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1
Introduction

One of the most important areas of research in both finance and financial

econometrics is to quantify and model risk related to investments in financial

assets. During the past decade, a new strand of literature has emerged in the

field, concerning the exploitation of high frequency data (transaction prices

and quotes) in creating ex-post risk proxies. The new volatility measures

statistically outperform all other previously used measures and in addition,

are model free and very easy to compute.

One of the main features of the new tools to quantify risk is the develop-

ment of techniques that are able to capture separately the so-called ’jumps’,

i.e. the sudden and significant changes in prices as a result of the arrival of

information. It is now possible to distinguish between the persistent part of

the risk, which can be modelled and forecast, and the unpredictable part,

captured by jumps.

These two types of risk are different in nature and require a different

treatment. They should be differently priced, hedged and managed. Con-

sequently, being able to estimate them separately has great implications for

the financial services industry, the wider economy and the academic world.

The core of the thesis is to examine the financial market behaviour in the

presence of jumps and to analyze the various tools available in the literature

that allow to disentangle jumps from the continuous component in the prices

of financial assets.
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The research falls in the area of high frequency econometrics dealing with

the construction and application of quantitative techniques based on high-

frequency quotation and trading data to detect jumps in prices. The thesis is

organized in three independent essays and two of its chapters are in the pro-

cess to be submitted for a possible publication in leading academic journals

in the field.

The first essay, entitled “The use of high frequency data in estimating

volatility and detecting jumps in the prices of financial assets”, includes a

complete literature review of the latest nonparametric volatility estimators

based on high frequency data, covering both robust and non-robust to jumps

estimators, as well as the various jump detection procedures recently pro-

posed in the literature. We consider both the univariate and the mutivariate

frameworks.

The second essay, entitled “Identifying jumps in financial assets: a com-

parison between nonparametric jump tests”, comprises a thorough compar-

ison among five jump identification procedures proposed in the literature of

high frequency econometrics over the last decade: the Andersen et al. (2007)-

Lee and Mykland (2008), the Aı̈t-Sahalia and Jacod (2008), the Barndorff-

Nielsen and Shephard (2006a), the Jiang and Oomen (2008), and the Podol-

skij and Ziggel (2008) tests. The comparison is mainly based on an intensive

Monte Carlo exercise, meant to assess the power and size properties of all

these tests. We also extend the previous analysis to real high frequency data

on US Treasury bonds and compare the behavior of the tests in this context.

The objective of this chapter is to provide potential users of the tests with

guidelines as to how and when to apply them. Several realistic scenarios

concerning the price process are used in order to understand whether the

performance of the procedures can be associated to different features of the

data.

The third essay, entitled “Jumps and price discovery in the US Treasury

market”, explores different aspects related to the price discovery process for

the US Treasury bonds when jumps occur. We use the Barndorff-Nielsen
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and Shephard (2006a) and Andersen et al. (2007) -Lee and Mykland (2008)

nonparametric procedures to detect jumps and common jumps in the US

Treasury market, for a period lagging from January 2003 to March 2004. We

investigate the possible causes of jumps in the term structure, by considering

a list of US macroeconomic announcements. We also examine different mar-

ket activities, such as spread, depth, trading volume and order flow around

the time of the jump. Finally, we investigate the informativeness of the order

flow in the proximity of a jump. We are interested in finding out how the

trading information has impact on prices in the nearness of a jump. There-

fore, we measure the degree of informational asymmetry on different time

windows before a jump occurrence, at the same time and after.

In what follows, we briefly describe the assumed data generating processes

in the high-frequency econometrics literature and consequently, throughout

this dissertation. First, we cannot observe the true, efficient price, which is

time continuous, but we can observe a discrete version of it. Thus, the price

is decomposed in the real one plus noise, which is customarily denominated

as microstructure noise. Second, the efficient price can be decomposed in

the diffusion part, which can have only continuous paths, and jumps. While

the continuous part is usually a very general stochastic volatility model, the

presence of the jump part is meant to take into account the sudden, unpre-

dictable changes in prices. Due to this specification of the data generating

process, variation in the observed price coming from the continuous part

will be characterized by persistence and thus, predictability, while variation

coming from the jump part of the process is unpredictable.

The seminal work that generated this new strand of literature is the paper

by Andersen and Bollerslev (1998), who introduced the realized volatility

(RV) as a new estimator for the ex-post volatility. The RV is defined as

the sum of squared intraday returns and is proved to outperform any other

previously used measures. When jumps are considered, the RV captures both

the variations coming from the continuous component of the price and the

jump part. Several other contributions to the literature show that risk can be
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broken down into the (partly) predictable and unpredictable pieces. This is in

fact, the main focus of the thesis. However, in applying the various methods

that disentangle jumps from the diffusion, we also have to take into account

the fact that observed prices are always contaminated with microstructure

noise.
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2
The use of high frequency data in

estimating volatility and detecting

jumps in the prices of financial assets

The prices of financial assets are complex processes, determined by various

known and unknown factors, which display rather unpredictable evolutions

and leave place to a lot of surprises. Thus, the efficient market hypothesis, at

least in its weak form, is worldwide accepted and prices have been classically

described by a Brownian motion. Moreover, the Brownian motion was used

for a long period as an important assumption in pricing derivatives.

However, empirical evidence from the periods of financial turmoils shows

that in periods of distress, prices tend to display larger variations. Therefore,

a new model that could reflect this aspect started to be used: the stochastic

volatility (SV) model. Its main characteristic is that it allows the volatility

to vary with time. In this way, periods of financial distress are just periods

of high volatility. Nevertheless, there were periods of market crashes during

which the SV model proved itself unable to keep up with the variation in

prices.

At this point, models used to characterize prices started to allow for

discontinuities or jumps in prices. Merton (1976) was the first one to build

up a jump-diffusion model and ever since then, jumps played an important
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2.1. Importance of jumps

role in the financial literature.

During the last decade, the literature in financial econometrics has devel-

oped several new tools to estimate volatility ex-post based on high-frequency

data that were proved to be better than the ones previously used. This is

a new class of nonparametric estimators, which consider the price process a

generic semimartingale. Initially, this semimartingale was assumed to have

only continuous sample paths. However, adding a jump process seemed ex-

tremely realistic. In such a set-up, the variation in the process will be induced

by both the continuous and discontinuous components. As we show later on,

the use of high frequency data enables us to decompose variation in prices

in two different parts: the one coming from the diffusion component and the

one caused by jumps. This is important because the first one is characterized

by persistence, whereas the second is unpredictable.

This chapter is a comprehensive literature review on volatility estimators

based on high frequency data. We mostly focus on estimators that either

include jumps or are robust to them. We also describe in detail different

jump detection procedures proposed in the literature. The analysis takes

place in both a univariate and multivariate frameworks. Given that at high

frequencies prices are contaminated with microstructure noise, we dedicate

a paragraph in both the univariate and multivariate cases, to volatility mea-

sures that are robust to microstructure noise. However, we must mention

that usually the literature treats noise and jumps separately.

2.1 The importance and the impact of jumps in

finance

Taking jumps into consideration has a significant impact on both the

financial literature and practice. Here are some of the multiple areas in

finance that are influenced by the inclusion of jumps into models, as well

as by the possibility of testing for jumps and jump estimation. Some of

these areas are highlighted in Aı̈t-Sahalia (2004). First of all, jumps are
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2.1. Importance of jumps

important in derivatives pricing and hedging, that must take into account the

presence of a discontinuous part in prices. Second, in risk management, the

possibility to identify and quantify jumps rises a lot of interesting questions

concerning investors’ remuneration for bearing risks. Is there a premium for

the jump risk? Moreover and even more interesting, what kind of jumps

are/ should bear a risk premium? Is there a risk premium for systemic

jumps? Moreover, jumps imply large changes in asset prices, that increase

the tails of the returns distribution. Thus, as outlined by Aı̈t-Sahalia (2004),

identified jumps can impact the modeling of different tail statistics like the

value-at-risk. Third, jumps are important in portfolio allocation. The risk of

financial assets can be decomposed into two different components: the one

related to the continuous part of the price process and the one concerning

the discontinuous part. Both these risks have to be considered in portfolio

management. Moreover, measures for these two different risk components

must be defined at a multivariate level. The jump component is totally

unpredictable and its presence is triggered by the arrival of information on

the market. Sometimes, the news that arrive on the market can concern

and affect more assets or even the whole market. Thus, we can talk about

assets that display common jumps. Last, as mentioned before, the presence

of jumps can be translated into fatter tails of the returns distribution. Thus,

in general, whenever researchers or practitioners would need nicely behaved

return series for projects with different purposes, the best thing to do is to

try to identify and estimate the jumps, and then, disentangle them from the

continuous part of the process.

Regarding the impact of jumps on data, as already mentioned above,

their presence generates excess unconditional and conditional kurtosis in the

returns distribution. Based on this empirical observation, Johannes (2004)

uses the conditional and unconditional fourth moments to test for the pres-

ence of jumps. In option pricing, as Eraker et al. (2003) show, the presence

of jumps in returns steepens the slope of implied volatility curves. Moreover,

the authors observe that adding jumps in volatility steepen furthermore the
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2.1. Importance of jumps

implied volatility curves, which is congruent with the empirical evidence.

They show that jumps have a transient, impact on the returns, without leav-

ing any ’marks’ on the future distribution of the returns. Adding jumps to

a SV model leads to gradual and temperated increases in volatility. Eraker

et al. (2003) show that jumps in volatility must also be considered in order

to generate fast dynamics in the volatility factor.

Once jumps started to be included in models describing the price genera-

tion processes for financial assets, the following questions had to be answered:

how to identify and estimate jumps? and how to estimate models that in-

clude jumps? Customarily, a model including a drift, a volatility factor and

finite activity jumps (compound Poisson processes) was considered, where

both the volatility and the jump component were latent. However, the esti-

mation of such jump diffusion models proved very difficult, as there are no

closed forms of the likelihood function and in addition, the number of pa-

rameters to estimate is very high. The methods of estimation that can apply,

such as the Efficient Method of Moments (EMM) proposed by Gallant and

Tauchen (2002) and the Markov Chain Monte Carlo (MCMC) algorithms

(Kim et al., 1998; Eraker, 2001; Chib et al., 2002, see) are computationally

intensive and require the specification of a certain parametric form. Etima-

tions of stochastic volatility models with jumps can be found in the following

papers: Bakshi et al. (1997), Andersen et al. (2002), Chernov et al. (2003),

Eraker et al. (2003) and Aı̈t-Sahalia and Kimmel (2004).

Some of the latest advances in the literature of financial econometrics

show that using high-frequency data enables us to “disentangle” the jump

component from the diffusion component of the price process. Moreover, this

can be done in a model-free framework and based on methods that are very

easy to implement.

The idea of exploiting the richness of high-frequency data in order to

understand how the price process is generated was first suggested by Ander-

sen and Bollerslev (1998). They prove that the realized variance, computed

as the sum of intraday squared returns, is a much better volatility estima-
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2.1. Importance of jumps

tor than the squared daily return that was formerly used to quantify ex-post

volatility when assessing the forecasting ability of GARCH-type models. Fol-

lowing their seminal work, the interest in high frequency data has continu-

ously increased, with researchers trying other ways to exploit the available

huge datasets.

When jumps are added to a stochastic volatility process, the realized

variance estimates the quadratic variation of a process, that includes both a

variation due to the continuous part and the variation due to the jump part of

the price process. This fact motivates researchers like Barndorff-Nielsen and

Shephard (2004) to search for quantities that are able to estimate just the

variation due to the continuous part. The reason for such an approach is that

the continuous part is the one that is persistent, while the one due to jumps is

unpredictable. The next step toward jump identification is evident: by using

a non robust to jumps estimator and comparing it to a robust to jumps one,

one can capture the variation caused by jumps as a difference. That is why,

in this chapter, before getting to actual jump identification and estimation,

we briefly describe some volatility estimators based on high frequency data.

Some of them, such as Barndorff-Nielsen and Shephard (2004)’ s realized

bipower variation can be used for both jump identification and estimation,

while others allow just jump estimation1.

Aı̈t-Sahalia (2004) offers an insight on how some of the usual estimation

methods, like the maximum likelihood (MLE) and the general method of

moments (GMM) work in identifying the various components of the price

process. He shows that when the data generating process for the price is

given by a simple constant diffusion model, RV is the maximum likelihood

estimator of the integrated variance. Aı̈t-Sahalia (2004) also considers a

model with a constant volatility factor and both finite and infinite (Cauchy)

activity jumps. He shows that in such a framework, both the maximum

likelihood and the general method of moments (GMM) work well in “disen-

1For instance, the difference between the RV and Mancini (2004)’s threshold estimator
does not directly allow to build a test for jumps
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2.2. Volatility estimators based on high frequency data

tangling diffusion from jumps”2, that is disentangling variation due to the

continuous part from variation due to the jump part, with GMM asymptot-

ically approaching the efficiency of ML.

An important issue that must be signaled and which is mentioned by

other authors, like Bollerslev et al. (2007), as well, is that both a jump and a

SV model specification basically reflect variations in prices, implying a type

of ’trade-off’ between the two specifications. Thus, on periods characterized

by law volatility, small moves in prices can be picked up as jumps, while

during more volatile periods, jumps can be mistaken for variations caused

by a high volatility component. In fact, as Bollerslev et al. (2007) suggests,

the Barndorff-Nielsen and Shephard (2006a) jump statistic depends on the

“overall level of volatility for the day”.

2.2 Volatility estimators based on high frequency

data

Starting with the second half of the 1990s, the low forecasting perfor-

mance of the GARCH models led to an increasing interest toward alternative

methods through which ex-post volatility could be estimated.

2.2.1 Realized volatility

Andersen and Bollerslev (1998) show that the poor forecasting ability of

ARCH-type models is not due to the poor quality of the models, but rather

to the noise inherent to the return generating process. This noise generates

a bias when one tries to ex-post estimate the latent volatility process, σ2(t),

by using the squared daily returns, r2
t . Starting from a result in the theory of

quadratic variation, they suggest using as an ex-post volatility measurement

the squared sum of intraday returns. Andersen and Bollerslev (1998) show

that by doing this, the forecasting ability of ARCH-type models noticeably

2Aı̈t-Sahalia (2004); title of the article
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2.2. Volatility estimators based on high frequency data

improves. Let Y (t) denote the natural logarithm of the price at time t, a

mixture of a Brownian semimartingale plus jumps:

dY (t) = µ(t)dt + σ(t)dW (t) + dJ(t), t ∈ [0, T ],
�

�

�

�2.1

where µ(t) and σ(t) are respectively, the drift and the spot volatility. J(t)

represents the jump process at time t, assumed to have finite activity:

J(t) =
Nt∑

j=1

cj,
�

�

�

�2.2

where Nt has intensity of occurrence λt, while cj, j = 1, 2, . . . , Nt measures

the size of the jump at jump times (τj)j=1,2,...,Nt with cj independent form

Nt.

Given the above set-up, the quadratic variation of the process Y (t) will

be:

[Y ](t) =

∫ t

0

σ2(s)ds +
Nt∑

j=1

c2
j ,

�

�

�

�2.3

Now suppose that h > 0 is a fixed period, such as a trading day. The

daily return for the ith day will be computed as:

yi = Y (ih) − Y ((i − 1)h), i = 1, 2, . . . ,
�

�

�

�2.4

Moreover, during each trading day prices are recorded at M equally spaced

times, giving the following intraday (high-frequency) returns, with j = 1, . . . ,M

the time on day i when a return is computed:

yj,i = Y ((i − 1)h + hjM−1) − Y ((i − 1) + h(j − 1)M−1) j = 1, 2, . . . ,M,
�

�

�

�2.5

The process of quadratic variation will be defined in the following manner:

[Y ](t) = plim
M→∞

M∑

j=1

{Y (tj) − Y (tj−1)}2,
�

�

�

�2.6
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2.2. Volatility estimators based on high frequency data

Starting from this definition of the quadratic variance (QV ), it is straight-

forward that it could be estimated as:

{YM}t = [YM ]i =
M∑

j=1

y2
j,i,

�

�

�

�2.7

The above estimator is called realized volatility (RV ) and within the

above framework of semimartingale plus jump process it consistently esti-

mates the QV. However, in the no-jump case, the RV is proved to consistently

estimate the integrated variance (IV ). For this case, Barndorff-Nielsen and

Shephard (2002) provide a central limit theorem (CLT) for the estimation

error, that is the difference between RV and IV :

√
M([YM ]i − σ2

i )|
∫ jh

(j−1)h

σ4(s)ds
L→ N (0, 2h

∫ jh

(j−1)h

σ4(s)ds),
�

�

�

�2.8

where

σ2
i = σ2(hi) − σ2(h(i − 1)),

�

�

�

�2.9

2.2.2 Other volatility estimators

Realized power variations

Having as a starting point the definition of the QV, Barndorff-Nielsen and

Shephard (2006b) provide a generalization of this process and name it power

variation. As it must be defined based on an equidistant time discretization,

one has to assume to observe the price process at equidistant points in time.

Thus, the equidistant returns can be defined in the following way:

yj(t) = Y (jδ) − Y ((j − 1)δ), j = 1, . . . ,M,
�

�

�

�2.10

where δ > 0 is the time interval between any two consecutive observations.
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2.2. Volatility estimators based on high frequency data

The power variation of order r will be:

{Y }[r](t) = plim
δ↓0

δ1− r
2

[t/δ]∑

j=1

|yj(t)|r,
�

�

�

�2.11

When r = 2, the normalization in front of the power variation disappears

and the quantity in (2.11) becomes the usual QV process. When r > 2, 1− r
2

tends to infinity as δ ↓ 0, while in the case r < 2, it goes to 0 as δ ↓ 0.

Barndorff-Nielsen and Shephard (2003) provide evidence that for a con-

tinuous semi-martingale stochastic volatility process, if the mean and the

diffusion of the process, (µ, σ2), are independent of the Brownian motion W ,

the above defined power variation will be equal to:

{Y }[r](t) = µr

∫ t

0

σr(s)ds,
�

�

�

�2.12

where

µr = E|u|r = 2r/2 Γ(1
2
(r + 1))

Γ(1
2
)

, r > 0, u ∼ N (0, 1)
�

�

�

�2.13

Given the above definition of power variation processes, one can build up

a “realized” counterpart, based on data sampled as often as possible, as in

the following equation:

{YM}[r](t) =

(
h

M

)1− r
2

M∑

j=1

|yj(t)|r
�

�

�

�2.14

The probability limit of the realized power variation follows from equation

(2.12). Limit distribution results on realized power variations are provided

in Barndorff-Nielsen and Shephard (2003), Barndorff-Nielsen and Shephard

(2006b), Barndorff-Nielsen et al. (2003) and Jacod (2008).

Range estimators

The emergence of this category of volatility estimators is mostly due to an

earlier contribution of Parkinson (1980), who shows that the range or squared
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2.2. Volatility estimators based on high frequency data

range, defined as high minus low during a trading day, is more efficient in

estimating ex-post volatility than the absolute or squared daily returns.

Thus, Christensen and Podolskij (2005) propose a new estimator for the

QV : the realized range based variance RRV. First of all, they define the

intra-period range at sampling times tj−1 and tj, 0 ≤ tj−1 ≤ tj ≤ t, where

[0, t] is usually thought to be one trading day :

sYtj
= sup {Y (t) − Y (s)}tj−1≤s,t≤tj

�

�

�

�2.15

The realized range-based estimator will be defined in the following manner:

RRV Ξ =
1

λ2

M∑

j=1

s2
Ytj ,δj

�

�

�

�2.16

or,

RRV ∆ =
1

λ2

M∑

j=1

s2
Ytj ,δ

,
�

�

�

�2.17

where RRV Ξ is the estimator based on sampling times tj, while RRV ∆ is

based on equidistant sampling times.

Christensen and Podolskij (2005) show that for processes with continuous

paths, RRV converges to IV and derive a central limit theorem:

M1/2(RRV ∆ − IV )
L→ MN

(
0, Λ

∫ 1

0

σ4
sds
) �

�

�

�2.18

2.2.3 Dealing with noise

The asymptotic properties of all nonparametric volatility measures re-

viewed here assume that the interval between consecutive observations tends

to 0. However, at high frequencies, prices of financial assets do no seem to

be sampled anymore from semimartingale processes. We observe that prices

tend to either remain constant from one transaction to another or change

drastically from one observation to another. Moreover, applying an equidis-
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2.2. Volatility estimators based on high frequency data

tant sampling scheme only amplifies this phenomenon. We say that prices

are contaminated with microstructure noise and write:

ỹj,i = yj,i + ǫj,i,
�

�

�

�2.19

where yj,i stands for the equilibrium return on day i at time j, ǫj,i is the

microstructure noise contamination, while ỹj,i are the observed intraday re-

turns.

The vast majority of the literature on volatility estimation in the presence

of microstructure noise is centered on a single measure, the realized variance.

At very high frequencies the RV becomes inconsistent for the QV, capturing

only noise. Solutions to this problem concern either sampling less frequently

or modelling and correcting for noise.

Bandi and Russell (2008) show that, when the price is contaminated with

i.i.d. microstructure noise, over a time interval equal to δ, yj,i is of order

Op(
√

δ), while ǫj,i is Op(1). This means noise has a smaller impact at lower

frequencies. On one side, asymptotics for the RV requires to sample more

frequently, while on the other side, the contamination with microstructure

noise imposes less often frequencies. Obviously, a balance between these

two effects needs to be found, so that an optimal sampling frequency can

be computed. Bandi and Russell (2008) compute the mean squared error

(MSE) for the RV in the presence of i.i.d. noise and show that an optimal

sampling frequency is the one minimizing the MSE.

Zhang et al. (2005) observe that when all data is considered, in the pres-

ence of i.i.d. microstructure noise, RV consistently estimates E[ǫ2
j,i], but is

inconsistent for the integrated variance. Thus, they propose using two differ-

ent time scales: a sparse one, for instance every 10 minutes, and another one

based on all available transactions. Authors recommend sampling sparsely

several times starting with different observations, compute more RVs and

then average over them. In this way, all observations in the dataset are used.

The bias-adjusted estimator of the quadratic variation of the process, [̂Y (t)],

15



2.2. Volatility estimators based on high frequency data

is named the two-scale estimator and can be constructed as:

[̂Y (t)] = [Y ∗(t)](avg) − n̄

n
[Y ∗(t)](all),

�

�

�

�2.20

where [Y ∗(t)](avg) is the average RV computed as described above for a certain

sparse sampling frequency, [Y ∗(t)](all) is the RV computed on all observations,

n is the number of transactions, whereas n̄ stands for the average number of

observations in subsamples.

The two-scale estimator has a rate of convergence of n−1/6. Zhang (2006)

proposes to improve this speed of convergence by combining more than 2

scales. The new measure is called multi-scale estimator and is defined in the

following way:

[̂Y (t)] =
K∑

i=1

αi[Y
∗(t)](n,Ki),

�

�

�

�2.21

where [̂Y (t)] is the multi-scale estimator, K is the number of time scales, αi is

the weight given to a certain time scale, i, and [Y ∗(t)](n,Ki) is the average RV

computed over a number of Ki RV estimators built for the time scale i. The

weights are estimated so that the variance of the estimator is minimum. This

new estimator has a rate of convergence of n−1/4. Ait-Sahalia et al. (2005)

show that both the two- and multi- scale estimators work in the presence of

serially dependent, but stationary microstructure noise.

As seen above, an alternative to sub-sampling is correcting RV for the

bias induced by the presence of noise. The size of the bias depends on the

behaviour of the noise process: i.i.d., heteroskedasticity, serial dependence.

Several authors recommend filtering the data before computing volatility es-

timators by using either moving average or autoregressive filters (Andersen

et al., 2001; Hansen et al., 2008; Bollen and Inder, 2002, see). Large (2005)

proposes an alternation estimator which applies when prices move by a se-

quence of single ticks.

An important contribution to this part of the literature is owed to Barndorff-

Nielsen et al. (2008a). They build up realized kernels as unbiased estimators
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2.2. Volatility estimators based on high frequency data

for the integrated variance or quadratic variation of the price process. The

realized kernel (K(Y ∗
δ )) is defined as follows:

K(Y ∗
δ ) = γ0(Y

∗
δ ) +

H∑

h=1

k

(
h − 1

H

)
{γh(Y

∗
δ ) + γ−h(Y

∗
δ )},

�

�

�

�2.22

where δ is the time interval over which returns are computed, k(·) is the

weight (kernel) function and γh, γ−h are auto-covariances of lag h and -h,

h = 1 . . . H, defined as:

γh(Y
∗
δ ) =

M∑

j=1

(Y ∗
jδ − Y ∗

(j−1)δ)(Y
∗
(j−h)δ − Y ∗

(j−h−1)δ),

with M = [t/δ].

Barndorff-Nielsen et al. (2008a) derive limit distributions for the realized

kernels and rates of convergence. The choice of the weight function is so that

the variance of the estimator is minimum. Moreover, depending on the choice

of k and H, these estimators can converge at the fastest possible speed and

achieve the maximum likelihood lower bound. Moreover, the authors prove

that realized kernels can be designed to be robust to dynamics in the noise

process, endogenous noise and endogenous irregular spacing of the data.

All the above contributions concerning the treatment of data contami-

nated with microstructure noise assume the price processes are continuous

semi-martingales. As an exception, Barndorff-Nielsen et al. (2008a) show

that in the presence of rare jumps, realized kernels are consistent for the

quadratic variation. However, there are no contributions in the literature

concerning jump identification and estimation in the presence of noise.

2.2.4 Robust to jumps volatility estimators

The introduction of the realized variance into the volatility literature

proved that high frequency data can be exploited in order to obtain more

information on the volatility processes. Consequently, a series of many other
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2.2. Volatility estimators based on high frequency data

volatility estimators were proposed by different authors.

Barndorff-Nielsen’s and Shephard’s power and bipower variations

Following the power variation, in Barndorff-Nielsen and Shephard (2004),

another quantity that will prove itself very helpful in jump estimation is

defined, namely the realized bipower variation (BPV ):

{Y }[r,s](t) = plim
δ↓0

δ1− r+s
2

[t/δ]−1∑

j=1

|yj(t)|r|yj+1(t)|s,
�

�

�

�2.23

where yj are equidistant intraday returns at time j. Further on, for the

case of continuous semi-martingale stochastic volatility processes with (µ, σ2)

independent of the Brownian motion W , BPV defined as above is found equal

to:

{Y }[r,s](t) = µrµs

∫ t

0

σr+s(u)du,
�

�

�

�2.24

where µr and µs are defined as in the power variation case.

