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Abstract

This paper discusses the use of different association measures in portfolio prob-

lems. From among the association measures we highlight those that are consis-

tent with the choices of risk-averse investors and we characterize semidefinite

positive association measures. Additionally, we propose new portfolio selection

problems that optimize the association between the portfolio and one or two

market benchmarks. Finally, we discuss when, and how, we can use associa-

tion measures to reduce the dimensionality of portfolio problems. An empirical

analysis shows the impact of different association measures in portfolio selection

problems and in portfolio reduction problems. It is document that although the

proper usage of both a risk measure and an association measure can increase

the performance of the portfolio, the impact of the latter is higher.
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1. Introduction

The dependency structure among sources of randomness plays a crucial role

in the portfolio theory and in several pricing and risk management problems.

In particular, the classic Pearson linear correlation measure is regularly used

to measure and optimize the dispersion of portfolio return and to reduce the

dimensionality of large scale portfolio problems. However, it is not clear why

this measure of linear correlation is still so much popular, despite its drawbacks.

For example, it is well known that Pearson linear correlation works well

only with elliptically distributed vectors (so that they admit finite variance-

covariance matrix). Unfortunately, the behavior of financial returns is more

complex and at least the Gaussian distributional assumption has to be usually

rejected, see e.g. Mandelbrot (1963a,b) and Fama (1965), or Rachev and Mittnik

(2000) and Bulla and Bulla (2006) and the references therein. Moreover, the

empirical evidence (see, among others, Rachev et al. (2008) and Biglova et al.

(2009)) suggests that the dependence model has to account for dependence of

the tail events (“huge losses go together”). Many other measures have been

proposed in literature to deal and summarize the dependence among random

variables (see, among others, Scarsini (1984), Cherubini et al. (2004), Nelsen

(2006) and the references therein). However, most of these measures cannot

be used directly to order investors’ choices, since they are not consistent with

investors’ preferences.

In searching for an acceptable model to describe the dependence structure

of financial returns, we first identify the most desirable and useful characteris-

tics of the Pearson linear correlation. In particular, we characterize the class

of semidefinite positive association measures and we distinguish the measures

consistent with preferences of risk-averse investors. Moreover, we show that

other linear correlation measures can be used in portfolio selection problems as

an alternative to the Pearson linear correlation.
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By a practical point of view, we propose to use the association measures for

two distinct portfolio problems: 1) to identify portfolio strategies that optimize

the association between the portfolio and one or two market benchmarks; 2) to

reduce the dimensionality of large scale portfolio selection problems. For both

problems we perform an empirical analysis on the US stock market.

With respect to the first problem we propose new portfolio optimization

models that account two logical investors’ behavior: a) investors want to max-

imize the concordance and/or the association with the upper stochastic bound

of the market; b) investors want to minimize the concordance and/or the asso-

ciation with the lower stochastic bound of the market. Therefore, we compare

ex-post sample paths of wealth obtained using portfolio optimization strategies

based on different association measures.

With respect to the second problem, we suggest to use different linear cor-

relation measures to perform a principal components analysis (PCA) that iden-

tifies the main portfolio factors whose dispersion is significantly different from

zero. These factors are then used to approximate the portfolio returns in large

scale portfolio selection problems. Therefore, using more than 1300 assets of the

US stock market, we compare the results obtained by the principal components

analysis applied to different linear correlation matrixes. Then the performance

of some large scale portfolio selection strategies applied to the approximated

returns obtained by the portfolio dimensionality reduction is compared ex-post.

We proceed as follows. Section 2 summarizes some of the basic characteristics

of concordance/association measures and characterizes the semidefinite positive

association measures. In Section 3 we discuss when, and how, we should use

association measures for portfolio problems. Section 4 proposes an empirical

comparison among portfolio strategies based on the use of different association

measures. We summarize our principal findings in Section 5.
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2. Concordance and semidefinite positive association measures

One of the most essential tasks of financial decision-making is the mea-

surement of the dependency among the realizations of particular random vari-

ables. Specifically, let us consider n risky assets with gross returns1 z =

[z1, z2, . . . , zn]′ . As a consequence of the Sklar theorem (Sklar, 1959) the joint

distribution function is given by:

Fz(x) = C(Fz1(x1), Fz2(x2), . . . , Fzn(xn)), (1)

where Fzi
(xi) = Pr(zi ≤ xi) are the marginal distribution functions and C:[0, 1]n →

[0, 1] is the copula function. The copula function can therefore be defined by

inverting (1):

C(u) = Fz(F−1
z1

(u1), F−1
z2

(u2), . . . , F−1
zn

(un)). (2)

Therefore, the dependency among particular variables is fully described by suit-

able copula function C. Furthermore, the copula function can be regarded as

the joint distribution function of the marginal distribution functions.

In several financial contexts it is convenient to express the dependency among

random variables by a single number (more generally, for n random variables we

get an n-dimensional matrix). The most widespread is the Pearson coefficient

of correlation defined as follows:

cor(X, Y ) =
cov(X, Y )√

var(X)
√

var(Y ),
(3)

where var(X) states the variance of X and cov(X, Y ) the covariance of X and

Y . This measure is the inner product of standardized random variables in the

Hilbert L2 =
{

X|E(|X|2) < ∞
}

space and it derives most of its properties from

1 Generally, we assume the standard definition of gross return between time t and time

t + 1 of asset i, as zi,t+1 =
Si,t+1+di,[t,t+1]

Si,t
, where Si,t is the price of the i-th asset at time t

and di,[t,t+1] is the total amount of cash dividends paid by the asset between t and t + 1.
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this characteristic. However, the Pearson coefficient of correlation is only one

among possible measures of dependency between two random variables.

Generally, a concordance measure is used to measure the concordance/

dependence/association between random variables. In the following example

(Nelsen, 2006), two random variables (X, Y ) with independent replications,

(X1, Y1) and (X2, Y2), are concordant if X1 < X2 (X1 > X2) implies Y1 < Y2

(Y1 > Y2). Similarly, the two variables are discordant if X1 < X2 (X1 > X2)

implies Y1 > Y2 (Y1 < Y2). The concordance measures are easily definable by

copula functions, since they rely only on the ”joint” features, having no rela-

tion to the marginal characteristics. Formally a concordance measure ρ is any

functional that satisfies the following seven properties:

1) ρ : H ×H → [−1, 1] where H is a given class of random variables;

2) for any random variable X ∈ H : ρ(X, X) = 1; ρ(X,−X) = −1;

3) ρ(X, Y ) = ρ(Y,X);

4) ρ(−X,Y ) = ρ(X,−Y ) = −ρ(X,Y );

5) if X and Y are independent random variables, then ρ(X, Y ) = 0;

6) if we consider two bivariate random vectors X = (X1, X2), Y = (Y1, Y2),

with the same marginal distributions (F1, F2) such that FX(x) = Pr(X1 ≤
x1, X2 ≤ x2) ≤ FY(x) for any x = (x1, x2) ∈ R2 (i.e. X dominates Y with

respect to concordance ordering2) then ρ(X1, X2) ≤ ρ(Y1, Y2) (or ρC1 ≤ ρC2

where C1, C2 are the copulas associated with X, Y);

7) given a sequence of continuous bivariate random vectors {(Xn, Yn)}n≥1 with

copulas Cn that converge pointwise to the copula C , then ρCn converge to

ρC .

