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Abstract

The thesis presents the development of an h-multigrid solver for high-order
accurate discontinuous Galerkin (DG) discretizations of non-linear systems
of conservations laws on unstructured grids.

For this purpose, a high-order DG discretization on polyhedral grids is
developed first and it is applied to the compressible Navier-Stokes equa-
tions. The proposed method employs shape functions, consisting of com-
plete polynomials defined in the real space, which are hierarchic and or-
thonormal on arbitrarily shaped elements. As regards the discretization of
the viscous terms of the Navier-Stokes equations, we use the well-known
method introduced in [6] with suitably enlarged values of the stability pa-
rameter reported in [1]. The accuracy and the convergence properties of
the method have been tested against classical inviscid problems such as the
transonic Ringleb flow and the subsonic flow over a Gaussian bump. The
Helmholtz problem and the solution of the Navier-Stokes equations around
a NACAO0012 airfoil have been used as viscous tests.

Then we present the development of an h-multigrid method where coarse
grid levels are constructed by agglomerating neighbouring elements of the
fine grid. First, an elegant yet practical set of transfer operators is de-
rived for general space settings and for the current one. After that, a
quasi-implicit multistage A-multigrid iteration strategy for the discontinu-
ous Galerkin discretization of the steady Euler equations is developed and
numerically investigated. Results are presented for a subsonic flow over
a NACAOQ0012 airfoil at 2° of incidence. These results highlight the main
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properties of the developed multigrid scheme and its different behaviour
with respect to the classic p-multigrid scheme.
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Chapter

Introduction

1.1 Motivation

Modern Computational Fluid Dynamics (CFD) simulations require mo-
dels that provide a faithful representation of flow physics and high-order
of accurate algorithms. In this context, high-order spatial discretizations
can improve the predictive capabilities of simulations in many applications.
This is due to the fact that the higher is the discretization order the faster
is the asymptotic convergence rate of the error. For example, fourth-order
accurate spatial discretisations reduce the error by a factor of 2% each time
the mesh resolution is doubled, while, using a second-order accurate spatial
discretisation!, the error is reduced only by a factor 22. Since a doubling
of mesh resolution entails an increase of overall work by a factor of 4 in
2D and of 8 in 3D, achieving an arbitrarily prescribed error tolerance with
second-order accurate methods in 3D can quickly become unfeasible. Thus,
for increasingly higher accuracy high-order methods ultimately become the

! Actually most currently employed CFD algorithms are asymptotically second order-
accurate in space. These are usually second order finite volume methods, which are
constructed by employing a second order reconstruction. Going further to a third order
reconstruction on unstructured meshes is very cumbersome or even virtually impossible.
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method of choice.

Among high-order methods, discontinuous Galerkin methods have become
increasingly popular in several branches of numerical physics, owing to their
sound mathematical foundation and to their easiness of implementation.
The order of DG methods, applied to problems with regular solutions, de-
pends on the degree of the polynomial approximation which can be easily
increased, dramatically simplifying the use of higher order methods on un-
structured grids. Furthermore, the stencil of most DG schemes is minimal in
the sense that each element communicates only with its direct neighbours.
In contrast to the increasing number of elements or mesh points communi-
cating for increasing accuracy of finite volume methods, the inter-element
communication of DG methods is the same for any order. The compactness
of the DG method has clear advantages in parallelization, which does not
require additional element layers at partition boundaries. Also due to sim-
ple communication at element interfaces, elements with “hanging nodes”
can be treated just as easily as elements without “hanging nodes”, a fact
that simplifies local mesh refinement? and the use of polyhedral elements.
In addition to this, the communication at element interfaces is identical for
any order of the method which simplifies the use of methods of differing
orders in adjacent elements?.

Unfortunately straightforward implementations of DG methods can readily
become unacceptably costly.

Because of the discontinuities, the DG approximation is doubly valued at
the interior cell boundaries, therefore, for a regular mesh and a given order
of accuracy, we solve a larger system of discrete equations, compared with
the classical finite element method. This leads to some inefficiency when
simple smooth functions are approximated.

Moreover, due to the stringency of the CFL constraint, explicit Runge-
Kutta schemes for time integration require too many time steps for con-
vergence. Conversely, due to the large amount of degrees of freedom, fully
implicit schemes for time integration require a very large amount of com-

2A clear advantage in h-adaptivity
3A clear advantage in p-adaptivity (polynomial degree adaptation)
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putational resources in order to achieve a prescribed level of accuracy.
Therefore the development of optimal, or nearly optimal solution strate-
gies for DG discretizations, including steady-state solution methodologies,
remains one of the key determining factors in devising high-order methods
which are not just competitive but superior to low-order methods in overall
accuracy and efficiency.

1.2 Background

Recent works have examined the use of spectral multigrid methods, where
convergence acceleration is achieved through the use of coarse levels con-
structed by reducing polynomial order inside the element (as opposed to
coarsening the mesh) for discontinuous Galerkin discretizations [11],[5],[12].
Then the method was improved by implicit multilevel techniques for high-
order discretizations [9] and combined to h-multigrid at p = 0 level [13], [14].
Furthermore, in [13] and [14] is developed a solution algorithm which de-
livers convergence rates which are independent of p (the polynomial degree
inside each element) and independent of h (the degree of mesh resolution),
making use of p-coarsened and h-coarsened multigrid levels.

In the following it is presented an alternative multigrid approach for DG
methods. Indeed, making use of shape functions defined in the real space,
it is possible to devise a multigrid method, where convergence acceleration
is achieved through the use of coarse levels constructed by agglomerating
neighbouring elements (coarsening the mesh) and keeping unchanged the
polynomial degree.
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Chapter

Discontinuous Galerkin
discretization on polyhedral grids

Further it is presented a simple yet smart way to obtain high-order dis-
continuous Galerkin discretizations of hyperbolic equations on polygonal
grids. As a matter of fact, once proper shape functions and integration
rules are defined, the aimed discretization will be straightforward and it
will not require any additional theoretical consideration, in respect of DG
discretizations on “classic” grids.

2.1 Introduction

Let us consider the numerical solution of any hyperbolic PDE in the con-
servative form,

ou+V - -f(u)=0 in Q x [0,t], (2.1)

where Q C R?, u is the state vector and f(u) is the vector flux function.
In order to discretize eq. (2.1) in space it is necessary to provide both a set
of suitable shape functions on the domain €2 and a means of evaluating the

5



Discontinuous Galerkin discretization on polyhedral grids

weak-form integrals on the domain.

Firstly ., approximation of €2, is partitioned into an ensemble of non-
overlapping elements Kj., which is called 7;, = {K;c}'° ,, triangulation of
Qp. Then, the solution is approximated on 7; as piecewise polynomial
function possibly discontinuous on element interfaces. As a matter of fact,
in discontinuous Galerkin space discretization, the global discrete solution
up(x,t), x € Qp, has no continuity requirements at element interfaces,

1.e. we assume the following space settings :

uy, € Vh = [Vh] , N = number of unknowns, (2.2)

where

Vh déf {Uh c LQ(Qh) : Uh‘Kie € Pk(Kie) VKZ‘E c %} s

being Py (K;.) the space of polynomials of global degree at most k on the
element K;.. In other words, the DG approach results in solution ap-
proximations which are local, discontinuous, and doubled valued on each
elemental interface. So that any discrete solution uy can be decomposed
on

nv (k+1)(k+2)/2
ne = number of elements

{{ v ze}w 1S ie— 17 where : s (23)

basis of V}, space.
The discontinuous space Vj, implies that bj,, ie(x) = 0 Vx ¢ K;. and that
uy,, on any element K;., can be written as :

up X t ’K Z Uw ze w ie(x) Vx € K (2.4)

w=1

The potential of geometrical flexibility of DG methods, relying on the lack
of basis continuity requirements on elemental interfaces, can be exploited
in many ways.

A set of modal, hierarchical and orthonormal basis functions is useful to
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construct very simple restriction and prolongation operators for p-multigrid
methods, [13] [14].

Lagrangian basis functions, with the interpolation nodes located in the
cubature nodes, can be employed to implement a collocation method, re-
ducing computational time needed to evaluate integrals and simplifying the
form of the jacobian matrix, [20] [21].

Hereinafter it will be presented a further extension of the potential geome-
trical flexibility of the discontinuous Galerkin space discretization. Indeed,
it is possible to derive the discretization of eq. (2.1) over a triangulation
of non-overlapping polyhedral elements. As already pointed out, the space
discretization “ingredients” are a proper set of shape functions and a means
of evaluating weak-form integrals on the domain.

In conventional finite element methods, polynomial shape functions are
usually defined on quadrangular and triangular canonical elements, then
the discretization of eq. (2.1) is derived in the reference space by means of
the transformations from canonical elements to the real ones. Conversely,
when dealing with polygonal elements, it is impossible to define a canonical
element, hence polynomial shape functions should be defined directly in the
real space.

Furthermore optimal cubature rules cannot be derived on generic poly-
gons and polyhedra. Then each element is partitioned into sub-regions of
conventional type and the integration node locations are taken to be the
mapping in the real space of sub-region cubature nodes. Aiming to compu-
tational efficiency, the use of reduced integration rules in sub-elements was
investigated.
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Figure 2.1: Discontinuous discretizations in two neighbouring elements
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2.2 Basis functions

Basis functions are defined as complete polynomials in the real space. A
modal hierarchic set of basis functions can be defined on any polyhedral

element K. as :
My (X)

biU(X) = 5 (2.5)

Smiv

where :

e m;,(x) refers to the 0! component of an ordered list of monomials

m p, which is defined by choosing the space of polynomials IP;. For
example, if Py is the space of polynomials of degree at most 2 in 2D,
mlP’Q(X) — {15 Ty, T2, x%a 1T, CE%}

e x = (x1, z3) are coordinates in a local reference frame defined by the

element principal axes. The origin of the reference frame is located
in the element center of mass,

/ x1 dx =0, / 9 dx =0, (2.6)
Kie Kie

and frame axes are rotated in order to diagonalize the element inertia
tensor,

/ r1x2 dx =0 (2.7)
Kie

® S, is a scaling factor defined as
Smy = / m?,(x) dx (2.8)
Kie

The choice of element principal axes to define the local reference frame
produces a diagonal mass matrix for Py space discretizations, for (2.6) and
(2.7). Moreover, the scaling s,,,, insures that all diagonal terms of the mass

matrix equal one,
M; ;=1 VieNg,,', (2.9)

'Notation N(1, nv) indicates the set of natural numbers from 1 to nv.
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and that all the off-diagonal terms of the mass matrix satisfy the relation

ML ;| < /MM =1 Vi, 5 € Ny - (2.10)

The previous relation is derived by means of the Cauchy-Schwartz inequa-
lity,

2 2
i i ax - X - dAX
M, 5| = S, mim; dx < e L M, M, ;
L] S s — 82 82 - 1,1 1]
mg;<m; m; m;

In practice, using grids of polyhedral elements with low aspect ratios?, it
can be observed that many off-diagonal terms of M respect the relation
|M; ;| < Mj j, effecting M to be strictly diagonally dominant?.

Then the set of basis functions described so far produce a well-conditioned
mass matrix for approximations on elements with low aspect ratios. In facts
the condition number for a real, symmetric and positive definite matrix A
reads

—_ AIrla)(
K> (A) = [[Al2 A7 2 = 77 (2.11)

)\min

Furthermore the Gershgorin theorem states that the eigenvalues of A € R"*"
belong to Sk, which reads

Sk dngRl-, R, ={z€eR: |Z—Ai,i| §Z|AZ,J|}’ (2.12)
i—1 i

2The elemental aspect ratio, , is defined as

l2

S

<|%.

X2p or Xsp = )
where [, s, S and V are respectively the perimeter, the surface, the boundary surface
and the volume of an element. Then, minimizing aspect ratios is equivalent to construct-
ing elements which are circular symmetric (or spherical symmetric in 3D) about their
barycenters.

3 A square matrix A is called diagonally dominant if |A; ;| > > iz | A for all i. A
is called strictly diagonally dominant if [A; | >3, [A; ;| for all 4.
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where R; are called Gershgorin circles. Then, an upper bound for mass
matrix condition number reads

)‘max 1 + €
Ky (M) = = 2.13
2( ) >‘min - 1- 8, ( )
where
nv
e = max 03 Myl o - (2.14)

J#i
Conversely, these basis functions yield an ill-conditioned mass matrix for

high polynomial degree approximation on elements with curved sides and
high aspect ratio.

1012\\\\| INEEERE | R | UL |

10° |

10°|-

¥ ———¥

100\\\\| Ll R | R |

10° 10" 10° 10
p

Figure 2.2: Mass matrix condition number for different ratios and polyno-
mial degrees

In facts, considering a quadrilateral whose sides approximate a circumfe-
rence arc of 7/8, the mass matrix condition number increases when rising
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either the elemental aspect ratio or the polynomial degree of the approxi-
mation (figure 2.2). Unfortunately in many aerodynamic applications the
use of this kind of elements is required. For example, in viscous cases at
high Reynolds number, in order to approximate correctly the boundary
layer over a NACA airfoil, boundary elements are constructed curved and
stretched.

The set of basis functions, described so far, can be further improved by
means of a numerical procedure, see section 2.5. However, the higher is the
condition number of elemental mass matrices, associated to starting sets
of shape functions, the more detrimental is the effect of round-off errors in
that numerical process. Hence, previous considerations play a leading role
in further sections too.

2.3 Integration

In one dimension, the notion of optimality of an integration rule can be
clearly defined. Cubature rules on quadrilaterals and hexahedra are ge-
nerally obtained by tensor product of 1D quadratures, instead cubature
rules on triangles, tetrahedrons, prisms and pyramids can be obtained from
the previous cubatures by using a proper mapping (see appendix A). On
generic polygons or polyhedra, however, no parallel notion of optimality
can be formulated, then a different approach has to be considered.

Integration on the element boundary is performed computing separately
the contribute of all faces, which are of conventional type (edges in 2D),
and then summing them together. The same idea is exploited to integrate
on generic polygons. Indeed, the more natural solution lies in partitioning
the element into ng. sub-regions of conventional type. Then, integration
node locations are taken to be the mapping in the real space of sub-region
cubature nodes and integration node weights equal the corresponding sub-
region cubature weights (figure 2.3). Thus, integration rules on generic
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polyhedral elements are derived as follows :

[ piax =

= X [ p@®) g, (2.15)

Jse

= Y D p(TeRise)) [z, | wise

Kse€K i=1
where :
e x and X refer to coordinates in real and reference spaces, respectively
o K is a sub-element belonging to K

° Ase is the mapping of the canonical element K se onto the physical
sub-element K. and |J7 | is the related jacobian

° T\se@@ se) is the location of the i*" cubature node of K. in the real
space and w; s is the corresponding weight

2.4 Reduced integration rules

Integration on polyhedral elements can be very expensive. Indeed, eq. (2.15)
shows that integrating p(x) in the real space is equivalent to integrating
p(Tee(X)) |J7. | in the reference space. Then, computing terms of elemen-
tal mass matrices requires cubature rules which integrate polynomials of
degree

2k kg, + kg, | (2.16)

“Where k kz._ is the degree of p (fse(ﬁ)) in the reference space.
In facts, p(x) € Pr(x) and fse(ﬁ) is a polynomial which belongs either to Py (%),
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reference space real space
Ti(x:)
X _
’ To(x:)
X1

Figure 2.3: Any reference space cubature node Z; is mapped in real space
sub-regions by means of the proper transformation 7T}

on the canonical element, for each sub-element K. belonging to the poly-
gonal element K.

