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Index of Notation

R: the real numbers
N: the natural numbers
B: closed unit ball
B(x, r): closed ball centered at x with radius r
S: unit sphere
‖x‖: Euclidean norm
〈x, y〉: canonical inner product
Ac = X \ A: relative complement
intA: interior
A′: derivative
diam (A): diameter
∂A: boundary
co A: convex hull of set A
Ls An: Kuratowski upper limits
Li An: Kuratowski lower limits
dom f : effective domain
Levf (y, X): lower level set
∂f(x0): subgradient set
C+: polar cone
(X, f): optimization problem
arg min(X, f): minimal set
Eff (X, f): efficient solutions set
Min (X, f): minimal points set
WEff (X, f): weakly efficient solutions set
WMin (X, f): weakly minimal points set
StMin (X, f): strictly minimal points set
d(x, C): distance from C
ha,c0 , ha, h: smallest monotone function
∆A: oriented distance function
H
→: Hausdorff convergence
H
⇀: upper Hausdorff convergence
H
⇁: lower Hausdorff convergence
K
→: Kuratowski convergence
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Chapter 1

Introduction

An optimization problem represents the situation in which someone has to make an
optimal choice among a set of possible alternatives, where optimality refers to dif-
ferent and sometimes conflicting constraints. Every day we encounter various kinds
of decision problems. For example consider a young girl that wishes to buy a flat.
She has many needs. She prefers a low price, as much as possible, a short distance
between the flat and her office, the maximum comfort and many other factors may
be listed. An optimal choice satisfying all the criteria simultaneously, does not al-
ways exist. What’s to be done?
Another example is given by a group of managers preparing a programme to pro-
duce the maximum number of a certain item according to some standard of quality
and the minimum cost. It is evident that several economic scenarios, and not only
economic, may be represented as an optimization problem both when the decision is
individual and when it is made by a group.
When the criteria of choice are translated by a vector function (objective function)
and the possible alternatives are a nonempty set (feasible region), a vector optimiza-
tion problem becomes a mathematical object that can be studied in a rigorous way.
The two main sources of vector optimization come from economic equilibrium and
welfare theories of Edgeworth and Pareto (1906) and from mathematical progress in
ordered spaces by Cantor and Hausdorff ([75]). Later many authors published sev-
eral works on this topic discussing general results: for instance existence of solutions
(see [37] and the references therein), necessary and sufficient optimality conditions
([66], [75], [112]), convex and generalized convex optimization ([75], [50], [84], [110]),
duality ([112], [84]), scalarization methods ([75], [31]), implementation of algorithms
([53], [54]) and so on.
An interesting topic, both theoretically and practically, concerns the study of stable
and well-posed problems. Classically, a minimization problem is said to be well-
posed if it has a unique solution which is stable. The stability condition can be
made precise in different senses; for scalar functions, typically, the two fundamental
approaches are associated with the names of Hadamard and Tykhonov, respectively.
The first ([49]) requires existence and uniqueness of the optimal solution together
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with a form of continuous dependence on the problem’s data and was introduced by
Hadamard for problems in mathematical physics such as boundary value problems
for partial differential equations. In 1966 Tykhonov ([120]) extends to optimization
problems the classical idea of Hadamard considering the convergence of every mini-
mizing sequence to the unique minimum point. Generally speaking, some problems
are more regular then others when the behavior of the objective function and of the
approximate solution sequences are deeply connected. Hence, well-posedness prop-
erties play an important role in optimization theory because of their links to several
theoretical issues as well as the relevance for the numerical approximation of the
solution and the convergence analysis of many algorithms.
In the following years the theory of well-posedness has been widely studied (see
[10], [11] and [29] for survey) and other scalar concepts have been introduced, for
two main reasons. The first is the implementation of numerical methods producing
sequences of points which fail to be feasible but tend asymptotically to fulfill the
constraints, while the corresponding value approximate the optimal one. This is the
case of Levitin-Polyak well-posedness ([69]), a strengthening of Tykhonov’s property,
in which the behavior of appropriate asymptotically sequences out of the feasible re-
gion is taken into account. The second is the generalization of well-posedness from
scalar to vector optimization, where the uniqueness requirement is a very strong one.
Thus Tykhonov well-posedness has been extended to scalar problems with several
solutions ([44], [45], [10], [11]). In vector optimization, the image space is gener-
ally characterized by a partial order endowed by a closed, convex and pointed cone
with nonempty interior. As consequence the concept of minimal value and thus of
minimizing sequence are not uniquely determined. Hence several notions of vector
well-posedness have been proposed choosing a concept of minimal value and defining
an appropriate minimizing sequence, in other words, imposing some geometrical fea-
tures of the solutions in the image space (see [74], [79], [102] as surveys). Actually,
we expect a problem to have a solution, maybe not unique, “easy to find”.
A first attempt to classify the vector well-posedness properties of Tykhonov’s type
may be found in [93] where two levels of analysis are identified: the pointwise notions
are referred to a fixed solution point in the image set or in the feasible region, while
the global notions involve the efficient frontier as a whole. Relations among point-
wise notions, among global notions and between the two sets have been provided
([8], [74], [93], [102]).
Usually, every new notion of well-posedness is compared with some already existing
concept and characterized metrically to obtain sufficient (or necessary and sufficient)
conditions. This path suggested to identify classes of well-posed problems. In this
direction some authors showed that convexity or generalized convexity for the objec-
tive function is a fundamental assumptions to name a problem well-posed according
to different definitions simultaneously ([91], [92], [80], [93], [79], [102]). Another im-
portant approach to make the check faster was introduced by Miglierina et al. in [93].
The authors established a parallelism between vector and scalar well-posedness em-
ploying a nonlinear scalarization technique. Hence, a given well-posedness property
of an original vector optimization problem is equivalent to some stability condition
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of an associate scalar problem. In the following years this approach was developed
considering both new well-posedness notions and linear scalarization methods ([101],
[102]).
The identification of a class of well-posed problems allowed some researchers to ap-
proach another important issue. Roughly speaking, given a (topologized) class of
minimum problems, “how many” of them are well-posed in one sense or another?
This topic is known in literature as generic well-posedness in minimization problems.
The words “how many” can be intended in many ways, for instance by a density
result or more generally in the Baire category sense. Variational principles play a key
role in this context and in particular some density results for scalar well-posedness
have been proved as application of Ekeland’s variational principle. Thus the goal is,
given a specific problem, to find a suitable topology to apply a variational result (see
[81], [61], [79], [62]). In vector optimization this topic is less developed.
A fundamental contribution in well-posedness theory was the so called well-posedness
in the extended sense, introduced in the scalar case by Zolezzi ([125]) as combination
of Hadamard and Tykhonov ideas. The original problem is embedded in a family of
perturbed ones depending on a parameter and it is called well-posed in the extended
sense when every asymptotically minimizing sequence converges to some solution.
In this way the notion considers the behavior of appropriate minimizing sequences
and, at the same time, realizes a continuous dependence of the solutions on the pa-
rameter. In vector optimization some generalizations have been proposed, see for
example [56], [58], [21], [22].
The purpose of this work is to give an overview on the world of the vector well-posed
optimization problems, in a finite dimensional setting, mainly under convexity or
generalized convexity assumptions and focusing on scalarization procedures.

