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4.4 Introduction of Lévy Processes . . . . . . . . . . . . . . . . . . . 72

3



4 CONTENTS

4.4.1 The CGMY Distribution . . . . . . . . . . . . . . . . . . 74
4.4.2 The Generalized Tempered Stable Distribution . . . . . . 75

4.5 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . 76
4.5.1 Effects of Correlation . . . . . . . . . . . . . . . . . . . . 84
4.5.2 Effect of Default Intensities . . . . . . . . . . . . . . . . . 86
4.5.3 Effects of Distributional Assumptions . . . . . . . . . . . 88
4.5.4 Computational Results with Market Data . . . . . . . . . 89

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



Chapter 1

Credit Risk Models

Introduction

Today, the major task a financial institution has to perform is risk management,
which we can define as evaluating and controlling exposure to risk. Risk is
composed of three different components:

• market risk

• credit risk

• operational risk.

Let us start with a very short description of these risks, even though in the
following we will mainly focus on market and credit risk, in particular on the
last one.
Market risk is due to changes in some market variables, such as equity prices,
interest and exchange rates and it is measured by looking at changes in the
portfolio value, at profits and losses.
Credit risk is stricly bound to the credit merit of the debtor, in particular it
reflects both its risk of default and downgrading. This is the reason for which
credit risk includes default risk, credit spread risk and downgrade risk.
In order to define operational risk, we can look at the famous document Interna-
tional Convergence of Capital Measurement and Capital Standards. A Revised
Framework, commonly known as the Basel II Capital Accord, issued by the Basel
Committee on Banking Supervision in 2004. It describes this risk as ”the risk of
loss resulting from inadequate or failed internal processes, people and systems
or from external events”.

Credit Risk

As we mentioned previously, credit risk includes three different types of risk:
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6 CHAPTER 1. CREDIT RISK MODELS

• Default risk can be defined as the risk that the debtor will not be able
to fulfill his or her obligation in full. Clearly, default can be complete in
that no amount of the outstanding debt will be repaid, otherwise it may
happen to have a partial default if only a portion of the original loan will
be recovered. In order to have an estimation of this risk, there exist three
main rating agencies, that is Standard & Poor’s Corporation, Moody’s
Investors Service and Fitch Ratings, whose task is valuing default in the
form of a credit rating.
In particular, a credit rating has to be interpreted as a forward-looking
assessment of the probability of default and of the relative magnitude of
the eventual loss when we are looking at the long-term debt obligation.

• Downgrade risk is nothing else that the risk arising from a down-grade
of the credit merit of an issue or issuer by a nationally recognized rating
agency such as Standard & Poor’s, Moody’s Investors Service or Fitch
Ratings. In general, a down-grade of an outstanding credit rating relies
on the simultaneous evaluation of the issuer’s current earning power and
its capacity to fulfill its obligations as they become due.

• Credit spread risk is the risk that the spread associated to a specific obli-
gation, over a benchmark rate, will increase, highlighting the financial
market’s reaction to a perceived credit deterioration which follows a credit
review performed by an independent rating agency.

In 1988, the Basel Accord was issued and it established that internationally
active banks had to hold a capital equal to, at least, 8% of a set of assets
measured differently on the basis of their own degree of risk.
The main purpose of this accord was providing international banks with an
adequate level of capital, and then, avoiding that banks were no longer able
to do business without an opportune amount of capital: this could lead to an
increase of the competitiveness of the overall bank system.
The 1988 accord classified assets into four different risk-buckets, depending on
the risk-features of the debtor. In particular:

• 0% risk weight is in general composed by claims on Organisation for Eco-
nomic Coordination and Development (OECD) governments.

• 20% risk weight is assigned to claims on banks incorporated in OECD
countries.

• 50% risk weight usually consists of residential mortgage claims.

• 100% risk weight where claims on consumers and corporates are contained.

Once we have found these risk weights, we should multiply them by the re-
spective exposure and in such a way we get what is called as risk-weight assets
(RWA).
Even if the two main goals were achieved, the overall judgement about this ac-
cord could not be satisfactory, since it resulted to be in conflict with the larger
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and larger level of sophistication of the internal measures of economic capital
determined by banks. Furthermore, in certain cases, it was an incentive to re-
duce credit risk artificially, by using standard credit risk mitigation techniques.
Thus, in 2004 the Basel Committee on Bank Supervision issued a new accord,
International Convergence of Capital Measurement and Capital Standards. A
Revised Framework, commonly known as Basel II, to improve the previous one.
On the basis of this accord, banks are now allowed to choose between the so
called standardized approach and the internal ratings-based approach in order
to compute their capital requirements for credit risk. Here a brief description
of these approaches follows:

• Standardized approach. In order to determine risk weights, banks can
exploit assessment offered by external credit assessment institutions, if
these are recognized to be eligible for capital purposes by regulators of
banks.

• Internal ratings-based approach. Accordingly with this approach, Banks
may use their internal rating systems, under the condition for which these
systems have to be approved by banks’ regulators.

Credit Risk Models aim to achieve mainly two different purposes. The first one
consists of measuring credit risk. In particular, these models must give an es-
timation of the probability an obligor (or a set of obligors) will default before
the end of a given time horizon and, when this occurs, of the magnitude of the
expected loss.
Furthermore, when we deal with a portfolio of risky assets, a credit risk model
should give an estimate of the credit quality correlation among all the obligors
within the portfolio.
The number of problems to face when we have to build these models could be
large, since they have to be consistent with both the financial theory and ratio-
nal aspects reflecting the reality, such as bankruptcy laws, real credit spreads
in the market, and so on.
The second goal of credit risk models is pricing defaultable assets. In order to
do this, these models estimate credit risky cash flows using model default prob-
abilities and expected losses. In such a way, investors may have an assessment
term to know how they should be compensated if they accepted credit risk.
The method with which credit risk management is performed consists of es-
timating credit risk exposure and evaluating defaultable assets under several
different scenarios which have to be generated.
Let us introduce the three main categories of credit risk models:

• Structural models;

• Reduced-form models;

• Credit-rating models.

All these three models are used in credit risk analysis, even though each of
them displays certain pitfalls. In particular, it could be shown that Structural
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models are not able to provide credit spreads as they are observable in the
market, whereas Reduced-form models show difficulties in modelling dependency
among defaults of different obligors within the portfolio.

1.1 Structural Models

In 1973, Black and Scholes proposed, for the first time, the widely known Firm’s
Value approach in the article The Pricing of Options and Corporate Liabilities.
On the basis of this paper, Merton in 1974 expanded their idea and presented
a model, the Merton Model, where default can be only triggered at maturity of
the debt. In firm’s value models we assume there exists a fundamental process
V which is usually interpreted as the total value of the assets of the firm that
has issued the bonds we are considering. Then, the value of the firm moves
around it in a stochastic way and one can interpret the firm’s value as a stock
option, with the value of the assets as underlying. An important issue concerns
the way in which a default can be triggered: these models assume that default
can occur only in two different ways.
The first one, which is also the simplest case, implies that it can occur if at
maturity the value of the firm V is not sufficient to pay back the outstanding
bonds. Under this assumption, a default can not be triggered during the lifetime
of the contract and in this case we stand in the original Merton model framework.
The second way, reflecting a more realistic situation, allows that a default can
be triggered as soon as the value of the firm falls below a given barrier value S̄:
as a clear consequence we get that, conversely with respect to the previous case,
a default can occur not only at the maturity date, but also during the lifetime of
the outstanding debt, just as we were considering a standard knockout barrier
in equity options. These models are known as First-passage Time models.
In the following, we determine the variables playing a role into a structural
model and then we describe their behaviour. Thus:

• The first variable is the underlying security, that is the value of the firm’s
assets V for which we can assume it follows a geometrical Brownian mo-
tion:

dV

V
= rdt+ σdW (1.1)

where the risk-free interest rate r denotes the drift of the Brownian motion
and σ its volatility.
Note that it is possible to set the drift of the firm’s value to r just because
we have assumed it can be found out from traded securities: in such a way
we only need the risk-neutral dynamics in order to price.

• The second variable is the amount of the claims on these assets.
Generally, just to make the model simpler, we can assume the existence
of only a single issue of debt (in particular we consider only zero-coupon
bonds of total face value D̄), even though multiple issues can be considered
as well, by using a seniority structure.
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The following step determines how a default is triggered and how much it de-
pends on the capital structure of the firm. We are going to present some different
alternatives:

• A default can only occur at the maturity of the outstanding debt (or at
coupon dates if we consider coupon bonds) and this means that we assume
the firm will continue to work until it has to pay back its debt.

• If in the issued debt contract there exist some convenants allowing the
creditors to close down and liquidate the firm as soon as the value of its
assets falls below a given threshold S̄, then a default occurs when

Vt ≤ S̄.

• We have a variation of the previous case when S̄ is not a constant barrier
but depends on the time. This happens, for example, when there exists
a covenant stating that a default can only occur when the firm’s value
falls below the discounted value of the assets outstanding, that is the case
when

Vt ≤ S̄B(t, T ),

where B(t, T ) denotes the value at time t of a default-free bond of the
same maturity as the debt outstanding.

• Finally, we can say that within a practical implementation it could be pos-
sible to implement models based on more realistic covenants of the debt
contract; however, this could be the case of a loss in terms of accuracy,
since the model would be characterized by some other strong approxima-
tions.

From now on, we will consider the third case, i.e. the default is triggered when
Vt≤S̄B(t,T).
Another important issue we have to take into consideration is the capital struc-
ture of the firm, since the payoffs of the different securities depend upon it:

• The defaultable bonds B̄ pay back their face value D̄ in case no default
is triggered, conversely they pay back a fraction of the value of the firm
minus some bankruptcy costs c, that is:

B̄(V, t = T ) = min[D̄, V ]

where t = T , is the final payoff date, otherwise:

B̄(V = S̄, t) = V − c = S̄ − c

that is the case the default occurs before the final payoff date (t < T ).

• Differently from bonds, shares pay back

S(V, t = T ) = (V − D̄)+
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at the final date and, of course, nothing, in case the default is occurred,
that is:

S(V = S̄, t) = 0.

• When we deal with a debt presenting different seniority classes, we should
take into account this structure and then modify appropriately the payoffs
at the default threshold.

The final step consists of incorporating uncertainty within the interest rate
dynamics.
So, it could be a good assumption to consider correlation between the dynamics
of the firm’s value and the interest rate dynamics. By doing so, we need to add
the short term risk-free interest rate r variable within our model; for example,
assuming a general one-factor model we will get the following model:

dr = µr(r, t)dt+ σr(r, t)dW̃

denoting instantaneous correlation ρ between the Brownian motion driving the
firm’s value dW and the one driving the interest rates dW̃ , that is dWdW̃ = ρdt.
Conversely, under certain assumptions, it is possible modelling the firm’s value
process considering it independent from the risk-free interest rate dynamics, but
in this case, even if we get a gain in terms of efficiency, at the same time we
loose something in terms of accuracy.

1.1.1 Philosophy behind the Pricing in the Structural Mod-
els Framework

Before entering a discussion about structural models, it is necessary to specify
that we are dealing within a complete market context and with the following
assumptions:

• The firm’s value process V is assumed to follow a geometrical Brownian
motion

dV

V
= rdt+ σdW. (1.2)

• The interest rate process r is described as follows:

dr = µr(r, t)dt+ σr(r, t)dW̃ . (1.3)

where W̃ denotes the Brownian motion driving the interest rate process,
the drift µr depends on both the interest rate and time, as well as the
volatility σr.

• ρ is the correlation between the driving process of the firm’s value dW
and that of the interest rate dW̃ , that is:

dWdW̃ = ρdt.
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• Finally, the default time τ is defined as the first time at which the firm’s
value V hits the barrier S̄B(t, T ), that is:

τ = min{t | Vt ≤ S̄B(t, T )}.

• The securities we are taking into consideration are a share S and a default-
able bond B̄ with maturity T . We are assuming that the total number of
shares S and bonds D̄ and the threshhold S̄ are all normalized to 1.
Thus, if we consider the case of no default before the maturity date T , we
get the following payoff

S(V, T ) = (V − 1)+

for the share and
B̄(V, T ) = 1− (1− V )+

for the defaultable bond, where (.)+ = max(., 0), while, in the case a
default occurs before the maturity date T we get

B̄(V = S̄B(t, r, T ), t) = V − c = B(t, r, T )(S̄ − c̃)

for the defaultable bond and

S(V = S̄B(t, r, T ), t) = B(t, r, T )c̃

for the share, where B(t, r, T ) is the riskless bond, while V = S + B̄ and
c = c̃B(t, r, T ) denotes the deviation from absolute priority in favor of the
shareholders (with c̃ being the bankruptcy cost per unit of the riskless
bond).

• Furthermore, we have a full term structure of traded default risk-free
bonds B(t, T ).

We consider all securities like derivative instruments on the firm’s value V .
Therefore we have a knockout-barrier at S̄B(t, T ) = B(t, T ) at which the default
payoffs are triggered, otherwhise we only get the normal payoffs specified by the
contracts.
Let us consider the firm’s value as a traded security: this can be done because the
sum between the share and the bond leads to the firm’s value as payoff in every
state. Thus, since under risk-neutral valuation the drift of traded securities can
be written as rdt, it is possible to re-write the (1.2) as follows:

dVt = rtVtdt+ σtVtdWt (1.4)

whereas we already know the risk-neutral dynamics of the interest rate as shown
in the (1.3). Now we can start to get the pricing equation.
We know that bond and share are functions of firm’s value V , interest rate r
and time t. Let us proceed for the bond price process, but analogously we can
easily get the same result for the share price process. Recalling that:

dV = rV dt+ σV dWt
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and
dr = µrdt+ σrdW̃

their dynamics is obtained simply by applying Itô’s lemma:

dB̄ =
(
∂B̄

∂t
+
∂B̄

∂V
µ+

1
2
σ2
v

∂2B̄

∂2V
+
∂B̄

∂r
µr +

1
2
σ2
r

∂2B̄

∂2r
+ ρσvσr

∂2B̄

∂V ∂r

)
dt

+ σv
∂B̄

∂V
dW + σr

∂B̄

∂r
dW̃

=
(
∂B̄

∂t
+
∂B̄

∂V
rV +

1
2
σ2V 2 ∂

2B̄

∂2V
+
∂B̄

∂r
µr +

1
2
σ2
r

∂2B̄

∂2r
+ ρσV σr

∂2B̄

∂V ∂r

)
dt

+ σV
∂B̄

∂V
dW + σr

∂B̄

∂r
dW̃

=
(
∂B̄

∂t
+

1
2
σ2V 2 ∂

2B̄

∂2V
+

1
2
σ2
r

∂2B̄

∂2r
+ ρσV σr

∂2B̄

∂V ∂r

)
dt

+
∂B̄

∂V
rV dt+ σV

∂B̄

∂V
dW +

∂B̄

∂r
µrdt+ σr

∂B̄

∂r
dW̃

=
(
∂B̄

∂t
+

1
2
σ2V 2 ∂

2B̄

∂2V
+

1
2
σ2
r

∂2B̄

∂2r
+ ρσV σr

∂2B̄

∂V ∂r

)
dt

+
∂B̄

∂V
(rV dt+ σV dW ) +

∂B̄

∂r

(
µrdt+ σrdW̃

)
=
(
∂B̄

∂t
+

1
2
σ2V 2 ∂

2B̄

∂2V
+

1
2
σ2
r

∂2B̄

∂2r
+ ρσV σr

∂2B̄

∂V ∂r
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dt

+
∂B̄

∂V
dV +

∂B̄

∂r
dr (1.5)

Now, since we know that the risk-neutral drift must be equal to rBdt, we can
write:

rB̄dt =
(
∂B̄

∂t
+

1
2
σ2V 2 ∂

2B̄

∂2V
+

1
2
σ2
r

∂2B̄

∂2r
+ ρσV σr

∂2B̄

∂V ∂r

)
dt

+ rv
∂B̄

∂V
dt+ µr

∂B̄

∂r
dt

and therefore the following partial differiantial equation has to be satisfied by
B̄:

0 =
∂B̄

∂t
+

1
2
σ2V 2 ∂

2B̄

∂2V
+

1
2
σ2
r

∂2B̄

∂2r
+ ρσV σr

∂2B̄

∂V ∂r
(1.6)

+ rv
∂B̄

∂V
+ µr

∂B̄

∂r
− rB̄

This last partial differential equation (1.6) is very important because every se-
curity on the firm’s value, both bonds and shares, but also others, has to satisfy
it. The only difference depending on the type of securities can be found in the
final and boundary conditions that have to be applied. Let us continue with the
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example of bonds.
Hence, the final condition for the bond is its payoff in the situation no default
occurs:

B̄(T, V, r) = min{1, V } (1.7)

while we have four different boundary conditions:

B̄ = B(t, T )(1− c̃) as V = S̄B(t, T ) (1.8)
B̄ → B(t, T ) as V →∞ (1.9)
B̄ → 0 as r →∞ (1.10)
B̄ <∞ as r = 0 (1.11)

It is easy to understand the meaning of these conditions, but a doubt can arise
with respect to the last one: the usefulness of the (1.11) can be explained with
the necessity to preclude a possible singularity of the solution.
Hence, now a question could immediately arise: what happens if we consider
different securities? All we need to do is applying different boundary conditions
and also a different final condition.

1.1.2 Strenghts and Weaknessess of Structural Models

Structural models for defaultable bonds allow to get good results if there exist
important relationships among the prices of different securities issued by the
firm. Typical examples are offered by convertible and callable bonds, giving the
issuer the right to convert them into shares.
Furthermore, by using these models, it is possible to obtain the prices of de-
faultable bonds directly from the firm’s value.
Another strong advantage can be represented by the fact that they may be also
used in the analysis of issues concerning corporate finance such as the definition
of the optimal capital structure for the firm.
Unfortunately, this kind of orientation towards fundamentals can also represent
a drawback. In fact, it is always quite difficult to define the process describing
in the correct way the firm’s value, or however it can be very hard to calibrate
it and sometimes this process can not exist. Hence, even though this process
can be found, it could become too complex to adapt it to real applications and,
in certain cases, it could quickly become infeasible.
Another disadvantage is the unrealistic nature of the short-term credit spreads
that can be implicitely obtained by the application of these models: in fact
empirical observations show low values of them. In particular, we know they
tend to zero as the maturity of the debt becomes more and more close.
All these problems lead to the conclusion that generally structural models should
be more properly exploited as a rough guideline.
If we come back to the advantages, we could also mention their usefulness in
providing an easy and intuitive way to encompass correlations within a portfo-
lio framework: this is exactly what is done by the famous company JP Mor-
gan in their CreditMetrics model, presented for the first time in CreditMetrics-
Technical Document (1997).
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Thus, the obvious conclusion is that, in pricing credit risk derivatives, could be
more useful to have a model in which prices of defaultable bonds are taken as
fundamentals, rather than be calculated. This is the main reason to introduce
Reduced-form models.

1.2 Reduced-form Models

The origin of the name Reduced-form is due to Darrel Duffie who used for the
first time this term to distinguish a new kind of model from the Structural-form
models.
The great difference between a reduced-form model and a structural model is
that the former does not make any consideration about the financial structure
of the company, but models the default process directly.
This means that in Reduced-form models the default is an exogeneous event,
and not endogeneous as it holds for Structural models. In particular, in all
Reduced-form models, the modelling of the default process is done by a Poisson
process, with a default intensity λ which can be either constant (homogeneous
Poisson process), or time-dependent deterministic (inhomogeneous Pois-
son process) or stochastic (Cox process).

1.2.1 Poisson Processes

A Poisson process Nt is, just to get intuitively its meaning, a process which is
characterized by rare value changes: in particular the probability of a change in
its value gets smaller as the observable period becomes shorter, while the size
of these changes in value is fixed. Let us consider T1, T2, T3... the times of the
jumps, then we get

P [Nt+∆t −Nt = 1] = λ∆t (1.12)

that is, we are assuming that the probability of a jump in the next time interval
∆t depends proportionally on ∆t and, since we are also considering size-constant
jumps (in particular jumps by more than 1 are not allowed) we can write

P [Nt+∆t −Nt = 0] = 1− λ∆t

and considering the interval [t, t+ 2∆t] the probabilty becomes

P [Nt+2∆t −Nt = 0] = P [Nt+∆t −Nt = 0]P [Nt+∆t −Nt+∆t = 0] = (1− λ∆t)2.

If we subdivide the interval [t, s] into i subintervals with the same length ∆t =
(s− t)/i in each of these subintervals a jump occurs with probability ∆tλ. This
leads us to say that

P [Ns = Nt] = (1−∆tλ)i = (1− 1
i
(s− t)λ)i
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is nothing else that the probability of no jump over the overall time period [t, s]
and, since 1 + x

i → ex as i→∞, then

P [Ns = Nt] → e−(s−t)λ.

Note that the value (s−t)
i denotes ∆t, therefore i→∞ means ∆t→ 0.

Let us look for the probability of exactly one jump within [t, s]. Intuitively, it is
easy to understand that there are i chances to have only a single jump, therefore
the total probability is given by

P [Ns −Nt = 1] = i∆tλ(1−∆tλ)i−1

= i
(s− t)
i

λ(1− 1
i
(s− t)λ)i/(1− 1

i
(s− t)λ)

=
(s− t)λ

1− 1
i (s− t)λ

(1− 1
i
(s− t)λ)i

→ (s− t)λe−(s−t)λ.

as i→∞.
By extending the same arguing to the case of two jumps, we get

P [Ns −Nt = 2] =
1
2
(s− t)2λ2e−(s−t)λ

and finally, for n jumps

P [Ns −Nt = n] =
1
n!