2Analogously, we say that X dominates Y with respect to concordance ordering if and

only if the copulas C1, C2 associated to X, Y are ordered i.e. C1 ≤ C2. This definition is

also equivalent to saying that cov(h1(X1), h2(X2)) ≤ cov(h1(Y1), h2(Y2)) for any increasing

function h1, h2 such that covariance exists).
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Observe that ρ(X1, X2) = ρ(h1(X1), h2(X2)) for any concordance measure

ρ, for any couple of continuous random variables (X1, X2) and for any two

strictly monotone functions h1, h2. The Pearson correlation coefficient is not

a concordance measure, since it does not satisfy Property 7 of concordance

measures. For further details on all properties of concordance measures and

their proofs see Cherubini et al. (2004) and Nelsen (2006).

Examples. The most popular measures of concordance are: Kendall’s tau, Spear-

mann’s rho, Gini’s gamma, and Blomqvist’s beta.

The Kendall’s tau, τK (also called Kendall correlation), is defined as the

probability of concordance reduced by the probability of discordance:

τK(X, Y ) = Pr ((X1 −X2)(Y1 − Y2) > 0)− Pr ((X1 −X2)(Y1 − Y2) < 0) , (4)

where (X1, Y1) and (X2, Y2) are independent replications of (X, Y ). Therefore,

τK(X, Y ) = E(sign((X1 −X2)(Y1 − Y2)))

= cor(sign(X1 −X2), sign(Y1 − Y2)),

where sign(x) = 1 if x > 0, sign(x) = 0 if x = 0 and sign(x) = −1 if x < 0.

Clearly, Kendall’s tau can be defined in terms of the copula function:

τK(C) = 4
∫ 1

0

∫ 1

0

C(u, v)dC(u, v)− 1, (5)

where C is the copula associated to the bivariate vector (X,Y ).

The second most popular measure of concordance, Spearman’s rho, ρS , is

given by:

ρS = 3 (Pr ((X1 −X2)(Y1 − Y3) > 0)− Pr ((X1 −X2)(Y1 − Y3) < 0)) =

= 3E(sign((X1 −X2)(Y1 − Y3))) = 3 cor (sign(X1 −X2), sign(Y1 − Y3)) .

(6)

where (X1, Y1), (X2, Y2) and (X3, Y3) are independent replications of (X, Y ).
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This measure is very similar to the linear correlation coefficient, except for

the fact that it measures the dependency among marginal distribution functions.

ρS = cor (FX(X), FY (Y )) =
cov (FX(X), FY (Y ))√

var (FX(X)) , var (FY (Y ))
. (7)

It follows, that it can be regarded as the correlation of copula functions:

ρS(X, Y ) = 12
∫ 1

0

∫ 1

0

uvdC(u, v)− 3 =

= 12
∫ 1

0

∫ 1

0

C(u, v)dudv − 3, (8)

where C is the copula associated to the bivariate vector (X,Y ).

Another measure used to quantify the concordance among random variables

is Gini’s gamma, γG. It can be defined in terms of copula functions as follows:

γG(C) = 4
[∫ 1

0

C(u, 1− u)du−
∫ 1

0

[u− C(u, u)]du

]
, (9)

where C is the copula associated to the bivariate vector (X,Y ). Its sample

estimation is given by ranks pi and qi of random variables X and Y , respectively:

γG(X, Y ) =
1

bn2/2c

[
n∑

i=1

|pi + qi − n− 1| −
n∑

i=1

|pi − qi|
]

. (10)

Finally, we should mention Blomqvist beta, βB , defined as follows:

βB(X,Y ) = Pr[(X − x̃)(Y − ỹ) > 0]− Pr[(X − x̃)(Y − ỹ) < 0] =

= E(sign((X − x̃)(Y − ỹ))),
(11)

where x̃ and ỹ are the medians of some given continuous random variables X

and Y, respectively. With certain simplifications, this measure may also be

rewritten in terms of copula functions:

βB(C) = 4C
(

1
2
,
1
2

)
− 1. (12)

The proof that all these measures are really measures of concordance can be

found, for example, in Nelsen (2006).

In order to consider a larger class of ”dependence” measures, rather than

concordance measures, we next introduce the class of association measures.
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Definition 1. The association measure defined on a given class of random vari-

ables H is any functional ρ : H×H → [−1, 1] that is law invariant (i.e. ρ(X,Y )

is uniquely determined by the joint distribution of (X,Y )) and satisfies the first

five properties of concordance measures as given above. We say that an associ-

ation measure ρ is semidefinite positive if for any vector X = (X1, X2, . . . , XN )′

with Xi ∈ H the association matrix Q = [ρi,j ], where ρi,j = ρ(Xi, Xj), is

semidefinite positive. We call ϕ−association measure any association measure

that satisfies the following additional property:

6bis) |ρ(X, Y )| = 1 if and only if Y = ϕ(X) almost surely (a.s.) for a given

class of real monotone functions ϕ.

Clearly, the concordance measures and the Pearson correlation coefficient

are association measures. In particular, the Pearson correlation coefficient sat-

isfies the property |ρ(X, Y )| = 1 if and only if Y = aX + b a.s. for cer-

tain real a and b. Similarly, for a pair of monotone real functions h1, h2 we

can define a ϕ−association measure ρ̃(X, Y ) = ρ(h1(X), h2(Y )) where ρ is

the Pearson correlation coefficient. In this case |ρ̃(X, Y )| = 1 if and only if

Y = h−1
2 (ah1(X) + b) a.s. for certain real a and b.

Any association measure can be used to value the dependence between ran-

dom variables, but only some particular semidefinite positive association mea-

sures can be also used to reduce the dimensionality of statistical problems and

to value the dispersion of portfolios. For any couple of random variables X, Y

and for any association measure ρ(X,Y ) the association matrix

Q =


 1 ρ(X, Y )

ρ(X, Y ) 1




is semidefinite positive, since

0 ≤ (|x1| − |x2|)2 ≤ x′Qijx = x2
1 + x2

2 + 2x1x2ρi,j ≤ (|x1|+ |x2|)2

for any x = [x1, x2]′ ∈ R2. However, this property is not sufficient to guarantee

that an association measure is semidefinite positive. Think, for example, of a
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(3× 3) matrix

Q =




1 0.71 −0.01

0.71 1 0.71

−0.01 0.71 1


 ,

where every principal submatrix is semidefinite positive but the determinant

of the matrix |Q| = −0.018 is negative. A sufficient condition for obtaining a

semidefinite positive association measure is represented by the following lemma.

Lemma 1. If the following two properties are satisfied, then ρ is a semidefinite
positive association measure:

1. there exists an inner vectorial product < ., . >: V ×V → R and a function
g : H × H → V × V such that g(X, Y ) = (vX , vY ); < vX , vY >=<
vY , vX >; < v−X , vY >=< vX , v−Y >= − < vX , vY > and

ρ(X, Y ) =
< g(X ,Y ) >√

< g(X ,X ) >< g(Y ,Y ) >
=

< vX , vY >√
< vX , vX >< vY , vY >

;

(13)
2. if X and Y are independent random variables, then vX , vY are orthogonal

vectors with respect to the inner product, i.e. < vX , vY >= 0.

We can easily proof the converse of the previous lemma when the number

of random variables is finite. Thus semidefinite association measures are char-

acterized by the following Theorem.

Theorem 1. An association measure ρ defined on a space of real random vari-
ables H, is semidefinite positive if and only if for any finite subspace of random
variables H1 ⊆ H the following two properties are satisfied:

1. there exists an inner vectorial product < ., . >: V ×V → R and a function
g : H1 × H1 → V × V such that g (X, Y ) = (vX , vY ); < vX , vY >=<
vY , vX >; < v−X , vY >=< vX , v−Y >= − < vX , vY > and

ρ(X, Y ) =
< g(X, Y ) >√

< g(X, X) >< g(Y, Y ) >
=

< vX , vY >√
< vX , vX >< vY , vY >

;

2. if X and Y are independent random variables, then vX , vY are orthogonal
vectors with respect to the inner product, i.e. < vX , vY >= 0.