When jumps are added to the price process, for certain values of r and s,

the following result is derived for the BPV :

µr
−1µs

−1{Y }[r,s](t) =





∫ t

0
σr+s(u)du, if max (r, s) < 2,

some stochastic process, if max (r, s) = 2,

∞, if max (r, s) > 2.

Thus, if we choose r ∈ (0, 2) and s = 2 − r, the realized BPV based on M

high-frequency returns, µr
−1µ2−r

−1{YM}[r,2−r]
i , will converge in probability

to the integrated variance,
∫ hi

h(i−1)
σ2(u) du. This implies that the quadratic

variance of the jump component can be obtained by differencing the following

two quantities:

{YM}[2]
i − µr

−1µ2−r
−1{YM}[r,2−r]

i

p→
N(hi)∑

j=N(h(i−1))+1

c2
j

�

�

�

�2.25
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2.2. Volatility estimators based on high frequency data

For the case of continuous processes, the CLT-type result obtained for the

realized variance (equation 2.8) is extended for the realized bipower varia-

tion. Moreover, the correlation between the two processes, RV and BPV, is

computed, generating the following result (Barndorff-Nielsen and Shephard,

2006a):

δ−1/2

√∫ t

0
σ4(u) du




[t/δ]−1∑

j=1

y2
j −

∫ t

0

σs(u)du

µ−2
1

[t/δ]−1∑

j=1

|yj||yj+1| −
∫ t

0

σs(u)du




L→

N

{
0,

(
2 2

2 2.60907

) }
�

�

�

�2.26

Equation (2.26) is a very important result as it individualizes the interde-

pendences between the two volatility measures. This result allowed the two

authors to derive the asymptotic distribution for the difference between the

two estimators, which will be the very basis for jump testing (see section

2.3).

Range estimators

Following the example of Barndorff-Nielsen and Shephard (2004), Chris-

tensen and Podolskij (2006) try to extend the results on the realized range to

processes containing discontinuities. However, they discover that RRV does

no longer converge to IV. Consequently, they try to define a new quantity

that consistently estimates IV : the range-based bipower variation, RBV.

RBV ∆
(r,s) = δ

r+s
2

−1 1

λr,2

1

λs,2

M−1∑

j=1

sr
Yti,δ

ss
Yti+1,δ

,
�

�

�

�2.27

Further on, the authors derive a CLT for the latter estimator and then,

show that, just like in the case of the statistics built up by Barndorff-Nielsen

and Shephard (2004), the difference between RRV and RBV consistently
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2.2. Volatility estimators based on high frequency data

estimates the jump for a certain time period, like a trading day. Thus, these

two range-based estimators could be used in testing for jumps.

Another range-based volatility estimator was developed by Dobrev (2006)

and is a generalization of Parkinson (1980)’s range. This new estimator is

defined as “the sum of the magnitudes of the largest k non-overlapping price

moves”. Let [0, t] be a given time interval and t1, t2, . . . , t2k partitions of this

interval. We can compute the generalized range (GR) as:

GRk(Y[0,t]) = max
0≤t1≤...≤t2k≤t

k∑

i=1

|Y (t2i) − Y (t2i−1)|
�

�

�

�2.28

Dobrev (2006) proves the convergence of his estimator to the integrated vari-

ance. Moreover, he shows that GR is robust to a finite number of jumps and

thus, can be used in jump estimation through comparisons to a non robust

to jumps estimator, such as the realized variance.

Threshold estimators

Mancini (2004, 2009) develops another estimator for the integrated vari-

ance based on a property of the Brownian motion established by Lévi (Renó,

2007, see) which states that the following function represents a modulus of

continuity 3 for the Brownian motion:

g(δ) =

√
2δ log

1

δ

�

�

�

�2.29

Thus, for the paths of a Brownian motion, we have:

a.s. lim
δ→0

sup
|t−s|≤δ

|W (t) − W (s)|
g(δ)

≤ 1
�

�

�

�2.30

As the stochastic integral
∫ t

0
σ(u) dW (u) is a time-changed Brownian mo-

tion (Mancini, 2004), a threshold for the integrated variance can be estab-

3“A function g(x) is called a modulus of continuity for the function f(x) if, for all
sufficiently small δ > 0, |t − s| ≤ δ implies |f(t) − f(s)| < g(δ). (Renó, 2007, see)
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2.2. Volatility estimators based on high frequency data

lished, giving rise to a new modality of estimating both components of the

QV, i.e. the integrated variance and the quadratic variation of the jump

component.

Let us suppose that the sampling is done every δ periods, just like in

Barndorff-Nielsen and Shephard (2004). Moreover, the rest of the notations

are kept unchanged: i denotes the “lower frequency” sample points (trading

days), while j the high-frequency ones. Let n be the number of possible jumps

between two consecutive observations, tj−1 and tj. Mancini (2004) defines

the threshold as a function r(δ) that satisfies the following two conditions:

lim
δ→0

r(δ) = 0 and lim
δ→0

δ log 1
δ

r(δ)
= 0

�

�

�

�2.31

Then, ∀j = 1, 2, . . . n, I{Nj−Nj−1} = I{y2
j,i≤r(δ)} a.s. and the threshold realized

variance can be defined as:

TRVδ(Y )t =

[t/δ]∑

j=1

y2
j,iI{y2

j,i≤r(δ)}

�

�

�

�2.32

Just like in the case of realized variance, power and bipower variations,

Mancini (2004) derives a CLT result:

TRVδ(Y )t −
∫ t

0
σ2

u du√
2δ
∫ t

0
σ4

u du

L→ N (0, 1)
�

�

�

�2.33

where
∫ t

0
σ4

u du can be estimated by the following quantity:

1

3δ

[t/δ]∑

j=1

y4
j,iI{y2

j,i≤r(δ)}

�

�

�

�2.34

Thus, every jump instant can be defined as:

∆̂jN = I{y2
j,i>r(δ)},

�

�

�

�2.35
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2.3. Testing for jumps in a univariate framework

with ∆jN = Ntj − Ntj−1
, while the jump size is given by:

γ̂j = y2
j,iI{y2

j,i>r(δ)}

�

�

�

�2.36

Mancini (2009) proves that for a finite activity jump process, the estimated

jump size will converge to its true value with a speed of
√

n:

√
n
∑

j

(γ̂j − γjI{∆jN≥1})
L→ MN

(
0, T

∫ T

0

σ2
s dNs

)
�

�

�

�2.37

Mancini (2009) extends the above results to the case of processes with infinite

jump activity.

In empirical work, as showed by Mancini and Renó (2006), one can con-

sider a time-varying threshold when estimating the integrated variance by

means of the threshold estimator.

2.3 Testing for jumps in a univariate framework

As seen in section 2.2, a multitude of nonparametric volatility estimators

have been developed. This whole literature flow was initially motivated by

the need to consistently estimate the integrated volatility. However, as some

of these estimators were proved to be nonrobust to jumps, more effort was

put into defining jump robust quantities. This effort led to a co-product,

that is the possibility to test whether during a certain time period (usually

considered equal to a trading day), jumps occurred and, if so, to consistently

estimate them.

2.3.1 Barndorff-Nielsen and Shephard (2006a) test

The first step toward this new direction that emerged in the field of

financial econometrics was taken by Barndorff-Nielsen and Shephard (2006a),

who observed that the difference or the ratio between realized volatility and

realized quadratic variation can be thought as an estimator of the quadratic
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2.3. Testing for jumps in a univariate framework

variation of the jump process. As seen in subsection 2.2.4, equation (2.25),

an appropriate choice for the parameters r and s, that is r < 2 and s = 2− r

makes the realized BPV consistently estimate IV and the difference between

RV and realized BPV qualify for jump testing and estimation. In Barndorff-

Nielsen and Shephard (2006a), the authors opt for r = s = 1 and prove the

following CLT-type result for the hypothesis of a continuous process when

δ ↓ 0:

δ−1/2(µ−2
1 {YM}[1,1]

t ) − [YM ]t√∫ t

0
ϑσ4

u du

L→ N (0, 1)
�

�

�

�2.38

or

δ−1/2(
µ−2

1 {YM}
[1,1]
t

[YM ]t
− 1)

√
ϑ
∫ t
0 σ4

u du
∫ t
0 σ2

u du
2

L→ N (0, 1)
�

�

�

�2.39

The above results allows us to test for the following:

H0: no jumps, that is:

δ−1/2(µ−2
1 {YM}[1,1]

t ) − [YM ]t
p→ 0

against the alternative:

H1: jumps present during [0, t]:

δ−1/2(µ−2
1 {YM}[1,1]

t ) − [YM ]t
p→ −

Nt∑

j=1

c2
j ≤ 0

The integral in the denominator of equation (2.38), named integrated

quarticity, can be estimated by using the realized quadpower variation, which

is proved to be robust to finite activity jumps:

{YM}[1,1,1,1]
t = δ−1

[t/δ]∑

j=1

|yj−3||yj−2||yj−1||yj|
p→ µ4

1

∫ t

0

σ4
s du

�

�

�

�2.40

Further on, Barndorff-Nielsen and Shephard (2006a) show that in (2.39), the

23



2.3. Testing for jumps in a univariate framework

ratio
∫ t
0 σ4

u du(∫ t
0 σ2

u du
)2 ≥ 1/t with equality reached in the homoskedastic case. Thus,

a correction is proposed to the initial test in equation (2.39):

δ−1/2

√√√√ϑ max

(
t−1,

{YM}
[1,1,1,1]
t{

{YM}
[1,1]
t

}2

)

(
µ−2

1 {YM}[1,1]
t

[YM ]t
− 1

)
L→ N (0, 1)

�

�

�

�2.41

Andersen et al. (2005) suggest using another estimator for the integrated

quarticity: the realized tripower quarticity (TPt), based on the observation

that it is robust to jumps:

TPt = Mµ−3
4/3

(
M

M − 2

) [t/δ]∑

j=3

|yj−2|4/3|yj−1|4/3|yj|4/3
�

�

�

�2.42

Huang and Tauchen (2005) compare through means of Monte Carlo sim-

ulation alternative statistics that can be used for performing the Barndorff-

Nielsen and Shephard (2006a) test described above. Thus, the following

different statistics are taken into consideration: the standard test statistic

in equation (2.38) with the denominator estimated by using the quadpower

quarticity, the standard statistic based on the tripower quarticity, the log

versions of both these statistics and finally, the log plus adjusted versions,

where the adjustment is the one proposed by Barndorff-Nielsen and Shep-

hard (2006a) and discussed above (equation (2.41)). They show that all the

above statistics perform quite well in picking up jumps, without major differ-

ences between alternative expressions. The authors also avert that one must

pay attention when trying to perform the Barndorff-Nielsen and Shephard

(2006a) test for a larger number of days. Basically, tiny daily biases are usu-

ally present on a daily basis and might be inflated a lot by the considered

number of days when aggregation is completed in order to carry out the test

for a longer than one day period. In addition, Huang and Tauchen (2005)

are also interested by the effect of the microstructure noise on the test statis-

tics. They reveal that, unless corrections to the estimators of the nominator
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2.3. Testing for jumps in a univariate framework

and denominator of the test statistics are made, this kind of noise makes the

latter downward biased. They indicate the use of staggered returns to adjust

the realized variance, the realized bipower variation, as well as the estimator

of the integrated quarticity.

2.3.2 Andersen et al. (2007) test

Another test that makes use of the Volatility estimators, but in a slightly

different manner is the one in Andersen et al. (2007).They build up a very

simple and intuitive rule that can be used to detect jumps. They start by

considering a randomly selected intraday return, given a certain sampling

frequency, δ:

yξ·δ,δ =

[t/δ]∑

j=1

yj(t)I{ξ=j}

�

�

�

�2.43

The authors prove a CLT theorem for the randomly selected returns:

δ−1/2yt+ξ·δ,δ ∼ N (0, IVt+1)
�

�

�

�2.44

where IVt+1 is the integrated variance at time t + 1 and can be estimated

by using Barndorff-Nielsen and Shephard (2004)’s realized bipower variation.

Further on, one can detect multiple intraday jumps based on the rule:

cj(δ) = yjI{|yj |>Φ1−β/2

√
δ·BVt+1(δ)}

, j = 1, 2, . . . ,
1

δ

�

�

�

�2.45

where BVt+1(δ) is the realized bipower variation estimated for a sampling

frequency equal to δ and Φ1−β/2 is the corresponding critical value from

the standard normal, with β = 1 − (1 − α)δ the test size for period δ and

α the daily test size. The advantage of this testing procedure is that it

allows performing the test over any time period, such that one can precisely

identify the exact timing of each jump. Moreover, Andersen et al. (2007)

provide simulation evidence that shows this test retains more power than

the classical Barndorff-Nielsen and Shephard (2006a) procedure.
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2.3. Testing for jumps in a univariate framework

2.3.3 Aı̈t-Sahalia and Jacod (2008)

In parallel with Barndorff-Nielsen and Shephard (2006b), Jacod (2008)

worked on deriving the asymptotic properties of power variations. Part of

this work contributed to another jump test he developed together with Aı̈t-

Sahalia (Aı̈t-Sahalia and Jacod, 2008). The starting point for this new test

consists in the following quantities:

A(r)t =

∫ t

0

|σs|r, B(r)t =
∑

j≤t

|yj|r
�

�

�

�2.46

where r is a positive number. The above expressions can be estimated by

using the following estimator:

B̂(r, δ)t =

[t/δ]∑

j=1

|yj|r
�

�

�

�2.47

For different values of r, we can have the following convergences in probabil-

ity: 



r > 2 ⇒ B̂(r, δ)t
p→ B(r)t

r = 2 ⇒ B̂(r, δ)t
p→ [Y ](t)

r < 2 ⇒ δ1−r/2

mr
B̂(r, δ)t

p→ A(r)t

Y is continuous ⇒ δ1−r/2

mr
B̂(r, δ)t

p→ A(r)t

�

�

�

�2.48

Aı̈t-Sahalia and Jacod (2008) depart from the observation that in the above

cases of convergence, the first and the normalized fourth do not depend on

the sampling scale (δ) or, in other words, are invariant to scale modifications.

They exploit this fact by building up two different tests: one with the null

of jumps and the other with the null of a continuous specification.

The authors develop a family of test statistics with the following form:

̂S(r, k, δ)t =
̂B(r, kδ)t

B̂(r, δ)t

�

�

�

�2.49

where k ∈ N multiplies the scale. The above statistic converges in probability
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2.3. Testing for jumps in a univariate framework

to 1, when jumps are present, as well as to kp/2−1 in the continuity case. For

both these cases, central limit theorems are proved and thus, the two tests

can be put together.

2.3.4 Jiang and Oomen (2008) test

Another approach to jump identification was proposed by Jiang and

Oomen (2008), with the null of no realization of jumps on the path between

0 and t. The idea behind their test stands in some theoretical issues con-

cerning the pricing of the variance swap contracts. Thus, the pricing of these

contracts is based on the so-called ‘log-contract’. Neuberger (1994) shows

that a short position in the log contract plus a long one in the underlying,

with a delta of 1/Yt, will genrate the following payoff:

2( dYt/Yt − d ln Yt) = σ2 dt
�

�

�

�2.50

where Yt is the price at time t. In a discretized version, the payoff of the

variance swap contract can be written as:

SwVt(δ) = 2
M∑

j=1

(Rj − rj)
�

�

�

�2.51

where M = [t/δ] is the number of intraday observations, Rj denotes the j-th

intraday arithmetic return, while rj the j-th log return. Given the above

equations, the absence of jumps will make the difference between SwV and

the realized variance equal to 0:

plim
δ→0

(SwVt(δ) − RVt(δ)) =

{
0 no jumps in[0, t]

2
∫ t

0
Ju dqu −

∫ t

0
J2

u dqu jumps in[0, t]
�

�

�

�2.52

where RVt(δ) is the estimated realized variance, Ju = exp(Ju)− Ju − 1, with

J the jump process and
∫ t

0
J2

u dqu is the jump variation between 0 and t.

A CLT can be established for SwV , resulting in the construction of a
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jump test:
M
∫ t

0
σ2 du√

ΩSwV

(
1 − RVt

SwVt

)
�

�

�

�2.53

In the above equation, the integrated variance will be estimated by using

Barndorff-Nielsen and Shephard (2006b) bipower variation, while ΩSwV will

be estimated using a multi- power variation (Barndorff-Nielsen et al., 2003;

Barndorff-Nielsen et al., 2006):

Ω̂SwV =
µ6

9

M3µ−p
6/p

M − p + 1

M−p∑

i=0

p∏

k=1

|ri+k|6/p
�

�

�

�2.54

where a suitable choice for p is 4 or 6. Just like the Aı̈t-Sahalia and Jacod

(2008) test, the above test is developed in a model free framework, taking

into consideration an Ito semimartingale, without any assumptions on the

drift, volatility or component. Furthermore, the authors modify the test in

order to suit noisy data and prove that it retains power. While having a

higher convergence rate than the standard Barndorff-Nielsen and Shephard

(2006a) test, the conducted simulations reveal better size properties at high

frequencies and more power if just 1 jump is considered in comparison with

the above cited test.

2.3.5 Lee and Mykland (2008)

Lee and Mykland (2008) build up another jump test starting from the

following question: given the trade-off between volatility and jumps, if there

are high variations in prices, how can one be able to distingush when these

were caused by jumps or by the volatility component? Thus, they imply that

one can start from the simple log returns, standardize them properly by using

a robust to jump volatility estimator and compare the resulting quantities

with a proper threshold in order to detect jumps.

The following statistic is considered:

L (j) =
yj

σ̂j

�

�

�

�2.55
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2.3. Testing for jumps in a univariate framework

where σ̂j is the realized bipower variation estimated on a K previous obser-

vations window.

The above statistic is used for jump identification at a given time tj, unlike

the case of the other tests where the hypotheses are formulated relative to a

given period (time interval). Under the null of no jumps, the statistic will

be asymptotically normal. However, in order to establish a more stringent

rejection region, the authors try to find out how large the statistic can get

when a jump is present. Thus, they consider the maximum of their statistic.

They show that under the null, the maximum of the test statistic has an

exponential cumulative distribution function:

max (L (j)) − CM

SM

→ ξ, P(ξ) = exp(−e−x)
�

�

�

�2.56

where

CM =
(2 log M)1/2

µ1

− log π + log (log M)

2µ1(2 log M)1/2

�

�

�

�2.57

and

SM =
1

µ1(2 log M)1/2

�

�

�

�2.58

Thus, the test can be conducted by simply replacing the maximum statistic

above by the estimated value of L (j) and compare the resulting value with

the threshold showed above. However, the findings in equation (2.56) are

valid only under some mild assumptions on the drift and volatility coefficients

of the models (Lee and Mykland, 2008). Simulations employed by the authors

show the superiority of this test in terms of size and power in comparison

with the standard bipower test of Barndorff-Nielsen and Shephard (2006a).

2.3.6 Podolskij and Ziggel (2008)

As seen in section 2.2.4, Mancini (2004, 2009) develops threshold volatility

estimators that are robust to jumps in asset prices and provides CLT-type

results for these quantities. Having both a robust and a non-robust (realized

variance) volatility estimators, the obvious step forward is jump estimation
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2.3. Testing for jumps in a univariate framework

and testing. However, a joint distribution law for both estimators could not

be found. In order to overcome this difficulty, Podolskij and Ziggel (2008),

choose to multiply the threshold estimator by some i.i.d. random variables,

instead of considering the simple difference between the realized variance and

the threshold estimator:

T (Y, p)M
t = M

p−1
2

M∑

j=1

∣∣yM
j

∣∣p (1 − ηjI{|yM
j |≤cM−w̄}), p ≥ 2

�

�

�

�2.59

where c > 0 a constant and w̄ ∈ (0, 1/2). ηj are i.i.d. variables with E(ηj) = 1

and E(η2
j ) < ∞. The above estimator is proved to stably converge under the

null of no jumps to the following quantity:

T (Y, p)M
t

F−stable→
√

V ar(ηj)µ2p

∫ t

0

|σs|p dW ′
s

�

�

�

�2.60

Under the alternative, this quantity diverges, allowing for the definition of

the following test statistics:

S(p)M
t =

T (Y, p)M
t√

V ar(ηj)µ2p

∫ t

0
|σs|p dW ′

s

�

�

�

�2.61

where the integrated variation in the denominator can be estimated in a

robust to jumps manner by using the same threshold estimators and µ2p is

given in equation (2.13). For the choice of the distribution of the random

variables, the authors recommend the following one:

P η =
1

2
(δ1−τ + δ1+τ )

�

�

�

�2.62

with δ being the Dirac measure and the constant τ relatively small, e.g.

τ = .1 or .05. Simulations prove a better performance in terms of power in

comparison with the Barndorff-Nielsen and Shephard (2006a) and the Aı̈t-

Sahalia and Jacod (2008) tests.
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2.4. Extensions to a multivariate framework

2.4 Extensions to a multivariate framework

In the previous section we showed it is possible to disentangle the vari-

ation in prices due to jumps from the one due to the diffusion component.

Given the various contributions to the literature that deal with such issues

in the univariate case, it is natural to try to extend the existing theory to a

multivariate framework. This is extremely relevant from a practical point a

view, as investors usually own portfolios of assets. From here, one can derive

important implications in portfolio allocation, risk management, hedging and

pricing, as different assets can display similar or divergent jumping patterns.

Moreover, this can influence the way risk premia are attributed. If different

jumps are proved to be systemic, involving the whole market, the correspond-

ing risk should not be remunerated by the market. Only individual risks are

expected to be awarded.

In the multivariate framework, we work with co-variations of different

price processes taken two by two. However, unlike in the univariate case, an

extra problem appears, namely the non-synchrony of transactions or quota-

tions of any two assets. This problem was first characterized by Epps (1979),

who shows that when observations for returns for any two assets are synchro-

nized by applying the previous-tick scheme, the covariance tends to diminish

at higher sampling frequencies. 4 The majority of the literature on esti-

mating volatility in a multivariate framework based on high frequency data

proposes estimators that require synchronizing the observations. However, in

this case a special attention must be paid to the sampling scheme. The only

estimator based on non-synchronous data is the one introduced by Hayashi

and Yoshida (2005).

2.4.1 Non-robust to jumps estimators

Barndorff-Nielsen and Shephard (2007) generalize the realized volatility

to a multiple-asset framework. Let yj be a (p× 1) vector of returns at time j

4This phenomenon is known in the financial literature as the Epps’ effect.
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2.4. Extensions to a multivariate framework

for p different assets, with j denoting, just as before, high-frequency sampling

times during a trading day. Thus, the realized volatility is defined as:

[YM ] =
M∑

j=1

yjy
′
j

p−−−−→
M→∞

[Y ] =

=




[Y(1)] [Y(1), Y(2)] . . . [Y(1), Y(p)]

[Y(2), Y(1)] [Y(2)] . . . [Y(2), Y(p)]
...

...
. . .

...

[Y(p), Y(1)] [Y(p), Y(2)] . . . [Y(p)]




�

�

�

�2.63

where Y(l), l = 1 . . . p is the price process for the l-th asset, The “covaria-

tion” terms in the above equation are estimated based on some equalities

established for the quadratic covariation processes and given below:

[Y(l), Y(k)] =
1

2
([Y(l) + Y(k)] − [Y(l)] − [Y(k)])

�

�

�

�2.64

or

[Y(l), Y(k)] =
1

4
([Y(l) + Y(k)] − [Y(l) − Y(k)]),

�

�

�

�2.65

where [Y(l) +Y(k)] is the realized volatility for the sum of the prices of the l-th

and k-th assets, [Y(l)−Y(k)] is the realized volatility of the difference between

the prices of the same assets, while [Y(l)] and [Y(k)] are the individual realized

volatilities of the two assets.

Hayashi and Yoshida (2005) show that due to the Epps’ effect, [Y(l), Y(k)]

is underestimated when applying a synchronization scheme based on inter-

polation. In order to overcome this difficulty, they propose a new estimator,

named the Cumulative Covariance Estimator, defined as:

Un :=
∑

k,l

y1(Kk)y2(Ll)1{Kk∩Ll 6=Φ},
�

�

�

�2.66

where Kk and Ll are random intraday intervals, and y1 and y2 denote the

return processes for asset 1 and asset 2, respectively. The above sum will
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2.4. Extensions to a multivariate framework

include all changes in the prices of the two assets if and only if the intervals

over which these changes are observed overlap.

Hayashi and Yoshida (2005) prove that Un →
∫ t

0
σ1

uσ
2
uρudu in probability

as n → ∞, where n is the number of intersections, σ1
u and σ2

u are the diffu-

sion parameters for assets 1 and 2, whereas ρu is the correlation between the

returns of the two assets. Observations from the continuous time price pro-

cesses are assumed to be made at random times. The conditions that these

random times must fulfill restrict the possible choices to a narrow range of

variables, from which the Poisson sampling scheme is the most plausible.

Both the above multivariate estimators do not take microstructure noise

into account. Barndorff-Nielsen et al. (2008b) propose a generalization of

the realized kernels to the multivariate framework, however based on syn-

chronized observations. Voev and Lunde (2007) show that depending on

the structure of the noise, a simple realized covariance might can be some-

times preferred to the cumulative covariance and propose a correction to the

latter estimator. Sen and Xu (2007) propose subsampling when computing

the Hayashi and Yoshida (2005) estimator in order to overcome the noise

problem.

2.4.2 Robust to jumps estimators

Barndorff-Nielsen and Shephard (2007) also generalize the realized bipower

variation to a multivariate framework. Just like the multivariate QV process

and its estimator, the realized volatility, the BPV process can be estimated at

a multivariate level based on its realized counterpart, defined in the following

way:

{Yδ;q} =




{Y(1)δ; q} {Y(1)δ, Y(2)δ; q} . . . {Y(1)δ, Y(p)δ; q}
{Y(2)δ, Y(1)δ; q} {Y(2)δ; q} . . . {Y(2)δ, Y(p)δ; q}

...
...

. . .
...