To this end the outline is the following. Chapters 2 and 3 are standard pre-
liminaries. In Chapter 2 we introduce the subject of our analysis that is a vector
minimization problem with abstract constraints, together with the basic material
concerning vector optimization to which we refer in the sequel. Then we recall, in a
separate chapter, the main approaches in scalar well-posedness and some connected
results both to make possible links with scalarization results for vector problems and
to underline the origin of vector well-posedness as generalization of scalar case. Thus
Chapter 3 is devoted to a short, not exhaustive, survey of some scalar well-posedness
notions.
Beginning with Chapter 4 the ideas of stability and well-posedness in vector op-
timization are presented. For the clarity of exposition we follow the classification
proposed by Miglierina et al. in [93], thus we mention pointwise and global no-
tions separately, stressing the geometrical features of the image set of each property
thanks to some illustrative examples. As in the scalar case, we are able to establish
the hierchical structure characterizing these concepts. For a more general overview,
we investigate also the links with some global concepts considering the formulation
in the nonparametric case of some extended well-posed notions.
We propose two characterizations of well-posedness properties presented in this
Chapter, the first involving all global notions compared, under generalized convexity
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assumption, the second involving all pointwise concepts and a variational principle.
In particular, focusing on the strongest pointwise notion presented, Dentcheva-Helbig
well-posedness with respect to an efficient point, we consider the idea of “how many”
convex problems will have solutions and also enjoy the property of being well-posed.
Here, employing a vector version of Ekeland’s variational principle due to Araya in
[1], we translate the idea of “many” in terms of a density result. We shall note that
a density or, generally, a generic result permits to approximate a well-posed problem
with a sequence of well-posed problems considering the same constraints and the
same features for the objective functions.
Studying well-posedness one is naturally led to consider perturbations of functions
and sets, hence Chapter 5 is dedicated to the well-posedness in the extended sense.
The main contributions on this topic are due to [56], [58], [59], [57], [60], [34], both
as generalization of Zolezzi and Levitin-Polyak works. In this field, first the authors
provide results when only the objective functions are perturbed, then they introduce
appropriate asymptotically minimizing sequences when both the objective function
and the feasible region are subject to perturbation. In this last part, less developed
in well-posedness literature, we propose a notion for which sufficient conditions un-
der convexity requirements are established.
We then turn our attention on scalarization technique, linear and nonlinear. As
consequence of the results in [93], a vector problem is well-posed if and only if an
associate, or more then one, scalar problem satisfies a scalar stability requirement.
This is the subject of Chapter 6. We mention two reasons among other for our
attention on scalarization. Firstly, solving a scalar problem is less difficult than solv-
ing a vector one, secondly the generalization of the same vector approach preserves
some geometrical features that these techniques emphasize in the proof of the main
results. We can think this part as a window of dialogue between scalar and vector
analysis of a well-posed problem.
It is not always easy to propose an application of theoretical results but it is an
important effort to understand and improve an issue. Chapter 7 is dedicated to
some conclusive remarks on what has been already made on this topic, in particular
with reference to game theory as an application field for well-posedness properties,
depicting also a potential future for the study of well-posedness and stability for a
general representing model.
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Chapter 2