Moreover, as a consequence of Cauchy–Schwarz inequality, we get that |ρ(X, Y )| =
1 if and only if vX = avY for a given real a (where vX , vY are defined as in The-

orem 1).

9



Examples. From the above results we easily deduce that Pearson, Kendall,

Spearman, and Blomqvist measures are semidefinite association measures since

they satisfy the Properties 1 and 2 of Lemma 1. Moreover, for any Lp =

{X|E(|X|p) < ∞} space of random variables defined in a probability space

(Ω,=,Pr) we can introduce the following classes of semidefinite positive as-

sociation measures.

Proposition 1. For any p > 0 the following functionals defined on Lp space
are semidefinite association measures

M1 ρP,p(X, Y ) =
E

(
(X−Vp/2(X))<p/2>(Y−Vp/2(Y ))<p/2>

)<min(2/p,2)>

‖X−Vp/2(X)‖
p
‖Y−Vp/2(Y )‖

p

, where (x)<q> =

sign(x) |x|q , Vq(X) is the unique real value such that E
(
(X − Vq(X))<q>)

=

0 and ‖X‖p = E (|X|p)min(1,1/p) is the classic metric in Lp. Moreover
|ρP,p(X, Y )| = 1 if and only if Y = aX + b a.s. for some real a and b.

M2 τK,p(X,Y ) =
E((X−X1)

<p/2>(Y−Y1)
<p/2>)<min(2/p,2)>

‖(X−X1)‖p‖(Y−Y1)‖p
where (X1, Y1) is an in-

dependent identically distributed (i.i.d.) copy of (X, Y ).

M3
Op,=1(X, Y ) = cor((X<p/2> − E(X<p/2>|=1)), (Y <p/2> − E(Y <p/2>|=1)))<min(2/p,2)>

=
E((X<p/2>−E(X<p/2>|=1))(Y

<p/2>−E(Y <p/2>|=1)))<min(2/p,2)>

(‖(X<p/2>−E(X<p/2>|=1))‖2‖(Y <p/2>−E(Y <p/2>|=1))‖2)
<min(2/p,2)>

where =1 is a sub-sigma algebra of = (i.e. =1 ⊂ =) and X and Y are not
=1 measurable.

All these measures are a logical extension of the Pearson correlation measure.

We obtain the Pearson correlation measure with measures of type M1 and M2

when p = 2. We obtain the Pearson correlation measure with measures of

type M3 when p = 2 and =1 = {∅; Ω}. In addition, if X and Y are continuous

random variables, then V0(X) and V0(Y ) is the median of X and Y , respectively.

Thus lim
p→0

ρP,p(X,Y ) = βB(X, Y ) and measures of the type M1 are an extension

of the Blomqvist measure (that we obtain when p = 0). Similarly, measures

of the type M2 are a logical extension of the Kendall correlation (that we get

for p = 0). About measures of the type M3 we suggest to use a sigma algebra

that is not too rich of events, in order to obtain an association measure that

can be easily used. For example, we can use the sigma algebra =1 generated

by a finite partition of Ω, that is, =1 =< {Ai; i = 1, ..., n} > where Ai ∈ =;
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Ai ∩ Aj = ∅, ∀i 6= j; and ∪n
i=1Ai = Ω. In portfolio problems we can think

that A1 =
{
zb ≤ F−1

zb
(α1)

}
, Ai =

{
F−1

zb
(αi−1) < zb ≤ F−1

zb
(αi)

}
for i=2,...,n−

1; An =
{
zb > F−1

zb
(αn−1)

}
where 0 < α1 < ... < αn−1 < 1; F−1

zb
(β) =

inf {u|Pr (zb ≤ u) ≥ β} and zb is a benchmark of the market. Under these

assumptions, the conditional expectation can be easily estimated, since it is

given by the simple function:

E(X/=1)(w) =
n∑

i=1

I[X(w)∈Ai]
1

Pr(Ai)

∫

Ai

XdPr ∀w ∈ Ω

where

I[X(w)∈A] =





1 if X(w) ∈ A,

0 otherwise.

Given a sample of n i.i.d. copies (Xi, Yi) of the bivariate vector (X, Y ) and,

assuming a suitable sigma algebra =1 as above, then:

1. a consistent estimator of Vq(X) is simply obtained by solving the esti-

mating equation
∑n

i=1 sign(Xi − V q(X))
∣∣Xi − V q(X)

∣∣q = 0.

2. 2
n(n−1)

∑n−1
i=1

∑
j>i (Yi − Yj)

<p/2> (Xi −Xj)
<p/2> is a consistent unbiased

estimator of E
(
(X −X1)

<p/2> (Y − Y1)
<p/2>

)
and thus we can estimate

τK,p(X, Y ).

3. 1
](Xi∈A)

∑
Xi∈A X

<p/2>
i (where ](Xi ∈ A) is the number of observations

Xi belonging to A) is a consistent estimator of 1
Pr(A)

∫
A

X<p/2>dPr and

thus we can estimate Op,=1(X,Y ).

Working with semidefinite association matrixes is fundamental in several

statistical problems. However, the estimator of semidefinite association matrixes

could not be semidefinite positive (see Rousseuw and Molenberghs, 1993).

3. Possible use of association measures in portfolio problems

One of the most popular measures proposed to order admissible portfolios

according to their risk is standard deviation. Several papers in recent literature
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discuss the possibility of using other measures of risk and uncertainty to opti-

mize investor’s choices (see, for a review, Rachev et al. (2008)). Measures of

uncertainty can be introduced axiomatically (Ortobelli, 2001). Typically, un-

certainty measure is defined as any increasing function of a positive functional

D that is law invariant (i.e. D(X) = D(Y ) for any X and Y with the same

distribution) and that satisfies the following properties:

P1 D(X + C) ≤ D(X) for all X and constant C > 0;

P2 D(0) = 0, and D(aX) = aD(X) for all X and a > 0;

P3 D(X) ≥ 0 for all X, with D(X) = 0 if and only if X is constant.

Moreover, in a certain sense, semidefinite positive association matrixes rep-

resent a multivariate measure of dispersion and generally cannot be used to

value the dispersion of a given portfolio (except for special cases). In practical

terms, let us consider n assets with gross returns z = [z1, z2, . . . , zn]′ and the

vector of portfolio weights x = (x1, x2, . . . , xn)′. Given a semidefinite positive

association matrix Qρ = [ρi,j ] of the gross returns, then we could consider the

following measure of the portfolio dispersion (Tichý and Ortobelli, 2009)):

dρ(x′z) =
√

x′Qρ,σx (14)

where Qρ,σ = [σzj
σzi

ρi,j ], ρ is a semidefinite positive association measure and

σz is an uncertainty measure. Observe that if there is a riskless return among

the asset returns (say, the first component), then ρ1,j = ρj,1 = 0 for any j, since

a constant is independent of any random variable. Therefore the riskless asset

does not make any contribution to the measure dρ.