(s− t)nλne−(s−t)λ (1.13)

We can define what a Poisson process is, by using equation (1.13):

Definition 1 A Poisson process with intensity λ is a non-decreasing, integer-
valued process with initial value N0 whose increments satisfy equation (1.13).

Note that both in this approximation of the Poisson process within a discrete-
time framework and in the Brownian Motion, there is a number of binomially
distributed random variables we add up in order to get the process.
The only difference we can underline is in the limit behaviour of these two pro-
cesses: in fact the Brownian Motion is characterized by a decreasing jump size
(proportional to 1√

i
) and constant probabilities, whereas in the Poisson Process

we consider exactly the opposite: a constant jump size (at one) and a decreasing
probability (proportional to 1

i ).
Finally, by exploiting the (1.12), it becomes plausible to deal with a large port-
folio of defaultable bonds that are all driven by independent Poisson processes:
by doing so we will assume that Poisson events occur almost continuosly with
a rate given by λdt and in such a way we could shift toward a continous rate of
events.
Since defaults are rare and discrete, we can use Poisson processes in order to
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model the time of default of a firm as the time of the first jump of a Poisson
process with intensity λ. Here, some important properties of a Poisson process
follow:

• It is a process for which the Markov property holds. In fact, Poisson
processes have no memory, therefore the probability of n jumps in the
interval [t, t+ s] is independent of Nt and thus the history of N does not
affect the next occurence of the process.

• The inter-arrival times of a Poisson process (Tn+1−Tn) are exponentially
distributed with the following density:

P [(Tn+1 − Tn) ∈ tdt] = λe−λtdt.

• The probability to have more than one jump at the same point in time is
zero.

Within a financial modeling framework,we should consider the following further
specifications:

E[dN ] = λdt (1.14)

dNdN = dN

E[dN2] = λdt

E[dNdW ] = 0

In addition, a modified version of Itô’s lemma is required, because we need to
deal with jumps in processes. Here is the reason for which we are going to
consider a twice continuosly differentiable function f to decompose the process
x into a continuous part xc and a discontinuos part ∆x:

dx = dxc + ∆x.

By doing so,the Itô’s lemma is given by

df(t, x) =
∂f

∂t
dt+

∂f

∂x
dxc +

1
2
∂2f

∂x2
d < xc >

+ (f(t, x+ ∆x)− f(t, x)). (1.15)

What we have simply done is to add a jump term ∆f = f(t, x+ ∆x)− f(t, x)
to the usual form of Itô’s lemma and, 1 exactly the same could be done for a
multidimensional process:

df(t, x) =
∂f

∂t
dt+

n∑
i=1

∂f

∂xi
dxci +

1
2

n∑
i,j=1

∂2f

∂xi∂xj
d < xci , x

c
j > (1.16)

+ (f(t, x+ ∆x)− f(t, x)).

1Considering as usually dxc = µxc + σdW , thus d < xc > is equal to σ2(xc)2dt
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So far, we have talked about so called homogeneous Poisson processes but
now let us shift to inhomogeneous Poisson processes: they are character-
ized by an intensity λ that is a function of time λ(t). For this kind of processes
is not difficult to derive all the probabilities we have computed previously for
homogeneous processes. In fact, by replacing the constant λ∆t by the the inte-
gral

∫ t+∆t

t
λ(s)ds we can get, quite easily the following:

• P [Nt+∆t −Nt = 1] = λ(t)∆t

that is the probability of a jump in the next time interval ∆t (compare it
with (1.12));

• P [Nt+∆t −Nt = 0] = e−
∫ t+∆t

t λ(s)ds

denoting the probability of no jump within the interval [t, t + ∆t] and
finally

• P [Nt+∆t −Nt = n] = 1
n! (
∫ t+∆t

t
λ(s)ds)ne−

∫ t+∆t
t

λ(s)ds

that represents the probability of n jumps in the interval [t, t+ ∆t].

Now, we can go on describing compound Poisson processes. Up to now
we have talked about Poisson processes just to model the occurring of a spe-
cific event, but we still have not discussed about consequences concerning these
events. If we are dealing with a credit portfolio, it is important both to forecast
the time of a default and also its size. For this purpose, compound Poisson pro-
cesses can help us since in these processes, at each time Ti representing the time
of a default, we have a random variable Yi which is drawn from a distribution
K(dY ). In order to deal with these processes, we have to consider a further
variable

Xt =
∑
Ti≤t

Yi

which can denote, for example, the total (or cumulative) loss of the bond port-
folio until the time t and an additional function f(X) satisfying the following
properties:

• dX = ∆X = Y dN

• df = ∆f = (f(X + Y )− f(X))dN

• E[dX] =
∫
yK(dY )λdt = yeλdt

• E[df(X)] =
∫

(f(X + y)− f(X))K(dy)λdt

where ye is the local expectation of Y . Note that, by these properties, we can get
that the moments of the defaults and their sizes are indepedent. Furthermore,
E[df(X)] 6= f(E[dX]) and Itô’s lemma does not change with respect to (1.16).
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If we want to perform a Monte Carlo simulation to get a Poisson process, for
sure, it is better to use the equation (1.13), than the (1.12).
In particular, when we are interested in pricing defaultable securities, generally,
we have to pay attention to the first jump of a Poisson process and we can
correctly assume that each jump has the size equals one: therefore we have to
look for the probability of at least one jump within the time interval ∆t we are
analyzing, that is:

P [Nt+∆t −Nt > 0] = 1− e−∆tλ

So, in order to go on with our simulation, we should draw a random number
from the interval [0, 1]: then we assume a jump has occurred if this number
is lower than 1 − e−∆tλ (in this case we will increment the Poisson process),
otherwise nothing occurs. Of course, we should also remember that this is not
the best way to proceed because we need a great number of runs if we want to
get an acceptable result.

1.2.2 Pricing: Zero Recovery and Positive Recovery Cases

In general, when we want to find the price of a defaultable bond B̄, the simplest
way to start consists in assuming that the bond has zero recovery in case of
default, which is triggered when the first jump of the Poisson process occurs.
Once again, we need to use the Itô’s lemma, but first, in order to simplify the
computational task, we want to decompose the defaultable bond value process
into two different parts:

B̄(t, r,N) = B̄C(t, r,N) + B̄D(t, r,N)

where B̄C(t, r,N) denotes the continuos part of the process and B̄D(t, r,N) the
discontinuos part due to jumps following defaults. By doing so we can start
computing the dynamics of the bond price for the continuos part and only after
this we are going to add the discontinuos part.
Thus:

dB̄(t, r,N)C = (
∂B̄

∂t
+
∂B̄

∂r
µr +

1
2
∂2B̄

∂r2
σ2
r)dt+ σr

∂B̄

∂r
dW̃

=
∂B̄

∂t
dt+

∂B̄

∂r
µrdt+

1
2
∂2B̄

∂r2
σ2
rdt+ σr

∂B̄

∂r
dW̃

=
∂B̄

∂t
dt+

1
2
∂2B̄

∂r2
σ2
rdt+

∂B̄

∂r
(µrdt+ σrdW̃ )

=
∂B̄

∂t
dt+

1
2
∂2B̄

∂r2
σ2
rdt+

∂B̄

∂r
dr

and now, simply by adding the discrete part up, we get

dB̄(t, r,N) =
∂B̄

∂t
dt+

1
2
∂2B̄

∂r2
σ2
rdt+

∂B̄

∂r
dr − B̄dN

When a jump dN = 1 occurs, we have dB̄ = −B̄ and, simply because the
recovery rate is zero, the defaultable bond value collapses to zero.
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Now, it is possible to continue:

rB̄dt =
∂B̄

∂t
dt+

1
2
∂2B̄

∂r2
σ2
rdt+

∂B̄

∂r
µrdt− B̄λdt

What we have done is simply to set E[dB̄] = rB̄dt and then, by using E[dN ] =
λdt, we get the pricing equation

0 =
∂B̄

∂t
+

1
2
∂2B̄

∂r2
σ2
r +

∂B̄

∂r
µr − B̄(λ+ r) (1.17)

It is very easy and intuitive to understand that, if we were pricing a default free
bond, we would simply get the following

0 =
∂B

∂t
+

1
2
∂2B

∂r2
σ2
r +

∂B

∂r
µr −Br

since we have not to consider the default risk interest rate λ in the last dis-
counting term. If we come back to the (1.17), taking into consideration that B
denotes the price of a riskless bond, it could be shown that

B̄(t, r) = B(t, r)e−λ∆t

is nothing else that the solution to the pricing equation (1.17), from which we
can also derive directly the spread between the defaultable and the riskless bond

s(t, t+ ∆t) =
1

∆t
(lnB − lnB̄) = λ

It should not be a surprise to see that this spread is just the intensity λ of the
default process N .

Unfortunately, the reality is almost always characterized by a positive recov-
ery, and not as we have done so far, by a zero recovery. This is the reason for
which we are going to give a brief explanation of this situation and then we
assume that the defaultable bond will pay back only a fraction of the nominal
in case of default: this portion is (1−c), where c denotes bankruptcy costs. Now,
in order to get the new dynamics of the defaultable bond price, we have simply
to consider a further term in the equation we computed previously. Therefore,
the result becomes

dB̄(t, r,N) =
∂B̄

∂t
dt+

1
2
∂2B̄

∂r2
σ2
rdt+

∂B̄

∂r
dr − B̄dN + (1− c)dN

The additional term is nothing else that the recovery term (1 − c)dN . Now,
simply by going on as before, we can get the following equation

0 =
∂B̄

∂t
+

1
2
∂2B̄

∂r2
σ2
r +

∂B̄

∂r
µr − B̄(λ+ r) + (1− c)λ (1.18)

meaning that, in case of default, we will lose the value of the bond (−B̄dN) but
we will get back exactly the recovery term (1− c)dN .
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This way to operate could seem good, but it is not, because it describes a quite
unrealistic situation. In fact, in order to be more consistent with the reality, it
would be better to assume that, when a bond defaults, bondholders lose a given
amount q of the nominal value of their claims, but, since a reorganisation takes
place, both the issuer and claims keep on continuing and thus other defaults are
possible later on. The conclusion is that multiple defaults can happen and so,
the dynamics dB̄ has to be modified again, becoming

dB̄(t, r) =
∂B̄

∂t
dt+

1
2
∂2B̄

∂r2
σ2
rdt+

∂B̄

∂r
dr − qB̄dN

The last term qB̄dN is simply a jump due to the default of the bond. We are
working by assuming that the price of the bond is no longer dependent of the
number of defaults N we had so far. Since the only factor affecting a default
is now the direct loss in face value and thus, setting E[dB̄] = rB̄dt, we get the
new pricing equation

0 =
∂B̄

∂t
+

1
2
∂2B̄

∂r2
σ2
r +

∂B̄

∂r
µr − B̄(qλ+ r) (1.19)

The new pricing equation (1.19) has to be considered as a more realistic and
simpler model. Its solution is

B̄(t, r) = B(t, r)e−qλ∆t

from which we can get the yield spread formula

s(t, t+ ∆t) = qλ

As we have already said, this model is simpler and more consistent with the
reality and for these reasons, it should be preferred with respect to the others.

1.2.3 Poisson Processes with Stochastic Intensity: Cox
Processes

We mentioned before that, for a defaultable zero coupon bond, the spread is
nothing else that the constant value qλ. Unfortunately, this result is not con-
sistent with the reality, since we can not observe constant credit spreads in the
market: therefore, we should use more flexible models describing in a better
way the dynamics of defaultable bond prices and credit spreads. This is the
reason for which we introduce Cox processes. Cox processes could be defined as
Poisson processes with stocastic intensity, thus

dλ = µλdt+ σλdW2 (1.20)

Once more, we can subdivide the overall time period into i intervals ∆t and
performing a binomial experiment for each of them: for the probability of a
jump in [t, t+ ∆t] we get the following

P [Nt+∆t −Nt = 1] = λt∆t
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This means that there is a certain kind of dependence among the jumps, given
by the intensity λ. Therefore, a process N is a Cox process if

it is an integer-valued and non-decreasing process having the property for which,
conditional on the realisation (λt)t∈[0,T ] of λ, N is an inhomogeneous Poisson
process with intensity λt.

We can derive some properties for Cox processes. First of all

Et[dN ] = λtdt

must hold together with the other local properties of N . Nevertheless, now we
have some different properties as well, such as the probability of n jumps that
we can derive from

P [NT −Nt = n] =
1
n!

(∫ T

t

λ(s)ds

)n
exp{−

∫ T

t

λ(s)ds}

which holds for an inhomogeneous Poisson process. From this equation, we can
obtain the following

P [NT −Nt = n] = E [P [NT −Nt = n|λ]]

= E

[
1
n!

(∫ T

t

λ(s)ds

)n
exp{−

∫ T

t

λ(s)ds}

]

Note that if we solve the problem for a certain λ and after this we take the
expectation over all λ, then we will be able to solve the pricing problem because
we are back in the continuos-time framework.

The next step consists in defining the pricing equation. Let us define the fol-
lowing stochastic process describing the dynamics of the risk-free interest rate

dr = µrdt+ σrdW1

and for the intensity of the Cox process we consider

dλ = µλdt+ σλ

(
ρdW1 +

√
1− ρ2dW2

)
.

We can consider the opportunity of correlation ρ between λ and r, meaning that,
tipically, the intensity of defaults increases as r gets larger (in a few words,
borrowing becomes more difficult). Furthermore, both dymanics are already
computed under the risk-neutral probability. Now, the price of the defaultable
security will be affected also by λ and we have to take this into account when
we are computing the Itô’s lemma. Starting from the consideration for which

B̄(t, T ) = B̄(t, rt, λt, Nt, T )
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we will obtain the partial differential equation in the following way

dB̄ =
∂B̄

∂t
dt+

∂B̄

∂r
dr +

1
2
σ2
r

∂2B̄

∂r2
dt

+
∂B̄

∂λ
dλ+

1
2
σ2
λ

∂2B̄

∂λ2
dt

+ ρσrσλ
∂2B̄

∂λ∂r
dt− qB̄dN

In order to get the pricing equation, it is sufficient to set E[dB̄] = rB̄dt. Thus,
we get

0 =
∂B̄

∂t
+ µr

∂B̄

∂r
+ µλ

∂B̄

∂λ

+
1
2
σ2
r

∂2B̄

∂r2
+ ρσrσλ

∂2B̄

∂λ∂r
+

1
2
σ2
λ

∂2B̄

∂λ2

− (r + λq)B̄ (1.21)

Note that we used (r + λq)B̄ instead of the risk-free interest rate r. Now, we
have to consider that the final condition for a defaultable zero-coupon bond
with maturity T is

B̄(T, r, λ) = 1

and the boundary conditions are B̄ → 0 as r, λ → ∞ and B̄ < ∞ as r, λ → 0.
From these consideration, it follows that the solution of the (1.21) depends on
the given specification of the stochastic processes followed by r and λ.

Now we want to go back to a very general case, in order to show the most
important properties which have to hold for the price of a defaultable bond
within the modelling framework we have described so far. Let r and λ follow
some stochastic processes and N be a Cox process whose intensity is λ. Then

B(t) = Et

[
exp{−

∫ T

t

r(s)ds}

]
(1.22)

That is, the price of a default-free zero-coupon bond B with maturity T is
nothing else that the expectation of the discounted value of the final payoff.
The same holds for the price F of another security having a final payoff of X:

F (t) = Et

[
exp{−

∫ T

t

r(s)ds}X

]
(1.23)

and for a defaultable zero-coupon bond

B̄(t) = Et

[
exp{−

∫ T

t

r(s)ds}
(
1− q)NT

)]
(1.24)
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If you remember the properties of a Cox process and in particular that the
expectation of the conditional expectation is the expectation itself, we can use
it to expand Et[−] into

Et[−] = Et[Et[−|(λ(s))s≤T ]]

The problem is that we do not know the path (λ(s))s≤T , therefore we have
to calculate the so called inner conditional expectation, that is what we would
obtain if we knew it. By doing the same for different possible paths, we could
consider the expectation over these several results:

B̄(t) = Et

[
Et

[
exp{−

∫ T

t

r(s)ds}(1− q)NT |(λ(s))s≤T

]]
(1.25)

which is known as the outer expectation. This is the way to proceed. Now, let us
apply it to our Cox process and thus, we start computing the inner expectation:

Et

[
exp{−

∫ T

t

r(s)ds}(1− q)NT |(λ(s))s≤T

]

= Et

[
exp{−

∫ T

t

r(s)ds}exp{−
∫ T

t

qλ(s)ds}|(λ(s))s≤T

]

= Et

[
exp{−

∫ T

t

r(s) + qλ(s)ds}|(λ(s))s≤T

]

Now, we have just to plug it into the outer expectation, and thus, what we get
is

B̄(t) = Et

[
exp{−

∫ T

t

r(s) + qλ(s)ds}

]
. (1.26)

As we can note, the important conclusion is the following:

the price of a defaultable bond with maturity T can be computed, equivalently, as
the price of a default-free bond with the same maturity, where we pay attention
to use

r̄ = r + qλ (1.27)

as the risk-free short rate. For sure, we can get a similar result for a defaultable
security F ′. In fact we get

F ′(t) = Et

[
exp{−

∫ T

t

r(s)ds}(1− q)NTX

]

= Et

[
exp{−

∫ T

t

r(s) + qλ(s)ds}X

]
. (1.28)
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Equation (1.28) is very important because it suggests a clear analogy between
derivatives pricing within a default-free stochastic interest rate modelling and a
multiple stochastic intensity framework. Once we have defined the defaultable
short interest rate as we did in the (1.27), there is no longer difference between
the (1.28) and the equivalent pricing equation where r̄ is used as interest rate.
Thus, it is possible to use one of the several standard short rate models in order
to get the dynamics of qλ.
Therefore, once we have chosen a default-free interest rate model for the default-
free bond prices, we have to choose a process describing the dynamics of qλ as
well. For doing this, it is better to select it such that there exist closed form
solutions for the defaultable bond prices when we we deal with both (1.27) and
(1.26). The next step is to fit this model to the market, by using different liquid
default bonds issued by the same entity (when they are available) to calibrate
the model itself. In this way, now it is possible to use the model we have
built to price either bonds issued by the same issuer, or to price derivatives on
defaultable bonds or to price credit risk derivatives.

1.3 Credit Rating Models

These last years have been characterized by a rapid diffusion of rating-based
models in the credit risk field.
One of the possible reasons that might explain this fact is, no doubt, the straight-
forwardness of the approach behind these models, but this reason is not the only
one. In fact the actual popularity of these models is also due to the new Capital
Accord of the Basel Committee on Banking Supervision (Basel II), since it al-
lows banks to use both Internal and External Rating Systems in order to meet
their capital requirements.
The natural consequence of this is that the data provided by rating agencies are
becoming more and more important in credit risk management.
We have already mentioned the most known rating agencies: in general, regula-
tors do not make distinctions among these different rating agencies, since there
is a high degree of congruence between their rating systems. Nevertheless, and
this may be considered as an incongruence, it might happen that different rating
agencies could assign different rating for the same bond.
Generally, rating agencies publish two different kinds of ratings:

• issue-specific credit ratings;

• issuer credit ratings.

Issue-specific credit ratings are defined as current opinions of the credit worthi-
ness of an obligor with respect to a specific financial obligation, a specific class
of financial obligations of a specific financial program.
On the other hand, issuer credit ratings have to be considered as an opinion
of the obligor’s overall capacity to meet its financial obligations: it is so easy
to understand that this last category of ratings denotes the fundamental credit



1.3. CREDIT RATING MODELS 25

worthiness of a company.
Usually, ratings are kept separated with respect to long-term and short-term
financial instruments. Focusing on long-term credit ratings, that is credit rat-
ings assigned to obligations with an original maturity of more than one year are
divided into several different classes. For example, Moody’s credit ratings range
from Aaa, denoting the best credit quality, to C, denoting the worst one.
Furthermore, the highest categories in this scale are known as investment grades,
whereas the remaining grades are called speculative grades that characterize the
so-called junk bonds.

Most of the companies requires to be rated by a rating agency prior to sale
or registration of a debt issue. These requests for a rating are mainly due to
the fact that, once the rating is determined, the rated company will get a gain
in terms of consideration supporting it.
A general peculiarity of rating agencies analysts consists on concentrating on
one or two industries only, in order to allow a specialization accumulation over
these areas. In such a way, this specialization will offer a higher degree of ex-
pertise as well as better competitive information.

Here there is a presentation of the Moody’s rating system criteria. Note that
Moody’s Bond Ratings are intended to characterize the risk of holding a bond.
These ratings, or risk assessments, in part determine the interest that an issuer
must pay to attract purchasers to the bonds. The ratings are expressed as a
series of letters and digits. Here is how to decode those sequences.

