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Abstract: This paper proposes an ex-post comparison of piortéelection strategies. These are
applied to certain preselected assets among abouthbusand stocks on the global market. In
particular, we preselected a few assets for eactiopo selection problem, taking into account
different return characteristics. The preselectinigeria take into account the joint Markovian
behavior of the returns; furthermore, they consither assets who optimize the association with
market stochastic bounds, having the highest ex-amtvard-risk performance. The results
obtained with different pre-selection criteria anerged in order to identify assets with common
characteristics which are appealing for investdree impact of assets pre-selection on the
portfolio choices is also studied. In particulag eompare the performance of different strategies
that use or do not use the preselecting criteria.f\Wally propose the comparison of the ex-post
final wealth obtained with the optimization of sealereward-risk functionals that use the
stochastic bounds of the preselected assets. ey @omparison, we assume that the returns
follow a non-parametric Markov chain, where thedstors recalibrate their portfolios on a weekly
basis.
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selection procedure divided into three phases. The
paper focuses in particular on the study of th& find
1. Introduction last phases. In the first phase, we preselect a few
assets that satisfy certain performance criteria.
The purpose of this paper is twofold: we evaluate t Moreover, we define “good” assets considering
effects of a sophisticated asset pre-selectiofperformance ratios based on a Markovian evolutfon o
methodology and we propose certain portfoliothe assets (see Angelelli and Ortobelli, 2009a9890
strategies that use market stochastic bounds. Wer simply assuming equi-distributed historical
model the return portfolios with a Markov chain. observations. In the second phase of the portfolio
Under this distributional hypothesis, we preselgot selection, the dimensionality of the preselectezkbias
to 30 assets among about ten thousand stocks on tise reduced, identifying a few common factors to
global market. The selection is limited to 30 assetapproximate the asset returns. In particular, the
only, because we want to emphasize the pre-satecticorincipal component analysi®CA) is applied to the
effects. The introduced strategies also allow us td’€arson correlation matrix. This matrix is computed
explain the very high returns that could not beon the Markovian forecast of future returns. Ttths,
explained with the efficient market hypothesis (segeturns are approximated by regressing on the first
Fama, 1970). Moreover, we evaluate the impact oféw components obtained with the PCA. This second
using different types of distances between optimaphase of the analysis is discussed with more digtail
portfolio and market stochastic bounds. Therefaree, Angelelli and Ortobelli (2010). In the third andsta
compare the ex-post performances of certain propephase, we apply the model to real data concerming 1
portfolio strategies. countries. In particular, we first evaluate the aoipof
In this work, we take into consideration a portoli the pre-selection criteria by comparing the
performances of different strategies based, or not
1



based, on such preselecting criteria. Secondly, wéheir choices at a given future ddte

assess certain portfolio selection strategies based The classic portfolio selection problem, in which n
the optimization of functionals of future wealthdaof ~ short sales are allowed, can be represented as the
market stochastic bounds. The portfolio strategiesnaximization of a given performance applied to the
dealt with in the paper are based on an estimatieeof random portfolio of gross returng,,, .,. Since no
returns qllstrlb_utlon at future times; thus,. we fduan' short sales are allowed, the portfolio of weights
substantlal difference 'betwee.n portfoI!o SeIeCt'_onbelongs to the rtl)-dimensional  simplex
strategies developed using their Markovian evolutio _ N ren o .

compared to strategies based on the assumption o?‘{XDR 12X =1x 2 q In  particular, we
equi-distribution of return historical observatioi®  suggest selecting those assets that satisfy some
deal with the complexity of portfolio selection optimality criteria, considering several propertigfs
problems based on the Markovianity of the grosswealth behavior. The factors we should consider as
returns, we use an heuristic for global optimizatio preselecting criteria are:

(see Angelelli and Ortobelli, 2009a). 1) Timing (i.e., we consider that investors want to
The paper is organized as follows. In Section 2, we maximize the time it takes for wealth to reach a
discuss the first phase of the portfolio selection given lower bound and minimize the time it takes
procedure, illustrating how to model a non-paraioetr for wealth to reach a given upper bound).