Even if the measure dρ(x′z) appears to be a logical extension of portfolio

variance, it does not satisfy the law invariance property. For example, let us

assume there are three assets with gross returns z = (z1, z2, z3)′ and suppose

the third gross return has the same distribution of the portfolio xz1 + yz2, i.e.
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the portfolios [x, y, 0]z and [0, 0, 1]z have the same distributions. Since any

uncertainty measure σz is law invariant then σ2
z3

= σ2
xz1+yz2

. However, unless

Qρ,σ is the variance covariance matrix, we obtain the following inequality:

dρ([0, 0, 1]z)2 = σ2
xz1+yz2

6= x2σ2
z1

+ y2σ2
z2

+

+2xyσz1σz2ρ(z1, z2) = dρ([x, y, 0]z)2.

A sufficient condition that guarantees that measure (14) is invariant in law is

given by the following proposition.

Proposition 2. Proposition 2. Suppose ρ is semidefinite positive association
measure defined on all possible portfolios of gross returns x′z. Suppose the
functional ρ can be represented for all portfolios as in Theorem 1, i.e. ρ : H ×
H → [−1, 1] and

ρ(X,Y ) =
< g(X ,Y ) >√

< g(X ,X ) >< g(Y ,Y ) >
=

< vX , vY >√
< vX , vX >< vY , vY >

,

where H is the class of all admissible portfolios x′z and < ., . >: V × V → R
is a vectorial inner product. Let us assume the function g : H × H → V × V
such that g(X,Y ) = (vX , vY ), is bilinear, i.e. g(aX + bZ, Y ) = (avX + bvZ , vY )
and g(X, aY + bZ) = (vX , avY + bvZ). If σX =

√
< vX , vX > is an uncertainty

measure, then dρ(x′z) =
√

x′Qρ,σx is invariant in law.

More generally we can define the semidefinite positive association measures

that satisfy the properties of Proposition 2 as follows.

Definition 2. We say that ρ is a linear correlation measure in the class of the

random variables H if it satisfies the following properties:

1. ρ is a semidefinite positive association measure defined on the class of

random variables H;

2. for all random X,Y belonging to H, ρ(X, Y ) = <g(X,Y )>√
<g(X,X)><g(Y,Y )>

=
<vX ,vY >√

<vX ,vX><vY ,vY >
, where < ., . >: V ×V → R is a vectorial inner product

and g : H × H → V × V such that g(X,Y ) = (vX , vY ), is a bilinear

function;

3. the functional σX =
√

< vX , vX > is an uncertainty measure (i.e. it is

invariant in law and satisfies properties P1, P2 and P3).
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Examples of linear correlation measures are all those measures that can be

seen as an inner product of an Hilbert space of random variables. Thus, the

Pearson correlation measure, the measure O2,=1(X, Y ) defined in Proposition

1 and some combinations of linear correlation measures (as described in the

following corollary) are linear correlation measures.

Corollary 1. The convex combination of concordance measures (association
measures, semidefinite association measures) is still a concordance measure (as-
sociation measure, semidefinite association measure). Moreover, let ρi (i =
1, ..., m) be m linear correlation measures defined for all random variables X, Y
belonging to H (thus we suppose it contains also its centered random vari-

ables) as ρi(X, Y ) = <gi(X,Y )>i√
<gi(X,X)>i<gi(Y,Y )>i

= <v
(i)
X ,v

(i)
Y >i√

<v
(i)
X ,v

(i)
X >i<v

(i)
Y ,v

(i)
Y >i

, where

< ., . >i: V(i) × V(i) → R, i = 1, ..., m, are vectorial inner products. Then
< X, Y >=

∑m
i=1 ai < v

(i)
X , v

(i)
Y >i (ai ≥ 0;

∑m
i=1 ai = 1) is an inner product

in the class of centered random variables belonging to H and thus ρ(X,Y ) =
<X,Y >√

<X,X><Y,Y >
is a linear correlation measure.

The lack of invariance in law does not permit the usage of measures of

the type dρ(x′z) within portfolio selection problem. Generally, when we use

concordance measures such as Kendall, Spearman, and Blomqvist measures,

the law invariance property of dρ(x′z) is not satisfied since these concordance

measures are not linear correlation measures. When dρ(x′z) is invariant in law,

we get the following proposition.

Proposition 3. Suppose the matrix Qρ,σ does not depend on the portfolio weights
x and all random variables are defined in a finite probability space where the prob-
ability is uniform. If dρ(x′z) is invariant in law, it is consistent with preferences
of risk-averse investors.

Clearly, the assumption, that we are in a finite probability space Ω =

{ω1, ω2, ..., ωn} with probability Pr ({ωi}) = 1
n , is not very realistic. However,

several consistent estimators Q̃ρ,σ of Qρ,σ are computed as if the gross returns

were defined in a finite probability space with uniform probability and, also

for this reason, the estimator Q̃ρ,σ is still semidefinite positive. So, for exam-

ple, if σzi = E(f(zi)) and ρi,j = E(g(zi, zj)) for some functions f and g, then

14



σ̃zj
= 1

n

∑n
k=1 f(z(k)

j ), ρ̃i,j = 1
n

∑n
k=1 g(z(k)

i , z
(k)
j ) (where z

(k)
j is the k -th obser-

vation of zj) are consistent estimators of σzi and ρi,j and Q̃ρ,σ = [σ̃zj σ̃zi ρ̃i,j ]

is a consistent estimator of Qρ,σ. Therefore when dρ(x′z) is invariant in law

(according to Bauerle and Müller (2006)) and the estimated distribution of w′z

is dominated in the convex order by the estimated distribution of y′z, then

w′Q̃ρ,σw ≤ y′Q̃ρ,σy. Moreover, as it was pointed out by Bauerle and Müller

(2006), when the probability space is non-atomic we can guarantee that a mea-

sure D is consistent with the choices of risk-averse investors if D is an invariant

in law, convex measure that satisfies the Fatou property (that is, for any se-

quence of integrable random variables {Xn}n∈N such that E (|Xn −X|) → 0,

implies D(X) ≤ lim inf D(Xn)). Thus the following corollary holds.

Corollary 2. Suppose the matrix Qρ,σ does not depend on the portfolio weights
x. If dρ(x′z) is invariant in law and satisfies the Fatou property, then it is
consistent with the choices of risk-averse investors.

As suggested from the following definition the linear correlation measures

are not the unique association measures related to functionals consistent with

risk averse preferences.

Definition 3. Let ρ be a semidefinite positive association measure defined for

all random variables X,Y belonging to a Polish space of random variables H as

ρ(X,Y ) = <vX ,vY >√
<vX ,vX><vY ,vY > . We say that the functional σX =

√
< vX , vX >

is an uncertainty measure in H derived from the association measure ρ if it is a

convex uncertainty measure that satisfies the Fatou property.

Clearly any uncertainty measure σX =
√

< vX , vX > derived from an asso-

ciation measure ρ is consistent with risk averse choices in H. Typical examples

of uncertainty measures derived from association measures in Lp spaces are the

functionals σX = ‖(X −X1)‖p of Proposition 1 for any p ≥ 1. Moreover, from

this definition we also deduce that concordance measures cannot be used as

uncertainty measures.

15



Corollary 3. An uncertainty measure σX =
√

< vX , vX > in H cannot be de-
rived from a semidefinite positive concordance measure.

Next we distinguish two possible uses of association measures in portfolio

theory. In particular, we propose to use them either in optimization problems

or in order to reduce the dimensionality of the problem. Let us briefly discuss

both problems.

3.1. Portfolio selection problems

The classic portfolio selection problem among n assets is a portfolio that

minimizes a given risk measure q provided that the reward measure v is con-

strained by some minimal value m; that is,

min
x

q(x′z − zb)
∑n

i=1 xi = 1; xi ≥ 0;

v(x′z − zb) ≥ m,

(15)

where zb denotes the gross return of a given benchmark. The portfolio that

provides the maximum reward per unit of risk is called the market portfolio.

