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Chapter 1

Introduction

This thesis is devoted to the analysis of bilevel programming problems in the view
of obtaining a nonlinear reformulation which does not encompass complementarity
constraints, which are known for rendering nonlinear programs in which they are
featured very hard to handle.

The use of optimization has become a prominent part of the design and analysis
process of most industrial and socio-economic systems. Great developments have
been made in solution methods tailored to many different problem structures and
allowing for solution large scale problems arising from many different areas such
as revenue management, congestion management, airline scheduling and network
design problems amongst others [5].

Nevertheless, it can be argued that most of the managerial decisions are of a
bilevel nature, as they impact and influence systems very often with conflicting
goals.

Bilevel programming addresses the problem in which two decision makers one
referred to as the leader and the second referred to as the follower, each with their
own individual objectives, act and react in a interdependant, sequencial manner.
The actions taken by the leader affect the reactions that the follower will take, as
a response of the leader’s decisions [4].

Namely, the decision nature of the follower actor is defined as an optimization
problem which is parametrized on the decisions taken by the leader. In turn, when
taking her decisions has to take into account which reaction the follower will have
as a consequence. The actions of one affect the choices and payoffs available to the
other [2]. The hierarchical relationship results from the fact that the mathematical
program related to the follower’s behaviour is part of the leader constraints. This
is the major feature of bilevel programs: they include two mathematical programs
into a single instance, one of these problems being part of the constraints of the
other ones.

A very important aspect of bilevel programs is linked on the expectation on the
extent in which the follower is available to engage in a collaborative interaction.
This means that if a multiple number of optimal solutions for the follower problem
are available for a given solution of the leader’s problem, the follower can choose
whether to select the optimal point that delivers the highest objective value to the
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Chapter 1 Introduction

leader or the other way around. If the leader assumes that the follower will be
collaborative and will pick the solution most favourable to the leader then we are
considering the so called optimistic solution of the bilevel program. Most of the
contributions to bilevel programming treat this kind of problem, and one of the
reasons can be that this problem has an optimal solution under quite reasonable
assumptions [3].

In fact, if a regularity condition is satisfied for the lower level problem, then
the Karush-Kuhn-Tucker conditions can be used to reformulate the problem as an
ordinariy mathematical program. KKT conditions allow to express the bilevel pro-
gram as a so-called Mathematical Program with Equilibrium Constraints, which
features a feasible set defined by a set of complementarity constraints, besides the
ordinary constraints. This implies that is possible to solve the optimistic bilevel
programming problem via an MPEC, but only if the lower level problem has a
unique optimal solution for all values of the parameter. The solution of a pes-
simistic bilevel programming problem via MPEC is not possible.

Although the optimistic view allows for the use of a established toolkit of math-
ematical programming to seek for solutions, such position cannot be applied at
least in cases when cooperation is not allowed, not possible or when the follower’s
seriousness of keeping the agreement is not granted. This leads to the so called
pessimistic bilevel programming problem.

The method developed in the thesis allows in some cases to model a pessimistic
bilevel position or, at least, to obtain a solution in which the follower chooses
the output that the leader has forecasted for a particular choice of upper level
variables.

A prominent example of bilevel relationships are Stackelberg games. Other ap-
plications can be found, for example, in game theory, investigations of oligopolies,
network design problems or traffic management. Another field where bilevel pro-
gramming finds a wide application is ICT and telcommunication services mod-
elling. ICT service provision is, in fact, characterized by collaboration and com-
petition between a multitude of actors. As a mention, Mobile Network Operators
(MNO) offer heterogeneous communications services, and compete on the same
markets not only with other MNOs, but also with Mobile Virtual Network Op-
erators (MVNO). However, MVNOs do not possess the physical network to be
used in order to deliver services to customers, and have to buy large amounts of
traffic-minutes from the MNO. Thus on one hand the MNO competes with the
MVNO on market share and on the other hand MNO receives money from lending
capacity to the MVNO. The interplay between such two actors and their decisions
frameworks are well described by bilevel models.

The thesis is heavily inspired on the work of [1], and the ideas introduced in the
thesis were thought as a solution method for the model introduced by such authors.
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In such model, the owner of a service platform, i.e. a set of tools for building
complex services stemming from the composition of a set of basic services, wants
to attract a group of service providers in order to enable the provision of a group of
service bundles. These service bundles, normally referred to as service portfolios,
are composite services built up by composing together basic services supplied,
more or less independantly, by service providers. The service portfolio is feasible
only if each service provider supplies a minimum amount of her service. A scheme
for revenue sharing between such actors must then be devised by the platform
operator in order to get each provider ’on board’. The model that the authors
propose is a stochastic programming model with bilevel structure. Each service
provider solve a portfolio optimization model to decide which service portfolios
to provide their service to in order to maximize their returns over the investment
done while, at the same time, controlling the losses they can incur. The platform
operator balances the basic service provision by offering a proper revenue share
to each service provider so that the result of their portfolio selection fits with
the group of service portfolios that the platform operator wants to provide to the
customers. More details about the model and the reformulation suggested will be
provided in the last chapter.

The rest of the thesis is organized as follows. After this first chapter devoted
to the introduction of the problem an overview of the main ideas and solution
approaches of bilevel programming is treated in the second chapter. The third
chapter introduces the ideas underlying the reformulation of the KKT conditions
for the solution of bilevel programs with convex lower levels and the fourth chapter
is dedicated to an application of such reformulations.
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Chapter 2

Overview on Bilevel Programming

2.1 introduction

From a historical point of view, multilevel optimization is closely related to the
economic problem of Stackelberg [7] in the field of game theory, which we briefly
describe now. To this end, we consider an economic planning process involving
interacting agents at two distinct levels: some of the individuals Ñ collectively
called the leader issue directives to the remaining agents called the followers. In
the particular framework of Stackelberg games, the leader is assumed to anticipate
the reactions of the followers; this allows him to choose his best or optimal strategy
accordingly. More precisely, the leader chooses a strategy x in a set X ⊆ <n, and
every follower i has a strategy set Yi(x) ⊆ <mi corresponding to each x ∈ X. The
sets Yi(x) are assumed to be closed and convex. Any follower i also has a cost
function depending on both the leader’s and all followers’ strategies and which
may be expressed as

θi(x, .) :
M∏
j=1

<mj → <,

where M is the number of followers. It is further assumed that for fixed values
of x ∈ X and yj(j 6= i) the function θi is convex and continuously differentiable
in yi ∈ Yi(x). The followers behave collectively according to the noncooperative
principle of Nash [12] which means that, for each x ∈ X, they will choose a joint
response vector

yopt = (yopt)Mj=1 ∈ C(x),

where C(x) =
∏M

i=1 Yi(x) , such that, for every i = 1, ...,M , there holds

yopti ∈ arg min
{
θi
(
x, y, yoptj 6=i

)
: yi ∈ Yi(x)

}
.
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Chapter 2 Overview on Bilevel Programming

In the above setting, considered by Sherali et al. [13] in an oligopolistic situation,
Stackelberg problems possess a hierarchical structure similar to that of BLPP,
although the lower level program is an equilibrium rather than an optimization
problem.

Bilevel programs were initially considered by Bracken and McGill [9] in a series
of papers that dealt with applications in the military field as well as in production
and marketing decision making. By that time, such problems were called mathe-
matical programs with optimization problems in the constraints, the terms bilevel
and multilevel programming being introduced later by Candler and Norton [14].

Basically, all real-world problems involving a hierarchical relationship between
two decision levels may be modeled by bilevel programs. These are encountered
in fields as diverse as management (facility location, environmental regulation,
credit allocation, energy policy, hazardous materials), economic planning (social
and agricultural policies, electric power pricing, oil production), engineering (op-
timal design, structures and shape), chemistry, environmental sciences, optimal
control, etc.

For one, it can be argued that most managerial decisions are of a bilevel nature,
in the sense that they impact systems with some degree of autonomy and conflict-
ing objectives, few real-life studies have adopted this paradigm. In the following,
we provide a small selection of actual or potential fields of application considered
in the literature.

Revenue Management
Revenue management is a generic term that covers a set of optimization proce-
dures aimed at maximizing the profitability of firms characterized by high invest-
ment costs, low operating costs, and perishable inventories. It was initially imple-
mented in the airline industry, under the name ’yield management’, and involved
four issues: ticket pricing, seat allocation, demand forecasting, and overbooking.
Notwithstanding the third issue, which is of a tactical nature, the first three lend
themselves to a bilevel formulation that extends the toll setting problem described
in the introduction of this survey. Such model, that involves the pricing and seat
allocation policies, is described in Côté et al. [15].

Congestion Management
In urban areas, marginal tolls can be used to minimize overall congestion. If only
a subset of the arcs are subject to tolls, the latter scheme is not applicable, and
one faces a second best problem of true bilevel nature. See Hearn and Ramana
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2.2 General Formulation

[16] and Larsson and Patriksson [17] for more details on this topic.

Network Design Problems
Design problems involving autonomous agents are a rich source of bilevel mod-
els. One such example is concerned with capacity improvement of a road net-
work, where one must bal- ance investment costs against congestion reduction, in
a network where traffic flows achieve an equilibrium compatible with the design
parameters, i.e., optimize their own objective. Introduced by LeBlanc [18], this
model was further analyzed by Marcotte [19], who provided worst-case bounds on
the performance of easily implementable heuristic procedures.

Energy Sector
The energy sector, in particular the power sector, has been the topic of some in-
teresting bilevel modelizations. Hobbs and Nelson [20] consider an electric utility
that seeks to minimize costs or maximize benefits while controlling electric rates
and subsidizing energy conservation programs. In the model of Haurie et al. [21],
the interaction between a power utility and cogenerators is set within the frame-
work of a leader-follower game, where the demand side is modelled as a large-scale
techno-economic model. In a joint energy-agriculture setting, Bard et al. [22]
address the problem faced by a government (the leader) that wishes to induce,
through minimal subsidies, the conversion of food to biofuel crops. The model,
involving bilinear objectives at both levels of decision-making, is reminiscent of
the toll-setting model discussed above.

A Stackelberg-Nash Game
Sherali et al. analyze an oligopoly where one firm acts as the leader, and the
remaining ones achieve a Cournot-Nash equilibrium parameterized by the produc-
tion level of the leader firm.

2.2 General Formulation

The general formulation of a bilevel programming problem (BLPP) is given by the
following

min
x∈X

F (x, y)

subject to G(x, y) ≤ 0

min
y∈Y

f(x, y)

subject to g(x, y) ≤ 0

9



Chapter 2 Overview on Bilevel Programming

where x ∈ X ⊆ Rn are called upper level variables and y ∈ Y ⊆ Rm are
called lower level variables. The functions F : Rn+m → R, f : Rn+m → R are
the upper level objective function and the lower level objective function, while the
vector valued functions G : Rn+m → Rp, g : Rn+m → Rq are called the upper
level constraints and lower level constraints respectively. The upper level problem
is generally termed as leader problem, meanwhile the lower level problem is also
called follower problem.