Markov chain and formalizing the pre-selection?2) Markovian behavior of wealth.

criteria. In Section 3 and 4, we discuss the thltdse. 3) Asymptotic behavior of wealth.

In particular, Section 3 shows the impact of pdidfo 4) The consistency with investors’ preferences.
pre-selection on the U.S. stock market; Section 4) The association with market stochastic bounds.
compares different strategies that use markeWith regards to this last point, we recall that tipper
stochastic bounds on the global market. The lasand lower market stochastic bounds amom@ssets
Section briefly summarizes the paper. with returnsz are respectively given by the maximum

and minimum of the marginal returns (i.eax_,, z

and min,_,,z ) when no short sales are allowed (for

further details, see Ortobelli and Tichy, 2010)fdat:
mir’|ism Z = Z(x),t+1 = maXsm Z|

In this section we deal with the portfolio selentio for any timet and for any vector of portfolio weights

problem. Our analysis is appliednaisky assets with  pelonging to S={XD R™ X% =1x 2 (} . As

g.ross returnszm:[zm.l,...,;ml] i We .assume that discussed by Ortobelli and Tichy (2009 and 2010),
either returns are simply equi-distributed or thejnvestors want to maximize the association with the
portfolio process is described by a homogeneougpper stochastic bound and minimize the association
Markov chain with N states. In this last case, with the lower bound. Concordance measures are
approximation of future behavior is based on thegenerally used to measure the concordance /
implicit assumption that all portfolios of returns gependence / association between random variables
follow a Markov chain defined on a filtered (see Nelsen, 2006). We recall that two random
probability space(Q,D,(Dt)o«m ,P). In this context Vvariables (e.g.X, Y) with independent replications,

e o o (X1, Y1) and &y, Y>), areconcordant if X;<X; (X;>Xy)
filtration is fundamental, since the stopping tinads implies Yi<Y, (Y:>Y,). Similarly, two variables are

the filtration are used in the pre-selection framsw : . O

, . discordant if X;<X, (X;>X;) implies Yi>Y, (Yi<Yo).
The Markovian hypothesis serves to forecast futures. . o L
behavior of wealth. Al of the analyses in the dyi Gini and Kendall coefficients are traditional

concordance measures. Clearly, investors want:
framework are performed based on forecasted wealtrl.) their portfolios to be as much as possible

The vector of th_e posmon,s taken in "’““"Sk_y assets concordant with the upper stochastic bound, since
is denoted byx=[x,...,x,]' and the portfolio return they want to increase their wealth:

during the period t[ t+1] is given by 2) their portfolios to be as much as possible
discordant with the lower stochastic bound, since

2. Pre-selection criteria with non-
parametric Markov processes

n
=Xz . = 'z ... In particular, we assume )
Ao = Xan ;K GE! P they want to reduce their losses.

that investors want to maximize the performance ofl herefore, we take into account these investor
preferences to select a limited number of assets.



The approach to future wealth can generally bewve were able to reduce the investor’s risk during a

considered static or dynamic: period of crisis.

i) with the datic approach, we assume that In order to deal with the pre-selection methodology
historical observations are equally distributed.we first argue how to approximate the Markovian
Moreover, the investor maximizes a functional of evolution of wealth (Section 2.1), then we discuss
future wealth that is independent from histhree ordering criteria with the static approach
temporal horizon [0T], i.e. he solves problems of (Section 2.2) and five criteria with the dynamic
the following type: approach (Section 2.3).

ma s (Zy0)
i) With the dynamic approach, we consider that 2.1 TheMarkovian evolution process

gross returns follow a Markov chain. Therefore,m order to consider the Markovian behavior of

the investor maximizes a functional of future wealth, we assume that each portfolio follows a
wealth, that should be determined under thiSIVIarkov chain.