Vector optimization

In this chapter we consider some fundamental and preliminary results in vector
optimization that can be found in every detail and in more generality in the books
[31] [74], [112].
As usual we begin to introduce, very briefly, preference orders and cones as the main
tools to obtain a significative mathematical formulation of an abstract minimum
problem.
Given a set Y ⊆ R

l, a binary relation on Y is a subset R of Y × Y and we write
(x, y) ∈ R when the element x ∈ Y is in relation with y ∈ Y .

Definition 2.1. A binary relation R on Y is a partial order when ∀x, y, z ∈ Y :

(i) (x, x) ∈ R (reflexivity);

(ii) [(x, y) ∈ R and (y, z) ∈ R] ⇒ (x, z) ∈ R (transitivity).

Since Y is a subset of a linear space, we can recall the following definition.

Definition 2.2. The partial relation R on X is said to be linear when ∀x, y, x ∈ Y
and λ > 0:

(i) (x, y) ∈ R ⇒ (x + z, y + z) ∈ R;

(ii) (x, y) ∈ R ⇒ (λx, λy) ∈ R.

Definition 2.3. A partial relation R on Y is called a preorder when ∀x, y ∈ X:

[(x, y) ∈ R and (y, x) ∈ R] ⇒ x = y.

It is known that a linear preorder R is geometrically equivalent to a convex and
pointed cone. We recall that a cone is a subset C ⊆ R

l when ∀x ∈ C and ∀λ > 0
one has λx ∈ C. Moreover:

Definition 2.4. A cone C ∈ R
l is called:

(i) convex, when x + y ∈ C, for all x, y ∈ C;
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(ii) pointed, when C ∩ (−C) = { 0 }.

From now on we shall consider a vector function f : X ⊆ R
n → R

l and the opti-
mization problem (X, f) given by:

min
x∈X

f(x) (2.1)

assuming that the feasible region X is a set of R
n and the image space is endowed by

a partial order given by a closed, convex and pointed cone C with nonempty interior.
Thus we write equivalently

x ≥C y or x − y ∈ C

x >C y or x − y ∈ intC.

2.1 Efficiency

The first interpretation of optimality was given by Vilfredo Pareto in 1896 ([103]):

“the members of collectivity enjoy maximum ophelity in a certain position
when it is impossible to find a way of moving from that position very
slightly in such a manner that the optimality enjoyed by each of the
individuals of that collectivity increases or decreases.”

When the image set is ordered by the paretian cone R
l
+, the following notion identifies

the Pareto efficient points, while for a generic closed, convex and pointed cone we
refer to efficiency.

