaloir est, en résumé, la 

résultante de deux idées fondamentales : la première est celle que nous trouvons 

déjà indiquée par Navier, dans un cas particulier : la viscosité et le frottement ne 

sont pas toujours des termes fictifs introduits dans les équations du mouvement 

des systèmes pour tenir compte sommairement de perturbations compliquées et 

mal connues ; ce sont souvent, dans ces équations, des termes essentiels, 

irréductibles et primitifs ; la seconde est celle que Rankine formulait dans son 

immortel écrit sur l’Energétique : les divers changements de propriétés d’un 

système ne se réduisent pas au mouvement local ; une même science doit réunir 

en ses principes à la fois les lois du mouvement local et les lois selon lesquelles se 

transforment les qualités des corps.”18 

 

In Duhem’s theory, Clausius’ inequality did not follow from “logical” or 

“experimental” reasons. It was the consequence of a specific hypothesis: the work done 

by “viscosity” or “friction” had been assumed to be negative. In this sense, Clausius’ 

inequality, namely the second Principle of Thermodynamics was not a physical 

necessity, but the consequence of an “arbitrary” hypothesis. Duhem’s theory would not 

have been overthrown by the opposite choice of “positive friction”. The fact that the 

hypothesis of negative work was in accordance with the experience, could not mean that 

subsequent experiences could not lead to a “contradiction”. Was the hypothesis of a 

positive work done by dissipative forces really odd? Duhem did not believe so: he 

pointed out the analogy between a hypothetical positive work and the creative power of 

life. 

 

“Lorsqu’on analyse les propriétés des systèmes où le travail de la viscosité et du 

frottement ne seraient plus essentiellement négatifs, où les transformations non 

compensées ne seraient plus essentiellement positives, il est impossible de ne le 

pas être frappés des analogies que ces propriétés présentent avec celles des tissus 

vivants, soit animaux, soit végétaux ; de ne pas remarquer la facilité avec laquelle 

elles rendent compte de la plupart des synthèse organiques, inexplicables à la 

                                                        
18 Duhem 1896a, p. 205. 
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mécanique chimique ordinaire, irréalisables, hors de l’organisme, dans les 

conditions de température où l’organisme fonctionne.”19 

 

Sciences of life suggested the possibility of a “new thermodynamics” or “physiologic 

thermodynamics”, which would satisfy le Principle of conservation of energy but would 

not “the principle of the impossibility of perpetual motion”. In the course of almost 

three centuries, most of the scientists had tried to reduce phenomena of life to 

mechanical actions. Duhem was showing another, complementary perspective: the 

study of phenomena occurring in living matter could have allowed scientists to better 

understand physical and chemical phenomena of high complexity.  

 

“D’ailleurs une autre interprétation des synthèse organiques accomplies à 

l’inverse des prévisions de la thermodynamique semble susceptible de se 

substituer à la précédent. On n’a d’exemples certaines de semblables synthèses 

que celles que se produisent au sein du protoplasme chlorophyllien soumis à 

l’action de la lumière ; n’est-ce point cette dernière action qui doit être invoquée 

comme la cause du désaccord entre les faits et les prévisions de la 

thermodynamique ?  Nous avons vu … la lumière diminuer la valeur absolue des 

termes de viscosité et de frottement ; ne pourrait-elle aller jusqu’à changer le 

signe de ces termes ? Ne pourrait-elle produire, au sein du protoplasme 

chlorophyllien, des actions accompagnées d’un travail positif du frottement ou de 

la viscosité ? Ne pourrait-elle agir de même en dehors de l’organisme, ce qui 

expliquerait certaines actions photographiques ?”20 

 

 Duhem hinted at a mere possibility far from being fulfilled: at that time, the creative 

power of life was far outside the horizon of physics. Only after many decades, a few 

number of physicists and chemists would have tried to recollect Duhem’s heritage. 

Nowadays, for many other physicists, Duhem’s heritage is still outside the horizon of 

physics. 

                                                        
19 Duhem 1896a, p. 206. 
20 Duhem 1896a, p. 207. 
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We can now wonder what heritage Duhem left to twentieth century physics. As far as 

I know, the most authoritative among contemporary physicists have never thought he 

had left a valuable heritage. Nevertheless something has survived, although in an 

unexpected way. Duhem’s specific theoretical models and specific mathematical 

approach have not survived, but some important second-level and third-level issues 

have survived and found new implementations. Among them, I can list: 

1. Physics and chemistry can be unified by a common mathematical framework, 

wherein chemical reactions are looked upon as generalised physical 

transformations;  

2. Thermodynamics can transform into a generalised mechanics, in accordance with 

a generalisation of analytic mechanics; 

3. physical reductionism should be overcome, in order to let physics account for the 

complexity of the real world. 

With regard to the first issue, we can definitely say that specific analogies and specific 

mathematical machinery were dismissed in the subsequent developments of physics. 

Nevertheless, in the first decades of the twentieth century, some kind of unification 

between physics and chemistry through a generalisation a re-interpretation of analytic 

mechanics took really place. What we usually call Quantum Physics managed to 

describe the atomic structure and chemical bonds through a re-interpretation of 

Lagrangian and Hamiltonian formalism, at least in extremely simple configurations. 

This fact should not be overlooked: there is a structural analogy between Duhem’s 

theoretical sketch put forward in 1896 and Schrödinger, Heisenberg and Jordan’s re-

interpretation of Hamilton’s formalism. It is worth stressing that I am not talking about 

some kind of direct influence or something like that. I am talking about a new 

interpretation and a very different implementation of a similar second-level design. We 

could even assume an a-priori incommensurability between Duhem’s 1896 theoretical 
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sketch and late 1920s Quantum Physics: indeed, with regard the first-level specific 

theoretical models, whatever kind of comparison would be meaningless.1  

In a season of history of physics wherein subtle meta-theoretical remarks on Quantum 

Physics were not at stake yet, the physicist and historian of physics Dugas was able to 

re-interpret Duhem’s anti-atomism in a not-trivial way. Duhem did not rely on atoms as 

they were real things: in his view, atoms could only be considered as mere 

representations, not methodologically different from the mathematical models of 

continuous media, which Duhem relied on. This kind of abstract representation and 

methodological attitude was revived just by Quantum Physics.2 

 

With regard to Duhem’s second issue, the design of a generalized and fully 

mathematized Thermodynamics was accomplished by C.A. Truesdell in the 1960s. In 

the second edition (1984) of his book Rational Thermodynamics, he reminded the 

reader that he had “returned to the sources” of Thermodynamics. In the second half of 

the nineteenth century Thermodynamics had suffered a sharp split between the two 

traditions emerged in the first half: “the FOURIER line, which considered workless 

dissipation”, on the one hand, and “CARNOT line, which considered dissipationless 

work”, on the other. He noticed that, in the last decades of the nineteenth century, 

