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Abstract: This paper proposes an ex-post comparison of portfolio selection strategies. These are 
applied to certain preselected assets among about ten thousand stocks on the global market. In 
particular, we preselected a few assets for each portfolio selection problem, taking into account 
different return characteristics. The preselecting criteria take into account the joint Markovian 
behavior of the returns; furthermore, they consider the assets who optimize the association with 
market stochastic bounds, having the highest ex-ante reward-risk performance. The results 
obtained with different pre-selection criteria are merged in order to identify  assets with common 
characteristics which are appealing for investors. The impact of assets pre-selection on the 
portfolio choices is also studied. In particular, we compare the performance of different strategies 
that use or do not use the preselecting criteria. We finally propose the comparison of the ex-post 
final wealth obtained with the optimization of several reward-risk functionals that use the 
stochastic bounds of the preselected assets. For every comparison, we assume that the returns 
follow a non-parametric Markov chain, where the investors recalibrate their portfolios on a weekly 
basis. 
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1. Introduction 

The purpose of this paper is twofold: we evaluate the 
effects of a sophisticated asset pre-selection 
methodology and we propose certain portfolio 
strategies that use market stochastic bounds. We 
model the return portfolios with a Markov chain. 
Under this distributional hypothesis, we preselect up 
to 30 assets among about ten thousand stocks on the 
global market. The selection is limited to 30 assets 
only, because we want to emphasize the pre-selection 
effects. The introduced strategies also allow us to 
explain the very high returns that could not be 
explained with the efficient market hypothesis (see 
Fama, 1970). Moreover, we evaluate the impact of 
using different types of distances between optimal 
portfolio and market stochastic bounds. Therefore, we 
compare the ex-post performances of certain proper 
portfolio strategies. 
In this work, we take into consideration a portfolio 

selection procedure divided into three phases. The 
paper focuses in particular on the study of the first and 
last phases. In the first phase, we preselect a few 
assets that satisfy certain performance criteria. 
Moreover, we define “good” assets considering 
performance ratios based on a Markovian evolution of 
the assets (see Angelelli and Ortobelli, 2009a, 2009b) 
or simply assuming equi-distributed historical 
observations. In the second phase of the portfolio 
selection, the dimensionality of the preselected assets 
is reduced, identifying a few common factors to 
approximate the asset returns. In particular, the 
principal component analysis (PCA) is applied to the 
Pearson correlation matrix. This matrix is computed 
on the Markovian forecast of future returns. Thus, the 
returns are approximated by regressing on the first 
few components obtained with the PCA. This second 
phase of the analysis is discussed with more detail in 
Angelelli and Ortobelli (2010). In the third and last 
phase, we apply the model to real data concerning 14 
countries. In particular, we first evaluate the impact of 
the pre-selection criteria by comparing the 
performances of different strategies based, or not 
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based, on such preselecting criteria. Secondly, we 
assess certain portfolio selection strategies based on 
the optimization of functionals of future wealth and of 
market stochastic bounds. The portfolio strategies 
dealt with in the paper are based on an estimate of the 
returns distribution at future times; thus, we found a 
substantial difference between portfolio selection 
strategies developed using their Markovian evolution 
compared to strategies based on the assumption of 
equi-distribution of return historical observations. To 
deal with the complexity of portfolio selection 
problems based on the Markovianity of the gross 
returns, we use an heuristic for global optimization 
(see Angelelli and Ortobelli, 2009a). 
The paper is organized as follows. In Section 2, we 
discuss the first phase of the portfolio selection 
procedure, illustrating how to model a non-parametric 
Markov chain and formalizing the pre-selection 
criteria. In Section 3 and 4, we discuss the third phase. 
In particular, Section 3 shows the impact of portfolio 
pre-selection on the U.S. stock market; Section 4 
compares different strategies that use market 
stochastic bounds on the global market. The last 
Section briefly summarizes the paper. 