In particular, when the reward and risk are both positive measures, the market

portfolio is the solution for the optimization problem:

max
x

v(x′z−zb)
q(x′z−zb)∑n

i=1 xi = 1; xi ≥ 0.
(16)

Generally, we can distinguish two different types of benchmarks: artifi-

cial benchmarks and traded benchmarks. Traded benchmarks are some indexes

traded on the market that represent some sectors and/or markets. For these

benchmarks we can obtain historical observations. Artificial benchmarks are not

traded on the market and they are artificially created by portfolio managers to

represent the best/worst indicators of the assets used. Typical examples are the

upper and lower stochastic bounds (see, among others, Ortobelli and Rachev

(2001) or Ortobelli and Pellerey (2007, 2008)).
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The most simple upper and lower stochastic bounds are respectively given by

maxi zi and mini zi that satisfy the relation maxi zi ≥ x′z ≥ mini zi for all vec-

tors of portfolio weights x belonging to the simplex S = {x ∈ Rn|∑n
i=1 xi = 1; xi ≥ 0} .

Thus investors would like to maximize the concordance and/or the association

with the upper bound benchmark maxi zi and to minimize the concordance

and/or the association with the lower bound benchmark mini zi. Alternatively,

with traded benchmarks investors would like to:

a) maximize the association between the portfolio x′z and the benchmark zb

when the traded benchmark is on the right tail;

b) minimize the association between the portfolio x′z and the traded benchmark

zb when the benchmark is on the left tail.

From this brief discussion we deduce that investors would like to maximize

utility functionals of the type:

1. fx′z,zb
(α, β) = ρ1 (x′z, maxi zi) v(x′z)−ρ2 (x′z, mini zi) q(x′z) when we use

the upper and lower stochastic bounds (maxi zi and mini zi);

2. fx′z,zb
(α, β) = ρ1

(
x′z, zb|zb ≥ F−1

zb
(β)

)
v(x′z)−ρ2

(
x′z, zb|zb ≤ F−1

zb
(α)

)
q(x′z)

when we use a traded benchmark gross return zb;

where F−1
zb

(β) = inf {u|Pr (zb ≤ u) ≥ β} , ρ1 and ρ2 are two association mea-

sures, and v(x′z), q(x′z) are given measures of reward and risk, respectively.

We still call market portfolio the portfolio that provides the maximum reward

per unit of risk, optimizing the differences between association measures

fx′z,zb
(α, β) = ρ1

(
x′z, max

i
zi

)
− ρ2

(
x′z, min

i
zi

)

or
(
ρ1

(
x′z, zb|zb ≥ F−1

zb
(β)

)− ρ2

(
x′z, zb|zb ≤ F−1

zb
(α)

))
.

In particular, when the reward and risk are both positive measures, and there

exists a portfolio x′z such that the difference between association measures is
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positive (i.e. ρ1 (x′z, maxi zi)−ρ2 (x′z, mini zi) > 0 or ρ1

(
x′z, zb|zb ≥ F−1

zb
(β)

)−
ρ2

(
x′z, zb|zb ≤ F−1

zb
(α)

)
> 0), then the market portfolio is the solution for the

optimization problems:

max
x

v(x′z)
q(x′z) (ρ1 (x′z, maxi zi)− ρ2 (x′z, mini zi))

∑n
i=1 xi = 1; xi ≥ 0;

(17)

or

max
x

v(x′z)
q(x′z)

[
ρ1

(
x′z, zb|zb ≥ F−1

zb
(β)

)− ρ2

(
x′z, zb|zb ≤ F−1

zb
(α)

)]
∑n

i=1 xi = 1; xi ≥ 0.
(18)

Clearly the optimization problems (17, 18) generally admit more local optima,

and thus, we have to use heuristics for global optimization. Moreover, as disper-

sion a measure q(x′z) we can use a measure of type dρ(x′z) when the conditions

of Proposition 2 are satisfied.

3.2. The portfolio dimensional problem

Papp et al. (2005) and Kondor et al. (2007) have shown that the number of

observations should increase proportionally with the number of assets in order

to get a good approximation of the portfolio risk-reward measures. Therefore, it

is necessary to find the right trade-off between a statistical approximation of the

historical series depending only on a few parameters and the number of historical

observations. In practice, portfolio managers reduce the dimensionality of the

problem approximating the return series with a k -fund separation model (or

other regression-type models) that depends on an adequate number (not too

large) of parameters.

Thus we can perform a PCA of the gross returns of the stocks used in order

to identify the few factors (portfolios) with the highest return variability (see

Biglova et al. (2009)). Therefore, we replace the original n correlated time series

zi with n uncorrelated time series Ri assuming that each zi is a linear combi-

nation of the series Ri. This is always possible when we use a linear correlation
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measure ρ. Then we implement a dimensionality reduction by choosing only

those factors whose uncertainty measure < Ri, Ri > is significantly different

from zero. We call portfolio factors fi the s time series Ri with a significant

dispersion measure, while the remaining n− s series with very small dispersion

measure are summarized by an error. Thus, each series zi is a linear combination

of the factors plus a small uncorrelated noise:

zi =
s∑

j=1

aijfj +
n∑

j=s+1

aijRj =
s∑

j=1

aijfj + εi. (19)

We can apply the PCA either to the Pearson correlation matrix or to any other

linear correlation measure, for example Q = [ρi,j ] where ρi,j = O2,=1(zi, zj)

for a suitable sigma algebra =1.3 Once identified the s factors fj =
∑n

i=1 xizi

(j = 1, ..., s; such that
∑n

k=1 x2
k = 1) that account for most of the variability

of the gross returns, we further reduce the variability of the error by regressing

the series on the factors fj so that we get:

zi = bi,0 +
s∑

j=1

bi,jfj + εi. (20)

Once reduced the dimensionality of the problem we can apply portfolio selection

optimization problems (17, 18) to the approximated portfolio gross returns:

x′z ' x′b̂0 +
∑s

j=1 x′b̂jfj , where b̂j = [̂b1,j , ..., b̂n,j ]′ is the vector of estimated

coefficients b̂i,j (j = 0, 1, ..., s). This procedure is computational efficient and

can be applied using any linear correlation measure.

4. Some empirical applications

In this section we employ various uncertainty measures and association mea-

sures, as defined in Sections 2 and 3, in the portfolio selection problem. We eval-

uate two distinct tasks: (i) portfolio performance optimization and (ii) portfolio

dimensionality reduction and large scale portfolio selection.

3For some other alternatives and application issues see e.g. Hubert et al. (2009).
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In the portfolio performance optimization problem we use 34 equities4 and

upper and lower market bounds maxi zi and mini zi as artificial benchmarks.

We use daily data for the period Januray, 1994 to November, 2009 (a total of

3999 observations).

For the portfolio dimensionality reduction problem and the large scale port-

folio selection we consider 1304 equities on the US stock Market (450 equities

from Nasdaq and 854 equities from NYSE). We use daily data for the period

Januray, 1997 to December, 2009 (a total of 3258 observations). All data sets

are taken from DataStream.

Table 1: Number of assets and observations

Problem # of assets # of observations

portfolio performance optimization 34 3999

portfolio dimension reduction 1304 3258

4.1. Portfolio performance optimization

In this context we propose an ex-post comparison among several versions

of optimization problem (17) based on different risk and association measures.

The objective function that we maximize is regularly evaluated on the basis

of daily observations of market prices over the preceding 10 years (2600 daily

observations).