Definition 2.5. A point x̄ ∈ X is called efficient solution for problem (X, f) when

(f(X) − f(x̄)) ∩ (−C) = { 0 } .

We denote by Eff (X, f) the set of all efficient solutions of the problem (X, f) and
by Min (X, f) the set of all minimal points, that is the image of Eff (X, f) through
the objective function f .
We are also interested in weakly efficiency and strictly efficiency.

Definition 2.6. A point x̄ ∈ X is called weakly efficient solution for problem (X, f)
when

(f(X) − f(x̄)) ∩ (−intC) = ∅.

We denote by WEff (X, f) the set of weakly efficient solutions of the problem
(X, f) and by WMin (X, f) the set of all weakly minimal points. We stress that
in the scalar case the notions of minimal point and weakly minimal point coincide,
while in vector optimization the following inclusions hold:

Eff (X, f) ⊆ WEff (X, f), Min (X, f) ⊆ WMin (X, f)
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This is a consequence of a partial, not complete, order in the image space that is a
common characterization of vector spaces which dimension is greater or equal than
two. Therefore, in vector optimization there are several degrees of efficiency and
minimality (see [123]). Efficiency in strict sense, in particular, has been introduced
to control the asymptotic behavior of unbounded minimizing sequences under the
objective function. In 1998, Berdnarczuk et al. introduced the following concept
([12]).

Definition 2.7. A point ȳ ∈ f(X) is called strictly minimal point for problem (X, f)
when for every ǫ > 0 there exists δ > 0, such that

(f(X) − ȳ) ∩ (δB − C) ⊆ ǫB.

We denote by StMin (X, f) the set of strictly minimal points for problem (X, f).
It is easy to see that StMin (X, f) ⊆ Min (X, f) but the converse is not true in
general. The next result emphasizes the geometrical features of strictly minimal
points.

Proposition 2.8. ([9]) Let ȳ ∈ f(X). Then ȳ ∈ StMin (X, f) if and only if for
every sequences { zn } , { yn } with { zn } ⊆ f(X), yn ∈ zn +C and yn → ȳ, it holds
zn → ȳ.

We conclude this section with an illustrative example of the three concepts of
efficiency recalled.

Example 2.9. Let f : X ⊆ R
2 → R

2 given by f(x, y) = (x, y) with C = R
2
+ and

X =
{

(x, y) ∈ R
2 : y ≥ 0 if x ≥ 0 and y ≥ −xex if x < 0

}

.

The point (0, 0) is the only efficient one, but it doesn’t satisfy Definition 2.7. Note
that the absence of strictly minimal points is caused by the presence of an asymptote
in common between image set and ordering cone.
In this example, WEff (X, f) =

{

(x, y) ∈ R
2 : x ≥ 0, y = 0

}

.
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2.2 Existence of efficient points

We devote a section to the problem of existence of optimal solutions since, as we
have already pointed out in the introduction, it is deeply connected with each well-
posedness approach. To say that a problem is well-posed, according to whatever
definition, we need the existence of at least one optimal solution. Moreover to
appreciate the geometrical nature of well-posedness notions we attempt to construct
some example, satisfying the assumptions required by an existence result.
In the literature two main approaches have been developed: the first considers the
geometrical properties of the efficient set, while the second is based on the asymptotic
description of the objective function and the feasible region (see [37] for survey in
scalar case, [31], [112]).
In the next result, introduced in 1983 by Borwein ([14]), the existence of minimum
points is obtained considering sections of the image set Y = f(X). For simplicity we
consider C = R

l
+ but all results presented in this section are still valid for a generic

closed, convex and pointed cone C with nonempty interior.

Theorem 2.10. Let Y be a nonempty set and suppose there is some y0 ∈ Y such

that the section Y 0 =
{

y ∈ Y : y ≤
R

l
+

y0
}

= (y0 − R
l
+) ∩ Y is compact. Then

Min (X, f) 6= ∅.

The previous theorem derives the existence of minimal points from the intuitive
understanding that minimal points are located in the “lower left part” of Y . The
picture below shows a compact section of Y .

We recall another existence result that does not use a compact section but a condition
on Y which is similar to the finite subcover property of compact sets. It was proved
in 1980 by Corley ([23]).