To analyze such type of problem let us start by introducing some considerations
about the following sets:

• Constraint region of the BLPP

S = {(x, y) ∈ X × Y : G(x, y) ≤ 0 and g(x, y) ≤ 0}

• Feasible set for the follower for fixed x

S(x) = {y ∈ Y : g(x, y) ≤ 0}

• Rational reaction set

P (x) = {y ∈ Y : y ∈ arg min (f(x, ỹ), ỹ ∈ S(x))}

• Inducible region

IR = {(x, y) : (x, y) ∈ S : y ∈ P (x)}

It is then possible to reformulate the BLPP as

min
(x,y)∈IR

F (x, y).

The first main issue linked to BLP problems is that even in case in which all of
the constraints of the BLP are linear it is possible that P (x) might consist of some
nontrivial subset of an hyperplane. In this case the follower would be indifferent to
any point on that hyperplane; however the leader might have a specific preference.
To cope with this problem two modelling approaches to bilevel programming are
used. In the case of optimistic bilevel programming, it is assumed that, whenever
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2.2 General Formulation

the reaction set P (x) is not a singleton, the leader is allowed to select the element
in P (x) that suits him best.
In this case a point (x∗, y∗) is called local optimistic solution for the BLPP if

x∗ ∈ X
y∗ ∈ P (x∗)

G(x∗, y∗) ≤ 0

F (x∗, y∗) ≤ F (x∗, y), ∀y ∈ P (x∗)

and x∗ is a local minimizer for the function

φo(x) = min
y

(F (x, y) : y ∈ P (x))

When cooperation of the leader and the follower is not allowed, or if the leader is
risk-averse and wishes to limit the damage resulting from an undesirable selection
of the follower, then a point (x∗, y∗) is said to be a local pessimistic solution for
the BLPP if

x∗ ∈ X
y∗ ∈ P (x∗)

G(x∗, y∗) ≤ 0

F (x∗, y∗) ≥ F (x∗, y), ∀y ∈ P (x∗)

and x∗ is a local minimizer for the function

φp(x) = max
y

(F (x, y) : y ∈ P (x))

the optimistic solution results from a friendly or cooperative behaviour while an
aggressive follower produces a pessimistic solution.

Although early work on bilevel programming dates back to the nineteen seven-
ties, it was not until the early nineteen eighties that the usefulness of these math-
ematical programs in modelling hierarchical decision processes and engineering
design problems prompted researchers to pay close attention to bilevel programs,
thus it is not surprising that most algorithmic research to date has focused on the
simplest cases of bilevel programs, that is problems having nice properties such as
linear, quadratic or convex objective and/or constraint functions. In particular,
the most studied instance of bilevel programming problems has been for a long
time the linear BLPP. Over the years, more complex bilevel programs were stud-
ied. In particular the research has focused on the convex BLPP and linear BLPP
with discrete variables. This work is mainly focused on the practical/algorithmic
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viewpoint of the bilevel programming programs. We will consider the main results
along with the most used algorithms for the following types of BLPP:

• Linear BLPP with continuous variables

• Linear BLPP with discrete variables

• Convex BLPP

• General BLPP

2.3 Linear BLPP with continuous variables

The vast majority of research on bilevel programming has been centered on the
linear version of the problem. The formulation is the following.

min
x∈X

c1x+ d1y

subject to A1x+B1y ≤ b1

min
y∈Y

c2x+ d2y

subject to A2x+B2y ≤ b2

where c1, c2 ∈ Rn, d1, d2 ∈ Rm, b1 ∈ Rp, b2 ∈ Rq, A1 ∈ Rp×n, B1 ∈ Rp×m,
A2 ∈ Rq×n, B2 ∈ Rq×m.

As previously done when we introduced the general formulation of a BLPP, let
us define the following sets

• Constraint region of the BLPP

S = {(x, y) ∈ X × Y : A1x+B1y ≤ b1 and A2x+B2y ≤ b2}

• Feasible set for the follower for fixed x

S(x) = {y ∈ Y : A2x+B2y ≤ b2}

• Projection of S onto the leader’s decision space

S(X) = {x ∈ X : ∃y ∈ Y : A1x+B1y ≤ b1, A2x+B2y ≤ b2}

• Rational reaction set

P (x) = {y ∈ Y : y ∈ arg min (c2x+ d2ỹ, ỹ ∈ S(x))}

12



2.3 Linear BLPP with continuous variables

• Inducible region

IR = {(x, y) : (x, y) ∈ S : y ∈ P (x)}

For sake of simplicity it will be assumed, throughout the analysis, that P (x) is
a point-to-point map.

2.3.1 Theoretical properties

Before introducing some of the prominent algorithms used for solving linear BLPPs,
we need to introduce the following results

Theorem 1 IR can be written equivalently as a piecewise linear equality con-
straint comprised of supporting hyperplanes of S.

Solving the linear BLLP is equivalent to minimizing the upper level objective
function over a piecewise linear equality constraint In other words we can refor-
mulate the inducible region as

IR = {(x, y) ∈ S : Q(x) = d2y}

where

Q(x) = min{d2y : B2y ≤ b2 − A2x, y ≥ 0}

and piecewise linearity comes from duality on the linear program defined in Q(x).
A solution of the linear BLPP occurs at a vertex of IR.

Theorem 2 The solution of the linear BLPP occurs at a vertex of S.

If x is an extreme point of IR, then it is an extreme point of S. One more
interesting property is that when the set of optimal solutions to the linear BLPP
is not single valued, than IR is not necessarily convex, In fact the inducible region is
not generally convex, which means that if we take two points lying on the function
Q(x) and we consider a linear combination of these two points, the resulting points
are not in the function. Linearity of the constraints leads to qualification conditions
on the lower level constraint functions, which in turn allow us to obtain an explicit
representation of IR by replacing the lower level problem with the equivalent
Karush-Kuhn-Tucker (KKT) conditions. Under the assumption that X = Rn

+ and
Y = Rm

+ we have the following

Proposition 1 A necessary condition that (x∗, y∗) solves the linear BLPP is that
there exist vectors u∗ and v∗ such that (x∗, y∗, u∗, v∗) solves (KKTR)

13



Chapter 2 Overview on Bilevel Programming

min c1x+ d1y

subject to A1x+B1y ≤ b1

A2x+B2y ≤ b2

uB2 − v = −d2
u(b2 − A2x− b2y) + vy = 0

x, y, u, v ≥ 0.

(2.1)

This formulation plays a key role in the development of the algorithms. From a
conceptual point of view KKTR is a standard mathematical program and should
be relatively easy to solve because all but one constraint is linear. Nevertheless,
virtually all commercial nonlinear codes find the complementary terms in KKTR
notoriously difficult to handle.

2.3.2 Algorithms for the linear BLPP

In general, there are three different approaches for solving the linear BLPP that
can be considered workable

• Vertex enumeration based method. This method relies on the fact that the
optimal solution has to be on a vertex of the constraint region of the BLPP.
Such a method systematically explores basic solutions.

• KKT conditions based method. The BLPP is converted into problem KKTR,
then a branch and bound strategy is used to deal with the complementarity
constraint.

• Penalty approach based method. The follower’s problem is converted into an
unconstrained minimization problem using a barrier method. Alternatively
a penalty on the duality gap for the lower level problem can be introduced
on the upper level objective function.

K-th Best Algorithm

This algotithm proceeds enumerating basic solutions that are in the IR. It has
been introduced by Bialas and Karwan [23]. The assumptions are that IR is
bounded and the follower’s reaction set P (x) is a singleton for all x ∈ S(X). Let
(x[1], y[1]), (x[2], y[2]), ..., (x[N ], y[N ]) denote the N ordered basic feasible solutions for
the LP (called LPR)

14



2.3 Linear BLPP with continuous variables

min c1x+ d1y

subject to A1x+B1y ≤ b1

A2x+B2y ≤ b2

x, y ≥ 0

(2.2)

and suppose that these solutions are such that

c1x[i] + d1y[i] ≤ c1x[i+1] + d1y[i+1], i = 1, ..., N − 1

then solving the linear BLPP is equivalent to finding the index K∗ = min{i ∈
{1, ..., N} : (x[i], y[i]) ∈ IR} Let us also define the lower level problem for a given
value x̃, LL(x̃) as

min
y

c2x̃+ d2y

subject to A2x̃+B2y ≤ b2

y ≥ 0

Let W be the set of basic solutions to be investigated, W[i] the set of the basic
solutions adjacent to the incumbent, T is the set of the basic solutions which have
already been tested.
The algorithm is the following

Algorithm

1. i=1.
solve LPR → (x[i], y[i]).
set W = {(x[i], y[i])}.
set T = ∅

2. solve LL(x[1]) → (x[i], ỹ)
if ỹ = y[i]

STOP: (x[i], y[i]) is the optimal solution of the linear BLPP.
else

NEXT

3. set T = T ∪ {(x[i], y[i])}
set W = (W ∪W[i]) \ T

4. set k=k+1.
choose (x[i], y[i]) s.t.
c1x[i] + d1y[i] = min{c1x+ d1y : (x, y) ∈ W}
go to step (2).
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Chapter 2 Overview on Bilevel Programming

KKT Approach

The algorithm [2] is based on the KKT reformulation and attempts to solve prob-
lem KKTR with the complementarity constraints suppressed. A branch and bound
method is then used to alternatively set the i-th lagrangean multiplier or the i-th
constraint to zero.
Let W be the index set of the complementarity constraints in KKTR.
Let F̄ be the incumbent upper bound on the leader’s objective function.
At the k-th iteration we define a subset of indices Wk ⊆ W and a path Pk corre-
sponding to a vector whose elements are the indexes in Wk: i if the multiplier of
the i-th constraint is zero, −i if the i-th constraint is binding for i ∈ Wk.
Let ui = 0 when the multiplier associated to the i-th constraint is zero.
Let gi = 0 when the i-th inequality constraint is binding.
Let

S+
k = {i : i ∈ Wk and ui = 0}
S−k = {i : i ∈ Wk and gi = 0}
S0
k = {i : i 6∈ Wk}

when i ∈ S0
k the i-th complementarity constraint can be violated.

Algorithm

1. Set k = 0,
Set S+

k = ∅.
Set S−k = ∅.
Set S0

k = {1, ..., q +m}.
Set F̄ =∞

2. Set ui = 0 for i ∈ S+
k

Set gi = 0 for i ∈ S−k .
Solve KKTR without complementarity constraints.
if KKTR is infeasible

go to (6) (Backtracking)
else

k = k + 1 and label solution (xk, yk, uk)

3. if F (xk, yk) ≥ F̄
go to (6) (Backtracking)

else
NEXT
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2.3 Linear BLPP with continuous variables

4. if uigi(x
k, yk) = 0 i = 1, ...,m+ q

go to (5) (Updating)
else

select i s.t. uigi(x
k, yk) = 0 is largest and label it i1

Set S+
k = S+

k ∪ {i1}
Set S0

k = S0
k \ {i1}

Set S−k = S−k
Append i1 to Pk
go to (2)

5. F̄ = F (xk, yk)

6. if no live node exists
go to (7) (Termination)

else
branch to the newest live vertex and update S+

k , S
−
k , S

0
k and Pk

go to (2).