The computational cost of integration on polygonal elements becomes un-
acceptably large when increasing either the order of the geometrical appro-
ximation kﬂe or the number of sub-elements K. € K. Therefore, in order
to improve computational efficiency, it was derived an adaptive criterion
to reduce integration rules for the fine elements composing a polyhedral
element.

for triangles, or to Qkf (X), for quadrangles, where que is the order of geometrical
approximation €2;,. Thus,

~ ]P)k PkA (i) = PkkA (ﬁ) triangles
p(Tse(X)) € e A) e
Pr (Qky,. (x)) = Qkky (X) quadrangles

(refer to appendix B)
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Aiming to integrate accurately the terms of elemental mass matrices, we
define, for any product of shape functions® , the integration error

B (K) . |IK,appro:v(SDivSDjv) - IK, emact(@ivgpjvﬂ (2 17)
0, JU - ’ :
! ool Lory [P0l La(x)

which, for a set of shape functions scaled by their Ly norms, as in (2.5),
reads :

Eiv,jv(K) = |IK7 approm(@iv@jv) - IK, e:vact(%piv@jv” 5 (218)

where Ig, ezact(-) and Ik appros(-) refer to integrals computed by means
of cubatures which integrate, on the reference element K , polynomials of
degree equal to (2.16) and less than (2.16), respectively. Then we reduce
the integration rule until the condition

 Imax {Eiv, jo(K)} < tol (2.19)
1< jv<nw
is satisfied.
The inequality (2.19) and the definition (2.17) set up a criterion to reduce
integration rules in conventional elements. For example, we consider a set
of polynomial functions, as defined in (2.5), which are a basis for Pio(K)
space, where K is a quadrangle whose sides are approximated by cubic
polynomials. According to (2.16) it is necessary to use a cubature which
integrates a polynomial of order 65 (=210 -3+ 5), but, even admitting a
little error (tol = 10719), the integration rule can be significantly reduced
(figure 2.4). Moreover, as it was expected, figure 2.4 shows that the more
“distorted” is the geometry the higher is the requested cubature order.

The inequality (2.19) controls the integration error on the whole element
K. Conversely, in order to deal with polygons, integration errors and their

5The notation {@iv }iv—1 refers to any set of polynomials which are a basis for Py (K. )
space.
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(b) Aspect ratio distortion
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Figure 2.4: Integration error versus cubature order in curved quadrangles

upper bounds should be defined locally to each sub-region Ky, € K. Thus,
“exploding” twice the left term of (2.19) by means of the triangle inequality

max {Ej jo(K)} < max ¢ > Eyju(Ke)p <

1<iv<nwv 1<iv<nwv
1<jv<nv 1<jv<nv Kse€K
< E max {Ejy jo(Kse)} | » (2.20)
1<iv<nw

Kse€ K \1<jv<nv

we extract from the global integration error in K the local contributes
related to any sub-element Ky € K. Then any local contribute to the
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global integration error is bounded by a suitable portion of the admitted
error

- @ivll Lo (K Pg0] Lo (K se) tol

g;’gzg ||80iv||L2(K)HSDJvHL2(K)

max {Eiy ju(Kee)} < VKg € K. (2.21)

Finally, we note that (2.21) implies

 nax {Eiv, jo(K)} < \/nk,, tol , (2.22)
1<jv<nv

where ng,, in the number of Ky, € K, which equals (2.19) if ng,, = 1.

Some results concerning the use of reduced integration rules on polyhedral
elements are presented in section 3.6. The effect of reduced integration
rules is tested in terms of accuracy and CPU time.

2.5 Hierarchic orthonormal shape functions

In section 2.2 we described a modal hierarchic set of basis functions which
could be defined on any polyhedral element. That set is well-suited for many
applications, nevertheless the use of hierarchic orthonormal shape functions
is preferable. In facts, in that case, mass matrices are identity-matrices,
which are associated to optimal condition numbers, and h-multigrid trans-
fer operators get two interesting properties, as discussed in section 4.1.4.
Hereinafter, effects of numerical procedures, deriving an orthonormal set of
shape functions from any starting set, are investigated. While the imple-
mented numerical procedure will be presented later on in detail.

A set of shape functions {;, }I'V ; is orthonormal if it verifies :

/ Piv Pjv dx = 5@'1},]’1} for Viv,jv € N(l,nv) ) (223)
K
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where 0j, j, is the Kronecker delta. Property (2.23) involves integrals of
shape functions products, then, if we associate to each shape function a
vector whose components are its evaluations in integration nodes

Giv =1 o punlyy) o ] with {30 (T} }

the integral of any product of shape functions can be written as :

NKse

)
se=1

T
[ puien dx = 61, W 6. (2.24)
where W is a diagonal gx X gx square matrix
W =diag( ..., ]ste\ Wi se s, v ),

whose diagonal terms are the integration weights.
The complete set of shape functions can be represented as a gx X nv rec-
tangular matrix

S=[..¢,..],

so that the mass matrix reads :
M=% W&. (2.25)

The mass matrix is always symmetric and positive-definite® thus it can be
diagonalized, .
M=QDQ , (2.26)

where Q is the set of the eigenvectors and D is the diagonal matrix of the
positive eigenvalues. In (2.26) QT replaces Cf1 because the diagonalization
of a symmetric matrix implies an orthonormal set of eigenvectors. Then,
substituting expression (2.25) for M in (2.26), we write

(QA) @ W& (QA) =1, (2.27)

5The commutativity of the dot product insures the symmetry of M, whereas its posi-
tivity can be verified by means of the definition. A square nv x nv matrix M is positive-
definite if and only if z Mz >0 Vze R {0y, which is equivalent to requiring that

[ p?dx > 0wherep=3" 2z ¢:.
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1
where I is the identity matrix and A equals D * =diag( ... , D
The gk x nv rectangular matrix

® =& (QA),  whichverifies I=(®*) W &,
is an orthonormal set of shape functions

S =[...¢5 ... ],

and (Q A) are expansion coefficients of the orthonormal set ®* onto the
initial set ®, i.e.

;U = Ajv,jv Z in,jv ¢iv VJ’U € N(l,m}) . (228)

w=1

The linear expansion (2.28) points out that the starting set of shape func-
tions @ affects the orthonormalization procedure.

Let us consider any numerical process which takes a non-orthogonal set
of basis functions ® and successively, at any step iv = 1,...,nv, computes
the shape function

w—1
®;, = Z Civ, jv ¢;v + Civ,iv Piv (2.29)
Ju=1

* w—1
jv}jvzl'
Eq. (2.11) relates the ratio of maximum to minimum eigenvalues to the
condition number of a given mass matrix. Then, a starting shape set,

which is associated to an ill-conditioned mass matrix, implies that :

which is orthonormal to all the previous {qb

max {Aj, jo}/ min {Aj, j} > 1,

1<jv<nwv 1<jv<nv

and the magnitude of coefficients appearing in (2.29) could fluctuate very
much, causing cancellation errors in the numerical procedure.
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Figure 2.5: Top : {Ajy, ju}},_; coefficients for the scaled/rotated and for the
non-scaled /non-rotated starting bases. Bottom : distribution of the diver-
gence error of orthonormal shape sets derived by means of MGS procedure
from different starting bases. Machine precision : 15 decimal digits

Let us consider a rectangular element stretched along the first quadrant
bisector (figure 2.5(b)). In figure 2.5(a) are compared the diagonal terms
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of A for both the rotated/scaled and the non-rotated /non-scaled basis sets
on that element. The mass matrix eigenvalues are not much affected by
element aspect ratio if local reference frame axes are aligned with elemental
principal inertial axes. Conversely, when this precaution is not taken, the
mass matrix condition number and its eigenvalues degrade quickly when
rising the element ratio p. This remark justifies the choice of basis (2.5)
as starting set for the orthonormalization process, in facts it yields well-
conditioned mass matrices even for straight elements with high aspect ra-
tios.

Previous considerations suggested that the more coefficients {A;, jv}%)zl
spread out the more the cancellation errors spoil the numerical orthonor-
malization procedure. Further numerical results corroborate this supposi-
tion and reveal an additional drawback related to defining shape functions
and integration rules in the real space.

First we define a proper indicator of “shape function quality”, that is the
divergence error,

Eg, = \max {es+ ey i} with :
(2.30)
€v,iv = ‘/ 8U(Piv dx —/ ©Yiv Ny do Yove {.%', y} ,
K 0K

which results from the Gauss-Green theorem. The divergence error is com-
puted numerically by means of integration rules which integrate exactly
any polynomial belonging to P4(K) and P4(0K) spaces, where K is the
quadrangular in figure 2.5(b) and 0K is its boundary. It compares boun-
dary integrals of shape functions with volume integrals of their derivatives,
i.e. it implicates the evaluation of two different functions on two different
quadrature node sets. Moreover it represents the numerical conservativity
of shape functions with respect of integration rules, which are exact in the
considered approximation space.

Then, we compare the divergence errors of orthonormal shape sets which
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are derived from different initial bases by means of the same process, see
section 2.6.

Results are depicted in figure 2.5(c) and suggest the following considera-
tions :

e When the starting basis (2.5) is defined in the non-rotated local refe-
rence frame (z,y), the divergence error on the final orthonormal set
grows unaccetably large in stretched elements (Xno rot Tno rot)- In
facts round-off errors in the MGS procedure make shape functions,
defined by their evaluations in integration nodes, being no longer
polynomials. As a matter of fact, in this case the more p increases
the more basis coefficients {Aj, jv}%}:u red spots in figure 2.5(a),
spread out.

e By using the rotated frame (a0, yrot) to define the starting basis,
it is produced an orthonormal set (Xyot Tho rot), Which is affected
by much lower divergence errors than in the previous case. In facts,
local frame rotation makes {Ajs, jv}%’:l coefficients, blue spots in
figure 2.5(a), being independent of element ratio p. However, even
in this case, the divergence error slightly increases on more and more
stretched elements and the starting basis shows the same error trend.

e The initial set is composed by monomials which are evaluated in each
cubature node as products of its coordinates, so that the error can
be only related to wrong location of integration nodes. The more the
element stretches the more integration nodes gather in the direction
normal to elongation, affecting the mapping of cubature nodes in the
real space, see figure 2.5(b). In order to reduce this effect, we consider
the mapping of the canonical quadrangle in the real one expressed
in the rotated reference frame. This means that we are relieving the
mapping of element rotation, thus increasing the accuracy of cubature
node locations in the real space. As expected, this operation results
in a further reduction of the divergence error of final orthonormal
shape functions, referred as (Xyrot Trot)-
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In order to obtain “good orthonormal sets”, it is necessary to construct
well-conditioned starting bases on macro-elements, thus avoiding amplifi-
cation of initial “conservativity errors”, and to locate accurately cubature
nodes on sub-elements by means of suitable mappings. By the way, high
levels of divergence error (le —5 ~ le — 6) do not seem to affect the spatial
discretization accuracy in smooth solutions.

It is important to conclude that all these observations are relevant only
if shape functions are defined in the real space.

2.6 The orthogonalization process

The procedure to produce a set of orthonormal shape functions on a generic
polyhedral element K relies on the modified Gram-Schmidt (MGS) ortho-
gonalization algorithm. The sole requirement of this procedure is the capa-
bility to compute the integral of polynomial functions on arbitrarily shaped
elements. Thus, the MGS procedure with re-orthogonalization” can be sim-
ply setup as shown in the following pseudo-code :

MGS ALGORITHM WITH RE-ORTHOGONALIZATION

1 for i «— 1 to nv
2 do forn — 1 to 2
do for jv «— 1 toiv—1

do r(y), (B B50) e
Div — biy — ng)jv¢;v
Ti(z)w — Dips Piv) i
biv — bin/ Ti(g,)w
by — Div

Line 2 indicates that orthogonalization is applied twice.

0 3 O Ot = W

"Refer to [40], for more information concerning the accuracy of the orthogonalization
process.
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The set of orthonormal shape functions we wish to construct and the start-
ing set of basis functions defined on K, are denoted by { ¢}, }1',
{ by T?vvzl, respectively. Moreover, <¢A, ¢v> ;o indicates the inner product
(¢%) W ¢V, as defined in (2.24), where ¢* and ¢" are either orthonor-
mal or non-orthonormal shape functions. Finally we recall that basis (2.5)

is the actual choice of the starting set, as thoroughly justified in section 2.5.

and

As pointed out in (2.29), the above MGS algorithm amounts to constructing
the set of orthonormal shape functions { ¢j, }1_; according to the following
system of equations :

w—1

;v = Z Civ, jv (b;v 1 Civ,iv Div Viv € N(l,nv)’ (231)

Ju=1

where coefficients c;,, j, are determined by enforcing each new ¢, to be
orthogonal to the iv — 1 already orthonormalized basis functions, whereas
the coefficient ¢y, i, is the Ly normalizing factor of the newly created ¢7,.
So that, Viv € Ny ) and V jv € N 4,1y, we write :

(S

w—1
2
Civ,iv = <¢iv’ ¢iv>K - Z <¢iv’ ¢;U>K )
Ju=1
Civ,ju = —Civ,iv <¢iv7 ¢;U>K .

Then, from eq. (2.31), it is clear that the orthonormal set { ¢j, }7_; is also
hierarchical. In facts, increasing the degree of polynomial approximation
entails adding to the existing set of basis functions as many ¢, of the form
of eq. (2.31) as the number of new ¢;, up to the required degree, without
changing the already existing orthonormal basis functions.

Finally we remark that the MGS algorithm outlined above is also used
to compute the values of basis functions (and of their spatial derivatives, if
necessary) at any location other than those needed to compute the integrals
of lines 4 and 6. In such cases the symbols ¢ and ¢* at lines 5, 7 and 8
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denote values of starting and orthonormalized basis functions (or of their
derivatives) at the desired location.

2.7 Conclusions and representation

In sections 2.2 and 2.6, both a suitable starting set of basis functions and a
numerical procedure to derive a hierarchic orthonormal set of shape func-
tions were presented. The choice of the starting set was justified in section
2.5, pointing out that it has an important role during the orthonormali-
zation process. The results suggest that, in order to further improve the
range of applicability of those shape functions, it necessary to ameliorate
the starting set of basis functions. Anyway, the method derived so far
works very well for many element shapes and for a wide range of polyno-
mial degrees. Furthermore, the use of polygonal grid discretizations will
concern coarse levels in h-multigrid. Those grids are constructed by mini-
mizing the aspect ratio of coarse-elements, which are agglomerations of the
fine-elements. Then, the overall quality of the discretization will be “good”
even for high polynomial degrees, see section 2.2.

Finally, some orthonormal shape functions are represented on “classic” and
“special” element shapes, in order to stress on the geometrical flexibility of
the presented discretization.
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1
(c) o5 (d) ¢14

Figure 2.6: Four orthogonal shape functions on a “classic” element. Shape
maxima are located in regions of minimum surface along inertial principal
axes
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(c) o3 (d) @14

Figure 2.7: Four orthogonal shape functions on a circle. The circle has the
optimum aspect ratio, see section 2.2. Furthermore is a polyhedral with
numberless faces
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-0.5

1

(c) o5 (d) 914

Figure 2.8: Four orthogonal shape functions on a disconnected domain.
The shape sets can be defined on any domain
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2.8 Governing equations

The fluid flow models which are considered include inviscid and viscous
compressible flows governed by Euler and Navier-Stokes equations.

The governing equations of mass, momentum and energy conservation are
fully coupled in the compressible case and, written in conservation form,
read :

ou

ot VoFi) - V-Fy(w)=0 in [0,t]xQ, (2.32)

where Q € R, d € {2,3} is a bounded and connected Lipschitz domain.

The conservative variables u and the inviscid flux function F;(u), for d = 2,
equal :

p P2V:c PVy
u=| VT | R = | PVETP| PV (2.33)
PVy pVzVy | pVy +D
peo phon PhOVy

where p is the density, p is the pressure, v, is velocity component parallel
to a-axis and ey and hg are the stagnation energy and enthalpy per unit
mass, respectively. That is :

ep = e—+eg ho=h+ e with : (2.34)
2 2
I Vm—i-Vy, . c? , b c? ’
2 Yy —1) v-1

where c is the local speed of sound (¢? = yRT) and 7 is the ratio of specific
heats (v = ¢p/cy). It is assumed that the fluid obeys the perfect gas state
equation, i.e. p=pRT or p=(y—1) pe.

Finally, the viscous flux function F,(u) equals :

0
F,(u) = v (2.35)
v-TV—q
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where v is the velocity vector, 7V is a tensor

2
vV =u(Vv+Vvl) - s (V-v)I (2.36)
and q is the heat flux vector, which is related to temperature field by the
Fourier Law :
. Cpl
q=—kVT, with k= —+—
Pr
where k is the thermal conductivity, u is the dynamic viscosity and Pr is
the Prandtl number.