• Rating Aaa
Bonds which are rated Aaa are judjed to be of the best quality. They
carry the smallest degree of investment risk and are generally referred
to as ”gilt edged”. Interest payments are protected by a large or an
exceptionally stable margin and principal is secure. While the various
protective elements are likely to change, such changes, as can be visualized,
are most likely to change to impair the fundamentally strong position of
such issues;

• Rating Aa
Bonds which are rated Aa are judjed to be of high quality by all standards.
Together with the Aaa group they comprise what are generally known as
high grade bonds. They are rated lower than the best bonds because mar-
gins of protection may not be as large as in Aaa securities or fluctuation
of protective elements may be of greater amplitude or there may be other
elements present which make the long-term risk appear somewhat larger
than the Aaa securities;

• Rating A Bonds which are rated A possess many favorable investment
attributes and are considered as upper-medium grade obligations. Factors
giving security to principal and interest are considered adequate, but ele-
ments may be present which suggest a susceptibility to impairment some
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time in the future;

• Rating Baa Bonds which are rated Baa are considered as medium-grade
obligations, i.e., they are neither highly protected nor poorly secured.
Interest payments and principal security appear adequate for the present
but certain protective elements may be lacking or may be characteristically
unreliable over any great length of time. Such bonds lack outstanding
investment characteristics and in fact have speculative characteristics as
well;

• Rating Ba Bonds which are rated Ba are judjed to have speculative
elements; their future can not be considered as well-assured. Often the
protection of interest and principal payments may be very moderate, and
thereby not well safe-guarded during both good and bad times over the
future. Uncertainty of position characterizes bonds in this class;

• Rating B Bonds which are rated B generally lack characteristics of the
desirable investment. Assurance of interest and principal payments of
maintenance of other terms of the contract over long period of time may
be small;

• Rating Caa Bonds which are rated Caa are of poor standing. Such issues
may be in default or there may be present elements of danger with respect
to principal or interest;

• Rating Ca Bonds which are rated Ca represent obligations which are
speculative in high degree. such issues are often in default or have other
market shortcomings;

• Rating C Bonds which are rated C are the lowest rated class of bonds,
and issues so rated can be regarded as having extremely poor prospects
of ever attaining any real investment standing.

Furthermore, a Moody rating may have digits following the letters, for example
A2 or Aa3. These digits have to be considered as sub-levels within each grade,
with 1 being the highest and 3 the lowest.

1.3.1 Rating Migrations and Default

Let us suppose to consider the probability of default for a given company, say
company X, which has a specific credit rating. Furthermore, let us consider the
following rating criteria:

• H: high rating;

• L: low rating;

• D: default;

with a rating migration table P as shown below:
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H L D
H PHH PHL PHD
L PLH PLL PLD
D PDH PDL PDD

where Pij with i, j = H,L,D is the probability that an i-th rated company will
be rated j after one year.
It should be clear that PDj , with j = H,L is always equal to zero, while PDD
equals one. This means that state D denotes a state that, one is reached, it can
never be forsaken, i.e., state D is an absorbing state.
Now, let us assume that the current rating of company X is H. Hence, the
probability company X will default after one year is simply PHD and, of course,
(1 − PHD) represents the probability it will not default over the same time
horizon. So far there is nothing difficult, but, as soon as we extend our time
interval from one to two years, the computation of the default probability over
this new maturity becomes a little less straightforward.
In fact, at first sight, one could believe that in this case the survival probability
is simply (1 − PHD)2 and the default probability (1 − PHD)PHD: but this
answer is correct only if we do not consider the possibility of rating migration.
Unfortunately, such an assumption does not reflect the reality, since the default
state D may be reached both directly and via rating transitions:

H −→ H −→ D with probability PHHPHD
H −→ L −→ D with probability PHLPLD
H −→ D −→ D with probability PHDPDD

(1.29)

and thus the total default probability is:

PHHPHD + PHLPLD + PHDPDD 6= (1− PHD)PHD

Then, by having the one-year transition matrix P , it is possible to get the
two-years transition matrix simply by computing the square of the original one-
year transition matrix

P (2) = P · P = P 2 (1.30)

Several studies show that the modelling of rating transitions should be done
by using continuos-time Markov chains via generator matrices:

Λ =


λ11 λ12 · · · λ1K

λ21 λ22 · · · λ2K

...
...

. . .
...

0 0 0 0

 (1.31)
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Definition 2 A generator of a time-continuos Markov chain is given by a ma-
trix Λ = (λij)1≤i,j≤K for which the following properties hold:

1.
∑K
j=1 = 0 for every i = 1, 2, . . . ,K;

2. 0 ≤ −λii ≤ +∞ for every i = 1, 2, . . . ,K;

3. λij ≥ 0 for every i, j = 1, 2, . . . ,K, with i 6= j;

On the basis of these properties, every diagonal element of the generator
matrix Λ is negative:

λij = −
∑
j 6=i

λij (1.32)

where λij denotes the intensity of jumping from rating i to rating j. Note
that, once more, default state K is still an absorbing state.
As it was a Poisson process, the transition probability from rating i to rating j
over a small time interval ∆t is proportional to ∆t it-self. Hence we can write:

P [R (t+ ∆t) = j|R (t) = i] = λij∆t

where R is the rating process stating the credit rating of the firm at time t.
Clearly, the survival probability is given by

P [R (t+ ∆t) = i|R (t) = i] = 1−
∑
j 6=i

λij∆t

and thus from (1.32) we get

P [R (t+ ∆t) = j|R (t) = i] = 1 + λij∆t

Now, by generalizing this result to the overall transition probabilities matrix P
we obtain

P (t, t+ ∆t) = I + ∆t · Λ

where I is the unit matrix.
Then, if we consider a larger time interval [t, s] and we split it into i sub-intervals
of length ∆t, on the basis of (1.30) it is possible to write that

P (t+ 2∆t) = P (t, t+ ∆t) · P (t+ ∆t, t+ 2∆t)
= (I + ∆tΛ) · (I + ∆tΛ)

= (I + ∆tΛ)2

and thus, more generally

P (t, t+ i∆t) = (I + ∆tΛ)i =
(

1 +
s− t

i
Λ
)i
. (1.33)
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This allows to reach the following (in the limit) result:

P (t, s) = e(s−t)Λ (1.34)

with

e(s−t)Λ =
∞∑
n=0

((s− t)Λ)n

n!
.

The next step consists in writing the transition matrix from time t to time
t+ ∆t as follows:

P (t, s+ ∆t) = P (t, s) (I + ∆tΛ) = P (t, s) + ∆tP (t, s) Λ

and then

1
∆t

[P (t, s+ ∆t)− P (t, s)] =
∂

∂s
P (t, s) = P (t, s)Λ. (1.35)

The differential equations represented by (1.35) are known as Kolmogorov
forward differential equations.

For practical purposes, the problem of how to derive the generator matrix Λ
may arise. In fact, rating agencies are used to publish only the transition prob-
abilities matrix P and not the generator matrix Λ.
However, equation (1.34) shows that

P (t) = eΛt

whose solution would be

Λ =
1
t
lnP

if Λ was a scalar, otherwise, if it was a matrix (as it is), we should exploit
the power series representation for the matrix logarithm

ln(I +X) = X −X2 +X3 · · ·

In order to avoid the computation of this infinite series, there exists an alter-
native method which is based on the decomposition of the original transition
matrix P , for which:

P = MDM−1 (1.36)

where M denotes a square matrix and D a diagonal one. Note that not
every matrix can be decomposed by using the (1.36), but, fortunately, this
decomposition usually works for the empirical rating transition matrices. Hence:
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P =


p11 p12 · · · p1K

p21 p22 · · · p2K

...
...

. . .
...

pK1 pK2 · · · pKK

 =

=


m11 m12 · · · m1K

m21 m22 · · · m2K

...
...

. . .
...

mK1 mK2 · · · mKK

·

d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dK

·

m11 m12 · · · m1K

m21 m22 · · · m2K

...
...

. . .
...

m21 m22 · · · m2K


−1

where the columns of the matrix M are called eigenvectors of P , while
d1, d2, · · · , dK are the eigenvalues.
Once this decomposition has been computed, to obtain the logarithm (expo-
nential) of the matrix P we have just to replace the diagonal matrix D with
another diagonal matrix, whose diagonal elements are the logarithm (exponen-
tial) of d1, d2, · · · , dK , i.e.:

lnP = A = M · (lnD) ·M−1 = M ·DA ·M−1

with lnD = DA. Now, considering any other time s, it is easy to calculate
the transition probabilty with respect to it:

P (s) = esA = MesDaM−1 = MeslnDM−1 =

= MDsM−1

with Ds which is a diagonal matrix having the exponential of d1, d2, · · · , dK
as diagonal elements.

As said few pages ago, the parameters λij , with i, j = 1, 2, · · · ,K, have to
be considered as the intensities of different Poisson processes. This leads to the
conclusion that a Markov chain may be viewed as a collection of (K) Poisson
processes. In particular, the k-th Poisson process, with intensity λnk (if the
firm we are taking into account currently stays in rating class n), models the
transition to the k-th rating class.
Thus, if we consider the credit rating process R(t), the following (infinitesimaly)
properties must hold:

E[dR] =

∑
k 6=R

(k −R)aRk

 dt =
K∑
k=1

k · aRkdt (1.37)

P (dR = k −R) = aRkdt (1.38)

Furthermore, if we consider a function depending on R, f(R), this can be
viewed as a compound Poisson process. In fact:
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E[df(R)] =

∑
l 6=R

(f(l)− f(R)) aRl

 dt =
K∑
l=1

f(l)aRldt (1.39)

P (df(R) = f(k)− f(R)) = aRkdt (1.40)

1.3.2 Pricing considering Rating Migrations

Within the credit-rating models setting, the price of a financial instrument must
be a function of time t, of the risk-free interest rate r and, this is the novelty,
of the issuer’s credit rating R(t). Thus, for example, the price of a defaultable
zero-coupon bond B̄ is

B̄ = B̄(t, r, R)

In this framework, the pricing of a bond B̄ has to be done simultaneously
for all rating classes.
Since our model allows rating migrations, on the basis of the transition prob-
abilities matrix, it is necessary to know the price the risky bond B̄ will have
after each transition. In a few words, the bond price B̄ may be written as a K-
dimensional vector (since we are considering the existence of K different rating
classes):

B̄(t, r) =


B̄(t, r, R = 1)
B̄(t, r, R = 2)

...
B̄(t, r, R = K)


The consequence of this, in terms of final payoffs, can be expressed by the

following vector:

B̄(T ) =


1
1
...
0


Of course, this is true because we are implicitly assuming a zero-recovery

rate. Hence, as usual, the price of this defaultable zero-coupon bond is, given
an R(0) initial rating, the risk-neutral expectation of its discounted final payoffs:

B̄(0) = E
[
e−

∫ T
0 r(s)dsB̄R(T )(T )

]
= E

[
e−

∫ T
0 r(s)ds

]
E
[
B̄R(T )(T )

]
= B(0, r)E

[
B̄R(T )(T )

]
= B(0, r)

(
P (T )B̄(T )

)
R(0)
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Now, since the final-payoffs vector is composed for the first K − 1 positions by
ones and only the last component is zero, then we can go on by writing:

B̄(0) = B(0, r)
(
P (T )B̄(T )

)
R(0)

= B(0, r)
K−1∑
k=1

PR(0)k(T )

= B(0, r)
(
1− PR(0)K(T )

)
where P (T ) represents the transition probability matrix until time T .

Even though this model is able to include the rating migration process, it
presents some drawbacks, concerning the behaviour of credit spreads, which
cannot be neglected.
In fact, the implicit assumption for which the transition probability to default
P (T ) remains constant over time leads to have constant credit spreads within
every rating class. This may be partially due to the assumption of zero recov-
ery rate. However, even if we made a different assumption, e.g. considering a
positive recovery rate c, the result would not change, because we would get the
following final pricing formula:

B̄(0) = B(0, r) (1− cP·K(T ))

meaning that at default we would receive a cash-flow of (1− c).



Chapter 2

Credit Derivatives

In these last years, the credit derivative market has been characterized by a
huhe growth, from a few trades in the early 1990s to the actual billions of dol-
lars trades each year. This fact reflects the expansion of the demand from several
users such as asset managers, corprations and fixed-income trading desks, buy-
ing and selling credit exposure.
Credit derivatives may be defined as financial instruments whose purpose con-
sists in efficiently transfering the credit risk of an underlying asset between two
or more parties, thus they allow to either increase or reduce the credit risk
exposure. In such a way, credit derivatives represent an important instrument
enabling asset managers to improve performances, both in terms of management
of credit risk exposure and enhancement of portfolio returns.
Currently, there exist many types of credit derivatives, even though Credit De-
fault Swaps (CDS) and Collateralized Debt Obligations (CDO) are the most
popular in the market. Conversely from the other derivatives which can be
both exchange-traded and over-the-counter traded (OTC), credit derivatives
are only OTC products.
In particular, Credit Default Swaps are in general used for flow trading of single
reference name credit risk, or, more extensively, for trading a basket of refer-
ence credits (Basket Default Swaps). Furthermore, there is another fundamental
peculiarity of credit derivatives. In fact they can also be used to create debt
instruments with particular structures whose payoffs derive from the credit fea-
tures of a reference asset (assets), the so called reference obligation, and an
issuer, the reference entity, or a basket of reference assets entities: this is the
case of Syntethic Collateralized Debt Obligations.

Today, credit derivatives are very useful to shift credit risk from banks to non-
banks investors which are willing to assume credit risk on the basis of a potential
enhanced rate of return.
Recent surveys have highlighted the more and more increasing number of fi-
nancial entities having positions on credit derivatives. Moreover, among those
companies which do still not use these instruments, there is a large portion

33
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planning to use them in the next future. This is one principal reason for which
understanding of credit derivatives is crucial for those who does not wish to use
them, as well.
Another reason is given by the fact that these derivatives are not only useful
for managing credit risk, but also because their prices encompass the market
expectations and thus they may provide more detailed information concerning
the probability of net loss from the default of a set of borrowers.
The credit derivative market is characterized by three different entities which
play a role in it. First of all, there are the so called end-buyers of protection,
whose purpose is hedging the credit risk affecting other parts of their busi-
ness. Then, there are the end-sellers of protection which try to diversify more
efficiently their actual portfolios. Finally, intermediaries, such as Investment
Banks, have the role to provide liquidity to end-users. In general they look for
arbitrage or other opportunities by trading on their own account.

Even though credit derivatives provide an alternative instrument to manage
credit risk, they are also responsible for new forms of risk arising from their use.

• OPERATIONAL RISK : it derives from an inprudent use of credit deriva-
tives by traders or asset managers. In fact, credit derivatives do not appear
on investors’ balance sheet. Thus, it could happen that without a proper
internal accounting system, the investor may not be totally aware of the
total credit risk it is taking.

• COUNTERPARTY RISK : it is funny, but a credit protection buyer may
introduce an additional amount of credit risk in the portfolio by purchasing
credit derivatives. In fact, a credit protection buyer can incur in a net loss
whenever a credit event on the underlying credit risky asset occurs and
the credit protection seller defaults on its obligations.

• ILLIQUIDITY RISK : it is due to the fact that credit derivatives are
traded over-the-counter. Hence, they are characterized by a strong degree
of customization leading to illiquidity.

• PRICING RISK : this risk reflect the dependence of the pricing models on
their assumptions concerning the underlying economic parameters. This
means that the prices of credit derivatives are strictly sensitive to the
assumptions on which the model is based on.

2.1 Credit Default Swaps

In the last decade, the trading volume of Credit Default Swaps (CDS) has
tremendeously grown. In fact, empirical evidence shows that in 1996 the volume
of CDS, in terms of outstanding credit, was only $20 billion, while in 2005 this
amount increased up to $2.3 trillion. This huge growth is partially due also to
the improvements which have been developed on these financial products, since
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they are actually characterized by a much greater level of standardization than
some years ago. Furthermore this allowed an increase of the liquidity within the
market, as well.
The conclusion of a CDS contract involves simultaneously the specification of
the following entities:

• a credit protection buyer ;

• a credit protection seller ;

• a reference obligor ;

• reference obligations.

The credit protection buyer purchases a given amount of protection, the so
called notional amount of the CDS contract, from the credit protection seller.
For this reason, the former has to pay, periodically, a fee to the latter: the
amount of this fee is computed by making the product between the notional
amount and a proper number of basis points.
Concerning the role played by the credit protection seller, it consists in paying
the protection buyer if a credit effect affecting the reference obligor, such as a
default, occurs.
At this point, it is important to specify that there exist two different ways in
which the payment by the credit protection seller in favour of the credit protec-
tion buyer may be made: the physical delivery approach and the cash settlement
approach.
Physical delivery means that the protection buyer delivers, directly to the pro-
tection seller, a reference obligation of the reference obligor. Clearly, the value
of the reference obligation which is delivered has to be equal to the notional
amount of the CDS and thus, in exchange for it, the protection seller must pay,
in cash, the par of the reference obligation to the protection buyer: the par
amount which is transferred is nothing else that the notional amount of the
CDS contract. Afterwards, the protection seller has to be considered, under-
every point of view, as the owner of the reference obligation and hence, it is free
to take every action it believes to be appropriate in order to recover the maxi-
mum value from the reference obligation itself. Differently, from the perspective
of the protection buyer, it is useful to specify its chance to choose and deliver
the least expensive reference obligation to the protection seller: this is what is
called cheapest-to-deliver option. Generally, the physical delivery approach is
the method which is mainly used, since more than 80% of the outstanding CDS
are based on it.
In the case of cash settlement, the protection seller must pay the protection buyer
a cash amount corresponding to the difference between the notional amount and
the market value (after the occurrence of the credit event) of the reference obli-
gations. In particular, the market value of the reference obligation is determined
by a mark-to-market auction process, by an average of the quotations which are
given by qualified dealers.
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Figure 2.1: Credit Default Swap payment cash-flows

Figure 2.1 shows the different CDS payment flows.

Clearly, in the absence of a credit event, the protection buyer will keep on
making its periodic (in general quarterly) payments until the expiration of the
CDS.

Note that the position of the protection seller may be compared to that of
a bond holder, since both receive periodically a coupon payment. The only dif-
ference is given by the fact that the buyer of a bond has to pay, immediately, its
market price, while to be long a CDS it is sufficient to promise to pay eventual
future losses due to the occurrence of a credit event. For what concerns the
protection buyer, CDS offer the great advantage of separating the funding of
a loan (or bond) from the assumption of its specific credit risk. For example,
a low-cost funder might buy a bond with a relatively high coupon (and then
reflecting a quite risky situation) and simulataneously, the same party could
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hedge its position by purchasing protection with a CDS, getting the opportu-
nity to achieve a gain in terms of net spread received.

It is straightforward to understand the importance of clarifying the circum-
stances which can be considered as acredit event for a CDS contract. In fact,
only the occurence of a credit event triggers the protection payment by the
protection seller in favour of the protection buyer. For this impotant reason,
the International Swaps and Derivatives Association (ISDA) defines six possible
events:

1. Bankruptcy ;

2. Failure to Pay ;

3. Obligation Default ;

4. Obligation Acceleration;

5. Repudiation and Moratorium;

6. Restructuring.

Actually, there exist a broad consensus among the parties in excluding some
of these credit events and simultaneously in specifying in a better way the defi-
nitions for the rest.
In particular, Obligation Default and Obligation Acceleration in non-emerging
market corporate CDS are no longer considered credit events, since in many
cases they do not lead to that amount of severity which should be necessary
to trigger a protection payment. Moreover, whenever this level was reached,
a Failure to Pay would follow very shortly, anyway. Furthermore, considering
that a Repudiation or a Moratorium may be done only a sovereign entity like
a national government, there remain only three events to specify among those
which are above mentioned.
Firstly, Bankruptcy can be simply defined as the voluntary or involuntary fil-
ing of default. Secondly, Failure to Pay consists in the failure of the reference
obligor to pay back the principal or to make interest payments in at least one
of its outstanding obligations. Finally, for what concerns the definition of Re-
structuring, some difficulties still remain. In general, this event is considered
in order to take into consideration an eventual weakened credit position of the
debtor and it includes several situations such as extensions of the debt maturi-
ties, reductions of the coupon or principal amounts, and so on. In a few words,
Restructuring might be seen as a less costly alternative to bankruptcy.

2.2 Collateralized Debt Obligations

Collateralized Debt Obligations (CDOs) are, for sure, the credit derivative which
has been characterized by the highest growth rate in the last ten years. In 2005
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there were more than $1 trillion of outstanding CDOs, denoting their actual
tremendeous popularity among investors. The reasons for such a success are
several. Firstly, there exists a wide variety of different CDO structures and thus
the final user has a large number of opportunities to optimize the investment
choice. Secondly, CDOs enable investors to get particular gain exposures which
could not be obtained via other financial instruments. In fact, for example, they
offer the chance to combine an investment-grade risk with speculative-grade as-
sets or, conversely, a speculative-grade risk with investment-grade assets. Fi-
nally, CDOs should be considered as instruments allowing normal investors to
acquire certain assets that they could not otherwise invest on. Moreover, CDOs
represent a tool with which an investor may improve the return profile of its
portfolio, since their returns show low correlations to those of the underlying
assets.
Briefly, a CDO issues both debt and equity and exploits the money it raises by
investing in portfolios of corporate loans or mortgage-backed securities. Then,
on the basis of the relative seniority of the outstanding liabilities, it offers the
cash flow originated by the collateral portfolio to the debt and equity holders.

However, even though there exists a lot of different types of CDOs, any of
them is characterized by the following three attributes.