hypothesis, i.e. he solves problems of the
following type:

max T (W (7))
where W, (z(x)) is the predicted wealth obtained after

Let (min, z, ;max z,,) be the range of the
portfolio gross returns, where,, , is thek-th past
observation of the portfolioz,,. Without a loss of

generality, we assume that thé¢ states z,) of
T working days of investing in the portfolio
Z =X'Z. z) >z? for i =1,...N - 1. Since we want to obtain

. . - X) Z(x) U | .
Starting from the static approach (i), we represbat . _ ,
classicmyopic approach, which does not use a time a_ r_ecomblnlng t'ree of the _Markov chain, we_ first
evolution of the wealth process. In the dynamicdivide the portfolio suppor(min, z,,; max z, ) in
context (ii), we consider instead all the admissibl N (a, ;a,,; ,) intervals, where:
wealth Markovian processe®(z,,) ={W( z,)} -

i/N
They are defined on the filtered probability sptat Ay, :(Mj [max, Z,, . i=0,1.. N
depends on an initial portfolio of weights]S. T maX Z, « ’

In the pre-selection criteria of our work, we ca®si This measure is decreasing with indexWe then
both approaches. We select certain assets assumiBgmpute the return associated with each statees th
approach (i) and other assets considering approadfeometric average of the extremes of the interval
(ii). Then, the union of all these assets is used f (8.1’ Bpi-) » that is:

portfolio selection. ’ '

portfolio gross return are ordered as follows:
i+1)

In order to select a few desirable assets, both _ maxz, (=)
. i) — —_ X),k
selection approaches are based on three steps: Z((x)) =881 = mkaXZ<x),{ min ] )

e Sep 1: a desirable ordering criterion is taken into Ak

account. where:ii=1, 2, ... N.

e Sep 2: the assets are ordered by this orderingConsequentlyz) = zu™" , where:
criterion. UN
e Sep 3: the 20 best assets that satisfy the dynamic _| maxXz,)

. u=s|————| >1.
approach criteria and the 10 best assets that (mmz(x)kJ
satisfy the static approach criteria are selected. I : .

We decided to use a maximum of 30 preselectedLet us assume that the initial wealt}, at time O is
assets for two main reasons: to emphasize the impacequal to 1, while for each possible wealh at timet
of pre-selection, and to take into account thefpoin  \ye haveN possible different value¥\,, =WZ((;)) at
view of a “small” investor. The first point will be . _ . -
explained in Section 3, where we show that with g time (=12 ..N. Seelng the recombining
few preselected assets we obtain much more Wealtf?ffeCt of the Markov chain, we havé+k(N-1)
than with the full diversified portfolio. On thetwr ~ possible values aftée steps of wealttW, (z,)) . They
hand, we refer to the paradigm about diversifiegtio given byw/"¥ :(Z(()l(;)ku(l—i) (i=1...N- 1K+ J),

showing that even by using a few preselected assets T _ _
where thei-th node at timek of the Markovian tree



corresponds to Wealtlw((‘x'k) Moreover, all possible hon-Gaussian law. This suggests that markets dre no

as efficient as the efficiency hypothesis states.
values of random wealty, (z,,) , can be stored in a yvp

matrix withk columns and.+ k(N —1) rows resulting 2.1.1 Consequences of the Markovian hypothesis

in O(Nk?) memory space requirement. Since wewWhen we assume that the portfolios follow a Markov
assume a homogeneous Markov chain, the transitioghain, we can distinguish different types of polssib

matrix P=[p ;] does not depend on time and thestrategies.
entries are estimated using the maximum According to the definition given imngelelli and
P 9 Ortobelli (2009b), we callOA expected utility the

T (K ; o
 (K) . where 77 (K) is above functionalE(u(W; (Z,,))) when it is computed
75 (K) under the assumptiothat the gross return of each

the number of observations (out Kf observations) portfolio follows a Markov chain wittN states. The
that transit from the-th state to thg-th state and OA expected utilityis given by:

likelihood estimatesp, ; =

71 (K) is the number of observations (out &f E(UW(Z<x)))):U(VQr(Z(X)))EQ(T) [, =
observations) in the-th state (for the statistical ~ -
properties of these estimators, see D'Amico, 2003). =U(W(Z(x)))fp : (1)