(2.37)

For clarity F,(u) is expressed in the same form of F;(u) in (2.33).

0 0
(1) (2)
pé pé
Fo(u) = [ 532) [ 533)

P& Ve + p &IV + kT | p&0ve + p&vy + k0T

2
5&1) = 20,Vy — gv v
P = Oyvy + Oyvy
2
® = 20,v, — gv v (2.38)

where 0, and 9, refer to partial derivatives with respect to variables x and

Yy, i.e. Op = 0/0x, 0, = 0/0y.

2.9 Equation discretization

The discretization of equation (2.32) will be derived treating inviscid and
viscous terms separately.
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2.9.1 Euler equations

The conservation form of Euler equations is obtained by neglecting the
V -F,(u) in eq. (2.32). Then, by multiplying by a “test function” v®,
integrating over the domain 2, and performing an integration by parts we
obtain the weak statement of the problem

/va—dx+/v-(() da—/Vv:l- )dx = 0
o O 0

Vv e [Hl(Q)] (2.39)

where 0f) denotes the boundary of €2 and N is the number of equations
in eq. (2.32). A discrete analogue of equation (2.39) is obtained by subdi-
viding the domain €}, approximation of €2, into a set of non-overlapping
polyhedral elements K € 73,9, and considering functions uy, and v}, defined
within each element, given by combination of nv shape functions ;,'°,

B Z Uit ‘Pw ) vi(x) = Z Viv ¢in(x) Vxe K

w=1 w=1
(2.40)
The expansion coefficients U, (t) and V, denote the degrees of freedom of
the numerical solution and of the test functions, respectively. By splitting
integrals over 2, appearing in eq. (2.39), into sums of integrals over elements
K, the semi-discrete equations read :

> /Vh M dx + Z/ Fi(up|g) -m) do —

KeT, KeT,

Z / Vv : uh) dx = 0 Vv, eV, (2.41)

KETh

8Note that up to now v will refer to a “test function”, not to the velocity vector

975, = {Kie}2%, triangulation of €, was introduced at the beginning of this section.
Here, in order to ease the notation, let us drop ie.

10The ultimate shape functions are defined in (2.5).
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where V7, is the space of test functions, defined in eq. (2.2), and 0K denotes
the boundary of element K.

Before going further it is necessary to introduce some notation. We de-
note with &£ the set of internal element faces, with 5,‘? the set of boundary
element faces and with &, the union of the previous sets (€p U 5,? ). Then
we set :

e (Je € Je D, ET90r] (2.42)
6652 665;?

Moreover, having no global continuity requirement for Vj on €, functions
u;, and vy, are double-valued on F% and single valued on Fg. Therefore, it is
convenient to introduce some trace operators which simplify the weak-form
of the equations. For all vector quantities q and scalar quantities ¢ such
that a (possibly two-valued) trace is available, we define the average {-}
and the jump [-] as follows. Let e be an interior edge shared by elements
KT and K. Define the unit normal vectors n™ and n~ on e pointing

exterior to K+ and K, respectively. Being ¢’ def qlpxi and (* def Cloxi
we set :
{a} =4(a"+q7), [al=q" nT+q -n" onecé,
(=L¢r+¢), [I=¢nt+¢n one€&, (2.43)

{{r=¢, [al =q-n oneeé';?.

Due to the discontinuous approximation of the solution, flux terms in (2.41)
are not uniquely defined at element interfaces. It is at this stage that the
technique traditionally used in finite volume schemes is borrowed by the
discontinuous finite element method. Thus, we substitute the flux F;(up|x)
with a suitably defined numerical flux ]?‘i(u;, u, ). Summing equation
(2.41) over the elements we obtain the DG formulation of the problem
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(2.39) which then requires to find uy, € Vy, such that :
auh - + —
vp —— dx + Fi(u ,u,) [vy] do — (2.44)
Q, Ot Iy
/ Fi(up) - Vo, dx = 0 Yo, €V
Qpn

Iy, is a scalar function

Notice that eq. (2.44) is a system of N equations
and [vy,] is a vector!?, refer to eq. (2.43).

The states u;i' and u,, are calculated by means of the expansion appearing
in eq. (2.40), which is evaluated at element interfaces. In order to guarantee
the formal accuracy of the scheme, numerical fluxes have to be consistent

and conservative. The consistency of the numerical flux F; reads :
Fi(z, z) = Fi(z) (2.45)

whenever z is a smooth function satisfying the Dirichlet boundary condi-
tions. Furthermore, we say that the numerical flux F; is conservative if it
is single-valued on I',.

There are several flux functions satisfying the above criteria such as the
“exact” Riemann flux function or the approximate Lax-Friedrichs, Roe,
Enquist-Osher, Harden-Lax-van Leer (HLLE) flux functions. In this work
all computations were performed with the “exact” Riemann flux function.
The key idea is to compute ]?‘i(u;{, u, ) as F;(u*), where u* denotes the
solution of a Riemann problem across the discontinuity!3.

HEquation (2.41) is equivalent to the system of equations which is obtained by sub-
stituting the vector v, € V, with the scalar vy, € V},. Indeed, notice that the expression
Vv, € V}, is equivalent to the expression V(vp); € Vi, Vi € N(I,N). The substitution
could be avoided by using a proper jump operator for vy, as presented in [2] and in [3].
However, in the author opinion, equation (2.44) is much more clear in this form.

2Tn (2.43) was not defined the scalar jump operator [-] on I'?. However, for consis-
tency with (2.41), [vn] equals vyn on T'g.

13First velocity vectors v and v are projected onto the face unit normal vector n~,
getting u,” and wu,,, respectively. Then the obtained one-dimensional Riemann problem
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Despite the upwind treatment of fluxes at the element interfaces, the nu-
merical solutions computed with the method described so far (excluding
the special case of a single constant shape function ¢ for each element)
are oscillatory in the vicinity of flow discontinuities. As shown by Godunov
theorem [10], this is a typical behaviour of any high-order accurate numer-
ical scheme in the vicinity of a discontinuous solution. In order to compute
physically relevant solutions, it is therefore necessary to introduce into the
discontinuous finite element method some non linear dissipative mechanism
which does not destroy the order of accuracy of the scheme, such as local
projection (or slope limiter) limiting strategies proposed by Cockburn in
[7].

An alternative stabilization approach is the use of a shock-capturing term
similar to that commonly considered in the SUPG finite element method,
see [6], [4]. This approach adds an artificial viscosity term of the form

Z / €lxk Vu- Vuy, dx, (2.46)
KETh K

with

1
2

dx = C. (Z (11 o dx>2>_ |

7

where C. is a positive parameter, ¢ runs over all components of uy and s
verifies the weak form

/ vp s dx = / vy (Fi(uy) — Fi(u*)) -ndo  Vuu|x € Pp(K), (2.47)
K oK

being F; the flux function defined in (2.33), u, the trace of up|x on 0K, u*
the solution of the Riemann problem across the discontinuity on 0K and
Pi(K) the space of polynomials of global degree at most k on the element
K. Notice that, due to the specific choice of s in eq. (2.47), the artificial

is solved by means of the exact iterative Riemann solver of Gottlieb and Groth (1978).
Finally the face tangential velocity component of the state u* is taken to be equal to the
upwind value.
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viscosity coefficient C, vanishes when a stationary shock wave is located
on the element boundary. As matter of fact, the Rankine-Hugoniot jump
condition states that

F;(u) — F;(u") =c(u—u"),

thus, F;(u) — F;(u*) vanishes when the wave speed ¢ vanishes.

2.9.2 Navier-Stokes equations

Many techniques are available for the DG space discretizations of diffusive
terms and a complete survey can be found in [1]. In this work it was used
the method proposed in [6] and we describe it for the discretization of the
viscous part of the Navier-Stokes equations in considerable detail.

In order to focus on the viscous term of the equations, we consider the
model problem :

V. -F,(u,Vu)=0 in Q,

(2.48)
u=u’ on 0f),
which may be reformulated as the first order system :
zr, = Vu,, Vke N(l,N)
(2.49)

V -Fy(u,z1,...,2y) =0 in €,
with the Dirichlet boundary conditions
ug = uz on 0f) Vk € Nq, Ny,

where uy, is the k" component of the state vector u.

The weak statement of first N equations of system (2.49) is derived by
multiplying by a test function g € R?, integrating over the domain Q and
performing an integration by parts. That is :

/g-zdx: — /uV-gdx+ / wg-ndo Vg € R?, (2.50)
Q Q 0
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where notations u, z and u® replace uy, zj and uz respectively.

Then, repeating the procedure used to derive eq. (2.41) from eq. (2.39), we
obtain the discrete analogue of eq. (2.50).

That is, find u, € V3, and z,, € Gy, so that :

/gh-zth: — / uhV-ghdx+ / zlh[[gh]]da—k
Qh Qh h

Ly

+ /a ub gy -ndo Vegn € Gy, (2.51)
Fh

where

Vi & {op € L2() : wnlk € P(K) VK € T;}

def

G = {gn € [L*(W)])*:  enlx € [P(K)?VK € Tp,}

and where the scalar numerical flux function 4, was introduced to make
univocal the evaluation of contour integrals on F?L.

A very natural choice for the discretization of purely elliptic problems is

the centered numerical flux 4;, = {uy, }, where the average operator { - } was
defined in eq. (2.43). So that eq. (2.51) becomes :

/gh-zhdx: — / up V- gp dx + /{uh}[[gh]]da+
Q Qp F(f)z

=+ /8 ub gy -ndo Vegn € Gy, . (2.52)
Fh

However, the property, which is stated and demonstrated below, further
simplifies the form of eq. (2.52).

Property 1. Being x, € Vi a arbitrary discontinuous scalar function in
Qp and y, € Gy, an arbitrary vector function in Qy, the following identity
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holds :

/ (xp, V -yn + Vazp, - yp) dx = (2.53)

Qpn

[l + ) fal o+ [

rpyp-n do
ro ro

h

where T and T9 where defined in (2.42).

Proof Eq. (2.53) is a consequence of the divergence theorem and of the relation :
(znyn-n)” + (zayn-0)" = {zn}lya]l + {yn}-[za], (2.54)

which can be verified by a simple algebraic calculation. By using the relation
n" +n~ = 0 the first term in eq. (2.54) becomes :

_ _ T (N7 +n
+x,y, n + L4 (2 ):

24y, (0~ +nt)
5

++ +
Ty, - N —+

x5 T,
= 7}1[[}%]] + {yn}zin® + Th[[Yh]] + {yntz,n” = {zn}lyn] + {yn} - [z4]

The divergence theorem reads :

/(V-thh+yh-th)dx: / V- (zpyp) dx =
Qn

Qp
/F

Then, substituting eq. (2.54) in the right side of eq. (2.55), we obtain eq. (2.53) o

. ((:chyh ‘n)” + (zpyn -n)+) do + /a Tpyn -ndo, (2.55)
h Fh

By replacing the first integral on the right hand side of eq. (2.52) with
eq. (2.53), where xj, and yj, stand for u;, and gj, respectively, we obtain a
new form of eq. (2.51) which reads :

/ gh - (zn — Vuy) dx = — / {gn} - [un]’ do, (2.56)
Qp Ty

where []? is the extended definition of the jump operator in eq. (2.43),
which automatically takes care of Dirichlet boundary conditions.
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That is :

Xr — .%'b n on 9
[2]° = {f[x]] ) on ;0 (2.57)

Eq. (2.59) shows that the auxiliary variable zj, is equal to the internal
gradient Vuy plus an additional term accounting for the jumps in up, oc-
curring at inner element interfaces, and for the jumps between u; and u?,

occurring at those boundaries where Dirichlet conditions are prescribed.
This interpretation suggests to introduce the global lifting operator

/Qh g R ([un]’) dx = _/Fh{gh}-[[uh]]‘9 do, (258

which is a function that spreads, on the whole domain €, the effect of
interface and boundary jumps of the state uj. By virtue of the lifting
operator Ry, z;, may be expressed in weak sense as :

/ 8h - Zp dx = / gh - <Vuh + Rh <[[uh]]a>> dx Vgh S Gh . (2.59)
Qp Qp

The above relation implies that the first NV equations of system (2.49) are
automatically verified in weak-finite sense by taking

zne = Vup, + Ry <[[uh,k]]a) Vk € N,y - (2.60)

Now, elaborating the last equation in (2.49) as done for the Euler equations,
we obtain the DG formulation of the viscous term of the Navier-Stokes
equations, which requires to find uy € Vy, such that :

. N - B
/F F, (uh7zh1""’zh,N7 uh’Zh,l""7Zh,N)'[[vh]] do —
h

/ uh, Zpts-- - Zh,N) -V, dx = 0 Yo, €V, (2.61)
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where [vp] equals vy n on F‘z 14 and f‘v is the centered numerical flux,

" + L+ + = g - _
F, <uh7 Zpp 1 Ly o Up s By Zh,N) =

{Fy(un, z2p1,---, 2ZoN) } - (2.62)

The first term in eq. (2.61) shows that the scheme derived so far'® has a
non-compact support. As a matter of fact, the global lifting RZ ([[uh]]a)
sums the jump contributions on the whole KT element boundary, K™,
and R, ( [[uh]]a) does the same on 0K~ . Thus, the numerical vector flux
related to face e

)
e

5 + ot - - - —
F, <uh7 Zpy g Ty s Uy gy oo e Zh,N)

where ¢ ¥ 9K N OK™, depends on the jump of u, on 0K~ U OK™.
Furthermore in [1], the BR1 scheme was showed to be unstable for purely
elliptic problems.

Subsequently in [6], by modifying the definition of the lifting operator, it
was derived a stable scheme with a compact support, commonly referred
as BR2 scheme. In order to define it, let us consider local lifting operators
r for each interface or boundary face e € I'j, defined as :

i (1l?) ax = = [{ei) [wl” do veerh, Ve e,
" (2.63)

where €27 is either the union of the elements which share the same face e, or
one boundary element, whereas uy, is the k** component of the discrete state
vector uy. Thus, all local lifting operators are associated to one face in I'y,
and each of them, rf, is null out of its domain of definition, 27 . Futhermore,
local lifting operators represent face contributions to the previously defined

“In eq. (2.43) was not defined the scalar jump operator [-] on I'Y. However, we
preferred to use this notation because it is consistent with that used in eq. (2.44) and
because, in order to write [vs]?, we should define the right state of vy, first.

15Commonly referred as BR1 scheme.
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global lifting operator, Ry. In facts, by combining eq. (2.63) with eq. (2.58),
we write

=Y [ e} - [un]® do = /QZ gn - T}, ([[uh]]a> do,

GEFh € eEFh
which is equivalent to the weak equality
Ry ([l?) = 3 v ([wl?) | (2.64)
ecl'y,

since gy, is an arbitrary vector function in Gy,.

The BR2 scheme is obtained by replacing the numerical flux defined in
eq. (2.62) with

Fo (wh,.u, )], = {Fo(Wile, znles - zanle) b, (2.65)
where
Zh,i|e = Vuh,i|e + 7Ne 1“2 <[[uh,i]]a> s

with 7. a positive stabilizing coefficient, which has to be chosen sufficiently
large.!® Finally, by summing together eq. (2.44) and eq. (2.61) we obtain
the DG formulation of the Navier-Stokes equations.

Find uj, € V}, such that :

0 ~
/ vy, % dx+/ Fi(u;{, u,) - [vg] do +
—/ [Fz(uh) -F, <uh, Vu,1 + Ry ([[uh,l]]a) ,ﬂ - Vo, dx +
Qp

- /F {Fv <uh7 Vu,ile +7e 1, ([[uh,l]]a) )} [vn] do =0

ecl'y,

Yo, € V, (2.66)

where [v,] equals v, n on I'Y.

SConcerning the stabilizing coefficient 7. it is better to refer to [1].
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2.9.3 Boundary conditions

The DG discretization is best suited for a weak enforcement of boundary
conditions. This can be achieved by properly defining a boundary state,
which, together with the internal state, allows to compute the numerical
fluxes and the lifting operators on Fg.

axis of symmetry

Figure 2.9: Imposition of symmetry boundary condition.