“thermodynamics was already regarded in Germany as a dead field, insusceptible of 

broadening or deepening”. Apart from Planck, physicists confined themselves to 

equilibrium states and therefore thermodynamics resulted “inapplicable to natural 

processes”, namely to real, irreversible phenomena.3 

                                                        
1 It seems to me that R. Dugas managed to catch the deep connection between Quantum Physics and the tradition of 

Analytic Mechanics. See Dugas R. 1937, p. 70: “Dans l’arsenal des théorèmes de Lagrange, Hamilton, Jacobi, la 
physique quantique a trouvé la base de départ dont elle avait besoin ; l’équation de Jacobi, sous forme classique ou 
relativiste, domine la théorie des modèles de Bohr ; l’équation de Schrödinger prolonge celle de Jacobi. Une nouvelle 
preuve est apportée par la formulation de la mécanique quantique à l’aide d’une extension des crochets de Poisson : 
une notation sans valeur intrinsèque de la mécanique analytique classique devenant, grâce à un postulat restrictif sur 
la commutativité de la multiplication, un outil essentiel permettant d’écrire les équations du mouvement  sans la 
connaissance préalable de variable canoniques.” 

2 See Dugas R. 1937, p. 69: “Rappelons à ce sujet que réfutait  l’existence de tout experimentum crucis, ceci en vertu 
de la transcription symbolique que subit dans la théorie tout fait d’expérience.  […] C’est ainsi que en optique aucune 
expérience, contrairement à l’affirmation d’Arago, ne permet de décider de la nature corpusculaire ou ondulatoire de 
la lumière. Il en va de même pour la matière, depuis l’introduction des quanta. […] Les opérateurs que l’on rencontre 
en mécanique quantique ne sont pas tous doués de sens physique ; les observables elles-mêmes ne sont que des objets 
du second ordre, analogues rationnels d’objets du sens commun.” 

3 Truesdell C. 1984, pp. 2, 7, 24-5. 
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According to Truesdell, Duhem represented an outstanding exception. Even though he 

appreciated Bridgmann efforts to cope with the foundation of Thermodynamics in the 

1940s, he found that Bridgmann had “failed to reach the clarity, the definiteness, or the 

conceptual level maintained fifty years earlier by DUHEM”. Truesdell regretted that 

“DUHEM work had fallen into the general oblivion of classical mechanics in the 

interbellum”, although he acknowledged that “most of the work since 1960 follows the 

example of DUHEM”. He recommended that “DUHEM‘s researches be studied until 

justice be done them”, and qualified the preface to his Treatise on Energetics or 

General Thermodynamics as a “program of modern rational thermodynamics”.4 

Truesdell remarked that, before Duhem Thermodynamics was swinging between 

technology and cosmology: the operation of technical devices, on the one hand, and 

“the speculations about the universe”, on the other. Thermodynamics had “always had a 

hard time striking a mean between these extremes”: he found that “its claims are often 

grandiose, its applications are usually trivial”. Furthermore, mathematics of 

thermodynamics appeared to Truesdell obscure and misleading. He aimed to state and 

teach Thermodynamics “just as classical mechanics is stated precisely and learned”.5 

Truesdell’s aim was not different from Duhem’s: in Truesdell’s words, he was looking 

for “a thermodynamic theory formally similar to the classical one but vastly more 

general in scope”. The generalized Thermodynamics should “extend the concepts of 

mechanics so as to allow for diffusion and chemical reactions as well”.6 

What Truesdell called “modern continuous thermodynamics” consisted of a 

“collection” of theories concerning “elastic materials”, “viscous materials”, materials 

with memory”, “mixtures”, and so on. Nevertheless, all these branches of physics were 

based on the same principle: the “Clausius-Duhem inequality”. In brief, “for any 

process suffered by any body composed of the material under study”, Rational 

Thermodynamics assumes  

 

                                                        
4 Truesdell C. 1984, p. 38, 40-1 and 45. 
5 Truesdell C. 1984, pp. 59, 61-2. With regard to mathematics, he regretted that the reader had to face equations like 

€ 

T ⋅ dS ≥δQ: “He is told that 

€ 

dS  is e differential, but not of what variables S is a function; that 

€ 

δQ is a small 
quantity not generally a differential; he is expected to believe not only that a differential can be bigger than another, 
but even that a differential can be bigger than something which is not a differential.” (p. 61)  

6 Truesdell C. 1984, p. 106. 
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€ 

S − S0 ≥
dq
ϑ∫ process

, 

 

“

€ 

dq  denoting the element of heat received from external sources and 

€ 

ϑ  the 

temperature of the part of the system receiving it”. Truesdell claimed that this inequality 

could be applied to “general motions”, far beyond the states of equilibrium: to deny this 

is to deny “that there can be such a thing as a thermodynamics of irreversible 

processes”.7  

 

With regard to the third issue, we find a sort of intellectual dialogue between Duhem 

and Poincaré in the treatise the latter devoted to Thermodynamics in 1892. Poincaré 

agreed with Duhem on the increasing importance of the two Principles of 

Thermodynamics “in all fields of natural philosophy”, and on the rejection of “the 

ambitious theories full of molecular hypotheses”. Microscopic mechanical models could 

not account for the second Principle: in his words, “mechanics collide with Clausius 

theorem”. In the treatise on Thermodynamics he published in 1892, he claimed he 

would have built up “the whole structure of mathematical Physics only on 

Thermodynamics”. The complexity in physical systems was not outside the intellectual 

horizon of Poincaré, for he had studied the stability of the three-body problem in 

celestial mechanics. He noticed that “the exact computation of the internal energy of a 

body depended on the state of external bodies”: the conservation of energy in a given 

body called into play “the whole universe”. A similar remark had to be extended to the 

second Principle, although it was express “by an inequality” rather than an equality. He 

found that only following “the historical pathway”, a scholar could understand why “all 

physicists adopted the two principles”. Poincaré shared with Duhem even the sensitivity 

to the historical nature of the scientific enterprise, and the ability to perform both logical 

and historical analyses. Moreover, he was aware of the role of “metaphysical” or meta-

theoretical issues besides purely “theoretical” ones.8  

Just like Duhem’s papers, essays and books, Poincaré treatise is a treatise in a very 

deep sense, for we find remarks on foundations of physics, meta-theoretical cogitations, 
                                                        

7 Truesdell C. 1984, pp. 123 and 157. 
8 Poincaré H. 1892, pp. V, XII-XIII, and XVIII. 
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historical reconstructions, alongside detailed analysis of experiments, and comparisons 

between different interpretations of experiments. He appreciated Duhem researches, 

even though he devoted some pages of the treatise to oppose some interpretations of 

specific phenomena. In this context, the last passage of Poincaré Préface is quite 

meaningful. 