2. Pre-selection criteria with non-
parametric Markov processes 

In this section we deal with the portfolio selection 
problem. Our analysis is applied to n risky assets with 
gross returns 1 1, 1 , 1[ , , ]t t n tz z z+ + + ′= … . We assume that 

either returns are simply equi-distributed or the 
portfolio process is described by a homogeneous 
Markov chain with N states. In this last case, 
approximation of future behavior is based on the 
implicit assumption that all portfolios of returns 
follow a Markov chain defined on a filtered 

probability space ( )( )0
, , ,t t

P
≤ ≤∞

Ω ℑ ℑ . In this context 

filtration is fundamental, since the stopping times of 
the filtration are used in the pre-selection framework. 
The Markovian hypothesis serves to forecast future 
behavior of wealth. All of the analyses in the dynamic 
framework are performed based on forecasted wealth. 
The vector of the positions taken in the n risky assets 
is denoted by 1[ , , ]nx x x ′= …  and the portfolio return 
during the period [t, t+1] is given by 

( ), 1 1 , 1
1

n

x t t i i t
i

z x z x z+ + +
=

′= =∑ . In particular, we assume 

that investors want to maximize the performance of 

their choices at a given future date T. 
The classic portfolio selection problem, in which no 
short sales are allowed, can be represented as the 
maximization of a given performance applied to the 
random portfolio of gross returns ( ), 1x tz + . Since no 

short sales are allowed, the portfolio of weights 
belongs to the (n-1)-dimensional simplex 

{ }1R | 1; 0n n
i i iS x x x== ∈ = ≥∑ . In particular, we 

suggest selecting those assets that satisfy some 
optimality criteria, considering several properties of 
wealth behavior. The factors we should consider as 
preselecting criteria are: 
1) Timing (i.e., we consider that investors want to 

maximize the time it takes for wealth to reach a 
given lower bound and minimize the time it takes 
for wealth to reach a given upper bound). 

2) Markovian behavior of wealth. 
3) Asymptotic behavior of wealth. 
4) The consistency with investors’ preferences. 
5) The association with market stochastic bounds. 
With regards to this last point, we recall that the upper 
and lower market stochastic bounds among m assets 
with returns iz  are respectively given by the maximum 

and minimum of the marginal returns (i.e., maxi m iz≤  

and mini m iz≤ ) when no short sales are allowed (for 
further details, see Ortobelli and Tichy, 2010). In fact: 

( ), 1min maxi m i i m ix tz z z≤ ≤+≤ ≤  

for any time t and for any vector of portfolio weights x 

belonging to { }1R | 1; 0m m
i i iS x x x== ∈ = ≥∑ . As 

discussed by Ortobelli and Tichy (2009 and 2010), 
investors want to maximize the association with the 
upper stochastic bound and minimize the association 
with the lower bound. Concordance measures are 
generally used to measure the concordance / 
dependence / association between random variables 
(see Nelsen, 2006). We recall that two random 
variables (e.g., X, Y) with independent replications, 
(X1, Y1) and (X2, Y2), are concordant if X1<X2 (X1>X2) 
implies Y1<Y2 (Y1>Y2). Similarly, two variables are 
discordant if X1<X2 (X1>X2) implies Y1>Y2 (Y1<Y2). 
Gini and Kendall coefficients are traditional 
concordance measures. Clearly, investors want: 
1) their portfolios to be as much as possible 

concordant with the upper stochastic bound, since 
they want to increase their wealth; 

2)  their portfolios to be as much as possible 
discordant with the lower stochastic bound, since 
they want to reduce their losses. 