• CDO assets. CDOs own different kinds of assets, in general corporate
loans or mortgage-backed securities, but not only. In order to understand
this, maybe it is simpler to illustrate a little of history of CDOs. In 1987,
the first CDO was created even if it was not named CDO but Collateralized
Bond Obligation (CBO), since it owned a portfolio of high-yield bonds.
In the following years, CDOs owning corporate and real estate loans were
introduced and thus the name Collateralized Loan Obligation (CLO) was
invented. With the beginning of the 1990s, CDOs with loans and bonds
issued by emerging markets and sovereign governments as collateral were
created and then the the term Emerging Market CDO (EM CDO) was
conied. In 1995, it was the turn of Residential Mortgage-Backed Securities
CDOs (RMBS CDOs) and, up to actual days, a lot of different Structured
Finance CDOs (SF CDOs) has been introduced. Figure 2.2 shows the
typical collateral portfolio of CDOs, with respect to 2005.

• Liabilities. The liabilities of a CDO are characterized by a detailed and
strict ranking of seniority. Hence, the CDO’s capital structure comprises
equity or preferred shares, subordinated debt, mezzanine debt and seniority
debt, that in general are denoted by usual names as Class A, Class B
and so on. The following table shows how these tranches of notes and
equities range from the most secured AAA rated, with the greatest degree
of subordination under it, to the most levered equity tranche.
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Figure 2.2: Collateral backing cash CDOs in 2005

Tranche % of Capital Structure Rating Coupon
Class A 77.5 AAA LIBOR+ 26
Class B 9 A LIBOR+ 75
Class C 2.75 BBB LIBOR+ 180
Class D 2.75 BB LIBOR+ 475
Equity 8 NR Residual

The reason for this severe seniority is allowing the CDO structures to raise
funds at the lowest possible cost.

• Purposes. Generally speaking, there is more than one reason for which
CDOs have been created. First of all, holding a CDO affects the company’s
balance sheet. Thus, by means of them, it is possible to shrink the balance
sheet itself and, in such a way, both the required regulatory and economical
capital may be reduced. In fact, for example, a bank might removing a
portion of its loans from the balance sheet simply by selling them to a
CDO, with the consequence of lower capital requirements to meet.
Obviously, CDOs can also be seen as an alternative way with which a
financial entity provides its services to customers. By doing so, investors
do not get their returns proportionally to the investment done, but on
the basis of the CDO tranche the buy. Hence, purchasing a CDO allows
to separate and distribute the implicit risk of its assets among buyers
with different risk attitudes, with the further advantage of getting an
investment in a diversified assets portfolio.
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CDO Cash Flows

A CDO might be seen as a joint set of financial instruments which are split-
ted into different tranches to be negotiated separately from the collateral. In
particular, each tranche presents an upper and a lower boundary determining
the fraction of the loss coming from the collateral which has to be attributed
to the tranche itself. In general, the so called waterfall scheme is given by the
following tranches:

• Super-Senior tranche

• Senior tranche

• Mezzanine tranche

• Equity tranche

which are periodically rated by a Special Purpose Vehicle (SPV). Furthermore,
the SPV performs also the task to allocate the different tranches on the market.
Probably, in order to understand how a CDO works, a simple example may be
very helpful.

Example.
Let us consider a CDO characterized by a collateral of EUR 1.0 billion, paying
a periodic premium of Euribor+ 100bps. Moreover, let us suppose the Euribor
rate equals 3.00% while the administrative costs are equal to 2 bps.

As shown in Figure 2.3, the SPV splits it into four different tranches. Thus,
there are two situations which have to be evaluated:

1. No default affecting the collateral within the maturity of the CDO;

2. Occurrence of defaults affecting the collateral within the maturity of the
CDO (e.g. Total loss of EUR 30 million).

In both cases, the principle on which the CDO payoff is based on is that
investors are paid in a manner such that the more senior tranches are paid off
first, followed by the subordinated tranches and finally by the equity class. On
the contrary, eventual losses are absorbed by the equity tranche first, then by
the mezzanine tranche and so on. However, any cash flow is subordinated to
the payment of the admistrative costs.

1. No default affecting the collateral within the maturity of the CDO.

Total Portfolio (3.00 + 100bps)× 1b) = 40m
Administr. Costs (2bps× 1b) = 0.2m
Super-Senior (3.00% + 50bps)× 920m = 32.2m
Senior (3.00% + 150bps)× 35m = 1.6m
Mezzanine (3.00% + 250bps)× 25m = 1.4m
Equity (40− 0.2− 32.2− 1.6− 1.4)m = 4.6m
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Figure 2.3: CDO cash flows
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Table 1: Interest payments per year, in Euros.

Total Portfolio 1b
Super-Senior 920m
Senior 35m
Mezzanine 25m
Equity 1b− 920m− 35m− 25m = 20m

Table 2: Principal redemption at maturity date, in Euros.

2. Defaults determining a total net loss of EUR 30 million.

Total Portfolio (3.00 + 100bps)× 970m) = 38.8m
Administr. Costs (2bps× 970m) = 0.1952m
Super-Senior (3.00% + 50bps)× 920m = 32.2m
Senior (3.00% + 150bps)× 35m = 1.6m
Mezzanine (3.00% + 250bps)× 15m = 0.825m
Equity (38.8− 0.1952− 32.2− 1.6− 0.825)m = 3.98m

Table 3: Interest payments per year, in Euros.

Total Portfolio 970m
Super-Senior 920m
Senior 35m
Mezzanine 15m
Equity 0

Table 4: Principal redemption at maturity date, in Euros.

By looking at these tables, it is possible to note that, in case of defaults,
the overall portfolio value decreases from the initial amount of EUR 1 billion to
EUR 970 million. Thus, the total loss is absorbed, for its total value, partially
by the mezzanine tranche and by the equity tranche, for what concerns the
interest payments. Nevertheless, with regard to the principal redemption, the
portfolio loss makes the cash flow of the equity tranche zero, while it absorbes
only partially the one of the mezzanine tranche, which passes to EUR 15 million
from the original 25 in case of no defaults.

Finally, it is important to emphasize the existence of two main categories of
CDO: cash-flow CDOs and synthetic CDOs. The difference between them
stands in the rights on the collateral. In fact, in cash-flow CDOs the origi-
nal issuer gives up its assets portfolio to the SPV, while the same does not
happen with synthetic CDOs. In this last case, the original issuer transfers to
the SPV only the portfolio risk, while the portfolio value keeps on appearing
on the issuer’s balance sheet. Obviously, in exchange for this, the originator
will periodically pay a premium to the SPV: it a few words it purchases credit
protection from the Special Purpose Vehicle.
Actually, synthetic CDOs represent the largest slice of the credite derivatives
market.
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2.3 Pricing of Credit Derivatives

The first basic step for pricing credit derivatives, consists in deriving the im-
plied default probabilities under which their fair prices can be found out. In
general, this may be done by exploiting the knowledge of CDS market prices.
The first reason for such a thing is given by the fact that these instruments are
characterized by high levels of liquidity and standardization, leading to a rela-
tive simplicity and convenience in using their market quotations. Furthermore,
CDS premia include market expectations concerning the credit merit of a given
obligor and thus, it is possible to use these risk-neutral probabilities for pricing
purposes.
Hence, let us consider a probabilty space given by (Ω, F, {=t}t≥0,P∗) where P∗
denotes the equivalent martingale measure which makes the price processes (of
any tradeable security), discounted by the risk-free interest rate, P∗-martingales
with respect to the filtration {=t}t≥0. In addition, it is a common practise to
make the following assumptions:

1. Independence between the interest rate and the default processes, under
the martingale measure P∗;

2. Defaults can only occur at discrete dates and, at their occurrence, the
protection payments are immediately settled.

Under these hypothesis, it is now possible to illustrate the pricing analysis
for some more and more widely used credit risk derivatives: Basket Default
Swaps and Collateralized Debt Obligations.

2.3.1 Pricing of Basket Default Swaps

Among the several credit risk derivatives, actually Basket Default Swaps (BDS)
show a great success. The structure of these instruments derives directly from
that of CDS, where the only difference stands in the definition of the credit
event which triggers the protection payment from the protection seller to the
protection buyer. In fact, for a BDS, the credit event is represented by the
defaults of a given number of reference entities within the the reference basket.
Thus, in a k-th to Default Swap, the protection buyer pays a periodic premium
to the protection seller either until the natural expiration of the contract or
until the occurrence of the k-th default within the reference portfolio: in this
last case, the protection seller is forced to make the protection payment, on the
basis of the loss given default resulting from the k-th default. In a few words, a
BDS may be seen as a credit derivative on a portfolio of reference entities which
offers credit protection until the k-th default in the reference basket.
Obviously, a BDS provides a protection over a set of underlying assets at a lower
price than that which should be paid in the case of joint single protections.
Furthermore, intuitively, it is clear that the price of a BDS will be affected
by both the default risks characterizing each obligors and especially by the
dependence among their defaults. For this reason the choice of the right model
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describing the default dependence will result to be crucial for the pricing of
these instruments.
Within this framework, the risk-neutral price of a BDS is simply defined as the
fraction s of the contract nominal value M, expressed in yearly basis points,
such that the present value of the contingent payment in case of default, i.e. the
Default Leg (DL), and that of the so called Premium Leg (PL), i.e. the flow of
the periodic payments paid by the protection buyer, are equal. Hence, before
showing how to price a BDS, first it is necessary to determine the notation which
will be used.

• N denotes the number of entities composing the reference portfolio;

• k is the seniority level of the BDS structure, thus the protection payment
is triggered as soon as the k-th default occurs;

• ti with i = 1, . . . , n are the discrete dates at which the protection buyer has
to pay its periodic premia, with tn = T denoting the natural expiration
date of the contract;

• τi denotes the default time of the i-th reference entity;

• M is the notional amount of the contract. For simplicity we will consider
a homogeneous portfolio, such that M also coincides with the notional
amount of each reference entity;

• s denotes the fair price of the BDS contract, in yearly basis points, to be
paid 1/∆ times per year as long as the BDS contract lasts;

• B(0,t) represents the risk-free discount factor from time 0 to time t;

• Rj is the recovery rate associated to the j-th default;

• AP denotes the accrued payment, i.e. the portion of interest which has
to be attributed to the period starting from the last payment date to the
k-th default date.

In such a way, the Premium Leg PL is the present value of the periodic premia
paid by the protection buyer:

PL = E∗
[

n∑
i=1

(sM∆)B(0, ti)I{tk>ti}

]

=
n∑
i=1

(sM∆)B(0, ti) (1− P∗(τk ≤ ti)) (2.1)

while the Default Leg, that is the protection payment which is triggered by
the occurrence of the k-th default is computed as the difference between the
default Payment DP and the Accrued Payment AP

DL = DP −AP
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In details, the Default Payment DP may be written as

DP = E∗
M N∑

j=1

(1−Rj)B(0, τk)I{tk≤T}


= M

N∑
j=1

(1−Rj)
∫ T

0

B(0, t) · P∗(τk = t)dt (2.2)

while the Accrued Payment AP is

AP = E∗
[
n∑
i=1

M

(
s · τk − ti−1

ti − ti−1
·∆
)
B(0, τk)I{ti−1<tk≤T}

]

= sM
n∑
i=1

∫ ti

ti−1

u− ti−1

ti − ti−1
·∆ ·B(0, u) · P∗(τk = u)du (2.3)

Now, assuming to know exogenously the recovery rates (e.g. by looking at
data published by rating agencies), the fair price s∗ of the k-th BDS can be
direcly obtained from the equation

PL(s∗) = DL(s∗)

that is

s∗ =

∑N
j=1(1−Rj)

∫ T
0
B(0, t) · P∗(τk = t)dt∑n

i=1 ∆B(0, ti) (1− P∗(τk ≤ ti)) +
∑n
i=1

∫ ti
ti−1

u−ti−1
ti−ti−1

∆B(0, u)P∗(τk = u)du
(2.4)

2.3.2 Pricing of Collateralized Debt Obligations

In pricing a CDO, the Accrued Payment AP does not appear into the pricing
equation and so only two cash flows have to be kept into account, i.e. the
Default Leg DL and the Premium Leg PL. It is important understanding that
both must be computed with regard to a specific tranche of the CDO contract.
Once more, before entering the details of the pricing analysis, it is better to
show the notation which will be used later on.

• N denotes the number of reference entities composing the collateral port-
folio;

• T = tn is the naturalexpiration date of the CDO contract;

• τi represents the default time of the i-th reference obligation;

• Ai stands for the nominal amount of the i-th reference obligation;
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• sα,β denotes the fair price of the CDO tranche with α and β respectively
as the lower and the upper boundary of the tranche itself;

• B(0,t) is the risk-free discount factor;

• Ri denotes the recovery rate with respect to the i-th reference obligation;

• ∆ represents the frequency (during the year) of the interest payments;

• Li is the loss given default associated to the i-th reference obligor;

• Qi stands for the default indicator of the i-th reference obligor;

• L denotes the cumulative loss of the collateral portfolio.

On the basis of this notation, the loss given default Li due to the i-th refer-
ence obligation can be written as

Li = (1−Ri) ·Ai
then, the cumulative loss L of the collateral portfolio at time t simply results

to be the sum of the single losses Li:

L(t) =
N∑
i=1

Li(t) ·Qi(t) (2.5)

It is clear that the amount of the loss suffered by the debt holders strictly
depends on the seniority of the CDO tranches. This may be found out by
looking at the values assumed by the lower and the upper boundaries α and β
of the single tranches. In particular

• α = 0 =⇒ EQUITY TRANCHE;

• α > 0 and β <
∑N
i=1Ai =⇒ MEZZANINE TRANCHE;

• β =
∑N
i=1Ai =⇒ SENIOR TRANCHE.

As a consequence, the loss Lα,β absorbed by the tranche (α, β) is related to
the total loss L of the collateral portfolio. In fact

Lα,β =


0, if L(t) < α

L(t)− α, if α ≤ L(t) < β

β − α, if L(t) ≥ β

Thus, Lα,β can be written as

Lα,β = (L(t)− α) · I{α≤L(t)<β} + (β − α) · I{β≤L(t)≤
∑N

i=1 Ai} (2.6)

Equivalently, the previous formula (2.6) may also be expressed as
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Lα,β = min [max (0;L(t)− α) ;β − α] (2.7)

Again, the fair price sα,β for the CDO tranche (α, β) is obtained by imposing
the equivalence between the Default Leg DL and the Premium Leg PL.

The Default Leg DL is nothing else that the present value of the contingent
payments in terms of the expected tranche loss:

DL = E∗
[∫ T

0

B(0, t)dLα,β(t)

]
(2.8)

while the premium leg PL is given by the expected value of the discounted
premium payments computed on the outstanding capital (i.e. nominal tranche
minus the tranche loss)

PL = E∗
[
N∑
i=1

sα,β ·∆ ·B(0, ti) ·min [max (β − Li(t); 0) ;β − α]

]
(2.9)

and finally, the fair spread s∗α,β can be easily obtained from the equivalence

PL(s∗α,β) = DL(s∗α,β),

that is

s∗α,β =
E∗
[∫ T

0
B(0, t)dLα,β(t)

]
E∗
[∑N

i=1 ∆ ·B(0, ti) ·min [max (β − Li(t); 0) ;β − α]
] (2.10)
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Chapter 3

Copula Functions

In general, the dependence among a set of random variables is represented
by their joint probability function. Unfortunately, the computation of these
functions is in many cases hard, thus copula functions may be interpreted as an
important tool to model the dependence more easily.

3.1 Copula Functions: Definitions and Proper-
ties.

The analysis of copula functions starts from their basic definition suggested An
Introduction to Copulas, by Nelsen in [38].

Definition 3 An n-dimensional copula is a function of C : [0, 1]n → [0, 1] with
the following properties:

1. C(u) is increasing for each component uk, with k = 1, . . . , n;

2. for every vector u ∈ [0, 1]n, C(u) = 0 if at least one component of u equals
zero, while C(u) = uk if every coordinate of u is one, except the k-th one;

3. for every a, b ∈ [0, 1]n, with a ≤ b, given a hypercube B = [a, b] =
[a1, b1]× [a2, b2]× · · · × [an, bn] whose vertices lie in the domain of C, its
volume VC(B) ≥ 0.

Alternatively,as well as equivalently, a copula function can be also defined
as follows:

Definition 4 A copula is the distribution function of a random vector in Rn
with uniform margins in [0, 1].

No doubt, the most important theorem concerning copulas is the well known
Sklar’s theorem. Its importance results into a wide use of it in several practical
applications.

49
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Theorem 1 . Sklar’s theorem. Let F be an n-dimensional distribution func-
tion with continuos margins F1, . . . , Fn. Then it has the following unique copula
representation:

F (x1, ..., xn) = C(F1(x1), . . . , Fn(xn)) (3.1)

From Sklar’s theorem we can observe that the uniqueness of the copula
function C is guaranteed only if the margins F1, . . . , Fn are all continuous.
Conversely, when these are not all continuous, the copula function still exists,
even if it is no longer unique.

The fundamental idea offered by Sklar’s theorem is that the use of copula
functions for dependence modeling allows to split the multivariate distribution
function of n random variables into two different parts:

• the distribution functions of each random variable Fi, with i = 1, ..., n;

• the copula function which completely describes the dependence structure
of the random variables Xi, with i = 1, . . . , n.

In a few words, any multivariate probability distribution function FX1,...,Xn

can be written by means of a copula function as follows:

FX1,...,Xn
(x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn)

= C (P (X1 ≤ x1), . . . , P (Xn ≤ xn))
= C (FX1(x1), . . . , FXn

(xn)) (3.2)

where X = (X1, . . . , Xn) denotes any n-dimensional random vector and FXi

represents the marginal distribution functions of the random variables Xi, with
i = 1, . . . , n.

Such a conclusion must be considered as a milestone in the credit risk modeling:
in fact it would be translated into the possibility to determine and calibrate the
processes describing the individual defaults in a completely independent way
with respect to their joint behaviour.
Furthermore, the following corollary can be attained from Sklar’s theorem (the-
orem 1).

Corollary 1 Let F be an n-dimensional distribution function with continuous
margins F1, . . . , Fn and copula C which satisfies (3.1). Then, for any vector
u = (u1, . . . , un) in [0, 1]n, the following holds

C(u1, . . . , un) = F (F−1
1 (u1), . . . , F−1

n (un)),

where F−1
i is the generalized inverse of Fi.

The importance of the previuos corollary will be essentially evident in the
procedures used for simulating random numbers generated by a specific copula
function.
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Finally, the expression for the copula density c(FX1(x1), . . . , FXn(xn)) associ-
ated to a copula function C(FX1(x1), . . . , FXn

(xn)) can be derived. In general,
this will be very useful in order to calibrate the copula parameters to real mar-
ket data.
Hence, starting from the joint density function f(x1, . . . , xn) of an n-dimensional
random variable (X1, . . . , Xn), obtained by (3.2), we can define the multivariate
copula density c(FX1(x1), . . . , FXn

(xn)):

f(X1, . . . , Xn) =
∂n [C(FX1(x1), . . . , FXn(xn))]

∂FX1(x1) · · · ∂FXn
(xn)

n∏
i=1

fXi
(xi)

= c(FX1(x1), . . . , FXn
(xn))

n∏
i=1

fXi
(xi)

and thus, simply by re-arranging the terms, we get

c(FX1(x1), . . . , FXn
(xn)) =

f(x1, . . . , xn)∏n
i=1 fXi(xi)

(3.3)

3.2 Examples of Copula Functions

The aim of this section is to show some of the most exploited copula functions
for credit risk modeling purposes. Hence, two functions included in the class
of elliptical copulas, i.e. the Gaussian and Student’s t copula are going to be
presented first, while, after these, another important class of copula such as
Archimedean copulas will be briefly described.

3.2.1 The Gaussian Copula

The Normal or Gaussian copula is the copula function of the multivariate nor-
mal distribution.
If we consider a symmetric, positive definite matrix R, with diag(R) = 1, then
ΦR denotes the standardized multivariate Gaussian distribution with correla-
tion matrix R. Hence, on the basis of this notation, the multivariate Gaussian
copula CGaR is given by

CGaR (u1, . . . , un) = ΦR(φ−1(u1), . . . , φ−1(un)) (3.4)

where φ−1(u) is the inverse of the normal cumulative distribution function.
Now, simply by applying the equation (3.3), it is possible to get also the expres-
sion for the normal copula density function cGaR (u1, . . . , un):
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cGaR (u1, . . . , un) =
fGa(x1, . . . , xn)∏n

i=1 fXi(xi)

=
1

(2π)n/2|R|1/2 exp(− 1
2X

′R−1X)∏n
i=1

1√
2π
exp(− 1

2x
2
i )

(3.5)

where fGa is the joint normal density function. So, if we set ui = φ(xi)
and ζ = (φ−1(u1), . . . , φ−1(un))′, then the equation (3.5) can be written in the
following way:

cGaR (u1, . . . , un) =
1

|R|1/2
exp

[
−1

2
ζ ′(R−1 − I)ζ

]
(3.6)

with I denoting the identity matrix.