Following the idea of laquinta and Ortobelli (2006) ° 1T) (N-1)T+1T) .
we can compute the distribution function of futureWhere Wi (79) = [W‘(X) oW J 's  the
gross returns. In particular, the(N-1)k+1 (N-1)T +1 dimensional vector of the final wealth

dimensional  vector p*  (representing the and u(\/flr(z(x)))z[u(vv(()l()”) UGN s the

unconditional distribution at a given timke(k = 0, 1, jlity evaluated on the final wealth. Formula K04
. T) of wealth W, (z,,)) can be computed by |ogical consequence of the methodology that dessrib
means of a sequence of matri>{ k)} _where the Markovian tree. As a matter of fact,
k=0 Lo p”=QM @, gives the distribution of the final
QY =[] ccu-1pr @and g is the unconditional wealth.

e . _ Angelelli and Ortobelli (2009b) have shown that
probability to obtain wealttm{y? and to bein the  standard optimization algorithms are not adequately
state Z) at timek . In particular,Q© =[p,,..., p, ] suited to solve the global optimization problemOA

- N ] expected utility. Thus, we use the same optimimatio
where p, is the unconditional probability to be in the peyristic proposed by Angelelli and Ortobelli (269
i-th state at timed. Thus, p© =1=Q 1, , where to solve portfolio optimization problems. Starting
1, is the unity vector column. In general, for rom an initial feasible portfolio solutionx, the
_ © : heuristic algorithm tries to iteratively update the
k=12,...T, the vector p s given by current solution with a better one. Improving
p =Q® I, where QY is recursively defined as solutions, if any, are searched on a predefined afri

Q™ = diagM(Q“™® [P). di agMis a linear operator points fixed on the directionx-¢ (i =1,2,...n),
defined for any mnON as diagM  wherexis the current portfolio ané is the portfolio

R™ - R™™" It is associated with anymxn  where the share of asseis equal to 1 and all other
matrix A=[a,] the (m+n-1)xn matrix obtained by assets have share equal_to 0. If a better solu!ﬂ;ion_
simply shifting down th-th column by (j -1) rows found on a search direction, the current solutien i

) i ) updated and the search continues from the newlbne.
(for further details see laquinta and Ortobelli080 e of the directions provides an improved sofytio
and Angelelli and Ortobelli, 2009a). the search ends. The main advantages of this
Matrix Q" is calledunconditional evolution matrix  algorithm are the following (for more details, see
of the Markov chain or, simplyvolution matrix. The  Angelelli and Ortobelli, 2009a):
algorithm used to compute probabilities has dl) The algorithm allows the global optimum to be
computational complexity oD(N3k?2). As shown in approximated with a given error, when the

Angelelli and Ortobelli (2010), future wealth  Optimumis unique. .
Wr(Z(x)) is generally better approximated by a stablez) The algorithm allows the whole simplex to be



explored. performance ratio, we maximize the concordance
3) The computational complexity is much less thanbetween the portfolio and the upper stochastic Boun

that of classic algorithms for global optimum suchand we minimize the concordance between the

as Simulated Annealing type algorithms (seeportfolio and the lower stochastic bound.