Therefore, we take into account these investor 
preferences to select a limited number of assets. 
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The approach to future wealth can generally be 
considered static or dynamic: 
i) with the static approach, we assume that 

historical observations are equally distributed. 
Moreover, the investor maximizes a functional of 
future wealth that is independent from his 
temporal horizon [0, T], i.e. he solves problems of 
the following type: 

( )( ), 1maxx S x tf z∈ +  

ii)  With the dynamic approach, we consider that 
gross returns follow a Markov chain. Therefore, 
the investor maximizes a functional of future 
wealth, that should be determined under this 
hypothesis, i.e. he solves problems of the 
following type: 

( )( )( )maxx S T xf W z∈ , 

where ( )( )T xW z  is the predicted wealth obtained after 

T working days of investing in the portfolio 

( ) 'xz x z= . 

Starting from the static approach (i), we represent the 
classic myopic approach, which does not use a time 
evolution of the wealth process. In the dynamic 
context (ii), we consider instead all the admissible 
wealth Markovian processes ( ) ( ) 0( ) { ( )}x t x tW z W z ≥= . 

They are defined on the filtered probability space that 
depends on an initial portfolio of weights x S∈ . 
In the pre-selection criteria of our work, we consider 
both approaches. We select certain assets assuming 
approach (i) and other assets considering approach 
(ii). Then, the union of all these assets is used for 
portfolio selection. 
In order to select a few desirable assets, both 
selection approaches are based on three steps:  
● Step 1: a desirable ordering criterion is taken into 

account. 
● Step 2: the assets are ordered by this ordering 

criterion. 
● Step 3: the 20 best assets that satisfy the dynamic 

approach criteria and the 10 best assets that 
satisfy the static approach criteria are selected.  

We decided to use a maximum of 30 preselected 
assets for two main reasons: to emphasize the impact 
of pre-selection, and to take into account the point of 
view of a “small” investor. The first point will be 
explained in Section 3, where we show that with a 
few preselected assets we obtain much more wealth 
than with the full diversified portfolio. On the other 
hand, we refer to the paradigm about diversification, 
showing that even by using a few preselected assets 

we were able to reduce the investor’s risk during a 
period of crisis. 
In order to deal with the pre-selection methodology, 
we first argue how to approximate the Markovian 
evolution of wealth (Section 2.1), then we discuss 
three ordering criteria with the static approach 
(Section 2.2) and five criteria with the dynamic 
approach (Section 2.3). 

2.1 The Markovian evolution process  

In order to consider the Markovian behavior of 
wealth, we assume that each portfolio follows a 
Markov chain.  
Let ( ), ( ),(min ; max )k x k k x kz z  be the range of the 

portfolio gross returns, where ( ),x kz  is the k-th past 

observation of the portfolio ( )xz . Without a loss of 

generality, we assume that the N states ( )
( )
i
xz  of 

portfolio gross return are ordered as follows: 
( ) ( 1)
( ) ( )
i i
x xz z +>  for 1,..., 1i N= − . Since we want to obtain 

a recombining tree of the Markov chain, we first 
divide the portfolio support ( ), ( ),(min ; max )k x k k x kz z  in 

N ( ), ( ), 1( ; )x i x ia a −  intervals, where: 
/

( ),
( ), ( ),

( ),

min
max ,    0,1, ,

max

i N

k x k
x i k x k

k x k

z
a z i N

z

 
= ⋅ =  
 

…  

This measure is decreasing with index i. We then 
compute the return associated with each state as the 
geometric average of the extremes of the interval 

( ), ( ), 1( ; )x i x ia a − , that is: 

( )1 2
2

( ),( )
( ) ( ), ( ), 1 ( ),

( ),

max
max

min

i
N

x ki
x x i x i x k

k
x k

z
z a a z

z

−

−

 
= =   

 
, 

where: i = 1, 2, …, N. 
Consequently: ( ) (1) 1

( ) ( )
i i
x xz z u −= , where: 

1/

( ),

( ),

max
1

min

N

x k

x k

z
u

z

 
= >  
 

. 