{Y(p)δ, Y(1)δ; q} {Y(p)δ, Y(2)δ; q} . . . {Y(p)δ; q}




�

�

�

�2.67
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2.4. Extensions to a multivariate framework

where the realized bipower variation for the l-th asset equals

{Y(l)δ; q} = γq,δ

M∑

j=q+1

|y(l)j−q||y(l)j|,
�

�

�

�2.68

with γq,δ = M
M−q

, γq,δ ↓ 1 as δ ↓ 0 and the realized bipower covariance for

assets l and k is defined as:

{Y(l)δ, Y(k)δ; q} =
γq,δ

4
({Y(l)δ + Y(k)δ; q} − {Y(l)δ − Y(k)δ; q})

�

�

�

�2.69

For both quadratic and bipower covariation processes, a Central Limit The-

orem is provided. However, the authors encounter problems in finding an

estimator for the variance of the bipower variation that is robust to jumps.

Despite of the problems discussed above, the work of Barndorff-Nielsen

and Shephard (2007) is valuable from two points of view. First, they pose

the problem of jumps in a multivariate framework, revealing its importance

in finance and giving rise to other theoretical and empirical work which tries

to describe jumps in more than one asset. Second, they introduce a very in-

teresting concept that, provided the statistical issues concerning multivariate

jumps are solved, could prove itself to have important practical implications,

especially in the field of asset allocation. Thus, they define the concept of

co-jumping, which, similar to other co-features in the econometrics litera-

ture, such as cointegration, co-trending, co-breaking, implies that, given two

or more assets that display a jump at a certain time, one can find a linear

combination of their returns that does no longer jump.

Let us have a p- dimensional Brownian semimartingale plus jump process

that we group in a p dimension vector, Y . The quadratic variation of Y will

have the following form:

[Y ]t =

∫ t

0

Σu du +
Nt∑

j=1

CjC
′
j
5

�

�

�

�2.70

5Notations are mostly taken from Barndorff-Nielsen and Shephard (2007)
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2.4. Extensions to a multivariate framework

where
∫ t

0
Σu du is the multivariate integrated variance-covariance and Cj is

a p dimension vector with the j-th jumps. Let τ1, τ2, . . . , τNt be the arrival

times of the jump counting process. Pre-multiplying the vector of prices, Y ,

with a k × p matrix, D, containing elements that are cádlág and adapted to

the filtration generated by Y , results in another process with the following

quadratic variance-covariance:

∫ t

0

Duσuσ
′
uD

′
u du +

Nt∑

j=1

Dτj−CjC
′
jD

′
τj−

�

�

�

�2.71

We talk about co-jumping during 0 and t when some of the diagonal

elements of
∑Nt

j=1 Dτj−CjC
′
jD

′
τj−

are 0. Consequently, in order to establish

whether co-jumping occurred or not, one has to check whether
∑Nt

j=1 CjC
′
j is

a reduced rank matrix, provided that matrix D is time invariant.

Similar to the generalizing approach of Barndorff-Nielsen and Shephard

(2007), Gobbi and Mancini (2008b) extended Mancini (2009)’s threshold

volatility estimators to a multivariate framework. Thus, given the price pro-

cesses of two financial assets, they define a threshold estimator for the inte-

grated quadratic covariation,
∫ t

0
ρsσ(1)sσ(2)s ds, with ρs being the correlation

coefficient between prices at time s and σ(l)s, l = 1, 2 the diffusion param-

eter for the price process of asset l. Basically, they propose the following

threshold estimator:

TRCOVδ(Y(1), Y(1))t =

[t/δ]∑

j=1

y(1)j,iI{y2
(1)j,i

≤r(δ)}, y(2)j,iI{y2
(2)j,i

≤r(δ)},
�

�

�

�2.72

where r(δ) is the threshold and I{·} an indicator function.

Moreover, a central limit theorem is derived. The difference between the

realized covariation and the threshold estimator consistently estimates the

common variation in the jump processes of the two assets:

[t/δ]∑

j=1

y(1)j,iy(2)j,i − TRCOVδ(Y(1), Y(1))t
p→
∑

s≤t

c(1)sc(2)s,
�

�

�

�2.73
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2.4. Extensions to a multivariate framework

where c(l)s, l = 1, 2 represents the jump at time s for asset l. Further on,

Gobbi and Mancini (2008a) extend the above results to the case of infinite

activity jumps.

2.4.3 Testing for common jumps in the prices of finan-

cial assets

Jacod and Todorov (2007) propose a test for the common arrival of jumps.

This work is meant to extend to a bivariate framework univariate jump detec-

tion procedure in Aı̈t-Sahalia and Jacod (2008). The assumed price processes

are two stochastic volatility processes with jumps in both price and volatility.

However, results are shown to be valid only when the price and the volatility

processes do not jump together.

Supposing that one has already established based on an adequate testing

procedure that the prices of two different financial assets are not continuous,

the present test is meant to distinguish between the following two hypotheses:

• joint jumps, meaning that the prices of both assets jump together

• disjoint jumps, implying that jumps do not arrive together.

For this purpose, two different test statistics are used. In the case of a null

of joint jumping, the idea that power variation should be invariant to scale

modifications is exploited again, just like in Aı̈t-Sahalia and Jacod (2008):

S(k, δ)
(joint)
t =

∑[t/δ]
j=1 (y(1)kjy(2)kj)

2

∑[t/δ]
j=1 (y(1)jy(2)j)2

�

�

�

�2.74

where y(l)kj represents the return of the l-th asset sampled every kδ times.

In order to test for the null of disjoint jumps, the test statistic is:

S(k, δ)
(disjoint)
t =

∑[t/δ]
j=1 (y(1)jy(2)j)

2

√∑[t/δ]
j=1 (y(1)j)2

∑[t/δ]
j=1 (y(2)j)2

�

�

�

�2.75
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2.4. Extensions to a multivariate framework

Critical regions for both cases (joint, disjoint) are determined and the

asymptotic behavior of the above statistics is explored, leading to a CLT

type result 6 that enables testing.

Unlike the above approach, which attempts to test for common jumps in

a fixed number of asset prices, another interesting and simple procedure was

introduced by Bollerslev et al. (2007). They observe that by applying the

Barndorff-Nielsen and Shephard (2006a) jump detection procedure to a stock

index, much fewer jumps are detected than when the procedure is applied

for each individual stock. They split jumps into two categories: the common

or systemic jumps and the idiosyncratic ones. The standard jump testing

procedure is very sensitive to idiosyncratic jumps, and is not able to pick up

common jumps, which are usually smaller.

Let p be the number of assets in portfolio. Bollerslev et al. (2007) consider

the following statistic:

mcpt =
M∑

j=1

1

2p(p − 1)

p−1∑

k=1

p∑

l=k+1

y(k)jy(l)j =

=
1

4(p − 1)

[
pRVEQW,t −

1

p

p∑

k=1

RVk,t

]
�

�

�

�2.76

where RVk,t is the realized volatility for each individual asset in the portfolio

and RVEQW,t is the realized volatility for an equally weighted portfolio and

is defined in the following equation:

RVEQW,t =
M∑

j=1

(
1

p

p∑

k=1

y(k)j

)2
�

�

�

�2.77

Just like in portfolio theory, the authors assume a very large number of

assets, p → ∞, which will lead to the disappearance of the last part of the

mcp statistic containing the idiosyncratic variations. What is left will only

reflect the common variation of the assets in the portfolio and, compared to

6A stable convergence in law is proved for each of these statistics.
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a suitable threshold, can lead to jump identification. Bollerslev et al. (2007)

standardize this statistic and make use of the bootstrap procedure to derive

its distribution under the null of no jumps.

2.5 Conclusion

The objective of this chapter is to summarize some of the recent advances

in the field of financial econometrics concerning volatility estimation based

on high frequency data, as well as jump detection. The focus of the review is

on the ability and importance of disentangling jumps from the diffusion com-

ponent of the price processes. This is important because both components

generate risks that have different requirements in terms of hedging, pricing

and management. Moreover, due to the valuable implications in portfolio al-

location and risk management, we also extensively describe the contributions

to the literature in the multivariate case.

For both univariate and multivariate frameworks, the structure of our

exposition follows four different directions. First, we describe the existing

estimators for the quadratic variation of the processes. Second, given that

prices are contaminated with microstructure noise, we present several possi-

bilities to overcome the problems deriving from this contamination. Third,

various robust to jumps estimators are exposed. Finally, the existing jump

detection procedures are introduced.

As already mentioned, the focus in this chapter stays on disentangling

jumps. It was not our intention here to exhaust all literature on volatility

estimation. Therefore, the parts concerning contamination with microstruc-

ture noise are not described in such a detail as the other parts. However,

their inclusion in our review is important, as real prices do not behave as

observations from diffusions or jump diffusions and consequently, noise will

always be an issue researchers will have to deal with.

Most of the contributions in the literature on how to deal with microstruc-

ture noise only concern estimators of the quadratic variance of the processes.
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2.5. Conclusion

There are just a few contributions regarding robust to jumps estimators and

testing for jumps. In general, we know sub-sampling works in this case, as

well. One of the results obtained in Chapter 3 sheds some light on how

to apply the jump detection procedures when prices are contaminated with

microstructure noise. We propose combining different tests and sampling

frequencies in order to optimize the performance of the tests.

39



3
Identifying jumps in financial assets: a

comparison between nonparametric

jump tests

There is a large consensus in the financial literature, theoretical and ap-

plied, that modeling return dynamics requires the specification of a stochastic

volatility component, which accommodates the persistence in volatility, and

of a jump component, which takes care of the unpredictable, large movements

in the price process. The identification of the time and the size of jumps has

profound implications in risk management, portfolio allocation, derivatives

pricing (Aı̈t-Sahalia, 2004). For this task, the use of jump diffusion models

proved very difficult, as there are no closed forms of the likelihood function

and in addition, the number of parameters to estimate is very high. One solu-

tion is to focus on the popular class of affine models (Duffie et al., 2000) which

allow for tractable estimation, but impose a quite restrictive set of assump-

tions. An alternative approach is represented by nonlinear volatility models.

However, the estimation procedure, based on simulation methods, such as

the Gallant and Tauchen (2002)’s efficient method of moments, is computa-

tionally demanding and too much dependent on the choice of an auxiliary

model (Chernov et al., 2003; Andersen et al., 2002, see, for instance).

One of the main advances in high frequency econometrics over the last
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decade was the development of several nonparametric procedures that allow

to test for the presence of jumps in the path of a price process during a certain

time interval or at certain point in time. Such methods are very simple to ap-

ply, they just require high frequency transaction prices or mid-quotes. More-

over, they are developed in a model free framework, incorporating different

classes of stochastic volatility models. In addition to the seminal contribution

of Barndorff-Nielsen and Shephard (2006a), in this chapter we consider four

other tests proposed by Andersen et al. (2007)-Lee and Mykland (2008), Aı̈t-

Sahalia and Jacod (2008), Jiang and Oomen (2008)and Podolskij and Ziggel

(2008). All tests are based on CLT-type results that require an intraday

sampling frequency that tends to infinity. The test statistics are based on

robust to jumps measures of variation in the price processes which are esti-

mated by using either realized multi-power variations (Barndorff-Nielsen and

Shephard, 2004, 2003, see) or threshold estimators (Mancini, 2009, see). The

Andersen et al. (2007)-Lee and Mykland (2008) tests have the null hypoth-

esis of continuity of the sample path at a certain moment, allowing for the

exact identification of the time of a jump. The other procedures have a null

of continuity within a certain time period, such as a trading day.

Given such a variety of nonparametric methodologies to identify jumps,

one might wonder which procedure should be preferred, or whether there

are data characteristics for which it is recommended to use one test instead

of the others. The main objective of this chapter is to perform a thorough

comparison among the five testing procedures, based on a comprehensive

set of Monte Carlo simulations, which embodies important features of finan-

cial data. To quantify the size for all tests, our simulations are based on

both constant and stochastic volatility models with varying persistence. To

evaluate the power property, we consider stochastic volatility models with

jumps of different sizes arriving with varying intensity. Based on the find-

ings of the simulation exercise, we aim to provide a set of guidelines to users

of nonparametric tests for jumps. It is important to establish whether the

performance of the tests is related to some featuress of the data, such as dif-
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3.1. Jump tests

ferent sampling frequencies, different levels of volatility, varying persistence

in volatility, varying contamination with microstructure noise, varying jump

size and jump intensity. Such characteristics vary between classes of assets,

as well as between different time periods. For instance, equity prices are

‘jumpier’ than bond prices and markets in general have been more volatile

and at the same time ‘jumpier’ during the last 2 years than before. Finally,

we apply the tests to real tick data, using high frequency data on the US

Treasury 2-, 5- 10- and 30- year bonds over a period lying between January

2003 and March 2004. We apply all tests on the data sampled at different

frequencies.

The chapter is organized as follows. In Section 2, we review the 5 non-

parametric tests for jumps available in the literature. Section 3 describes the

Monte Carlo setup and reports the main findings of the simulations. Section

4 reports an empirical exercise using US Treasury data. Finally, Section 5

concludes and offers some guidelines to potential users.

3.1 Jump tests

In this section, we describe the available jump detection procedures. It

is important to note that none of these procedures can test for the absence

or presence of jumps in the model or data generating process. They merely

supply us with information on whether within a certain time interval or at a

certain moment, the realization of the process is continuous or not. Andersen

et al. (2007) and Lee and Mykland (2008) assume the null of continuity of

the sample path at time tj. For all the other procedures, the null is of

continuity of the sample path during a certain period, such as a trading day.

The alternative hypothesis implies discontinuity of the sample path, that

is the occurrence of at least one jump. For all procedures, under the null,

the test statistics are asymptotically standard normal, though in some cases

(Andersen et al., 2007; Lee and Mykland, 2008) standard normal thresholds,

like 99% or 95% quantiles, appear too liberal and more restrictive thresholds
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need to be used.

Apart from the procedures proposed by Aı̈t-Sahalia and Jacod (2008) and

Podolskij and Ziggel (2008), all other procedures work only when a finite

number of jumps occur within a certain time interval. This is due to the fact

that in all cases, the construction of the test statistics is based on realized

bipower variations estimators, which are robust only to a finite number of

jumps. For this reason, in the simulation set-up, we only consider processes

with a finite number jumps (compound Poisson) and compare tests under

this scenario.

We turn now to the presentation of the various procedures.

3.1.1 Barndorff-Nielsen and Shephard (2006a) test (BNS

henceforth)

Barndorff-Nielsen and Shephard (2006a) base their procedure on the pos-

sibility to build a consistent estimator for the integrated variance of a pro-

cess. The test draws from previous reserach (Barndorff-Nielsen and Shep-

hard, 2004), where authors show that the realized bipower variation (BVt)

consistently estimates the integrated variance in the presence of rare jumps:

BVt = plim
δ↓0

[t/δ]∑

j=1

|yj(t)||yj+1(t)|
�

�

�

�3.1

where δ is the intraday sampling frequency, with [t/δ] the number of intraday

returns and yj the j-th intraday return at time j, j = 1...[t/δ].

Thus, the difference between realized volatility and realized bipower vari-

ation qualifies for jump testing and estimation. Under the null hypothesis

of continuous sample path from 0 to t, the test statistic is asymptotically

standard normal:

δ−1/2(µ−2
1 BVt) − RVt√∫ t

0
ϑσ4

u du

L→ N (0, 1)
�

�

�

�3.2
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3.1. Jump tests

where RVt is the realized volatility, and µ1 and ϑ two constants, with µ1 =√
2/π and ϑ = (π2/4) + π − 5 . The integral in the denominator of equation

(4.2) is the integrated quarticity and can be estimated using the realized

tripower quarticity (TPt) (Andersen et al., 2005):

TPt = Mµ−3
4/3

(
M

M − 2

) M∑

j=3

|yj−2|4/3|yj−1|4/3|yj|4/3
�

�

�

�3.3

where M is the number of returns within a trading day and µ4/3 = E(|U |)4/3,

with U being a standard normal variable.

The test statistic used in our simulation is the following:

z =
1 − BPVt

RVt√
(µ−4

1 + 2µ−2
1 − 5)δmax

(
1, TPt

BPV 2
t

) → N (0, 1)
�

�

�

�3.4

Note that equation (3.4) is the version of the BNS test that showed bet-

ter finite sample properties according to the simulation exercise reported in

Huang and Tauchen (2005).

3.1.2 Andersen et al. (2007) and Lee and Mykland

(2008) tests (ABD and LM henceforth)

The papers by Lee and Mykland (2008) and Andersen et al. (2007) con-

currently developed tests for jumps based on the standardization of intraday

returns by robust to jumps volatility estimators. Both tests are constructed

under the null that there is no jump in the realization of the process at a

certain time, tj. This enables users to identify the exact time of a jump, as

well as the number of jumps within a trading day. We call these two proce-

dures “intraday” tests, as they can detect jumps that occur any time during

a trading day, whereas the other tests can only check for the discontinuity of

the sample path at a daily level.

44



3.1. Jump tests

Andersen et al. (2007) build up a very simple and intuitive rule that can

be used to detect jumps. They consider a randomly selected intraday return,

yξ·δ,δ, given a certain sampling frequency, δ:

yξ·δ,δ =

[t/δ]∑

j=1

yj(t)I{ξ=j},
�

�

�

�3.5

where I{ξ=j} is an indicator operator selecting the j-th observation from the

data. The authors report a CLT theorem for the randomly selected returns

which shows that:

δ−1/2yt+ξ·δ,δ ∼ N (0, IVt+1)
�

�

�

�3.6

where IVt+1 is the integrated variance at time t + 1 and can be estimated

by using Barndorff-Nielsen and Shephard (2004)’s realized bipower variation.

One can detect multiple intraday jumps based on the rule:

cj(δ) = yjI{|yj |>Φ1−β/2

√
δ·BVt+1(δ)}

, j = 1, 2, . . . ,
1

δ

�

�

�

�3.7

where cj stands for the critical region of the test, BVt+1(δ) is the realized

bipower variation estimated for a sampling frequency equal to δ at time t+1

and Φ1−β/2 is the corresponding critical value from the standard normal,

with β = 1 − (1 − α)δ the test size for period δ and α the daily test size.

Andersen et al. (2007) provide simulation evidence showing that this test has

higher power than the classical Barndorff-Nielsen and Shephard (2006a) one.

Moreover, they take into account the periodicity in the intraday volatility

when applying the test on real data.

Lee and Mykland (2008) use the same realized bipower variation to stan-

dardize the returns, but they estimate it on a local window that precedes the

time for which the test is performed.

Thus, the following statistic is considered:

L (j) =
yj

σ̂j

�

�

�

�3.8
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3.1. Jump tests

where σ̂j is the realized bipower variation estimated on a K previous obser-

vations window.

Under the null of continuity, the statistic is asymptotically normal. How-

ever, the usual 95% and 99% quantiles from the normal distribution prove

themselves too permissive by leading to the identification of a very high num-

ber of jumps. As a result, the authors take into consideration the maximum

of the L(j) statistic over a given period, usually a day. The new standardized

statistic will converge, for δ → 0, to a Gumbel variable:

max (L (j)) − CM

SM

→ ξ, P(ξ) = exp(−e−x)
�

�

�

�3.9

where CM = (2 log M)1/2

µ2
− log π+log (log M)

2µ2(2 log M)1/2 and SM = 1

µ2(2 log M)1/2 .

The test can be conducted by simply replacing in the test statistic in

equation (3.9) L (j) by its estimated value and compare the resulting value

with a critical value from the Gumbel distribution. Simulations employed by

the authors show superiority of this test in terms of size and power in com-

parison with the standard bipower test of Barndorff-Nielsen and Shephard

(2006a).

3.1.3 Aı̈t-Sahalia and Jacod (2008) test (AJ hence-

forth)

Another procedure that enables the identification of discontinuities in

prices is the one developed by Aı̈t-Sahalia and Jacod (2008). The test con-

siders the following processes which measure variation in the price:

A(r)t =

∫ t

0

|σs|r, B(r)t =
∑

j≤t

|yj|r
�

�

�

�3.10

where r is a positive number, A(r) is an r-order integrated variation of a

continuous process, with σs the diffusion coefficient, while B(r) measures the

variation in a discontinuous process.
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3.1. Jump tests

When a process contains both a diffusion component and jumps, the

quantities in (3.10) can be estimated using the following estimator:

B̂(r, δ)t =

[t/δ]∑

j=1

|yj|r
�

�

�

�3.11

For different values of r, the following convergences in probability apply:





r > 2 ⇒ B̂(r, δ)t
p→ B(r)t

r = 2 ⇒ B̂(r, δ)t
p→ [Y ](t)

r < 2 ⇒ δ1−r/2

µr
B̂(r, δ)t

p→ A(r)t

Y is continuous ⇒ δ1−r/2

µr
B̂(r, δ)t

p→ A(r)t

�

�

�

�3.12

where µr = E(|U |r) = π−1/22r/2Γ( r+1
2

), U ∼ N (0, 1).

Aı̈t-Sahalia and Jacod (2008) notice that the first and the normalized

fourth statistics do not depend on the sampling scale (δ) or, in other words,

are invariant to scale modifications. Authors develop a family of test statistics

of the following form:

̂S(r, k, δ)t =
̂B(r, kδ)t

B̂(r, δ)t

�

�

�

�3.13

where k ∈ N multiplies the scale.

The above statistic converges in probability to 1 when jumps are present,

and to kr/2−1 in the continuity case. This finding enables authors to propose

two different tests. One has the null of continuity of the realization of the

process within a certain time interval, with the alternative of discontinuity,

while the other has the null of discontinuity, with at least one jump occurring

and the alternative of a continuous sample path. In our exercise, we only

implement the former test, which fits the framework of all other implemented

tests.
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3.1. Jump tests

3.1.4 Jiang and Oomen (2008) test (JO henceforth)

Another approach to jump identification is proposed by Jiang and Oomen

(2008), with the null of no jumps in the sample path between 0 and t. The

test draws from the pricing of the variance swap contracts, which is based

on the so-called ‘log-contract’. Neuberger (1994) shows that a short position

in the log contract plus a long one in the underlying, with a delta of 1/Yt,

generates the following payoff:

2( dYt/Yt − dlnYt) = σ2 dt
�

�

�

�3.14

where Yt is the price at time t. In a discretized version, the payoff of the

variance swap contract (SwVt(δ)) can be written as:

SwVt(δ) = 2

[t/δ]∑

j=1

(Rj − rj)
�

�

�

�3.15

where Rj denotes the arithmetic return j-th intraday return, while rj the log

return. The absence of jumps makes the difference between SwV and the

realized variance equal to 0:

plim
δ→0

(SwVt(δ) − RVt(δ)) =

{
0 no jumps in[0, t]

2
∫ t

0
Ju dqu −

∫ t

0
J2

u dqu jumps in[0, t]
�

�

�

�3.16

where RVt(δ) is the estimated realized variance and Ju = exp(Ju)−Ju−1,

with J the jump process.

CLT results are developed for SwV under the null, allowing for the con-

struction of a jump test, defined as:

M
∫ t

0
σ2 du√

ΩSwV

(
1 − RVt

SwVt

)
,

�

�

�

�3.17

where M = [t/δ] is the number of intraday observations. In equation (3.17),
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3.1. Jump tests

the integrated variance is estimated using Barndorff-Nielsen and Shephard

(2006b) bipower variation, while ΩSwV is estimated using a multi- power

variation (Barndorff-Nielsen et al., 2003; Barndorff-Nielsen et al., 2006):

Ω̂SwV =
µ6

9

M3µ−p
6/p

M − p + 1

M−p∑

i=0

p∏

k=1

|ri+k|6/p
�

�

�

�3.18

where a suitable choice for p is 4 or 6, as suggested by the authors. Fur-

thermore, authors modify the test in order to fit noisy data and show that

it still retains power. While having a higher convergence rate than the stan-

dard Barndorff-Nielsen and Shephard (2006a) test, simulations conducted in

Jiang and Oomen (2008) reveal better size properties at high frequencies and

more power if just 1 jump is considered in comparison with the above cited

test.

3.1.5 Podolskij and Ziggel (2008) test (PZ henceforth)

This procedure is based on the same idea as the standard Barndorff-

Nielsen and Shephard (2006a) test, the identification of jumps as a difference

between a realized power variation and a robust to jumps estimator of the

corresponding integrated quantity. Podolskij and Ziggel (2008)’s choice for

the latter quantity is Mancini (2009)’s threshold estimator. However, since

the derivation of a limiting theory for the simple differentiation between

the two has proved particularly difficult, authors define the test statistics

as a difference between a realized power variation estimator and a thresh-

old estimator perturbed by some external positive i.i.d. random variables,

(ηj)1≤j≤[t/δ], with E[ηj] = 1 and finite variation:

T (r, δ)t = M
r−1
2

[t/δ]∑

j=1

|yj|r(1 − ηjI{|yj |≤cδw}), r ≥ 2,
�

�

�

�3.19

where M = [t/δ], 1{|yj |≤c∗δw} is an indicator function for absolute returns

lower than a threshold fixed to c ∗ δw, with c = 2.3
√

BVt and w = .4.
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3.2. Monte Carlo analysis

The variance of the test statistic can be estimated using a threshold esti-

mator:

V̂ ar(T (r, δ)t) = V ar[ηi]M
2r
2
−1

[t/δ]∑

j=1

|yj|2rI{|yj |≤cδw}

�

�

�

�3.20

After standardization, T becomes asymptotically standard normal. For

the perturbing variables, Podolskij and Ziggel (2008) recommend to sample

them from the following distribution:

P η =
1

2
(ς1−τ + ς1+τ ),

�

�

�

�3.21

where ς is the Dirac measure, and τ is constant chosen relatively small, e.g.

τ = 0.1 or 0.05.

3.2 Monte Carlo analysis

In this section we report and discuss results of a thorough comparison

among five testing procedures, based on a comprehensive set of Monte Carlo

simulations, which embodies specific features of financial data. To quan-

tify the size for all tests, our simulations are based on both constant and

stochastic volatility models with varying persistence. To evaluate the power

property, we consider stochastic volatility models with jumps of different

sizes arriving with varying intensity.

3.2.1 Simulation design

In this section we describe our Monte Carlo design. First, we simulate a

simple stochastic process with constant volatility:

dp(t) = µdt + σdwp(t),
�

�

�

�3.22

where µ = .03bs, and σ was fixed to 1.05bs. To evaluate the power properties

of the tests, we also simulate a fixed number of jumps, which were randomly

spaced under two different scenarios of fixed jump size, namely .2σ and .5σ.

50



3.2. Monte Carlo analysis

Second, following Huang and Tauchen (2005), we simulated several stochas-

tic volatility processes with leverage effect, with or without jumps and differ-

ent levels of persistence in volatility, as well as varying jump intensities and

jump variances.