For example, the symmetry-type boundary conditions have been imple-
mented by defining the boundary state in primitive variables ql,’L as a func-
tion of th le, which is the trace on e € I’g of the discrete state uy|x in
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primitive variables.!” The relation reads :

w Py

th th , , .

u% - ull — 20, ny and Vqj; =Vq,; —2(Vq;,; n)n,
v vl — 20, n,

where v, is the velocity component normal to face e and 7 runs over all
components of vector qz.

Notice that the external boundary state {qz, Vq%} is all we need to define
viscous and inviscid numerical flux functions on I"?L.

This very natural way of imposing boundary conditions is another great
advantage of DG methods, especially if they are coded in primitive varia-
bles.

2.10 Time discretization

All integrals appearing in the space discrete problem (2.66) are evaluated
by means of the integration method presented in sections 2.3 and 2.4. By
assembling together all the elemental contributions, the system of ordinary
differential equations which governs the evolution in time of the discrete
solution can be written as :

dU

where U is the global vector of the degrees of freedom (see eq. (2.4) or
eq. (2.40)), M denotes the block diagonal mass matrix, and R(U) is the
residual vector. Due to the block diagonal structure of M, the time inte-
gration of the above system of ODEs can be easily accomplished by means
of an explicit method for initial value problems. That is, we could asso-
ciate to any o'-order accurate space discretization an o"-order accurate
Runge-Kutta time discretization.

'"Tn order to distinguish the vector of primitive variables from the vector of conservative

. def
ones u, we write q = (p,t,u,v)”
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EXPLICIT MULTISTAGE RUNGE-KUTTA SCHEME

1 U%—u!
2 for j < 1 to N
3 do U7 —U°® — a; At M R(U/Y)

4 Uty

where Ng is the number of Runge-Kutta scheme stages.

Ngs o1 a2 a3 o4 o5

/S
3 1/4 2/3 1 - -
5 1/5 1/4 1/3 2/5 1

Table 2.1: Explicit Runge-Kutta scheme coefficients

This scheme results slow to converge to the stationary solution. As a matter
of fact each element K marches with the maximum At, which verifies the
following heuristic condition for the CFL number :

1
CFL <

2.
-~ 2k+1’ (2:68)

being k£ the maximum degree of shape functions in element K.

A locally-implicit residual smoother is a reasonable compromise between :

e fully explicit DG schemes which are inefficient due to the very restric-
tive CFL condition, eq. (2.68)

e and fully implicit solvers which are very expensive in terms of memory
requirements

Thus, replacing R(U771) in line 3 with D°§U7 + R(U’~!), where DY is
the elemental jacobian “frozen” at the first Runge-Kutta stage, we obtain :
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LOCALLY-IMPLICIT MULTISTAGE SCHEME
U — U’
AU «+—0
for j < 1 to Ny
do A —M + a; At D°
U — — A (M AU + a; At R(U))
AU — AU + §U/Y
U/ Ut 45U/
Uz’+1 - UN_,,tS

00 3 O Ut = W N+~

The locally-implicit multistage scheme, derived so far, allows to rise the
CFL number up to arbitrary values, provided that it is sufficiently small
in the first iterations. In the present work, the CFL number was increased
from 0.5 to 50 linearly with the residual reduction, in order to help alleviate
transients during the solution process.

I ITRATTRERTEN RSN SRR B B
500 1000 1500 2000 250(

Nis Nis

(a) Nsts comparison (b) k comparison

Figure 2.10: Locally-implicit multistage scheme performances
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Moreover, updating the residual more than once during an iteration en-
hances the “communication” between neighbouring elements. As a matter
of fact the number of iterations to converge reduces when increasing the
number of stages in the scheme, see figure 2.10(a), and it is independent of
the polynomial degree of the discretization, see figure 2.10(b).

Note that the oy coefficients in the locally-implicit multistage scheme equal
those used in the explicit Runge-Kutta scheme, which are tabulated in
table 2.1. This is just a preliminary choice, because the locally-implicit
scheme is stable for a wide range of coefficients «y, and their effect has to
be investigated.
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Chapter

Numerical results

In order to asses the accuracy of the discontinuous Galerkin approximation
on polyhedral grids, uniform grid refinement was performed for three dif-
ferent problems. The transonic Ringleb flow and the subsonic flow over a
gaussian bump were considered as representative cases for smooth solutions
of 2D compressible Euler equations. The Helmholtz problem was studied
to verify the accuracy of the viscous numerical flux. The results indicate
that the DG discretization on polyhedral grids attains a full O(hP*1) order
of convergence for smooth solutions.

Moreover two problems were used to test the method in the viscous case :
the NACA 0012 airfoil with Res,;1 = 5000, 0° incidence and My, = 0,5 and
the NACA 0012 airfoil with Re 1 = 73, 10° incidence and My, = 0, 8.
Finally we studied the effects of reducing integration rules by means of
the solution of compressible Euler equations around the NACA 0012 airfoil
with 0 incidence and My, = 0, 5.

3.1 Hexagonal grid generation

The hexagon was chosen as representative element to asses the accuracy
of the discontinuous Galerkin discretization on polyhedral grids. The con-

47
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struction of regular hexagonal grids was supported by an uniform quad
grid. The hexagonal element vertices and the additional points, which are
needed to represent accurately curved boundaries, are calculated from the
auxiliary quad grid. As shown in figure 3.1 the hexagonal element shape

Figure 3.1: Hexagonal element from quad grid

is defined by choosing x = &1, where [ is the length of any quadrilateral
side of the auxiliary grid and £ € (0, 1) is a scalar. Then, we required x to
minimize the function

f(@) = la(z) — x|+ [b(z) — 2| + |e(z) — 2],

and we found z = 0.6251.

The hexagonal grid derived so far is strongly related with its auxiliary quad
grid. Notice that, considering uniform grids, the hexagon surface equals the
respective quadrilateral one (figure 3.1). This observation suggests that the
refinement of a hexagonal grid can be achieved by refining its auxiliary grid
and then generating the hexagonal grid from it. As a matter of fact the
hexagonal grid size scales with its auxiliary mesh size. Notice that the
coarse hexagon is composed by three fine nested hexagons and three slices
of fine non-nested hexagons, which verify A= B =C = a + b+ ¢, suppos-
ing uniform the auxiliary grid (figure 3.2). Finally, in order to mesh the
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Figure 3.2: One-step refinement by means of quasi-nested hexagonal grids.
Auxiliary quad grids: coarse (dotted blue) and fine (dotted red). Hexagonal
grids: coarse (blue), fine (green and red)

portion of € contiguous to its boundary 9€); some collapsed hexagonal
elements were considered (figure 3.3). Notice that, after refining, the col-

Figure 3.3: Collapsed hexagon and the corresponding refined grid.

lapsed hexagon K is splitted into two collapsed hexagons (3 and 7), one
complete hexagon « and two slices.
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The grid generation method described so far, produces very good quasi-

nested hexagonal meshes in any domain which can be decomposed by means
of a structured mesh. Figure 3.4(a) and figure 3.4(b) show respectively the

superimposition of two quasi-nested uniform hexagonal grids and the su-

perimposition of two non-uniform hexagonal grids.

(b) Non-uniform case

(a) Uniform case

Figure 3.4: Hexagonal grid superimposition
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3.2 Ringleb flow

We consider the solution of the Ringleb flow problem, that is one of the
few non-trivial problems of 2D compressible Euler equations for which a
(smooth) analytical solution is known. For this case the analytical solution
may be obtained using the hodograph transformation, see [16]. The prob-
lem represents a transonic flow which turns around a symmetric obstacle,
see figure 3.5, with inflow and outflow boundaries given by the left and
right boundaries of the domain, and non absorbing, i.e. reflective bound-
aries with normal velocity v - n = 0, on the lower and upper boundary.

Figure 3.5: Intermediate hexagonal grid and Mach number iso-lines (Pg)
for the Ringleb solution

The solution to this flow problem is smooth yet transonic, with a small
supersonic region around the nose. The exact solution of the Ringleb flow
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problem reads :

1
1 7>\ ?

kqp
1 /1 2 1
B = —(=-=)+- 1
y(q, k) R <q2 k2>+2J, (3.1)
1

1 1 1 1
P R )

¢ 3¢3 5D 1—c

Then the computational domain is taken to be :
Q = {V(r,y): ke (0.7,1.2) et qe(0.5k)}. (3.2)

where k is a stream-function, i.e. it is constant along the streamlines, and

can be expressed as :
q

sin @’

being 6 the angle between the velocity vector and the vertical direction in
figure 3.5. Moreover ¢, ¢ and p are dimensionless quantities, which equal,
respectively, the ratio between local velocity magnitude and the speed of
sound at the stagnation condition, cg, the local speed of sound divided by
co and the ratio between local and stagnation fluid densities. Then, in order
to express eq. (3.1) as a function of the sole ¢ and k, we can use relations
for an ideal gas undergoing an adiabatic process, which read :

k =

where p and T are ratios of local values to stagnation ones, whereas
1 _1
— 2
C = <1 =+ IYTM2> s

which can be reformulated as
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Note that low order approximations of reflective boundaries reduce the
order of convergence. To suppress this effect, given boundary conditions
were enforced on the whole domain boundary, i.e. the exact solution, in

eq. (3.1), was weakly imposed on 0f2.

Grid triangles quadrilaterals hexagons
size llewl|2 order llewl]2 order llewl]2 order
16x4 1.07e—2 - 2.33e—2 - 8.62e—3 -
P, 32x8 2.87e—3 1.90 | 7.56e—3 1.62 | 1.93e—3 2.15
64x16 7.46e—4 1.94 | 2.21e—3 1.77 | 4.51le—4 2.10
128%x32 | 1.90e—4 1.97 | 6.0le—4 1.88 | 1.09e—4 2.04
16x4 5.57e—4 - 1.27e—3 - 7.83e—4 -
P, 32x8 7.17e—5 2.96 | 2.05e—4 2.63 | 1.13e—4 2.79
64x16 | 9.14e—6 2.97 | 3.00e—5 2.77 | 1.34e—5 3.08
128x32 | 1.13e—6 3.01 | 4.06e—6 2.88 | 1.70e—6 2.98
16x4 5.48e—5 - 1.57e—4 - 1.13e—4 -
P, 32x8 3.6de—6 3.91 | 1.10e—5 3.82 | 9.38¢—6  3.60
64x16 | 2.30e—7 3.98 | 7.46e—7 3.89 | 7.23¢e—7 3.70
128x32 | 1.46e—8 3.98 | 4.77e—8 3.97 | 5.26e—8 3.78
16x4 8.03e—6 - 2.64e—5 - 1.80e—5 -
P 32x8 2.83e—7 4.82 | 1.10e—6 4.58 | 7.12e—7 4.66
1| 64x16 | 8.90e—9 4.99 | 3.80e—8 4.86 | 2.38¢—8  4.90
128%32 | 2.75e—10 5.01 | 1.20e—9 4.99 | 8.51le—10 4.81
16x4 1.08e—6 - 5.46e—6 - 3.15e—6 -
P, 32x8 2.30e—8 5.56 | 1.21e—7 5.49 | 7.43e—8 5.40
64x16 | 3.55e—10 6.01 | 2.12¢—9 5.84 | 1.40e—9 5.72
128x32 | 5.57e—12 6.00 | 3.40e—11 5.97 | 2.55e—11 5.78
16x4 1.53e—7 - 1.24e—6 - 6.32e—7 -
Py 32x8 1.75¢—9 6.45 | 1.54e—8 6.33 | 8.63e—9 6.20
64x16 | 1.49e—11 6.89 | 1.34e—10 6.85 | 1.10e—10 6.28
128%32 | 1.17e—13 6.98 | 1.10e—12 6.93 | 1.19e—12 6.55

Table 3.1: Convergence results for |ley||2
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For the convergence study were used twelve grids, four recursively nested
grids, 16x4, 32x8, 64x16 and 128x 32 elements, for three kinds of element,
triangles, quadrangles and hexagons. Hexagonal grids are just partially
nested and boundary hexagons are collapsed on the boundary, see figu-
re 3.8. The output of interest in this case was the Lo norm of the state
error, which reads :

B Jo, (an — ) - (u, —u) dx 3
leull2 = ;

] )
where u and uy are respectively exact and numerical solution vectors in
primitive variables.

The results in figure 3.9 and in table 3.1 show that optimal error conver-
gence, O(hPt1), is attained. Even though hexagonal meshes do not attain
the O(hP*!) order of convergence for Py and Pg discretizations, the trend
suggests that, reducing further the mesh size, the optimal error of conver-
gence should be attained.

-0.2 0.2

Figure 3.6: Triangular grids
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Figure 3.7: Quadrangular grids

Figure 3.8: Hexagonal grids
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Figure 3.9: |ley||l2 convergence curves.
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M M
1.50 150
1.45 145
1.39 1.39
134 134
1.29 1.29
1.24 124
118 118
113 113
1.08 1.08
1.03 1.03
0.97 0.97
0.92 0.92
0.87 0.87
0.82 0.82
0.76 0.76
0.71 0.71
0.66 0.66
0.61 0.61
0.55 0.55

0.50 0.50

(a) 16x4 grid (b) 32x8 grid

1.50
1.45
1.39
134
1.29
1.24
118
113
1.08
1.03 '
0.97
0.92
0.87
0.82
0.76
0.71
0.66
0.61
0.55
0.50

(c) 64x16 grid

Figure 3.10: Mach number iso-contours for hexagonal grids (Pg).
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3.3 Gaussian bump perturbation

Another representative, smooth inviscid case is that of duct flow over a

Gaussian bump perturbation. The domain,

(3.4)

0= { V(z,y):x e (—-1,1) et ye€ (0.05675(&2, 1) }

and an intermediate hexagonal mesh are depicted in figure 3.11.

Non absorbing wall boundary conditions were enforced on the top and on

the bottom of the channel. At the outflow

, the static pressure was set, and

the total temperature, total pressure and flow angle (0°) were

)

at the inflow
prescribed

5.

resulting in a free stream Mach number of 0

9

Figure 3.11: Intermediate hexagonal grid and Mach number iso-lines (P4)

for the Gaussian bump perturbation problem

For the convergence study were used four recursively partially nested he-

xagonal grids, 220, 840, 3280 and 12960 elements. Furthermore the bump
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geometry was represented using high order polynomials.
The output of interest in this case is the Lo norm of the entropy error,

S = S;.)? dx )\ ?
lesllz = <th< s2) ) , (3.5)

€2
where Sy is the free stream entropy.

Results in figure 3.12 and in table 3.2 show that optimal error convergence,
O(hPt1), is attained. This test assesses the accuracy of the discontinuous
Galerkin approximation of inviscid problems on polyhedral grids, when en-
forcing ”classic” boundary conditions.

‘ Grid size ‘ ‘ llesl]2 order ‘ ‘ lles]l2 order
220 1.97e—3 - 6.18e—4 -
840 p | 435e—4 218 | | 6.45c—5 3.26
3280 11842 —5 2.37 | ?|6.13e—6 3.40
12960 1.55e—5 2.44 5.64e—7 3.44
220 1.59e—4 - 3.62e—5 -
840 p, | 91de—6 412 | | 143c—6 4.66
3280 351377e—7 4.60 | 1| 45le—8 4.99
12960 2.24e—8 4.06 - -

Table 3.2: Convergence results for ||eg]|2
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Figure 3.12: ||eg|l2 and Mach number iso-contours (IP4) for hexagonal grids
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3.4 Helmholtz problem

Laking of an analytical non-trivial solution of compressible Navier-Stokes
equations, it was necessary to choose a simple model problem to assess
the order of convergence of discontinuous Galerkin approximations for pro-
blems associated to second order PDEs. Thus, the Helmholtz problem,
in eq. (3.6), was chosen to verify the spatial accuracy of viscous numerical
fluxes on polyhedral grids. The figure below depicts both the domain §2 and
the intermediate polygonal grid, which was used for the error, see eq. (3.7),
convergence study.