Let us assume that the initial wealth 0W  at time 0 is 

equal to 1, while for each possible wealth tW  at time t 

we have N possible different values ( )
1 ( )

i
t t xW W z+ =  at 

time t+1 (i = 1, 2, …, N). Seeing the recombining 
effect of the Markov chain, we have 1 ( 1)k N+ −  

possible values after k steps of wealth ( )( )k xW z . They 

are given by ( , ) (1) (1 )
( ) ( )( )i k k i
x xw z u −=  ( 1,...,( 1) 1i N k= − + ), 

where the i-th node at time k of the Markovian tree 
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corresponds to wealth ( , )
( )
i k
xw . Moreover, all possible 

values of random wealth, ( )( )k xW z , can be stored in a 

matrix with k columns and 1 ( 1)k N+ −  rows resulting 

in 2( )O Nk  memory space requirement. Since we 
assume a homogeneous Markov chain, the transition 
matrix ,[ ]i jP p=  does not depend on time and the 

entries ,i jp  are estimated using the maximum 

likelihood estimates ,

( )
ˆ

( )
ij

i j
i

K
p

K

π
π

= , where ( )ij Kπ  is 

the number of observations (out of K observations) 
that transit from the i-th state to the j-th state and 

( )i Kπ  is the number of observations (out of K 
observations) in the i-th state (for the statistical 
properties of these estimators, see D'Amico, 2003). 
Following the idea of Iaquinta and Ortobelli (2006), 
we can compute the distribution function of future 
gross returns. In particular, the ( 1) 1N k− +  

dimensional vector ( )kp  (representing the 
unconditional distribution at a given time k (k = 0, 1, 
2, ..., T) of wealth ( )( )k xW z ) can be computed by 

means of a sequence of matrixes { }( )

0,1,...,

k

k T
Q

=
, where 

( ) ( )
, 1 ( 1) 1

1

[ ]k k
i j i N k

j N

Q q ≤ ≤ − +
≤ ≤

=  and ( )
,
k

i jq  is the unconditional 

probability to obtain wealth ( , )
( )
i k
xw  and to be in the 

state ( )
( )

j
xz

 at time k . In particular, (0)
1[ ,..., ]NQ p p= , 

where ip  is the unconditional probability to be in the 

i-th state at time 0. Thus, (0) (0)1 Np Q= = ⋅1 , where 

N1  is the unity vector column. In general, for 

1, 2, ...,k T= , the vector ( )kp  is given by 
( ) ( )k k

Np Q= ⋅1 , where ( )kQ  is recursively defined as 
( ) ( 1)( )k kQ Q P−= ⋅diagM . diagM is a linear operator 

defined for any ,m n N∈  as diagM: 
( )1m n nmnR R + −→ . It is associated with any m n×  

matrix [ ]ijA a=  the ( 1)m n n+ − ×  matrix obtained by 

simply shifting down the j-th column by ( 1)j −  rows 
(for further details see Iaquinta and Ortobelli, 2006, 
and Angelelli and Ortobelli, 2009a). 
Matrix ( )kQ  is called unconditional evolution matrix 
of the Markov chain or, simply, evolution matrix. The 
algorithm used to compute probabilities has a 
computational complexity of ( ³ ²)O N k . As shown in 
Angelelli and Ortobelli (2010), future wealth 

( )( )T xW z  is generally better approximated by a stable 

non-Gaussian law. This suggests that markets are not 
as efficient as the efficiency hypothesis states. 

2.1.1 Consequences of the Markovian hypothesis 

When we assume that the portfolios follow a Markov 
chain, we can distinguish different types of possible 
strategies.  
According to the definition given in Angelelli and 
Ortobelli (2009b), we call OA expected utility the 
above functional ( )( ( ( )))T xE u W z  when it is computed 

under the assumption that the gross return of each 
portfolio follows a Markov chain with N states. The 
OA expected utility is given by: 

( ) ( )
( ) ( )

ˆ( ( ( ))) ( ) T
T x T x NE u W z u W z Q= ⋅ ⋅ =1

   

( ) ( )
( )

ˆ ( ) T
xu W z p= ⋅ ,  (1) 

where (1, ) (( 1) 1, )
( ) ( ) ( )