 

J’ai eu deux fois l’occasion d’être en désaccord avec M. Duhem ; il pourrait 

s’étonner que je ne le cite que pour le combattre, et je serai désolé qu’il crût à 

quelque intention malveillante. Il ne supposera pas, je l’espère, que je méconnais les 

services qu’il a rendus à la science. J’ai seulement cru plus utile d’insister sur les 

points où ses résultats me paraissent mériter d’être complétés, plutôt que sur ceux où 

je n’aurais pu que le répéter.9 

 

Poincaré Thermodynamics ranged over gases, fluids in motion, solids, saturated 

vapours, and sudden transformations in elastic bodies. He was interested in discussing 

the complexity of the real world, wherein “the pressure p does not have the same value 

in every point”, “the temperature T is not uniform, and the integral in Clausius theorem 

loses its definite meaning”. He put forward a “general demonstration of Clausius 

theorem” when irreversibility took place, stemming from “heat exchanges with the 

sources”, but even from the system itself”. Although he found no difficulties in 

reducing “the principle of equivalence to the fundamental principles of mechanics”, for 

the second principle he found that “things are different”. He concluded that “irreversible 

phenomena and Clauisus theorem cannot be explained by Lagrange equations”.10 

In 1917, one year after Duhem death, E. Jouguet, Ingénieur en chef des Mines, and 

Répétiteur à l’École Polytechnique, published a paper in the Revue générale des 

Sciences pures et appliquées, wherein he gave a short account, and tried a 

comprehensive appraisal of Duhem contribution to theoretical physics. Jouguet had 

followed the tradition of French engineers who, in the second half of the nineteenth 

                                                        
9 Poincaré H. 1892, p. XIX. Poincaré objections to Duhem theory dealt with the entropy computation in a gaseous 

mixture, and the interpretation of Peltier effect: in particular, Poincaré criticised Duhem rejection of Maxwell 
conception of every electric current as a closed current. See Ibidem, pp. 321-38, 366-83, and 390. 

10 See Poincaré H. 1892, pp. 98, 100, 103, 211-2, 392, and 422. He made extensively use of “Massieu characteristic 
functions”. 
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century, had steered French physics out of the arid lands of mere experimentalism. He 

could appreciate both Duhem physics and Duhem meta-theoretical commitments. He 

was aware that “Duhem had a very peculiar place in French science”: he had not taken 

part in the building up of “recent theories”, “his method contradicted some habits”, and 

his theories could be understood at the price of “efforts which some people were not 

able to make”. Jouguet emphasised both “the originality of his mind” and “the flaws in 

most of his writings”, being the latter due to “the breadth of his interests”, and “the fast 

pace of his work”. At the end, however, an attentive reader could not be but struck by 

“wealth and originality” of Duhem’s scientific practice, which could be qualified as 

“very deep, mindful, and personal”.11    

Jouguet was aware that Duhem pathway to Thermodynamics had stemmed from the 

researches of Massieu, Gibbs and Helmholtz. The structural analogies Duhem had seen 

between “mechanical Statics” and “thermodynamics Statics” had not led him to develop 

the hypothesis of heat “as a kind of motion” or “molecular frantic drift”. His generalised 

mechanics had nothing to do with specific mechanical or kinetic models: it was rather a 

structural or abstract model of explanation. It was more a meta-theoretical commitment 

or a formal language than a definite content. That generalised mechanics was a science 

of motion in a general sense, or a science of transformations, according to the meaning 

of the word “motion” in peripatetic tradition. As Jouguet reported, “Mechanics and 

Thermodynamics were particular implementations of a single theoretical approach”: a 

unified science which dealt with “changes of state as well as changes of place”.12 

Jouguet considered Duhem the founding father of the “thermodynamics of irreversible 

processes”: before his mathematical theories on “viscosity, friction, and hysteresis”, 

those phenomena had been taken seriously into account only “exceptionally”. 

Moreover, from “chemical Mechanics” new “differential equations of motion” in 

general sense stemmed, namely differential equations of the first order, corresponding 

                                                        
11 Jouguet E. 1917, p. 40. In 1908-9, Jouguet had published a two-volume history of Mechanics, Lectures de 

Mécanique, whose first claim was the usefulness of the history to “better understand the nature of principles and laws 
of Mechanics”. In the Préface, he acknowledged the role played by Duhem in the comprehension of the ancient 
sources of modern mechanics. Moreover, when he briefly discussed peripatetic physics, he stressed the deep 
theoretical connections among that ancient physics, dissipative processes, and “the foundations of Thermodynamics”. 
See Jouguet E. 1908, pp. VII-VIII and 4. 

12 Jouguet E. 1917, p. 41. Jouguet word I have translated into “theoretical approach” is “doctrine”. It seems to me 
that some nuances of the French word “doctrine” echo something meta-theoretical more than theoretical in the 
context of physics. On the other hand, translations like “tenet” or “belief” would seem to me slightly misleading. 
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to “variables without inertia”. Those equations, just like the equations of the ordinary 

mechanics, were “specific instances of the equations of Energetics”. In this sense, the 

Energetics encompassed different kinds of Mechanics, corresponding mathematically to 

different kinds of differential equations.13  

Jouguet most interesting appraisal deals with the debated concept of “Mechanism”. 

He qualified Duhem as  “mechanic”, but then he specified that “a mechanic should not 

identified with mechanical attitudes”. The statement sounds misleading unless we 

distinguish accurately between the two traditions emerged in the history of Mechanics: 

on the one hand, the specific mechanical models, on the other, the abstract mechanics. 