Leccaditoet al., 2007, and the references therein). Using these three criteria, we preselect ten dasira
assets for nonsatiable investors. In particulag th
choice includes the first ten assets, amonavith the
best common performance measures (Sharpe ratio,
With the pre-selection criteria of the static agmio  wealth obtained in the last six months, and Gini
we only take into account the consistency ofperformance ratio).
investors’ preferences and the association with the
market stochastic bounds. In particular, we order t
assets considering the following three criteria:

1) wealth obtained in the last 12@rking days, i.e., With the pre-selection criteria of the dynamic
the assets are ordered with respect to the ratio: approach we take into account the consistency with
P investors’ preferences, the timing of the choidés,
Py association with market _stochasth bounds, and the
. . Markovian and asymptotic behavior of wealth. In
where R and R_,, are, respectively, the adjusted particular, we assume that each portfolio of refurn
prices at timet and t-120 (where 120 working follows a Markov chain. Then, we preselect assets

2.2 Pre-selection criteria (static approach)

2.3 Pre-selection criteria (dynamic approach)

days are about six months of data); considering the following five ordering criteria:
2) the Sharpe ratio: 1) The expected power utility:
E(z-z) E(u(V\lr(;))): (2
S.dev(z)

this is the predicted wealttV; (z ) obtained after

T = 20 working days investing in thieth asset
(for any i =1, 2, ..., n). In formula (2)

where the mean and the standard deviation of the

i-th asset are approximated by the empirical mean

and standard deviation of the last 120 working WO

days (we assume that the riskless is null, that is  u(WwW)=—, withg=10.9.
g

. =1):
‘ ) 1 @ 2) The Sharpe ratio:
E(2) 050240 E(W,(z))-1
and: St.dev.(V\lr (Z)) ’

1 & 2\ where W, (z) is the predicted wealth obtained
Sdev(z) D(E}é(;'t E(Z‘)) J ' after T = 20 working days investing in thieth

3) the Gini performance ratio: 3 _?_isetéfor any=1, ? ). fo. based "
e Pearson performance ratio, based on the
y(z,max,,2) P

: ; Pearson linear correlatiog)(
11+ y(z,min,, z)

this ratio is based on the Gint concordance 11T£\/T\l(fv(\j();\/;lrv(\lrm(ar>::|;z);) ))
measure; the sample estimation of this measure is o ) ’ =m
given by: 4) The timing ratio: ( )
1 E(m
y(xvY)_|:nzj|§|p| qi n ]l |p1 Q1|, E(7T2)’
2 where 7z, and 7z, are two stopping times of the
wheren = 120 is the number of observations, filtration defined as:

and g are, respectively, the ranks of the random i ,
variablesx andY. 7(2) m'”(T"“f{kD[O'T”Wk (z)s= 0-95})

The first two criteria are consistent with choiaafs and
non-satiable investors. While maximizing the Gini 7'[2(;):min(T,inf{kD[O,T]‘V\/k(;)z1.%).



These stopping times give the first time  diversification: we invest i in each equity,
(belonging to [0,T]) that wealth produced by the wheremis the number of the assets.
i-th asset reaches, respectively, the bounds 0.9 In the second strategy, pre-selection criteria are

and 1.2. applied in order to consider the preselected assets
5) The OA-stable ratio: only. The number of preselected assets is usually
%(;) equal to 30, since the two pre-selection plans
) (static and dynamic) almost never select common
ETL/? (Wr (4 ) - E(Wr (4 ))) assets. As parameters of the Markov chain, we use

where g, is the location parameter of the best N = 9 states and the temporal horizor= 20.

Angelelli and Ortobelli 2009a have shown that by

gquantile, stable Paretian approximation of the usingN = 9 states and@ = 20, it is possible to

wealthW; (7 ), the denominatoETL, (expected obtain a good approximation of the final wealth
tail loss or average value at risk fgt=0.05) is distribution. Even in this case we consider
computed under this distributional assumption maximum diversification on the preselected assets
using the Stoyanost al. algorithm (2006). and we invest ¥ (wherek is the number of
Therefore, we choose the first 20 assets (amang preselected assets) in each preselected asset.

association type ratio, timing ratio and stabldorat
Together with the 10 assets selected with thecstati S.dev(x'z)
approach, the total of pre-selected desirable sigset o _

between 20 and 30. As a matter of fact, some assets ecalibration time during the last two years.