The benchmark model for our simulations is a stochastic volatility model

with one volatility factor, to which we add jumps under the alternative hy-

pothesis of discontinuous sample paths. The volatility factor enters the price

equation in an exponential form, as suggested in Chernov et al. (2003):

dp(t) = µdt + exp[β0 + β1υ(t)]dwp(t),

dυ(t) = αυυ(t)dt + dwυ(t), corr(dwp, dwυ) = ρ

�

�

�

�3.23

where p(t) is the log-price process, the w’s are standard Brownian motions,

υ(t) the volatility factor, µ the drift of the price process, αυ the drift of

the volatility process and ρ the leverage effect. This is the process that we

simulate under the null hypothesis of no jumps.

Under the alternative, as in Huang and Tauchen (2005), we add a com-

pound Poisson process with jump intensity λ and jump size distributed as

N(0, σ2
jump).

Chernov et al. (2003) show that it is possible to generate similar dy-

namics with the ones produced by a jump diffusion model by using a two

factor stochastic volatility model. A first volatility factor controls for the

persistence in the volatility process, while the second factor generates higher

tails in a similar manner to a jump process. Moreover, by considering the

volatility feedback component for the second factor, the model can some-

times accommodate market conditions even better than jump diffusions, as

the volatility of volatility can capture the dynamics of extreme events.

Thus, we simulate a second stochastic volatility model with two volatility
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3.2. Monte Carlo analysis

factors, one containing volatility feedback:

dp(t) = µdt + s − exp[β0 + β1υ1(t) + β2υ2(t)]dwp(t)

dυ1(t) = αυ1υ1(t)dt + dwυ1(t)

dυ2(t) = αυ2υ2(t)dt + [1 + βυ2υ2(t)]dwυ2(t)

�

�

�

�3.24

with corr(dwp, dwυ1) = ρp,υ1 and corr(dwp, dwυ2) = ρp,υ2 .

Chernov et al. (2003) show that the above model has solutions if the expo-

nential function is spliced at very high levels of volatility based on appropriate

growth conditions. Just as in Huang and Tauchen (2005), we consider a knot

point of 100% annualized volatility.

While simulating the two stochastic volatility models described above can

help assess the size of the tests, in order to analyze their performance, we

augment the model in equation (3.23) with rare compound Poisson jumps.

These jumps arrive at times sampled from a Poisson process with intensity

λ and have sizes normally distributed with mean 0 and standard deviation

σjump.

The values of the parameters of the two stochastic volatility models are

the ones in Huang and Tauchen (2005) and are reported, for convenience, in

Table 3.1. For the one factor stochastic volatility model (SV1F), Table 3.1

also reports the values of the jump parameters, λ and σjump:

In empirical applications it is customary to apply these tests at a daily

level, in order to be able to conclude whether jumps occurred during the

trading day. Therefore, we evaluate the statistical properties of all jump

tests based on data simulated for 10000 trading days, for all models and

under both hypotheses (continuity and discontinuity). For the simulation of

each path, we use an Euler discretization scheme based on increments of 1

second. We then perform a sampling every minute and every 1, 5, 15 and 30

minutes and all our computations are carried out for all sampling frequencies

plus the one at every second. For comparison purposes, all models with the

same number of factors are based on the same Brownian motion(s). For

instance, for all the models derived from the SV1F model, we use the same
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3.2. Monte Carlo analysis

SV1F SV2F

µ 0.030 µ 0.030

β0 0 β0 -1.200

β1 0.125 β1 0.040

αυ {-0.137e−2, -0.100, -1.386} β2 1.500

ρ -0.620 αυ1 -0.137 e−2

λ 0 - 2 αυ1 -1.386

σjump 0 - 2.50 by 0.50 βυ2 0.250

ρp,υ1 -0.300

ρp,υ2 -0.300

Table 3.1: Parameter values for the 1 factor stochastic volatility models

(SV1F) and for the 2 factor model(SV2F)

simulated Brownian motions to describe the dynamics of both the price and

volatility factor.

Figures 3.1 and 3.2 report the simulated daily prices, volatility factors

and returns from the two stochastic volatility models for 10,000 days. Data

was sampled from 5 minute data. For the SV1F model, we assume a medium

mean reversion of the volatility factor, αυ = −.1.

Remarks:

(a) For the intraday jump detection procedures, given that all the other

tests are applied on time intervals equal to one trading day, in order to

allow proper comparisons, we compute the test statistics for every moment

ti within a trading day and then pick up the maximum statistic as the final

test for that day. In order to contrast our results to the ones reported in Lee

and Mykland (2008), we also adopted their strategy to calculate for this test

both overall probabilities, as well as means and standard deviations of the

intraday probabilities of spurious and nonspurious detection of jumps.

(b) In the case of the Andersen et al. (2007) procedure, the authors use

a threshold from a normal but for a very low significance level. In our sim-

ulation exercise, if we consider nominal sizes of 1% or 5%, as for the other
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Figure 3.1: Simulated daily prices, returns and volatility factor respectively

from the SV1F model with medium mean reversion
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Figure 3.2: Simulated daily prices, returns and volatility factors respectively

from the SV2F model
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procedures, the test is highly oversized and is unable distinguish discontinu-

ous from continuous sample paths. In order to enable comparisons with the

other tests, we choose to handle this test just as Lee and Mykland (2008): we

take the maximum of the statistic, standardize it and compare it to critical

values taken from a Gumbel distribution. Consequently, as we show later in

the chapter, results do not differ between the two procedures. Here, we com-

puted the Andersen et al. (2007) test statistic based on the daily realized

bipower variation, whereas for the Lee and Mykland (2008) test we stan-

dardized returns by a local estimator of volatility. However, this estimator

is computed on a wide window and thus moves very slowly. It results, as

shown in Boudt et al. (2009), that it is the periodicity of the volatility factor

not accounted by us here that requires considering a varying volatility when

detecting jumps.

(c) Aı̈t-Sahalia and Jacod (2008) suggest two possible ways to estimate

the variance of their test statistic in a robust to jumps manner. The first

one is based on Mancini (2009)’s threshold estimators, while the other one

on realized multipower variations (Barndorff-Nielsen and Shephard, 2004,

2006b, 2003, see). In our simulations, we employ both versions.

3.2.2 Monte Carlo findings

Constant volatility model

The nonparametric tests for jumps allow users to disentangle the unpre-

dictable part of the returns from the persistent one. In order to compare

the ability of the various tests to identify jumps, we first simulate a very

simple stochastic process with a diffusion parameter that remains constant

through time, as described in Section 3.2.1. When we evaluate the power

of the tests, we add to the diffusion term jumps of different sizes. Under

this setup, extreme dynamics are caused only by jumps. Consequently, this

analysis enables us to understand how well tests can disentangle jumps at

different sampling frequencies.
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Size In Table 3.2, we report the empirical size of the tests from the simu-

lations:

Procedure Nominal size: 5%

1 sec 1 min 5 min 15 min 30 min

’Andersen et al’ 0.044 0.040 0.040 0.040 0.051

’Ait-Sahalia & Jacod’ 0.046 0.039 0.032 0.027 0.014

’Ait-Sahalia Power Var’ 0.047 0.043 0.050 0.087 0.151

’BNS’ 0.046 0.053 0.053 0.055 0.061

’Jiang & Oomen’ 0.080 0.087 0.094 0.111 0.146

’Lee & Mykland’ 0.044 0.052 0.052 0.045 0.047

’Podolskij & Ziggel’ 0.046 0.064 0.086 0.102 0.117

Table 3.2: Size of daily jump tests. We assume a constant volatility model with

the following annualized values for its parameters: σ = .3 and a constant drift,

µ = .10

As already noticed by Huang and Tauchen (2005), the BNS test is slightly

oversized. At 1 second sampling frequency, its size is very close to the nominal

one, whereas when we move toward lower frequencies, we observe a gradual

increase in size. However, if we compare this dynamics with the ones for the

other tests, the BNS procedure seems the most stable. The JO technique

displays a size twice as big as the nominal one at very high frequencies, which

then gradually increases even more as we sample less often.

The AJ test based on threshold estimators (’Ait-Sahalia & Jacod’ in Table

3.2) is undersized for all sampling frequencies and becomes more and more

undersized as we decrease the sampling frequency, while the version of the

same test based on multi-power variation type estimators (’Ait-Sahalia Power

Var’in Table 3.2) starts by being slightly undersized at 1 second, with a size

of 4.7% and then becomes gradually oversized as we decrease the sampling

frequency. Thus, the two versions of the same test behave differently as we

vary the sampling frequency. This is an interesting finding also confirmed

when the stochastic volatility models are considered.

The PZ test has a size close to the nominal one when data is sampled

every second, but which increases quite abruptly afterward.

The intraday tests, ABD and LM, which we transformed in daily tests
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’Mean’ ’Stdev’

’1 sec’ 9.53E-08 3.09E-06

’1min’ 6.86E-06 2.65E-05

’5min’ 3.48E-05 6.02E-05

’15min’ 9.44E-05 9.42E-05

’30min’ 2.01E-04 1.38E-04

Table 3.3: Mean and standard deviation of the Lee and Mykland test at time

ti for a 5% significance level

by considering the supremum of all the statistics computed within a trading

day, seem to be slightly undersized for some frequencies and without a clear

dynamic across the sampling frequency. The differences between the two

tests are due to the different approaches to estimate the local volatility esti-

mator which standardizes the intraday returns. This local volatility proxy is

computed based on all observations within a trading day for the ABD test

or based on the number of observations recommended by the authors for the

LM methodology, which varies with the sampling frequency.

As explained in Remark (a), for conformity with results in Lee and Myk-

land (2008) , we also calculate for this test overall probabilities, as well as

means and standard deviations of the intraday probabilities of spurious de-

tection of jumps. For the means and standard deviations of the intraday

probabilities of spurious jumps we proceed in the following manner. For

each time step, ti, we compute the probability of spurious detection and

then, we calculate its mean and standard deviation. For instance, at a 1

minute frequency, we have 389 returns per day and thus, we can compute

389 probabilities of spurious detection. The results are summarized in Table

3.3, for a 5% significance level. From Table 3.3, as expected, we observe a

clear increase in the means of these probabilities as we lower the sampling

frequency. Moreover, if we compute the overall probabilities of spurious jump

detection, the same trend can be noticed. We do not report here these results,

which are available upon request.

To summarize, in terms of the size criterion, the best test seems to be the

classic BNS test, which displays no substantial changes over the sampling
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frequency. The intraday tests, ABD and LM, also seem to do well.

Power Under the discontinuity hypothesis, we add to the diffusion a fixed

number of jumps randomly determined from a Poisson process with λ = .5.

We consider different sizes for these jumps: .2σ, .5σ and σ, where σ stands

for the daily level of volatility.

In Table 3.4, we report the power for all tests for a 5% significance level.

We include results only for the first two jump sizes, given that for a bigger

jump size, the hierarchy of the tests based on their power does not change.

For a jump size equal to 0.2σ, when sampling is performed every second, all

Procedure Nominal size: 5%

1 sec 1 min 5 min 15 min 30 min

’Andersen et al’ 1.0000 0.5545 0.0679 0.0423 0.0545

Ait-Sahalia & Jacod’ 1.0000 0.0990 0.0234 0.0295 0.0145

’Ait-Sahalia Power Var’ 1.0000 0.1357 0.0545 0.0973 0.1602

size = 0.2σ ’BNS’ 1.0000 0.1374 0.0651 0.0545 0.0706

Jiang & Oomen’ 1.0000 0.3598 0.1646 0.1618 0.1830

Lee & Mykland’ 1.0000 0.5451 0.0862 0.0562 0.0606

Podolskij & Ziggel’ 1.0000 0.4549 0.1034 0.1034 0.1229

’Andersen et al’ 1.0000 0.9978 0.7887 0.2041 0.0940

Ait-Sahalia & Jacod’ 1.0000 0.7558 0.1051 0.0133 0.0122

’Ait-Sahalia Power Var’ 1.0000 0.7564 0.1874 0.1257 0.1557

size = 0.5σ ’BNS’ 1.0000 0.9488 0.3565 0.1335 0.0945

Jiang & Oomen’ 1.0000 0.9972 0.7483 0.3805 0.3078

Lee & Mykland’ 1.0000 0.9522 0.7870 0.2536 0.1324

Podolskij & Ziggel’ 1.0000 0.9972 0.7792 0.2670 0.1663

Table 3.4: Power of daily jump tests. We assume a diffusion with parameters

µ = .03 and σ = 1.05 plus jumps with varying jump size

tests identify the jumps included in the price process. Then, power abruptly

decreases as we diminish the sampling frequency. The ABD and LM tests,

as well as the PZ procedure seem to display higher powers when sampling

is performed every minute, followed by the JO technique. The procedures

proposed by BNS and AJ perform very poorly in identifying small jumps.

At even lower sampling frequencies, all tests lose their power in identifying

jumps. The JO procedure maintains though a power of about 16% when we
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3.2. Monte Carlo analysis

sample every 5 and 15 minutes, which does not decrease anymore with the

sampling frequency, while the PZ still manages to detect about 10-12% of

the jumps.

When the size of the jump increases to 0.5σ, all jumps are identified at

a sampling frequency of 1 second, and a very high power is maintained at 1

minute for all tests. Power then gradually decreases for the intraday, the JO

and the PZ tests and falls to values below 40% for BNS and below 20% for

both versions of AJ test.

Note that the JO test can be written in Taylor series decomposition as the

sum of returns raised to powers greater or equal to three. Thus, when jumps

have the same sign, this procedure performs very well in detecting them.

However, as showed later, when jumps have different signs and processes are

more volatile, its performance worsens a lot, as returns with different signs

tend to cancel themselves out.

In the next section, we evaluate the performance of the tests based on a

stochastic volatility processes. Under the alternative, we consider different

jump intensities and a nondeterministic jump size.

Stochastic volatility models

Size We simulate the stochastic processes as described in Section 3.2.1 for

every second. Then, we sample the process every 1, 5, 15 and 30 minute(s)

and compare the size of the tests.

In our simulation set-up in Table 3.1, for the process with one volatility

factor (SV1F), we consider three different values for the mean reversion pa-

rameter of the volatility factor. We computed the empirical sizes for all three

resulting models and for all tests. In all cases except the JO procedure, the

empirical size tends to slightly decrease with the increase in the mean rever-

sion parameter. The JO procedure is severely oversized when the volatility

factor mean- reverts very slowly (αυ = −0.137e−2). In this case, the volatility

process is clearly nonstationary and we suspect the test statistic explodes.

In this case, the size at a sampling frequency equal to 1 second is about
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3.2. Monte Carlo analysis

25%, for a 5% nominal level, and decreases at lower sampling frequencies, as

opposite to the usual behavior of increasing size when frequency diminishes.

For the other simulated processes with medium and high mean reversion of

the volatility, size at one second is around 9-10% and then increases at lower

sampling frequencies.

Results are not affected by the values taken by the mean reversion param-

eter. Thus, for brevity, we report only results for a mean reversion parameter

equal to -.1. The full set of results is available upon request.

An intuitive, useful way to see the dimension of the size distortions is to

use QQ plots.

Consequently, Figures 3.3 and 3.4 contain QQ plots of the test statistics

and the relevant theoretical distributions: the standard normal for the AJ,

BNS, JO and PZ tests and the extreme values distribution in the case of

the ABD and LM tests. As already documented in the literature, the BNS

displays a size distortion as we decrease the sampling frequency. The JO

technique, as expected given the results obtained within the previous sec-

tion, becomes highly oversized as the sampling frequency diminishes. The

AJ is undersized for all sampling frequencies and becomes more and more

undersized as we increase the sampling frequency. For the intraday proce-

dures, ABD and LM, size was computed here based on a maximum of all

test statistics computed over a trading day. There is not a clear pattern of

increase in size with the decrease in sampling frequency, as we would expect.

In the case of the PZ procedure, size is very close to the nominal one when

we sample every second and then, increases a lot as we lower the sampling

frequency.

Table 3.5 reports the empirical size of the tests. If we look at all the

sampling frequencies, the biggest size distortion is encountered in the case of

the JO test, where, for a 1 second sampling frequency, we have a size equal

to 0.095, which grows fast when we diminish the sampling frequency. A

similar pattern can be seen for the PZ procedure, which displays a size close

to the nominal one when sampling is performed every second, but then gets
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Figure 3.3: QQ plots of test statistics and a Gumbel (extreme values) distribution for the ABD and LM tests or a

standard normal for the AJ, based both on threshold and power variations estimators
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Figure 3.4: QQ plots of test statistics and a standard normal for the BNS, JO, and PZ tests
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Procedure Nominal size: 5%

1 sec 1 min 5 min 15 min 30 min

’Andersen et al’ 0.074 0.048 0.044 0.041 0.054

Ait-Sahalia & Jacod’ 0.047 0.038 0.031 0.027 0.014

’Ait-Sahalia Power Var’ 0.048 0.046 0.051 0.088 0.150

’BNS’ 0.048 0.054 0.053 0.057 0.063

Jiang & Oomen’ 0.095 0.091 0.099 0.119 0.151

Lee & Mykland’ 0.074 0.066 0.074 0.063 0.059

Podolskij & Ziggel’ 0.049 0.065 0.083 0.100 0.121

Table 3.5: Size of the tests for jumps for the SV1F model with medium mean

reversion

rapidly and highly oversized. Consequently, in practice, such tests should

be applied on data sampled as frequent as possible, as the size distortion

grows much faster than for the other tests. The best behavior in terms of

size is found for the BNS classic test and for the intraday ABD and LM

procedures. In all cases, size does not change very much over the sampling

frequency and the size distortion is not very high. The AJ test statistic was

standardized with standard deviations based on both power variations and

threshold estimators. In both cases, at a sampling frequency of 1 second,

the test seems slightly undersized. However, when diminishing the sampling

frequency, the behavior of the test statistics differs. The test becomes rapidly

oversized when its variance is based on realized power variations and severely

undersized when threshold estimators are used to estimate its variance. This

test is clearly another one which works well at very high frequencies, but can

cause problems at lower frequencies.

If we turn back to the intraday procedures, there are no important differ-

ences between the ABD and LM test. The larger size at a 1 second sampling

frequency is due to the fact that at this frequency, for both tests, we scaled

the realized bipower variation which is used to standardize the simple log-

return with a large number of observations (23399). This increases the test

statistic, and given that we computed the maximum over a trading day, the

test tends to be “artificially” oversized at this high frequency.

In order to get a better picture on the behavior of the intraday tests,
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3.2. Monte Carlo analysis

we also compute, just as in the original LM paper, the mean and standard

errors of the probability of spurious detection of jumps at time ti for this test,

which we report in Table 3.6, while Table 3.7 reports the overall probability

of spurious jump detection.

’Mean’ ’Stdev’

1 sec’ 1.65E-07 4.05E-06

’1min’ 9.02E-06 3.00E-05

’5min’ 5.10E-05 6.99E-05

’15min’ 1.37E-04 1.15E-04

’30min’ 2.61E-04 1.53E-04

Table 3.6: LM test: means and standard errors of the probability of spurious

detection of jumps at time ti, for different sampling frequencies

Frequency Overall Size

’1sec’ 0.00000

’1min’ 0.00018

’5min’ 0.00102

’15min’ 0.00277

’30min’ 0.00528

Table 3.7: LM test: Overall probability of spurious jump detection for dif-

ferent sampling frequencies for a 5% nominal size

We observe a clear trend of increasing size with the decrease in the sam-

pling frequency for the LM test. However, when comparisons are made with

other test statistics, it is desirable to use the maximum of the test statistic

over a certain period.

Further on, for a more in-depth analysis of the size of the tests under the

null, we simulated 10,000 days from the second stochastic volatility model

(SV2F). This model not only generates extreme values, but also describes

their dynamics. The empirical sizes for all the tests are reported in Table
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3.2. Monte Carlo analysis

3.8.

Procedure Nominal size: 5%

1 sec 1 min 5 min 15 min 30 min

’Andersen et al’ 0.993 0.755 0.438 0.242 0.165

Ait-Sahalia & Jacod’ 0.127 0.094 0.039 0.020 0.008

’Ait-Sahalia Power Var’ 0.052 0.077 0.121 0.205 0.255

’BNS’ 0.054 0.073 0.097 0.113 0.119

Jiang & Oomen’ 0.112 0.111 0.150 0.199 0.248

Lee & Mykland’ 0.993 0.699 0.482 0.339 0.254

Podolskij & Ziggel’ 0.701 0.648 0.448 0.305 0.239

Table 3.8: Size of the tests for jumps for the SV2F model, for a 5% signifi-

cance level

If we look at all sampling frequencies, the best behavior in terms of size

is displayed by the BNS test, with an effective size for a 1 second sampling

frequency equal to 5.4%, which increases at lower sampling frequencies in a

less drastic manner than for all the other tests. The AJ procedure based on

realized power variations has a size close to the nominal one when sampling

is done every second, but then becomes rapidly oversized. When applying

the same methodology, but with threshold estimators, we observe that the

test gets severely undersized at lower sampling frequencies. The PZ and the

intraday procedures display by far the poorest performance , being severely

oversized when we sample every second (97% for the intraday tests and 65.7%

for PZ). For the LM test, if we look at the overall probability of spurious

detection, as well as at the means and standard errors of the probability of

spurious detection of jumps at a certain time, ti, the size distortion is low

(see Table 3.9).

Even though at a first glance percentages in Table 3.9 do not seem very

high, they refer to all the observations in the sample and, combined with

results in Table 3.8, indicate a very high rate of over-rejection of the null. For

instance, if we consider a sampling frequency of 1 second, the LM spuriously

detects jumps in .1% of cases. However, results in Table 3.8 indicate an

empirical size of 99.3%, which means that the test spuriously identifies jumps

almost every day.
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Frequency Overall Size

’1sec’ 0.0016

’1min’ 0.0099

’5min’ 0.0202

’15min’ 0.0280

’30min’ 0.0334

Table 3.9: LM test: Overall probability of spurious jump detection for dif-

ferent sampling frequencies for a 5% significance

The size criterion confers us just half of the overall perspective that we

need to attain over all these different jump detection procedures. The per-

spective will become complete as we consider another important criterion,

the power properties of all these tests.

Power We now evaluate the power of the tests by adding to the continuous

stochastic volatility process SV1F jump processes with different intensities

and jump sizes.

Varying jump intensity In order to examine how jump detection

changes as the number of jumps grows, we consider Poisson jump arrival

times depending on the following varying jump intensities (λ): .014, .058,

.089, .118, .5, 1, 1.5, 2, and 2.5. For all these scenarios, we consider a jump

size that is normally distributed with mean 0 and standard deviation equal

to 1.5%. We did not impose any restrictions on the maximum number of

jumps per day. Thus, more than one jump can occur within a trading day.

In Table 3.10, we report the power of the tests by considering some sce-

narios for the jump intensity. The frequency of correctly identified jumps

increases as the jump intensity raises.

The best tests in terms of power are the intraday procedures LM (with its

simpler form based on constant volatility, ABD) and the PZ test. Let us con-

sider the intraday procedures first. The power for these tests is around 98%
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Test 1 sec 1 min 5 min 15 min 30 min

’Andersen et al’ 0.989 0.892 0.766 0.614 0.440

Ait-Sahalia & Jacod’ 0.971 0.777 0.238 0.035 0.005

’Ait-Sahalia Power Var’ 0.969 0.775 0.280 0.185 0.236

λ = 0.058 ’BNS’ 0.954 0.819 0.685 0.496 0.366

Jiang & Oomen’ 0.478 0.445 0.386 0.353 0.321

Lee & Mykland’ 0.989 0.859 0.742 0.612 0.505

Podolskij & Ziggel’ 0.985 0.894 0.773 0.654 0.493

’Andersen et al’ 0.981 0.895 0.780 0.637 0.448

Ait-Sahalia & Jacod’ 0.971 0.779 0.208 0.031 0.007

’Ait-Sahalia Power Var’ 0.970 0.796 0.301 0.187 0.246

λ = 0.118 ’BNS’ 0.954 0.831 0.704 0.544 0.368

Jiang & Oomen’ 0.503 0.450 0.402 0.368 0.343

Lee & Mykland’ 0.981 0.863 0.762 0.651 0.521

Podolskij & Ziggel’ 0.975 0.895 0.783 0.667 0.513

’Andersen et al’ 0.987 0.915 0.805 0.667 0.494

Ait-Sahalia & Jacod’ 0.972 0.803 0.217 0.043 0.006

’Ait-Sahalia Power Var’ 0.972 0.811 0.323 0.220 0.246

λ = 0.5 ’BNS’ 0.959 0.854 0.729 0.561 0.402

Jiang & Oomen’ 0.492 0.461 0.421 0.379 0.347

Lee & Mykland’ 0.987 0.888 0.784 0.652 0.523

Podolskij & Ziggel’ 0.982 0.911 0.815 0.695 0.556

’Andersen et al’ 0.989 0.934 0.857 0.712 0.511

Ait-Sahalia & Jacod’ 0.982 0.833 0.206 0.040 0.005

’Ait-Sahalia Power Var’ 0.982 0.852 0.351 0.228 0.255

λ = 1 ’BNS’ 0.970 0.890 0.783 0.609 0.430

Jiang & Oomen’ 0.502 0.474 0.441 0.391 0.356

Lee & Mykland’ 0.989 0.912 0.828 0.688 0.535

Podolskij & Ziggel’ 0.988 0.932 0.861 0.738 0.570

’Andersen et al’ 0.996 0.962 0.908 0.789 0.566

Ait-Sahalia & Jacod’ 0.991 0.853 0.176 0.028 0.004

’Ait-Sahalia Power Var’ 0.992 0.899 0.410 0.259 0.279

λ = 2 ’BNS’ 0.984 0.933 0.854 0.687 0.488

Jiang & Oomen’ 0.535 0.516 0.484 0.443 0.397

Lee & Mykland’ 0.996 0.952 0.881 0.734 0.555

Podolskij & Ziggel’ 0.994 0.960 0.911 0.810 0.623

Table 3.10: Power of daily jump tests for a 5% significance level. We consider

the SV1F model with medium mean reversion for the volatility factor and with a

varying number of jumps, as a result of varying jump intensities
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and 99% for a sampling frequency of 1 second and then gradually diminishes

as the sampling frequency decreases. As the jump intensity diminishes, the

power for these procedures ranges between 90% and 96%, for a sampling fre-

quency of 1 minute, between 76% and 91% for 5 minutes data, between 61%

and 81% for 15 minutes and finally between 44% and 62% for 30 minutes.