3.2.2 The Student’s t Copula

As the Gaussian copula, also the Student’s t copula belongs to the family of
the elliptical copulas and it is nothing else that the copula of the multivariate
Student’s t distribution.
When we consider a symmetric, positive definite matrix R, with diag(R) =
1, then TR,ν represents the standardized multivariate Student’s t distribution
with correlation matrix R and ν degrees of freedom. Thus, we can define the
multivariate Student’s t copula as

CtR,ν(u1, . . . , un) = TR,ν(t−1
ν (u1), . . . , t−1

ν (un)) (3.7)

where t−1
ν stands for the inverse of the Student’s t cumulative distribution

function.
For sure, analogously as in the Gaussian case, the relative Student’s t copula
density function may be obtained from the equation (3.3). Thus, what we get
is

ctR,ν(u1, . . . , un) =
fstud(x1, . . . , xn)∏n

i=1 f
stud
i (xi)

= |R|−1/2 Γ(ν+n2 )
Γ(ν2 )

[
Γ(ν2 )

Γ(ν+1
2 )

]n (1 + ζ′R−1ζ
ν )−

ν+n
2∏n

i=1(1 + ζ2i
ν )−

ν+1
2

(3.8)

where fstud denotes the joint Student’s t density function and ζ = (t−1
ν (u1, . . . , t

−1
ν (un)).

3.2.3 Archimedean Copulas

Archimedean copulas are another family of copula functions. The importance of
this class derives directly from their analytical tractability, since most of them
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are provided with a closed formula, but it is also reflected into their specific
capability to describe a large set of different dependence structures.
However, before presenting some of the most common Archimedean copulas, it
is necessary to make a short introduction. Let us define a continuous function
ϕ : [0, 1] → [0,∞], for which the following two propertis hold:

• ϕ′(u) < 0 for every u ∈ [0, 1];

• ϕ(1) = 0.

Now, let us consider another function, the pseudo-inverse of ϕ, ϕ[−1] :
[0,∞] → [0, 1] such that:

ϕ[−1] =

{
ϕ−1(t), for 0 ≤ t ≤ ϕ(0);
0, for ϕ(0) ≤ t ≤ ∞.

If ϕ is a convex function, then the function C : [0, 1]2 → [0, 1] given by

C(u, v) = ϕ[−1] [ϕ(u) + ϕ(v)] (3.9)

is an Archimedean copula, while ϕ is the generator of the copula.

The Gumbel Copula

A Gumbel copula CGumbelθ is obtained by starting form the generator function
ϕ

ϕ(t) = (−lnt)θ

with θ ≥ 1. Now, simply by applying equation (3.9), we get

CGumbelθ (u, v) = ϕ−1 [ϕ(u) + ϕ(v)] = exp
[
−[(−lnu)θ + (−lnv)θ]1/θ

]
(3.10)

The Clayton Copula

A Clayton copula CClaytonθ is given by the generator function ϕ

ϕ(t) =
t−θ − 1

θ

with θ ∈ [−1,∞]/{0}. Thus, applying equation (3.9) and having to take
into account the properties of the generator function, we obtain

CClaytonθ (u, v) = max
[
(u−θ + v−θ − 1)−1/θ, 0

]
(3.11)

Nevertheless, when θ > 0, then ϕ(0) = ∞, the closed formula for the same
copula results easier:

CClaytonθ (u, v) =
(
u−θ + v−θ − 1

)−1/θ
(3.12)
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The Frank Copula

The generator function ϕ for the Frank copula CFrankθ is

CFrankθ (u, v) = −lne
−θt − 1
e−θ − 1

with θ ∈ R/{0}. As in the previous cases, we get the equation for the Frank
copula directly from the application of the equation (3.9):

CFrankθ (u, v) = −1
θ
ln

[
1 +

(e−θu − 1)(e−θv − 1)
(e−θ − 1)

]
(3.13)

Finally, it is important to highlight that, in order to extend this setting to the
multivariate case, we need to take into consideration the so called Kimberling
theorem, as suggested in Embrechts, Lindskog and McNeil. This theorem states
the following:

Theorem 2 (Kimberling). Let ϕ : [0, 1] → [0,∞] be a continuous strictly de-
creasing function such that ϕ(0) = ∞ and ϕ(1) = 0, and let ϕ−1 be the inverse
of ϕ. Then, for n ≥ 2, the function C : [0, 1]n → [0, 1] defined as

C(u1, u2, . . . , un) = ϕ−1 [ϕ(u1) + ϕ(u2) + . . .+ ϕ(un)]

is a n-dimensional Archimedean copula if and only if ϕ−1 is completely
monotone on [0,∞].

3.3 Tail Dependence

One of the fundamental reasons making copulas so important in finance is due
to their ability in modelling tail dependence. This concept is particularly rele-
vant for risk managers, and thus let us explain it.
If we consider a vector (X,Y )T of continuos random variables, with marginal
distribution functions F and G, we can imagine tail dependence as the prob-
ability of getting a high (low) extreme value of Y , given a high (low) extreme
value of X. Of course, this concept is very important and thus it is one of the
major problems risk managers have to face in their daily activities. In fact, if we
consider a credit portfolio, you can easily understand that underestimating the
probability of simultaneous joint defaults of several counterparties could lead to
catastrophic consequences in terms of losses. Here copulas represent important
tools, since they are able to model such extreme events effectively.
Hence, when we are considering a bivariate distribution, the concept of tail
dependence expresses either the amount of dependence in the upper-right quad-
rant tail or lower-left quadrant tail. In particular, tail dependence between two
continuos random variables is determined directly by means of copulas and then,
as we saw with last proposition, the amount of tail dependence does not change
under strictly increasing trasformations of X and Y . There exist two coeffi-
cients to measure the degree of tail dependence between two continuos random
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variables X and Y with distribution functions F and G: the coefficient of upper
tail dependence λU and the coefficient of lower tail dependence λL.

Definition 5 The coefficient of upper tail dependence of X and Y is

lim
u↗1

P
(
Y > G−1(u)|X > F−1(u)

)
= λU

given that the limit λU ∈ [0, 1] exists. In the case λU ∈ (0, 1], we say that
X and Y are asymptotically dependent in the upper tail, while, if λU = 0, X
and Y are said to be asymptotically independent in the upper tail.

It is possible to give an alternative, but equivalent, definition in order to
show that the concept of tail dependence is a copula property. In fact, the
probability P

(
Y > G−1(u)|X > F−1(u)

)
could be written, equivalently, as

1− P
(
X ≤ F−1(u)

)
− P

(
X ≤ G−1(u)

)
+ P

(
X ≤ F−1(u), Y ≤ G−1(u)

)
1− P (X ≤ F−1(u))

Now, we can write the following definition.

Definition 6 If we have a bivariate copula C, such that the following limit

lim
u↗1

1− 2u+ C(u, u)
1− u

= λU

exists, then C has upper tail dependence if λU ∈ (0, 1], otherwise, when
λU = 0, it is characterized by upper tail independence.

We can show this concept by looking at a simple example.
Let us consider the bivariate Gumbel family of copulas

Cθ(u, v) = exp
(
−[(−lnu)θ + (−lnv)θ] 1

θ

)
where θ ≥ 1. Hence,

1− 2u+ C(u, u)
1− u

=
1− 2u+ exp

(
2

1
θ lnu

)
1− u

=
1− 2u+ u2/θ

1− u

and finally we get

lim
u↗1

1− 2u+ C(u, u)
1− u

= 2− lim
u↗1

21/θu1/θ−1 = 2− 21/θ

Since θ > 1, it means that λU ∈ (0, 1], that is Cθ has upper tail dependence.

When a simple closed formula for the copula function does not exist, then it is
possible to use an alternative and more useful formula for getting the value of
λU . In fact, let us consider two uniformly distributed U(0, 1) random variables
U and V , having a copula C. The first thing to do is considering that
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P (V ≤ v|U = u) =
∂C(u, v)
∂u

and then

P (V > v|U = u) = 1− ∂C(u, v)
∂u

.

Of course, the same could be done when conditioning on V .
Hence:

λU = lim
u↗1

C̄(u, u)
1− u

= − lim
u↗1

dC̄(u, u)
du

= − lim
u↗1

(
−2 +

∂C(s, t)
∂s

|s=t=u +
∂C(s, t)
∂t

|s=t=u
)

= lim
u↗1

[P (v > u|U = u) + P (U > u|V = u)]

This result shows that C(u, v) = C(v, u), meaning that C is an exchangeable
copula. This leads to a simple expression for λU :

λU = 2 lim
u↗1

P (V > u|U = u)

Analogously, we can define the coefficient of lower tail dependence. Provided
that the following limit

lim
u↘0

C(u, u) = λL

exists, we will say that C has lower tail dependence if λL ∈ (0, 1], while, if
λL = 0, thus C is characterized by having tail independence.
In the case copulas have not a simple closed formula, as previously, an alternative
formula for λL results to be more helpful. Here, let us consider a random vector
(U, V )T , with copula C. Thus, we can get the following:

λL = lim
u↘0

C(u, u)
u

= lim
u↘0

dC(u, u)
du

= lim
u↘0

(
∂C(s, t)
∂s

|s=t=u +
∂C(s, t)
∂t

|s=t=u
)

= lim
u↘0

[P (v < u|U = u) + P (U < u|V = u)]
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Thus, once again, C(u, v) = C(v, u), that is we get another time that C is
an exchangeable copula. This leads to a simpler formula for λL:

λL = 2 lim
u↘0

P (V < u|U = u)

Now, let us take the last step.
The survival copula Ĉ of two random variables having copula C can be defined
as

Ĉ(u, v) = u+ v − 1 + C(1− u, 1− v)

while the joint survival function for two uniformly distributed U(0, 1) random
variables with joint distribution function C is given by

C̄(u, v) = 1− u− v + C(u, v) = Ĉ(1− u, 1− v).

From this partial result, it is possible to write

lim
u↗1

C̄(u, u)
1− u

= lim
u↗1

Ĉ(1− u, 1− u)
1− u

= lim
u↘0

Ĉ(u, u)
u

This final result suggests the non-trivial conclusion for which the coefficient
of upper tail dependence of C equals the coefficient of lower tail dependence
of Ĉ. Furthermore, the viceversa holds, as well: the coefficient of lower tail
dependence of C equals the coefficient of upper tail dependence of Ĉ.

3.4 One-Factor Copula Models for Pricing Credit
Derivatives

The major difficulty in pricing credit derivatives is given by the estimation of the
default correlation between the underlying assets, in order to measure the ten-
dency of two companies to default about simultaneously. As widely explained in
chapter one, researchers and practioners have suggested two main default corre-
lation models: reduced form models and structural models. However, the major
problem implied in these models arises from the fact that they are, in general,
very time consuming when are used for the evaluation of credit derivatives. This
is one of the main reasons for which alternative models such as one-factor copula
models have been devoloped: in such a way, the joint probability distribution
for a set of companies may be derived from the marginal distributions.
Let us consider a portfolio of N companies and define

• τi as the time to default of the i-th company, with i = 1, . . . , N ;

• Qi(t) as the cumualtive risk-neutral probability that the i-th company
will default within time t. In other words, Qi(t) = Prob(τi ≤ t), with
i = 1, . . . , N ;
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• Si(t) as the risk-neutral probability that the i-th company will survive
beyond time t, i.e. Si(t) = 1−Qi(t), with i = 1, . . . , N ;

The first assumption behind one-factor copula models consists in creating a
correspondence between the default time τi for the i-th company and a random
variable Xi such that, any given time t correspond to a specific value of x:

Prob(Xi < x) = Prob(τi < t) (3.14)

with i = 1, . . . , N .

On the basis of this assumption, the one-factor copula model is generated by
the sum of two components:

Xi = aiM +
√

1− a2
iZi (3.15)

for every i = 1, . . . , N .

In this model, M represents a common factor affecting the dynamics of each
asset and thus, a good approximation for it may be a well diversified market
index (e.g. S&P 500). On the contrary, Zi is an idiosyncratic factor, specic for
each company included in the portfolio. Both M and the Zi’s are characterised
by zero mean and unit variance. Concerning ai, which has to satisfy the con-
dition −1 ≤ ai ≤ 1, it may be set equal to the correlation between the equity
returns of the i-th company and those of the market index M . Furthermore,
mutually independence among M and the Zi’s is assumed and thus, as it can
be simply proved, the default correlation between company i and company j,
with i, j = 1, . . . , N results to be aiaj .
This is due to the fact that is reasonable to assume that the default correlation
between company i and company j is the same as the correlation between Xi

and Xj . In fact, the covariance is defined as

cov(Xi, Xj) = E [(Xi − E(Xi)) (Xj − E(Xj))]

while

Xi = aiM +
√

1− a2
iZi (3.16)

Xj = ajM +
√

1− a2
jZj (3.17)

It is clear that the covariance between Xi and Xj may be write simply as

cov(Xi, Xj) = E [XiXj ]

since by definition the first moments of all the Zi’s are equal to zero. Now, by
replacing Xi and Xj respectively with equations (3.16) and (3.17), and taking
into consideration that M and the Zi’s are assumed to be independent, after
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developing the product between Xi and Xj , the only term which results to be
different from zero is aiajE[M2]. Thus

cov(Xi, Xj) = aiajE[M2] = aiaj .

Finally, since the correlation coefficient ρ between Xi and Xj is nothing else
that the ratio between the covariance and the standard deviations of Xi and
Xj , then

ρ =
cov(Xi, Xj)

σiσj
= cov(Xi, Xj) = aiaj .

Let Fi denote the cumulative distribution of Xi under the one-factor copula
model, the correspondence between the Xi’s and the ti’s are obtained by setting
every general point Xi = x to ti = t where t = Q−1

i [Fi(x)].
Now, by denoting the cumulative distribution of the Zi’s as Hi, after looking at
(3.15), it is possible to write

Prob(Xi < x|M) = Hi

[
x− aiM√

1− ai2

]
,

and since

x = F−1
i [Qi(t)] =⇒ Prob(τi < t) = Prob(Xi < x)

Thus

Prob(τi < t|M) = Hi

[
F−1
i [Qi(t)]− aiM√

1− ai2

]
. (3.18)

It is clear that the conditional survival probability Si(t|M) of the i-th com-
pany, with i = 1, . . . , N , is nothing else that

Si(t|M) = 1−Hi

[
F−1
i [Qi(t)]− aiM√

1− ai2

]
. (3.19)

The one-factor copula model offers the great advantage of creating a tractable
multivariate joint distribution by exploiting the known marginal distributions
of the single variables. Since the major property of copula functions consists in
splitting the marginal distributions from the dependence structure, in this case
the nature of the default dependence is governed by the choice of the copula.
The use of such a model in credit risk modeling, for the estimation of the corre-
lation default, was indicated for the first time by Li (1999, 2000). In particular,
he suggested the use of the Gaussian copula, i.e. he supposed that both the
common market factor M and the idiosyncratic components Zi’s were standard
normally distributed. Obviously, since the sum of two independent normal dis-
tributed random variables is still normal, the final result is that the Xi’s in the
equation (3.15) are standard normally distributed, as well.



60 CHAPTER 3. COPULA FUNCTIONS

The aim of the next chapter is to study the effects of removing and gener-
alizing the usual assumptions which make the one factor copula model as the
standard market model. This will be done and analyzed on the prices of an
empirical Basket Default Swaps.



Chapter 4

Beyond the Market
Standard Model

During the recent years, with the large increase in trading volume of basket
credit derivatives, dependency modelling for such instruments has evolved enor-
mously. The first attempts for this purpuse were represented by binomial exten-
sion techniques but, after other approaches, copula based models have certainly
become more widely studied and used over the last three years. However, the
standard Gaussian copula of Li (2001) may be considered as the historical start-
ing point. This approach has been implemented in CreditMetrics CDO Manager
and today it is one of the most used models for the management and monitoring
of correlated products. Since then, several modifications and extensions have
been proposed, especially for trying to remove and replacing some of the too
restrictive assumptions on which this model is based on.

In this chapter, we are going to use a one-factor copula model in order to price
an empirical Basket Default Swap composed by N reference entities.
In particular, we will perform an analysis under the standard hypothesis frame-
work. A natural extensions of the original Li model will be proposed, in order
to make it more complying with the reality conditions.
First of all, we show the fundamental hypothesis which our work relies on. Given
a usual standard filtered probability space (Ω, F,P∗, {=t}t≥0), it assumes the
absence of arbitrage condition, in order to guarantee the existence of a unique
risk-neutral probability measure P∗. On the basis of such assumptions, non
dividend paying assets (default free) are martingales when they are discounted
using the risk-free interest rate.
To evaluate the probability of joint defaults, the one-factor copula model pre-
sented in the last section of the previous chapter will be exploited. As it may
be inferred from equation (3.15), the main concept the one-factor copula model
relies on is that all the reference entities are influenced by the same source of
uncertainty, i.e. there is only one common factor M that affects the dynamics
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of all the names, while the other factors Zi, with i = 1, . . . , N are idiosyncratic
components.
Beyond the fact that the one-factor copula model allows for fast calculations
which do not imply the use of Monte Carlo simulations, the huge success of this
kind of model may be essentially explained by their endogeneous features. First
of all, they certainly represent an intuitive framework, but not only. In fact, the
use of these models does not require the modelling of the full correlation matrix.
This peculiarity is a particular point of strength, otherwise given a portfolio of
N reference entities, N(N−1)

2 different pairwise correlation should be estimated.
The hard part of this task is not given only by the large number of estimations
to be performed, but also by the fact that default correlations are in general
very difficult to estimate, since joint defaults are particularly uncommon events.
For this reason, due to the lack of suitable data, a reliable statistical analysis
cannot be done and thus it is acceptable to take CDS spreads correlations or
equity correlations as they were default correlations, even though it should al-
ways kept in mind that they represent only a proxy, since these values certainly
incorporates other external conditions, such as liquidity factors.
The existence of the risk-neutral probability measure P∗ is fundamental for pric-
ing correctly our credit derivative instrument. In order to price credit deriva-
tives, it is necesssary to model both the risk neutral probability of default of each
reference asset in the portfolio and the probability of joint defaults. Because
CDS contracts are actually characterized by an extremely high degree of liquid-
ity and standardization, it is a common practice to calibrate the risk-neutral
default probabilities directly from their quotations. In general, it is assumed
that the default event may be well described by the first jump of a Poisson
process, assuming that the risk-free interest rate curve and the credit spreads
structures are independent. Given the standard probability space defined above,
we may consider the {=t}-stopping time τi for modelling the default time of the
i-th name in the portfolio. Let λi(t) be the so called hazard rate function or
simply the intensity of the Poisson process. We define it as

λi(t) =
fi(t)

1− Fi(t)
(4.1)

where Fi(t) = P∗ {τi < t} and fi(t) respectively denote the default proba-
bility distribution and the probability density function with respect to the i-th
obligor.

Not that λi(t) may be interpreted as the value of the conditional probability
density function of the time until default τi at the t-th year, given its survival
until this time.
Defining Si(t) = 1−Fi(t) the survival probability until time t of the i-th name,
an alternative way to write λi(t) is the following:

λi(t) =
fi(t)

1− Fi(t)
= −S

′
i(t)
Si(t)

(4.2)

In fact fi(t) is nothing else that F ′i (t) = −Si(t) and 1 − Fi(t) is just equal
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to Si(t).
Hence, considering the integral of λi(t), we get

∫
λi(t)dt = −

∫
S′i(t)
Si(t)

dt = −ln|Si(t)| = −lnSi(t)

being Si(t) the survival function that assumes only non-negative values.
Thus, we can express the survival function Si in terms of the hazard rate function
λi, obtaining

Si(t) = e−
∫ t
0 λi(s)ds

and obviously

Fi(t) = 1− Si(t) = 1− e−
∫ t
0 λi(s)ds (4.3)

Thus, once the hazard rate λi(t) has been defined, it is not hard to bootstrap
the default probabilities.

In this section, we will suppose to price a basket default swaps composed by
N = 10 names and considering a time horizon T = 10 years. The following
table shows all the reference entities considered1, and their relative ratings2.

COMPANY RATING
American Express A
Chevron AA
Citigroup A
Coca Cola AA
Coventry Health BBB
Exxon Mobil AAA
Ford CCC
General Motors CCC
Pfizer AAA
Time Warner BBB

This credit derivative instrument will be first priced under the usual hypoth-
esis for which the one-factor copula model is known , i.e.the standard market
model. Since most of the assumptions characterizing this framework are essen-
tially too strong, the same model will be generalized by using more general,
as well as more realistic conditions and, after this, the effects of this model
extensions will be analyzed.

1All these companies are traded on the New York Stocks Exchange.
2Ratings assigned by the rating agency Moody’s.
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4.1 One-Factor Copula Model: the Standard Frame-
work

The use of the Gaussian copula in credit risk modelling, for the estimation of
the default correlation between two obligors, was suggested for the first time by
Li in 2000. Considering the one-factor copula model showed by equation (3.15),
Li assumed that both the common market factor M and the idiosyncratic com-
ponent Zi, with i = 1, . . . , N were standard normal distributed. In such a way,
the one-factor copula model became the well known one-factor Gaussian copula
model. As a clear consequence of this assumption, the random variables Xi’s in
equation (3.15) can simply be written in a closed formula, since the sum of two
independent standard normal distributions is still a standard normal distribu-
tion.
The one-factor Gaussian copula model represents the basis of the market stan-
dard model, when implemented taking into account some given assumptions.
First of all, it supposes to deal with a homogeneous portfolio. This means that
every reference asset composing the basket is treated as it was the same, and
thus all the names present essentially equal features in terms of conditional de-
fault probabilities (as shown by equation (3.18)). This is a direct consequence
of the assumption for which all the names in the reference portfolio are charac-
terized by the same CDS premia, implying that the value of the bootstrapped
hazard rates do not change when considering different names in the portfolio.
Furthermore, the market standard model supposes to deal with constant de-
fault intensities, independently from the time horizon considered. In addition,
the pairwise correlation between the obligors is assumed to be the same for all
the reference entities, as well as the recovery rate R: a typical value for it in
empirical applications is R = 40%. Finally, the standard market model ex-
ploits the hypothesis of a flat risk-free interest rate curve and in many empirical
applications this value is tipically taken equal to 5%.