7. if F̄ =∞
BLPP is infeasible

else
F̄ is the optimal solution of the linear BLPP.

Penalty Function Approach

For sake of completeness we will sketch the main ideas of the Penalty Function
Approach [24] even though we will not treat the algorithm. The Penalty Function
Approach exploits the fact that if (x, y) ∈ IR, the duality gap for the lower level
problem is zero. Let us consider the problem LL(x) and, ignoring the constant
term c2x, let us write the dual as

max
u

u (A2x− b2)

subject to uB2 ≥ −d2
u ≥ 0

The linear BLPP is reformulated as

P (K) = min F̂ = c1x+ d1y +K [d2y − u (A2x− b2)]

subject to A1x+B1y ≤ b1

A2x+B2y ≤ b2

uB2 ≥ −d2
x, y, u ≥ 0.
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Chapter 2 Overview on Bilevel Programming

A well known result in linear programming states that when the duality gap is
zero the basic solution is optimal, then either the slack variable in the primal or
the related dual variable in the dual is zero for every constraint of the LP. (Strong
Duality Theorem and Complementary Slackness Theorem).
Let S be the feasible region for (x, y) and u ∈ U = {u : uB2 ≥ −d2, u ≥ 0}. If S
and U are nonempty bounded polyhedra, their extreme points are denoted by the
sets SE and UE, respectively. The following theorems hold.

Theorem 3 For a given value of u ∈ U and fixed K ≥ 0 define

Θ(u,K) = min
x,y
{F̂ (x, y, u,K) : (x, y) ∈ S}

then Θ(., K) is concave on Rq and a solution to the problem

min
u
{Θ(u,K) : u ∈ U}

will occur at some u∗ ∈ UE

Theorem 4 For fixed K ≥ 0, an optimal solution to problem P (K) is achievable
in SE × UE, and SE × UE = (S × U)E

Theorem 5 Let (x∗, y∗) solve the linear BLPP and assume that the rational re-
action set P (x∗) is unique. Then there exists a finite value K∗ ≥ 0 for which an
optimal solution to the penalty function problem P (K) yields an optimal solution
to the linear BLPP for all K ≥ K∗.

Theorem 6 If (x(K), y(K), u(K)) solves P (K) as a function of K, the leader’s
objective function is monotonically nondecreasing and the duality gap of the fol-
lower’s problem is monotonically nonincreasing in K.

Those theorems provide the foundations for an algorithm that could be used to
derive a quasi-local optimum for the linear BLPP. For a given K , the first step is to
begin with an arbitrary (x0, y0) and solve the LP minu{F̂ (x0, y0, u,K) : u ∈ UE}
to get an optimal u0. Then with u = u0 find (x1, y1) ∈ arg minx,y{F̂ (x, y, u0, K) :
(x, y) ∈ SE} and continue iteratively the procedure.
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2.4 Linear BLPP with discrete variables

2.4 Linear BLPP with discrete variables

Let x1 ∈ Rn1
+ , x2 ∈ Zn2

+ , y1 ∈ Rm1
+ , y2 ∈ Zm2

+ , where R+ and Z+ are respectively
the set of nonnegative real numbers and the set of nonnegative integer numbers.
We define the mixed integer linear BLPP as

min c11x1 + c12x2 + d11y1 + d12y2

subject to A11x1 + A12x2 +B11y1 +B12y2 ≤ b1

x1 ≥ 0, x2 ∈ Zn2
+

min d21y1 + d22y2

subject to A21x1 + A22x2 +B21y1 +B22y2 ≤ b2

y1 ≥ 0, y2 ∈ Zm2
+

(2.3)

2.4.1 Properties of the zero-one linear BLPP

Let us consider the problem

min
x∈X

c1x+ d1y

subject to A1x+B1y ≤ b1

min
y∈Y

d2y

subject to A2x+B2y ≤ b2

where c1, c2 ∈ Rn, d1, d2 ∈ Rm, b1 ∈ Rp, b2 ∈ Rq, A1 ∈ Rp×n, B1 ∈ Rp×m,
A2 ∈ Rq×n, B2 ∈ Rq×m, X ⊆ Rn, Y ⊆ Rm .
In addition to the definitions in the previous section, let

SL(y) = {x ∈ X : A2x+B2y ≤ b2}

for all values of y, and

SU = {(x, y) : A1x+B1y ≤ b1}

A previously done we assume that the optimal solution of the lower level problem
is unique. Along with the linear BLPP (L-BLPP) we consider the following models,
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• discrete linear BLPP (DL-BLPP), where X = Bn and Y = Bm

• discrete-continuous linear BLPP (DCL-BLPP), where X = Bn and Y = Rm

• continuous-discrete linear BLPP (CDL-BLPP), where X = Rn and Y = Bm

The existence of optimal solutions for these problems depends on the presence
or absence of upper-level constraints. The following property holds for L-BLPP,
DL-BLPP, DCL-BLPP and CDL-BLPP.

Property A: if SU = Rn+m then IR is nonempty if S 6= ∅. If SU 6= Rn+m then IR
is nonempty if there exists an x̄ ∈ X such that (x̄, ȳ) ∈ SU .

Property B: The inducible regions of DCL-BLPP and DL-BLPP are respectively
included in the inducible regions of L-BLPP and CDL-BLPP.

Moreover for L-BLPP, DL-BLPP and DCL-BLPP we have the following prop-
erty regarding the existence of optimal solutions.

Property C: Let S be a bounded set. If SU = Rn+m then L-BLPP, DL-BLPP
and CDL-BLPP have an optimal solution if S 6= ∅. If SU 6= Rn+m then L-BLPP,
DL-BLPP and CDL-BLPP have an optimal solution if there exists an x̄ ∈ X such
that (x̄, ȳ) ∈ SU .

In other words, if there exists a feasible solution, then there also exists an op-
timal solution provided that the feasible region is bounded.

For what concerns the investigation of the inducible region and the characteri-
zation of the optimal solution of CDL-BLPP the following holds

Proposition 2 Consider the CDL-BLPP where SU = Rn+m and S 6= ∅. Then
IR is composed of a finite union of quasi polyhedral sets, i.e. sets whose closure is
a polyhedral set.

Theorem 7 Let SU = Rn+m and S 6= ∅ and suppose that there exists an optimal
solution (x∗, y∗) to CDL-BLPP. Then (x∗, y∗) is a boundary point of S
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2.4 Linear BLPP with discrete variables

2.4.2 Reductions to Linear Three-Level Programs

Let X = {0, 1}n, Y = {0, 1}m and ex and ey be the vectors of ones with dimensions
n and m respectively and consider the standard optimization problem:

min
x∈X

c1x+ d1y

subject to (x, y) ∈ P
(2.4)

where P = ∪li=1Pi such that Pi is a polyhedral set for i = 1, ..., l. Denote the
solution of the problem by (x∗, y∗) and let θ : Rn → R be a continuous function
such that θ(x) ≥ 0 for all 0 ≤ x ≤ ex and θ(x) = 0 iff x ∈ X. The following
theorem is a standard result for integer linear programs

Theorem 8 If θ is a concave function, there exists a positive real number M such
that (2.4) and the following problem

min
x∈X

c1x+ d1y +Mθ(x)

subject to 0 ≤ x ≤ ex

(x, y) ∈ P

have the same solutions.

DCL-BLPP and DL-BLPP

The discrete-continuous bilevel programming problem can be stated as

min
x∈X

c1x+ d1y

subject to A1x+B1y ≤ b1

min
y

d2y

subject to A2x+B2y ≤ b2

The following theorem shows that this problem is equivalent to a linear bilevel
programming problem

Theorem 9 There exists a positive real M such that DCL-BLPP and the linear
bilevel problem, L-BLPP(M)
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min
x

c1x+ d1y +Mexu

subject to A1x+B1y ≤ b1

0 ≤ x ≤ ex

min
y,u

d2y − exu

subject to A2x+B2y ≤ b2

u ≤ x

u ≤ ex − x

have the same optimal solutions.

With the same approach we can reformulate the DL-BLPP. Consider the sets
X = {0, 1}n and Y = {0, 1}m along with the problem

min
x∈X

c1x+ d1y

subject to A1x+B1y ≤ b1

min
y∈Y

d2y

subject to A2x+B2y ≤ b2

the following theorem holds

Theorem 10 There exist two positive real numbers Mx and My such that DL-
BLPP and the linear three-level problem:

min
x

c1x+ d1y +Mxexu

subject to A1x+B1y ≤ b1

0 ≤ x ≤ ex

min
y,u

d2y − exu+Myeyv

subject to A2x+B2y ≤ b2

0 ≤ y ≤ ey

u ≤ x

u ≤ ex − x
min
v

−eyv

subject to v ≤ y

v ≤ ey − y

have the same optimal solutions.
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2.4 Linear BLPP with discrete variables

Even though it is possible to convert some types of BLPP with discrete variables
into continuous three-level programs, solving the resulting three-level program is
hard. This is due to the fact that no efficient algorithms exist for the three-level
problem.

2.4.3 Properties of the Mixed Integer Linear BLPP

Apart from the reduction into three-level programs it is possible to apply a branch
and bound procedure to solve the MIBLPP. For regular MIP, algorithms generally
rely on some form of separation, relaxation and fathoming to construct tighter
bounds on the solution. This approach is directly applicable to the MIBLPP.
The natural relaxation derives from removing the integrality requirements on the
variables. Fathoming, however, presents several difficulties. In regular MIP we
have three general fathoming rules:

1. The relaxed subproblem has no feasible solution

2. The solution of the relaxed subproblem is no less than the value of the
incumbent

3. The solution of the relaxed subproblem is feasible for the original problem

Only rule 1 in its original form still holds for MIBLPP. in particular the solution
of the relaxed BLPP does not provide a valid bound on the solution of the mixed
integer BLPP and solutions to the relaxed BLPP that are in the inducible region
cannot, in general, be fathomed.

2.4.4 Moore-Bard Algorithm for the Mixed Integer Linear
BLPP

Let us define the following
N = 1, ..., n+m the set of the decision variables
N1 = 1, ..., n2 set of the integer variables x2 controlled by the leader
N2 = 1, ...,m2 set of integer variables y2 controlled by the follower
u1 upper bound for x2
u2 upper bound for y2
For subproblem (node) k we denote

H1
k = {(α1k, β1k) : 0 ≤ α1k

j ≤ x2j ≤ β1k
j ≤ u1j ; j ∈ N1}

H2
k = {(α2k, β2k) : 0 ≤ α2k

j ≤ y2j ≤ β2k
j ≤ u2j ; j ∈ N2}
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as the set of upper and lower bounds for the integer variables controlled respectively
by the leader and the follower at node k. If a node k is in the path to node l we
have H1

k ⊆ H1
l and H2

k ⊆ H2
l

Furthermore, for subproblem k, the notation H2
k(0,∞) is user to indicate that no

bounds other than the original bounds specified in problem (2.3) and placed on
the integer variables controlled by the follower.
The set of the variables that have been restricted at node k is defined by

S1
k = {j : α1k > 0 or β1k < u1j ; j ∈ N1}

S2
k = {j : α2k > 0 or β2k < u2j ; j ∈ N2}.