The former corresponded to what Duhem had qualified as “physical mechanics” in his 

1903 book on the history of Mechanics, whereas the latter corresponded to what he had 

labelled “analytic mechanics”. Duhem mechanical approach was a structural 

Mechanism stemming from the latter tradition.14 

In 1927, the physicist O. Manville, “chargé de conférence” at the faculty of Science at 

Bordeaux university, published an extensive book on Pierre Duhem physics. Two 

“Mémoire” closed the book: in the former, the mathematician Hadamard commented on 

Duhem as mathematician; in the latter, the historian A. Darbon commented on Duhem 

as historian. Manville analysis is quite detailed, and for many decades his book 

remained the sole study on Duhem theoretical physics. He pointed out that Duhem 

choice of mathematising “qualities” stemmed from the rejection of every distinction 

between quantities and qualities, namely every distinction between primary and 

secondary features of a body or process. In its turn, this rejection stemmed from the 

distrust in every pretension of explaning the natural world. No hidden structures could 

lead us to understand “the real features of bodies” to be found underneath their 

“tangible aspect”.15 

                                                        
13 Jouguet E. 1917, pp. 43-5. 
14 Jouguet E. 1917, pp. 48-50. It seems to me worth quoting some passages of Jouguet appraisal: “C’est dans 

l’Energétique qu’il a trouvé l’outil permettant de construire, d’après cette méthode, une Mécanique applicable non 
seulement aux déplacements, mais encore aux transformations physiques et chimiques. L’Enérgetique supplée à 
l’insuffisance que manifeste la Mécanique classique dès qu’elle s’attache à des mouvements accompagnés de 
changements d’états. Mais, circonstance bien remarquable, elle use des procédés tout à fait analogues à ceux de cette 
dernière doctrine : sa Statique est une épanouissement du principe des vitesses virtuelles, sa Dynamique une 
extension du principe de D ‘Alembert et des équations de Lagrange.” (Ibidem, p. 50)  

15 Manville O. 1927, pp. 18-9. 
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In part, Manville misunderstood the context of Duhem third pathway to 

Thermodynamics. To the first pathway, which corresponded to the representation of 

heat as “a kind of motion of tiny corpuscles”, he associated the names of Gibbs and 

Helmholtz. To the second, wherein Thermodynamics was looked upon as “independent 

from whatever hypothesis on the nature of heat”, he associated Clausius, who had 

theorised on the mean free path of molecules. He rightly placed Duhem in the same 

pathway of Rankine, wherein “Rational Mechanics became a specific instance of a 

general Thermodynamics”. He found that the kinetic theory “could not account for 

irreversible phenomena”. Maxwell and Boltzmann had assumed that our “macroscopic 

observations” involved “a huge number of molecules”. Macroscopic physical quantities 

corresponded to a sort of “average state”, and “Carnot-Clausius principle” could be not 

exactly satisfied at a “molecular scale”. In that context, it was “natural” that a gas 

“evolved” towards “states corresponding to a higher number of complexions”. 

Boltzmann had identified those states with “the most probable” ones, but Manville 

considered questionable this “definition” of probability.16  

According to Manville, Duhem had managed to conflate “classic Dynamics” and the 

“Theory of conduction of heat”; at the same time, he had managed to explain why the 

two fields of physics “had evolved in an independent way”. Moreover, Duhem theory 

could exploit the cross-fertilisation between Thermodynamics and the theory of heat 

conduction: the latter had become “of great help in thermodynamics”. Manville remarks 

call into play the deepest structure of Duhem scientific enterprise, which can be 

synthesised into two logical stages. In the first stage, we find the unification between 

the mechanical theory of heat, wherein heat transformed into work without any 

conduction, and the theory of heat conduction, wherein there is conduction without any 

work. In the second stage, we find the unification between Rational Mechanics and the 

already unified theory of heat. In brief, he had managed to unify the traditions 

associated to Lagrange, Carnot and Fourier. Duhem physics appeared to Manville as “a 

chain whose ends” corresponded to “systems wherein inertial actions dominated”, and 

system wherein those actions could be neglected. In fact, among the new concepts 

emerged in Duhem theoretical physics, Manville mentioned the “variables without 

                                                        
16 Manville O. 1927, pp. 27 and 45-6, footnote 2 included. 
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inertia”, namely variables whose variations did not entail that the body “moves locally”. 

17  

Step by step, a hierarchy of complexity emerged, leading from “the simplest 

phenomena” to “the physics of viscous media”, then “systems with friction”, and 

eventually “systems with hysteresis”. Other new concepts emerged: the “false 

equilibrium”, or “an infinite number of states of equilibrium which classic 

Thermodynamics could not account for”, and the distinction between “seeming 

viscosity” and viscosity which “had to appear essentially and necessarily in the 

equations”. Manville managed to catch one of the most astonishing differences between 

Duhem generalised mechanics and “classic Mechanics”. In the space 

€ 

α ,T( ) of the 

parameters of the system, in the strip corresponding to states of false equilibrium, the 

velocity of the transformation 

€ 

dα dt  must vanish. This behaviour is quite different from 

that of a pendulum: it crosses the vertical line, which represents its state of equilibrium, 

“with finite velocity”, and does not remain there.  

 

 

 

Moreover, in adiabatic transformations, on the boundaries of the strip of false 

equilibrium, when the derivative became less then a given value  

 

€ 

dα
dt

= −
C
Rα

, 

                                                        
17 Manville O. 1927, pp. 66, 69, 75, and 90. 
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 the system became “instable”, and a small increase of temperature made the system 

become “explosive”.18 

Different kinds of irreversibility existed in physics, for different “abnormal branch 

stem from the main trunk of Energetics”. If one branch was represented by “the theory 

of friction and false equilibrium”, another corresponded to “permanent deformations 

and hysteresis”. Although both of them dealt with irreversibility, in its nature hysteresis 

was quite different from “a passive resistance”. In systems submitted to permanent 

deformations, “an infinitely slow deformation could lead the system towards or back to 

a state of equilibrium”, differently from systems submitted to friction. If the first 

Principle of Thermodynamics, or “principle of Equivalence”, was still valid in the 

strange branch of hysteresis, the second Principle could not be applied, for reversible 

transformations were obviously excluded. Duhem had recourse to “the consequences of 

this principle as a mere hypothesis”. Manville acknowledged that Duhem had not 

manage to put forward a satisfactory theory for permanent deformations, even though 

he had tried to outline more sophisticated theories dealing with hysteresis in “fast 

transformations”, and “the simultaneous existence of hysteresis and viscosity”.19 

In 1941, the American experimental physicist Percy William Bridgman published a 

book on the foundations of Thermodynamics, The nature of Thermodynamics. The 

original edition was reproduced in 1961 “with no essential change” according to 

Bridgman himself. Although Bridgmann approach to Thermodynamics were not so 

different from Duhem’s, he never mentioned him, and it is debatable whether he had 

previously run up against Duhem researches. The fact is that in the 1940s Duhem 

scientific legacy had already become a sort of buried memory. The scientific 

community, which was becoming an international community, had focussed intellectual 

and material resources on sub-nuclear physics. Both the interest in the foundation of 