Figure 3.13: Intermediate hexagonal grid and solution iso-lines (Ps) for
Helmholtz problem



62

Numerical results

The considered linear reaction-diffusion problem reads :

V2u(z,y) + 2u(z,y) =0 Y(z,y) € Q,
u(z,y) = sin(z)cos(y) V(z,y) € 09, (3.6)

0= (03)(07).

Given boundary conditions were enforced on the whole boundary of the do-
main, Jf). For the convergence study were used three recursively partially
nested hexagonal grids, 27, 105 and 410 elements.

where

The output of interest in this case was the Lo norm of the state error,

up — u)? dx 2
leulls = (fﬁh( }M) ) , (3.7)

where u and uy, are respectively the exact and the numerical solution of the
problem.

Results in figure 3.14 and in table 3.3 show that optimal error convergence,
O(RPT1), is attained.

‘ ne ‘ ‘ llew |2 order ‘ ‘ llew |2 order ‘ ‘ llew||2 order ‘
27 3.12e—3 - 1.28e—4 - 4.74e—6 -
105 | Py | 7.88¢—4 1.98 | Py | 1.51le—5 3.08 | P3 | 2.63e—7 4.17
410 2.00e—4 1.98 1.83e—6 3.04 1.64e—8 4.00

Table 3.3: Convergence results for ||e,||2
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Figure 3.14: ||ey||2 and u iso-contours (P3) for hexagonal grids (27, 105 and
410 elements)
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3.5 Viscous flow over a NACA 0012 airfoil

The discontinuous Galerking approximation of compressible Navier-Stokes
equations on polygonal grids was tested in two viscous flow conditions
around the NACA 0012 airfoil. The two cases, referred as Re5k and Re73,
are respectively characterized by Re 1 = 5000, a = 0°, My, = 0,5 and
Res,1 = 73, a = 10°, M, = 0,8, where o denotes the angle of flow inci-
dence.

In both the cases the free-stream boundary was located at 5 chords from the
leading edge and no-slip adiabatic boundary conditions were imposed on
the airfoil boundary. Futhermore, in order to achieve high-order accuracy,
solid wall boundaries of the airfoil were represented by means of piecewise
cubic polynomials for all orders of solution approximation.

The polyhedral meshes were derived from an unstructured grid of 2048
triangles, which will be referred as the source grid. Triangles were merged
into polygons by optimizing a function that captures the overall quality of
the fused elements. Therefore it was employed an algorithm which mini-
mizes both the maximum and the average of all elemental aspect ratios of
the resulting grid [17].

The agglomeration process was controlled by setting the maximum num-
ber of sub-elements which compose a polygonal element. Then, in order to
solve accurately the boundary layer, the grid generation for cases Redk and
Re78 was performed by limiting the number of sub-elements per polygon
to three and to five, respectively. The process resulted in two polygonal
grids of 853 and 461 elements.

In figures 3.15, 3.16, 3.17 and 3.18, are displayed both the Mach number
iso-contours and the polygonal grids, resulting in the two considered cases,
Redk and Re73. In both cases, the discontinuities across element interfaces
diminish when increasing the order of the discretization, suggesting that
accuracy increases with the order of the polynomial approximation.
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M: 0.000 0.067 0.133 0.200 0.267 0.333 0.400 0.467 0.533 0.600

M: 0.000 0.067 0.133 0.200 0.267 0.333 0.400 0.467 0.533 0.600

Figure 3.15: Mach number iso-contours, case Redk. From the top to the
bottom : P; and Py, discretizations.
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M: 0.000 0.067 0.133 0.200 0.267 0.333 0.400 0.467 0.533 0.600 M: 0.050 0.111 0.172 0.233 0.294 0.356 0.417 0.478 0.539 0.600
D <] BRI
L Y et

M: 0.000 0.067 0.133 0.200 0.267 0.333 0.400 0.467 0.533 0.600

Figure 3.16: Mach number iso-contours, case Re5k. From the top to the
bottom : P3 and P4 discretizations.
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BT [ ]

M: 0.000 0.117 0.233 0.350 0.467 0.583 0.700 0.817 0.933 1.050 M: 0.050 0.133 0.217 0.300 0.383 0.467 0.550 0.633 0.717 0.800

BT [ ]

M: 0.000 0.117 0.233 0.350 0.467 0.583 0.700 0.817 0.933 1.050

Figure 3.17: Mach number iso-contours, case Re73. From the top to the
bottom P; and Py discretizations.
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BT [ [ [ ]

M: 0.000 0.117 0.233 0.350 0.467 0.583 0.700 0.817 0.933 1.050 M: 0.050 0.133 0.217 0.300 0.383 0.467 0.550 0.633 0.717 0.800

<

BT [ [ [ ]

M: 0.000 0.117 0.233 0.350 0.467 0.583 0.700 0.817 0.933 1.050

Figure 3.18: Mach number iso-contours, case Re73. From the top to the
bottom P53 and P4 discretizations.
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3.6 Reduced integration rules

In order to test the effect of reduced integration rules on both the accuracy
of the approximated solution and the CPU time, the inviscid subsonic flow
around the NACA 0012 airfoil was considered. Indeed, in this case, the ac-
curacy of the state discretization can be evaluated by means of the entropy
error, as defined in eq. (3.5).

The problem is that of an inviscid subsonic flow at zero incidence, with a
free-stream Mach number equal to 0,5. Free-stream boundary conditions
were located at 50 chords from the leading edge, whereas non-absorbing
wall boundary conditions were enforced on the airfoil solid wall, which was
represented by piecewise 4" order polynomials, for all approximation de-
grees of the solution.

Figure 3.19: Comparison of cubatures used for exact (left) and reduced
(right) integration of the P; solution approximation on a polygonal grid.
Legend : white = 4 nodes, light gray = 9 nodes, dark gray = 16 nodes,
black = 81 nodes

The computational grid was constructed by agglomerating the 2249 ele-
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ments of a hybrid unstructured mesh in polygons of five sub-regions max-
imum. As done in previous section, the merging procedure was performed
by the MGridGen 1.0 algorithm, which minimizes the overall grid as-
pect ratio [17]. A detail of the polyhedral grid (thick red line) and of the
sub-elements used for integration (dotted red line) is depicted in figure 3.19.

Results, obtained on the previously described grid, are presented for five
polynomial approximations using both exact and reduced integration rules.
The actual cubature reduction method relies on the criterion defined in
eq. (2.21), where scalar tol was set to be—6. Furthermore, it is important
to point out that integration rules were reduced not only on elements, but
also on their faces. The performed cubature order reduction does not affect
the entropy error and, thus, the accuracy. Conversely, being constant the
admitted error tol, the more the order of the polynomial approximation
increases the more the cubature order reduction enhances computational
efficiency.

CPU time MC CPU time RC CPUy;¢/CPURc
RK3 NEJ RK3 NEJ RK3 NEJ les|l2

P; 0.164s 0.125s 0.121s 0.102s 1.355 1.225 1.62e—5
Py 0.664s 0.523s 0.470s 0.386s 1.413 1.356 1.72e—6
P; 1.75s 1.50s 1.22s 1.07s 1.431 1.402 5.13e—7
Py 633s 5.27s 4.24s  3.64s 1.500 1.450 3.50e—7
Ps 12.6s 11.4s 818  7.59s 1.544 1.502 2.21e—7

Table 3.4: CPU time reduction table. RK3 and NEJ refer to the three steps
Runge Kutta explicit and to the non-linear element jacobi time integration
schemes, respectively

Table 3.4 compares the computational efficiency of reduced integration rules
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with that of exact ones for five polinomial degree approximations, using
both explicit and block implicit schemes. For both time integration schemes
the reduced number of cubature nodes is beneficial to efficiency.

Figures 3.20 and 3.21 show that the more the polynomial degree of the
discretization increases the more the discontinuities across the element in-
terfaces diminish. Furthermore the entropy error in the Lo norm, (2.21),
decreases when rising the polynomial degree of the discretization, table 3.4.
Then accuracy grows likewise the approximation degree does.

M: 0.010 0.087 0.163 0.240 0.317 0.393 0.470 0.547 0.623 0.700 M: 0.010 0.087 0.163 0.240 0.317 0.393 0.470 0.547 0.623 0.700

Figure 3.20: Mach number iso-contours, P; , Py discretizations.
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M: 0.010 0.087 0.163 0.240 0.317 0.393 0.470 0.547 0.623 0.700 M: 0.010 0.087 0.163 0.240 0.317 0.393 0.470 0.547 0.623 0.700

Figure 3.21: Mach number iso-contours, P3 , P4 and P5 discretizations.



Chapter

Multigrid Solver

Hereinafter the discontinuous Galerkin discretization on polyhedral grids is
used to develop an h-multigrid method at constant polynomial degree.
First an elegant yet practical set of transfer operators, which are well-suited
for hp-multigrid approaches, is derived for general space settings. Then,
their properties for current space settings, i.e. for hierarchic orthonormal
sets of shape functions, are presented. After that, a quasi-implicit mul-
tistage h-multigrid iteration strategy for the discontinuous Galerkin dis-
cretization of the steady Euler equations is developed and investigated ex-
perimentally. Coarse level discretizations are constructed by coarsening the
grid at constant polynomial degree. Fine elements are merged by optimi-
zing a function that capture the overall quality of the fused elements, those
elements are polygons in 2D and polyhedra in 3D. The agglomeration
strategy was developed by I. Moulitsas and G. Karypis [17], some details
about this process were presented in section 3.5.

Finally, a multistage V-cycle is developed using the non-linear FAS (full
approximation storage) multigrid scheme. Results are presented for an
uniform flow over a NACA 0012 airfoil at 2° of incidence and My, = 0, 5.
In section 4.4 are presented preliminary tests which point out some of the
most considerable properties of the developed multigrid scheme and its

73
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differences with the “classic” p-multigrid scheme. In section 4.5, those con-
siderations are summarized and suitable improvements are presented.

4.1 Definition of transfer operators

! In this section we present in detail an elegant yet practical set of transfer
operators, which are well-suited for both h- and p- multigrids applied to
discontinuous Galerkin finite element methods.

Transfer operators aim to “relate” two nested interpolation spaces. Let us
consider a fine interpolation space Vp,, see eq. (2.2), and another interpola-
tion space, coarser than Vy,, such that V; C V. In order to derive coarse
space Vg from Vj,, we can both reducing the degree of the polynomial
approximation and agglomerating the elements of the fine triangulation
T, = {K!}7,, getting a less resolved triangulation 7;; = {Kj Ly, de we

!This section aims to define transfer operators in very detail for both h- and p-
multigrid approaches and it requires a quite heavy notation.
Then we summarize here all the indices which will be introduced in the text :

- h, fine-level

- H, coarse-level

- K, element on the fine-level

- K JH , element on the coarse-level

- nwv;, number of d.o.f.s in fine-element K

- nvj, number of d.o.f.s in coarse-element Kj
- n, number of fine-elements in 7}, or in coarse-element KJH
- m, number of coarse elements in 7z

- a, e, indices for fine d.o.f.s

- 0, s, indices for coarse d.o.f.s

- 1, p, indices for fine-elements

- 7,9, indices for coarse-elements



Definition of transfer operators

)

assume the following space settings :
N

u, eV, = [V,

where N is the number of unknowns,

def
Vi oy € 12(0)  valin € Pay (K) VK € Ty} and
Vi déf {Uh S LQ(Qh) : Uh’Kih S ]P’kh(Kih) VKZh € 771} )
being Py, (K') and Py, (K" the spaces of polynomials of global degrees at

most k; on K JH and kj, on th, respectively.

P3(Ka) P (KB)

oS

Figure 4.1: Superimposition of fine and coarse nested interpolation spaces

We note that, as sketched in figure 4.1, in order to obtain nested spaces, the
global degree of the polynomial approximation k, in any coarse element
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K JH is such that kj; < ky, for all K" C K JH , where kj, are polynomial appro-
ximation degrees in fine elements th

Hereinafter, we first present the principal transfer operators in the general
case and then we reduce them for a set of hierarchic orthonormal shape
functions.

4.1.1 State transfer operators

Both prolongation and restriction operators for the solution (state) are
based on the Lo or Galerkin projection. The restriction operator aims to
project the fine state

n  nv;

w, = > Ui, ¢l (4.2)

i=1 a=1
belonging to Vy, onto the coarse space V. Thus, the restriction of uy is
equivalent to find the coarse state

m NVj

wy = > Vo ea (4.3)

j=1 o=1
such that

<uh — Uy, gpgj>KH =0 Yo € N(anj) and Vj € N1, m) > (4.4)
j

where the notation (-, -) 2 indicates the Ly inner product on element K.
Let us consider the projection in one coarse element K JH composed of n fine
elements K, then eq. (4.4) reads :

n nv; nv;

> D Ui <‘P3,i7 ¢§j>m =>_ Ul (¥ sidin 8 €N my).
o o=1

i=1 a=1

where nv; < nw; for all fine elements K! e KJH . This is induced by
requiring that the coarse discretization is nested in the fine one. Expressing

2a (%), b)) = [ a(x)b(x) dx
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the previous equation in a more and more compact form, we write first

n
Uy = Z M;I; M:j U,  where <M::> = <@Z,z’7 @§j>Kh (4.5)

° 5,0
i=1 ’

and M H, is the coarse element mass matrix. Then we write

—
ur = I u
where
TH —1 H.
o= oMy ]

S

Finally we derive the global state restriction operator

0 0
~ .
which is a m x n3 block matrix such that U? = [, 7 UM where U and

U" are vectors of the degrees of freedom in coarse and fine spaces, respec-
tively.

The prolongation of the coarse state uy, see eq. (4.3), is equivalent to
find the fine state uy, see eq. (4.2), such that

<uh—uH, 902@>m — 0  Va€Ngn, and VieNg,. (47)

3Note that each block, M,;j M:j, is a nv; X nv; rectangular matrix, where nv; > nv;.
In facts we are considering transfer operators for hp-multigrid methods.
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Handling eq. (4.7) as done for eq. (4.4), we obtain the global state prolon-
gation operator

0 0
=10 T;;j 0 with T}, = M, (M) |, (48)
| 0 0 1 i 1
which is a n x m?* block matrix such that U" = T/ gt

4.1.2 Residual restriction operator

The residual restriction operation is more delicate than the solution one.
In facts, the fine solution uy, is a linear combination of shape functions, see
eq. (4.2), then can be restricted by means of the Galerkin projection, as
shown. Conversely the fine residual rh(uh) is a vector, whose components,

t(w) O B(up el Ya€Ng, and VieNgy,, (4.9)
are non-linear functions of uy. Thus, in order to restrict the residual, we
can either project on the coarse-level the fine-level decomposition of r”(uy)
[12] or use a fine representation of coarse shape functions [8], profiting by
the linearity of the second term in B (-, -).

Fidkowski, in [8], developed a residual restriction operator for nested spaces
by using the correspondence between shape functions. In facts, since Vi
is nested in Vy, any cpgf ; can be expressed in terms of @ZJ,

n nv;

gpgj = Z Z Qo, j,a,i @Z,i Yo € N(l,nvj) and \V/j c N(l,m),
i=1 a=1
(4.10)

—1 .. T
“Note that each block, M, (M:j) , s a nwv; X nv; rectangular matrix, where
nv; > nuj.
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where n is the number of elements th in K JH . Then, the coarse represen-
tation of r/"(uy,) is expressed as

n  nv;

ro ;(un) = Z Z Qo joaiThi(Wp) Vo €N ) and VjE€Nq ),

i=1 a=1

by replacing eq. (4.10) in eq. (4.9) and using the linearity of B (-, -) with
respect to its second term. Fidkowski® showed that the coefficients o, a,is
which set up the residual restriction operator, are the terms of state pro-
longation transpose (I%)".

Thus, the global residual restriction operator reads :

0 0
H H;
=110 1 o (4.11)
with
o= oM
which is a m x n block matrix such that r(u,) = I7 r"(u;), where

r”(uy,) and r*(uy,) are fine residual vectors in the coarse and fine spaces,
respectively.