Let us also define FC
k as the optimal solution of the relaxed BLPP for subprob-

lem k. It consists of problem (2.3) without integrality requirements and augmented
by the bound constraints x2 ∈ H1

k and y2 ∈ H2
k . If the follower’s objective function

is removed from this formulation we obtain the high point solution. We denote this
value by FH

k for subproblem k.

Bounding Theorems

Sufficient conditions are derived that indicate when a solution of a relaxed sub-
problem may be used as an upper bound for the mixed integer BLPP.

Theorem 11 Given H1
k and H2

k(0,∞), let (xk, yk) be the high point solution to
the corresponding relaxed BLPP. Then FH

k = F (xk, yk) is a lower bound on the
solution of the mixed integer BLPP at node k

The high point solution computed at node k can be used as a bound to determine
if the subproblem can be fathomed. This bound is, unfortunately, not applicable
when some restrictions have been made on the variables controlled by the follower.

The following theorem indicates when FH
k provides a valid lower bound for the

case where the lower level integer variables have been bounded at iteration k with
H2
k

Theorem 12 Given H1
k and H2

k , let (xk, yk) be the high point solution to the cor-
responding relaxed BLPP. Then FH

k = F (xk, yk) is a lower bound on the solution
of the mixed integer BLPP at node k if none of the yk2j are either at α2k or β2k.

Given H1
k and H2

k , let (xk, yk) be the high point solution to the corresponding
relaxed BLPP with the restrictions in H2

k relaxed. Then FH
k = F (xk, yk) is a lower

bound on the solution of the mixed integer BLPP at node k.
Algorithm
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2.4 Linear BLPP with discrete variables

1. Set k = 0,
Set H1

k and H2
k at their original bounds.

Set S1
k = ∅, S2

k = ∅,
Set F̄ =∞

2. Attempt to solve the high point solution of MIBLPP with constraints H1
k

and H2
k and without integrality requirements. → FH

k

if infeasible or FH
k ≥ F̄

go to (7)(backtracking)
else

NEXT

3. Attempt to solve the relaxation of MIBLPP
if infeasible

go to (7) (backtracking)
else

→ (xk, yk)
FC
k = F (xk, yk)

4. if integrality requirements are satisfied by (xk, yk)
NEXT

else
choose xk2j, j ∈ N1 or yk2j, j ∈ N2 which is fractional valued
Place a new bound on the variable
k = k + 1
update H1

k , H2
k , S1

k and S2
k

go to (2)

5. Set x = xk and solve LL(xk) → (xk, ŷk)
Compute F (xk, ŷk)
Set F̄ = min{F̄ , F (xk, ŷk)}

6. if α1k
j = β1k

j for each j ∈ N1, and α2k
j = β2k

j for each j ∈ N2

go to (7) (backtracking)
else

select an integer variable such that α1k
j 6= β1k

j n j ∈ N1 or α2k
j 6= β2k

j ,
j ∈ N2

Place new bound
k=k+1
update H1

k , H2
k , S1

k and S2
k

go to (2)
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7. if no live node exists
go to (8) (termination)

else
branch to the newest live node
k=k+1
update H1

k , H2
k , S1

k and S2
k

go to (2)

8. if F̄ =∞
the problem is infeasible

else
the current solution is optimal.

2.5 Convex BLPP

Some of the algorithms presented for the linear BLPP can be modified to be used
to solve particular instances of Convex BLPP. In particular it is very easy to extend
most of the approaches to solve the linear-quadratic case, where the functions F ,
G and g are linear and the function f is quadratic and strictly convex. The convex
version of the BLPP (CBLPP) is given by

min
x≥0

F (x, y)

subject to G(x, y) ≤ 0

min
y≥0

f(x, y)

subject to g(x, y) ≤ 0

where F : Rn+m → R, f : Rn+m → R and G : Rn+m → Rp, g : Rn+m → Rq

are continuous, twice differentiable convex functions. As usual, we assume that f
is strictly convex, for fixed x. This assures, along with a constraint qualification,
that the solution of the follower’s problem is unique. This implies that the rational
reaction set P (x) is single valued. Thus the inducible region, IR, can be represented
by the KKT conditions. Accordingly, CBLPP can be rewritten as the following
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2.5 Convex BLPP

single level mathematical program

min
x,y,u≥0

F (x, y)

subject to G(x, y) ≤ 0

∇yf(x, y) + uT∇yg(x, y) ≤ 0

g(x, y) ≤ 0

uTg(x, y) = 0

yT
(
∇yf(x, y) + uT∇yg(x, y)

)
= 0

x, y, u ≥ 0.

(2.5)

Proposition 3 If f(x, y) is quadratic in (x, y) and the constraint region S is
polyhedral, then IR is piecewise linear.

In fact the solution of the lower level problem occurs either on a face of S or in its
interior as x is varied. In the latter case we have that u = 0 and the stationarity
condition becomes ∇yf(x, y) = 0 with ∇yf(x, y) linear in x.

Proposition 4 Let F (x, y) be strictly convex in (x, y), f(x, y) be quadratic in
(x, y) and the constraint region S be polyhedral, then if z1 and z2 are two distinct
local solutions of (2.5) and both lie on the same face of S, then that face cannot
be in IR.

2.5.1 Descent Approaches for the Quadratic BLPP

Two descent algorithms for solving the BLPP in which the upper level objective
function F is quadratic, the lower level objective function f and the lower level
constraint set is polyhedral are presented here. The first one is based on movements
along the inducible region by complementary pivoting in a simplex framework.
This procedure converges to a global optimum when F is concave. The second
approach is a modification of the steepest descent approach.

Problem Definition and Properties

The quadratic BLPP (Q-BLPP) under consideration has the following form

min
x≥0

1

2
[xT , yT ]

[
C1 C3

CT
3 C2

] [
x
y

]
+ c1x+ d1y

min
y

1

2
yTQy + yTDx+ d2y

subject to Ax+By ≤ b
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where C =

[
C1 C3

CT
3 C2

]
and Q are respectively positive semidefinite and positive

definite matrices. This implies that both the leader relaxation (the BLPP without
the follower’s objective function) and the lower level problem are convex quadratic
programs. We also assume, as usual, that the set P (x) is a point-to-point mapping.
It is furthermore possible to express the inducible region with the following linear
complementarity conditions:

Qy +Dx+ d2 +BTγ − β = 0 (2.6)

Ax+By + α = b (2.7)

x, y, α, β, γ ≥ 0 (2.8)

αTγ = βTy = 0 (2.9)

The point u = (x, y) is said to be in the extreme inducible region (EIR) if there
exist α, β and γ such that (x, y, α, β, γ) is an extreme point of the polyhedral set
defined by the previously introduced complementarity system. An EIR point is
said to be nondegenerate if the values of the basic variables are positive.
From here on, it is assumed that all points in EIR are nondegenerate. Adjacent
EIR points differ in exactly one column. Thus, movement along adjacent EIR
points can be achieved with a pivot step that maintains complementarity. The
vector d ∈ Rn+m is an EIR direction if it lies along the edge connecting two
adjacent points in EIR.

Theorem 13 Let u be a point in EIR. If u is not a local minimum of Q-BLPP,
then there is at least one descent direction at u.

An EIR Point Descent Algorithm If (x̄, ȳ) is a nondegenerate EIR point
then one of the following situations hold:

• (x̄, ȳ) is a local minimum of Q-BLPP

• (x̄, ȳ) is not a local minimum of Q-BLPP and there exist an adjacent EIR
point (x̂, ŷ) and corresponding EIR direction satisfying:

F (x̂, ŷ) < F (x̄, ȳ)

• (x̄, ȳ) is not a local minimum of Q-BLPP and

F (x̂, ŷ) ≥ F (x̄, ȳ)

for all adjacent EIR points (x̂, ŷ). We call (x̄, ȳ) a local star inducible region
(LSIR) point. In other words, not all the EIR descent directions decrease the
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2.5 Convex BLPP

value of the leader’s objective function. It is possible to design an algorithm
that finds at least a LSIR point for Q-BLPP. The first step is to find an initial
point in EIR. At each iteration the current EIR point is either an LSIR point
or a local minimizer and the algorithm terminates, or an adjacent EIR point
with a lower value of F .

A Modified Steepest Descent Approach
- Direction Search
The aim of this part of the algorithm is to find a descent direction for the leader’s
objective function which, at the same, time does not violate the active constraints
for the lower level (to preserve complementarity conditions) and keeps the station-
arity condition at zero. The direction is found as the solution of the problem

min
z

(C1x
k + C3y

k + c1)
T z + (CT

3 x
k + C2y

k + d1)
Tw

subject to − 1 ≤ zi ≤ 1, i = 1, ..., n

min
w≥0

wTQw + 2wTDz

subject to A′z +B′w ≤ 0

− φkA′z + (Qyk +Dxk + d2)
Tw = 0

and then update the solution

(xk+1, yk+1) = (xk, yk) + σk(z
k, wk)

with σk denoting the appropriate stepsize at iteration k.
At each iteration we look for a direction d which decreases the value of the leader’s
objective function. This implies that we do not necessarily need to solve the pre-
vious problem to optimality: we can stop when we get a descent direction. To
accomplish this we need to replace the lower level of the problem with the equiva-
lent KKT conditions and then solve it using a sequential Linear Complementarity
Problem method. - Line Search
if the number of binding constraints at a given solution is zero, all the slack vari-
ables are positive and all the related lagrangean multipliers are at zero. The
constraints of the QBLPP becomes

Q(yk + σkw
k) +D(xk + σkz

k) + d2 = 0

A(xk + σkz
k) +B(yk + σkw

k) ≤ b

xk + σkz
k ≥ 0, yk + σkw

k ≥ 0

and σk can be computed using the minimum ratio rule.
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if the number of binding constraints at a given solution is positive the stepsize
has to minimize the leader’s objective function holding feasibility, both in the lower
level active constraints and in the stationarity condition. This is accomplished by
including the stationarity constraints into the lower level constraints and expressing
these constraints as an overall system with stepsize and lagrangean multipliers as
unknowns.