Definition 2.11. A set Y ⊆ R
l is called R

l
+−semicompact if every open cover of Y

of the form
{

(yα − R
l
+)c : yα ∈ Y, α ∈ A (index set)

}

has a finite subcover.

Theorem 2.12. Let Y be nonempty and R
l
+−semicompact. Then Min (X, f) 6= ∅.
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In the previous existence results Min (X, f) is considered, but using properties
of f it is possible to derive results directly on Eff (X, f). Thus we take now into
account existence results based on some property of the objective function. We start
by discussing Weierstrass theorem.

Definition 2.13. A function g : X ⊆ R
n → R is called:

(i) lower semicontinuous (l.s.c. for short) in x0 ∈ X ∩ X ′ when ∀ǫ > 0, ∃U(x0)
such that f(x) > f(x0) − ǫ;

(ii) upper semicontinuous (u.s.c. for short) in x0 ∈ X ∩ X ′ when ∀ǫ > 0, ∃U(x0)
such that f(x) < f(x0) + ǫ;

(iii) continuous in x0 ∈ X ∩ X ′ when it is both l.s.c. and u.s.c..

Theorem 2.14. (Weierstrass)
A l.s.c. function on a compact set attains its minimum.

A function f : X ⊆ R
n → R

l is a vector of scalar functions f = (f1, . . . , fl) and
its behavior in terms of continuity, derivability or differentiability, is identified by
the behavior of each component fi. This means, for example, that f is continuous if
and only if each fi is continuous.

Theorem 2.15. Let X be a nonempty compact set, C = R
l
+ and f : X ⊆ R

n → R
l

a l.s.c. function. Then (X, f) has a Pareto optimal solution.

To generalize the previous result considering a generic ordering cone, an extended
semicontinuity concept has been introduced ([112]).

Definition 2.16. Let C be a closed, convex and pointed cone in R
l. A function

f : X ⊆ R
n → R

l is said to be C−semicontinuous if the sublevel set

Levf (y, X) = { x ∈ X : y − f(x) ∈ C }

is closed for each y ∈ R
l.

Theorem 2.17. Let X be a nonempty compact set, C be a closed, convex and pointed
cone in R

l and f : X ⊆ R
n → R

l a C−semicontinuous function. Then there exists
an efficient solution.

To avoid the compactness assumption, very strong both in scalar and in vector
case, the authors introduced a scalar notion of coercivity ([37]).

Definition 2.18. A function g : X ⊆ R
n → R is said to be coercive if, for every

t ∈ R, the set Levg(t) is bounded.

The preceding notion is expressed in an equivalent way by

lim
‖x‖→+∞

g(x) = +∞.
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Theorem 2.19. Let g : X ⊆ R
n → R be a l.s.c. and coercive function. Then the

set of minimum points is nonempty and compact.

For a detailed survey on scalar existence results allowing also unbounded set of
minimum points see [37]. The generalization in vector optimization of coercivity was
given by Ehrgott in 1997, that formally characterized Pareto optimality using level
sets of the objective function.

Theorem 2.20. Let C = R
l
+. Then:

(i) x̄ ∈ X is Pareto optimal if and only if:

l
⋂

i=1

Lfi
(fi(x̄)) =

l
⋂

i=1

{ x ∈ X : fi(x) = fi(x̄) } ;

(ii) x̄ ∈ X is weakly Pareto optimal if and only if:

l
⋂

i=1

{ x ∈ X : fi(x) < fi(x̄) } = ∅.

Usually, more general existence results require convexity or generalized convexity
assumptions and not only (see [118], [35], [114], [36], [38], [41], [124] and the references
therein). Moreover in a recent paper a unified approach characterizing efficiency
without linear structure has been proposed ([40], [42]).
This short part on existence theory emphasizes the difficulties to guarantee, without
strong and particular requirements, the presence of at least an efficient point and
thus partially justifies the assumption Eff (X, f) 6= ∅ in well-posedness sufficient
conditions.

2.3 Convexity and generalized convexity

For several reasons, convexity and generalized convexity have a key role in multiob-
jective optimization. At the end of the previous section we remark the presence of
generalized convexity assumptions to obtain more general existence results, and thus
a potential link between convexity and continuity, but this is only an example. An-
other important fact is that under generalized convexity assumptions the inclusion
properties (2.1) may be equalities. Deepenings on Convex Analysis can be found in
[75], [108], [50] and [110].
We have already recalled the notion of convex cone, we turn now on convex sets.