Note that, in eq. (4.11) the residual restriction matrix is definitively the
state prolongation transpose. In facts, the transpose of block matrices in
eq. (4.8) verify relation :

H;\T

T
—1 H. —1
(M) v)") = MM
owing to the symmetry of Mj,, and to the following properties of transpose

-1, T T,-1

(AB) =B A, (C) =(C)",

®Refer to section 3.4.4 in [8].
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where C is any invertible square matrix.

This approach may be generalized to non-nested spaces in the following
way. Let us express the residual, associated to any element Kih, as :

rZ,i(uh) = N Vv-f (uh) @Z,i dx Va € N(l,nvi) ) (412)
Ki
where f (u,) is the flux function of any PDE in the conservative form. The
expansion of the divergence of the flux function in Vj, reads :

nv;

V.t (uh) ~ Z Ra,i @Z,z’ Vie N(l,n) ) (413)
a=1

where R is the vector of degrees of freedom of the aimed decomposition,
whereas symbol ~ is used to point out that, owing to the non-linearity of
f (up,), the two sides of eq. (4.13) are not equal. Then, requiring the right-
hand side in eq. (4.13) to be “weakly” equal to the left one, the following
expression for R is derived :

M;_lil r?(uh) = R; Vi € N(l,n) , (4.14)

where n is the number of elements in Vj. Vector R, which is the linear
expansion of V - f(uy,) in V}, can be restricted to the coarse space by
means of the global state restriction operator. Thus, restricting R, as done
for U" in the previous section, and using eq. (4.14) in both V}, and Vg,
we obtain again operator (4.11).

This result lets drop the hypothesis of nested spaces, which was imposed
by Fidkowski, furthermore it shows that the residual restriction operator is
different from the state one even for linear flux functions.

4.1.3 Jacobian restriction operator

The Jacobian restriction operator is constructed in such a way that it is
“compatible” with the solution / residual transfer operators.
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Considering the first order Taylor expansion of the fine residual r’(uy,),

B h(y,(1)

[%th) Auy = Art(uy), (4.15)
where

Auy, = u;f)—u;ll) and Arh(uh) = I'h(ll;f))—rh(uﬁ))’
the relation
b hi(y,(1) "
I [% I I A, = I Arl(ay) (4.16)
up

must be verified in order to make the coarse expression (4.16) being con-
sistent with its fine counterpart (4.15).
Then the Jacobian restriction operator reads

[LW)] _ [M] s (4.17)

0 uy o uy

Note that matrix I’ " is some “generalized inverse” of matrix I/ +. In facts,
considering a fine state s, which can be accurately expressed on the coarse-
level, we have that s; = IZ I/ sy, .

Finally it is important to point out that, in h-multigrid approach, restricting
to the coarse-level the Jacobian block diagonal entries is not equivalent to
selecting the diagonal blocks of the restricted Jacobian. Conversely, in p-
multigrid approach, the two processes produce the same result. In facts,
expanding eq. (4.17), any j* diagonal block of the restricted Jacobian is
written as :

n
Hj -1 -1 H;\T
Jij - Z M, M, Jﬁp M, (Mh;) ) (4.18)
i, p=1
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where n is the number of fine elements K € K ;1 and JZ p are blocks of
the fine Jacobian [0r"/duy,]. Instead, the restriction of fine-level Jacobian
block diagonal entries produces a matrix D, whose non-null blocks are

n
DI, = > M M, I M, (M) (4.19)
i=1

3

Hence matrix D¥ differs from J” in those off-diagonal blocks, of fine-level
Jacobian, which “connect” fine elements belonging to the same coarse ele-
ment. The “lack of consistency” of D in respect of J* does not occur in
p-multigrid approach, in which the coarsening process is done by reducing
the sole polynomial degree of the discretization.

The h-multigrid scheme, further presented in section 4.2, performs the first
coarse level iteration using D*. This scheme do not show any stability
problem when solving subsonic Euler equations.

4.1.4 Properties for hierarchic orthonormal shape sets

In previous sections it was introduced a set transfer operators which is well-
suited for DG hp-multigrid approaches regardless of the shape set used in
the discretization. Actually, transfer operators become much simpler by
considering sets of hierarchic orthonormal shape functions. Furthermore
they get a interesting property which is the “cornerstone” of adaptive hp-
multigrid approaches for the discontinuous Galerkin finite element method.

Orthonormal sets of shape functions verify :

<4p37i, ¢]g7i>Kh = dq,e Va,ec N(l,nvi) and Vi€ N(Ln), (4.20)

on the fine-level, and

<¢g{j, gpfj>KJH = 00,5 V0,8€ N pny) and VjeNq ), (421)
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on the coarse-level, where d, o is the Kronecker delta.
That is, eq. (4.20) and eq. (4.21) state that elemental mass matrices are
identity matrices. Then transfer operators become :

=Ty .0 0
I = (", where T = | 0 T, 0 |, (422
Ll =T L0 0 |
with
o= [ oMy

Actually, the choice of orthonormal shape sets reduces memory require-
ments, because only T}’ has to be stored. Moreover, the fact that shape

functions are even hierarchic makes the leading minors® (M, ], o' being
7 )

MZIZJ matrices for polynomial approximations of lower global degrees.
Let us define the coarse spaces V¢ and Vf , where

vE Y Lo, e LXK vy € P(K™))
and the fine spaces V,;’ and th, where v > ( > a > (§ and

vk def {vh € L2(K"): vy € ]P’k(Kh)} ,

where K" is one fine element belonging to K7, see figure 4.2.
The hierarchic shape set defined on V,f is a subset of that defined on V7,

SGiven a n x m matrix A, the leading minor [A]; ; indicates the upper-left part of
A. That is the ¢ X j matrix whose rows are the first ¢ rows of A and whose columns are
the first j columns of A.

"Note that o indicates the o' shape function of coarse element KJH and a indicates
the a*® shape function of fine element K. Thus, in order to nest the coarse space in the
fine space, o < a.
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Figure 4.2: Regions for spaces V&, V7 (white) and v, th (yellow)

see section 2.6. That is, the first nvg = (8 + 1)(8 + 2)/2 shape functions
in V2 are the shape set in V}7 and the first nve = (¢ + 1)(¢ +2)/2 shape
functions in V,;Y are the shape set in th . Thus, being MT the nv, x nv,
rectangular matrix, defined in eq. (4.5) , which transfers state and residual
from V;] to V2, the following relations are set :

M? = [Mg]nva,nvg and M? = [Mg]nvﬁ,m}(a (423)

where M¢ and M? transfer state and residual from VhC to V§ and from VhC
to Vlf , respectively.

In order to point out how property (4.23) is the “cornerstone” of a p-
adaptive hp-multigrid approach, let us make the following example. We
consider a coarse element ¢, decomposed in two fine elements f and d, see
figure 4.3, and the operator Tj, which transfers the Py approximation on
the fine triangulation to the P approximation on the coarse element ¢ and
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Figure 4.3: Decomposition of element ¢

which reads :
T, = [ M Mg |. (4.24)

Then we start to compute by means of the P; polynomial approximation,
using the operator

Ty, = [ [Mfhs Mgz |,

which is a subset of T§. At each iteration, the residuals on P;(f) and Py (d)
are compared to those on Py(f) and Pa(d)® by means of some adaptive
criterion. When it is necessary, the degree of the approximation on f is
increased and the operator

Tz, = [ [Mflss [Mglss |

is used. Furthermore, if it was necessary to increase even the degree of the
approximation on d, we would increase the degree of the approximation on
¢ too and use the operator in eq. (4.24).

Note that, in the whole process, it was necessary to store only matrix T .

8The state prolongation from P; to P2 does not need any further computation, because,
as shown in [8], [12],[13] and [14], I7 is the identity matrix with 3 zero rows appended,
when using hierarchic orthonormal shape functions.

9In coarse elements we choose the highest polynomial approximation which assures
that the coarse discretization is nested in the fine one.
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4.1.5 Properties for bases defined in reference spaces

As done at the end of section 2.5, it is important to compare previous
transfer operators with those arising form the “classic” reference space dis-
cretization. As a matter of fact, if both the state and the residual are
defined in the reference space, the same is done for transfer operators.
Then, residual and state transfer operators are required just for canonical
element shapes, thus strongly reducing memory requirements. However, we
remember that actual orthonormal sets of shape functions, defined in the
real space, make transfer operators, for p-multigrid methods, being identity
matrices with some zero rows or columns appended. Therefore they do not
need to be stored.
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4.2 FAS and two-level multigrid

To solve the nonlinear system of equations (2.67), the Full Approzimation
Storage (FAS) scheme was chosen as the multigrid method. Much of the
following description is adapted from Fidkowski [9] and Mavriplis [13].
Consider the discretized system of equations given by

R"(U" + P" =0,

where U" is the discrete solution vector for the fine grid level, R*(U") is
the associated non-linear system and P” is the forcing term, which is null
for the finest level problem!Y. Let UZ be an approximation to the solution
vector and define the discrete residual, r(U?), by

(U = RM(UL) + PP

In a basic two-level multigrid method, the exact solution on a coarse level
is used to correct the solution on the fine level. The two level correction
scheme is given as follows :

e [terate on the fine level with the locally-implicit multistage scheme
presented in section 2.10

e Obtain a new state approximation UZ 11

e Compute both the new residual r"(U” +1) and the new jacobian block
diagonal entries D*(U", )

e Restrict both the state and the residual to the coarse level :
U{J{ = f/f UZH
Ry = I rh(UZH) ,

by means of restriction operators defined in sections 4.1.1 and 4.1.2

ONote that even if we are interested in the stationary solution, the time dependent
term My, dUh/dt is used to alleviate transients during the solution process



88

Multigrid Solver

e Compute restricted state residual and coarse level forcing term :
P"=R{ — R"(U{).
e Restrict jacobian block diagonal entries, Dh(UZ +1), in the coarse level
Di = I D"(Up,,) Iy
e Solve the coarse level problem
R"(U") + P" = 0, (4.25)

starting from the coarse state U{. The solution method consists
in k iterations with the locally-implicit multistage residual smoother
presented in section 2.10, using the restricted jacobian for the first
iteration.

e Compute the coarse grid error
B" = Uf - Uy,
and correct the fine grid approximation
UZ+1 — UZ+1 + I E"
Note that, the FAS coarse level equation (4.25) can be written as
R¥(U") + I T*(UL,,) — R7(U}) = o, (4.26)

so that, if the fine grid problem converged, r"(U”, ;) = 0 and eq. (4.26)
is identically verified, since U" = U{'.
The restricted residual I}/ r"(U"_ ;) “controls” coarse level iterations. In
facts, considering the simple non-linear element Jacobi scheme, the first
two iterations on the coarse level read :

—1

U = <% + D{f) R*(UH) + P¥) + UL, (427)

—1

M
Uy = <T? + DH(Uf)> (R7(UY) + P7) + UT.
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Note that if r(U" 1) vanishes so does its restriction on the coarse level,
RY(U{J) + P" = R{ — 0.
Then, supposing that (4.27) is a stable iteration, the state change vanishes
Uy — Uj —o,
and the next residual “gets close” to the restricted residual
R"(U) — R"(UY) + RY — R},
which vanishes.

In order to obtain a stable two level h-multigrid scheme, it is necessary
to use the restricted jacobian D{, instead of the jacobian of the restricted
state D¥(U{), for the first coarse iteration (4.27). This consideration con-
cerns exclusively the h-multigrid method derived so far. Conversely, pure
p-multigrid methods seem stable even if the jacobian of the restricted state
D (U{) is used.

4.3 V-cycles

To make multigrid practical, the basis two level correction scheme could
be extended to a V-cycle and to full multigrid (FMG). In a V-cycle, a se-
quence of one or more coarse levels is used to correct the solution on the
fine level. Descending from the finest level to the coarsest, a certain num-
ber of pre-smoothing iterations can be performed on each level before the
problem is restricted to the next coarser level. On the coarsest level, the
problem is either solved directly or smoothed a relatively large number of
times, as presented in [9] and in [12]. Ascending back to the finest level,
some post-smoothing iterations can be performed on each level. Each such
V-cycle constitutes a multigrid iteration.
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Figure 4.4: Example of a V-cycle multigrid iteration with three coarse
levels. — refers to residual, state and jacobian restriction, @ represents one
smoothing iteration and --+o is the correction

Some representative tests, in section 4.4.1, show that, if coarse levels are
constructed by coarsening the triangulation at constant polynomial ap-
proximation, V-cycle performance does not depend very much on pre-
smoothing iteration number. Conversely, if coarse levels are constructed by
reducing the polynomial approximation on the same triangulation, V-cycle
performance improves by increasing the number of pre/post-smoothing it-
erations. In terms of CPU time, p-multigrid V-cycles attain optimal con-
vergence rates for a given number of pre/post-smoothing iterations, never-
theless this limit occurs for a quite large number of iterations, see [39]. As
a matter of fact, in section 2.10 we observed that the number of iterations
to converge of the locally-implicit multistage scheme is independent of the
polynomial degree. The error dumping speed depends on some grid charac-
teristic dimension, which is independent of the polynomial approximation.
Then, in order to overcome this limit in “pure” p-multigrid schemes, it
is necessary to increase the number of smoothing iterations on coarse le-
vels, where they are less expensive. Conversely, in hA-multigrid schemes, the
dumping speed limit is overcome by coarsening elements in coarse levels
and increasing the number of iterations is not necessary.
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Using plain V-cycles to obtain a high-order solution requires to starting
the smoothing iterations on the highest order approximation. As this level
contains the largest number of degrees of freedom, smoothing on it is the
most expensive. An alternative is to obtain an approximation to the solu-
tion using the coarser levels before smoothing on the finest level. This is the
premise behind FMG in which V-cycles on successively finer levels are used
to approximate the solution on the finest level. By the time the solution
is prolongated to the finest level, it is usually a close approximation to the
final solution with the exception of certain high frequency errors that can
be smoothed efficiently on that level.

A decision that has to be made in the FMG algorithm is when to start ite-
rating on the next finer level. Converging the solution fully on each level is
not practical because the discretization error on the coarser level is usually
well above machine zero. We can perform a constant number of V-cycles
on each level, [13] and [14], or we can prolongate the state when a residual-
based criterion is met, [8].

Both FMG approaches were implemented and tested, but they are less
efficient than the “classic” V-cycle. In h-multigrid at constant polyno-
mial degree the discretization error on coarse grids is generally high, then
coarse level solution is not a good initial state for the finer level. On the
other hand, A-multigrid show a very efficient V-cycle, if combined with
the quasi-implicit multistage scheme. Thus, we suggest a FMG in which
the solution is discretized by successively higher polynomial degrees on the
same triangulation, as for p-multigrid approaches, but the convergence is
accelerated by means of the hA-multigrid V-cycle. The polynomial degree
should be increased in each fine element when a local residual-based crite-
rion is met. At the end of a V-cycle, the current residual and its L; norm,
[ (U*)||L,, are known in each fine grid element. The solution vector is
prolongated to k + 1 level'! and the residual is calculated along with its

"The state prolongation from Py to Pky1 does not need any further computation,
because I,f“ is the identity matrix with k4 1 zero rows appended, when using hierarchic
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Ly norm |[r"(U**1)||1,. The polynomial degree is increased when the con-
dition ||r"(U*)||L, < n,||le"(U* )|z, is reached, where . € (0,1) could
depend on some global convergence parameter. Conversely, the polynomial
degree of the discretization is kept constant in those elements in which this
condition is not met. Furthermore, in V-cycle coarse level elements we
choose the highest polynomial degree which assures that the coarse level
discretization is nested in the finer one. As a matter of fact, increasing
the degree of the discretization is beneficial to the convergence rate, see
section 4.4.3, however reducing the global number of degrees of freedom is
necessary for computational efficiency.

4.4 Preliminary tests

In order to point out some of the most considerable properties of the h-
multigrid at constant polynomial degree approach, several tests were con-
ducted on the same problem. The solution of compressible Euler equations
around the NACA 0012 airfoil with 2° of incidence and My, = 0,5 was
discretized on a hybrid unstructured mesh of 1124 elements.