2.6 General BLPP

The General BLPP is the most challenging of the mathematical programs with two
level structure. It has already been mentioned about the issues linked to the fact
that the rational reaction set is not necessarily single valued. We describe another
property of bilevel programs that is taken for granted when dealing with standard
optimization problems. For single-level programs, an optimal solution remains op-
timal when an inactive constraint (irrelevant) is added to the formulation. Denote
the problem

min
x∈X

F (x, y)

subject to G(x, y) ≤ 0

min
y∈Y

f(x, y)

subject to g(x, y) ≤ 0

by BLP (g) and let (x∗, y∗) be its optimal solution. Define the following sets

∆g = {(x, y) : G(x, y) ≤ 0, g(x, y) ≤ 0}
∆s = {(x, y) : G(x, y) ≤ 0, s(x, y) ≤ 0}

and let us use the symbol g ∩ s to refer to ∆g ∩∆s A bilevel program BLP (g) is
independent of irrelevant constraints (IIC) if its solution (x∗, y∗) is also a solution
to the bilevel program BLP (g ∩ s) for every set ∆s containing (x∗, y∗).

Let (x∗, y∗) be a solution of the BLP (g) and suppose that (x∗, y∗) ∈ ∆s. Denote
the optimal objective function values of BLP (g) and BLP (g ∩ s) by F ∗g and F ∗gs
respectively. Then (x∗, y∗) ∈ ∆g ∩ ∆s ⊆ ∆g so that F ∗gs ≤ F ∗g . The point now is
that, differently from what happens for a single level feasibility set, the inducible
region of the problem for BLP (g∩s) is not necessarily contained into the inducible
region for BLP (g). So it does not happen that F ∗gs ≥ F ∗g .

A bilevel program BLP (g) is degenerate if a solution of its associate single-level
problem is feasible to the unconstrained level two problem.

Theorem 14 A nondegenerate bilevel program is independent of any constraint
s(x, y) ≤ 0 iff there is an optimal solution to the associated single level program
that is in the inducible region of BLP(g).
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2.6.1 Preview of the Algorithms

The most used algorithms for general BLPPs are based on penalty approach and
KKT conditions.
Branch and Bound Algorithm

The following properties are assumed

• f and g are twice continuously differentiable in y ∈ S(x)

• f is strictly convex in y ∈ S(x)

• S(x) is a compact convex set

• F is continuous and convex in x and y

Under these assumptions the rational reaction set is a continuous point-to-point
map and it is possible to represent the BLPP through the KKT reformulation for
the lower level.

min
x,y,u

F (x, y)

subject to G(x, y) ≤ 0

∇yf(x, y) + u∇yg(x, y) = 0

g(x, y) ≤ 0

ug(x, y) = 0

u ≥ 0.

(2.10)

The general idea for the algorithm is to relax the complementarity requirements
and then trying to reintroduce them via some sort of enumeration scheme. If
the solution violates one or more constraints a combination of depth-first and
breadth-first branch and bound is used. With the breadth-first search, one or
more of the violated complementarity slackness conditions is selected and two
or more subproblems are set up and solved Let ne be the number of slackness
complementarity conditions to satisfy at a given iteration, then 2ne subproblems
will be set up and solved.

Steepest Descent Direction This approach is similar to the one introduced
for the case of CBLPP. We assume unicity of the lower level solution for a given
upper level decision, linear independence of the gradients of the constraints for the
lower level and that the Hessian matrix of the Lagrangian function related to the
lower level problem is positive definite. Under these assumptions we have

Theorem 15 Let (x∗, y(x∗)) be an optimal solution for the general BLPP. Then
for any upper level direction d ∈ Rn at x∗ the directional derivative of the objective
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function of the upper level problem satisfies

F ′(x∗, y(x∗); d) = ∇xF (x∗, y(x∗))d+∇yF (x∗, y(x∗))w(x∗; d) ≥ 0 (2.11)

where w(x, d) is the optimal solution for x = x∗ of the quadratic program (QP)

min
x≥0

[dT , wT ]∇2
xyL(x, y(x), u(x))

[
d
w

]
subject to ∇ygi(x, y(x))w ≤ −∇xgi(x, y(x))d i ∈ I(x)

∇ygi(x, y(x))w ≤ −∇xgi(x, y(x))d i ∈ J
∇yfi(x, y(x))w ≤ −∇xfi(x, y(x))d+∇xL(x, y(x), u(x))d

2.7 Conclusions

As evidenced in this survey, bilevel programming is the subject of important re-
search efforts from the mathematical programming and operations research com-
munities. Many classes of bilevel programs now have dedicated solution algorithms,
and researchers have started to study more complicated instances, like bilevel pro-
grams with integer variables or without derivatives, which to our view is an indi-
cation that some maturity has been reached in the field. It is nevertheless the case
that challenges remain to be tackled, in particular concerning nonlinear bilevel
problems. Besides the improvement of existing methods and derivation of proper
convergence results, our feeling is that a promising approach would be to develop
tools similar to those by Scholtes (2002) allowing to take advantage of the inherent
combinatorial structure of bilevel problems. These ideas, combined with well-tried
tools from nonlinear programming like sequential quadratic programming, should
allow the development of a new generation of solution methods.
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Chapter 3

On the reformulation of a class of bilevel
programs

3.1 introduction

One tool often used to reformulate the optimistic bilevel programming problem
as an one-level are the Karush-Kuhn-Tucker conditions. If a regularity condition
is satisfied for the lower level problem, then the Karush-Kuhn-Tucker conditions
are necessary optimality conditions. They are also sufficient in the case when the
lower level is a convex optimization problem in the x variables for fixed parameters
y. This suggests to replace problem

min
x≥0

F (x, y)

subject to G(x, y) ≤ b1

min
y≥0

f(x, y)

subject to g(x, y) ≤ b2

(3.1)

by the problem

min
x,y,u

F (x, y)

subject to G(x, y) ≤ b1

∇yf(x, y) + [∇yg(x, y)]T u ≥ 0

g(x, y) ≤ b2

uTg(x, y) = 0

yT
(
∇yf(x, y) + uT∇yg(x, y)

)
= 0

x, y, u ≥ 0.

(3.2)
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Chapter 3 On the reformulation of a class of bilevel programs

Even under suitable convexity assumptions on the functions F , G and the con-
straints set, the above mathematical program is not easy to solve, due mainly
to the nonconvexities that occur in the complementarity and Lagrangean con-
straints. While the Lagrangean constraint is linear in certain important cases
(linear or convex quadratic functions), the complementarity constraint is intrin-
sically combinatorial, and is best addressed by enumeration algorithms, such as
branch-and-bound, possibly performed in a smart way, without introducing a new
set of binary variables, as in the Bard-Moore algorithm introduced in the previ-
ous chapter. We introduce a reformulation of a class of bilevel programs having
convex lower level with linear or quadratic constraints Under the assumption of
optimistic approach, and assuming that, for each fixed x, the lower level problem is
a convex optimization problem, each local optimal solution for the problem (3.1)
corresponds to a local optimal solution for problem (3.2).

3.2 Linear Lower Level

The basic reformulation case is provided by the case in which the lower level
problem is linear. As we will see, the method does not necessarily overperform a
branching scheme on the complementarity constraints done directly on the KKT
reformulation, but it lays the foundations on the way to eliminate the complemen-
tarity constraints through the use of an equivalent formulation for the lower level
optimality conditions. Incidentally, the method will deploy the inner link between
optimality conditions and duality theory in linear programming. Let us consider
the following linear bilevel optimization problem

min
x≥0

F (x, y)

subject to G(x, y) ≤ b1

min
y≥0

c2x+ d2y

subject to A2x+B2y ≤ b2

(3.3)

where c1, c2 ∈ Rn, d1, d2 ∈ Rm, b1 ∈ Rp, b2 ∈ Rq, A1 ∈ Rp×n, B1 ∈ Rp×m,
A2 ∈ Rq×n, B2 ∈ Rq×m, and, in particular, let us consider the lower level problem
for a fixed value of the upper level decision variables, denoted by

min
y≥0

c2x+ d2y

subject to B2y ≤ b2 − A2x

The KKT conditions attached to such problem are defined by the system
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d2 +BT
2 λ ≥ 0

B2y ≤ b2 − A2x

λT (B2y − b2 + A2x) = 0

yT
(
d2 +BT

2 y
)

= 0

y, λ ≥ 0

and the first inequality is equivalently expressed by dT2 y ≥ −λTB2y given the fact
that y ≥ 0. Moreover, considering as well the second constraint we have the double
inequality

dT2 y ≥ −λTB2y ≥ −λT b2 + λTA2x. (3.4)

It is then possible to exclude the complementarity constraints from the KKT
system by forcing the equality

dT2 y = −λT b2 + λTA2x

which, as a consequence of 3.4 will imply the satisfaction of both the complemen-
tarity constraints found in the original KKT system.

We can now reformulate the optimality conditions of the lower level, parametrized
by the upper level variables as the nonlinear system

dT2 y + λT b2 − λTA2x = 0

d2 +BT
2 λ ≥ 0

B2y ≤ b2 − A2x

y, λ ≥ 0

And, consequently, we can restate the problem (3.3) into the ordinary mathemat-
ical problem

min
x,y,λ≥0

F (x, y)

subject to dT2 y + λT b2 − λTA2x = 0

G(x, y) ≤ b1

A2x+B2y ≤ b2

BT
2 λ ≥ −d2

(3.5)

which is equivalent to (3.3) since it satisfies the KKT conditions for the lower level
problem, but it does not involve complementarity constraints.
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In general, if we assume to have a linear programming problem of the form

max
x≥0

cTx

subject to Ax ≤ b

and considering its dual problem, given by

min
y≥0

bTy

subject to ATy ≥ c

we can restate the optimization problem as the following system of optimality
conditions

cTx− bTy = 0

Ax ≤ b

ATy ≥ c

x, y ≥ 0

with y denoting the dual variables of the LP. Notice that in this case, the reformu-
lation of the KKT conditions are a well known fact in mathematical programming:
the LP has an optimal solution when both the primal and the dual constraints are
satisfied and, at the same time, the duality gap is zero. Thus, when the lower
level of a bilevel program is linear for a given choice of the upper level decision
variables, it can be reformulated by bundling the primal and the dual constraints
of the lower level linear problem and requiring, at the same time, the duality gap
to be zero.

Observe that, in the case of bilevel linear problems as defined in (3.3) with the
additional assumption that F (x, y) = c1x + d1y and G(x, y) = A1x + B1y it is
possible to cast the bilevel problem onto an ordinary mixed integer linear problem
by converting each complementarity constraint λigi = 0 with λ ≥ 0 and gi ≥ 0
into

λi ≤Mzi

gi ≤M(1− zi)
λ ≥ 0

gi ≥ 0

zi ∈ {0, 1}

38



3.2 Linear Lower Level

to obtain a single level equivalent problem

min c1x+ d1y

subject to A1x+B1y ≤ b1

A2x+B2y ≤ b2

BT
2 λ ≥ −d2

λ ≤M1z1

A2x+B2y − b2 ≤M1(e− z1)
y ≤M2z2

BT
2 + d2 ≤M2(e− z2)

x, y, λ ≥ 0

z1, z2 binary

(3.6)

with eT = {1, 1, ..., 1} and M1, M2 are large scalars. Reformulation (3.6) can be
solved to global optimality, meanwhile, using reformulation (3.5) one can only seek
for local optima.

Let us introduce an example to show how a linear bilevel problem is reformulated
as an ordinary mathematical program substituting complementarity constraints
with the requirement that duality gap is zero.