Thermodynamics, and the foundation of physics in general had progressively faded 

                                                        
18 Manville O. 1927, pp. 91, 93, 97, 110, 122, and 130. 
19 Manville O. 1927, pp. 135-6, 154, 175, and 429. 
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away. The new theoretical physics was quite different from the wide-scope theoretical 

physics of the late nineteenth century.20 

Bridgman remarked that “most of the systems of practical interest are completely 

surrounded by irreversibility”, that “the entropy of such systems is not defined in the 

classical universe of discourse”, that “all living systems are of this nature and 

technically the concept of entropy may not be applied to such systems”, and that “a 

generalized entropy may be defined”. The existence of phenomena like hysteresis was 

“embarrassing”, because the notions of “state” and “property”, “as commonly used”, 

involved only “operations which can be performed on the body now, and does not 

involve a knowledge of past history”. In general, there were “objects” which could not 

be “handled by the conventional thermodynamics”: he mentioned “the capricious 

freezing of a sub-cooled liquid”, and “atomic disintegration”.21 

He regretted that “the two laws to which the physicists ascribes the most sweeping 

universality“ were “simply” labelled “first and second laws of thermodynamics”. He 

also questioned the explanatory power of the kinetic theory. In some way, kinetic theory 

was a microscopic extrapolation of macroscopic mechanics: it sounded quite strange 

that such an extrapolation could explain macroscopic thermodynamics, or could possess 

whatever explanatory power. According to Bridgman, “the essential fact that logically 

the microscopic picture had its origin in the macroscopic” could not be overlooked. 

Even the logical link between entropy and “disorder” could not be easily bridged. He 

found that “this coupling is not always felicitous”, for “disorder” could not be looked 

upon as “a thermodynamic concept at all”.22 

He also found debatable that we could “assign a meaning simultaneously to flux of 

mechanical energy and flow of heat”. He noticed that, “in the case of small-scale 

turbulent motion in a liquid”, the two fluxes could not be clearly separated: the 
                                                        

20 Bridgman mentioned “de Groot, Prigogine, and especially Onsager”. See Bridgman P.W. 1961, p. v. On the 
subsequent debate on the new trend in physics after the second World War, and on the re-emergence of interest in the 
complexity of the physical world, see Cocconi G. 1970, pp. 81-7, in particular pp. 83 e 87, Anderson P.W. 1972, 177, 
N. 4047, pp. 393-6, in particular pp. 393 e 395, and Schweber S. 1997, pp. 645-84, in particular pp. 659-71. 

21 Bridgman P.W. 1961, pp. vi, 62, and 64. 
22 Bridgman P.W. 1961, pp. 8-9, 106-7, and 174-5. Bridgman briefly discussed a simple case: “Consider, for 

example, a quantity of sub-cooled liquid, which presently solidify irreversibly, with increase of entropy and 
temperature, into a crystal with perhaps a regular external crystal form and certainly a regular internal arrangement as 
disclosed by X-rays. Statistically, of course, the extra “disorder associated with the higher temperature of the crystal 
more than compensates for the effect of the regularity of the crystal lattice. But I think, nevertheless, we do not feel 
altogether comfortable at being forced to say that the crystal is the seat of greater disorder than the parent liquid.” 
(Ibidem, pp. 174-5) 
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difficulty appeared to be “particularly formidable in the case of radiant energy”. Some 

kind of unification between Mechanics and Thermodynamics was required. The fact is 

that, when we scan the phenomena occurring at every scale of length, from the 

microscopic to the macroscopic level, we cannot find a well definite threshold 

separating micro from macro, or heat flux from flux of mechanical energy. The 

difficulty in disentangling microscopic from macroscopic motions also emerged in the 

measure of temperature, for “the thermometer must be at rest with regard to the system 

whose temperature is measured”. Bridgman also dared to imagine that phenomena we 

now qualify as “mechanical” could be “special kinds of plateau phenomena”, which 

would become “thermal” when considered “from the point of view of a time scale 

extravagantly longer than that available to us”. Even in the simple case of friction, “the 

external universe delivers mechanical work which the system receives as heat”.23  

We cannot leave Bridgman’s book before mentioning a meta-theoretical remark 

Duhem had stressed in almost the same words: the aim of a physical theory, 

thermodynamics in particular, was not the “explanation” of “macroscopic phenomena” 

in terms of microscopic motions. Thermodynamics was not required to explain “the 

origin of the equation of state of a gas, but treats it as given”. Nor “an excursion into the 

atomic domain” was required; moreover that excursion involved the extrapolation from 

macroscopic to the microscopic systems, which was just the kind of logical short-circuit 

Bridgman had already pointed out.24  

In 1950, the physicist and historian of physics R. Dugas acknowledged the role played 

by Duhem and Jouguet in his own scientific training and intellectual education. Duhem 

had developed the tradition of “Lagrange analytic mechanics” as opposed to “Poisson 

physical mechanics”. Besides “a general mechanics based on Thermodynamics” Dugas 

saw in Duhem “a reaction against Cartesian and atomistic conceptions”, and a return to 

“the deepest principles of peripatetic doctrine”.25 

At the end, in Prigogine’s researches we find an exceptional re-interpretation of 

Duhem attempt at taming complexity. In 1947, in the essay Etude Thermodynamique 

des Phénomènes irréversibles, he pointed out “the deficiencies of classic 

                                                        
23 Bridgman P.W. 1961, pp. 55, 67, 69, 72, 153, 192-3, and 231. 
24 Bridgman P.W. 1961, pp. 222-3. 
25 Dugas R. 1950, pp. 442-3. 
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thermodynamics”, and listed some of them. First of all, classic thermodynamics is 

“confined to states of equilibrium and reversible transformations”, and cannot account 

for chemical reactions, wherein the system is not in chemical equilibrium. Secondly, the 

two principles of classic Thermodynamics are confined to closed system, namely 

systems allowed to exchange energy but non matter with the external world. Other 

difficulties arose from the applications to electro-chemistry or to systems crossed by a 

temperature gradient. According to Prigogine, a more general Thermodynamics was 

required, in order to account for irreversible phenomena, states far from equilibrium and 

open systems.26 

Prigogine acknowledged explicitly the role played by Duhem in the setting up of a 

new Thermodynamics, even though his researches have not had the reception they 

deserved. The stress Duhem had put on Clausius’ “uncompensated heat” appeared to 

Prigogine a valuable contribution to a more general thermodynamics. This concept was 

tightly linked to the concept of entropy. Prigogine defined the entropy of a system as the 

sum of two contributions, 

 

€ 

dS =
dQ
T

+
dQ'
T

, 

 

wherein 

€ 

dQ is the heat received from outside in the time 

€ 

dt , and 

€ 

dQ' is just Clausius’ 

uncompensated heat. The latter is developed in the course of irreversible processes 

taking place inside the system: it is therefore intrinsically positive. Even in the case of 

adiabatic transformations, where the system can exchange neither matter nor energy 

with the outside, we have 

€ 

dS > 0 . In Prigogine picture, there are two different source of 

entropy: a “transfer” from outside and a “production” taking place inside.  