The boundary conditions were set as done in section 3.6 except for the in-
flow angle which was set at 2°. Furthermore, in all tests, integration rules
were reduced by means of the criterion presented in section 2.4, imposing
tol = 5e—6 for the finest level grid and tol = 1le—2 for all the coarse grids.
Hereinafter are presented preliminary yet meaningful tests, which should
be followed by a precise two-level convergence analysis.

4.4.1 Pre-smoothing iterations

Let us consider the effect of pre-smoothing iteration number on the con-
vergence rate of h-multigrid. All the computions start from the uniform
initialization of the flow field with the free-stream flow condition. Then, as
introduced in section 4.3, the V-cycle at constant P4 approximation is used

orthonormal shape functions.
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M: 0.034 0.115 0.196 0.276 0.357 0.437 0.518 0.599 0.679 0.760

M: 0.098 0.172 0.246 0.320 0.394 0.468 0.541 0.615 0.689 0.763

(a) P4 Mach iso-contours (b) P4 Mach iso-contours

Figure 4.5: P4 solution approximation on the considered 1124 element grid

without any FMG approach.

In figure 4.6(a) are depicted four V-cycle schemes, which differ from one
other in the number of pre-smoothing iterations on each level. Moreover, in
all schemes, the coarsest level is characterized by an additional smoothing
iteration with respect to finer levels. Note that basic V-cycles, figures 4.4
and 4.9, perform at least two interations on the coarsest level. As a matter
of fact, the first iteration on any coarse level is performed by using the
restricted jacobian, see section 4.2, which is computed on the finer level.
Thus, on the coarsest level, the second iteration has a negligible computa-
tional cost, nevertheless it has a beneficial effect to convergence, especially
in first iterations. Finally, the case without pre-smoothing iterations coin-
cides with using the locally-implicit multistage scheme directly on the finest
grid.
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In figure 4.6(b) are represented the three coarse grids together with the
finest level grid. Each coarse element is obtained by agglomerating 5 ele-
ments of the finer level grid using the algorithm in [17]. As shown in
figure 4.6(b), coarse level triangulations are composed by polygons which
can be very irregular. Thus, in order to obtain a coarse level jacobian which
is “compatible” with the restricted residual, it is necessary to construct it
by means of the consistency relation in eq. (4.17). That makes the first
iteration in eq. (4.27) being stable, as required by a correct “fine residual
control”.

(a) V-cycle schemes (b) Superimposition of 4 grid levels

Figure 4.6: Left : representation of V-cycle scheme for 0, 1, 2 and 3 pre-
smoothing iterations. Right : superimposition of grid levels If (fine gray),

ley (red), leg (blue) and leg (black)

Increasing the number of pre-smoothing iterations has no significant effect
on the convergence rate, thus it is detrimental to computational efficiency
owing to the CPU cost of the additional iterations. In figure 4.7 it is also
represented the convergence curve when no V-cycle is used. In this case,
the h-multigrid method converges approximately in one twentieth of the
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Figure 4.7: Effect of pre-smoothing on the convergence rate in terms iter-
ations and CPU time

iterations needed to converge with the simple locally-implicit multistage
scheme. This result will be improved in the next sections, but it is still far
from its optimum which requires FMG and “large meshes”.

By the way, this simple test points out an important difference with the
p-multigrid approach, which is significantly improved by the use of several
pre/post-smoothing iterations on coarse multigrid levels. For the interpre-
tation refer to section 4.3.

4.4.2 Smoother number of stages

In previous section we decided to use a V-cycle which makes use of one
smoothing iteration on each coarse level and two in the coarsest one, fi-
gure 4.6(a) top-left. In this section it is investigated the effect of locally-
implicit multistage schemes on the A-multigrid.

Figure 4.8(a) shows that the number of iterations to converge reduces when
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Figure 4.8: Effect of number of stages on the convergence rate in terms
iterations and CPU time

increasing the number of stages in the scheme. As remarked in section 2.10,
updating more than once during an iteration enhances the “communica-
tion” between neibouring elements. Anyway, in terms of computational
cost, the scheme with five stages is less efficient than that with three stages.

The locally-implicit multistage scheme is still a work in progress, thus those
are preliminary results.

4.4.3 Polynomial degree and macro-element dimension

Aim of this section is evaluating the effect of both polynomial degree and
macro-element dimension on hA-multigrid efficiency. Then we compare con-
vergence rates of a three level V-cycle, figure 4.9, when changing the degree
of the polynomial discretization and the number of fine elements making
up a coarse element.

In this test convergence rates are compared in terms of number of iterations.
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Figure 4.9: V-cycle multigrid iteration with two coarse levels

As a matter of fact, increasing the degree of the polynomial approximation
is equivalent to rise the computational cost of each iteration, then it does
not make sense to compare convergence rates in terms of CPU time.

I
100

(a) Tteration number (b) 5 x 5 level grids

Figure 4.10: Left : convergence rates for different polynomial approxi-
mations. Right : superimposition of grid levels 1If (fine gray), lc; (red),
ley (blue)



98

Multigrid Solver

In figure 4.10 is depicted the effect of polynomial degree on the convergence
rate of the V-cycle, in which coarse level elements are constructed by ag-
glomerating five elements of the finer grid. In this case, the order of the
polynomial approximation has a negligible effect on convergence rate and
the A-multigrid converges in approximately 90 iterations.
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Figure 4.11: Left : convergence rates for different polynomial approxi-
mations. Right : superimposition of grid levels If (fine gray), lc; (red),
lco (blue)

Let us increase the number of fine elements composing a macro-element
from 5 to 10, constructing two coarse levels, figure 4.11(b), whose elements
are larger than in the previous case. Then, see figure 4.11(a), we observe
that the order of the polynomial approximation has a beneficial effect on
h-multigrid convergence rate. In facts the number of iterations to converge
decreases of 21%, 17% and 7% when increasing the approximation degree
from Py to Py, from Py to P3 and from PP3 to P56, respectively. Finally, the
least number of iterations to converge equals 70, which is 20 iterations less
than in the previous case.
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(a) Iteration number (b) 20 x 20 level grids

Figure 4.12: Left : convergence rates for different polynomial approxi-
mations. Right : superimposition of grid levels 1If (fine gray), lc; (red),
ley (blue)

The beneficial effect of polynomial approximation degree increases even
more if macro-elements are made up by 20 elements of the finer level, see
figure 4.12(b). The number of iterations to converge decreases of 17%,
16%, 16% and 13% when increasing the approximation degree from Py to
Py, from Py to Pg, from P3 to P4 and from P4 to Pg, respectively. Even
though the convergence rate is enhanced by the polynomial degree of the
discretization, the least number of iterations equals 120, which is much
higher than in the previous case.

This test points out some interesting properties of A-multigrid at constant
polynomial approximation, which are listed below :

e Increasing the degree of the polynomial approximation has always a
beneficial /negligible effect on the convergence rate of the V-cycle
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e Enlarging coarse level elements enhances the beneficial effect of poly-
nomial degree on the convergence rate. As a matter of fact, increasing
the number of fine elements making up a coarse element is equivalent
to broaden the error frequency band which has to be transferred and
dumped on the coarse level. Then rising the polynomial degree in
coarse elements enable to “capture” a larger error frequency band.

e The best convergence rates are showed by the V-cycle in which coarse
level elements are constructed by agglomerating ten elements of the
finer grid. Indeed, among the three considered coarse element “di-
mensions”, the 10 x 10 configuration (figure 4.11(b)) distributes the
error frequency band evenly on the three levels. To further justify
the previous statement for the 10 x 10 configuration, we observe that
in the finest level there are 1124 elements, in lc; level there are 121
macro-elements composed by 10 fine elements and in lcy level there
are 13 macro-elements composed by 10 sub-elements

Thus we stated that distributing evenly the coarse level element dimensions
gives the best convergence rates, provided that the polynomial degree of
the approximation is high enough.

4.4.4 Number of “evenly distributed” multigrid levels

This last test deals with the effect of the number of levels of h-multigrid
V-cycle scheme. In order to plan it as fair as possible, the global number of
fine elements was evenly distributed among all coarse levels. That is, each
macro-element is made up by ns. elements of the finer level, provided that

Nge ™~ (ne)l/nlevs, 12 (428)

where n. is the finest grid element number and 7., is the global number
of levels, which is the number of coarse levels plus one. Furthermore the

2Note that mse is generally different from (n. )1/’”“5. Thus ~ refers to the “closest
integer” to the right hand expression in eq. (4.28)
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number of smoothing iterations on the coarsest level was increased in V-
cycles with less levels in order to make comparable the computational cost
of the three considered cases, see figure 4.13(a).

651

s

(a) V-cycle schemes (b) Iteration number

Figure 4.13: Left : representation of V-cycle scheme with 1 (red), 2 (blue)
and 3 (black) coarse levels. Right : Number of iterations to converge for
three V-cycle schemes and three polynomial degrees

The graph in figure 4.13(b) shows that the beneficial effect of polynomial
degree increase is enhanced by the coarse element dimension, as observed
in previous section. Moreover rising either the number of levels, which is
equivalent to reduce macro-element dimensions, or the degree of polynomial
approximations improves the convergence rate of the h-multigrid. This
behaviour suggests that enabling coarse levels to “capture” larger and lager
error frequency bands is more and more beneficial to convergence rates. As
a matter of fact in A-multigrid the restriction operation transfers to the
coarser level frequencies which are contained in the jumps of the state
across finer element interfaces. Jumps include a frequency band which
is theoretically infinite. Considering the Fourier transform of any one-
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dimensional jump,

b+ a b—a

Flins@)} = 80 5" = i (429)

we observe that, although signal energy decreases for high frequencies, a
good approximation of the jump requires high degree polynomials.

4.5 Concluding remarks and improvements

We presented some preliminary yet significant tests. Although they should
be followed by a more exact theoretical analysis, they point out some in-
teresting properties of the developed h-multigrid method.

First let us summarize two main differences between p-multigrid and A-mul-
tigrid methods :

e The number of iterations to converge of the locally-implicit multistage
scheme is independent of the polynomial degree, see section 2.10.
This behaviour suggests that error dumping speed depends on some
grid characteristic dimension, which is independent of the polyno-
mial approximation. In order to “overcome this limit” p-multigrid
schemes require to increase the number of smoothing iterations on
coarse levels, where they are less expensive. Conversely, in h-multi-
grid schemes, the grid characteristic dimension widens out in coarse
levels, then rising the number of smoothing iterations is not necessary,
see section 4.4.1

e The second main difference between p- and h-multigrid methods con-
cerns the meaning of the restriction operation. In p-multigrid solution
restriction is equivalent to “cutting” the highest degree modes of the
polynomial approximation. Conversely in h-multigrid it is not possi-
ble to evaluate which part of error frequency band is discarded by the
restriction operation. As a matter of fact the restriction operation
transfers to the coarser level a part of the frequency band contained
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in the jumps across finer element interfaces. Then, in order to “cap-
ture” the optimum amount of information from fine levels, it could be
interesting to construct coarse spaces which are not nested in the fine
ones.'? Although transfer operators could be defined for non-nested
spaces [12], the implications of their use will be analysed further

Then it is interesting to list the main observations which can be derived by
the previous tests :

e Increasing the number of smoothing iterations does not improve con-
vergence rates of hA-multigrid, refer to section 4.4.1

e Among tested locally-implicit multistage schemes, the best perfor-
mances in terms of computational efficiency are showed by the three
step scheme. By the way that smoother needs further investigations
concerning «y, coefficients, see section 2.10

e Distributing evenly the coarse level element dimensions gives the
best convergence rates, provided that the polynomial degree is high
enough. Presented in section 4.4.3

e Increasing both the number of multigrid evenly distributed levels and
the polynomial degree of the discretization is beneficial to convergence
rates. More details and observations are reported in sections 4.4.3 and
4.4.4

Finally we want to spend some words on two possible improvements of the
h-multigrid presented so far.

As noticed in section 4.3, the full multigrid approach which uses h-multigrid
coarse grids to initialize the fine level solution is less efficient than the “clas-
sic” V-cycle. Indeed, the discretization error on any h-multigrid coarse grid
is generally much higher than that on the finer one. This feature is related
to the reduced number of state jumps of any level discretization in respect

131t is important to remark that using non-nested spaces does make sense just in h-
multigrid
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of the finer level one. Then any h-multigrid coarse level solution is not a
proper initial state for the finer level.

By the way, an efficient scheme needs some progressive initialization me-
chanism, in order to minimize computational cost of initial iterations. The
most natural solution lies on progressively increasing the polynomial degree
of the discretization on the finest level by means of adaptive methods and
accelerating convergence by means of the A-multigrid V-cycle. The whole
process does not need any re-computation of transfer operators, see sec-
tion 4.1.4, and the polynomial degree of coarse approximations is chosen
with regard of finest level discretization. Furthermore, in section 4.3, it
was sketched a residual based adaptive criterion useful for the described
process. Anyway the use of the adjoint problem would be preferable in
terms of computational efficiency.

As remarked in section 4.4.3, rising the polynomial degree of the discretiza-
tion is always beneficial to hA-multigrid convergence rate. Indeed the jumps
across element interfaces on any level approximate state changes which
need high polynomial degree representation on the coarser level. If we used
coarse spaces which are nested in fine ones, the polynomial degree in any
coarse element would be limited to the minimum polynomial degree among
all fine elements which compose it. Conversely, if coarse spaces were not
required to be nested in the fine ones, the polynomial degree could be risen
freely in any element on any level. Transfer operators can be defined for
non-nested spaces by means of the Galerkin projection, sections 4.1.1 and
4.1.2, thus the two-level correction scheme does not need any specific treat-
ment in this case, see section 4.2.

By the way, an important remark arises. When using nested spaces some
information is lost during the restriction process, but the coarse grid error
is exactly represented in the fine space. Conversely the use of non-nested
spaces implies leakage of information after the prolongation process too, be-
cause the coarse grid error can not be exactly represented in the fine space.
This observation suggests that any coarse element polynomial degree can
be risen until a prolongation error criterion is met.
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4.5.1 Prolongation error in non-nested spaces

Aim of this section is to recall some of the concepts presented in section 4.1
in order to outline a simple way to evaluate the leakage of information
occuring during the prolongation process in non-nested spaces. Once the
prolongation error is defined for each coarse shape function, it could be
bounded by a user-defined tolerance, as done for integration rules in sec-
tion 2.4.

Let us define two fine approximation spaces V;* and Vhﬁ , where a > 8

and
vk {vh € LX(K") : wy|in € PR(K]) VK] € KH} ;

and one coarse space

Ve Y Lo, € LX(KY): vy € Po(K™))

Hence, Vi is nested in V¥, but it is not nested in Vhﬁ .

Then, consider the following hierarchic orthonormal shape sets, { ? }{il,
basis of V)¢, its sub-set { ¢! { 2., basis of Vhﬁ , and { o }52 | basis of V.1

=1
Any ;" can be exactly represented on V;* as :

fa

of = > (I) & VieNuc, (4.30)
j=0 ’

where T, T is the prolongation operator which transfers the solution from V&
to V;*. While, the approximated representation ¢ of ;" on Vhﬁ reads :

I

ol =3 <Tj}>j @l VieNu ., (4.31)
j=0 ’

“The integers fu, fs and ¢, are the global numbers of degrees of freedom in V;%, V,;@
and V7, respectively.
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because, owing to hierarchic orthonormal “nature” of bases, the prolonga-
tion operator which transfers the state from V' to Vhﬁ , is a sub-set of I,
see section 4.1.4. Then the Ly norm of the prolongation error for ¢}’ reads :

fo ,
2 ~
Bty = [ ef-atax = > (T) . s
h KH . Jy?
j=fp+1
where the orthonormality property of bases was used.
- fa
Notice that E(pf"),s depends on the sole {(Ig) } } coefficients.
" 70) j=fat1

This result points out, once more, the crucial role of transfer operators in
the study of hp-multigrid methods.



Appendix

Gaussian integration rules

This appendix aims to present concepts and implementation details behind
a C++ code, which computes optimal and slightly optimal quadrature for-
mulas for classic reference domains.