Definition 2.21. A set X ⊆ R
n is said to be convex if ∀x, z ∈ X and ∀t ∈ [0, 1] it

holds tx + (1 − t)z ∈ X.

Definition 2.22. ([75]) A function f : X ⊆ R
n → R

l, X convex, is said to be:
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(i) C−convex on X if ∀x, z ∈ X and t ∈ [0, 1],

f(tx + (1 − t)z) ≤C tf(x) + (1 − t)f(z)

(ii) C−quasiconvex on X if ∀y ∈ R
l the sublevel sets Levf (y) are either empty or

convex;

(iii) strictly C−convex on X if ∀x, z ∈ X, x 6= z and t ∈ (0, 1),

f(tx + (1 − t)z) <C tf(x) + (1 − t)f(z)

(iv) strictly C−quasiconvex on X if ∀y ∈ R
l and ∀x, z ∈ X, x 6= z, t ∈ (0, 1),

f(x), f(z) ∈ y − C implies f(tx + (1 − t)y) ∈ y − intC

As anticipated at the beginning of this section, we recall two important properties
of C−convex and C−quasiconvex functions, widely used in the sequel.

Theorem 2.23. ([119]) Let X be an open set. If f : X ⊆ R
n → R

l is C−convex,
then f is continuous.

Proposition 2.24. ([75]) Let f : X ⊆ R
n → R

l be continuous and strictly C−qua-
siconvex. Then:

(i) WEff (X, f) = Eff (X, f);

(ii) for every y ∈ Min (X, f), f−1(y) is a singleton.

A generalization of convexity is connectedness. A convex function is defined
investigating its behavior on segments belonging to its domain. Some researchers
have though to ask for a regularity on paths that are not necessarily segments, for
example on arcs ([75], [2], [13], [91]). Recall that a set X ⊆ R

n is said to be arcwise
connected if for every x1, x2 ∈ X there exists a curve γ of equation r : [0, 1] → X
such that r(0) = x1 e r(1) = x2.

Definition 2.25. Let X be an arcwise connected set and f : X ⊆ R
n → R

l be a
function.

(i) The function f is C−quasiconnected when, for every x1, x2 ∈ X there ex-
ists a continuous path γ(t; x1, x2) : [0, 1] → X with γ(0; x1, x2) = x1 and
γ(1; x1, x2) = x2, such that the following implication holds:

f(x1), f(x2) ≤C y ⇒ f(γ(t; x1, x2)) ≤C y, for every t ∈ [0, 1].

(ii) The function f is strictly C−quasiconnected when, for every x1, x2 ∈ X, x1 6=
x2 there exists a continuous path γ(t; x1, x2) : [0, 1] → X with γ(0; x1, x2) = x1

and γ(1; x1, x2) = x2, such that the following implication holds:

f(x1), f(x2) ≤C y ⇒ f(γ(t; x1, x2)) <C y, for every t ∈ (0, 1).
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When X is a convex set and γ(t; x1, x2) = (1− t)x1 + tx2, we obtain respectively
the definition of C−quasiconvex and strictly C−quasiconvex function (see [75]). An-
other important difference is that when the image set is ordered by the Paretian cone,
C−convexity is equivalent to the convexity of each components fi, while this very
useful property is no longer true for quasiconnectedness.

Another important step in generalized convexity is the introduction of ∗−quasicon-
vexity by Jeyakumar et al. in [63] as a subclass of C−quasiconvex functions. This
class of generalized convex functions is motivated by the authors with the possibility
to derive a solvability theorem (also called theorem of the alternative) which applies
to characterize local and global solutions of optimization problems. For its particular
form, we will employ this class of functions to derive well-posedness results linked to
linear scalarization.

Definition 2.26. A function f : X ⊆ R
n → R

l is said to be ∗−quasiconvex if and
only if ∀λ ∈ C+ the real valued function 〈λ, f(·)〉 : X → R is quasiconvex.

There are many operations which preserve convexity and allow to construct new
convex functions, most of them geometrically motivated. We end this section with
an application of this type. We recall the notion of smallest monotone function
introduced by Luc ([75]) that is nonconvex but is linked to the generalized convexity
properties. This kind of functions has been employed by several authors in many
fields, for instance see Rubinov [110], Luc [75], Huang [56] and Araya [1] among
others.
Let C ⊂ R

l be a nonempty, closed, convex and pointed cone, let c0 ∈ intC a fixed
vector and a ∈ R

l. Define a smallest monotone function as follows:

ha,c0(y) := min
{

t ∈ R : y ∈ a + tc0 − C
}

.