We use as a reward measure v(x′z) in (17), the expected return of a portfolio,

4The 34 assets are: Home de Pot, 3M, Alcoa, Boeing, Caterpillar, Coca Cola, The Du Pont

E I De Nem, Exxon Mobil, Gen Electric, Hewlett Packard, IBM, Johnson and Johnson, Mc-

Donalds, Merck, Procter Gamble, United tech, Wal Mart Stores, Walt Disney-Disney, Amer-

ican Express, AT&T, Intel, Microsoft, Pfizer, Travelers, Verizon, Chevron, Adobe, Amgen,

Apple, Applied Materials, CA, Costco whole Sale Corporation, Ross Stores, Sun Microsystem.
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given that it belongs to the right tail as bounded by 95th percentile, i.e.:

v(x′z) = E[x′z|x′z ≥ F−1
x′z(0.95)]. (21)

In contrast to a unique reward measure, we consider as measures of risk either

the standard deviation of the portfolio of gross returns or the average value

at risk of the centered portfolio AV aR0.05(x′z − E(x′z)) – i.e. either q(x′z) =

std(x′z) =
√

x′Qx where Q is the variance covariance matrix of z or q(x′z) =

AV aR0.05(x′z − E(x′z)) = −1
0.05

∫ 0.05

0
F−1

x′z−E(x′z)(u)du. Moreover, we consider

three different factors of type:

(
ρ1

(
x′z, max

i
zi

)
− ρ2

(
x′z, min

i
zi

))

measuring differently the association of the return portfolio with the upper and

lower bounds. In particular, we set ρ1 and ρ2 as follows:

1. ρ1 = ρ2 = γG (i.e. ρi (i = 1, 2) is the Gini concordance measure);

2. ρ1 = ρ2 = cor (i.e. ρi (i = 1, 2) is the Pearson correlation measure);

3. ρ1 = ρS and ρ2 = τK (i.e. as ρ1 we use the Spearman concordance measure

and as ρ2 we use the Kendall concordance measure).

We compare ex-post sample paths of wealth considering an initial wealth

W0 = 1. In this empirical analysis we recalibrate the portfolios every 6 months

(125 working days). At k-th recalibration (k = 0, 1, 2, ...), three main steps are

performed to compute the ex-post final wealth.

Step 1 Determine the ”market” portfolio x
(k)
M – a solution to:

max
x

v(x′z)
q(x′z)

[
ρ1

(
x′z, max

i
zi

)
− ρ2

(
x′z, min

i
zi

)]

s.t.
∑n

i=1 x
(k)
i = 1 and x

(k)
i ≥ 0. To solve these problems we use the

heuristic for global optimization proposed by Angelelli and Ortobelli

(2009).
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Step 2 The ex-post final wealth is given by:

Wk+1 = Wk((x(k)
M )′z(ex post)),

where z(ex post) is the vector of observed gross returns between time k

and k + 1.

Step 3 The new starting point for the (k + 1)-th optimization problem is port-

folio x
(k)
M .

Steps 1, 2 and 3 are repeated for different risk and association measures until

the observations are available.

We illustrate the results in Figures 1 and 2. In particular, Figure 1 reports

the wealth sample paths of four strategies: two that use the standard deviation

as risk measure q(x′z) (Pearvar, and SpeaKendvar) and the analogous that use

the average value at risk (AVaR) of the centered portfolio as risk measure q(x′z)

(PearAVaR, and SpeaKendAVaR). With Pearvar and PearAVaR strategies we

use as association measures the Pearson linear correlation (i.e. ρ1 = ρ2 = cor).

While with SpeaKendvar and SpeaKendAVaR strategies we use the Spearman

and the Kendall concordance measures (i.e. ρ1 = ρS and ρ2 = τK). Observe that

the strategies based on AVaR risk measure present an higher performance than

those based on the standard deviation. Similarly, the strategies that use the

Spearman and the Kendall concordance measures present a higher performance

than those based on the Pearson linear correlation. Moreover, Figure 1 suggests

that the use of suitable association measures ρi could have a higher impact than

the use of a suitable risk measure q(x′z).

Figure 2 compares the wealth sample paths when we use the average value

at risk of the centered portfolio as risk measure q(x′z) the Spearman and the

Kendall concordance. Even Figure 2 reports the wealth sample paths of four

strategies: one that use the standard deviation as risk measure (Ginivar) and

three strategies that use the average value at risk (AVaR) of the centered portfo-

lio as risk measures (GiniAVaR, PearAVaR, and SpeaKendAVaR). While the two
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Figure 1: Ex-post final wealth and different risk measures I. We compare ex-post final wealth

sample paths when the risk measure is either the standard deviation or AVaR and the associ-

ation measures are either Spearman combined with Kendall, or the Pearson linear correlation.
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Figure 2: Ex-post final wealth and different risk measures II. Ex-post final wealth sample

paths when the association measures are either Gini, or Spearman combined with Kendall, or

the Pearson linear correlation.

Gini type strategies with different risk measures give exactly the same choices

and the best performance, the other strategies present significant differences.

Thus this comparison essentially confirms the results of Figure 1. Gini type

strategies give an ex-post final wealth with more than 50% return for year, that

is not comparable with all the other strategies. However, Gini type strategies do

not present a diversification of the portfolio choices, since the wealth is invested

in only one asset (Apple) at any recalibration step. On the other hand, it seems

clear that the use of concordance type measures give better performance than

Pearson correlation measure.
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4.2. Portfolio dimensionality reduction and large scale portfolio selection

Our next task is to reduce the dimensionality of the portfolio problem in

order to compare portfolio strategies in a large scale framework. Generally, we

can consider two possible criteria for selecting the ”best” principal components:

a) take the first principal components that together explain at least 50% of the

dispersion;

b) take only those principal components that explain not less than 100/N% of

the dispersion measure (Kaiser type rule) (where N = 1304 is the number

of all assets in our empirical analysis).

However, in several large portfolio problems we should choose only few prin-

cipal components in order to guarantee a sufficiently good approximation to the

optimal portfolio problem (see, among others, Papp et al. (2005), Kondor et al.

(2007)). The right number of principal components should account the limited

number of historical observation of the dataset. For this reason in the portfolio

dimensionality reduction analysis we also consider the criterium:

c) take the first 35 principal components and show how much dispersion is

explained.

As linear correlation measures we consider:

1. the Pearson correlation measure ρi,j = cor(zi, zj), and its conditional ver-

sion ρi,j = cor(zi, zj |x′z ≤ F−1
x′z(0.05)), where x′z = 1

N

∑N
i=1 zi is the

equidiversified portfolio;

2. the linear correlation measure ρi,j = O2,=1(zi, zj) defined in Proposi-

tion 1 and its conditional version ρi,j = O2,=1(zi, zj |x′z ≤ F−1
x′z(0.1)),

where x′z = 1
N

∑N
i=1 zi and =1 =< {Ai; i = 1, ..., 10} > where A1 =

{
maxi zi ≤ F−1

maxi zi
(0.1)

}
, Ai =

{
F−1

maxk zk
(0.1(i− 1)) < maxk zk ≤ F−1

maxk zk
(0.1i)

}

for i=2,...,9; and A10 =
{
maxk zk > F−1

maxk zk
(0.9)

}
;

25



3. the linear correlation measure ρi,j = O2,=2(zi, zj) defined in Proposi-

tion 1 and its conditional version ρi,j = O2,=2(zi, zj |x′z ≤ F−1
x′z(0.05)),

where x′z = 1
N

∑N
i=1 zi and =1 =< {Ai; i = 1, ..., 40} > where A1 =

{
maxi zi ≤ F−1

maxi zi
(0.025)

}
, Ai =

{
F−1

maxk zk
(0.025(i− 1)) < maxk zk ≤ F−1

maxk zk
(0.025i)

}

for i = 2, ..., 39; and A40 =
{
maxk zk > F−1

maxk zk
(0.975)

}
.