The test problem for the linear bilevel case is taken from Bard and it is reported
as follows

min
x≥0

− 8x1 − 4x2 + 4y1 − 40y2 − 4y3

subject to min
y≥0

x1 + 2x2 + y1 + y2 + 2y3

subject to − y1 + y2 + y3 ≤ 1

2x1 − y1 + 2y2 − 0.5y3 ≤ 1

2x2 + 2y1 − y2 − 0.5y3 ≤ 1
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MPEC reformulation

min − 8x1 − 4x2 + 4y1 − 40y2 − 4y3

subject to y1 − y2 − y3 ≥ −1

− 2x1 + y1 − 2y2 + 0.5y3 ≥ −1

− 2x2 − 2y1 + y2 + 0.5y3 ≥ −1

1− λ1 − λ2 + 2λ3 ≥ 0

1 + λ1 + 2λ2 − λ3 ≥ 0

2 + λ1 − 0.5λ2 − 0.5λ3 ≥ 0

λ1 (y1 − y2 − y3 + 1) = 0

λ2 (−2x1 + y1 − 2y2 + 0.5y3 + 1) = 0

λ3 (−2x2 − 2y1 + y2 + 0.5y3 + 1) = 0

y1 (1− λ1 − λ2 + 2λ3) = 0

y2 (1 + λ1 + 2λ2 − λ3) = 0

y3 (2 + λ1 − 0.5λ2 − 0.5λ3) = 0

x1, x2, y1, y2, y3, λ1, λ2, λ3 ≥ 0

The duality gap reformulation is given by the following mathematical program

min − 8x1 − 4x2 + 4y1 − 40y2 − 4y3

subject to y1 + y2 + 2y3 − λ1 − (1− 2x1)λ2 − (1− 2x2)λ3 = 0

y1 − y2 − y3 ≥ −1

− 2x1 + y1 − 2y2 + 0.5y3 ≥ −1

− 2x2 − 2y1 + y2 + 0.5y3 ≥ −1

1− λ1 − λ2 + 2λ3 ≥ 0

1 + λ1 + 2λ2 − λ3 ≥ 0

2 + λ1 − 0.5λ2 − 0.5λ3 ≥ 0

x1, x2, y1, y2, y3, λ1, λ2, λ3 ≥ 0

In this case, solving the problem by means of nonlinear optimization techniques
deliver the same result, whether using the MPEC formulation or the duality gap
formulation. Namely, we have that x∗ = (0.5, 0.5), y∗ = (0, 0, 0) and F ∗ = −6.
When the MPEC formulation is solved using specialized algorithms, such as Bard-
Moore, or recasting the MPEC into a mixed integer linear program, global op-
timum is reached. The optimal solution is x∗ = (0, 0.9), y∗ = (0, 0.6, 0.4) and
F ∗ = −29.

Nevertheless, besides pure linear bilevel case, it is not normally possible to re-
formulate the problem obtaining treatable structures such as the mixed integer
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linear programming formulation. Normally, bilevel problems feature a nonconvex
feasible set even if the lower level is a convex problem and the upper level only
entails convex functions. Let us now look at a case with linear lower level, but
with a quite different structure than the pure linear bilevel problem. We consider
the case with the upper level variables are the coefficients of the objective function
for the lower level problem. Such problems are referred to as bilinear bilevel prob-
lems. Such problems are introduced and studied by Marcotte, Savard, Labbé, and
their use is naturally required to model a wide range of problems, such as network
models with toll setting problems.

As an example of such problem, here we propose a game between a regulator
setting a tax x on a particular component y1 used together with a second compo-
nent y2 to bundle a product to be distributed to end users. We assume that part
of the tax is payed by the producer and part of the tax is payed by the end users.
We assume revenues for the firm bundling the product are fixed and stemming
from a public auction, to have the rights to distribute the particular product. The
producer seeks to minimize total costs from the production and the delivery of the
product

The producer problem is thus given by

min (c1 + αx)Ty1 + c2y2

subject to A1y1 + A2y2 ≥ b−Bx
y1, y2 ≥ 0

where the term b−Bx could be considered as a sort of demand function depending
on the part of tax level x to be payed by the end user, while α is the proportion
of tax to be payed by the producer.

The problem for the regulator is thus given by the following bilevel mathematical
program

max
x≥0

xTy1

subject to min (c1 + αx)Ty1 + c2y2

subject to A1y1 + A2y2 ≥ b−Bx
y1, y2 ≥ 0

(3.7)

which corresponds to a Stackelberg-type game where the regulator takes into ac-
count the optimal response of the producer in terms of quantity produced as the
tax level changes. Labbé et al. consider a similar problem, but without upper
level decision variables into the lower level constraints. This allows them to refor-
mulate the problem as a mixed integer linear problem using duality theory to find
a linear equivalent for the bilinear objective functions. Here the presence of upper
level problem variables in the constraints of the lower level problem hinders the
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possibility to use a mixed integer linear program equivalent to (3.7) and dedicated
algorithms must be used to cope with nonlinearities provided by the complemen-
tarity constraints stemming by the reformulation of the lower level problem using
KKT conditions. It is anyway possible to simplify the problem avoiding the com-
plementarity constraints linked to KKT conditions using the same approach used
for the pure linear case (3.3). Let us first write the KKT conditions related to the
producer problem

c1 + αx− AT1 λ ≥ 0

c2 − AT2 λ ≥ 0

A1y1 + A2y2 ≥ b−Bx
λT (A1y1 + A2y2 +Bx− b) = 0

yT1
(
c1 + αx− AT1 λ

)
= 0

yT2
(
c2 − AT2 λ

)
= 0

y1, y2, λ ≥ 0

and use the first three inequalities so to obtain

(c1 + αx)Ty1 + c2y2 ≥ λT (A1y1 + A2y2) ≥ (b−Bx)T λ

Then we have that imposing the equality

(c1 + αx)Ty1 + c2y2 = (b−Bx)T λ

we automatically satisfy the complementarity constraints related to the problem.
Thus solving problem (3.7) is equivalent to finding the solution of the following:

max
x,y1,y2,λ

xTy1

subject to (c1 + αx)Ty1 + c2y2 − (b−Bx)T λ = 0

c1 + αx− AT1 λ ≥ 0

c2 − AT2 λ ≥ 0

A1y1 + A2y2 +Bx ≥ b

x, y1, y2, λ ≥ 0

which can be solved using commercial software for nonlinear problems without
having to take care of complementarities.
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3.3 Quadratically constrained linear lower level

The method introduced can be used also when we have a bilevel problem whose
lower level contains quadratic constraints. In particular, the reformulation works
in all cases in which the lower level constraints have the property kg(x, y) =
∇yg(x, y)y, with k ∈ <. We consider a bilevel program having in the lower level
the following quadratic constraint

min
x≥0

F (x, y)

subject to G(x, y) ≤ b1

min
y≥0

c2x+ d2y

subject to A2x+B2y ≤ b2

1

2
[xT , yT ]

[
C1 C3

CT
3 C2

] [
x
y

]
+ c3x+ d3y ≤ b3

(3.8)

where the quadratic constraint on the lower level problem can be rewritten as
1
2

(
xTC1x+ 2xTC3y + yTC2y

)
+ c3x + d3y ≤ b3 and the KKT conditions for the

lower level are given by

d2 +BT
2 λ1 + CT

3 xλ2 + C2yλ2 + d3λ2 ≥ 0

A2x+B2y ≤ b2
1

2

(
xTC1x+ 2xTC3y + yTC2y

)
+ c3x+ d3y ≤ b3

λT1 (A2x+B2y − b2) = 0

λ2

[
1

2

(
xTC1x+ 2xTC3y + yTC2y

)
+ c3x+ d3y − b3

]
= 0

yT
(
d2 +BT

2 λ1 + CT
3 xλ2 + C2yλ2 + d3λ2

)
= 0

y, λ1, λ2 ≥ 0

As we did in the previous case, we can consider the first inequality of the system
defining the KKT conditions for the lower level problem to obtain,

yTd2 ≥ −yTBT
2 λ1 − yTCT

3 xλ2 − yTC2yλ2 − yTd3λ2 (3.9)

and from the second and third inequality we have

− yTBT
2 λ1 − yTCT

3 xλ2 − yTC2yλ2 − yTd3λ2 ≥
− bT2 λ1 + xTATλ1 − 2b3λ2 + 2cT3 xλ2 + xTC1xλ2 + yTCT

3 xλ2 + yTd3λ2.
(3.10)
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Now, by imposing the equality

yTd2 = −bT2 λ1 + xTATλ1 − 2b3λ2 + 2cT3 xλ2 + xTC1xλ2 + yTCT
3 xλ2 + yTd3λ2

we automatically require (3.9) and (3.10) to be satisfied by equalities. In particular,
by satisfying (3.9) by equality we force the last complementarity constraint of the
previous system of KKT conditions to hold, meanwhile by satisfying 3.10 with
equality we have that

λ2
[(
xTC1x+ 2xTC3y + yTC2y

)
+ 2c3x+ 2d3y − 2b3

]
= λT1 (−A2x−B2y + b2)

with the first term being nonpositive and the second term being nonnegative. Such
equality is therefore satisfied only when both terms equal zero, i.e. when we have

λT1 (A2x+B2y − b2) = 0

λ2

[
1

2

(
xTC1x+ 2xTC3y + yTC2y

)
+ c3x+ d3y − b3

]
= 0

Thus the optimal solution of the nonlinear problem

min
x≥0

F (x, y)

subject to dT2 y + bT2 λ1 − Axλ1 + 2b3λ2 − 2cT3 xλ2 − xTC1xλ2 − yTCT
3 xλ2 − dT3 yλ2 = 0

G(x, y) ≤ b1

A2x+B2y ≤ b2

d2 +BT
2 λ1 + CT

3 xλ2 + C2yλ2 + d3λ2 ≥ 0

1

2

(
xTC1x+ 2xTC3y + yTC2y

)
+ c3x+ d3y ≤ b3

is the same as the optimal solution of problem (3.8). More generally, consider the
bilevel program with quadratic constraints in the lower level, and with the lower
level depending, in some way by the upper level decisions as the following one

min
x≥0

F (x, y)

subject to G(x, y) ≤ b1

min
y≥0

d2(x)y

subject to B2(x)y ≤ b2

yTQ(x)y ≤ b3

(3.11)
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where d2(x), B2(x) are respectively a vector and a matrix of proper dimensions
parametrized by the upper level variables, while Q(x) is a symmetric semi-positive
definite matrix parametrized by the upper level variables.
We can follow the reasoning done for the previous case to formulate a problem
equivalent to (3.12), in the sense that they have the same (global) optimal solution.
The equivalent problem is as follows:

min
x,y,λ1,λ2

F (x, y)

subject to d2(x)y + bT1 λ1 + 2b2λ2 = 0

G(x, y) ≤ b1

B2(x)y ≤ b2

yTQ(x)y ≤ b3

d2(x) +B2(x)Tλ1 + 2Q(x)yλ2 ≥ 0

x, y, λ1, λ2 ≥ 0

3.4 Quadratic Lower Level

Let us now consider the case when the lower level is a quadratic problem with a
set linear constraints. Using the same arguments seen in the previous sections of
the chapter the results can easily be extended to the case of a quadratic lower level
problem with quadratic constraints. The problem reads as follows:

min
x≥0

F (x, y)

subject to G(x, y) ≤ b1

min
y≥0

1

2
[xT , yT ]