A.1 Orthogonal polynomials

Orthogonal polynomials are classes of polynomials {p,(z)} defined over a
range [a,b] that obey the orthogonality relation :

b
[ 0@ @ (@) do = G (A1)

where w(x) is a weighting function and 6y, , is the Kronecker delta. Fur-
ther we will consider orthonormal sets of polynomials over [—1, 1] range,
thus ¢,, will equal one for all n.

Jacobi polynomials belong to a very wide class of orthogonal polynomi-
als, indeed they form a complete orthogonal system in the interval [—1,1]

107
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with respect to the following weighting function :
wa,p(x) = (1—a)* (1 +a)7, (A.2)

where o and 3 are real scalars greater than —1. Jacobi polynomials satisfy,
see [24], the following relation :

1
/ PA) plesB) (1 — ) (14 )P do =
—1

g0 +6+1 F'n+a+1)I'(n+6+1)
2n+a+0+1 nll'n+a+5+1)

Sm.n » (A.3)
where I'(z) is the gamma function :

I'(z) = / et dt.
0

Any polynomial, pi~? )(x), can be associated to an ordered list of coeffi-
cients which are computed by means of the following recurrence relation :

Bi(z) = 1(x) Pea(z) — a(2) Pea(2),

where k is an integer which runs over all degrees of freedom of P,§°" A ()
and 11 2(x) are

(a—1)(a? = 3% +(a—4)(a—3)(a—2)x
2k(a — k)(a — 2)
2a(k+a—-1)(k+3-1)

vale) = %(a—k)a—2)

with a = 2k + o + 8. In order to complete the numerical procedure it is
necessary to choose the initial conditions,

P(](x) =1
a—0 a+pf+2

Pi(x) = 5 + 5 x,




Gaussian integration 109

and to normalize at each k-step Pj(x) with its evaluation in 1, Py(1). Fi-
nally, aiming to obtain an orthonormal set, we proceed as follows

(a7 6)
peB)(z) = B () :
" HP(a,ﬁ)(fE) I
n Wa, 8

where

Vs o)
IR @ = [ (PP @) wna) da

Note that, knowing all coefficients of the polynomial expansion P,(La’ A (x),
the integral in the expression above can be computed exactly.

A.2 Gaussian integration

In order to solve an integral numerically, quadrature formulas are used.

A quadrature formula is basically a set of distinct abscissas { zq, ..., =y }
over a range [—1,1] and a set of corresponding scalars, called weights,
{ag, ..., ap }, which verify :

1 n
/ pr(z)w(x) de = Z a; pr(x;) , (A.4)
-1 i=0

where pi(x) is a polynomial of order k£ and w(z) is the weighting function.
The maximum k for which eq (A.4) stands is called degree of precision of
the quadrature. Gaussian quadratures aim to obtain the best numerical
estimate of an integral for a given number of integration nodes z;.

The fundamental theorem of gaussian quadrature, see theorem 10.1 in [25],
states that the optimal abscissas of a quadrature formula are the roots of
the orthogonal polynomial for the same interval and weighting function.

Proposition A. Being { zg, ..., x, } n+1 distinct abscissas over a range
[—1,1], the quadrature formula (A.4}) has a degree of precision equal to
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n + m (where m is a positive integer) if and only if the nodal polynomial
wn+1(x), interpolating all the x; abscissas, verifies :

1
/ G (@)p(@)u() dr = 0 Vpl) € Py (A.5)

According to (Proposition A), obtaining optimum quadratures is equivalent
to find the nodal polynomial wy, ;1 (z) which verifies eq. (A.5) for the biggest
integer m. Then, the roots of wy,+1(x) will be the optimum abscissas of the
quadrature formula for the same interval and weighing function.

A.2.1 Gauss quadrature

The very optimum quadrature is obtained by avoiding to impose any kind
of constraint on the abscissas of the quadrature formula. Thus, supposing
that w(x) equals w,, g(x), we have that :

1
/_ 13&1’{”(9@) p(@)wa, glz) dr = 0 Vp(x) €P,. (A.6)

Then, according to (Proposition A), the N-roots of P](Va’ﬁ) () define the
abscissas of a quadrature which is exact for polynomials of order 2N — 1.
This renowned quadrature is called gauss quadrature.

Before going further it is interesting to point out the reason why eq. (A.6)
stands.

Observation A. A set of Jacobi polynomials of order less or equal than

{P(a 6)( )}, is a basis for the space of polynomials of order less or
equal than m, P,,,. Therefore, (A.6) can be rewritten as :

1 n
/ PP @) | ¢ PP (@) | wa, () da (A7)
where p(x) was expressed as z'ts linear expansion on Jacobi polynomials.

Finally, the orthogonality of P, n+1 )( ) with respect of all {P(a B ()},
states that the eq. (A.7) is null.
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A.2.2 Radau and Lobatto quadratures

Gauss quadrature is the best one, nevertheless it is possible to obtain
slightly less optimal quadratures, imposing a constraint on one or two
quadrature nodes :

e When immobilizing just one quadrature abscissa in the element boun-
dary, it will be referred to radau quadratures

e When the both endpoints of the interval [—1,1] are included in the
quadrature abscissas, it will be referred to lobatto quadratures

As done in section A.2.1, it is necessary to find a nodal polynomial wy,41(z)
which verifies eq. (A.5) for the greatest possible m-value. Being w(x) equal
to wq g(x), we choose :

wni1(z) = PO (2)(1 — 2) {radau; } (A.8)
wpi1(z) = PAH(2)(1 4 2) {radau_1} (A.9)
wnp1(z) = POTEAD 01— 2)(1 + 2) {lobatto } (A.10)

which, replaced in eq.(A.5), state the following relations

1
/ PP (@) pla) war, g(x) do = 0 () € Fuy
-1

1
/ P (1) p(2) wa, g41 () dz = 0 Vp(z) € Pp
-1

1
/ PT(LO‘_J{LBH)(QU) P(x) Wart1, gy1(z)dz = 0 Vp(z) € Pp_o

Thus, according to (Proposition A), the N-roots of (A.8) and (A.9) are
radau quadrature nodes, exact for polynomial degrees at most equal to
2N — 2, whereas the N-roots of (A.10) are lobatto quadrature nodes, exact
for polynomial degrees at most equal to 2N — 3.
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A.2.3 Polynomial roots and quadrature weights

In section A.1 it was shown how to calculate coefficients of a Jacobi poly-
nomial and, in sections A.2.1 and A.2.2, that their roots are abscissas of
optimum quadratures. Then it remains to derive an algorithm to compute
roots of mono-dimensional polynomials and a method to obtain quadrature
weights from a set of quadrature abscissas.

Polynomial roots were calculated with the Newton-Horner method, which
makes use of the deflation method to eliminate successively found roots.
Any mono-dimensional polynomial

n
pn(z) = Z ay, *
k=0
can be written as :

pn(x) = by + (x —2)qn-1(z; 2), (A.11)

where z is any position on the z-axis and ¢,—1(z; z) is the associated
polynomial to p,(x), which is

n
drlaiz) = 3 bt
k=1
where coefficients b (z) are computed by means of the following recurrence
relation :
bn = an ... by = ap + bgr12z ... by = pn(z)
Using eq. (A.11), the polynomial derivative can be written as :

Pp(®) = ana(z; 2) + (2 —2)q, (x5 2),

thus p/,(2) = ¢n-1(z; 2) and Newton method becomes :
(k) (k)
ket _ o Pa0) Pa(r;”)

o =TT DN (k). (A.12)

J
ph(ry?) ana(ry 5 0)
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(k)

where 7, is the 4™ root at iteration (k).

Finally, the implemented process can be sketched as follows

e Iterate eq. (A.12) up to convergence

e Eliminate (z — 7“ (k) ) root from py,(z), thus obtaining :
pi_(z) = qu- 1(7"](k), 7"](. )), according to eq. (A.11).

e Repeat the procedure with p* (z). !

In order to determine quadrature weights, we, first, find the lagrangian
basis {¢i(x)}]-, corresponding to the quadrature node set {z;};",

m(x)

pi(z) = & = 2w (@) Vi € No,n)
where . .
m(x) = H (x —x;) and 7'(z;) = H
i=0 j=1,5%#1

and, then, the integral of each lagrangian shape function ¢;(x) equals the

integration weight «; associated to quadrature node z;

L[ re)uests) ,

m(x;) Jo1 x—uy

o; = X .

A.3 Tensor-product domains

Previous sections show how to derive 1D optimal quadrature formulas. Ac-
tually we want to introduce those 2D and 3D domains for which optimal
cubatures are available. Cubatures for squares and cubes are obtained by

means of tensor products of corresponding 1D quadratures.

n case of @ = B the Jacobi polynomial is symmetric, then at each iteration it is

possible to eliminate two roots.
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Hereinafter this renowned result is shown for the = [~1,1]® domain.
Consider the integration of any @, which is any linear combination of
{xiyjzh}fjhzo in Q,

k 1 1 pl
/ Qr dx = Z Cijh / / / 2yl 2 dedydz,
0 -1J-1J4

i,5,h=0

where ¢;;i, are coefficients of the linear expansion, then, using tensor product
domain property, we write

k 1 1 1
/ Qr dx = Z Cijh / ' dx / ! dy / M dz.
0 -1 -1 -1

7:7j7h:0

Finally, using eq. (A.4) and the linearity of integration, the cubature rule
for € reads :

N

/QQk dx = Z Qo Oy, Oy Qk(xoa Ym» Zn),

oom,n=1

where N is the number of 1D quadrature nodes needed to integrate a
polynomial of degree at most equal to k.

A.4 Non-tensor-product domains

Non-tensor-product domains do not benefit of Fubini’s theorem, neverthe-
less it is possible to derive non-optimal cubatures for this kind of domains
by mapping their coordinates in associated tensor-product domain cuba-
tures. This method is equivalent to that used to transfer cubatures in the
real space as done in section 2.3. However, in this case, the mapping T is
known, then its jacobian will be included in the weighting function wq, g(x).

In the following tables are presented all the “ingredients” which allow to
construct cubatures which integrate polynomials on all “classic” 2D and
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Kiype Q
Triangle {(w,y): —1<z,y;0+y <0}
Tetrahedron {(z,y,2): —1<z,y,z; x4+y+2z < —1}
Pyramid — {(zy,2):(2-1)/2< 2,y < (1-2)/2; -1< 2 < 1}
Prism {(@y,2): —1< 2,2 < 1;2+y <0}

Table A.1: “Classic” element shapes are listed with the definition of their

domain, €
Ktype = T(X) ‘J’f’
Triangle z = (1+X)1-Y)/2 — 1 -y
y=Y ?
Tetrahedron = = (14X)(1-Y)(1-2)/4 — 1
y = (14Y)(1-2)/2 — 1 7(1*”8*2)2
z =17
Pyramid r=X(1-2)/2
y = Y(1-2)/2 %
z =17
Prism z = (1+X)(1-Y)/2 — 1
y—Y 1-Y
2
z =17

Table A.2: Mapping of tensor-product domain in the non-tensor-product

domain, ¥ = T'(X), and its jacobian, |J4|

3D non-tensor-product domains.

As presented in the next section, all concepts above were implemented
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—

Ktype wk—i—l(X) pk(f) a€eT

Triangle PO (x
POy

Tetrahedron — P (x
POy

P>z

{xlyjz—l—jﬁk} Qo O

Qo O O

{xty? 2hitj+h <k}

PIEO, 0) (Y Qo O, Oy

P>z

{ztyd 2Piitj+h <k}

Prism P9 (x
1,0

POy

p"%z

Qo Om O

)
)
)
)
)

Pyramid P9 (x)
)
)
)
) A{ety 2 i h <k}
)

—

Table A.3: Tensor-product domain polynomials, wgy1(X ), whose root ten-
sor product gives cubature nodes. Definition of polynomials which are
exactly integrated in non-tensor-product domain, pg(Z). Relation between
non-tensor-product weights, a € Z, and tensor-product weights.

in C4++ class. Tests show a perfect agreement with results obtained by
means of integration rules which can be found in [30], [31], [32] and [33].
As already remarked, the quadratures derived so far are optimum just for
tensor-product domains, then, in the main code, integration rules for trian-
gles and tetrahedrons were copied from [33]. However, little programs, like
those producing data in sections 2.2, 2.4 and 2.5 or plotting shape functions
in section 2.7, made use of this C++ class.
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A.5 C++ class structure

In figure A.1 is depicted the hierarchic structure which provides integration
rules for all “classic” reference elements.
All modules are shortly described below :

()

Computes cubatures for “classic” reference elements. Its templates
parameters are listed form left to right :

e Polynomial type (Py, Q, --.)
e Reference frame (edge, quadrilateral, triangle, ...)
e Including only inner nodes (VI) or boundary nodes too (VB)

Returns all geometric information about reference elements. See ta-

bles A.1 and A.2
Provides any kind of quadrature in the range [—1, 1] :

e Gauss, inner nodes only. See section A.2.1
e Lobatto, both the endpoints included. See section A.2.2

e Radau, one enpoint (—1 or 1) included. See section A.2.2
Those classes get o and 3 scalars, as non-template parameters, too

Computes lagrangian bases and derives cubature weights. See sec-
tion A.2.3

Computes Jacobi polynomials and derives cubature nodes. See sec-
tion A.2.3

Any 1D polynomial is associated to its expansion coefficients. Then,
all basic operations among polynomials are defined acting on their
expansion monomials (summation, difference, product, integration,
derivation, ...). Furthermore this module makes use of MAPM class,
[34], which allows the use arbitrary precision, in order to obtain ac-
curate results even for very high order quadratures.
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(a)

class quadRule < poly_type, frame type, quad_type = VI >

reference frame geometry

(b)

1D quadratures

(c)

class ref < geometry_type >

quadrature weights

(d)

class shape_set

polynomial exact integrals ()

class gauss
class lobatto

class radau<-1>

class radau< 1>

quadrature nodes

A

()

class jacobi

polynomial roots

class poly_ MAPM

Figure A.1: Graph of the cubature class structure
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Geometries and mappings

Discontinuous Galerking methods are well-suited for high-order representa-
tion of both solution and geometry. DGFEM can achieve higher accuracy
on coarser meshes than low-order methods. However, in order to realize
this advantage, it is critical that solid wall boundaries be represented with
high-order polynomials compatible with the order of the interpolation for
the state variables. Otherwise, numerical errors generated by the low-order
boundary representation may overwhelm any potential accuracy gains of-
fered by high-order methods. The importance of this high-order boundary
representation is demonstrated with several well-know inviscid, [35] [36],
viscous, [37], and turbulent flow test cases, [38].

Let us consider “classic” first order geometries, triangles and quadrilat-
erals with straight faces are defined by three and four vertices, respectively.
Thus, their mappings in the real space are polynomials of three degrees
of freedom for triangles and of four degrees of freedom for quadrilater-
als. Then, the choice of polynomial spaces for those element mappings
is straightforward. Triangle reference coordinates are mapped in the real
space by means of

def

P, = {X'Y):it+j <k}

119
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polynomials, whereas quadrangle mappings use

def

Qe = {X'Y7 :i,j <k}

polynomials. As a matter of fact, Py and Q; polynomials have respectively
three and four degrees of freedom. Moreover this choice is “compatible”
with integration rules. In square reference domains, tensor-product cu-
batures integrate exactly Qp polynomials, see section A.3, whereas in tri-
angular reference regions, cubatures integrate exactly P, polynomials, see

table A.3.

X

/
4
8

=

T

*o-----¢--»
l
|
|
I
I

————— ¢ —»

Figure B.1: Second order triangles and quadrilaterals

Arguing from analogy with first order geometries, we state that tringles
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and quadrangles, whose curved faces are approximated by a pp polynomial,
are mapped in the real space by means of P, and Q; polynomials, respec-
tively. As shown in figure B.1, once the polynomial degree of boundary
representation, k, is chosen, so it is for the number of degrees of freedom
which define the geometry in the real space. Hence, the number of nodes,
defining k-order elements, is (k+1)(k+2)/2 for triangles and (k+1)(k+1)
for quadrilaterals. Some nodes are located in the element boundary, as re-
quired by face discretizations, and the rest of them are placed in the interior
region.
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