The results are reviewed in Table 2. From Table 2 we observe very little

differences between O2,=1 and O2,=2 conditional and unconditional measures.

Moreover, we need more than 12% (22%) of the principal components to ex-

plain most of the variability using the Kaiser rule applied either to conditional

(unconditional) measures. Therefore, the number of principal components se-

lected with the Kaiser rule is still too big to apply a portfolio selection of type

(17, 18) to the approximated portfolio of gross returns. In addition, less than 20

components are sufficient to explain more that 50% of variability when we use

conditional correlation measures. While we can explain more than 40% (61%)

of variability using only 35 principal components for unconditional (conditional)

correlation measures.

Table 2: Portfolio dimensionality reduction

Measures cor O2,=1 O2,=2 Cond. cor Cond. O2,=1 Cond. O2,=2

] PCs Kaiser rule 294 300 300 158 157 157

% explained Kaiser r. 69.48% 69.55% 69.6% 99.8% 99.73% 99.73%

] PCs to explain 50% 97 102 102 19 18 18

% explained 35 PCs 40.92% 40.15% 40.13% 61.98% 63.03% 62.95%

Given these results we want to compare portfolio strategies considering two

different approximations of gross returns: one based on 35 factors derived from

conditional and unconditional Pearson correlation measure; the second based on

35 factors derived from conditional and unconditional O2,=1 correlation measure.

In both cases we regress the gross return series on 35 factors fj (i.e. zi =
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bi,0 +
∑35

j=1 bi,jfj + εi) and we approximate the vector of gross returns ẑ '
b̂0 +

∑35
j=1 b̂jfj using OLS estimates of parameters bj . In particular, in the

first case the 35 factors fj are shared as follows:

a) the first 19 principal components obtained with conditional Pearson corre-

lation measure (that explain at least 50% of conditional dispersion) and the

first 16 principal components obtained with unconditional Pearson correla-

tion measure.

Similarly, in the second case the 35 factors fj are shared as follows:

b) the first 18 principal components obtained with conditional O2,=1 correla-

tion measure (that explain at least 50% of conditional dispersion) and the

first 17 principal components obtained with unconditional O2,=1 correlation

measure.

Using the approximation of gross returns b̂0 +
∑35

j=1 b̂jfj the randomness of

the choices is uniquely determined by the 35 factors fj . As in Section 4.1 we pro-

pose an ex-post portfolio comparison where the portfolio decision is taken using

the approximated returns and the valuation of future wealth is taken with real

ex-post gross returns. In particular, we recalibrate the portfolio every 6 month

(125 working days) using the last 10 years daily approximated observations (2600

working days). The objective function is (17) where the reward measure v(x′ẑ)

is given by formula (21) and the risk measure q(x′ẑ) = AV aR0.05(x′ẑ−E(x′ẑ))

is the average value at risk of the centered approximated portfolio. We con-

sider three possible strategies based on different association measures. The

first strategy (SpeaAVaR) is based on the Spearman concordance measure (i.e.

ρ1 = ρ2 = ρS ); the second strategy (PearAVaR) is based on the Pearson corre-

lation measure (i.e. ρ1 = ρ2 = cor); the third strategy (GiniSpeaAVaR) uses as

ρ1 the Gini concordance measure and as ρ2 the Spearman concordance measure

(i.e. ρ1 = γG, and ρ2 = ρS). Then we value the effects in portfolio selection

of the two different dimensional reductions. In particular, we compare the ex-
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Figure 3: Ex-post final wealth after dimensionality reduction. Ex-post final wealth obtained

with three portfolio strategies (PearAVaR, SpeaAVaR, GiniSpeaAVaR) considering returns

approximated either with dimensional reduction derived from Pearson correlation measure

(namely, Approx. Pear) or with the reduction derived from O2,=1 correlation measures

(namely, Approx. O2F).

post wealth sample paths of the three strategies obtained considering either the

dimensional reduction derived from (conditional and unconditional) Pearson

correlation measure or the reduction derived from (conditional and uncondi-

tional) O2,=1 correlation measure. The results of this comparison are reported

in Figure 3.

Figure 3 shows that the unique two strategies that present a wealth greater

than one at the end of the last three years of crisis are those based on con-

cordance measures (GiniSpeaAVaR and SpeaAVaR) obtained considering the

reduction derived from (conditional and unconditional) O2,=1 correlation mea-

sures. Thus, these results partially confirms the results of Section 4.1. Moreover,
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we have proved that the dimensional reduction of large scale portfolio problems

could have a substantial impact in portfolio choices, and future researches should

account of different linear correlation measures to reduce the dimensionality of

the portfolio problems.

5. Conclusion

In this paper we have discussed when, and how, we can use association mea-

sures in portfolio problems. First of all, we have characterized the semidefinite

positive association measures distinguishing those that can be used as uncer-

tainty measures in portfolio problems. Then we have discussed the use of as-

sociation measures with respect to the portfolio performance optimization and

the portfolio dimensionality reduction. In particular, we have formulated new

portfolio selection problems that use the association between portfolios and the

stochastic bounds of the market. To deal with large scale portfolio problems,

we have discussed the possibility of using different linear correlation measures

to reduce the dimensionality of the problems. Finally, we have proposed an em-

pirical analysis of the problems discussed. All the empirical experiments have

shown that the use of different association measures have an important impact

on portfolio performance and on portfolio dimensionality reduction.

Appendix

Proof of Lemma 1. Cauchy–Schwarz inequality guarantees property one and

two of association measures, i.e. ρ : H × H → [−1, 1] and ρ(X,X) = 1;

ρ(X,−X) = −1. Since ρ(X, Y ) can be seen as an inner product of vectors

then from the Gram representation theorem we deduce that any association

matrix is semidefinite positive. Properties 3 and 4 of association measure are a

logical consequence of < vX , vY >=< vY , vX > (and it follows the symmetry)

and < v−X , vY >=< vX , v−Y >= − < vX , vY > .
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Proof of Theorem 1. Suppose ρ to be a semidefinite association measure. Then

any association matrix Q = [ρi,j ] should be semidefinite positive. Consider the

association matrix defined on all the random variables belonging to H1 that we

suppose are n). From the Gram representation theorem we know that an n-

dimensional association matrix Q = [ρi,j ] is semidefinite positive if, and only if,

there exists n vectors v1, v2, ..., vn, in a vector space V such that ρi,j =< vi, vj >.

Since ρ : H1 × H1 → [−1, 1] and ρ(X,X) = 1 then < vi, vi >= 1 and it is

equivalent to say ρi,j = <vi,vj>√
<vi,vi><vj ,vj> . Moreover property 4 of association

measures implies < v−X , vY >=< vX , v−Y >= − < vX , vY >. If X and Y are

independent random variables ρ(X, Y ) = 0 and thus < vX , vY >= 0.

Proof of Proposition 1. We first prove Case 1. Observe that for any constant

a, b Vp/2(aX + b) = aVp/2(X) + b and the functional

cv(X, Y ) = E
((

X − Vp/2(X)
)<p/2> (

Y − Vp/2(Y )
)<p/2>

)<min(2/p,2)>

is an inner product in the Lp space that satisfies the properties of Lemma 1. In

addition, cv(X,Y ) = cv(Y,X) and cv(aX + b, Y ) = cv(X, Y )a. Moreover, if X

is independent of Y , then

cv(X, Y ) = E
((

X − Vp/2(X)
)<p/2>

)<min(2/p,2)>

E
((

Y − Vp/2(Y )
)<p/2>

)<min(2/p,2)>

= 0.