[
C1 C3

CT
3 C2

] [
x
y

]
+ c3x+ d3y

subject to A2x+B2y ≤ b2

(3.12)

The KKT conditions for the lower level problem are formulated through the system

CT
3 x+ C2y + d3 +BT

2 λ ≥ 0

A2x+B2y ≤ b2

λT (A2x+B2y − b) = 0

yT
(
CT

3 x+ C2y + d3 +BT
2 λ
)

= 0

y, λ ≥ 0

45



Chapter 3 On the reformulation of a class of bilevel programs

and the first and second inequalities yield

yTCT
3 x+ yTC2y + yTd3 ≥ −yTBT

2 λ ≥ −bT2 λ+ xTAT2 λ

Thus, by imposing the equality

yTCT
3 x+ yTC2y + yTd3 = −bT2 λ+ xTAT2 λ

the complementarity constraints for the KKT conditions referring to the lower
level of the bilevel problem (3.12) are satisfied. Therefore problem (3.12) and the
following problem

min
x,y,λ

F (x, y)

subject to G(x, y) ≤ b1

yTCT
3 x+ yTC2y + yTd3 + bT2 λ− xTAT2 λ = 0

CT
3 x+ C2y + d3 +BT

2 λ ≥ 0

A2x+B2y ≤ b2

x, y, λ ≥ 0

(3.13)

share the same global optimal solution.

For what concerns the quadratic case, the test problem is given by the follow-
ing bilevel program with convex quadratic objective function at the lower level
problem.

min
x≥0

(x− 5)2 + (2y − 1)2

subject to min
y≥0

(y − 1)2 + 1.5xy

subject to − 3x+ y ≤ −3

x− 0.5y ≤ 4

x+ y ≤ 7
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The MPEC reformulation for such a bilevel problem is given by

min (x− 5)2 + (2y − 1)2

subject to 2y − 1.5x+ λ1 − 0.5λ2 + λ3 ≥ 2

− 3x+ y ≤ −3

x− 0.5y ≤ 4

x+ y ≤ 7

λ1 (−3x+ y + 3) = 0

λ2 (x− 0.5y − 4) = 0

λ3 (x+ y − 7) = 0

y (2y − 1.5x+ λ1 − 0.5λ2 + λ3 − 2) = 0

x1, x2, y1, y2, y3, λ1, λ2, λ3 ≥ 0

while, with the duality gap reformulation we get

min (x− 5)2 + (2y − 1)2

subject to − 2y2 + 1.5xy + 2y + 3λ1 − 4λ2 − 7λ3 − 3xλ1 + xλ2 + xλ3 = 0

2y − 1.5x+ λ1 − 0.5λ2 + λ3 ≥ 2

− 3x+ y ≤ −3

x− 0.5y ≤ 4

x+ y ≤ 7

x1, x2, y1, y2, y3, λ1, λ2, λ3 ≥ 0

Similarly to what happened in the linear case, the results delivered under this case
are the same, corresponding to x = 1.27027, y = 0.810811 and F = 14.2972973.

3.5 Generalization

We turn our attention to the case of a bilevel program of type (3.1) with linear or
quadratic constraints and generalize our result through the following

Theorem 16 Let f(x, y) : <n×m → < be and g(x, y) : <n×m → <q be convex
functions on y. Assume also that kg(x, y) = ∇yg(x, y)y, with k ∈ <. Then (3.1)
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and problem
min
x,y,λ

F (x, y)

subject to G(x, y) ≤ b1

g(x, y) ≤ b2

∇yf(x, y) + [∇yg(x, y)]T λ ≥ 0

[∇yf(x, y)]T y + kbT2 λ = 0

x, y, λ ≥ 0

(3.14)

have the same global optimum.

Proof If lower level is convex KKT conditions are necessary and sufficient for
follower’s reaction to be optimal (rational). Thus we can restate (3.1) by appending
to the upper level problem the KKT conditions related to the lower level problem.
These conditions are as follows

∇yf(x, y) + [∇yg(x, y)]T λ ≥ 0

g(x, y) ≤ b2

λT [g(x, y)− b2] = 0

yT
(
∇yf(x, y) + [∇yg(x, y)]T λ

)
= 0

x, y, λ ≥ 0.

(3.15)

From the first and the second inequalities results

∇yf(x, y)Ty ≥ −λT∇yg(x, y)y

and from the assumption kg(x, y) = ∇yg(x, y)y we further have

∇yf(x, y)Ty ≥ −λT∇yg(x, y)y = −kg(x, y) ≥ −kbT2 λ.

Now, by forcing the equality

∇yf(x, y)Ty + kbT2 λ = 0

we automatically satisfy the complementarities

λT [g(x, y)− b2] = 0

and
yT
(
∇yf(x, y) + [∇yg(x, y)]T λ

)
= 0

Q.E.D.
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Chapter 4

A Stochastic Coordination Model
Implementation

4.1 Introduction

The model [1] is composed of two levels interacting in a hierarchical way. Service
Provider Problem (lower level) is an allocation model: it defines the amount of
Service i to be supplied to Service Portfolio, or to External Service j for a given
deal on the revenue sharing scheme between Service Providers. Platform Oper-
ator Problem (upper level) is a coordination model: How to define the optimal
sharing scheme pushing each Service Provider to supply the necessary amount of
their service to each Platform Service Portfolio and delivering, at the same time,
the highest possible return on investment on the actor taking the further role of
Platform Operator. The core of the work is the reformulation of the Lower Level
Problem for the model in Gaivoronski et al. and the formulation of the overall
bilevel problem with multiple followers as a regular, single level nonlinear problem.

4.2 Model formulation

The following notation is used throughout the model:

SETS

• P set of Platform Service Portfolios

• E set of External Services

• Ij set of Service Providers involved in collaborative provision of Service Port-
folio j

PARAMETERS

• vj Expected unit revenue for Platform Service Portfolio j
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• vij Expected unit revenue for External Service j for Service Provider i

• λij Amount of service i needed to deliver one unit of Service Portfolio j

• ci Operating cost for providing one unit of Service i

• σhk Covariance between Platform Portfolio services h and k

• σihk Covariance between Services h and k (Platform/External or Exter-
nal/External) for Service Provider i

• R̄i Maximum risk level that Service Provider i is willing to accept

• r̄i Minimum return level that Service Provider i is willing to accept

• Bj Target Supply for Service Portfolio j

• Wi Provision capability for Service Provider i

VARIABLES

• xij Fraction of capability Wi that Service Provider i supplies to Service Port-
folio j

• γij Share of revenues vj from Platform Service Portfolio j accorded to Service
Provider i

Service Provider

maximize
xij

∑
j∈P

(
γijvj
λijci

− 1

)
xij +

∑
j∈E

(
vij
ci
− 1

)
xij

subject to
1

c2i

(∑
h∈P

∑
k∈P

γih
λih

γik
λik

σhkxihxik + 2
∑
h∈P

∑
k∈E

γih
λih

σihkxihxik +
∑
h∈E

∑
k∈E

σihkxihxik

)
≤ R̄i

∑
j∈P

(
γijvj
λijci

− 1

)
xij +

∑
j∈E

(
vij
ci
− 1

)
xij ≥ r̄i∑

j∈P∪E

xij = 1

xij ≥ 0 j ∈ P ∪ E

Platform Operator
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maximize
γij

∑
j∈P

(
γ1jvj
λ1jc1

− 1

)
x1j +

∑
j∈E

(
v1j
c1
− 1

)
x1j

subject to xij ≥
Bjλij
Wi

i ∈ Ij j ∈ P∑
i∈Ij

γij = 1 j ∈ P

γij ≥ 0 i ∈ Ij j ∈ P

4.3 Model Properties

The optimal solution of the mathematical program is obtained by first reformu-
lating the Service Provider Problem into its equivalent Karush-Kuhn-Tucker con-
ditions. Solutions to KKT conditions deliver a globally optimal solution to the
mathematical problem provided that such problem is convex. So we first show
that the each Service Provider Problem is, in fact, convex for every choice of
revenue sharing scheme vector. Let us first suppose that no sharing scheme are
involved in the portfolio allocation [2], i.e., the i-th provider is the sole supplier
of all the platform and external services. The risk constraint would look like the
following:

xi
TQixi ≤ R̄i

where the matrix Qi is given by the following blocks

Qi =

(
Qp Qpe

QT
pe Qe

)
Moreover, since Qi is a covariance matrix, it is built in the following way

Qi =

(
AT

p

AT
e

)(
Ap Ae

)
= ATA

which implies that xTQix = xTATAx = ‖Ax‖2 ≥ 0. Thus the covariance matrix
is positive semidefinite [?]. Let us now consider the introduction of a vector of
revenue sharing scheme λi for the set of the platform services. The covariance
matrix becomes

Qλi =

(
DQpD DQpe

QT
peD Qe

)
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with D = diag(λi). Now, from the definition of Qi we have that

Qλi =

(
DAT

p

AT
e

)(
ApD Ae

)
= AT

λiAλi

which indeed proves positive semidefiniteness of the covariance matrix parametrized
by the revenue sharing scheme vector. Return vector is, as well, parametrized by
the revenue sharing scheme vector, but since it is a linear function of the portfolio
weights xij for every value of revenue shares, the portfolio return is indeed a convex
function of the portfolio weights.

Thus we claim that both, objective function and constraints for the compo-
nent provider problem are convex functions for each choice of the revenue sharing
scheme. The overall lower level problem is convex.

4.4 Primal-Dual reformulation of the lower level
problem

In this section we show how the bilevel programming problem with multiple fol-
lowers can be restated as a regular single level optimization problem by using
arguments from duality theory. This is accompished by reformulating the compo-
nent providers’ problem into an equivalent system of nonlinear inequalities. We
want to stress out that such a reformulation does not entail any complementarity
condition as opposite to what happens when the lower level of a bilevel program is
reformulated using KKT conditions. Let us first restate, in matrix form, the gen-
eral component provider problem, without accounting for the upper level decision
variables about the revenue sharing scheme.

maximize
xi

rTλixi

subject to xi
TQλixi ≤ R̄i

rTλixi ≥ r̄i

eTxi = 1

xi ≥ 0

We tackle the problem by stating the related KKT conditions, and then we
reformulate this conditions in order to get rid of the complementarity constraint.
Our aim is to define a system which is equivalent to KKT conditions, but at
the same time easier to treat. As a matter of example we can state that such
conditions, in case of linear optimization problem, correspond to bundling primal
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4.4 Primal-Dual reformulation of the lower level problem

and dual constraints and require the duality gap to be zero. A similar approach
is taken in this case.