4.2 One-Factor Copula Model: Beyond the Stan-
dard Hypothesis

The main issue in pricing correlated-based products is offering a good estima-
tion of the default dependence among the underlying assets. As said above,
copula functions represent a popular method for getting this dependence struc-
ture. Li (2000) [33] can be considered the father of one-factor copula models,
even though, from that date, several extensions to the one-factor copula model
have been proposed, see [25] and [29]. These works tried to improve the basic
standard Li model, by using probability distributions characterized by fatter
tails than those of the Gaussian one (Student t and Normal Inverse Gaussian
distributions). These extensions are essentially motivated by the fact that most
of the assumptions underlying the one-factor copula model seem to be too unre-
alistic and this opinion is confirmed by a wide literature where the insufficiency
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of this model to match market quotes of CDO products is shown.

We will show the impact of using alternative distibutions with fatter tails than
the Gaussian one. These distributions are the Generalized Tempered Stable
(GTS) and CGMY (Carr-Geman-Madan-Yor) distributions and we will eval-
uate the use of them on Basket Default Swap pricing with one-factor copula
model.
In addition, every model parameter has been estimated by using real market
data, differently from the common technique of many practitioners which deal
with parameters values considered to be constant and unaffected from the mar-
ket conditions. Thus, the pairwise correlations among the names have been
estimated from historical data, and not set to be constant on the basis of an
a priori assumption. The same can be said for the risk-neutral interest rate
whose dynamics, conversely from ordinary assumptions, has been taken from
the market. With respect to the calibration of the marginal default probabil-
ities, as already mentioned, CDS quotes may be used. In fact, the prices of
these derivative instruments reflect the market expectations about the credit
merit of a company and thus it is correct to use them as the first step in the
pricing process of a more structured instrument such as a basket default swap.
Generally, it is assumed that the default process is described by the first jump
of a Poisson process and the usual assumption, as confirmed in [25], consists in
supposing a constant default intensity over the entire time horizon. If the same
CDS spreads are taken into account for this calibration procedure, and this is
another largely common assumption, equal marginal default probabilities will
result for every name in the collateral. It is clear that such a framework may
easily considered as too restrictive and not compliant with the reality. Deal-
ing with such assumptions would mean considering that the default probability
of a given company is not affected by its own rating and in addition the time
horizon would not play any role: in a few words many of the previous works
assume that an AAA rated company has the same probability to default of a
CCC rated company. Moreover, with such assumptions the default intensity is
constant over a time period, indefferently from its length.
In our modelling, this behaviour has overcome. First of all, each marginal de-
fault probability has been calibrated from the relative CDS market quotes: by
doing so, a different credit merit reflects an appropriate probability of default
and, furthermore, the default intensities have been supposed to be time-varying
and not constant. On the basis of these conditions, and considering the risk-
neutral interest rate and the spreads dynamics to be independent, the fair value
of a CDS may be computed under the non-arbitrage condition, simply by setting
the CDS premium leg equal to its default leg.
In a CDS contract, the protection buyer (premium leg) periodically pays a fixed
premium S to the protection seller (default leg), which has to carry out the
payment of the bond nominal value in case of default. The premium, expressed
in yearly basis points with respect to the notional, is usually paid quarterly,
either until the natural expiration date of the contract or until the default date.
Hence the premium leg (PL) may be written as
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PL(0, T ) = M
n∑
i=1

∆STB(0, ti)S(0, ti) (4.4)

where (t1, t2, . . . , tn), with ti = ti−1 + ∆ denote the periodic (∆) payment
dates, tn represents the expiration date and M is the notional value. Further-
more, B(0, ti) and S(0, ti) respectively denote the risk-neutral discount factor
and the survival probability at time ti.
The value of the default leg DL may be written as the present value of the loss
given default at the moment in which the default of the reference entity occurs.
Thus:

DL(0, T ) = M(1−R)
m∑
j=1

(S(0, tj−1)− S(0, tj))B(0, tj) (4.5)

where R denotes the recovery rate, S(0, tj−1)− S(0, tj) the probability that
the default happens in the time interval [tj−1, tj ] and (t1, t2, . . . , tm) the discrete
observation dates. Now, simply by setting the premium leg PL equal to the
default leg DL, the fair CDS spread may be found as

ST =
(1−R)

∑m
j=1 (S(0, tj−1)− S(0, tj))B(0, tj)∑n
i=1 ∆STB(0, ti)S(0, ti)

(4.6)

Note that in general the premium leg PL may include an accrued compo-
nent in order to take into consideration the premium amount correspondent to
the period going from the last payment date to the default date. However, as
proven by Arvanitis-Gregory (2002), this value has only a little impact on the
CDS premium, especially when entities with a high rating are considered and
thus this component is very often negleted.
Once the recovery rate R3 is set to a given value, equation (4.6) can be ex-
ploited to extrapolate the marginal survival probability S with respect to the
i-th company. The standard hyphotesis, as already mentioned above, consists
in considering the default intensity λ constant over the overall time horizon of
the CDS contract. Conversely from this unrealistic assumption, our modeling
shows an alternative approach to obtain more realistic default intensities, which
will result to be time-varying.
On the basis of the different maturity dates relative the CDS market prices
available, the default intensity for the i-th name, λi, may be considered con-
stant only over the time period laying between two expiration dates ti−1 and ti.
Hence:

λ(u) = αi

for i ∈ [ti−1, ti] and thus
3The recovery rate R should be fixed on the basis of the historical recovery values. In

general, the observed values for such parameters range from 20% to 50%, and so in this
chapter it is used a constant value of 40%, as a good approximation of the recovery rates R
of all the names in the reference portfolio.
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S(0, tj) = exp

− k∑
j=1

αi(tj − tj−1)


where j = 1, . . . , k represent the maturity dates of the CDS contracts con-

sidered. In such a way, all the values αi can be simply obtained, minimizing the
difference between the observed market prices and those of the model.
For this work, a basket default swap composed by N = 10 different CDS con-
tracts has been considered. The default intensities with respect to each of the
N names of the basket have been estimated considering five different maturity
dates: T1 = 1 year, T2 = 3 years, T3 = 5 years, T4 = 7 years, T5 = 10 years.
Furthermore, the U.S. Treasury rate has been taken as the risk-free interest rate
and quarterly premia payments have been assumed. The example below shows
the CDS premia which have been used in order to find out the default intensities
for two of the N names4 inside the collateral.

Expiration (years) CDS Spreads (bps)
1 7.8
3 15.7
5 33.5
7 46.7
10 62.80

Table 4.1: Time Warner CDS premia for different expiration dates

Expiration (years) CDS Spreads (bps)
1 7.7
3 8.9
5 16.5
7 23.10
10 29.40

Table 4.2: Coca Cola CDS premia for different expiration dates

On the basis of these assumptions and exploiting the CDS premia showed
by table 4.1 and table 4.2, the time-varying default intensities with respect to
the relative companies have been computed, as showed by figure 4.1 and figure
4.2.

Looking at figure 4.3 as the Time Warner CDS premia always dominate
those relative to Coca Cola: this is an obvious consequence of the better credit
quality characterizing the AA rated company. However, it is very interesting to

4In the example CDS market premia for Time Warner (BBB rated) and Coca Cola (AA
rated) are showed.
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Figure 4.1: default intensities calibrated for a BBB rated company (Time
Warner).

Figure 4.2: default intensities calibrated for an AA rated company (Coca Cola)
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Figure 4.3: Comparison between one year of daily quotes for Time Warner (BB
rated) and Coca Cola (AA rated), with expiration date of ten years.

Figure 4.4: Comparison among CDS quotes with respect to different maturities,
for Time Warner (BB rated) and Coca Cola (AA rated).
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find out that the difference between the CDS premia requested by the market for
this companies change daily: in a few words, the market expectations about the
probability of default is affected every day by several factors, and this leads to
those spread fluctuations which are so evident in figure 4.3. Figure 4.4 confirms
what has been said so far about the credit qualities of the two companies taken
into consideration: the higher default risk associated to a BBB rated company
with respect to an AA rated company appears by looking at the CDS premia for
different expiration dates: the market will require an higher premium as soon
as the default probability of a given company becomes larger.

Hence, so far, the usual standard market model has been extended on the basis
of the following considerations:

• pairwise correlations have not been considered constant for all the names
in the collateral, but they have been estimated on real market data;

• a real market risk-neutral interest rate curve has been used instead of
supposing a flat curve;

• default intensities have been estimated from the market, and not assumed
to be the same for each name of the collateral;

• default intensities have been computed in order to be time-varying and
not constant.

These extension certainly represent a first improvement of the market stan-
dard model. However, the main drawback of such a model derives from the
nature of the dependence structure driving the default correlation. In fact, the
insufficiency of the single factor Gaussian model to model the default depen-
dence has already been underlined by a lot of practitioners and academics.
For a good comprehension of the problem it is fundamental to compare the joint
default probabilities resulting from the Gaussian copula with those implied by
the market: a consistent higher probability is allocated by the market to high
default scenarios than the probability which the Gaussian copula is able to as-
sign. This means that, in general, the market expects a low probability of having
no (or few) defaults, while in the Gaussian framework the same probability is
certainly higher. This is the reason for which in this chapter we decided to fur-
therly extend the market standard model by using two alternative distributions:
the CGMY and the Generalized Tempered Stable (GTS) distributions.

4.3 Alternative Distributions for One-Factor Cop-
ula Models

The Black and Scholes model, describing the dynamics of the stock price evolu-
tion with geometric Brownian motion, has become a standard model especially
for option pricing and hedging purposes. However, from an empirical point



4.3. ALTERNATIVE DISTRIBUTIONS FOR ONE-FACTOR COPULA MODELS71

of view, this widely celebrated model presents different shortcomings. First
of all, it is well known that real measured probability distributions are clearly
leptokurtotic, because of their much heavier tails than those of the Gaussian dis-
tribution. In addition, real assets are characterized by prices exhibiting jumps
in which prices move too quickly such that a dynamic hedging cannot be carried
out. Finally, the continuous trading framework does not comply with the reality
and options prices show to deviate from those computed with the Black-Scholes
formula.
These problems leaded many authors and practitioners to develop alterna-
tive models, incorporating both Gaussian processes and jumps. Hence, jump-
diffusion models are able to considering simultaneously frequent small move-
ments with the diffusion part and rare large movements with jumps. These
kinds of models consider heavy tails and market jumps, as well. An other alter-
native is given by stochastic volatility models, in which a second random process
must be introduced in order to describe the instantaneous volatility of the un-
derlying. These family of models offer the advantage of taking into account the
typical volatility clustering which is observed in most financial time series, but,
from the other side, they do not explain heavy tails.
In the 60’s, Mandelbrot (1963) and Fama (1965) proposed the use of stable Lévy
processes to model stock prices, but the main difficult in this approach was the
infinity of the second moment of such processes.
It was only in the 90’s that several families of Lévy processes with probabil-
ity distributions of semi-heavy tails, i.e. exponential decaying, started to be
used, especially for modelling stock returns and pricing options. The first re-
markable step was taken by Madan and Seneta who studied Variance Gamma
processes in 1990. Only few years ago (2002), Carr, Geman, Madan and Yor
(CGMY processes) generalized the VG process and reported on the goodness of
fit on stocks and indices. A further step forward is represented by Generalized
Tempered Stable processes introduced by Cont and Tankov (2004). If its deter-
ministic drift parameter is not considered, the GTS process is a model with six
parameters which allows the jump component to have either infinite or finite
variation. The GTS process may be considered as a better alternative than the
CGMY process, since it allows for greater modelling freedom, thanks to two
additional parameters which are not present into the CGMY processes.

The one-factor copula model showed by equation (3.15) can be set up by using
alternative distributions for the common factor M and the idiosyncratic com-
ponents Zi, with i = 1, . . . , N . Regarding this possible extension, there exists a
large literature which is partcularly focused on the use of some famous copulas
such as Student t, Archimedean and Marshall-Olkin copulas.
The aim of this section is to analyze the impact of two new copula frameworks,
given by the use of the CGMY and GTS distributions. These distributions
reveal to be very versatile and useful, especially for their ability to reproduce
heavy-tailed processes.
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4.4 Introduction of Lévy Processes

Before starting with the description of the distributions on which the two alter-
native copula models proposed in the following are based on, it is necessary to
briefly introduce the topic of Lévy processes. As already mentioned, the widely
celebrated Black and Scholes model presents the great problems deriving from
the fact the empirical log-returns of stocks do not follow a Normal law. The
direct consequence is that it would be better to deal with more flexible processes
with independent and stationary increments, such that the classical Brownian
Motion can be generalized. Hence, Lévy processes may be considered for such
a purpose.

Let φ(u) denote the characteristic function of a distribution. Then, the dis-
tribution will be said to be infinitely divisible if, for every integer number n,
φ(u) is also the n-th power of the characteristic function.
Having an infinitely divisible distribution allows for the definition of a stochastic
process X = {Xt, t ≥ 0} starting at zero and with independent and stationary
increments, such that the increment of the process Xt+s−Xs, with s, t ≥ 0, has
(φ(u))t as its characteristic function. A process with these features is called a
Lévy process. Every sample paths of a Lévy process is almost surely continuous
from the right and has limits from the left, this because every Lévy process has
an RCLL (Right Continuos and Left Limited) modification which is still a Lévy
process.
The cumulant characteristic function ψ(u), also known as characteristic expo-
nent

ψ(u) = logφ(u)

satisfies the following formula (Lévy-Khintchine formula):

ψ(u) = iγu− 1
2
σ2u2 +

∫ +∞

−∞

(
exp(iux)− 1− iux1{|x|<1}

)
ν(dx) (4.7)

where γ ∈ R, σ2 ≥ 0 and ν is a measure on R/{0} with∫ +∞

−∞
inf{1, x2}ν(dx) =

∫ +∞

−∞
(1 ∧ x2)ν(dx) <∞.

If these properties hold, it is possible to say that the infinitely distribution
has a Lévy triplet [γ, σ2, ν(dx)], where the measure ν represents the Lévy mea-
sure of the process X.
Furthermore, if the Lévy measure ν can be written as

ν(dx) = u(x)dx

then u(x) denotes the Lévy density, having the same mathematical characteris-
tics as a usual probabilty density, except that it does not require to be integrable
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and must have zero mass at the origin.
In general, a Lévy process is characterized by three different independent com-
ponents: a linear term given by the first term of the (4.7), a Brownian part and
a pure jump component respectively represented by the second and the third
term of the (4.7). The Lévy measure ν(dx) governs the way in which the jumps
may occur. Jumps with size laying in the set A happen on the basis of a Poisson
process with intensity parameter given by

∫
A
ν(dx).

Finally, let us explain the concept of subordinator. A subordinator can be de-
fined as a non-negative and non-decreasing Lévy process. It has no Brownian
component, i.e. σ2 = 0, a non-negative drift and a Lévy measure having only
positive increments.
When σ2 = 0 (there is no Brownian part) and

∫ +1

−1
|x|ν(dx) <∞ the process is

said to be of finite variation and the characteristic exponent may be written as

ψ(u) = iν′u+
∫ +∞

−∞
(exp(iux)− 1) ν(dx)

for some ν′ which denotes the drift coefficient. In this case the process can
be decomposed into the difference of two increasing processes. Note that a sub-
ordinator is always of finite variation.
In the situation in which σ2 = 0 and

∫ +1

−1
ν(dx) <∞, the process will be char-

acterized by finitely many jumps in any finite interval, meaning that the process
is of finite activity.
Since the Brownian motion is of infinite variation, every Lévy process with
Brownian part is of infinite variation, as well. When a Lévy process does not
include a Brownian component, and thus is said a pure jump Lévy process, it
is of infinite variation if and only if

∫ +1

−1
|x|ν(dx) = ∞.

Now, let

∆Xt = Xt −Xt−

be the jump that a process X = {Xt, t ≥ 0} makes at time t. Under
some given weak moment assumptions, it may be proved that a Lévy process
X = {Xt, 0 ≤ t ≤ T} has a version of the predictable representation property
(PRT), i.e. every square integral random variable F has a representation of the
form

F = E[F ] +
∞∑
i=1

∫ T

0

a(i)
s d

(
H(i)
s − E[H(i)

s ]
)

where a(i) = {a(i)
s , 0 ≤ s ≤ T} is predictable and H(i) = {H(i)

s , 0 ≤ s ≤ T}
is the power jump process of order i, i.e. H(1)

s = Xs and

H(i)
s =

∑
0<u≤s

(∆Xu)i
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with i = 2, 3, . . ..

In the next sections an introduction of CGMY processes and Generalized Tem-
pered Stable processes follows. These distributions will be used in order to
generalize the one-factor copula model, trying to overcome the restrictive and
unrealistic assumptions which the standard market model relies on.

4.4.1 The CGMY Distribution

CGMY processes belong to the family of Lévy Processes. In particular a Lévy
process is said to be a CGMY process with parameters (C, G, M, Y) if its Lévy
triplet (γ, σ2, ν(dx)) is given by

σ = 0,

ν(dx) = C

(
e−Mx

xY+1
I{x>0} +

e−G|x|

|x|Y+1
I{x<0}

)
,

ν(0) = 0,

γ =

{
m+

∫
|x|≤1

xν(dx), Y < 1,

m−
∫
|x|>1

xν(dx)− CY Γ(−Y )(MY−1 −GY−1) Y ∈ (1,2),

with C,M,G > 0, Y ∈ (−∞, 2) /{0, 1} and m ∈ R.

CGMY processes can be defined as processes

• starting at zero;

• having independent and stationary increments;

• where the increment over a time interval t is described by a CGMY dis-
tribution with parameters (tC,G,M,Y),

characterized by an infinitely divisible distribution.

Considering (Xt)t≥0 as a CGMY process, characterized by parameters (C,G,M, Y,m),
then its characteristic function φXt

may be expressed as follows:

φXt(u;C,G,M, Y,m) =

= exp
(
iumt+ tCΓ(−Y )((M − iu)Y −MY + (G+ iu)Y −GY )

)
with u ∈ R.
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The CGMY process is a pure jump process, meaning that it does not include
any Brownian component.
The Y parameter is fundamental for the description of the path behaviour of
the process: when Y < 0 the process will be characterized by a finite number
of jumps on a finite time interval. On the contrary, if Y ≥ 0, the process is said
to have infinite activity, i.e. it shows infinitely many jumps in any finite time
interval.
In addition, when the parameter Y stands in the interval [1, 2), the CGMY
process is of infinite variation.

Note that the Variance Gamma process may be considered as a special case
of the CGMY process. In fact, when Y = 0, the CGMY process becomes a VG
process, that is:

CGMY (C,G,M, 0) = V G(C,G,M).

4.4.2 The Generalized Tempered Stable Distribution

Generalized Tempered Stable (GTS) processes have been introduced by Cont
and Tankov (2004). A GTS process is a Lévy process on R with no Gaussian
component and a specific Lévy density. These processes are characterized by
probability densities with an exponentially decaying in the far tails after which
the small jumps maintain their initial stable behaviour and the large jumps start
to be exponentially tempered.
The Lévy triplet (σ2, ν, γ) of a GTS process is given by

σ = 0,

ν(x) =
(
C+

e−Mx

xY++1
I{x>0} + C−

e−G|x|

|x|Y−+1
I{x<0}

)
dx,

γ(0) = 0

and since Y+/Y− are considered to be greater than one

γ = m−
∫
|x|>1

xν(dx)− C+Y+Γ(−Y+)MY+−1 − C−Y−Γ(−Y−)GY−−1

with C+, C−, M , G > 0, and Y+, Y− ∈ (1, 2) and m ∈ R.

Each of the parameters of a GTS process control a different aspect of the
stochastic process. In particular C+/C− respectively control the overall and
the relative frequencies of upward and downward jumps and more specifically
they provide information regarding how often we should expect jumps larger
than a given value. If we look at M and G, they rule the tail behaviour of the
Lévy measure, telling how far the process may present a jump. Furtermore, if
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they are not equal, the resulting distribution will be skewed. Finally, Y+ and Y−
govern the local dynamics of the process, determining if it will be characterized
by finite or infinite activity or variation.

Considering (Xt)t≥0 as a GTS process with parameters (C+, C−, G,M, Y+, Y−,m),
then its characteristic function can be written as

φ(u;C+, C−, G,M, Y+, Y−,m) =

= exp[iumt+ tC+Γ(−Y+)[(M − iu)Y+ −MY+ ]+

+ tC−Γ(−Y−)[(G+ iu)Y− −GY− ]]

with u ∈ R.
GTS processes are characterized by having infinite activity and finite varia-

tion if Y+/Y− < 1, but at least one of them is non-negative.
Finally, the CGMY can be obtained from a GTS process simply setting the
following conditions:

C− = C+

and

Y− = Y+

while the same can be said for a Variance Gamma process which derives
from a GTS process under the following assumptions:

C− = C+

and

Y− = Y+ = 0.