If |ρp(X, Y )| = 1, then |cv(X,Y )| =
∥∥X − Vp/2(X)

∥∥
p

∥∥Y − Vp/2(Y )
∥∥

p
, and

then there exists a real c such that
(
X − Vp/2(X)

)<p/2> = c
(
Y − Vp/2(Y )

)<p/2>and

the thesis follows. Regarding Case 2, observe that when Y = X a.s. then X1 =

Y1 a.s. and consequently τK,p(X, X) = 1. As a matter of fact, for any xn ∈ Q;

Pr(X1 ≤ xn, Y1 > xn) + Pr(X1 > xn, Y1 ≤ xn) = 0. Consider Ω̃ = (∪nΩn)C

(where Ωn = {w|X1(w) ≤ xn, Y1(w) > xn or X1(w) > xn, Y1(w) ≤ xn}). Then

Pr(Ω̃) = 1 and X1(w) = Y1(w) for any w ∈ Ω̃ (otherwise if X1(w) > Y1(w) –

or X1(w) < Y1(w) – there exists xn ∈ Q such that X1(w) > xn ≥ Y1(w) – or

X1(w) ≤ xn < Y1(w) – against the assumption that w ∈ Ω̃ ). Moreover since

(X −X1) and (Y − Y1) are symmetric random variables E
(
(X −X1)

<p/2>
)

=
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E
(
(Y − Y1)

<p/2>
)

= 0 and when X and Y are independent random variables

τK,p(X, Y ) = 0. All the other properties of Lemma 1 are satisfied by the mea-

sures τK,p(X, Y ). Regarding Case 3, the proof is similar to the cases 1 and 2.

Observe only that

E
(
(X<p/2> − E(X<p/2>|=1))(Y <p/2> − E(Y <p/2>|=1))

)
=

= E(X<p/2>Y <p/2>)− E(E(X<p/2>|=1)E(Y <p/2>|=1)).

Thus, if X is independent by Y for any A ∈ =1;

∫
A

X<p/2>Y <p/2>d Pr =
∫

A
X<p/2>d Pr

∫
A

Y <p/2>dPr =

=
∫

A
E(X<p/2>|=1)d Pr

∫
A
E(Y <p/2>|=1)dPr

then Op(X,Y ) = E
(
(X<p/2> − E(X<p/2>|=1))(Y <p/2> − E(Y <p/2>|=1))

)
=

0.

Proof of Proposition 2. Under these assumptions the matrix Qρ,σ = [σzj σziρi,j ] =

[< vzi , vzj
>]. Moreover, from bilinearity we deduce x′Qρ,σx =< vx′z, vx′z > .

If we have two portfolios x′z and y′z with the same distribution

y′Qρ,σy =< vy′z, vy′z >= σ2
y′z = σ2

x′z =< vx′z, vx′z >= x′Qρ,σx,

where we used the invariance in law of the uncertainty measure σX =
√

< vX , vX >.

Thus dρ(x′z) is invariant in law.

Proof of Corollary 1. Let us consider ρ(X,Y ) =
∑m

i=1 aiρi(X, Y ) such that

ai ≥ 0;
∑m

i=1 ai = 1. Clearly ρ(X, Y ) is a concordance (association) measure

if all ρi(X,Y ) satisfy the seven (five) properties of concordance (association)

measures. Similarly, if ρi for i = 1, ..., m are semidefinite positive association

measures, then also ρ is semidefinite positive because any association matrix

Q =
∑m

i=1 aiQi of ρ is the convex combination of the association matrixes

Qi of the measures ρi. Observe that if ρi(X, Y ) i = 1, ...,m are linear cor-

relation measures < v
(i)
X , v

(i)
X >i≥ 0 and < v

(i)
X , v

(i)
X >i= 0 if and only if

X is a constant. Thus < X − E(X), X − E(X) >≥ 0 and it is equal to
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zero if and only if X − E(X) = 0. Since < v
(i)
X , v

(i)
Y >i=< v

(i)
Y , v

(i)
X >i then

〈X − E(X), Y − E(Y )〉 = 〈Y − E(Y ), X − E(X)〉 . In addition, for any a, b ∈ R
and X, Y, Z ∈ H, < v

(i)
aX+bZ , v

(i)
Y >i= a < v

(i)
X , v

(i)
Y >i +b < v

(i)
Z , v

(i)
Y >i, thus

< aX + bZ, Y >= a < X, Y > +b < Z, Y > and < X, Y > is an inner product

in the class of centered random variables belonging to H.

Proof of Proposition 3. The matrix Qρ,σ is still semidefinite positive since

x′Qρ,σx = y′Qρy ≥ 0 where y = (x1σz1 , x2σz2 , . . . , xnσzn)′. Moreover, Bauerle

and Müller (2006) have proven that in a finite probability space where the proba-

bility Pr is uniform, any invariant in law, convex measure D (i.e. D (aX + (1− a)Y ) ≤
aD(X)+ (1− a)D(Y ) for any a ∈ [0, 1]) is consistent with choices of risk-averse

investors. The measure x′Qρ,σx (or its estimator x′Q̃ρ,σx with semidefinite pos-

itive matrix Q̃ρ,σ) is convex in the class of portfolio gross returns x′z since the

function f(x) = x′Qρ,σx (f(x) = x′Q̃ρ,σx) is a convex function. Then, for any

a ∈ [0, 1] :

(ax + (1− a)y)′Qρ,σ (ax + (1− a)y) ≤ ax′Qρ,σx + (1− a)y′Qρ,σy.

The measure x′Qρ,σx (or its estimator x′Q̃ρ,σx) is strictly convex when matrix

Qρ,σ (Q̃ρ,σ) is definite positive. According to Bauerle and Müller (2006), if w′z

is dominated in the sense of the convex order by y′z, then w′Qρ,σw ≤ y′Qρ,σy.

Proof of Corollary 3. Any uncertainty measure σX =
√

< vX , vX > in H de-

rived from a semidefinite positive association measure ρ should satisfy σaX =

aσX for any a > 0 (P2). Since for any semidefinite positive concordance measure

ρC and for any increasing function h ρC(X, h(X)) = <vX ,vh(X)>√
<vX ,vX><vh(X),vh(X)>

=

1, then for Cauchy-Schwarz inequality vh(X) = bvX for a given b > 0. On

the other hand, if σX is derived from ρC for any a > 0, < vX , vaX >= aσ2
X

and thus < avX − vaX , avX − vaX >= 0 that implies avX = vaX . Now for

any p > 1 and for any increasing function h that is homogeneous of degree

p i.e. h(cX) = cph(X), let us consider b > 0 such that vh(X) = bvX . Then

32



vh(bX) = bpvh(X) = bp+1vX but we also get vh(bX) = bvbX = b2vX . Thus it must

be b = 1 and vh(X) = vX . Consider a, p > 1 and let X be a bounded random vari-

able. Given hn(X) = (aX)<1+ p
n > then E (|hn(X)− aX|) → 0. Therefore from

the Fatou property a2 < vX , vX >≤ lim inf < vhn(X), vhn(X) >=< vX , vX >

against the hypothesis a > 1. We deduce the thesis and σX cannot be derived

from a semidefinite positive concordance measure ρC .
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