 

€ 

dS = deS + diS  

 

In its turn, the transfer of entropy in open systems is due to two different processes: 

transfer of heat and transfer of matter. Prigogine reminded the reader that all complex 
                                                        

26 Prigogine I. 1947, pp. 3-5. 
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systems, namely the systems belonging to our real world, are open systems. We find 

open systems “in meteorology and in many technical applications”, and in biology, 

where “they play a fundamental role”.27 

Prigogine found a sort of complementarity between Duhem’s third way to 

Thermodynamics and Maxwell-Boltzmann’s first way: the two “methods” could merge 

with each other “harmonically”. Macroscopic thermodynamics offered “the functional 

relations”, and the kinetic theory offered “the numeric values of coefficients to be found 

in these relations, when the kinetic theory is applicable“. The “thermodynamics of 

irreversible phenomena” represented a necessary counterpart to mechanics and 

electromagnetism in the field of “macroscopic physical theories”, and, at the same time, 

it offered a unifying framework for that field.28 

In the context of thermodynamics of irreversible processes, time could be looked upon 

as more than a mere “scalar” entity. Conversely, whenever “the flow of time plays an 

essential role”, Thermodynamics is at stake. This seemed quite natural to Prigogine. 

When we state that “there is always production and never destruction of entropy”, we 

also state an asymmetry between past and future: thermodynamics leads us to assume 

“the existence of a preferred direction past-future in the flow of time”.29  

When Prigogine outlined a general thermodynamics for “non-uniform systems”, he 

started from the analogy with the mechanics of continuous media. In particular he 

resumed “the classic equation of continuity of matter” 

 

€ 

∂ρ
∂t

+
∂ ρωx( )
∂x

+
∂ ρωy( )
∂y

+
∂ ρωx( )
∂z

= 0 , 

 

wherein 

€ 

ρ represented the density of the complex system in a given point at a given 

time, and 

€ 

ω  represented  its velocity. He assumed that the system consisted of a certain 

number “of different components”, that the components could experience chemical 

reactions, and that the different velocities of components could give rise to processes of 

diffusion.  
                                                        

27 Prigogine I. 1947, pp. 1-3. 
28 Prigogine I. 1947, pp. 9-10. 
29 Prigogine I. 1947, p. 11. 
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Then he took into account a unspecified “extensive entity” 

€ 

F , of the same kind as 

mass or energy, and wrote down the variation over time of the quantity 

€ 

f , which was 

the density of 

€ 

F : 

 

€ 

∂f
∂t

= −
∂Φx F[ ]
∂x

−
∂Φy F[ ]
∂y

−
∂Φz F[ ]
∂z

+σ F[ ] . 

 

In the right-hand side, 

€ 

Φ represents the flux of 

€ 

F , namely the quantity of 

€ 

F  “entering 

the system” in unit time and surface, while 

€ 

σ F[ ]  represents the quantity of 

€ 

F  “produced 

inside” in unit time and surface. We have in front of us the same mathematical structure, 

the same “local balance” put forward by Prigogine in the case of entropy.30  

For a set of components whose velocities are 

€ 

ωγ  Prigogine defined the centre of mass 

velocity 

 

  

€ 

 
ω =

1
ρ

ργ
 
ω γγ

∑ , 

 

and the “diffusion vector” 

 

  

€ 

 
Δ γ =

 
ω γ −

 
ω , 

 

which is nothing else but “the excess of 

€ 

ωγ  with regard 

€ 

ω”.  

In the case of the “mass balance” we must define the two terms 

€ 

Φ mγ[ ]  and 

€ 

σ mγ[ ] . 

While the former contains only the mechanical terms already defined, the latter deals 

with “the chemical reactions whose seat is the system itself”. In brief,  

 

  

€ 

Φ mγ[ ] = ργ
 
ω γ = ργ

 
ω + ργ

 
Δ γ  

 
                                                        

30 Prigogine I. 1947, pp. 76-9. 
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and 

 

€ 

σ mγ[ ] =νγMγ V, 

 

where 

€ 

νγ  is “the stoichiometric coefficient”, 

€ 

Mγ  “the molar mass”, and 

€ 

V   the 

velocity of the chemical reaction. 

In the end, the “mass balance” corresponded to the equation 

 

€ 

∂ργ
∂t

+
∂ργω

i

∂xii∑ = −
∂ργ Δγ

i

∂xii∑ +νγMγ V . 

 

The sum over 

€ 

γ  yielded the total balance of mass. Since chemical reactions do 

conserve the total mass of the system, 

€ 

νγMγγ
∑ = 0. Moreover, it is 

  

€ 

ργ
 
Δ γγ

∑ = 0, 

because of the meaning of 
  

€ 

 
Δ γ . For the total mass of the system, the balance is therefore 

 

€ 

∂ρ
∂t

+
∂ρω i

∂xii∑ = 0 .31 

 

Prigogine deduced a similar equation for the “energy balance”, taking into account 

that, even in this case, 

€ 

σ U[ ] = 0 . In brief 

 

€ 

∂u
∂t

= −
∂
∂xi

uω i +W i + Pijω j
j∑ + χ o

i + χ d
i 

 
  

 
 

i∑ . 

 

In the right-hand side, the first term correspond to “a convective flux of mass”, the 

second to “a caloric flux”, the third to “a flux linked to the pressure tensor”, the fourth 

to “a flux of potential energy”, and the last to “a flux of diffusion energy”.32 

                                                        
31 Prigogine I. 1947, pp. 77-81. 
32 Prigogine I. 1947, p. 80. 
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When he took into account the entropy balance, he first remarked that 

 

€ 

σ m[ ] = 0; σ U[ ] = 0; σ S[ ] > 0. 

 

The final stage was not so easy to read: 

 

€ 

∂s
∂t

= −
∂
∂xi

sω i +
W i

T
+
1
T

µγ
+ργ Δγ

i
γ

∑
 

 
 

 

 
 

i∑

−
W i

T 2
∂T
∂xi

+
ω i

T
∂p
∂xi

+
1
T

ργ Δγ
i
∂

µγ
+

T
∂xiγ

∑

 

 

 
 
 
 

 

 

 
 
 
 

i∑ +
AV
T

+
σ E[ ]
T

. 