We also compute the intraday probabilities of correct jump detection,

following a similar method as in the case of the probabilities of spurious

jump detection. These results do not confer any additional information to

the ones in Table 3.10 and thus, we do not report them here, but they are

available upon request.

The slightly different results between the LM and ABD procedures can be

explained by the different number of observations which is used to compute

the local volatility estimate entering the test statistic and which scales in

square root form the latter.1.

For the PZ procedure we observe a very high power (around .98 and .99

at 1 sec) which gradually decreases with the sampling frequency, but remains

higher than for the other procedures (except the intraday tests).

Both versions of the AJ test display a high power at 1 second, which

plummets at lower frequencies. For instance, if we look at the results for

λ = .5, the power decreases at around 80% when sampling is done every

minute, for both versions of the test, followed by a fall at a level of 21%

for the version based on threshold estimators and 32% for the test based

on power variations, for a sampling frequency of 5 minutes. If we look at

lower frequencies, the test based on power variation-type estimators displays

a gradual decrease in power, which gets to a value of 24% for a 30 minutes

sampling frequency, while the version based on threshold estimators displays

a very low power of 0.6% at 30 minutes.

The classical BNS test exhibits very good power properties, with a power

ranging between .95 and .98 when sampling at every second, which then

1For the LM procedure, we use the optimal window length as proposed by the au-
thors, while for the other test, the simple number of observations per day is taken into
consideration
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decreases with the sampling frequency, with values below the ones observed

for the intraday and PZ tests. We believe it remains a very good choice for a

user who wishes to avoid both intraday tests which might be time consuming

and the PZ procedure, which is based on threshold estimators and might be

thus sensitive to the choice of the threshold.

The last ranked test is JO’s. The low power exhibited here contrast the

relative good performance we noticed in Section 3.2.2, where we simulated a

model with constant volatility and only positive jumps. The reason for this

poor performance resides in the fact that the test statistic can be approxi-

mated in Taylor series by a sum of returns raised to powers higher or equal to

3, so that when both negative and positive jumps occur, they tend to cancel

themselves out. Thus, for the SV1F model with jumps with random sizes

and signs occurring at random times, the efficacy of the procedure to detect

jumps is very low.

Varying jump size A further insight on the ability of all these pro-

cedures to identify jumps will be attained by varying the jump size. In

this section, we fix the number of jumps for the entire sample and vary the

jump size. However, we maintain its nondeterministic character, by drawing

it from a normal distribution with mean 0 and a standard deviation that

ranges between 0 and 2 bs with a growth rate of .5. Table 3.11 reports the

power of the considered jump detection procedures.

Overall, the performance of all tests increases with the size of the jumps.

The ranking of the tests is in line with what was found for the case of varying

jump intensity.

There is a confirmation about the very good ability of the the LM - ABD

and PZ tests to detect jumps, with powers around 98% and 99% at 1 second,

which gradually decreases with the sampling frequency. With respect to the

BNS procedure, we notice a power around 97% and 98% at 1 second, which

decays when sampling less frequently, but to lower numbers than for the

intraday and PZ test. The AJ does again very well for the highest frequency,
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1 sec 1 min 5 min 15 min 30 min

’Andersen et al’ 0.967 0.739 0.477 0.224 0.101

Ait-Sahalia & Jacod’ 0.921 0.490 0.101 0.024 0.012

’Ait-Sahalia Power Var’ 0.921 0.509 0.159 0.123 0.171

σ = 0.5 ’BNS’ 0.872 0.565 0.341 0.176 0.120

Jiang & Oomen’ 0.469 0.365 0.281 0.205 0.202

Lee & Mykland’ 0.967 0.719 0.491 0.288 0.167

Podolskij & Ziggel’ 0.950 0.725 0.509 0.303 0.200

’Andersen et al’ 0.987 0.872 0.720 0.496 0.278

Ait-Sahalia & Jacod’ 0.972 0.713 0.189 0.029 0.006

’Ait-Sahalia Power Var’ 0.972 0.727 0.265 0.176 0.211

σ = 1 ’BNS’ 0.943 0.779 0.612 0.416 0.267

Jiang & Oomen’ 0.487 0.419 0.366 0.318 0.278

Lee & Mykland’ 0.987 0.850 0.713 0.528 0.384

Podolskij & Ziggel’ 0.982 0.867 0.733 0.557 0.394

’Andersen et al’ 0.986 0.919 0.812 0.641 0.427

Ait-Sahalia & Jacod’ 0.976 0.797 0.214 0.039 0.007

’Ait-Sahalia Power Var’ 0.976 0.815 0.332 0.216 0.245

σ = 1.5 ’BNS’ 0.962 0.861 0.731 0.565 0.403

Jiang & Oomen’ 0.507 0.475 0.430 0.385 0.344

Lee & Mykland’ 0.986 0.890 0.794 0.648 0.517

Podolskij & Ziggel’ 0.984 0.914 0.819 0.691 0.534

’Andersen et al’ 0.991 0.936 0.855 0.725 0.535

Ait-Sahalia & Jacod’ 0.983 0.847 0.223 0.038 0.004

’Ait-Sahalia Power Var’ 0.983 0.857 0.376 0.249 0.274

σ = 2 ’BNS’ 0.970 0.890 0.799 0.659 0.503

Jiang & Oomen’ 0.519 0.489 0.459 0.418 0.385

Lee & Mykland’ 0.991 0.907 0.831 0.715 0.597

Podolskij & Ziggel’ 0.988 0.932 0.862 0.752 0.625

’Andersen et al’ 0.990 0.947 0.887 0.778 0.613

Ait-Sahalia & Jacod’ 0.985 0.878 0.233 0.039 0.002

’Ait-Sahalia Power Var’ 0.984 0.890 0.418 0.267 0.288

σ = 2.5 ’BNS’ 0.976 0.915 0.840 0.721 0.578

Jiang & Oomen’ 0.506 0.484 0.462 0.430 0.401

Lee & Mykland’ 0.990 0.922 0.861 0.759 0.639

Podolskij & Ziggel’ 0.987 0.945 0.893 0.811 0.690

Table 3.11: Power of daily jump tests for a 5% significance level. We consider

the SV1F model with medium mean reversion for the volatility factor and

with a varying jump variance
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with a dramatic decrease in power at 5 and 15 minutes frequencies. Again,

the JO procedure displays the worst performance.

We also performed a backup check by adding to the stochastic volatility

process SV1F jumps from a normal distribution with lower standard devia-

tions: .1 and .3. However, the ranking between tests does not change.

Finally, for the LM test, we also compute the means and standard de-

viations of the intraday probabilities of correctly detecting a jump, as well

as the overall probabilities of correct jump identification. Again, we do not

report here these results, but they are available upon request.

The behavior of the different tests for jumps in the presence of

microstructure noise

The simulation comparison reported so far is based on the assumption

that the simulated prices come from continuous time jump diffusion process.

However, when we deal with real prices of financial assets, this is no longer

the case. The observed price process is a discrete one. It is either constant,

generating zero returns, or changes a lot from one transaction to another. As

a result, transactions impact prices, and market participants can sometimes

build strategies to exploit the short-term inefficiencies of the market (devia-

tions from a random walk process). In the theoretical and empirical financial

literature, there is a vast literature that tries to understand and exploit these

inefficiencies, which are generically denominated microstructure effects. In

this chapter, we treat these effects as simple noise that obstructs our viewing

of the real price process.

Even if the impact of noise on realized variance has been very well docu-

mented in the literature, there is not much theoretical work concerning the

impact of noise on jump detection. JO find a bias correction for the realized

bipower variation in the presence of i.i.d. microstructure noise. Moreover,

they show that their test statistic does not diverge in the presence of i.i.d.

noise if the number of observations per day is large but remains finite. AJ

derive the limit of their test statistic in the presence of i.i.d. noise, as well.
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They also note that if the distance between observations is small, but not 0,

the test statistic does not diverge. PZ prove the validity of the test even in

the presence of some particular types of noise, such as i.i.d. and i.i.d. plus

rounding processes.

In what follows, we simulate i.i.d. microstructure noise normally dis-

tributed with mean 0 and a varying variance. We then add this noise to

the simulated process to understand how the presence of noise affects the

statistical properties of our tests for jumps.

Size in the presence of noise The following values for the standard

deviation of the noise were considered: 0, .027, .040, .052, 0.065 and 0.080.

Table 3.12 reports the frequencies of spuriously detected jumps for all tests,

under alternative sampling frequencies and noise variances.

Apart from the AJ and JO tests, all tests become severely undersized in

the presence of microstructure noise with an increasing size distortion as the

variance of the noise grows. In the case of the AJ procedure, in the presence

of noise, the test statistic, just as the other tests, gets smaller and smaller,

leading to an over-rejection of the null. Here, the version of the test based

on threshold estimators does better than the one based on power variations

at lower sampling frequencies. Thus, for the former version of the test, if

sampling is made every 15 minutes, the size gets close to the nominal one. For

instance in Table 3.12, when σnoise = 0.065, size is 4.7% for the version based

on threshold estimators, whereas for the other version of the test, it reaches a

very high level of 12.06%. The JO procedure displays a very high size in the

presence of noise, which increases with the variance of the noise. However,

when sampling is done at lower frequencies (from 1 minute onward), size

decreases abruptly in the beginning and then, moderately increases again.

The least affected by noise is the PZ procedure, which, at the highest sam-

pling frequency, displays a size close to the nominal one even for the highest

values of σnoise. This is a consequence of its higher and rapidly increasing

size, which turns out to be an advantage in this case, as it compensates the
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Nominal size:5%

1 sec 1 min 5 min 15 min 30 min

’Andersen et al’ 0.0742 0.0475 0.0439 0.0412 0.0535

Ait-Sahalia & Jacod’ 0.047 0.0376 0.0311 0.0267 0.0138

’Ait-Sahalia Power Var’ 0.048 0.0459 0.0512 0.088 0.1504

σnoise = 0 ’BNS’ 0.0484 0.0537 0.0532 0.057 0.0625

Jiang & Oomen’ 0.0954 0.091 0.0985 0.1188 0.1509

Lee & Mykland’ 0.0742 0.0663 0.0735 0.0634 0.0586

Podolskij & Ziggel’ 0.0494 0.0675 0.0918 0.0993 0.1213

’Andersen et al’ 0.0133 0.0374 0.0438 0.0425 0.0514

Ait-Sahalia & Jacod’ 1 0.6016 0.0615 0.0305 0.0132

’Ait-Sahalia Power Var’ 1 0.5885 0.085 0.0946 0.1583

σnoise = 0.027 ’BNS’ 0 0.0184 0.0514 0.0533 0.0623

Jiang & Oomen’ 0.0739 0.0596 0.095 0.1198 0.1502

Lee & Mykland’ 0.0133 0.0493 0.0688 0.0645 0.0599

Podolskij & Ziggel’ 0.0494 0.056 0.0862 0.1007 0.1187

’Andersen et al’ 0.0108 0.0318 0.0434 0.0431 0.0514

Ait-Sahalia & Jacod’ 1 0.8639 0.1031 0.0382 0.0163

’Ait-Sahalia Power Var’ 1 0.8487 0.1277 0.103 0.1621

σnoise = 0.040 ’BNS’ 0 0.0059 0.0494 0.0596 0.0639

Jiang & Oomen’ 0.2961 0.0462 0.0881 0.1152 0.1497

Lee & Mykland’ 0.0108 0.0442 0.0644 0.0594 0.0561

Podolskij & Ziggel’ 0.047 0.0596 0.0859 0.1024 0.1186

’Andersen et al’ 0.0087 0.0295 0.0412 0.0417 0.0488

Ait-Sahalia & Jacod’ 1 0.9561 0.1604 0.0374 0.0143

’Ait-Sahalia Power Var’ 1 0.9476 0.1868 0.1087 0.1654

σnoise = 0.052 ’BNS’ 0 0.002 0.0434 0.054 0.0612

Jiang & Oomen’ 0.6359 0.0382 0.0828 0.1103 0.1454

Lee & Mykland’ 0.0087 0.04 0.0609 0.0585 0.0588

Podolskij & Ziggel’ 0.0514 0.0592 0.0873 0.0985 0.1183

’Andersen et al’ 0.0107 0.0192 0.0338 0.0417 0.0526

Ait-Sahalia & Jacod’ 1 0.9851 0.2198 0.0471 0.0158

’Ait-Sahalia Power Var’ 1 0.9812 0.2397 0.1206 0.18

σnoise = 0.065 ’BNS’ 0 0.0007 0.0297 0.053 0.0642

Jiang & Oomen’ 0.9068 0.0296 0.0755 0.1105 0.1494

Lee & Mykland’ 0.0107 0.0329 0.0524 0.0608 0.0534

Podolskij & Ziggel’ 0.0506 0.0534 0.0778 0.101 0.1192

’Andersen et al’ 0.0108 0.0187 0.0293 0.0363 0.0501

Ait-Sahalia & Jacod’ 1 0.9964 0.3044 0.0576 0.0182

’Ait-Sahalia Power Var’ 1 0.9942 0.3258 0.1482 0.1856

σnoise = 0.080 ’BNS’ 0 0.0004 0.0251 0.0501 0.0646

Jiang & Oomen’ 0.9943 0.0275 0.063 0.1072 0.1486

Lee & Mykland’ 0.0108 0.0312 0.046 0.0547 0.0568

Podolskij & Ziggel’ 0.0495 0.057 0.0736 0.0956 0.1191

Table 3.12: Size of the tests in the presence of microstructure noise. We

assume a SV1Fmodel with medium mean reversion for the volatility factor and

noise drawn from normal distribution with varying variance
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downward bias caused by the presence of noise. The intraday tests, ABD

and LM, also behave very well in the presence of i.i.d. noise. This is because

the Taylor series decomposition of the test statistic includes only simple re-

turns which are less sensitive to large changes, unlike other tests that can be

approximated by third or fourth order moments of returns. The BNS test is

severely undersized at very high frequencies, but gets close to the nominal

size if sampling is performed every 15 minutes.

Except the PZ test which has a size close to the nominal one at 1 second

and 1 minute sampling frequency, as if the noise was not present, all other

tests tend to get close to the nominal size as the sampling frequency dimin-

ishes: JO somewhere between the 5 and 15 minutes sampling frequencies,

AJ and BNS at 15 minutes, and ABD - LM somewhere between 15 and 30

minutes.

Power in the presence of noise In this section we examine how the

ability of the tests to detect jumps changes in the presence of microstructure

noise. We simulated the SV1F stochastic volatility model with medium mean

reversion, to which we added a jump process with intensity λ = .5 and jump

sizes randomly drawn from a N (0, 1.5%). Then, we contaminated the price

with i.i.d. normally distributed noise, just as in the previous subsection. The

probabilities of correct jump identification for all the tests and for different

scenarios of noise contamination are reported in Table 3.13.

We observe that if we exclude the AJ test, which in the presence of noise

has both its size and power equal to 1, the hierarchy of the tests in terms of

power remains the same as if noise were not present, with a a clear decrease

in power as the size of the noise increases. Thus, the PZ and the intraday

procedures display again the best power, without a compensation in size.

The BNS seems the worst performer at a sampling frequency of 1 second,

but as we decrease the frequency it regains power. JO displays an increasing

power with the increase in σnoise. However, given its high size distortion in

the presence of noise, it is not reliable, at least at very high frequencies.
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Nominal size:5%

1 sec 1 min 5 min 15 min 30 min

’Andersen et al’ 0.98607 0.919652 0.815672 0.661194 0.478856

Ait-Sahalia & Jacod’ 0.975622 0.796766 0.21393 0.038557 0.007463

’Ait-Sahalia Power Var’ 0.975622 0.814925 0.331841 0.21592 0.245274

σnoise = 0 ’BNS’ 0.962438 0.860945 0.731095 0.565174 0.402985

Jiang & Oomen’ 0.507463 0.474627 0.4301 0.385075 0.344279

Lee & Mykland’ 0.98607 0.89005 0.794279 0.648259 0.517164

Podolskij & Ziggel’ 0.984577 0.914677 0.824876 0.689801 0.534577

’Andersen et al’ 0.923632 0.894776 0.806965 0.652736 0.474378

Ait-Sahalia & Jacod’ 1 0.84801 0.220896 0.040796 0.006965

’Ait-Sahalia Power Var’ 1 0.869652 0.329851 0.209453 0.243035

σnoise = 0.027 ’BNS’ 0.207463 0.803483 0.712687 0.55995 0.398507

Jiang & Oomen’ 0.465423 0.458706 0.425373 0.381841 0.338308

Lee & Mykland’ 0.923632 0.8699 0.778607 0.640796 0.51194

Podolskij & Ziggel’ 0.90199 0.891542 0.814677 0.682836 0.528109

’Andersen et al’ 0.885323 0.873383 0.788557 0.644776 0.468905

Ait-Sahalia & Jacod’ 1 0.879104 0.229851 0.040796 0.006965

’Ait-Sahalia Power Var’ 1 0.89204 0.338557 0.214925 0.242289

σnoise = 0.040 ’BNS’ 0.053483 0.734826 0.69204 0.540299 0.393284

Jiang & Oomen’ 0.480597 0.444527 0.414428 0.376119 0.338806

Lee & Mykland’ 0.885323 0.848259 0.764428 0.639303 0.507214

Podolskij & Ziggel’ 0.846269 0.865672 0.79403 0.677114 0.529851

’Andersen et al’ 0.845771 0.851244 0.778607 0.641542 0.462687

Ait-Sahalia & Jacod’ 1 0.892786 0.2301 0.039552 0.006716

’Ait-Sahalia Power Var’ 1 0.909453 0.354726 0.20796 0.247264

σnoise = 0.052 ’BNS’ 0.010945 0.664925 0.671642 0.536567 0.387811

Jiang & Oomen’ 0.552239 0.432836 0.408706 0.375622 0.335572

Lee & Mykland’ 0.845771 0.826368 0.756965 0.630846 0.508458

Podolskij & Ziggel’ 0.809204 0.84602 0.789303 0.675373 0.519652

’Andersen et al’ 0.806716 0.823134 0.761194 0.630597 0.456716

Ait-Sahalia & Jacod’ 1 0.896766 0.259204 0.041791 0.00796

’Ait-Sahalia Power Var’ 1 0.914677 0.362687 0.213433 0.252736

σnoise = 0.065 ’BNS’ 0.001493 0.591294 0.638806 0.528109 0.379602

Jiang & Oomen’ 0.651493 0.41393 0.402736 0.367413 0.333582

Lee & Mykland’ 0.806716 0.797264 0.740299 0.622388 0.497761

Podolskij & Ziggel’ 0.745274 0.815672 0.770647 0.666169 0.519154

’Andersen et al’ 0.757711 0.783831 0.738308 0.607214 0.452239

Ait-Sahalia & Jacod’ 1 0.906965 0.268159 0.044279 0.008458

’Ait-Sahalia Power Var’ 1 0.921393 0.379353 0.215423 0.255473

σnoise = 0.080 ’BNS’ 0 0.502488 0.604975 0.494527 0.376617

Jiang & Oomen’ 0.747264 0.396269 0.388308 0.359453 0.330597

Lee & Mykland’ 0.757711 0.75995 0.715672 0.608209 0.492289

Podolskij & Ziggel’ 0.688806 0.777861 0.746269 0.638557 0.510945

Table 3.13: Power of the tests in the presence of microstructure noise:We as-

sume a SV1F plus jump model with medium mean reversion for the volatility

factor and noise drawn from normal distribution with varying variance
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Cross-performances of the tests

Given the variety of jump tests with different characteristics in terms of

size, power and behavior in the presence of microstructure noise, we wondered

whether the simultaneous use of different tests could be helpful for users. We

perform this analysis on data simulated based on the SV1F model, augmented

by jumps and microstructure noise. Jumps arrive at times sampled from a

Poisson distribution with intensity λ = 0.5 and have a size distributed as a

N (0, 1.5), while the microstructure noise is sampled from a N (0, .04).

The main purpose of this exercise is to understand the effect of combining

procedures on the performance of the tests, and not necessarily finding the

optimal combination of tests, which might not even exist. Thus, we do

not intend to exhaust all the possible combinations of testing procedures.

Since the BNS test is the most utilized in applied work, we analyze here

all combinations of this test with the other four tests. We consider both

the intersection between results of two tests and the reunion and identify,

for each of these situations, the percentages of correctly identified days with

jumps, correctly identified days without jumps, as well as spuriously detected

discontinuities. Thus, for instance, if we look at the first column in the

upper panel of Table 3.14, the value .4940 means that 49.4% of jumps were

identified by both the BNS and Lee and Mykland (2008) procedures, while

the value .9082 indicates that in 90.82% of the days without jumps, both

procedures did not identify jumps. Finaly, the last value shows that there

are .69% spurious jumps detected when both procedures are simultaneuosly

considered. If we look at the first column in the lower panel of the table,

which considers the reunion of two jump detection criteria, we notice that

in 68.56% of the days with jumps at least one of the two above procedures

identifies jumps, in 99.31% of the days without jumps at least one of the two

tests did not identify jumps, while in 45.5% of the days without jumps at

least one of the two tests spuriously identifies jumps.

The results in Table 3.14 should be interpreted by contrasting them with

the power and size properties of the tests reported in Tables 3.12 and 3.13. We
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Intersection ’BNS-LM’ ’BNS-Podolskij’ ’BNS-JO’ ’BNS-AitSahalia(power)’

’Jump’ 0.4940 0.5323 0.2692 0.1418

’No Jump’ 0.9082 0.0258 0.8507 0.8502

’Spurious’ 0.0069 0.0237 0.0132 0.0064

Reunion ’BNS-LM’ ’BNS-Podolskij’ ’BNS-JO’ ’BNS-AitSahalia(power)’

’Jump’ 0.6856 0.6851 0.6473 0.6134

’No Jump’ 0.9931 0.9289 0.9868 0.9936

’Spurious’ 0.4550 0.4838 0.5125 0.5130

Table 3.14: Cross-performances of the BNS test coupled with the following

tests: LM,PZ, JO and AJ, at a sampling frequency of 15 minutes

’BNS5-LM15-BNS15’

’Jump’ 0.6070

’No Jump’ 0.9498

’Spurious’ 0.0090

Table 3.15: Performance of the LM based on 15 minutes data coupled with

BNS procedure based on 5 and 15 minutes data

observe that when we consider the reunion of two tests, there is an increase in

the number of correctly classified cases (jumps/ no jumps), than when tests

are taken separately. However, there is a huge proportion of spurious jumps

(between 45% and 51%). When intersection between tests is considered, the

proportion of spurious jumps is almost negligible, but with a considerable

reduction in power.

Given the above results, our final useful exercise is to combine intersec-

tions and reunions across procedures and across frequencies. To illustrate

this, we applied the BNS test on both 5 and 15 minutes simulated data, as

well as the LM procedure based on 15 minutes data. We adopted the fol-

lowing decision rule: on a certain trading day, the path of the price process

is considered discontinuous if one or more jumps is/ are detected by the LM

test and at least by one of the two BNS tests. Results are summarized in

Table 3.15.

We observe that the number of spuriously detected jumps becomes very

low and is combined with high proportion of correctly identified jumps (ap-
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proximately 60.70%) and a very high proportion (94.98%) of days rightly

classified as without jumps. Thus, this kind of procedure can be very useful

in practice, as it allows users to attain a very low proportion of spurious

detection of jumps, without a considerable decrease in power (power of the

individual tests in Table 3.13 is 54% for BNS and 64% for LM).

3.3 Empirical application

In this final section, we apply all non-parametric tests for jumps to real

data. We report a short analysis based on high frequency data for four US

Treasury bonds: the 2-, 5-, 10 and 30- year bonds. The data was provided

by BrokerTec, an interdealer electronic trading platform and is made up of

trade records and quotations.

In order to carry out the jump tests, we relied only on mid-quotes, for

a period between January 2003 and March 2004. The prices are reported

in 256th of a point and were maintained under this form throughout the

analysis. Sampling was performed every 1, 5, 15 and 30 minutes.Table 3.16

reports the proportions of identified jumps.

The 30-Year bond is the least liquid one, which makes us suspect that

results in this case are not totally reliable, as illiquidity can lead to spurious

detection of jumps. As expected, the proportion of identified jumps decreases

as maturity increases, for all tests and sampling frequencies. We observe a

clear increasing tendency in the proportions of identified jumps from 1 to 5

minutes. This result could be due to the fact that, at higher frequencies, there

is a higher level of contamination with microstructure noise, which tends to

downward bias the test statistics. For the ABD, BNS, LM and PZ tests, the

proportion of identified jumps is maximum when we sample every 5 minutes,

followed by a gradual decrease at lower frequencies. This is expected as power

of these statistics tends to decrease at lower frequencies. In the case of the

JO procedure, we observe an increase in the proportion of identified jumps

from 1 to 5 minutes, which then decreases and increases again. In order to
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Nominal size:5%

1 min 5 min 15 min 30 min

’Andersen et al’ 0.172 0.626 0.331 0.215

Ait-Sahalia & Jacod’ 0.076 0.079 0.023 0.013

’Ait-Sahalia Power Var’ 0.096 0.344 0.285 0.377

2-Year ’BNS’ 0.169 0.437 0.209 0.179

Jiang & Oomen’ 0.043 0.185 0.162 0.205

Lee & Mykland’ 0.470 0.639 0.507 0.331

Podolskij & Ziggel’ 0.705 0.589 0.361 0.278

’Andersen et al’ 0.517 0.563 0.318 0.202

Ait-Sahalia & Jacod’ 0.060 0.050 0.030 0.020

’Ait-Sahalia Power Var’ 0.079 0.172 0.185 0.238

5-Year ’BNS’ 0.182 0.219 0.162 0.113

Jiang & Oomen’ 0.132 0.172 0.149 0.169

Lee & Mykland’ 0.583 0.699 0.460 0.305

Podolskij & Ziggel’ 0.603 0.576 0.368 0.288

’Andersen et al’ 0.235 0.507 0.321 0.189

Ait-Sahalia & Jacod’ 0.053 0.066 0.020 0.020

’Ait-Sahalia Power Var’ 0.056 0.205 0.248 0.242

10-Year ’BNS’ 0.126 0.245 0.159 0.139

Jiang & Oomen’ 0.070 0.179 0.162 0.172

Lee & Mykland’ 0.437 0.639 0.424 0.268

Podolskij & Ziggel’ 0.536 0.490 0.374 0.262

’Andersen et al’ 0.091 0.568 0.196 0.084

Ait-Sahalia & Jacod’ 0.034 0.014 0.000 0.000

’Ait-Sahalia Power Var’ 0.051 0.162 0.108 0.155

30-Year ’BNS’ 0.078 0.419 0.135 0.057

Jiang & Oomen’ 0.014 0.166 0.118 0.098

Lee & Mykland’ 0.611 0.547 0.250 0.155

Podolskij & Ziggel’ 0.821 0.709 0.328 0.213

Table 3.16: Proportion of days with jumps for all maturities, at different

sampling frequencies, as identified by the following procedures: ABD, AJ

(both versions),BNS, JO, LM and PZ



3.3. Empirical application

get a better picture on the behavior of these tests when varying sampling

frequency, we plotted in Figure 3.5 the proportion of jumps, as identified by

the different procedures considered here, as a function of sampling frequency,

for the 2-Year bond.
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Figure 3.5: Proportion of days with jumps and sampling frequency for the

2-Year bond (1, 5, 15 and 30 minutes)

The AJ procedure behaves in a different manner in comparison with all

the other tests. When sampling is performed every minute, it identifies be-

tween 3.4% and 7.6% days with jumps when the test statistic is based on

threshold estimators and between 5.1% and 9.6% in the case the test statistic

is built with multipower variation estimators, which is quite low in compari-

son to all the other tests. Finally, as we sample more sparcely, this proportion

decreases for the first version of the test and increases for the second one.