could be selected with both approaches (static an@ the ex-post analysis we do not consider trafsact
dynamic). costs. We assume to start with an initial wesighe 1,

then we define the optimal portfolio with each &gy
and at each recalibration time. The period consiler
for the ex-post analysis goes from August 15, 2@07
July 3, 2010. Lastly, we compute the ex-post wealth
for each optimal choice, i.e.:

W = Whpo * 2P,

E(x'z)-1
the classical Sharpe Rat[eij at each

3 Impact of pre-selection criteria

In this section, we evaluate the impact of preetala

criteria. In our analysis, we considered all theites st -
y where 2P is the ex-post gross return observed at

active during the last six months (120 working days,. . . . .
on the following 14 markets: Hong Kong, Shanghai,t'met with the choice carried out at tinte20. The

Singapore, Taiwan, Tokyo Stock Exchange, Nasdaihf 17 Figute 1 compaes the sample paths of ex
NYSE, Frankfurt, Milan, London, Euronext '

Amsterdam, Euronext Paris, Euronext Lisbon, 24 :

EuroneXt Brussels' The da‘ta SOl_Jrce I< i [ & OA—Se.tpreseIectedMK\a’(TQDnég) ........................
DATASTREAM. We recalibrated the portfolio every & OA-SetSharpe MIKVIT20 nSg)
month T = 20 working days) to be consistent with R % unsain s novy e

dynamic pre-selection analysis. At each recalibrati T N e SR AR e
time, there are about ten thousand active assats tf : .|
can be selected for the portfolio. The number skts
changes at each recalibration time, since market, si
vacations and rules are different for each market. 121 M4
the evaluation, we only consider observations ffier t 1R
last six months, as they are supposed to have il
highest impact in future choices (as proved by sdve 4 9L
eXperimentS). |n Order tO evaluate the impact @_ pr BB b mnnmenmmnmeasma o - ; b -’ g e
selection, we ex-post compared the wealth sampl : =
paths of the following three possible strategies.
1) The first strategy considers, at each recalibratioi
time, all the active assets in the entire group ofrjgure 1. Ex-post final wealth process when pre-selection
markets. This strategy implies maximum applies (recalibration every 20 days).

(=] R : Pl A ARG TR o S Y

04 i :
15-Aug-2007 31-Jul-2008 17-Jul-2009 03-Jul-2010



Figure 1 shows the effect of the crisis duringltst 2  strategies, we only use observations from thedast
years. As a matter of fact, the trend decreasas fro months; thus we reduce the randomness of the choice
August 15, 2007 to March 15, 2009 (with a loss ofapproximating the preselected assets with a phcip
about 40/50%) and during the months of May andcomponent analysis (PCA) (for further details about
June 2010, due to the countries’ risk credit criSlee  the PCA, see Ortobelli and Tichy 2010). This means
blue line shows the ex-post wealth with maximumthat we preselect no more than 30 optimal assées. T
diversification among 30 preselected assets. THe rePCA analysis is applied to the preselected assets a
line shows the ex-post wealth with maximum we take into account the first 20 principal compuse
diversification among all assets (about ten thodsan (f, i = 1, ..., 20). Then the returns are regressed on
The green line shows the ex-post wealth when wehese factors and the approximated returns areinsed
maximize the Sharpe ratio. portfolio selection problems.
From Figure 1, we deduce that: The three strategies are aimed at maximizing the
1) Diversification has a very strong impact on following performance ratios:

portfolio selection; 1) Absolute distributional distance ratio:

2) Pre-selection has a very important impact on J‘j:z::l F\,vl(qx))(u)_Fvv,(min.;)(u)‘du

portfolio choices.