 

In the right-hand side of the equation, the first sum represents the flux: the three terms 

correspond to “the convective entropic flux”, “the reduced caloric flux”, and “the 

entropic flux due to diffusion”. The other terms represent the different sources of 

entropy production. The second sum contains three terms corresponding to “non-

uniformity of intensive variables T, p, and 

€ 

µ+“, where 

€ 

µ+  is Gibbs’ “chemical molar 

potential” for unit mass. The last two terms correspond to “the presence of chemical 

reaction” and “the degradation of nobler kinds of energy into internal energy” of the 

system.  

To sum up, entropy production was linked to both “transport phenomena (thermal 

conductivity, viscosity, and diffusion) and chemical reactions”. Prigogine remarked 

that, in his equation, the centre of mass velocity 

€ 

ω  did not appear, even though its 

spatial derivatives did. The global motion of the system did not contribute to the 

production of entropy: it corresponded to “a reversible phenomenon”.33  

In the last chapter he went back to the relationship between thermodynamics and time: 

he faced the issue in a very radical way. Starting form Eddington’s remark on the 

relationship between the time flow and 

€ 

dS /dt, Prigogine tried to define “a new scale of 

time” linked to “the production of entropy”. The thermodynamics of irreversible 

                                                        
33 Prigogine I. 1947, pp. 95-9. See also p. 20 for the relationship between entropy and Gibb’s molar potential. 
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phenomena would have allowed physicists to compute “the duration of a phenomenon 

by means of its content of irreversibility”.  We therefore have in front of us two kinds of 

time: the well-known astronomical time 

€ 

t , and the time 

€ 

τ  stemming from the 

production of entropy 

€ 

σ S[ ] .34  

He assumed that  

 

€ 

τ 0 = t0,  

 

and that, starting from 

€ 

τ 0 , 

€ 

τ  grew with the growth of 

€ 

t . In other words,  

 

€ 

dτ
dt

> 0. 

 

Other specific assumptions allowed Prigogine to handle the demanding and slippery 

subject matter. Firstly 

 

€ 

σ Sτ[ ] dτ =σ St[ ] dt , 

 

then  

 

€ 

σ Sτ[ ] =α (constant), 

 

and finally  

 

€ 

dτ
dt

 

 
 

 

 
 
t=t0

=1 . 

 

                                                        
34 Prigogine I. 1947, p. 133. 
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This means that, at the first order, 

€ 

dτ( )t=t0 = dt( )t=t0 , and that 

€ 

σ St0[ ] =α . Therefore the 

relationship between 

€ 

τ  and 

€ 

t  becomes 

€ 

dτ
dt

=
σ St[ ]
σ Sτ[ ]

=
σ St[ ]
α

=
σ St[ ]
σ St0[ ]

. 

 

This is a differential equation which can be solved when we know, or are able to make 

a reasonable assumption about, the function 

€ 

σ St[ ] .35 

For chemical reactions approaching the equilibrium, the literature offered to Prigogine 

a function of the kind 

 

 

€ 

dτ
dt

=
σ St[ ]
σ St0[ ]

= e−2b t− t0( ) , 

 

where 

€ 

b is a constant. A simple integration yielded 

 

€ 

τ − τ 0 =
1
2b
1− e−2b t− t0( ) 
  

 
  
. 

 

At the first order, for 

€ 

t  close to 

€ 

t0,  

 

€ 

τ − τ 0 = t− t0( ) − b t− t0( )2 .36 

 

In this specific case, 

 

€ 

d 2τ
dt2

= −2be−2b t− t0( ) < 0 . 

 

                                                        
35 Prigogine I. 1947, pp. 133-4. 
36 Prigogine I. 1947, pp. 134-5. 
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Prigogine assumed that, in general, 

 

€ 

d 2τ
dt2

=
1

σ St0[ ]
dσ St[ ]
dt

< 0 , 

 

when “the system approach a state of equilibrium or a stationary state” after an initial 

perturbation. He chose a more general kind of function decreasing over time, 

 

 

€ 

σ St[ ] =α0 +
α1
t + β

+
α2
t + β( )2

+ ..., 

 

and therefore the differential equation became 

 

€ 

dτ
dt

=
α0
σ0

+
α1
σ 0

1
t + β

+
α2
σ 0

1
t + β( )2

+ .... 

 

Another simple integration yielded 

 

€ 

τ = t0 +
α0
σ 0

t − t0( ) +
α1
σ 0
log t + β

t0 + β
+
α2
σ 0

t − t0
t + β( ) t0 + β( )

+ ... 

 

When the system approaches equilibrium, 

€ 

σ St[ ]→0 for 

€ 

t→∞. In such a case, we can 

retain only the term  

 

€ 

σ St[ ] =
α1
t + β

. 

 

In the simple case wherein 

€ 

β = 0,  
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€ 

τ = t0 + t0 log
t
t0

.37 

 

Independently from the specific law connecting astronomical time to thermodynamic 

time, two remarks can be made: the two time are different, and the function connecting 

them could be non-linear. Although the chain of assumptions and approximations built 

up in the course of the deduction is questionable, Prigogine managed to show that a 

new, different definition of time could be put forward. We are really dealing with a 

concept of time closer to the events of the physical world. In some way, even the 

astronomical time is drawn by the physical world, namely the quasi-regular motion of 

sun and planets. Nevertheless, thermodynamic time would have a wider scope, for it 

spans physics, chemistry, and perhaps the sciences of life. Moreover, we could even 

assume the existence of a plurality of time: we could look for the most suitable time to 

be associated to every kind of phenomena.  

Prigogine remarked that thermodynamic time could suit the living beings: indeed, 

metabolic processes “are the seats of irreversible phenomena”. We are here facing a sort 

of Aristotelian concept time: time as a complex entity, far from the abstract, purified 

concept emerged together with the modern science. Prigogine time is more a physical 

than an algebraic entity. It is a “local” time, for it “is generated by the irreversible 

processes taking place in a well definite space”. Nevertheless, the thermodynamic time 

could aspire to a different kind of generality. Differently from the astronomical time, 

which is only the component of a four-vector, it stems from the entropy, which is a 

relativistic invariant.38 

After some years, Prigogine published a book in English, which was intended as a 

first systematization of the same subject matter: the thermodynamics of irreversible 

processes. The book seemed triggered off by the fact that, at that time, the theory had 

already led to “a large number of applications”. In the “Preface”, Prigogine reminded 

the reader that “a serious limitation of classic thermodynamics” stood in its narrow 

scope: “reversible processes” and “true equilibrium states”. On the other hand, “the 

majority of phenomena” in the fields of astrophysics, meteorology, geology and biology 

                                                        
37 Prigogine I. 1947, pp. 135-6. 
38 Prigogine I. 1947, pp. 136-8. 
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dealt with “irreversible processes which take place outside the equilibrium state”. From 

the mathematical point of view, reversible processes are expressed by equations like 

“the wave equation which describes the propagation of waves in a non-absorbing 

medium”, 

 

€ 

1
c2

∂2u
∂t2

=
∂2u
∂x2

+
∂2u
∂y2

+
∂2u
∂z2

. 