This is in line with the size behavior of the two versions of the test, as re-
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ported in Table 3.5.

3.4 Conclusion

The contribution of this research to the existing literature is twofold.

First, we offer a robust and comprehensive comparison between alternative

jump detection procedures based on high frequency data available in the

literature, namely Andersen et al. (2007), Aı̈t-Sahalia and Jacod (2008),

Barndorff-Nielsen and Shephard (2006a), Jiang and Oomen (2008), Lee and

Mykland (2008) and Podolskij and Ziggel (2008) tests. Second, we offer some

useful guidelines to potential users on which test/ combinations of tests to

use to detect jumps in the prices of financial assets.

To this end, we conducted a numerical analysis using alternative levels

of volatility, different levels of persistence in the volatility factor, different

jump intensities and jump sizes, different levels of microstructure noise con-

tamination. We also report an empirical application using US Treasury high

frequency data. We summarize the full set of results in Table 3.17.

Based on the overall results of our simulation, the intraday LM-ABD tests

for jumps show the best performance. The procedures display a very high

power, which is combined with a quite good size behavior. Thus, for the

SV1F model, size remains relatively stable over different sampling frequen-

cies. However, in the case of extremely volatile processes, like SV2F, there

is the risk that the tests become highly oversized and consequently, their use

might not be recommendable for very volatile data. The tests also perform

very well in the presence of microstructure noise.

The Podolskij and Ziggel (2008) test displays high power and a very

good behavior in the presence of noise, but is also quite oversized. Its size

increases very rapidly when the sampling frequency diminishes. However,

given its robustness to microstructure effects, it can be successfully applied

at high frequencies, without worrying about the noise.

The classical BNS test shows very good size properties, with its size
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remaining quite stable over the varying sampling frequency. It also displays

a quite good power. In the presence of microstructure noise, the BNS test

statistic gets very downward biased and sampling at lower frequencies is

obligatory.

There is not a clear-cut behaviour with respect to the other two tests

considered in our analysis, JO and AJ. The former displays a high size which

increases rapidly as we sample less often, accompanied by a low power. When

jumps with random signs and sizes are considered, positive and negative

changes tend to compensate themselves, resulting in a reduction of power.

The latter test works well in terms of both size and power only at high

frequencies (1 second in our simulation exercise). However, for lower fre-

quencies, there is evidence of a substantial decrease in power, combined with

an increase/ decrease in size, depending on how the statistic is computed:

based on multi-power variations or threshold estimators. Moreover, this test

becomes extremely over sized at high frequencies in the presence of noise and

thus, a very frequent sampling scheme, which could preserve good size and

power properties, is not possible.

Finally, we applied all six jump detection procedures on real US Treasury

high frequency data. We were interested in the behavior of the tests across

sampling frequencies. We observed in most of the cases lower proportions

of detected jumps at the highest frequency, which can be interpreted as a

consequence of the high level of contamination with microstructure noise

at this frequency. The proportion of jumps increases when sampling every 5

minutes and then gradually decreases again with the decrease in the sampling

frequency.

Based on our results, we recommend to potential users the LM -ABD

intraday procedure, as well as the PZ test, which have good power properties

combined with a manageable size. Moreover, these tests are the most robust

to microstructure noise. However, when the price processes are very volatile,

as it might happen for some assets such as some derivatives, stocks, they

become highly oversized. In this case, we recommend the use of the BNS
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test, as its size distortion is smaller and more stable across frequencies.

We show that potential users of these procedures can gain advantages

by combining them through both reunion and intersection across procedures

and across sampling frequencies. In this way, one manages to minimize the

proportion of spurious jump detection without a significant loss of power.

One limitation of the present analysis is that in the simulation design,

we take into consideration only processes that can generate a finite number

of jumps within a certain time interval. This is due to the fact that most of

the tests considered here (the only exceptions being AJ and PZ) are based

on multipower variation-type estimators, which are robust only to a finite

number of jumps. We leave this extension to future research.
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Procedure Size Power Noise

’Andersen et al’ slightly undersized; high power decreasing gradually undersized in the presence of noise;

size varies across the frequency maintains quite good power properties

Ait-Sahalia & Jacod’ slightly undersized; high power at high frequencies which extremely oversized at very high

size decreases at lower frequencies diminishes abruptly at lower frequencies frequencies, followed by drastic decreases

in size from 1 min onward; very

high power which decreases abruptly

’Ait-Sahalia Power Var’ oversized; size rapidly high power at high frequencies which extremely oversized at very high

increases across the frequency diminishes abruptly at lower frequencies frequencies, followed by drastic decreases

in size from 1 min onward; very

high power which decreases abruptly

’BNS’ oversized; size increases high power decreasing gradually; severely undersized at high frequencies;

slightly across the frequency; lower numbers than the intraday low power in the presence of noise

stable in comparison with the and ’Podolskij & Ziggel’ tests

others

Jiang & Oomen’ oversized; size increases low power, as jumps with different extremely oversized at very high

rapidly across the frequency sizes tend to cancel out frequencies; behaves like in the

absence of noise from 1 min onward;

low power

Lee & Mykland’ oversized; size varies across high power decreasing gradually undersized in the presence of noise;

the frequency maintains quite good power properties

Podolskij & Ziggel’ oversized; size increases rapidly high power decreasing gradually becomes quickly oversized even in the

across the frequency presence of noise; maintains quite

good power properties

Table 3.17: Summary of our results: size and power properties and behavior in the presence of microstructure noise

for all the tests

8
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4
Jumps and price discovery in the US

Treasury market

The advances made during the past decade in the field of high frequency

econometrics conferred both researchers and practitioners the possibility to

detect and estimate jumps in asset prices through simple nonparametric tech-

niques, as an alternative to simulation based estimation methods of stochastic

volatility models with jumps. As a result, a new strand in the empirical fi-

nance literature has intensively documented on the determinants of jumps,

as well as on how their identification impacts on different research areas in

finance, especially volatility and price discovery.

Our research lies in the above framework, as well. We identify and esti-

mate jumps in the US Treasury 2-,5-,10- and 30-year bonds both on a daily

basis, by using the standard Barndorff-Nielsen and Shephard (2004) test for

jumps, as well as at an intraday level, by applying the Lee and Mykland

(2008) procedure with a correction for periodicity to our local volatility es-

timates proposed by Boudt et al. (2009). We find that US Treasury bonds

exhibit jumps in their prices in 14.5% of the days for the 2-year maturity,

in 10.6% for the 5-year bond, 9.6% for the 10-year and finally in 17.91% of

the days for the 30-year bond. Then, we examine how different character-

istics of the market, such as liquidity measures, trading volume, order flow

behave when jumps occur. We find that in the 5 minutes before a jump,
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liquidity withdraws, and then it raises again. The trading volume falls in the

5-10 minutes before a jump takes place and increases again afterward. In

addition, we endeavor to see to what extent jumps in the term structure are

generated by macroeconomic announcements and find that around 90% of

the jumps occur at the same time or slightly after an announcement. More-

over, the standardized announcement surprise is found to be an important

determinant of the probability of jump occurrence. Finally, we examine the

impact of the trading activity on prices in the proximity of jumps.

To our knowledge, there is no other paper that examines the informa-

tional role of trading around jump times. Using a methodological framework

similar to that of Green (2004), based on a price formation model proposed

by Madhavan et al. (1997), we estimate the degree of informational asym-

metry at the jump time, before and after. We estimate, for the 2- and 5-

year bonds, a very high degree of information asymmetry in the immediate

proximity of a jump (-/+ 2 minutes). Moreover, this high degree of order

flow informativeness does not dissipate immediately, but remains quite high

up to 20 minutes after a jump takes place. There is a low level of information

asymmetry before the jump, which, given that most of the jumps take place

as a result of macroeconomic news announcements, is consistent with a low

degree of information leakage before announcements, as indicated in Green

(2004). Results for the 30-year bond follow the same lines as for the first

two maturities, but with a lot of the coefficients being insignificant, due to

liquidity problems, while results for the 10-year maturity are quite different

and will be described in the appropriate section.

In the empirical literature, there are three more papers which deal with

similar issues. Jiang et al. (2008) identify jumps in the US-Treasury bonds,

by using data covering 2 years, 2005 and 2006. They show that most of the

jumps take place on scheduled macroeconomic announcement days. More-

over, before jumps, liquidity on the market withdraws and volatility increases.

The authors run Probit regressions in order to identify what variables con-

tribute to the increase in the probability of a jump taking place. First,
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they find surprises in macroeconomic announcements as explaining the oc-

currence of jumps. Further on, they add to the regression liquidity shocks

before jumps and find the latter highly significant. Moreover, they show that

the previous variable, surprises in macroeconomic announcements, loses its

power in explaining jumps when liquidity shocks are considered. In terms

of price discovery, they show that after a jump takes place, the order flow

seems less informative than in the case when no jumps take place.

Lahaye et al. (2008) identify jumps and cojumps using the intraday Lee

and Mykland (2008) procedure, modified by Boudt et al. (2009), in the prices

of 8 different financial assets: four dollar exchange rates, three stock index

futures (Nasdaq, Dow Jones and S&P500) and 30-year U.S. Treasury bond

futures. They run Tobit and Probit regressions to quantify the impact of

news surprises on jumps and co-jumps. They find that bond markets are the

most sensitive to news surprises. When co-jumps are considered, the news

surprises seem to have a much larger impact on the probability of common

jumping them in the case of individual jumps.

Dungey et al. (2007) use the classical Barndorff-Nielsen and Shephard

(2004) methodology to identify jumps and co-jumps in the 2, 3, 5, 10 and

30 year US Treasury bonds, for a period lagging from 2002 to 2006. They

find that co-jumps are caused in 2/3 of the cases by macroeconomic news

announcements.

Up to a certain point, our research work situates itself close to the Jiang

et al. (2008) paper, as we follow some of the steps in their empirical analysis

concerning the study of market activities around jumps and association of

jumps with macroeconomic announcements. However, our research work is

different in many ways from theirs. First, we use the Lee and Mykland

(2008)-Andersen et al. (2007) jump detection procedures, which allow us to

identify the exact time of a jump within a trading day, as well as the sizes

of the detected jumps. Second, while Jiang et al. (2008) consider illiquidity

as the most important determinant of the probability of jump occurrence,

we argue here that the liquidity withdrawal and the occurrence of jumps
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are endogenous and essentially express the same thing. This is because the

vast majority of jumps are caused by news releases, before which markets

are usually characterized by a liquidity withdrawal. Third, when examining

the impact of macroeconomic announcements on the jump probability, we

consider the entire sample and not just the days with announcements. Finally

and more importantly, we dedicate a vast part of this chapter to examine

the impact of trading on prices and consequently to estimate the degree of

informativeness of the order flow when jumps occur, in agreement with the

literature on price discovery.

The rest of the chapter is structured in the following way. Section 4.1

describes the interdealer market on which US Treasury bonds are exchanged

and the data in our sample. Section 4.2 summarizes the jump detection tech-

niques we considered, the classical Barndorff-Nielsen and Shephard (2006a)

procedure, as well as Andersen et al. (2007) -Lee and Mykland (2008) proce-

dure, which enables us to intradaily detect jumps. Finally, Section 4.3 is the

widest and contains the majority of the findings of this chapter. Here, after

having identified jumps in prices in the previous section, we analyze different

market activities around the time of the jump, we quantify the impact of

macroeconomic announcements on the jump likelihood and we examine the

informativeness of the trading activity in the nearness of jumps.

4.1 Data and market description

Our analysis is based on high frequency data for four US Treasury bonds:

the 2-, 5-, 10 and 30- year bonds. The data was provided by BrokerTec,

an interdealer electronic trading platform and is made up of trade records,

quotations and order cancellations, as well as a work-up part.

4.1.1 The interdealer brokerage market

The secondary market for US Treasury bonds is an interdealer over-the -

counter market, where, as shown in Fleming and Mizrach (2008) and Fleming
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(1997), there are 22-23 hours of trading activity per day, with most of it being

placed during new-York hours, that is between 7:30 a.m. and 5:00 p.m. .

There are some trading peaks between 10:00 and 10:30 a.m. and between

14:30 and 15:00 (Fleming and Mizrach, 2008).

The largest part of the transactions in the interdealer market for the US

Treasury bonds takes place through two large interdealer brokerage firms:

ICAP PLC with about 60% of market share and Cantor Fitzgerald with 28%

(Mizrach and Neely, 2006). Before 2000, both the actors on the marketplace

provided voice-assisted brokerage services. All the market data from ICAP

was collected in the GovPX database and was customarily used for the studies

concerning the US Treasury bonds. However, as noted by Mizrach and Neely

(2006), Boni and Leach (2004), Fleming (2003) and Barclay et al. (2006), with

the foundation of electronic trading platforms, most of the trading with US

Treasury bonds migrated from the voice-assisted to the electronic platforms.

Thus, as shown in Barclay et al. (2006), e-Speed, the electronic platform of

Cantor Fitzgerald was inaugurated in March 1999, while its main competitor,

BrokerTec, was set up in June 2000 and was purchased by ICAP in 2003.

These electronic trading platforms are characterized by lower transaction

costs and by a higher level of liquidity, also due to the fact that electronic

systems match opposite orders automatically, making the whole trading pro-

cess more fluid. The voice-assisted platforms remain though important for

their use for more “customized”, complex transactions that require human

intermediaries to perform negotiations between parties. Mizrach and Neely

(2006) show that after the introduction of the electronic trading platforms,

the average trading volume almost tripled from $200 billion in 1999 to $ 575

billion in 2005 .

4.1.2 Market characteristics

The interdealer market is an expandable limit order one, where transac-

tions typically pass through three different phases (Boni and Leach, 2004,

see). Traders post limit orders, that can be automatically matched by the
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electronic system. They can also respond to an already existing order (be-

coming “aggressive”). However, as noted by Boni and Leach (2004), there

is an incentive on the market to provide liquidity through limit orders, as

commissions are paid only for responding orders.

The next phase of a transaction is the so-called “work-up” process. This

type of market provides the traders with the right of refusal to trade addi-

tional quantities, provided that the other party desires this. Thus, traders

usually enter limit orders in order to find counter-parties and then increase

quantities during the work-up process. Moreover, there is the possibility to

post “iceberg” orders, that have hidden quantities.

Once the parties agree on quantities, the trades are perfected and they

appear in the Trade section. Boni and Leach (2004) show that the right

and not the obligation to further increase traded quantities reduces the costs

associated with information leakage and stale limit orders, unlike the usual

limit order markets, where large orders might cause free-riding on the signal.

Fleming and Mizrach (2008), using BrokerTec reveal that liquidity is greater

than the one reported by studies using data from voice-assisted brokerage

platforms. Moreover, the iceberg orders are sparse and are mostly used

during volatile periods.

4.1.3 Dataset

The data contains intraday observations covering the orderbook, with

both order submissions and cancellations, the trade section and the work-up

process for the 2-, 5-, 10- and 30- year bonds and covering a period between

January 2003 and March 2004. While the first three bonds are very liquid, for

the 30-year one the competitor brokerage platform, E-Speed, owns a bigger

market share.

Prices are reported in 256th of a point and are maintained under this

form throughout the analysis, as they do not influence the results, given that

we work with log-returns.

For each trading day, we keep in our sample just the data comprised
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between 7:30 a.m. EST and 5:00 p.m. EST, when trading is more active.

Sampling is done every 5 and 15 minutes. Based on the information in

the order book , we compute mid-quotes, spread and depth of the market at

the best bid and ask quotes. We rely on information in the trade section to

compute orderflow and trade volumes.

4.2 Testing for the presence of jumps

One of the important advances in the field of high frequency economet-

rics during the last decade was the development of several nonparametric

procedures that allow testing for the presence of jumps in the path of a price

process during a certain time interval or at certain point in time. The pio-

neers in this area were Barndorff-Nielsen and Shephard (2006a). Following

their seminal contribution, several other researchers pursued this topic: An-

dersen et al. (2007)-Lee and Mykland (2008), Aı̈t-Sahalia and Jacod (2008),

Jiang and Oomen (2008)and Podolskij and Ziggel (2008). Except Andersen

et al. (2007)-Lee and Mykland (2008), all the other procedures have nulls

that assume the continuity of the price path within a certain time period,

such as a trading day. The Andersen et al. (2007)-Lee and Mykland (2008)

procedure tests for the absence of jumps at a certain moment, allowing thus

for the exact identification of the time of a jump.

The choice of the jump identification procedures that we use is based on

simulations carried out by the authors in Dumitru and Urga (2009). We

choose to apply here the Andersen et al. (2007)-Lee and Mykland (2008) test

because it is one of the procedures that display the highest power, combined

with a manageable size and it allows for the exact identification of the jump

time. One of the conclusions of Dumitru and Urga (2009) is that combining

tests and sampling frequencies through both reunion and intersection can

grant users a better performance in terms of both size and power. Conse-

quently, here we combine the results of the Andersen et al. (2007)-Lee and

Mykland (2008) test with the ones of the Barndorff-Nielsen and Shephard
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(2006a) procedure, which is also reported in Dumitru and Urga (2009) as

having good power and size properties.

We compute the Barndorff-Nielsen and Shephard (2006a) test statistic

based on both 5 and 15 minutes data. However, for the version based on

the higher frequency, we make use of staggered returns when calculating

the realized bipower variation, as in Andersen et al. (2007). In applying

the intraday procedure we make use of data sampled every 15 minutes. We

consider as final jumps the ones identified with the Andersen et al. (2007)

-Lee and Mykland (2008) test if they were also detected by the Barndorff-

Nielsen and Shephard (2006a) procedure on either 5 or 15 minutes data. If

more than one jump was detected within one day, all of them were taken

into consideration. We make use of 99% critical values for both tests applied

here.

4.2.1 Jump tests

Barndorff-Nielsen and Shephard (2006a) test

Barndorff-Nielsen and Shephard (2006a) base their procedure on the pos-

sibility to build a consistent estimator for the integrated variance of a process.

Thus, in Barndorff-Nielsen and Shephard (2004), they prove that the realized

bipower variation consistently estimates the integrated variance:

BVt = plim
δ↓0

δ1− r+s
2

[t/δ]∑

j=1

|yj(t)||yj+1(t)|
�

�

�

�4.1

where δ is the intraday sampling frequency, with [t/δ] = n the number of

intraday returns, and yj the j-th intraday returm at time j, j = 1...[t/δ].

In consequence, the difference between realized volatility and realized

bipower variation will qualify for jump testing and estimation. Barndorff-

Nielsen and Shephard (2006a) formulate a null of no jumps during a certain

time period, such as one trading day, against the alternative of jumps being

present, and base their testing on a CLT-type result developed under the
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null:
δ−1/2(µ−2

1 BVt) − RVt√∫ t

0
ϑσ4

u du

L→ N (0, 1)
�

�

�

�4.2

where µr = E|u|r = 2r/2 Γ( 1
2
(r+1))

Γ( 1
2
)

, r > 0, u ∼ N (0, 1) and the integral

present in the denominator of equation (4.2), named integrated quarticity,

can be estimated by using the the realized tripower quarticity (Andersen

et al., 2005):

TPt = nµ−3
4/3

(
n

n − 2

) [t/δ]∑

j=3

|yj−2|4/3|yj−1|4/3|yj|4/3
�

�

�

�4.3

Huang and Tauchen (2005) consider different versions for the test statistic

of this test and compare them by means of Monte Carlo simulations. Based

on their work, as well as on simulations carried on by the authors themselves

(Barndorff-Nielsen and Shephard, 2006a), the most appropriate form for the

test statistic is the following:

z =
1 − BPVt

RVt√
(µ−4

1 + 2µ−2
1 − 5)δmax

(
1, TPt

BPV 2
t

) → N (0, 1)
�

�

�

�4.4

Lee and Mykland (2008)-Andersen et al. (2007) tests

Both research papers by Lee and Mykland (2008) and Andersen et al.

(2007) concurrently developed tests for jumps based on the standardization

of the intraday returns by robust to jumps volatility estimations. In An-

dersen et al. (2007), returns are standardized by the square root of realized

bipower variation, which is estimated on the observations of that trading

day. However, when they apply the test to real data, they notice the need

to take into consideration the intraday periodicity of the volatility. Lee and

Mykland (2008) use the same realized bipower variation to standardize the

returns, but estimate it on a local window that precedes the time the test is

performed. Both tests have the null hypothesis of continuity of the sample
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path at a certain time, tj and thus, users are enabled to identify the exact

time of a jump, as well as the number of jumps within a trading day. For

brevity, beneath we describe the Lee and Mykland (2008) test. The following

statistic is considered:

L (j) =
yj

σ̂j

, j = 1 . . . n,
�

�

�

�4.5

where σ̂j is the realized bipower variation estimated on a K previous obser-

vations window.

Under the null of no jumps, the statistic will be asymptotically normal.

However, the usual normal thresholds (like the 99% quantile) prove them-

selves to be too permissive. The two papers considered here provide different

solutions to this problem, which lead, however, to very similar critical values.

Andersen et al. (2007) choose the size at a daily level , α, say 1% , which

is then distributed such that for each intraday time interval of length δ, the

size is given by β = 1−(1−α)δ. Lee and Mykland (2008) choose to take into

consideration the maximum of the L(j) statistic over a given period, usually

a day. The new properly standardized statistic will display an extreme value

distribution (Gumbel distribution):

max (L (j)) − Cn

Sn

→ ξ, P(ξ) = exp(−e−x), ∀j = 1, 2, . . . , n
�

�

�

�4.6

where

Cn =
(2 log n)1/2

µ1

− log π + log (log n)

2µ1(2 log n)1/2

�

�

�

�4.7

and

Sn =
1

µ1(2 log n)1/2

�

�

�

�4.8

Thus, the test can be conducted by simply replacing the maximum statistic

above by the estimated value of L (j) and compare the resulting value with

the threshold showed above.

The problem with both these intraday tests is that volatility estimated as
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described above changes very slowly, while for real data, volatility tends to

cluster and peak during the same time intervals within a trading day, such

as after macroeconomic news announcements in the morning or some time

before the closing of the market. Boudt et al. (2009) show that volatility

moves within the trading day mostly as a result of intra-week and intra-

day periodicity and consequently, propose parametric and nonparametric

estimators of the periodicity factor that are robust to the presence of jumps.

Here, we only describe the latter approach, which we will further use in

correcting the Lee and Mykland (2008) test statistic.

Boudt et al. (2009) write the returns as being described by the following

discrete model:

yj = fjsjuj + aj, j = 1 . . . n,
�

�

�

�4.9

where sj is the average bipower variation, estimated on a local window

around j, fj = σj/sj, the periodicity factor, with σj the spot volatility,

uj ∼ i.i.d.N (0, 1). Then, the periodicity factor is estimated based on the

following several steps: First, we standardize all intraday returns by the

squared root of the properly scaled realized bipower variations estimated on

a local window around j, as shown before. We denote by r1,j, r2,j, . . . rnj ,j all

standardized returns that refer to the same day of the week and the same

time of the day, j.

Second, Rousseeuw and Leroy (1988)’ “shortest half scale estimator” is

computed in the following manner. We construct the corresponding order

statistics for the above sequence of standardized returns, resulting in r(1),j ≤
r(2),j ≤ . . . ≤ r(nj),j. The shortest half scale estimator will be the smallest

length of all ordered subsequences consisting of hj = [nj/2] + 1 observations:

ShortHj = 0.741min{r(hj),j − r(1),j, . . . , r(nj),j − r(nj−hj+1),j},
�

�

�

�4.10

where 0.741 is a correction for consistency under normality. The above esti-
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mator can be standardized in following manner:

fShortH
j =

ShortHj

1
n

√
ShortH2

j

,
�

�

�

�4.11

with n the number of intraday intervals.

Last, we compute the final periodicity estimator, which will be the stan-

dardized Weighted Standard Deviation (WSD), as resulting from the follow-

ing equations:

fWSD
j =

WSDj

1
n

√
WSD2

j

,
�

�

�

�4.12

with

WSDj =

√
1.081

∑nj

l=1 wl,jr2
l,j∑nj

l=1 wl,j

,
�

�

�

�4.13

where the weights wl,j are given by:

wl,j =





1, if (
rl,j

f̂ShortH
j

)
2 ≤ 6.635

0, otherwise

�

�

�

�4.14

In equation 4.14, the threshold of 6.635 is the 99% quantile of the χ2 distri-

bution.

4.2.2 Results: detected jumps and co-jumps

We find that the 2-year bonds jump in 14.5% of the days, the 5-year in

10.6%, the 10-year in 9.6% and finally the 30-year in 17.91% of the days. As

expected, if we donot consider the result for the 30-Year bond, we observe

a decrease in the proportion of identified jumps with the increase in the

maturity. The 30-year bond is highly illiquid during the period we considered

in our sample and thus we expect the high proportion of detected jumps is

spuriously generated.