ˆ ( ) ,...,T N T T
T x x xW z w w − + =    is the 

( 1) 1N T− +  dimensional vector of the final wealth 

and ( ) (1, ) (( 1) 1, )
( ) ( ) ( )

ˆ ( ) ( ),..., ( )T N T T
T x x xu W z u w u w − + =    is the 

utility evaluated on the final wealth. Formula 10 is a 
logical consequence of the methodology that describes 
the Markovian tree. As a matter of fact, 

( ) ( )T T
Np Q= ⋅1  gives the distribution of the final 

wealth.  
Angelelli and Ortobelli (2009b) have shown that 
standard optimization algorithms are not adequately 
suited to solve the global optimization problem of OA 
expected utility. Thus, we use the same optimization 
heuristic proposed by Angelelli and Ortobelli (2009a) 
to solve portfolio optimization problems. Starting 
from an initial feasible portfolio solution, x , the 
heuristic algorithm tries to iteratively update the 
current solution with a better one. Improving 
solutions, if any, are searched on a predefined grid of 

points fixed on the directions ix e−  ( )1, 2, ...,i n= , 

where x is the current portfolio and ie  is the portfolio 
where the share of asset i is equal to 1 and all other 
assets have share equal to 0. If a better solution is 
found on a search direction, the current solution is 
updated and the search continues from the new one. If 
none of the directions provides an improved solution, 
the search ends. The main advantages of this 
algorithm are the following (for more details, see 
Angelelli and Ortobelli, 2009a): 
1) The algorithm allows the global optimum to be 

approximated with a given error, when the 
optimum is unique. 

2) The algorithm allows the whole simplex to be 
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explored. 
3) The computational complexity is much less than 

that of classic algorithms for global optimum such 
as Simulated Annealing type algorithms (see 
Leccadito et al., 2007, and the references therein). 

2.2 Pre-selection criteria (static approach) 

With the pre-selection criteria of the static approach 
we only take into account the consistency of 
investors’ preferences and the association with the 
market stochastic bounds. In particular, we order the 
assets considering the following three criteria: 
1) wealth obtained in the last 120 working days, i.e., 

the assets are ordered with respect to the ratio: 

120

t

t

P

P−

, 

where tP  and 120tP−  are, respectively, the adjusted 
prices at time t and t-120 (where 120 working 
days are about six months of data); 

2) the Sharpe ratio: 

( )
( ).

i f

i

E z z

St dev z

−
, 

where the mean and the standard deviation of the 
i-th asset are approximated by the empirical mean 
and standard deviation of the last 120 working 
days (we assume that the riskless is null, that is 

1fz = ): 

( )
120

,
1

1

120i i t
t

E z z
=

≅ ∑ , 

and: 

( ) ( )( )
0.5120

2

,
1

1
.

120i i t i
t

St dev z z E z
=

 ≅ − 
 

∑ . 

3) the Gini performance ratio: 
( )

( )
,max

1.1 ,min
i i m i

i i m i

z z

z z

γ
γ

≤

≤+
; 

this ratio is based on the Gini γ  concordance 
measure; the sample estimation of this measure is 
given by: 

( ) 1 12
1

1
, 1

2

n

i i
i

X Y p q n p q
n

γ
=

= − − − − −
 
 
 

∑ , 

where n = 120 is the number of observations, pi 
and qi are, respectively, the ranks of the random 
variables X and Y. 

The first two criteria are consistent with choices of 
non-satiable investors. While maximizing the Gini 

performance ratio, we maximize the concordance 
between the portfolio and the upper stochastic bound 
and we minimize the concordance between the 
portfolio and the lower stochastic bound. 
Using these three criteria, we preselect ten desirable 
assets for nonsatiable investors. In particular, the 
choice includes the first ten assets, among m, with the 
best common performance measures (Sharpe ratio, 
wealth obtained in the last six months, and Gini 
performance ratio). 