The KKT conditions of the component provider problem are given by the system

rλi − θ1i2Qλix + θ2irλi + θ3ie + µi = 0

xi
TQλixi ≤ R̄i

rTλixi ≥ r̄i

eTxi = 1

θ1i(xi
TQλixi − R̄i) = 0

θ2i(r
T
λixi − r̄i) = 0

µT
i xi = 0

xi ≥ 0, θ1i ≥ 0, θ2i ≥ 0, µi ≥ 0

or equivalently, reformulated as

rλi − θ1i2Qλix + θ2irλi + θ3ie ≤ 0

xi
TQλixi ≤ R̄i

rTλixi ≥ r̄i

eTxi = 1

θ1i(xi
TQλixi − R̄i) = 0

θ2i(r
T
λixi − r̄i) = 0

rTλixi = θ1i2Qλix− θ2irTλixi − θ3ieTxi

xi ≥ 0, θ1i ≥ 0, θ2i ≥ 0

(4.1)

by substituting for vector µ.

Let us now make some considerations about the system. First and foremost,
from the first inequality, we can obtain rTλix ≤ θ1i2xTQλix − θ2ir

T
λix − θ3ie

Tx,
meanwhile from the second, third and fourh inequalities we have that 2θ1iR̄i −
θ2ir̄i − θ3i ≥ θ1i2xTQλix− θ2irTλix− θ3ieTx. Thus, by imposing the equality

rTλix = 2θ1iR̄i − θ2ir̄i − θ3i (4.2)

we automatically satisfy the equality rTλixi = θ1i2Qλix − θ2ir
T
λixi − θ3ie

Txi and
more importantly we have that 2θ1iR̄i − θ2ir̄i = θ1i2xTQλix− θ2irTλix.

In particular, the last equality corresponds to

2θ1i(R̄i − xTQλix) = θ2i(r̄i − rTλix)
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where the first term is always non-negative, while the second term is always non-
positive. This means that the equality is satisfied only when

2θ1i(R̄i − xTQλix) = 0

and
θ2i(r̄i − rTλix) = 0

which means that the first four inequalities of system (1), together with (4.2) and
the related restrictions on sign for the variables are enough to describe system (1).
Formally, we claim that KKT conditions are equivalent to the system

rTλix− 2θ1iR̄i + θ2ir̄i + θ3i = 0

rλi − θ1i2Qλix + θ2irλi + θ3ie ≤ 0

xi
TQλixi ≤ R̄i

rTλixi ≥ r̄i

eTxi = 1

xi ≥ 0, θ1i ≥ 0, θ2i ≥ 0, θ3i ∈ <

(4.3)

Let us restate such conditions to fit the formulation of the bilevel problem we have
introduced

∑
j∈P

(
γijvj
λijci

− 1

)
xij +

∑
j∈E

(
vij
ci
− 1

)
xij + 2R̄iθ2i − r̄iθ1i − θ3i = 0

(1− θ2i)
(
γijvj
λijci

− 1

)
+

2

c2i

(∑
h∈P

γihγij
λihλij

σhjxih
∑
h∈E

γij
λij

σihjxih+

)
θi1 − θ3i ≤ 0 j ∈ P

(1− θ2i)
(
vij
ci
− 1

)
+

2

c2i

(∑
h∈P

γih
λih

σihjxih
∑
h∈E

σihjxih+

)
θi1 − θ3i ≤ 0 j ∈ E

1

c2i

(∑
h∈P

∑
k∈P

γih
λih

γik
λik

σhkxihxik + 2
∑
h∈P

∑
k∈E

γih
λih

σihkxihxik +
∑
h∈E

∑
k∈E

σihkxihxik

)
≤ R̄i

∑
j∈P

(
γijvj
λijci

− 1

)
xij +

∑
j∈E

(
vij
ci
− 1

)
xij ≥ r̄i∑

j∈P∪E
xij = 1

xij ≥ 0 j ∈ P ∪ E θ1i, θ2i ≥ 0, θ3i ∈ <

We can now restate our bilevel programming problem through its single level
equivalent, substituting each component provider problem with its equivalent
Primal-Dual formulation. Altogether the problem is as follows
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max
∑
j∈P

(
γ1jvj
λ1jc1

− 1

)
x1j +

∑
j∈E

(
v1j
c1
− 1

)
x1j

s.t. xij ≥
Bjλij
Wi

j ∈ P i ∈ Ij∑
j∈P

(
γijvj
λijci

− 1

)
xij +

∑
j∈E

(
vij
ci
− 1

)
xij + 2R̄iθ2i − r̄iθ1i − θ3i = 0 i ∈

⋃
j∈P
Ij

(1− θ2i)
(
γijvj
λijci

− 1

)
+

2

c2i

(∑
h∈P

γihγij
λihλij

σhjxih
∑
h∈E

γij
λij

σihjxih+

)
θi1 − θ3i ≤ 0 j ∈ P i ∈ Ij

(1− θ2i)
(
vij
ci
− 1

)
+

2

c2i

(∑
h∈P

γih
λih

σihjxih
∑
h∈E

σihjxih+

)
θi1 − θ3i ≤ 0 j ∈ E i ∈

⋃
j∈P
Ij

1

c2i

(∑
h∈P

∑
k∈P

γih
λih

γik
λik

σhkxihxik + 2
∑
h∈P

∑
k∈E

γih
λih

σihkxihxik +
∑
h∈E

∑
k∈E

σihkxihxik

)
≤ R̄i i ∈

⋃
j∈P
Ij

∑
j∈P

(
γijvj
λijci

− 1

)
xij +

∑
j∈E

(
vij
ci
− 1

)
xij ≥ r̄i i ∈

⋃
j∈P
Ij∑

j∈P∪E
xij = 1 i ∈

⋃
j∈P
Ij∑

i∈Ij

γij = 1 j ∈ P

xij ≥ 0 j ∈ P ∪ E γij , θ1i, θ2i ≥ 0, θ3i ∈ < i ∈ Ij j ∈ P
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4.5 Model Implementation
We implemented the model through commercial software AMPL/MINOS using simulated data,
as real data collected and placed in databases held by Telenor NO is covered by industrial secret.
Data is the following:

• Number of Service Providers involved in provision of Service Portfolio j, (| Ij |)=3

• Number of Plaftorm Services (| P |)=3

• Number of External Services for each Service Provider (| E |)=1

Service Porfolios
Expected Unit Revenue Estimated Demand

Service Portfolio 1 60 10
Service Portfolio 2 35 30
Service Portfolio 3 45 60

External Service
Expected Unit Revenue

Service Provider 1 4.8
Service Provider 2 1.6
Service Provider 3 6.4

Service Amounts per Service Portfolio Unit
ES Provider 1 ES Provider 2 ES Provider 3

Service Portfolio 1 10 5 2
Service Portfolio 2 8 5 1
Service Portfolio 3 12 6 0.5

Service Providers Profiles
Service Provider 1 Service Provider 2 Service Provider 3

Capacity 1991 1800 1125
Return Bound 0.05 0.05 0.05
Risk Bound 0.170765 0.2 0.1582
Operating Costs 1 1 20

Platform Services Covariance Matrix
Service Portfolio 1 Service Portfolio 2 Service Portfolio 3

Service Portfolio 1 20 20.7846 3.1623
Service Portfolio 2 20.7846 60 -27.3861
Service Portfolio 3 3.1623 -27.3861 50

Platform Services / External Service Covariance
ES Provider 1 ES Provider 2 ES Provider 3

Service Portfolio 1 2.1466 0.3578 4.2933
Service Portfolio 2 -3.7181 -1.8590 -2.4787
Service Portfolio 3 0 -0.5657 5.5255

External Services Variance
Service Provider 1 Service Provider 2 Service Provider 3

5.760 0.640 10.240
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4.5 Model Implementation

Primal-Dual reformulation, solved using data introduced in the previous table delivers the fol-
lowing optimal sharing scheme for revenues. We also report the service allocation chosen by each
Service Provider for all Service Portfolios provided by the Platform and for the External Services.

Revenue Shares
Service Portfolio 1 Service Portfolio 2 Service Portfolio 3

Service Provider 1 0.458782 0.621327 0.0907092
Service Provider 2 0.200522 0.21354 0.0332471
Service Provider 3 0.340696 0.165133 0.876044

Portfolio Services: Bilevel solution
Service Portfolio 1 Service Portfolio 2 Service Portfolio 3

Service Provider 1 0.523727 0.328179 0.0635147
Service Provider 2 0.0444444 0.266704 0.102809
Service Provider 3 0.106667 0.24923 0.644103

External Services: Bilevel solution
External Service

Service Provider 1 0.0845791
Service Provider 2 0.586042
Service Provider 3 0

Portfolio Services: Lower level solution
Service Portfolio 1 Service Portfolio 2 Service Portfolio 3

Service Provider 1 0.523728 0.328179 0.0635135
Service Provider 2 0.0426559 0.267571 0.103585
Service Provider 3 0.106603 0.249293 0.644104

External Services: Lower level solution
External Service

Service Provider 1 0.084579
Service Provider 2 0.586188
Service Provider 3 0

It is easy to see that the solution of the Service Provider Problem (lower level), once fixed
the decision variables of the Platform Operator Problem (upper level), are the same as the ones
obtained by solving the Primal-Dual reformulation of the stochastic coordination model with
bilevel structure, up to approximation errors, whereas by using KKT reformulation, we get
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Portfolio Services: Bilevel solution
Service Portfolio 1 Service Portfolio 2 Service Portfolio 3

Service Provider 1 0.8494016 0.0870901 0.0635082
Service Provider 2 0.3100078 0.0833333 0.0362612
Service Provider 3 0.1066667 0.1600000 0.7333333

External Services: Bilevel solution
External Service

Service Provider 1 0
Service Provider 2 0.570398
Service Provider 3 0

Portfolio Services: Lower level solution
Service Portfolio 1 Service Portfolio 2 Service Portfolio 3

Service Provider 1 0.849402 0.0870902 0.0635082
Service Provider 2 0 0.989544 0.0104564
Service Provider 3 0 0 1

External Services: Lower level solution
External Service

Service Provider 1 0.0605649
Service Provider 2 0
Service Provider 3 0

Where it is shown that the choice picked up by the followers, does not correspond to
the one ’forecasted’ by the leader.
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Conclusions

We have shown a reformulation of Bilevel Programs which can be used for modelling
problems with linear and quadratic convex lower levels. The reformulation has led, in
some instances to force the lower level to pick the exact values forcasted by the leader.
This makes such reformulation suitable for modelling pessimistic bilevel positions. Fur-
thermore some authors, such as Anandalingam and White have used a gap reduction
approach for linear bilevel programs solved using penalty methods. The use of duality
gap into penalty functions has proved as an improvement over the use of complementar-
ities. This suggests that these reformulations could be used in further research to devise
algorithms based on penalty functions on the duality gap.
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