Table 4.1 summarizes some descriptive statistics on the estimated jump

sizes for all the maturities, while Table 4.2 reports the same indicators but for
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jump sizes that were previously standardized by a local volatility estimator,

just as in the Andersen et al. (2007) -Lee and Mykland (2008) procedure.

The biggest size is encountered in the case of the 30-Year bond, but we

suspect this finding is due to liquidity issues, just as the high proportion of

jumps identified for this maturity. If we ignore this bond, when we look at all

central tendency parameters in Table 4.1, we observe, similar to Jiang et al.

(2008), that the 10-year bond displays the highest jump size, followed by

the 5-Year and the 2 Year. It seems that the latter jumps more frequently,

but less abruptly than the other bonds. However, if we standardize these

jumps by robust to jumps local volatility estimators, we observe in Table 4.2

that the previous hierarchy disappears, clearly indicating that the shorter

maturity bonds are less volatile than the others.

Size

Mean Median Mode Standard deviation

Y2 0.081% 0.063% 0.023% 0.052%

Y5 1.787% 0.181% 0.000% 10.394%

Y10 1.795% 0.292% 0.000% 9.814%

Y30 2.127% 0.474% 0.211% 9.639%

Table 4.1: Estimated jumps for the 2, 5, 10 and 30-year US Treasury bonds

Standardized Size

Mean Median Mode Standard deviation

Y2 31.15 23.57 16 19.39

Y5 28.38 22.25 16.07 15.67

Y10 28.36 24.19 15.91 13.24

Y30 30.19 21.8 16.04 30.15

Table 4.2: Estimated standardized jumps for the 2, 5, 10 and 30-year US

Treasury bonds

Table 4.3 reports the number of common jumps between maturities, when

taken two by two. We observe a clear prevalence of common jumps at the
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shorter end of the term structure. Thus, we have the largest number of

co-jumps for combinations of the 2-year maturity with the other bonds.

Y2 Y5 Y10 Y30

Y2 44 28 24 23

Y5 32 21 17

Y10 29 17

Y30 53

Table 4.3: Number of jumps and co-jumps for the 2, 5, 10 and 30-year bonds,

taken two by two

The analysis in this subsection shows us that the shorter maturity bonds

jump more frequently than the others, making us suspect that they react to

a larger proportion of macroeconomic announcements than the others, that

is they are more sensitive to events occurring in the economic environment.

The other bonds are less sensitive, displaying a lower probability of jump

occurrence, but, given the long maturity, they transpose the incertitude in

the environment in larger moves in the prices.

4.3 Jumps and price discovery

This section accommodates all our results which cover on one side, is-

sues concerning the informational content of jumps in the US Treasury term

structure and, on the other side, relate the detected jumps with different mar-

ket characteristics, especially liquidity measures and to the price discovery

process. Moreover, as we will see later on, a great amount of these results,

especially those which relate jumps with market characteristics are purely

descriptive, while other are the result of a regression analysis that attempts

to find factors that explain the probability of a jump, as well as the size of

the jump.
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4.3.1 Market activities in the proximity of jumps

Once we identified in the previous section the individual and common

jumps for all the bonds, we are interested here to see what exactly ‘happens’

in the market when jumps occur. Thus we measure several market activities

on a window of -/+ 25 minutes around the time of the jump and examine

their behavior within this interval. We consider the depth of the market at

the best bid and ask quotes, the spread, the trading volume and the order

flow.

Figure 4.1 illustrates the different market activities around the time of

the jump. As the depth indicators refer to the best bid and ask quotes, they

are both expressed in number of contracts, while the order flow, computed

as a difference between total buy volume minus total sell volume within 5

minutes, is expressed in units of a $, just as the quotes.

Both the depth at the best ask quote and the one at the best bid quote

fall in the 5-10 minutes that precede the jump, indicating a withdrawal of

liquidity before the jump occurrence. Given that the majority of the jumps

take place on public announcement days, this is an expected phenomenon,

as also indicated in Jiang et al. (2008). Moreover, spread peaks within the

5 minutes interval before the occurrence of the jump, indicating the same

liquidity withdrawal. The trade volume has a general increasing tendency

throughout day. However, its dynamic before a jump is the same for all

maturities, as seen in Figure 4.1 for the 2 -Year bond: it falls in the 5-10

minutes before the jump and then experiences an abrupt increase.

The order flow tends to decrease before the jump, following up to a certain

extent the dynamics of the depth indicators. However, this is more visible for

the 2-Year bond, indicating an asymmetry between the bid and ask traded

quantities. This behavior cannot be confirmed for the other maturities, where

the asymmetry is not that clear.
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Figure 4.1: Market activities around the time of jump for the 2-Year bond
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4.3.2 Jumps and macroeconomic announcements

The fact that bond prices tend to experience large moves when macroe-

conomic news are released has been well documented in the empirical lit-

erature for a long time. Fleming and Remolona (1997),Fleming and Re-

molona (1999b), Fleming and Remolona (1999a), Balduzzi et al. (2001),

Green (2004), Pasquariello and Vega (2007) and others studied the impact of

macroeconomic news announcements on prices and other market characteris-

tics, such as liquidity, trading volume, order flow. However, the development

of diverse nonparametric jump detection techniques based on high frequency

data allows us to define jumps based on clear statistical criteria. Being able

to identify jumps and their exact timing helps us improve our knowledge on

the possible causes of jumps, too.

For each maturity and for each jump, we checked whether on the day

and around the time of the jump there were any macroeconomic announce-

ments. Thus, similar to Jiang et al. (2008), we identify the macroeconomic

announcements that cause jumps in the prices of US Treasury bonds. Data

on announcements is taken from Yahoo! Finance, that reports some of the

data provided by Briefing.com. A complete list of all the announcements we

found relevant is included in Table 4.4.

For each maturity, we computed the number and percentage of jumps to

which macroeconomic announcements can be associated, as well as jumps

which cannot be matched with any news releases. Results are summarized

in Table 4.5. For the 2, 5, 10 -year bonds, more than 90% of the jumps were

generated by the release of public information on the market. For the 30-

year bond, this percentage equals only 83.73%, which we believe is due to the

spurious detection of jumps that cannot be matched with announcements.

Once we identified all news releases that can impact on bond prices, we

computed the absolute value of the announcement surprise, provided data on

this was available. We standardized each surprise by the standard deviation

of all surprises available for the same announcement during the period con-

sidered in our sample. We selected all standardized surprises larger than the
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’Auto Sales’ ’Factory Orders’ ’Nonfarm Payrolls’

’Average Workweek’ ’Fed”s Beige Book’ ’NY Empire State Index’

’Building Permits’ ’FOMC Meeting’ ’Personal Income’

’Business Inventories’ ’FOMC Minutes’ ’Personal Spending’

’Capacity Utilization’ GDP-Adv & Final’ ’Philadelphia Fed’

Chain Deflator-Adv & final’ ’Help-Wanted Index’ ’PPI’

’Construction Spending’ ’Hourly Earnings’ ’Productivity-Prel’

’Consumer Confidence’ ’Housing Starts’ ’Retail Sales’

’Consumer Credit’ ’Industrial Production’ ’Retail Sales ex-auto’

CPI’ & Core CPI ’Initial Claims’ ’Trade Balance’

’Current Account’ ’ISM Index’ ’Treasury Budget’

’Durable Orders’ ’ISM Services’ ’Truck Sales’

’Employment Cost Index’ ’Leading Indicators’ ’Unemployment Rate’

’Existing Home Sales’ ’Mich Sentiment-Prel.’ ’Wholesale Inventories’

’Export Prices ex-ag.’ ’New Home Sales’

Table 4.4: Macroeconomic announcements that generate jumps in the term

structure

Y2 Y5 Y10 Y30

Match 94 92.16% 79 100.00% 60 93.75% 72 83.72%

No match 8 7.84% 4 6.25% 14 16.28%

Total 102 100.00% 79 100.00% 64 100.00% 86 100.00%

Table 4.5: Number and percentages of jumps matched with macroeconomic

announcements
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Y2 Y5 Y10 Y30

Big surprise 64 64 64 64

Big surprise & no jump 57 89.06% 57 8/9 56 87.50% 64 100.00%

Table 4.6: Number of big announcement surprises and number and percent-

ages of those not associated with any jumps

95% quantile of the normal distribution and examined whether jumps took

place on the corresponding days and times. Surprisingly, for all maturities,

we identified a very low percentage of ‘big’ surprises associated with jumps.

Our findings are summarized in Table 4.6.

While more than 90% of the jumps are generated by announcements, it

seems that approximately 90% of the announcements do not cause jumps.

These results can be explained by several factors. First, given our sample of

just 15 months, for each type of news release, we have just a few surprises.

Thus, the standard deviation of each type of surprise is computed on a very

small sample, generating biases. Second, there are certain announcements

that are more important than others and jumps can occur even if surprises

are not very big. Third, as suggested by Hess (2004), the “timeliness” of the

news releases might be important, as well. If several announcements reveal

similar information, the earlier ones should have a greater impact on the

prices.

4.3.3 Regression analysis: determinants of jumps

Within this subsection, we try to identify factors that increase the prob-

ability of a jump taking place. Jiang et al. (2008) consider in their paper

several factors that can determine the probability of a jump in an announce-

ment day: the announcement surprise, volatility, the absolute order flow, the

order unbalance and finally, depth and spread, as measures of liquidity with-

drawal before a jump takes place. The results of their regressions indicate

liquidity measures as the most important determinants of jumps.
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As seen in Figure 4.1, liquidity measures tend to plunge (depth) or peak

(spread) just before a jump takes place. Thus, their dynamic is almost the

same with that of the returns around a jump. For this reason, we believe

liquidity measures and jumps are somehow endogenously determined or mea-

sure the same thing. This fact however, is valid only for bonds, which jump

in 90% of the cases as a result of news releases.

In order to quantify the impact of announcement surprises on jumps, we

estimate an extreme value (Gumbel) binary choice model in which we con-

sider as determinants of the probability of jump occurrence the announce-

ment surprise and the square root of the bipower variation estimate for the

corresponding trading day, based on 5 minutes staggered returns. The inclu-

sion of the volatility estimator has two major rationales. First, it is sensible

to believe that if jumps occurred within one day, volatility might have in-

creased as well. However, we consider here just the volatility coming from

the continuous part of the price process and not the one including the jumps.

Second, we believe that a volatility proxy might capture other unknown fac-

tors that could contribute to the price dynamics but which might be hard to

identify and observe. In our analysis, we take into consideration all the days

in our sample, independent of whether news were released or not on that day.

The binary dependent variable is set to 1 if at least one jump occurred on a

certain day and to 0 otherwise.

Table 4.7 includes part of the estimation output for these binary choice

regressions. The choice of the extreme value distribution is based on the

reported Akaike, Schwartz and Hannan-Quinn information criteria.

We observe that the surprise is significant at a 1% significance level for

the 2, 5 and 10 -year bonds and at a 5% significance level for the less liquid 30

-year bond. Our proxy for voltatiliy is also found highly significant (1%) for

the 2, 5 and 30- year bonds, while for the 10-year one we have significance

only at a 5% significance level. In the same table we report results for

the Hosmer-Lemeshow goodness-of-fit test for binary choice models, which

compares values predicted by the model with the real values of the dependent
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Coefficient p-value Goodness of fit

Y2 C -2.53 0.0000 H-L Statistic 5.74

Surprise 0.29 0.0021 Prob. Chi-Sq(8) 0.68

Volatility (BV) 1881.19 0.0000

Y5 C -2.37 0.0000 H-L Statistic 4.36

Surprise 0.40 0.0002 Prob. Chi-Sq(8) 0.82

Volatility (BV) 432.54 0.0002

Y10 C -1.62 0.0000 H-L Statistic 8.28

Surprise 0.30 0.0014 Prob. Chi-Sq(8) 0.41

Volatility (BV) 107.26 0.0262

Y30 C -1.33 0.0000 H-L Statistic 11.91

Surprise 0.18 0.0284 Prob. Chi-Sq(8) 0.16

Volatility (BV) 88.96 0.0066

Table 4.7: Results from regressing the probability of a jump on the announce-

ment surprise and volatility
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variable. Results in Table 4.7 suggest that differences between actual and

predicted values are not significant, indicating a good fit.

4.3.4 Jumps and the impact of trading on prices

While the previous section shows that US Treasury bond prices react as

a result of the release of public information, there is also a rich literature

on price formation suggesting that the trading activity itself is a source of

information for the market participants. When there are investors who detain

private information, their trading activity might reveal some information to

the market. This idea has been formalized within many theoretical and

empirical models which describe the price formation process of the financial

assets and which imply that transaction prices can be predicted from current

and previous order flow information (Kyle, 1985; Glosten and Milgrom, 1985;

Madhavan et al., 1997; Hasbrouck, 1991; Dufour and Engle, 2000, see).

In this section, we examine the informational role of the order flow and

estimate the information asymmetry when jumps occur or around the jump

times, in comparison with days when no jumps are detected. Just as in

Green (2004), who examines the impact of trading on bond prices around

news releases, we start from Madhavan et al. (1997)’ model of price formation

(denoted as MRR):

pti − pti−1
= (φ + θ)xti − (φ + ρθ)xti−1

+ eti ,
�

�

�

�4.15

where ti are the times when trades take place, i = 1 . . . N , with N the total

number of trades, xti is the order flow at time ti, with xti = 1 if the transac-

tion is buyer initiated and xti = −1 if the initiator was the seller, φ captures

the compensation for providing liquidity, including all order processing costs,

but also the effects of dealer inventories, ρ is the autocorrelation in the order

flow, while θ measures the information asymmetry. The latter is the most

important parameter in our analysis and assesses the impact of the surprise

in the order flow (xti − ρxti−1
) on price changes.
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In order to analyze how the parameters of the above model change in the

presence of jumps, we transform equation 4.3.4, by adding several dummies,

resulting in the following five models:

Model 1

pti − pti−1
=(φJ + θJ)IJ,tixti − (φJ + ρθJ)IJ,tixti−1

+ (φNJ + θNJ)INJ,tixti−
(φNJ + ρθNJ)INJ,tixti−1

+ eti ,
�

�

�

�4.16

where the parameters are estimated separately for the days with jumps

(IJ,ti = 1) and for those without jumps (INJ,ti = 1).

Model 2

pti − pti−1
=(φJ0 + θJ0)IJ,tiIJ0,tixti − (φJ0 + ρθJ0)IJ,tiIJ0,tixti−1

+ (φB + θB)IJ,tiIB,tixti−
(φB + ρθB)IJ,tiIB,tixti−1

+ (φA + θA)IJ,tiIA,tixti − (φA + ρθA)IJ,tiIA,tixti−1
+

(φNJ + θNJ)INJ,tixti − (φNJ + ρθNJ)INJ,tixti−1 + eti ,
�

�

�

�4.17

where, for the days with jumps, we differentiate between the moment of the

jump, J0 and the periods before (B) and after (A) the jump.

Model 3

pti − pti−1
=(φJ0 + θJ0)IJ,tiIJ0,tixti − (φJ0 + ρθJ0)IJ,tiIJ0,tixti−1

+

(φB5 + θB5)IJ,tiIB5,tixti − (φB5 + ρθB5)IJ,tiIB5,tixti−1
+

(φA5 + θA5)IJ,tiIA5,tixti − (φA5 + ρθA5)IJ,tiIA5,tixti−1
+

(φother + θother)Iother,tixti − (φother + ρθother)Iother,tixti−1
+ eti

�

�

�

�4.18

where, for the days with jumps we consider a window of +/- 5 minutes around

the jump and estimate parameters at the jump time (J0), for the 5 minutes

that precede the jump (B5), for the 5 minutes after the jump (A5) and for

the rest of the data (other).
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Model 4

pti − pti−1
=(φJ0 + θJ0)IJ,tiIJ0,tixti − (φJ0 + ρθJ0)IJ,tiIJ0,tixti−1

+

(φB10 + θB10)IJ,tiIB10,tixti − (φB10 + ρθB10)IJ,tiIB10,tixti−1
+

(φA10 + θA10)IJ,tiIA10,tixti − (φA10 + ρθA10)IJ,tiIA10,tixti−1
+

(φother + θother)Iother,tixti − (φother + ρθother)Iother,tixti−1
+ eti ,

�

�

�

�4.19

just as model 3, but the window is of +/- 10 minutes around the jump time.

Model 5

pti − pti−1
=(φJ0 + θJ0)IJ,tiIJ0,tixti − (φJ0 + ρθJ0)IJ,tiIJ0,tixti−1

+

(φB20 + θB20)IJ,tiIB20,tixti − (φB20 + ρθB20)IJ,tiIB20,tixti−1
+

(φA20 + θA20)IJ,tiIA20,tixti − (φA20 + ρθA20)IJ,tiIA20,tixti−1
+

(φother + θother)Iother,tixti − (φother + ρθother)Iother,tixti−1
+ eti ,

�

�

�

�4.20

just as model 3, but the window is of +/- 20 minutes around the jump time.

To estimate the above models, we use all the transaction data available,

without any previous sampling. Given that jumps are identified based on 5/

15 minutes data, we cannot perfectly match the times of the jumps with the

times of the trades. Thus the indicator function IJ0,ti selects a window of

+/- 2 minutes around the jump time. All the other indicator functions that

select observations around the times of the jumps are adapted accordingly.

For instance, IB10,ti selects all observations preceding with 12 to 2 minutes a

jump time.

Just as Madhavan et al. (1997) and Green (2004), we use the Generalized

Method of Moments to estimate the above equations. We exemplify here only

the estimation of model 1, as the estimation for the others is very similar. Let

β = (α, ρ, φJ , θJ , φNJ , θNJ) be the vector of parameters to estimate for model

1, with α the intercept added to the model. In order to find the estimates
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for the components of this vector, the following moment conditions are used:

E




xtixti−1
− x2

ti
ρ

eti − α

(eti − α)IJ,tixti

(eti − α)IJ,tixti−1

(eti − α)INJ,tixti

(eti − α)INJ,tixti−1




= 0
�

�

�

�4.21

Just as in Green (2004), our estimates are robust to ARCH-type het-

eroskedasticity. Results for the 2-, 5- and 10-year bonds are summarized in

tables 4.8, 4.9 and 4.10. Results for the 30 year maturity are affected by

the low liquidity that characterizes the data for this maturity. Consequently,

we do not find them reliable and report them only in Appendix A, Table

A.1. The estimated coefficients for this maturity behave, in terms of size, for

all models, very much alike the estimates for the 2- and 5- year maturities.

However, for the days with jumps, coefficients are usually not significant,

probably due to the low number of observations used to estimate them.

As mentioned before, the most important parameters in the above equa-

tions are the θ-s, which represent the adverse selection parameters and con-

sequently account also for the informational role of trading. This is why in

our comments we will mostly focus on these parameters.

In general, if we look at results for Model 1 for all maturities, we observe

that the estimates that account for information asymmetry tend to increase

in size with the increase in maturity. Thus, for the 2-year bond, θ̂ takes

value .38 for days with jumps and .33 for days without jumps, for the 5-year

bond the same estimated parameters are about .85 and .84, while for the

10-year bond the values are 1.32 and 1.36. This increase in the coefficients

with the maturity is due to the fact that price changes tend to be higher for

longer maturities, which is also consistent with the fact that jump sizes are

bigger for higher maturities. Green (2004) also shows that announcements

with greater price impacts also translate into higher information asymmetry.
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Model 1

Coefficient Std. Error t-Statistic Prob.

α 0.0035 0.0012 2.94 0.0032

φJ 0.0310 0.0141 2.20 0.0275

θJ 0.3759 0.0118 31.81 0.0000

φNJ 0.0456 0.0040 11.33 0.0000

θNJ 0.3258 0.0036 90.58 0.0000

Model 2 Model 3

Coefficient Std. Error t-Statistic Prob. Coefficient Std. Error t-Statistic Prob.

α 0.0034 0.0012 2.90 0.0037 α 0.0034 0.0012 2.88 0.0039

φJ0 -0.8520 0.5397 -1.58 0.1144 φJ0 -0.8421 0.5381 -1.57 0.1176

θJ0 1.3779 0.4303 3.20 0.0014 θJ0 1.5269 0.4259 3.59 0.0003

φB 0.0653 0.0246 2.66 0.0079 φB5 0.1910 0.1397 1.37 0.1716

θB 0.2858 0.0194 14.76 0.0000 θB5 0.3446 0.0605 5.70 0.0000

φA 0.0316 0.0125 2.53 0.0112 φA5 -0.1346 0.1262 -1.07 0.2860

θA 0.3595 0.0111 32.43 0.0000 θA5 0.6672 0.0944 7.07 0.0000

φNJ 0.0456 0.0040 11.33 0.0000 φother 0.0460 0.0038 12.19 0.0000

θNJ 0.3258 0.0036 90.58 0.0000 θother 0.3292 0.0034 97.70 0.0000

Model 4 Model 5

Coefficient Std. Error t-Statistic Prob. Coefficient Std. Error t-Statistic Prob.

α 0.0034 0.0012 2.87 0.0041 α 0.0034 0.0012 2.88 0.0039

φJ0 -0.8421 0.5381 -1.56 0.1176 φJ0 -0.8420 0.5403 -1.56 0.1192

θJ0 1.5276 0.4259 3.59 0.0003 θJ0 1.4193 0.4316 3.29 0.0010

φB10 0.1536 0.0797 1.93 0.0541 φB20 0.1235 0.0618 2.00 0.0455

θB10 0.2460 0.0476 5.16 0.0000 θB20 0.2660 0.0424 6.27 0.0000

φA10 -0.0834 0.0770 -1.08 0.2789 φA20 -0.0559 0.0472 -1.18 0.2364

θA10 0.5729 0.0614 9.33 0.0000 θA20 0.5064 0.0400 12.65 0.0000

φother 0.0465 0.0038 12.30 0.0000 φother 0.0473 0.0038 12.47 0.0000

θother 0.3279 0.0034 97.58 0.0000 θother 0.3262 0.0034 96.68 0.0000

Table 4.8: Estimated coefficients, their standard errors and t-tests for Models 1-5 for the 2-Year bond. Throughout

all the models, we use a unique correlation coefficient for the order flow: ρ̂ = 0.6609
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Model 1

Coefficient Std. Error t-Statistic Prob.

α 0.0044 0.0017 2.58 0.0098

φJ -0.1710 0.0216 -7.92 0.0000

θJ 0.8575 0.0197 43.63 0.0000

φNJ -0.1767 0.0056 -31.29 0.0000

θNJ 0.8454 0.0073 115.18 0.0000

Model 2 Model 3

Coefficient Std. Error t-Statistic Prob. Coefficient Std. Error t-Statistic Prob.

α 0.0044 0.0017 2.56 0.0106 α 0.0044 0.0017 2.56 0.0105

φJ0 -1.6179 0.9121 -1.77 0.0761 φJ0 -1.6712 0.9138 -1.83 0.0674

θJ0 2.9582 0.8663 3.41 0.0006 θJ0 3.2768 0.8655 3.79 0.0002

φB -0.1746 0.0421 -4.15 0.0000 φB5 -0.2157 0.1475 -1.46 0.1435

θB 0.7612 0.0336 22.64 0.0000 θB5 0.7726 0.1386 5.57 0.0000

φA -0.1303 0.0208 -6.26 0.0000 φA5 -0.0168 0.2863 -0.06 0.9533

θA 0.7883 0.0179 44.14 0.0000 θA5 1.1441 0.1336 8.57 0.0000

φNJ -0.1767 0.0056 -31.29 0.0000 φother -0.1731 0.0053 -32.63 0.0000

θNJ 0.8454 0.0073 115.18 0.0000 θother 0.8410 0.0067 125.50 0.0000

Model 4 Model 5

Coefficient Std. Error t-Statistic Prob. Coefficient Std. Error t-Statistic Prob.

α 0.0043 0.0017 2.53 0.0113 α 0.0043 0.0017 2.54 0.0112

φJ0 -1.6698 0.9138 -1.83 0.0676 φJ0 -1.6072 0.9128 -1.76 0.0783

θJ0 3.2773 0.8655 3.79 0.0002 θJ0 3.0325 0.8731 3.47 0.0005

φB10 -0.2633 0.1051 -2.51 0.0122 φB20 -0.3145 0.1502 -2.09 0.0363

θB10 0.7290 0.1034 7.05 0.0000 θB20 0.8049 0.1085 7.42 0.0000

φA10 -0.1813 0.1683 -1.08 0.2813 φA20 -0.1205 0.1018 -1.18 0.2366

θA10 0.9441 0.0836 11.29 0.0000 θA20 0.8408 0.0639 13.16 0.0000

φother -0.1721 0.0053 -32.48 0.0000 φother -0.1718 0.0053 -32.37 0.0000

θother 0.8404 0.0067 125.03 0.0000 θother 0.8397 0.0068 124.32 0.0000

Table 4.9: Estimated coefficients, their standard errors and t-tests for Models 1-5 for the 5-Year bond. Throughout

all the models, we use a unique correlation coefficient for the order flow: ρ̂ = 0.6928
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Model 1

Coefficient Std. Error t-Statistic Prob.

α 0.0034 0.0033 1.02 0.3101

φJ -0.1040 0.0430 -2.42 0.0155

θJ 1.3216 0.0419 31.55 0.0000

φNJ -0.2017 0.0119 -16.93 0.0000

θNJ 1.3647 0.0104 130.61 0.0000

Model 2 Model 3

Coefficient Std. Error t-Statistic Prob. Coefficient Std. Error t-Statistic Prob.

α 0.0035 0.0033 1.04 0.2988 α 0.0034 0.0033 1.02 0.3061

φJ0 -0.8359 1.7737 -0.47 0.6374 φJ0 -0.9096 1.7708 -0.51 0.6075

θJ0 0.0004 1.5499 0.00 0.9998 θJ0 0.5169 1.5494 0.33 0.7387

φB -0.0302 0.0803 -0.38 0.7073 φB5 0.5159 1.2391 0.42 0.6772

θB 1.0373 0.0964 10.76 0.0000 θB5 2.3117 0.9639 2.40 0.0165

φA -0.0882 0.0418 -2.11 0.0347 φA5 0.1530 0.2963 0.52 0.6056

θA 1.2630 0.0410 30.82 0.0000 θA5 1.7152 0.2743 6.25 0.0000

φNJ -0.2017 0.0119 -16.93 0.0000 φother -0.1902 0.0112 -16.92 0.0000

θNJ 1.3647 0.0104 130.61 0.0000 θother 1.3566 0.0099 136.74 0.0000

Model 4 Model 5

Coefficient Std. Error t-Statistic Prob. Coefficient Std. Error t-Statistic Prob.