2.3 Pre-selection criteria (dynamic approach) 

With the pre-selection criteria of the dynamic 
approach we take into account the consistency with 
investors’ preferences, the timing of the choices, the 
association with market stochastic bounds, and the 
Markovian and asymptotic behavior of wealth. In 
particular, we assume that each portfolio of returns 
follows a Markov chain. Then, we preselect assets 
considering the following five ordering criteria: 
1) The expected power utility: 

( )( )( )T iE u W z ;  (2) 

this is the predicted wealth ( )T iW z obtained after 

T = 20 working days investing in the i-th asset 
(for any i =1, 2, …, n). In formula (2) 

( )
gW

u W
g

= , with g = 0.9. 

2) The Sharpe ratio: 

( )( )
( )( )

1

. .
T i

T i

E W z

St dev W z

−
, 

where ( )T iW z  is the predicted wealth obtained 

after T = 20 working days investing in the i-th 
asset (for any i = 1, 2, …, n). 

3) The Pearson performance ratio, based on the 
Pearson linear correlation (τ): 

( ) ( )( )
( ) ( )( )
, max

1.1 , min
T i T i m i

T i T i m i

W z W z

W z W z

τ
τ

≤

≤+
. 

4) The timing ratio: 
( )
( )

1

2

E

E

π
π

, 

where 1π  and 2π  are two stopping times of the 
filtration defined as: 

( ) [ ] ( ){ }( )1 min ,inf 0, 0.95i k iz T k T W zπ = ∈ ≤
 

and 

( ) [ ] ( ){ }( )2 min ,inf 0, 1.2i k iz T k T W zπ = ∈ ≥ . 
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These stopping times give the first time 
(belonging to [0, T]) that wealth produced by the 
i-th asset reaches, respectively, the bounds 0.95 
and 1.2. 

5) The OA-stable ratio:  

( )

( ) ( )( )( )
T iW z

T i T iETL W z E W zβ

δ

−
, 

where ( )T iW zδ  is the location parameter of the best 

quantile, stable Paretian approximation of the 
wealth ( )T iW z , the denominator ETLβ  (expected 

tail loss or average value at risk for 0.05β = ) is 
computed under this distributional assumption 
using the Stoyanov et al. algorithm (2006). 

Therefore, we choose the first 20 assets (among m) 
with the best common performance measures of 
predicted wealth: expected power utility, Sharpe, 
association type ratio, timing ratio and stable ratio. 
Together with the 10 assets selected with the static 
approach, the total of pre-selected desirable assets is 
between 20 and 30. As a matter of fact, some assets 
could be selected with both approaches (static and 
dynamic). 

3 Impact of pre-selection criteria 

In this section, we evaluate the impact of pre-selection 
criteria. In our analysis, we considered all the equities 
active during the last six months (120 working days) 
on the following 14 markets: Hong Kong, Shanghai, 
Singapore, Taiwan, Tokyo Stock Exchange, Nasdaq, 
NYSE, Frankfurt, Milan, London, Euronext 
Amsterdam, Euronext Paris, Euronext Lisbon, 
Euronext Brussels. The data source is 
DATASTREAM. We recalibrated the portfolio every 
month (T = 20 working days) to be consistent with 
dynamic pre-selection analysis. At each recalibration 
time, there are about ten thousand active assets that 
can be selected for the portfolio. The number of assets 
changes at each recalibration time, since market size, 
vacations and rules are different for each market. For 
the evaluation, we only consider observations for the 
last six months, as they are supposed to have the 
highest impact in future choices (as proved by several 
experiments). In order to evaluate the impact of pre-
selection, we ex-post compared the wealth sample 
paths of the following three possible strategies.  
1) The first strategy considers, at each recalibration 

time, all the active assets in the entire group of 
markets. This strategy implies maximum 

diversification: we invest 1/m in each equity, 
where m is the number of the assets.  