4.5 Computational Results

In this section, the results relative to a ten years empirical Basket Default Swap
will be presented. This correlated-based product is supposed to be composed
by the following names:

1. AMERICAN EXPRESS with rating (Moody’s): A

2. CHEVRON CORPORATION with rating (Moody’s): AA

3. CITIGROUP with rating (Moody’s): A

4. COCACOLA with rating (Moody’s): AA

5. COVENTRY HEALTH with rating (Moody’s): BBB
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6. EXXON MOBIL with rating (Moody’s): AAA

7. FORD with rating (Moody’s): CCC

8. GENERAL MOTORS with rating (Moody’s): CCC

9. PFIZER with rating (Moody’s): AA

10. TIME WARNER with rating (Moody’s): BBB

With respect to the correlation parameters of the one-factor copula model
given by equation (3.15), they have been estimated on the basis of the last ten
years daily returns (until July 19, 2007) of the respective stocks, and as common
component the Standard and Poor’s 500 index of the New York Stock Exchange
was considered. The parameters of the distributions on which the common mar-
ket component M and the idiosyncratic terms Zi’s of equation (3.15) are mod-
elled have been analogously estimated by using the relative daily stock prices
of the last ten years, on the basis of the classical Maximum Likelihood Estima-
tion Approach, using data until July 19, 2007, while the time-varying default
intensities have been estimated by using the CDS quotes of July 19, 2007 of the
relative names with maturities respectively of one year, three years, five years,
seven years and ten years. Furthermore, the U.S. Treasury yield curve has been
taken as the risk-free interest rate, extrapolating those values corresponding to
time maturities for which there was no correspondence.
Finally, the Discrete Fourier Transform was used in order to invert the charac-
teristic function, both in the case of CGMY copula model and for GTS copula
model.

Change of Measure for CGMY Processes

Before starting with the pricing of the Basket Default Swaps, a problem arises:
all the parameters of the CGMY distributions are calibrated on the basis of
ten years daily stock prices, meaning that their values are obtained under the
market measure P. Clearly, for pricing reasons, it is strictly necessary to return
to the risk-neutral measure Q and thus a change of measure has to be carried
out.
Hence, first it is necessary to show the general result on the equivalence of
measures for Lévy processes on the basis of the following theorem by Cont and
Tankov and applying it to CGMY processes.

Theorem 3 (Cont and Tankov 2004b, p. 308). Let (Xt,P) and (Xt,Q) be Lévy
processes on R, with Lévy triplets (σ2, ν, γ) and (σ̃2, ν̃, γ̃) respectively. Then P|=t

and Q|=t
are equivalent for all t > 0 if and only if the Lévy triplets satisfy

σ2 = σ̃2, (4.8)

∫ +∞

−∞
(eψ(x)/2 − 1)2ν(dx) <∞, (4.9)
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γ̃ − γ =
∫
|x|≤1

x(ν̃ − ν)(dx). (4.10)

When P and Q are equivalent, the Radon-Nikodym derivative can be written
as follows

dQ
dP

|=t
= eUt (4.11)

where (Ut,P) denotes a Lévy process whose relative Lévy triplet (σ2
U , νU , γU )

of (Ut)t∈[0,t] is given by

σ2
U = σ2η2, (4.12)

νU = ν ◦ ψ−1, (4.13)

γU = −σ
2η2

2
−
∫ +∞

−∞
(ey − 1− yI{|y|≤1})νU (dy), (4.14)

such that ν respects the following condition

γ̃ − γ −
∫
|x|≤1

x(ν̃ − ν)(dx) = σ2η

if σ > 0 and zero if σ = 0.

As [9] suggests, theorem (3) can be applied to CGMY processes in order to
set two equivalent measures for these family of processes:

Corollary 2 Let (Xt,P) and (Xt,Q) be CGMY processes on R with parameters
(C,G,M, Y,m) and (C̃, G̃, M̃ , Ỹ , m̃). Then P|=t

and Q|=t
are equivalent for all

t > 0 if and only if C = C̃, Y = Ỹ , and m = m̃.

Proof. The example 9.1 contained in Cont and Tankov (Cont and Tankov,
2004b, p. 309) shows that condition (4.9) holds if and only if C = C̃ and Y = Ỹ .
Under these conditions,

∫
|x|≤1

|x|ν̃(dx) < ∞ and
∫
|x|≤1

|x|ν(dx) < ∞ if Y < 1,

and thus it can be showed that
∫ +∞
−∞ x(ν̃−ν)(dx) = CY Γ(−Y )(M̃Y−1−G̃Y−1−

MY−1 + GY−1) when Y ∈ (1, 2). Consequently, equation (4.10) holds when
m̃ = m, meaning that P and Q are equivalent if and only if C = C̃, Y = Ỹ and
m = m̃.

Denoting with T > 0 a time horizon and with r > 0 the risk-free rate,
the probability space (Ω,=T , (=t)t∈[0,T ],P) can be modeled, where the filtration
(=t)t∈[0,T ] satisfies the conditions =0 = {�,Ω} and =S ⊂ =t if s ≤ t. With
regard to the stock price process, it is modeled by an adapted cadlag and strictly
positive Lévy process S = (St)t∈[0,T ], while the process S̃ = (e−rtSt)t∈[0,T ]
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simply represents the discounted price process of S. Finally, let P be the market
measure: a probability measure Q is equivalent to P and thus it is called as an
Equivalent Martingale Measure (EMM) of P if the discounted price process S̃ is
a Q-martingale with respect to the filtration (=t)t∈[0,T ].

Definition 7 For C > 0, G > 0, M > 1, Y ∈ (0, 2) − {1} and µ > 0,
let (Xt)t∈[0,T ] be a CGMY process with parameters (C, G, M, Y, 0). Then
the process given by (St)t∈[0,T ] = (S0e

µt−tψ0(−i;C,G,M,Y )+Xt)t∈[0,T ] is called the
CGMY stock price process with parameters (C,G,M, Y, µ).

Simply by applying the corollary (2) to the above defined CGMY stock price
process, the following lemma is obtained.

Lemma 1 Let (St)t∈[0,T ] be the CGMY stock price process respectively with
parameters (C,G,M, Y, µ) under the market measure P and with parameters
(C̃, G̃, M̃ , Ỹ , r) under the measure Q. Then Q is an EMM of P if and only if
C̃ = C, Ỹ = Y and

r = µ− ψ0(−i;C,G,M, Y ) + ψ0(−i;C, G̃, M̃ , Y ). (4.15)

Proof. For any 0 ≤ u < t < T it holds

EQ[e−rtSt|=u] = e−ruSue
−(t−u)ψ0(−i;C̃,G̃,M̃,Ỹ )EQ[eXt−Xu |=u],

with (Xt,Q) denoting a CGMY process with parameters (C̃, G̃, M̃ , Ỹ , 0).
Since

EQ[eXt−Xu |=u] = EQ[eXt−u ] = e(t−u)ψ0(−i;C̃,G̃,M̃,Ỹ ),

then EQ[e−rtSt|=u] = e−ruSu. This means that the discounted price process
(e−rtSt)t∈[0,T ] is a martingale under the measure Q. In addition, since corollary
(2) states that two measures P and Q are equivalent if and only if C̃ = C, Ỹ = Y
and

r − ψ0(−i; C̃, G̃, M̃ , Ỹ ) = µ− ψ0(−i;C,G,M, Y )

then equation (4.15) is obtained.

The next step consists in defining a sub-family of EMMs of P in the follow-
ing way:

EMMCGMY (P) ≡
≡ {Q is an EMM of P|(St)t∈[0,T ] is a CGMY stock price process under Q}.

If (St)t∈[0,T ] represents a CGMY stock price process with parameters (C,G,M, Y, µ)
under the measure P, then the following equation can be inferred from lemma
(1):
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EMMCGMY (P)=
= {Q|Q is a measure induced by a (C, G̃, M̃ , Y, µ− ψ0(−i;C,G,M, Y )) CGMY
process where (G̃, M̃) respects equation (4.15)}.

Since equation (4.15) is characterized by two degrees of freedom, then the set
EMMCGMY (P) contains more than two elements: thus it is necessary to find
an approach enabling us to select one EMM among them.
This method is offered by the Esscher transform.

Let us consider a pure jump Lévy process (Xt)t∈[0,T ] with Lévy measure ν(dx)
and drift γ under a measure P. Supposing the existence of a real number
θ such that

∫
|x|≥1

eθxν(dx) < ∞ and by using the measure transform with
the function ψ(x) = θx presented in theorem (3), then it is possible to get
an equivalent martingale measure Qθ making the process (Xt)t∈[0,T ] a pure
jump Lévy process characterized by Lévy measure ν̃(dx) = eθxν(dx) and drift
ν̃ = ν +

∫ +1

−1
x(eθx − 1)ν(dx). This may be done by carrying out the so called

Esscher transform, which has been applied to the CGMY stock price process
in order to switch from the market measure P, under which the distribution
parameters were estimated, to the risk-neutral measure Q on which we want to
base the pricing of the Basket Default Swap.
Let (Xt)t∈[0,T ] be the CGMY process with parameters (C,G,M, Y, 0) and conse-
quently (St)t∈[0,T ] = (S0e

µt−tψ0(−i;C,G,M,Y )+Xt)t∈[0,T ] denote the CGMY stock
price process with respect to the market measure P. When it is verified that
−G < θ < M then

∫
|x|≥1

eθx(dx) <∞ and thus the process (Xt)t∈[0,T ] is a Lévy
process with Lévy measure ν̃(dx) under the measure Qθ which is equal to

ν̃(dx) = C

(
e−(M−θ)x

xY+1
I{x>0} +

e−(G+θ)|x|

|x|Y+1
I{x<0}

)
(dx).

On the basis of the definition of a CGMY process with parameters (C,G,M, Y,m)
and Lévy triplet (σ2, ν, γ), the drift γ̃ under the equivalent measure Qθ is given
by

γ̃ = γ +
∫ +1

−1

x(eθx − 1)ν(dx)

which it is equal to

γ̃ =


∫ +1

−1
xν̃(dx), if Y < 1∫

|x|>1
xν̃(dx) +

∫ +∞
−∞ x(ν̃ − ν)(dx)

−CY Γ(−Y )(MY−1 −GY−1), if Y ∈ (1, 2)

As it could be shown that

∫ +∞

−∞
x(ν̃− ν)(dx) = −CY Γ(−Y )((M − θ)Y−1− (G+ θ)Y−1−MY−1 +GY−1),
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simply by substitution, the drift γ̃ under the equivalent measure Qθ becomes

γ̃ =

{∫ +1

−1
xν̃(dx), if Y < 1

−
∫
|x|>1

xν̃(dx)− CY Γ(−Y )((M − θ)Y−1 − (G+ θ)Y−1) if Y ∈ (1, 2)

The meaning of this is that now (Xt)t∈[0,T ] represents a CGMY process
characterized by parameters (C,G+θ,M−θ, Y, 0) under the measure Qθ. Hence,
what has to be done consists in finding the unique value of θ, θ∗, such that
−G < θ∗ < M and

r − ψ0(−i;C,G+ θ∗,M − θ∗, Y ) = µ− ψ0(−i;C,G,M, Y ). (4.16)

In such a way, it is possible to get

EQθ∗ [e−rtSt|=u] = e−ruSu

for every 0 ≤ u < t < T : thus the Esscher martingale measure Qθ∗ ∈
EMMCGMY (P).

Change of Measure for GTS Processes

Analogously to what occurred for CGMY processes, the same mismatching prob-
lem between the two measures involved in the estimation process exists for GTS
processes, as well. In fact, the parameters of the distributions have been esti-
mated from the market, and thus it is necessary a change of measure from the
market measure P to the risk-neutral measure Q in order to correctly proceed
with the pricing of the Basket Default Swap.
On the basis of Cont and Tankov (2004), the general result on the equivalence
of measures for Lévy processes, reported by theorem 3 keeps on holding also for
GTS processes, with the consequence that the corollary 2 is valid for this family
processes, as well, becoming:

Corollary 3 Let (Xt,P) and (Xt,Q) be GTS processes on R with parameters
(C+, C−, G,M, Y+, Y−,m) and (C̃+, C̃−, G̃, M̃ , Ỹ+, Ỹ−, m̃). Then P|=t

and Q|=t

are equivalent for all t > 0 if and only if C+ = C̃+, C− = C̃− Y+ = Ỹ+,
Y− = Ỹ− and m = m̃.

Under the same conditions holding for CGMY processes, the measure P still
identifies the market measure, while the measure Q, equivalent to P, can be
again defined as an Equivalent Martingale Measure of P if the discounted price
process S̃ results to be a Q-martingale with respect to the filtration (=t)t∈[0,T ].
Furthermore, as a natural step forward, the following definition may be given:

Definition 8 For C+ > 0, C− > 0, G > 0, M > 0, Y+ and Y− ∈ (1, 2) and µ >
0, let (Xt)t∈[0,T ] be a GTS process with parameters (C+, C−, G,M, Y+, Y−, 0).
Then the process given by (St)t∈[0,T ] = (S0e

µt−tψ0(−i;C+,C−,G,M,Y+,Y−)+Xt)t∈[0,T ]

is called the GTS stock price process with parameters (C+, C−, G,M, Y+, Y−, µ).
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As it was done for CGMY processes, it is possible to apply the corollary 3, in
order to get the following lemma, by which an EMM Q of the market measure
P can be obtained.

Lemma 2 Let (St)t∈[0,T ] be the GTS stock price process respectively with pa-
rameters (C+, C−, G,M, Y+, Y−, µ) under the market measure P and with pa-
rameters (C̃+, C̃−, G̃, M̃ , Ỹ+, Ỹ−, r) under the measure Q. Then Q is an EMM
of P if and only if C̃+ = C+, C̃− = C−, Ỹ+ = Y+, Ỹ− = Y− and

r = µ− ψ0(−i;C+, C−, G,M, Y+, Y−) + ψ0(−i;C+, C−, G̃, M̃ , Y+, Y−). (4.17)

Once again, now it is possible to define a sub-family of EMMs of P in the
following way:

EMMGTS(P) ≡
≡ {Q is an EMM of P|(St)t∈[0,T ] is a GTS stock price process under Q}.

If (St)t∈[0,T ] represents a GTS stock price process with parameters (C+, C−, G,M, Y+, Y−, µ)
under the measure P, then the following equation can be obtained from lemma 2:

EMMGTS(P)=
= {Q|Q is a measure induced by a (C+, C−, G̃, M̃ , Y+, Y−, µ−ψ0(−i;C+, C−, G,M, Y+, Y−))
GTS process where (G̃, M̃) respects equation (4.17)}.

Analogously to what said for CGMY, the set EMMGTS(P) still contains more
than two elements: thus the Esscher transform was the mean through which
only one EMM of P among the set EMMGTS(P) was selected.

Number of Defaults Distribution

As soon as the change of measure has been performed, there is no more mis-
matching between the measure under which the marginal default probabilities
were estimated and the measure under which the distribution parameters were
calibrated. Hence, the last issue to solve is given by the computation of the
number of defaults probabilities, i.e. those probabilities that have to be plugged
into the equation (2.4) in order to get the fair price of the Basket Default Swap.
Coming back to the one-factor copula model, represented in equation (3.15) and
to the conditional default probability computed as shown by equation (3.18)
shows, it is necessary to find a method allowing us to obtain the number of
defaults distribution.
Denoting with

N(t) =
N∑
i=1

I{τi≤t} (4.18)
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the counting process of the number of defaults occurred in the reference
portfolio until time t, fixing the time t, the characteristic function of the random
variable N(t) may be simply computed as

ϕN(t)(u) = E[eiuN(t)].

Looking at equation (3.15), let f represent the density function of the ran-
dom variable M . Thus, considering the independence between the idiosyncratic
factors Zi, with i = 1, . . . , N and the definition of the counting process N(t)
given by equation (4.18), it is possible to write what follows:

E[eiuN(t)] = E[eiu
∑N

j=1 I{τj≤t} ]

=
∫

R
E[eiu

∑N
j=1 I{τj≤t|M=m} ]f(m)dm

=
∫

R
E[eiuI{τ1≤t|M=m} ] · · ·E[eiuI{τN≤t|M=m} ]f(m)dm

=
∫

R

N∏
j=1

(
Sj|M=m(t) + eiuQj|M=m(t)

)
f(m)dm

where the conditional survival probability Sj|M=m(t) and the conditional
default probability Qj|M=m(t) may be numerically obtained by means of the
Fast Fourier Transform (FFT) algorithm. So, denoting with τk the k-th default
within the reference portfolio, the survival distribution Sk(t) of the k-th default
time is given by

Sk(t) = Prob(τk > t) = Prob(N(t) < k) =
k−1∑
i=0

Prob(N(t) = i)

while the default probability Qk(t) is simply

Qk(t) = 1− Sk(t).

The probabilities Prob(N(t) = i) have been computed in a simple way by
inverting the characteristic function, since only previously estimated data, Qi(t)
and ai, were involved. Thus, P (N(t) = k) has been computed as the Inverse
Fourier Transform for a discrete distribution:

P (N(t) = k) =
1

N + 1

N∑
n=0

ϕN(t)

(
2πn
N + 1

)
e
−2πink

N+1

Here, all the estimation steps have been now illustrated and thus the impact
of different pricing assumptions on the quotes of the empirical Basket Default
Swap analyzed are ready to be presented5. We will discuss the effects of correla-
tions and default intensities. Furthermore, it will be analysed how the different

5All the results are showed in Appendix I.
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dependence structures among defaults play a fundamental role in the determi-
nation of the fair BDS spreads. Finally, the results obtained considering the
usual standard market hypothesis will be compared with those obtained by the
introduction of the different dependence structures introduced so far.

4.5.1 Effects of Correlation

As it is possible to see from table 4.3, table 4.4 and table 4.5, the first to default
premia show a monotonically decreasing tendency, independently from the the
copula function chosen to govern the dependence structure among the defaults
of the obligors. This dynamics may be justified by considering a no-arbitrage
concept: if the pairwise correlations were all null, and the term structure of
the CDS premia was flat, then it would be possible to create a perfect hedging
strategy for a short postion on a first to default BDS simply by taking a long
position on each of the CDS composing the basket. This holds since, as soon as
a default happens, the payment required would find a compensation from the
positive cash flow offered by the corresponding CDS. Furthermore, the absence
of correlation will not affect the credit spreads of the other reference entities
and thus, under these conditions, the first to default BDS premium has to be
equal to the sum of the the underlying CDS premia.
On the other hand, when the correlation gets higher, the probability of joint
defaults becomes larger as well, and this should be viewed as a lower degree of
protection offered by the first to default contract which is reflected into a lower
premia required.
However, correlations affect BDS prices in a less predictable way for the other
orders of seniority6. Empirical evidence shows that, for a small number of
reference entities (e.g. N = 2), second to default premia generally increase with
correlation but, as soon as the number of obligors gets higher (e.g. N = 10),
this tendency cannot be confirmed, as shown by table 4.3, table 4.4 and table
4.5. This opposite dynamics finds a justification into two separate effects which
should be taken into account every time a correlation sensitivity analysis is
carried out:

1. variation in the correlation among defaulters needed to trigger the default
payment;

2. variation in the correlation between the remaining credits.

The first effect plays a role increasing the probability of joint defaults and
thus the premium requested, while the second effect affects second to default
swaps in the same way as for first to default swaps. Thus, for small portfolios,
the first effect dominates the second one, while the opposite holds for larger
portfolios.

6See the complete results in Appendix I.
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Gaussian Copula 1st BDS 2nd BDS
ρ=0.3 0.041196 0.015829
ρ=0.5 0.031097 0.014632
ρ=0.7 0.021782 0.012331

Table 4.3: 1st and 2nd BDS spreads under the Gaussian copula framework,
obtained for different values of the pairwise correlation ρ and default intensity
λ = 0.01.

CGMY Copula 1st BDS 2nd BDS
ρ=0.3 0.041342 0.014862
ρ=0.5 0.030756 0.0133
ρ=0.7 0.020972 0.010925

Table 4.4: 1st and 2nd BDS spreads under the CGMY copula framework, ob-
tained for different values of the pairwise correlation ρ and default intensity
λ = 0.01.

GTS Copula 1st BDS 2nd BDS
ρ=0.3 0.040428 0.015624
ρ=0.5 0.030539 0.014324
ρ=0.7 0.021503 0.012088

Table 4.5: 1st and 2nd BDS spreads under the GTS copula framework, obtained
for different values of the pairwise correlation ρ and default intensity λ = 0.01.
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Gaussian Copula 1st BDS 2nd BDS
λ=0.01 0.041196 0.015829
λ=0.02 0.076681 0.03498
λ=0.03 0.11082 0.054407

Table 4.6: 1st and 2nd BDS spreads under the Gaussian copula framework,
obtained for different values of the default intensity λ and constant pairwise
correlation ρ = 0.3.

CGMY Copula 1st BDS 2nd BDS
λ=0.01 0.041342 0.014862
λ=0.02 0.076968 0.033614
λ=0.03 0.11087 0.052692

Table 4.7: 1st and 2nd BDS spreads under the CGMY copula framework, ob-
tained for different values of the default intensity λ and constant pairwise cor-
relation ρ = 0.3.

4.5.2 Effect of Default Intensities

This section analyzes the effects of different default intensities determining the
marginal default probabilities of the single names on the BDS prices.