α 0.0034 0.0033 1.03 0.3049 α 0.0036 0.0033 1.07 0.2864

φJ0 -0.9097 1.7711 -0.51 0.6075 φJ0 -0.8725 1.7801 -0.49 0.6240

θJ0 0.5198 1.5496 0.34 0.7373 θJ0 -0.0529 1.5444 -0.03 0.9727

φB10 0.2787 0.4956 0.56 0.5739 φB20 -0.3082 0.4060 -0.76 0.4478

θB10 1.5666 0.6596 2.37 0.0176 θB20 1.9321 0.5167 3.74 0.0002

φA10 -0.0195 0.2731 -0.07 0.9430 φA20 0.1541 0.1648 0.94 0.3498

θA10 1.5090 0.2892 5.22 0.0000 θA20 1.3630 0.1551 8.79 0.0000

φother -0.1909 0.0112 -17.05 0.0000 φother -0.1951 0.0115 -17.00 0.0000

θother 1.3562 0.0098 137.85 0.0000 θother 1.3591 0.0103 132.20 0.0000

Table 4.10: Estimated coefficients, their standard errors and t-tests for Models 1-5 for the 10-Year bond. Throughout

all the models, we use a unique correlation coefficient for the order flow: ρ̂ = 0.6725

1
1
6



4.3. Jumps and price discovery

This model estimates coefficients separately for days with jumps and days

without jumps. The results in Table 4.8 on page 114, Table 4.9 on page 115

and Table 4.10 on the preceding page indicate that coefficient estimates do

not vary much between days with jumps and days without jumps. For the 2-

and 5-year maturities, estimates for θJ are bigger than those for θNJ , while

for the 10-year maturity, the results are reversed.

Results from Model 1 confer us limited information concerning what hap-

pens when jumps take place. In order to gain further insights on how infor-

mation asymmetry changes around the jumps, we need to examine a more

narrow window around the jump occurrence. In Model 2, we separately es-

timate coefficients for the ‘jump window’, which is -/+ 2 minutes around

the jump time. Moreover, we split the days with jumps in intervals that

precede jumps and periods that follow them. Evidence for the 2- and 5- year

maturities indicate that information asymmetry raises up when jump occurs

(θ̂J0 = 1.38 for the 2-year bond and θ̂J0 = 2.96 for the 5-year bond) and

descends to lower levels for before and after the jumps and for days with

no jumps. For both maturities, θ takes higher values after the jump than

before. For the 2-year maturity, we have θ̂B = 0.29 and θ̂B = 0.36, while for

the 5 -year maturity we have θ̂B = 0.76 and θ̂B = 0.79. This is consistent

with findings in Green (2004), who shows that after macroeconomic news are

released, information asymmetry in the US Treasury market does not decline

immediately, but with a lag of 15 minutes following an announcement. In

addition, as indicated by Green (2004) the lower level of information asym-

metry before a jump occurrence might be indicative of no information leakage

before an announcement.

For the 10-year maturity, evidence for Model 2 is in part contradictory

with the findings for the first two maturities. The coefficient that captures

information asymmetry for the ‘jump window’ is not significant at 1% or

5% significance levels, with p-value of .99 (see Table 4.10 on the previous

page). What is consistent with the other findings is that the estimates of θ

are higher after the jump than before. We believed this might be because
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4.3. Jumps and price discovery

the ‘jump window’ (-/+ 2 minutes around the jump time) we used was too

narrow. Consequently, we extend this window to -/+ 5 minutes around the

jump time and widen all the other windows accordingly. Estimates of all the

models for the 10-year maturity are reported in Table A.2 in Appendix A. If

we look at results for Model 2, we observe that the estimate of θJ0 increases

to 1.14 and is significant at a 5% significance level, but remains lower than

θ̂A and θ̂NJ .

Further on, in Models 3- 5, we narrow our analysis to those intervals of

time that are very close to the time of the jump. Thus, we maintain the

‘jump window’ of -/+ 2 minutes around identified time of the jump, and

we further select wider windows before and after the jump. Thus, Model 3

captures the informativeness of the order flow 5 minutes before and after the

jump, Model 4 takes windows of 10 minutes before and after, while Model 5

considers windows of 20 minutes. For the 2- and 5 -year maturities, we notice

again very similar behaviors. Thus, for all the three models, we observe that θ̂

are very high at the jump time, they are quite low before the jump and remain

at higher levels after the jump. For the 2-year bond, for instance, θ̂J0 = 1.52

for all the three models, θ̂B is quite low, varying from 0.12 for Model 5 to

.34 for Model 3, while θ̂A is the highest for Model 3 and then it diminishes

as the window around the jump is enlarged, but remains however, above the

estimator for all the other observation, θ̂other. For the 2-year maturity, θ̂A is

.66 for Model 3, .57 for Model 4 and .51 for Model 5, while for the 5- year

maturity the estimate decreases from 1.44 for Model 3, to .94 for Model 4

and then to .84 for Model 5. Thus, evidence on these two maturities shows

that the occurrence of jump, as a result of new information arriving on the

market generates a lot of information asymmetry, which persists but at lower

levels as we get away from the jump time.

For the 10-year bond, results for Models 3-5 are reversed from the ones for

the first two maturities, but also from the ones for Model 2 for the same ma-

turity. θJ0 is again insignificant, while if we look at the estimated coefficients

for 5, 10 or 20 minutes before and after the jump occurrence, we observe
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4.3. Jumps and price discovery

that those estimated for the observations that precede the jump are higher.

This contradicts what we expect based on results for the other maturities

and also based on findings in Green (2004). However, Green (2004) includes

in his analysis only 5-year bonds and public announcements, not jumps.

The order processing cost parameter, φ , captures dealers’ compensation

for providing liquidity and theory suggests it should be positive. However,

our results are mixed. For the 5-year bond, estimates are negative for all the

models, just as in Green (2004). For the other maturities, coefficients are

sometimes positive and sometimes negative. A φ < 0 indicates that dealers

consume liquidity in the interdealer market and thus exhibit a sub-optimal

behavior, which Green (2004) suggests it might be due to the fact that they

are sufficiently compensated in the retail market.

If we look at all maturities and all models, we observe that the φ̂-s are

not significant not even at a 5% significance levels, for the jump windows, as

well as for the windows that precede or follow jumps. Unlike Green (2004),

who finds that φ̂ is higher before an announcement takes place than after,

we find mixed evidence when comparing the φ estimates before and after the

jump. φ̂ before the jump is consistently higher than the estimate after the

jump for the 2- and 10- year maturities, but the situation is reversed for the

5-year bond.

The above estimation procedure assumes and computes a constant corre-

lation of the order flow throughout the sample, which is reported within the

caption for each table. In Table 4.11 on the following page we report the or-

der flow autocorrelation coefficients for groups of observations formed on the

basis of the indicator functions from Models 1 - 5. When such data groups

are considered, we notice some variations in the correlation coefficients be-

tween the different sets of observations. Results for Model 1 for the 2-, 5- and

10- year maturities indicate that order flow seems to be more autocorrelated

in days with jumps than in days without jumps. If we split the days with

jumps in before and after intervals, as in Models 2 - 5, we notice that in all

cases autocorrelation within the ‘jump window’ is lower than before and af-
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4.3. Jumps and price discovery

2-Year 5-Year 10-Year 30-Year

Model 1 IJ,t 0.671 0.711 0.689 0.428

INJ,t 0.659 0.690 0.671 0.446

Model2 IJ,tIJ0,t 0.638 0.731 0.725 0.680

IJ,tIB,t 0.670 0.702 0.690 0.461

IJ,tIA,t 0.673 0.717 0.692 0.416

INJ,t 0.659 0.690 0.671 0.446

Model 3 IJ,tIJ0,t 0.638 0.731 0.725 0.680

IJ,tIB5,t 0.656 0.740 0.770 0.438

IJ,tIA5,t 0.716 0.800 0.795 0.312

Iother,t 0.661 0.692 0.672 0.443

Model 4 IJ,tIJ0,t 0.638 0.731 0.725 0.680

IJ,tIB10,t 0.677 0.741 0.745 0.433

IJ,tIA10,t 0.725 0.796 0.794 0.374

Iother,t 0.660 0.692 0.671 0.443

Model 5 IJ,tIJ0,t 0.638 0.731 0.725 0.680

IJ,tIB20,t 0.670 0.721 0.711 0.386

IJ,tIA20,t 0.713 0.790 0.778 0.421

Iother,t 0.660 0.691 0.671 0.443

Table 4.11: Autocorrelation coefficients of the signed order flow. Different

coefficients are computed for different groups of observation. The grouping criteria

is given in column 2 by the indicator functions

ter the jump, and is highest after the jump. This is consistent with the fact

that once relevant information arrives on the market, the trading activity

explodes, with traders interpreting news based on the observed order flow

(Green, 2004). This is why high levels of autocorrelation are also associated

with high levels of information asymmetry.

Given the differences in the autocorrelation of the order flow between

different time windows considered, we wondered whether this could affect

the results of the estimations of Models 1 - 5. Consequently, for the 2- year

bond, we re-estimated all the models, by considering varying autocorrelation

coefficients, as reported in Table 4.11. The estimation output is included in

Table A.3 on page 131 in Appendix A. The main consequence of considering

different correlation coefficients is that for the ‘jump window’, as a result
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4.4. Conclusions

of a lower autocorrelation in the order flow, the information asymmetry pa-

rameter decreases as well. For instance, for Model 2, θ̂J0 was 1.37 when we

used a unique autocorrelation coefficient in the estimation, which decreases

to 1.29 when different correlation coefficients are used. Apart from this,

within each model, the hierarchy of the coefficients in terms of size does not

change. Thus, the θ coefficients are the highest for the ‘jump window’ and

jump days and are higher after a jump takes place than before its occurrence.

For brevity, we do not report results based on varying correlation coefficients

for the other maturities here.

4.4 Conclusions

The present chapter attempts to clarify different aspects concerning the

behavior of some market characteristics when jumps occur in the US Treasury

market, as well as to identify causes and possible predictors of jumps.

We detect and estimate jumps in the US Treasury 2-,5-,10- and 30-year

bonds both on a daily basis, by using the standard Barndorff-Nielsen and

Shephard (2004) test for jumps, as well as at an intraday level, by applying

the Andersen et al. (2007)-Lee and Mykland (2008) procedure with a correc-

tion for periodicity to our local volatility estimates proposed by Boudt et al.

(2009). We find that the 2-year bonds jump in 14.5% of the days, the 5-year

in 10.6%, the 10-year in 9.6% and finally the 30-year in 17.91% of the days.

Moreover, when taken two by two, bonds tend to co-jump in approximately

20 days. This is because bonds usually experience jumps in their prices as a

result of the same news announcements. However, when all 4 maturities are

considered, we find only 5 overall co-jumps.

We also examine the behavior of several market activities in the proximity

of a jump. We consider here liquidity measures, such as spread and depth of

the market, as well as the trading volume and the orderflow . We find that

in the 5 minutes before a jump, liquidity withdraws, and then it raises again.

However, we do not consider this decrease in liquidity as predictive of jumps,

121



4.4. Conclusions

but as another measure of the same thing. In other words, we consider them

endogenous, and having both other determinants, such as announcement

surprises. The trading volume falls before in the 5-10 minutes before a jump

takes place and increases again afterward. For the orderflow, which we expect

to have some predictive power for the next jumps, we cannot find a clear

pattern in all cases.

When we consider the different news releases during January 2003 to

March 2004, we find that the majority (around 90%) of the jumps occur at

the same time or slightly after an announcement. Moreover, the standard-

ized announcement surprise is found to be an important determinant of the

probability of jump occurrence.

Finally, we dedicate a very large part of this chapter to examine the

impact of trading on bond prices in the nearness of jumps. We find that for

the 2- and 5- year maturities, the level of information asymmetry increases

immediately after jumps occur, due to the arrival of new information on the

market, and then remains at a high level up to 20 minutes after the jump.

Before a jump takes place, there is a low degree of informational asymmetry,

consistent with a low extent of information leakage. For the 10-year bond,

results are a bit contradictory with the ones for shorter maturities, as we

detect a higher level of information asymmetry before than after the jump.

However, this parameter remains always higher for the windows around the

jump times than when no jumps occur.
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5
Conclusions and further developments

The present thesis enriches the existing literature in the field of high fre-

quency econometrics through contributions in the area of jump identification

and estimation from both a methodological and applied point of view. From

a methodological point of view, the thesis presents various volatility esti-

mators and jump detection procedures and offers viable solutions as to how

users should identify jumps in the prices of financial assets. From an applied

point of view, the present research reports very interesting novel results con-

cerning the price formation process for the US Treasury bonds when jumps

occur on the market. The thesis is made up of three independent essays.

The first essay, entitled “The use of high frequency data in estimating

volatility and detecting jumps in the prices of financial assets”, confers ra-

tionales concerning the importance of taking jumps into consideration in the

financial literature and reviews the latest nonparametric volatility estimators

based on high frequency data. This chapter emphasizes methodologies that

contribute to jump detection and estimation. Thus, the literature review cov-

ers both robust and non-robust to jumps estimators, as well as various jump

detection procedures recently proposed in the literature. Both the univariate

and the mutivariate frameworks are considered. Moreover, given that real

prices are always contaminated with microstructure noise, we also describe

the solutions in the existing literature concerning volatility estimation in the

presence of noise.
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The second essay, entitled “Identifying jumps in financial assets: a com-

parison between nonparametric jump tests”, comprises a thorough compar-

ison among five jump identification procedures proposed in the literature of

high frequency econometrics over the last decade: the Andersen et al. (2007)-

Lee and Mykland (2008), the Aı̈t-Sahalia and Jacod (2008), the Barndorff-

Nielsen and Shephard (2006a), the Jiang and Oomen (2008), and the Podol-

skij and Ziggel (2008) tests. To this end, we simulate different price processes,

closely following the simulation design in Huang and Tauchen (2005), and

evaluate the size and power properties for all procedures. One of the main

objectives of this research is to understand whether the performance of the

tests can be related to some characteristics of the data. Thus, within the

simulation design, we vary the sampling frequencies, the levels of volatility,

the persistence in volatility, the degree of contamination with microstructure

noise, the jump size and intensity. The analysis is also extended to real high

frequency data on US Treasury bonds, in order to compare the behavior of

the tests in this context. Results reveal the Lee and Mykland (2008) and An-

dersen et al. (2007) intraday tests, as well as the Podolskij and Ziggel (2008)

one as the best procedures, as they combine good power properties with a

manageable size and more robustness to microstructure noise. We provide

a comprehensive table that summarizes the results, but mainly helps users

in choosing one of these tests according to some particular characteristics

of the data. Another contribution of this chapter deals with the problem

of jump identification in the presence of finite samples and microstructure

noise. In this respect, we show that potential users of these procedures can

gain advantages by combining them through both reunions and intersections

across procedures and across sampling frequencies. Such an approach delivers

better results in terms of the combined size and power criteria.

The third essay, entitled “Jumps and price discovery in the US Treasury

market”, explores different aspects related to the price discovery process for

the US Treasury bonds when jumps occur. We identify and estimate jumps

in the US Treasury 2-,5-,10- and 30-year bonds both on a daily basis, by using
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the standard Barndorff-Nielsen and Shephard (2004) test for jumps, as well

as at an intraday level, by applying the Lee and Mykland (2008) procedure

with a correction for periodicity to our local volatility estimates proposed by

Boudt et al. (2009). Results show that US Treasury bonds exhibit jumps in

their prices in 14.5% of the days for the 2-year maturity, in 10.6% for the

5-year bond, 9.6% for the 10-year and finally in 17.91% of the days for the

30-year bond. Then, the behaviour of different market characteristics, such

as liquidity measures, trading volume and order flow, when jumps occur is

examined. We find that in the 5 minutes before a jump, liquidity withdraws,

and then it raises again. The trading volume falls in the 5-10 minutes before

a jump takes place and increases again afterward. In addition, we examine

the causes of jumps in the term structure and find that around 90% of the

jumps occur at the same time or slightly after macroeconomic announce-

ments. Moreover, the standardized announcement surprise is revealed to be

an important determinant of the probability of jump occurrence. Finally, we

dedicate a large part of this chapter for exploring the impact of the trading

activity on prices in the proximity of jumps. The interesting results can be

summarized as follows. The trading information is found to have a low im-

pact on prices before a jump takes place, which increases to a very high level

immediately after the jump and then dissipates gradually, maintaining itself

at quite high levels up to 20 minutes after a jump occurs.

Further research We plan to broaden the research undertaken in this

thesis in two different directions. The first direction closely follows the work

in the third chapter of the thesis. On one hand, we plan to extend the analysis

on US Treasury bonds to a larger database. We intend to use data on the

2-, 5-, 10, 30- year US Treasury bonds for a period between 2003 and 2008.

This might reveal additional highlights on the microstructure of the market

when jumps take place and might allow for the set-up of trading strategies.

On the other hand, we would like to perform an analysis similar to the one

in Chapter 4 on stock data. Such an endeavor is of great importance as
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different markets have different microstructure particularities and react very

differently to various types of information.

The second direction concerns the construction of a robust to jumps

nonparametric covariance estimator. Transferring the different nonparamet-

ric volatility estimators from a univariate to a multivariate context is not

straightforward. This because, for any two financial assets, observations are

not synchronous, that is they are not observed at the very same time, which

can lead to an underestimated covariance between the two (Epps effect). We

are interested in defining a covariance estimator that overcomes the problem

of nonsynchronicity and that is also robust to jumps. We plan to develop the

limit theory for this estimator, as well as to study its finite sample properties

and its behaviour when applied to real data. Disentangling from the overall

covariance the part generated by jumps leaves us with the persistent part

that can be modelled and forecast. This is extremely valuable for portfolio

allocation, risk management and hedging.
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Model 1

Coefficient Std. Error t-Statistic Prob.

α -0.0257 0.1051 -0.24 0.8069

φJ -0.7431 0.5968 -1.25 0.2131

θJ 3.8223 0.5850 6.53 0.0000

φNJ -1.1816 0.2124 -5.56 0.0000

θNJ 3.4496 0.2053 16.80 0.0000

Model 2 Model 3

Coefficient Std. Error t-Statistic Prob. Coefficient Std. Error t-Statistic Prob.

α -0.0237 0.1049 -0.23 0.8215 α -0.0273 0.1045 -0.26 0.7938

φJ0 -24.9491 17.4855 -1.43 0.1536 φJ0 -24.9511 17.7134 -1.41 0.1590

θJ0 16.9362 13.7566 1.23 0.2183 θJ0 19.1459 13.8811 1.38 0.1678

φB 0.6611 1.1087 0.60 0.5510 φB5 -0.2331 6.8353 -0.03 0.9728

θB 2.9124 1.0484 2.78 0.0055 θB5 6.5974 2.3795 2.77 0.0056

φA -0.8181 0.7015 -1.17 0.2436 φA5 -4.7729 15.2462 -0.31 0.7542

θA 3.7285 0.6788 5.49 0.0000 θA5 23.9930 15.0539 1.59 0.1110

φNJ -1.1817 0.2124 -5.56 0.0000 φother -1.0746 0.1983 -5.42 0.0000

θNJ 3.4497 0.2053 16.80 0.0000 θother 3.4392 0.1918 17.93 0.0000

Model 4 Model 5

Coefficient Std. Error t-Statistic Prob. Coefficient Std. Error t-Statistic Prob.

α -0.0239 0.1044 -0.23 0.8190 α -0.0282 0.1045 -0.27 0.7875

φJ0 -24.9523 17.7136 -1.41 0.1589 φJ0 -24.0574 17.2641 -1.39 0.1635

θJ0 19.1466 13.8809 1.38 0.1678 θJ0 14.9826 13.0245 1.15 0.2500

φB10 2.6739 5.4653 0.49 0.6247 φB20 3.0304 3.7612 0.81 0.4204

θB10 6.1792 4.3859 1.41 0.1589 θB20 5.3797 2.9308 1.84 0.0664

φA10 -6.7657 7.8044 -0.87 0.3860 φA20 -5.7990 4.7319 -1.23 0.2204

θA10 14.4657 7.3015 1.98 0.0476 θA20 8.6947 4.4831 1.94 0.0525

φother -1.0610 0.1986 -5.34 0.0000 φother -1.0608 0.1986 -5.34 0.0000

θother 3.4417 0.1917 17.96 0.0000 θother 3.4414 0.1917 17.96 0.0000

Table A.1: Estimated coefficients, their standard errors and t-tests for Models 1-5 for the 30-Year bond. Throughout

all the models, we use a unique correlation coefficient for the order flow: ρ̂ = 0.4430
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Model 2 Model 3

Coefficient Std. Error t-Statistic Prob. Coefficient Std. Error t-Statistic Prob.

α 0.0035 0.0033 1.04 0.2988 α 0.0034 0.0033 1.02 0.3076

φJ0 -0.1817 0.7828 -0.23 0.8164 φJ0 -0.1950 0.7817 -0.25 0.8030

θJ0 1.1431 0.5225 2.19 0.0287 θJ0 1.6079 0.5288 3.04 0.0024

φB -0.0606 0.0870 -0.70 0.4865 φB5 -0.6672 0.9869 -0.68 0.4990

θB 1.0102 0.0911 11.09 0.0000 θB5 2.1253 1.1136 1.91 0.0563

φA -0.0927 0.0413 -2.25 0.0247 φA5 0.0205 0.3248 0.06 0.9497

θA 1.2527 0.0402 31.15 0.0000 θA5 1.3736 0.3089 4.45 0.0000

φNJ -0.2017 0.0119 -16.93 0.0000 φother -0.1906 0.0112 -17.04 0.0000

θNJ 1.3647 0.0104 130.61 0.0000 θother 1.3562 0.0098 137.98 0.0000

Model 4 Model 5

Coefficient Std. Error t-Statistic Prob. Coefficient Std. Error t-Statistic Prob.

α 0.0035 0.0033 1.05 0.2914 α 0.0036 0.0033 1.07 0.2852

φJ0 -0.1597 0.7964 -0.20 0.8411 φJ0 -0.1475 0.8011 -0.18 0.8540

θJ0 1.2609 0.5186 2.43 0.0151 θJ0 1.0923 0.5119 2.13 0.0328

φB10 -0.3350 0.7356 -0.46 0.6488 φB20 -0.6106 0.4776 -1.28 0.2010

θB10 1.7748 0.6770 2.62 0.0088 θB20 1.8977 0.5145 3.69 0.0002

φA10 0.0997 0.2567 0.39 0.6978 φA20 0.1240 0.1614 0.77 0.4422

θA10 1.3958 0.2513 5.55 0.0000 θA20 1.3062 0.1535 8.51 0.0000

φother -0.1928 0.0112 -17.25 0.0000 φother -0.1934 0.0112 -17.22 0.0000

θother 1.3567 0.0098 137.98 0.0000 θother 1.3570 0.0099 137.44 0.0000

Table A.2: Estimated coefficients, their standard errors and t-tests for Models 2-5 for the 10-Year bond, for a ‘jump

window’ of -/+ 5 minutes. The other time windows around the jump time are adjusted accordingly to the ‘jump window’.

For instance, for Model 3, which considers a -/+ 5 minutes window around the jumps, the real window is of -/+ 10 minutes

around the jump time, as identified in Section 4.2.2 on page 97. Throughout all the models, we use a unique correlation

coefficient for the order flow: ρ̂ = 0.6609.
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Model 1

Coefficient Std. Error t-Statistic Prob.

α 0.0035 0.0012 2.94 0.0032

φJ 0.0189 0.0143 1.32 0.1872

θJ 0.3880 0.0122 31.81 0.0000

φNJ 0.0478 0.0040 11.91 0.0000

θNJ 0.3237 0.0036 90.58 0.0000

Model 2 Model 3

Coefficient Std. Error t-Statistic Prob. Coefficient Std. Error t-Statistic Prob.

α 0.0034 0.0012 2.90 0.0037 α 0.0034 0.0012 2.88 0.0039

φJ0 -0.7647 0.5206 -1.47 0.1419 φJ0 -0.7454 0.5193 -1.44 0.1512

θJ0 1.2906 0.4030 3.20 0.0014 θJ0 1.4301 0.3989 3.59 0.0003

φB 0.0576 0.0249 2.31 0.0209 φB5 0.1959 0.1394 1.40 0.1600

θB 0.2935 0.0199 14.76 0.0000 θB5 0.3398 0.0596 5.70 0.0000

φA 0.0178 0.0127 1.39 0.1635 φA5 -0.2651 0.1397 -1.90 0.0577

θA 0.3734 0.0115 32.43 0.0000 θA5 0.7977 0.1128 7.07 0.0000

φNJ 0.0478 0.0040 11.91 0.0000 φother 0.0463 0.0038 12.26 0.0000

θNJ 0.3236 0.0036 90.58 0.0000 θother 0.3290 0.0034 97.70 0.0000

Model 4 Model 5

Coefficient Std. Error t-Statistic Prob. Coefficient Std. Error t-Statistic Prob.

α 0.0034 0.0012 2.87 0.0041 α 0.0034 0.0012 2.88 0.0039

φJ0 -0.7453 0.5193 -1.44 0.1512 φJ0 -0.7520 0.5212 -1.44 0.1491

θJ0 1.4308 0.3989 3.59 0.0003 θJ0 1.3293 0.4043 3.29 0.0010

φB10 0.1415 0.0809 1.75 0.0802 φB20 0.1160 0.0624 1.86 0.0629

θB10 0.2581 0.0500 5.16 0.0000 θB20 0.2735 0.0436 6.27 0.0000

φA10 -0.2156 0.0871 -2.48 0.0133 φA20 -0.1471 0.0523 -2.81 0.0049

θA10 0.7051 0.0756 9.33 0.0000 θA20 0.5976 0.0472 12.65 0.0000

φother 0.0472 0.0038 12.50 0.0000 φother 0.0483 0.0038 12.74 0.0000

θother 0.3273 0.0034 97.58 0.0000 θother 0.3252 0.0034 96.68 0.0000

Table A.3: Estimated coefficients, their standard errors and t-tests for Models 1-5 for the 2-Year bond. Throughout

all the models, we use different values for the autocorrelation coefficient for the order flow, as resulting from Table 4.11 on

page 120
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