2) In the second strategy, pre-selection criteria are 
applied in order to consider the preselected assets 
only. The number of preselected assets is usually 
equal to 30, since the two pre-selection plans 
(static and dynamic) almost never select common 
assets. As parameters of the Markov chain, we use 
N = 9 states and the temporal horizon T = 20. 
Angelelli and Ortobelli 2009a have shown that by 
using N = 9 states and T = 20, it is possible to 
obtain a good approximation of the final wealth 
distribution. Even in this case we consider 
maximum diversification on the preselected assets 
and we invest 1/k (where k is the number of 
preselected assets) in each preselected asset. 

3) Within the third strategy, the best preselected 
assets are still used. On these assets we maximize 

the classical Sharpe Ratio 
( )

( )
' 1

. '

E x z

St dev x z

 −
  
 

 at each 

recalibration time during the last two years. 
In the ex-post analysis we do not consider transaction 
costs. We assume to start with an initial wealth W0 = 1, 
then we define the optimal portfolio with each strategy 
and at each recalibration time. The period considered 
for the ex-post analysis goes from August 15, 2007 to 
July 3, 2010. Lastly, we compute the ex-post wealth 
for each optimal choice, i.e.: 

Wt = Wt-20 * z
ex-post, 

where zex-post is the ex-post gross return observed at 
time t with the choice carried out at time t-20. The 
graph in Figure 1 compares the sample paths of ex-
post final wealth. 

 

Figure 1. Ex-post final wealth process when pre-selection 
applies (recalibration every 20 days). 
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Figure 1 shows the effect of the crisis during the last 2 
years. As a matter of fact, the trend decreases from 
August 15, 2007 to March 15, 2009 (with a loss of 
about 40/50%) and during the months of May and 
June 2010, due to the countries’ risk credit crisis. The 
blue line shows the ex-post wealth with maximum 
diversification among 30 preselected assets. The red 
line shows the ex-post wealth with maximum 
diversification among all assets (about ten thousand). 
The green line shows the ex-post wealth when we 
maximize the Sharpe ratio. 
From Figure 1, we deduce that: 
1) Diversification has a very strong impact on 

portfolio selection;  
2) Pre-selection has a very important impact on 

portfolio choices. 
A surprising result is given by the maximum 
diversification strategy which, alone, gives about 10% 
more of wealth in two years. However, maximum 
diversification among all assets does not consider 
transaction costs, which should considerably affect 
this strategy. The best performance is given when we 
consider pre-selection and diversification together. 
This increases wealth by more than 60%, during the 
two years of the crisis. The effect of diversification is 
amplified if we consider that the worst performance is 
obtained by applying the classic Sharpe ratio on 
preselected assets, since the ambiguity effect is 
prevalent (see Pflug et al., 2010). As a matter of fact, 
the ambiguity risk measures the “modelization risk”. 
In practical terms, this suggests that we should not 
consider a static approach to model the risk. Given the 
above, in the next section we will analyze the effects 
of dynamic strategies on preselected assets. 

4 An ex-post comparison among OA 
portfolio strategies applied to 
preselected assets 

In this section, we propose an ex-post comparison 
among OA strategies that take into account different 
types of distances from stochastic bounds. As for the 
previous analysis, we consider all the assets of the 
above 14 markets. Moreover, we compare the 
performance of three Markovian strategies applied on 
assets preselected among the last year’s data (from 
August 14, 2009 to July 16, 2010). In this analysis, we 
consider N = 9 states of the Markov chain and a 
temporal horizon of T = 20 working days. We 
recalibrate the portfolios every 20 days to reduce the 
computational time of the analysis. In the Markovian 

strategies, we only use observations from the last six 
months; thus we reduce the randomness of the choice 
approximating the preselected assets with a principal 
component analysis (PCA) (for further details about 
the PCA, see Ortobelli and Tichy 2010). This means 
that we preselect no more than 30 optimal assets. The 
PCA analysis is applied to the preselected assets and 
we take into account the first 20 principal components 
(fi, i = 1, …, 20). Then the returns are regressed on 
these factors and the approximated returns are used in 
portfolio selection problems. 
The three strategies are aimed at maximizing the 
following performance ratios: 
1) Absolute distributional distance ratio: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( )