A surprising result is given by the maximum Feg— :
S P (9) = P ()

where FW(Z( ) F and Fw

X)

diversification strategy which, alone, gives abbdd®o
more of wealth in two years. However, maximum
W (max 7)) (min; 7)
estimated distributions of wealth at time

diversification among all assets does not consider
obtained, respectively, from the portfolizex), the

are the

transaction costs, which should considerably affect
this strategy. The best performance is given when w
consider pre-selection and diversification together
This increases wealth by more than 60%, during the
two years of the crisis. The effect of diversifioatis
amplified if we consider that the worst performaige
obtained by applying the classic Sharpe ratio on
preselected assets, since the ambiguity effect is
prevalent (see Pflugt al., 2010). As a matter of fact, )
the ambiguity risk measures the “modelization risk”
In practical terms, this suggests that we should no
consider a static approach to model the risk. Gthen
above, in the next section we will analyze the @ffe

of dynamic strategies on preselected assets.

upper (maxz) and lower (min z) stochastic
bounds. This ratio minimizes the absolute
distributional distance between the upper
stochastic bound and the portfolio and maximizes
the same distance between the portfolio and the
lower stochastic bound.

Quadratic distributional distance:

oo 2
J:m Zthl F\M(z(x)) (U) - I:Wt(min, z) (U)‘ du

2
+00 T
j—m Ztﬂ FWt(z(X)) (U) - FWt(maX z) (u)‘ du
This ratio takes into account the quadratic
distributional distance between the stochastic

bounds and the portfolio.
3) Compound quadratic distance:

=0 (20) W (min 2)
£ (z) - (max 2

Where V\/t(z(x)), W, (max z) and W, (min, z)

are the wealth at time¢ obtained, respectively,
from the portfolio Zy the upper (maxz) and

4 An ex-post comparison among OA
portfolio strategies applied to
preselected assets

In this section, we propose an ex-post comparison
among OA strategies that take into account differen
types of distances from stochastic bounds. AsHer t

previous analysis, we consider all the assets ef th
above 14 markets. Moreover, we compare the
performance of three Markovian strategies applied o
assets preselected among the last year's data (from lower (min z) stochastic boundsin order to

August 14, 2009 to July 16, 2010). In this analysis

considerN = 9 states of the Markov chain and a

temporal horizon ofT = 20 working days. We
recalibrate the portfolios every 20 days to rediee

computational time of the analysis. In the Markovia

maximize this performance ratio, we should
develop the multivariate Markovian evolution of
the stochastic bounds and the portfolio following
the scheme proposed by Angelelli and Ortobelli
(2010).



Figure 2 shows the ex-post comparison among thand diversification on portfolio problems. Lastlye
three strategies applied on the preselected assefgopose an empirical comparison among Markovian
The blue line shows the results of the absoluteselection models that consider the distance between
distributional distance ratio. The green line upper and lower market stochastic bounds. The ex-
represents the results of the quadraticpost empirical comparison among different
distributional distance, while the red line showsMarkovian strategies shows that compound type
the results obtained using the compound quadratidistances between the stochastic bounds and the

distance. portfolio can have a bigger impact on portfolio
o selection problems. '

G Absolite distributional distance Moreover, all the results obtained on the global
] s il § Y 1 market show dominating results with respect the

Sharpe historical approach (see Figure 1).
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Figure 2. Ex-post final wealth processes comparison
(portfolio strategies using the stochastic bounds on the
preselected assets).

Some of the preselected assets generate very hi
returns. These returns could be partially justifigd
using recent behavioral finance studies on thetgqui

premium puzzle (se®arberis and Huang, 2001, . . S
4B i d Thal 19954 hi European portfolio selection strategies: The
and benartzian aler, 1993However, this ;o1 ovian approach. InFinancial Hedging’ Nova

study is not the main objective of this analysi8eT giance Publishers (eds. P. N. Catlere) 119-152
compound quadratic distance shows a very high fina? B ’

wealth (about 1200% in one year). 97.4% of thetasseAngelelli, E. and Ortobelli, S. (2009b)Maximum
chosen with this strategy are traded in FrankfurtExpected Utility of Markovian Predicted Wealth.
0.64% in Taiwan, 0.64% in Amsterdam, 1% in Paris,Lecture Notes in Computer Science 5545, (G. Allen et
0.32% in Brussels. Therefore, most of the assats a@l. Eds.): ICCS 2009, Part Il, LNCS pp. 588-597.
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