 

Irreversible processes are expressed mathematically, for instance, by “Fourier 

equation for temperature”, 

 

€ 

1
α
∂T
∂t

=
∂2T
∂x2

+
∂2T
∂y2

+
∂2T
∂z 2

. 

 

If the former is invariant under the transformation 

€ 

t→− t , the latter is not. Such 

equation broke the symmetry between past and future, which was a fundamental feature 

of mechanics.39 

Another generalisation involved the links between a system and the surrounding 

environment. If isolated systems can exchange neither matter nor energy, and closed 

systems can exchange only energy, open systems can “exchange both energy and matter 

with the exterior”. Opens systems were the kind of systems more suitable to represent 

the complexity of phenomena spanning all sciences of nature from physics to biology.  

In open systems, it is useful to split the variation of “extensive”, namely additive, 

variables into two components of different nature: an external component, “due to 

exchanges with the exterior”, and an internal component “resulting from reactions 

inside the system”. This split had already put forward by Prigogine in 1947, and applied 

to entropy, mass and energy. In a system composed of many chemical compounds 

€ 

γ , 

the variation of the mass 

€ 

mγ  can therefore be written 

 

                                                        
39 Prigogine I. 1955, pp. V-VI, and 14. 
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€ 

dmγ = demγ + dimγ = demγ + Mγ νγρ
ρ=1

r

∑ dξρ  , 

 

where 

€ 

Mγ  is the molar mass of the chemical compound 

€ 

γ , 

€ 

νγρ  “the stoichiometric 

coefficient of 

€ 

γ” in every chemical reaction, and 

€ 

ξ  “the degree of advancement or 

extent of reaction”. The variable 

€ 

ξ  is linked to the “chemical reaction rate” 

€ 

v  by the 

equation 

 

 

€ 

v =
dξ
dt

.40 

 

In the context of natural sciences, Prigogine stressed the importance of “stationary 

non-equilibrium states”. Since they are not equilibrium states, the entropy production is 

different from zero, but the variables describing the system do not depend on time, since 

the state is stationary. In this case, 

 

€ 

dS
dt

=
deS
dt

+
diS
dt

= 0 . 

 

As  

 

€ 

diS
dt

> 0, 

 

we “necessarily have” 

 

€ 

deS
dt

< 0. 

 

                                                        
40 Prigogine I. 1955, pp. 3-7. 
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This means that “stationary non-equilibrium states cannot occur in isolated systems”: 

a flow of entropy “is necessary to maintain the stationary state”. We could say that the 

system can preserve its stationary condition only sending out entropy towards the 

environment, therefore increasing the entropy of the environment. When the system is 

the seat of chemical reactions, the stationary state can realize a sort of “coupling 

between transport phenomena and chemical reaction”. Prigogine emphasised the 

importance of phenomena of this kind in “biological processes”. He believed that the 

thermodynamics of irreversible phenomena taking place in open systems could really 

allow scientists to better understand life.41 

In his Nobel lecture, Prigogine emphasised the deep link between the concept of time 

and the second Principle of Thermodynamics. At the same time, he stressed the role 

recently played by Thermodynamics in the “reformulation of (classical or quantum) 

mechanics”. In its connection with “irreversibility” and “history”, time had become 

something more than a mere “geometrical parameter associated with motion”. In 

complex systems, like “a town”, or “living systems”, or “biochemical cycles involving 

oscillatory enzymes”, far from thermodynamic equilibrium, “dissipative structures” 

could emerge over time: in some way, “non-equilibrium” could become “a source of 

order”.42 

 A striking instance was offered by “Bénard instability”, wherein ordered convective 

streams emerged in a liquid layer submitted to a “sufficiently large” gradient of 

temperature. Although the “entropy production” increases, the layer can be found “in a 

state of organization” higher than the state of rest. Contrary to what expected on 

grounds of Boltzmann thermodynamics, the “almost zero probability” state of order in 

Bénard convection corresponded to a high value of entropy. These “dissipative 

structures” could only emerge in open systems, namely physical systems able to 

exchange both matter and energy with their environment. The order was due to great 

fluctuations “stabilized by exchanges of energy with the outside world”.43 

                                                        
41 Prigogine I. 1955, pp. 74, 82, and 89. See also p. 91: “The behaviour of living organisms has always seemed so 

strange from the point of view of classical thermodynamics that the applicability of thermodynamics to such systems 
has often been questioned. One may say that from the point of view of the thermodynamics of open and stationary 
systems a much better understanding of their principal features is obtained.” 

42 Prigogine I. 1977, pp. 263-4. Prigogine won the Nobel Prize for Chemistry in 1977. 
43 Prigogine I. 1977, p. 267. 
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Prigogine stressed that far from equilibrium the behaviour of a physical system “may 

become very specific”, whereas “[t]he laws of equilibrium are universal”. The state of 

the system can experience bifurcations: little changes in the initial state give place to 

ample fluctuations which lead the system to sudden transition towards stable or instable 

“branches”.  

These bifurcations stemmed from the non-linearity of the differential equations 

describing the transformations. In “autocatalytic reactions” like “the so-called 

Brusselator”, the chain of chemical reaction can be represented by  

 

. 

 

The concentrations of “the initial and final products” A, B, C, D, “are maintained 

constant”, whereas “the two intermediate components, X, Y, may change in time”. The 

process is described by the non-linear differential equations   

 

.44 

 

When we increase the value of a parameter , like the concentration B “in the 

Brusselator scheme”, multiple solutions of the system of differential equations appear. 

The picture inserted in Prigogine paper shows that there is “a single solution for , but 

multiple solutions for the value ”.  

 

                                                        
44 Prigogine I. 1977, pp. 270-1. “Brusselator” was the name given to a specific kind of autocatalytic reaction or 

“chemical watch”. See Prigogine I. and Nicolis G. 1977, pp. 93-4, and  Progine I. and Stengers I. 1986, pp. 223-8. 
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According to Prigogine, in some way bifurcations introduced two crucial features into 

physics: “history” and indeterminism. If we assume that the physical system “is in the 

state C and came there through an increase of the value of ”, then the “interpretation” 

of this state entails the knowledge of “the prior history of the system”, namely the 

passage through A and B. The system follows “deterministic laws” in every branch 

“between two bifurcation points”, whereas “fluctuations” decide what branch it will 

follow “in the neighbourhood of the bifurcation points”.45  

 

                                                        
45 Prigogine I. 1977, p. 273. 
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