min1

max1

t i it x

t i it x

T

W zW zt

T

W zW zt

F u F u du

F u F u du

+∞

=−∞

+∞

=−∞

−

−

∑∫

∑∫
, 

where ( )( )t xW z
F , ( )maxt i iW zF  and ( )mint i iW zF  are the 

estimated distributions of wealth at time t 
obtained, respectively, from the portfolio ( )xz , the 

upper (maxi zi) and lower (mini zi) stochastic 
bounds. This ratio minimizes the absolute 
distributional distance between the upper 
stochastic bound and the portfolio and maximizes 
the same distance between the portfolio and the 
lower stochastic bound. 

2) Quadratic distributional distance: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

( )

2

min1

2

max1

t i it x

t i it x

T

W zW zt

T

W zW zt

F u F u du

F u F u du

+∞

=−∞

+∞

=−∞

−

−

∑∫

∑∫
 

This ratio takes into account the quadratic 
distributional distance between the stochastic 
bounds and the portfolio. 

3) Compound quadratic distance: 

( ) ( )

( ) ( )

2

( )1

2

( )1

min

max

T

t x t i it

T

t x t i it

E W z W z

E W z W z

=

=

 − 
 
 − 
 

∑

∑
 

Where ( )( )t xW z , ( )maxt i iW z  and ( )mint i iW z  

are the wealth at time t obtained, respectively, 
from the portfolio ( )xz , the upper (maxi zi) and 

lower (mini zi) stochastic bounds. In order to 
maximize this performance ratio, we should 
develop the multivariate Markovian evolution of 
the stochastic bounds and the portfolio following 
the scheme proposed by Angelelli and Ortobelli 
(2010). 
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Figure 2 shows the ex-post comparison among the 
three strategies applied on the preselected assets. 
The blue line shows the results of the absolute 
distributional distance ratio. The green line 
represents the results of the quadratic 
distributional distance, while the red line shows 
the results obtained using the compound quadratic 
distance. 

 

Figure 2. Ex-post final wealth processes comparison 
(portfolio strategies using the stochastic bounds on the 
preselected assets). 

Some of the preselected assets generate very high 
returns. These returns could be partially justified by 
using recent behavioral finance studies on the equity 
premium puzzle (see Barberis and Huang, 2001, 
and Benartzi and Thaler, 1995). However, this 
study is not the main objective of this analysis. The 
compound quadratic distance shows a very high final 
wealth (about 1200% in one year). 97.4% of the assets 
chosen with this strategy are traded in Frankfurt, 
0.64% in Taiwan, 0.64% in Amsterdam, 1% in Paris, 
0.32% in Brussels. Therefore, most of the assets are 
traded in Europe. From these results, we deduce that 
the compound quadratic distance clearly has a greater 
impact than the distributional distance (see Rachev, 
1991). Moreover, all the strategies that use the 
Markovian hypothesis have a significant impact on 
choices and, what is fundamental, on the capacity to 
forecast future evolution of wealth. 

5 Conclusions 

This paper analyzes the impact of Markovianity and 
pre-selection in optimal portfolio choices. We 
discussed how to approximate non-parametric Markov 
processes and showed the impact of both pre-selection 

and diversification on portfolio problems. Lastly, we 
propose an empirical comparison among Markovian 
selection models that consider the distance between 
upper and lower market stochastic bounds. The ex-
post empirical comparison among different 
Markovian strategies shows that compound type 
distances between the stochastic bounds and the 
portfolio can have a bigger impact on portfolio 
selection problems. 
Moreover, all the results obtained on the global 
market show dominating results with respect the 
Sharpe historical approach (see Figure 1). 
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