It is clear, as table 4.6, table 4.7 and table 4.8 show, that the default intensity
is positively correlated to the BDS spreads: the higher the default intensity
is, the larger the premium gets. This may be explained by the relation for
which,under the hypothesis of constant spreads for each maturity date, the link
between the spread s and the default intensity λ could be written as

s = λ(1−R)

where R is the (constant) recovery rate assumed.
Moreover, the most interesting issue in the analysis of default intensities effects
stands in discovering that, under the same conditions, the impact of an increase
of the default intensity becomes much larger as soon as the seniority of the BDS
gets higher.

Table 4.9, table 4.10 and table 4.11 confirm this statement: the same vari-
ation of the default intensity has clearly a more evident effect on a second to

GTS Copula 1st BDS 2nd BDS
λ=0.01 0.040428 0.015624
λ=0.02 0.074747 0.034581
λ=0.03 0.10737 0.053689

Table 4.8: 1st and 2nd BDS spreads under the GTS copula framework, obtained
for different values of the default intensity λ and constant pairwise correlation
ρ = 0.3.
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Seniority λ = 0.01 λ = 0.02 ∆ λ = 0.03 ∆
1 411.96 766.81 86% 1108.2 169%
2 158.29 349.8 120% 544.07 244%
3 72.56 189.5 161% 319.03 340%
4 34.49 106.12 208% 194.24 463%
5 16.15 58.46 262% 116.83 623%

Table 4.9: First five BDS spreads (in basis points) under the Gaussian copula
framework, obtained for different values of the default intensity λ and constant
pairwise correlation ρ = 0.3, and the relative spread increments with respect to
the first case in which λ = 0.01

Seniority λ = 0.01 λ = 0.02 ∆ λ = 0.03 ∆
1 413.42 769.68 86% 1108.7 168%
2 148.62 336.14 126% 526.42 254%
3 67.56 179.36 165% 305.52 352%
4 33.85 101.31 199% 186.03 449%
5 17.81 57.93 225% 113.45 537%

Table 4.10: First five BDS spreads (in basis points) under the CGMY copula
framework, obtained for different values of the default intensity λ and constant
pairwise correlation ρ = 0.3, and the relative spread increments with respect to
the first case in which λ = 0.01

Seniority λ = 0.01 λ = 0.02 ∆ λ = 0.03 ∆
1 404.28 747.47 85% 1073.7 165%
2 156.24 345.81 121% 536.89 243%
3 72.79 190.01 161% 319.9 339%
4 35.57 107.82 203% 197.13 454%
5 17.41 60.24 246% 119.6 587%

Table 4.11: First five BDS spreads (in basis points) under the GTS copula
framework, obtained for different values of the default intensity λ and constant
pairwise correlation ρ = 0.3, and the relative spread increments with respect to
the first case in which λ = 0.01
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Seniority Normal CGMY GTS
1 0.041196 0.041342 0.040428
2 0.015829 0.014862 0.015624
3 0.0072563 0.006756 0.0072794

Table 4.12: First, second and third to default basket spreads respectively com-
puted under the one-factor copula model, one-factor CGMY copula model and
one-factor GTS copula model. The portfolio is supposed to be homogeneous,
characterized by a constant pairwise correllation ρ = 0.3 and constant default
intensity λ = 0.01.

Seniority Normal CGMY GTS
1 0.031097 0.030756 0.030539
2 0.014632 0.0133 0.014324
3 0.0083263 0.0074906 0.0082257

Table 4.13: First, second and third to default basket spreads respectively com-
puted under the one-factor copula model, one-factor CGMY copula model and
one-factor GTS copula model. The portfolio is supposed to be homogeneous,
characterized by a constant pairwise correllation ρ = 0.5 and constant default
intensity λ = 0.01.

default BDS than on a first to default BDS. And the same may be said for BDSs
with a greater level of seniority.

4.5.3 Effects of Distributional Assumptions

In this section, we analyse the effects of different distributional assumptions on
Basket Default spreads are presented.

In particular, table (4.12), table (4.13) and table (4.14) contain the fair
prices obtained for a first, second and third to default BDS, under three different
default dependence frameworks: the Normal, the CGMY and the GTS copula.
Furthermore, this analysis considers three alternative scenarios concerning the
value assumed by the constant pairwise correlation, respectively set equal to

Seniority Normal CGMY GTS
1 0.021782 0.020972 0.021503
2 0.012331 0.010925 0.012088
3 0.0082255 0.0072184 0.0081175

Table 4.14: First, second and third to default basket spreads respectively com-
puted under the one-factor copula model, one-factor CGMY copula model and
one-factor GTS copula model. The portfolio is supposed to be homogeneous,
characterized by a constant pairwise correlation ρ = 0.7 and constant default
intensity λ = 0.01.
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0.3, 0.5 and 0.7. Finally, the default intensity λ is kept constant, to 0.01 for
every reference asset.
By looking at table (4.12), table (4.13) and table (4.14), it is possible to note the
impact of these different distributional assumptions on the BDS spreads: the
result is that the prices obtained under the Gaussian framework clearly tend to
dominate those resulting from the other distributional hypothesis.

The reason for such an evidence, as figure (4.5) shows, has to be certainly
attributed to the tail peculiarities of the relative distribution considered. Once
more, distributions as CGMY and GTS are characterized by fatter tails than
those which can be observed in a standard Normal distribution. Thus, this im-
plies that within the CGMY and GTS model, the probabilities of joint defaults
are clearly higher than in the normal setting, meaning that the level of protec-
tion offered by the CGMY and GTS models is surely lower and hence this fact
is reflected into lower prices requested for the same correlated-based product.
Note that the domain of the Normal framework becomes more and more clear
when the value of the pairwise correlation gets higher: in a few words, by in-
creasing the correlation among the obligors, the risk of joint defaults increases
as well, and thus the peculiarity of fat tails of the distribution plays a more and
more important role in the price determination.

4.5.4 Computational Results with Market Data

This section offers a comparison among the results obtained with the usual
hypothesis of the standard market model described by [33], and those coming
from a better estimation from the market of the parameters involved in the
BDS pricing. In particular, the main differences between the two approaches
include a costant pairwise correlation for every name against the use of market
correlations, constant default intensities for all the reference assets instead of
time-varying default intensities estimated from the relative CDS market quote.
The same comparison has been done for each of the copula models considered:
Normal copula (standard hypothesis), CGMY and GTS copula.

As table (4.15), table (4.16) and table (4.17) show, all the copula frameworks
implemented with a constant pairwise correlation ρ equal to 0.3 and with con-
stant default intensity λ equal to 0.01 and 0.02 tend to be totally mismatched
with respect to the results obtained under the inhomogeneous portfolio assump-
tion. When the homogeneous portfolio framework with correlation ρ = 0.3 and
default intensity λ = 0.03 is considered, acceptable results are found in terms
of comparison among the spreads obtained under the two different hypothesis.
Thus, from a first rough analysis, this could mean that the condition given by
a pairwise correlation ρ = 0.3 and a default intensity λ = 0.3, constant for each
of the reference asset in the empirical portfolio, may be considered satisfactory
for its ability to replicate quite well the results obtained with a more careful
and precise estimation of every model parameter (inhomogeneous portfolio ap-
proach).
However, this statement holds only for the first and second to default BDS
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Figure 4.5: Focus on left tails of Standard Normal, CGMY and GTS distribu-
tions



4.5. COMPUTATIONAL RESULTS 91

Seniority Market Data λ = 0.01 λ = 0.02 λ = 0.03
1 0.10614 0.041196 0.076681 0.11082
2 0.047447 0.015829 0.03498 0.054407
3 0.015679 0.0072563 0.01895 0.031903
4 0.006076 0.0034487 0.010612 0.019424
5 0.0028229 0.0016147 0.0058465 0.011683
6 0.0013548 0.0007186 0.0030614 0.0067076
7 0.00060531 0.0002919 0.0014643 0.0035337
8 0.00022808 0.000101 0.0005974 0.0015948
9 0.0000594 0.0000248 0.0001725 0.0005109
10 0 0 0 0

Table 4.15: Comparison among the spreads computed under the hypothesis of
inhomogeneous portfolio (Market Data) and those obtained assuming homoge-
neous portfolios with constant pairwise correlation ρ = 0.3 for each name in
the basket and default intensity λ respectively equal to 0.01, 0.02 and 0.03. The
model used is the one-factor Normal copula model.

Seniority Market Data λ = 0.01 λ = 0.02 λ = 0.03
1 0.1071 0.041342 0.076968 0.11087
2 0.04745 0.014862 0.033614 0.052692
3 0.014977 0.006756 0.017936 0.030552
4 0.0055573 0.0033856 0.010131 0.018603
5 0.00267 0.0017806 0.0057935 0.011345
6 0.0014224 0.0009492 0.0032617 0.0067316
7 0.0007446 0.0004933 0.0017503 0.0037619
8 0.0003523 0.0002343 0.0008432 0.0018656
9 0.0001281 0.0000849 0.0003056 0.0006882
10 0 0 0 0

Table 4.16: Comparison among the spreads computed under the hypothesis of
inhomogeneous portfolio (Market Data) and those obtained assuming homoge-
neous portfolios with constant pairwise correlation ρ = 0.3 for each name in
the basket and default intensity λ respectively equal to 0.01, 0.02 and 0.03. The
model used is the one-factor CGMY copula model.
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Seniority Market Data λ = 0.01 λ = 0.02 λ = 0.03
1 0.10708 0.040428 0.074747 0.10737
2 0.047469 0.015624 0.034581 0.053689
3 0.014949 0.0072794 0.019001 0.03199
4 0.0055382 0.0035576 0.010782 0.019713
5 0.0026658 0.0017406 0.0060241 0.01196
6 0.0014254 0.0008271 0.0032113 0.0069092
7 0.0007487 0.0003687 0.0015759 0.0036594
8 0.0003551 0.0001449 0.0006683 0.0016636
9 0.0001296 0.000042 0.0002046 0.0005403
10 0 0 0 0

Table 4.17: Comparison among the spreads computed under the hypothesis of
inhomogeneous portfolio (Market Data) and those obtained assuming homoge-
neous portfolios with constant pairwise correlation ρ = 0.3 for each name in
the basket and default intensity λ respectively equal to 0.01, 0.02 and 0.03. The
model used is the one-factor GTS copula model.

spreads since, as soon as the spreads of the BDS with other seniorities are an-
alyzed, it can be discovered how the homogeneous portfolio approach clearly
tends to overestimate the requested premium: this happens under each of the
copula models considered. In particular, the discrepancies among the spreads
gets more and more larger as the order of the seniority increases. The reason
of such a result has to be attributed to the misleading assumptions implicitely
considered in the Li standard market model: constant pairwise correlations and
constant default intensities for each name of the basket cannot be considered as
a good proxy of the real conditions characterizing the market. Moreover, the
overestimation of the fair BDS spreads becomes more evident under the Gaus-
sian copula framework: once more another standard hypothesis of the Li model
leads to results far to be considered as acceptable if compared with the other
approaches.
Hence, this work suggests the interesting concept for which dealing with the
assumptions of the standard market model may be dangerous from the point of
view of the correct estimation of the multiple risk of default. In fact, under this
framework, the financial product sold by the protection seller seems to protect
the protection buyer more than what it effectively does: but this is not true.
In fact, its ability to protect from the risk of joint defaults essentially derives
from the wrong underestimation of the risk itself: the reality is that the market
standard model does not estimate the real risk and thus seems to offer an higher
protection. The result is that, for the same reason, the price requested to the
protection buyer is greater than that it should be paid, since the model seems
to offer an high degree of protection.
The natural step of such an uncorrectly process is clearly the underestimation
of the risk, both for the protection seller and the protection buyer, which may
lead to terribly dangerous results as pointed out by the recent subprime crises
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in which the financial markets has been involved, with huge losses for most of
the investment banking divisions of the largest banks of the world.
The obvious questions are the following: when will the effects of this crises be
transferred from the financial world to the real economy? And how long will
they last? The correct answer will be evident very soon.

4.6 Conclusions

The thesis starts with an introduction of credit risk and the different approaches
proposed in the literature to model it. The main differences between structural
models and reduced-form models were discussed. Even though the formers may
seem more attractive from a pure intuitive point of view, they are generally
characterized by poorer performances in terms of fitting real credit spreads. I
personally share the opinion for which intensity models probabably represent
the best choice, thanks to their direct modelling of the default event.
The second chapter contains a detailed description of two credit derivatives,
CDSs and CDOs, that in these last years became so popular, especially with
the recent subprime crises and actually are the object of the efforts of many
researchers.
The third chapter introduces copula functions, as a fundamental and innova-
tive concept to model the dependence between relevant credit events such as
defaults. For pricing correlated-based products, the estimation of the marginal
default probabilities represents the first step to take, but certainly it is not
the hardest one. In fact, modelling the dependence among defaults of a set of
obligors may be not so trivial: here copulas play a fundamental role, thanks
to their peculiar ability to split the marginal probabilities from the dependence
structure among them. This is the main reason for which copula models have
become so popular in credit risk modelling: their use has to be considered a valid
and effective alternative to the time consuming Monte Carlo simulations, but
not only: copula models allows for computing default probability with closed
formulae.
Chapter four discusses the famous Li one-factor copula model and in particular
of the standard market model, with its simplicity but also with its too restrictive
and sometimes unrealistic assumptions which it relies on.
The thesis proposes an improvement of the market standard model, based on
the consideration of more realistic assumptions which try to consider the char-
acteristics of the market (instead of neglecting them), by taking standard and
arbitrary hyphotesis as it happens with the standard market model. The aim
of this work is to evaluate the impacts of some more realistic hyphotesis, on
the prices of an empirical BDS. Thus, the improvements proposed relies on the
consideration of a non-homogeneous portfolio, the modelling of the marginal
default probabilities on the basis of a Poisson process with time-varying instead
of constant default intensities, and by trying to replace the common assumption
of a Gaussian dependence among the defaults of the set of obligors considered
with other more flexible distributions, such as CGMY and GTS ones. In such a
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way, the default event results to be better modelled because of the fatter tails
characterizing these distributions if compared with the Normal case.
Finally a comment of the obtained results is contained in the last section, where
we show the interesting effects of these different assumptions on the prices of
an empirical BDS. This last part allows to prove that the prices are strongly
affected by the hypothesis underlying the model, highlighting the importance
of a suitable choice for the description of default event, both from the side of
the marginal probabilities and also from the point of view of the dependence
structure.



Bibliography

[1] Abid F. and Naifar N., Copula Based Simulation Procedures for Pricing
Basket Credit Derivatives,, University of Sfax, Tunisia, Working Paper,
2007.

[2] Amato J. D., J. Gyntelberg, CDS Index Tranches and the Pricing of Credit
Risk Correlations, BIS Quarterly Review, 2005.

[3] Anson M. J. P., F. J. Fabozzi, M. Choudhry and R. R. Chen, Credit
Derivatives-Instruments, Applications and Pricing, Wiley Finance, 2004.

[4] Bluhm C., CDO Modeling: Techniques, Examples and Applications, Hypo
Vereinsbank, Working Paper, 2003.

[5] Carr P., H. Geman, D. B. Madan and M. Yor, The Fine Structure of Asset
Returns: An Empirical Investigation, Journal of Business, 2002.

[6] Chen R. R, X. Cheng, F. J. Fabozzi and B. Liu, An Explicit, Multi-Factor
Credit Default Swap Pricing Model with Correlated Factors, Working Pa-
per, 2005.

[7] Cherubini U., E. Luciano and W. Vecchiato, Copula Methods in Finance,
Wiley Finance, 2004.

[8] Consigli G., Credit Default Swaps and Equity Volatility: Theoretical Mod-
elling and Empirical Evidence, 2004.

[9] Cont R. and P. Tankov, Financial Modelling with Jump Processes, Chap-
man and Hall-CRC, 2004.

[10] Gupton G. M., C. C. Finger and M. Bathia, Credit Metrics Technical Doc-
ument, 1997.

[11] Davis M., V. Lo, Modelling Default Correlation in Bond Portfolios, Work-
ing Paper, 1999.

[12] Davis M., V. Lo, Infectious Default, Quantitative Finance, 2001.

[13] Demarta S. and A. J. McNeil, The t Copula and Related Copulas, ETH
Zentrum Zurich, Working Paper, 2004.

95



96 BIBLIOGRAPHY

[14] Delianedis G. and R. Geske, The Components of Corporate Credit Spreads:
Default, Recovery, Tax, Jumps, Liquidity and Market Factors, University
of California, Working Paper, 2001.

[15] Di Graziano G. and L. C. Rogers, A New Approach to the Modellingand
Pricing of Correlation Credit Derivatives, University of Cambridge, Work-
ing Paper, 2005.

[16] Duffie D., Credit Swap Valuation, Financial Analyst Journal, 1998.

[17] Duffie D. and N. Garleanu, Risk and Valuation of Collateralized Debt Obli-
gations, Stanford University, Working Paper, 2001.

[18] Duffie D. and K. J. Singleton, Modelling Term Structures of Defaultable
Bonds, The Review of Financial Studies, 1999.

[19] Duffie D. and K. J. Singleton, Simulating Correlated Defaults, Stanford
University, Working Paper, 1999.

[20] Ferrarese C., A Comparative Analysis of Correlation Skew Modelling Tech-
niques for CDO Index Tranches, MPRA, Master Science Thesis, King’s
College London, 2006.

[21] Galiani S. S., Copula Functions and Their Application in Pricing and Risk
Managing Multiname Credit Derivative Products, Master Science Thesis,
King’s College London, 2003.

[22] Gallo G. M. , B. Pacini, Metodi Quantitativi per i Mercati Finanziari,
Carocci, 2002.

[23] Gennheimer H., Model Risk in Copula Based Default Pricing Models,
NCCR FINRISK, Working Paper, 2002.

[24] Hull J., The Valuation of Correlation-Dependent Credit Derivatives Using
a Structural Model, Moody’s LBS Credit Conference, 2005.

[25] Hull J. and A. White, Valuation of a CDO and an N-th to Default CDS
Without Montecarlo Simulations, Journal of Derivatives, 2004.

[26] Hull J. and A. White, Valuing Credit Default Swaps II: Modelling Default
Correlations, Journal of Derivatives, 2000.

[27] Hu W. and A. N. Kerchewal, The Skewed Distribution for Portfolio Credit
Risk, Florida State University, Working Paper, 2006.

[28] Jouanin J.F. , G. Rapuch, G. Riboulet and T. Roncalli, Modelling De-
pendence for Credit Derivatives with Copulas, Credit Lyonnais, Working
Paper, 2001.

[29] Kalemanova A, B. Schmid, and R. Werner, The Normal Inverse Gaussian
Distribution for Synthetic CDO Pricing, Working Paper, 2005.



BIBLIOGRAPHY 97

[30] Kim Y.S. and J. H. Lee, The Relative Entropy in CGMY Processes and Its
Applications to Finance, Springer-Verlag, 2007.

[31] Kim Y. S., S. T. Rachev, M. L. Bianchi and F. J. Fabozzi, A New Tempered
Stable Distributionand Its Application to Finance, University of Karlsruhe
and University of California Santa Barbara, Working Paper, 2008.

[32] Laurent J. P. and J. Gregory, Basket Default Swaps CDO’s and Factor
Copulas, Working Paper, 2003.

[33] Li D. X., The Valuation of Basket Credit Derivatives: A Copula Function
Approach, Axa Financial, Working Paper, 2000.

[34] Marsaglia G., W. W. Tsang and G. Wang, Evaluating Kolomogorv’s Dis-
tribution, Journal of Statistical Software, 2003.

[35] Marsaglia G. and J. Marsaglia, Evaluating Anderson-Darling Distribution,
Journal of Statistical Software, 2004.

[36] McNeil A. J. and R. Frey, Modelling Dependent Defaults, ETH Zurich,
Working Paper, 2001.

[37] Meneguzzo D. and W. Vecchiato, Copula Sensitivity in Collateralized Debt
Obigations and Basket Deafult Swaps Pricing and Risk Monitoring, Banca
Intesa, Working Paper, 20028.

[38] Nelsen R. B., An Introduction to Copulas, Springer, 1998.

[39] Nylund S., Value at Risk Analysis for Heavy-Tailed Financial Returns,
Master Science Thesis, Helsinky University, 2001.

[40] Rachev S. T., N. Lehnert, F. Altrock, S. Truck and A. Wilch, Implied
Correlations in CDO Tranches, University of Karlsruhe and University of
California Santa Barbara, Working Paper, 2005.

[41] Rachev S. T. and C. Menn, Smoothly Truncated Stable Distributions,
GARCH Models and Option Pricing, University of Karlsruhe and Univer-
sity of California Santa Barbara, Working Paper, 2005.

[42] Rachev S. T., C. Menn and F. J. Fabozzi, Fat-Tailed and Skewed Asset Re-
turn Distributions-Implications for Risk Management, Portfolio Selection
and Option Pricing, Wiley Finance, 2005.

[43] Sanchez L. G., Pricing Basket of Credit Derivatives and CDO in Factor
Models Framework, Master Thesis, ETH Zurich, 2004.

[44] Schonbucher P. J., Pricing Credit Risk Derivatives, Bonn University, Work-
ing Paper, 1997.

[45] Schonbucher P. J., The Pricing of Credit Risk and Credit Derivatives, Bonn
University, 2000.



98 BIBLIOGRAPHY

[46] Schonbucher P. J. and D. Schubert, Copula Dependent Default Risk in
Intensity Models, Bonn University, Working Paper, 2001.
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