We will fix a cone C and an arbitrary vector c0 and do not explicitly mention it in
the future; ha will be written instead of ha,c0 .
Function ha : R

l → R ∪ { ±∞ } satisfies the following properties:

Lemma 2.27. ([75], [47], [48])

(i) ha is continuous;

(ii) ha is proper;

(iii) ha is sublinear;

(iv) ha is C−monotone (that means y1 ≤ y2 implies ha(y1) ≤ ha(y2));

(v) { y ∈ Y : ha ≤ t } = tc0 − C;

(vi) ha(y + λc0) = ha(y) + λ for every y ∈ Y and λ ∈ R.

Proposition 2.28. ([75]) A function f : X ⊆ R
n → R

l is C−quasiconvex if and
only if ha ◦ f is quasiconvex for every a ∈ f(X) and a fixed c0 ∈ intC.
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This last result, thanks to the separation properties of the smallest monotone
function ha, deals with a scalar test for C−quasiconvexity, in fact a vector scenary
is brought back to more familiar scalar contexts. This is the spirit of scalar repre-
sentations.

2.4 Scalar representations

In optimization theory, a scalarization technique is a method to convert a vector
problem in a scalar one preserving some geometrical features of the original prob-
lem, such as convexity, linearity, solutions, etc. The main difference between scalar
and vector optimization lies in the completeness of the natural order on the real line,
where the images of feasible alternatives can always compared. For this reason, to
deal with a scalar problem is easier and we can say that the main goal of scalarization
is to simplify the problem to handle.
In this section we mention a linear scalar representation, also called weighted sum
scalarization, to characterize the solution set of a vector problem by the solutions
of several scalar minimization problems. Then we remark some difficulties intrinsic
in this method solved by several authors focusing on nonlinear approaches. In par-
ticular we sketch the procedure based on the oriented distance function introduced
by Hiriart-Urruty in 1979 ([51], [52]) to develop stability conditions in nonsmooth
analysis.
As references for this section see [75], [31].

2.4.1 Weighted sum scalarization

This method is the most popular linear technique because of its formal simplic-
ity. The objective function of each scalar problem is constructed as convex linear
combination of the components fi, i = { 1, . . . , l } the vector function while the fea-
sible region remains the same. Thus the problem (X, f) is investigated by solving
scalarized problems of the type

min
x∈X

l
∑

i=1

λifi(x) = 〈λ, f(x)〉 (2.2)

where λ ∈ C+ := { y ∈ f(X) : 〈y, c〉 ≥ 0,∀c ∈ C }.
Graphically, for a fixed λ the scalar problem is to minimize a linear functional,
which slope is λ, on the image set Y = f(X). The goal is to find the points ȳ on the
boundary of Y , intersection of the line 〈λ, y〉 = c and Y when c is the least value for
which the intersection is nonempty. Changing λ ∈ C+ a different slope of the linear
functional allows to find other optimal solutions. See the picture below.

17



y

x0

ȳ1

ȳ2

λ
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Set

Opt (λ, Y ) := { ȳ ∈ Y : 〈λ, ȳ〉 = inf 〈λ, y〉 , y ∈ Y }

S(Y ) :=
⋃

λ∈int C+

Opt (λ, Y )

S0(Y ) :=
⋃

λ∈C+

Opt (λ, Y )

It is easy to see that without convexity assumption one has S0(Y ) ⊂ Min (X, f).

Theorem 2.29. If the set (Y + K) is convex, then S(Y ) ⊆ Min (X, f) ⊆ S0(Y ).

Convexity assumptions allow to invoke a fundamental result in convex analysis
that is a separation theorem. When (Y + K) is convex, the set (Y − ȳ) with ȳ ∈
Min (X, f) and the cone −C can be separated by a line and thus there exists a slope
λ to identify every minimum value (see [108]).
Moreover, with the same reasoning, S0(Y ) ⊆ WMin (X, f). The two following results
have been proved.

Proposition 2.30. If the set (Y + K) is convex, then S0(Y ) = WMin (X, f).

Proposition 2.31. Let f : X ⊆ R
n → R

l a C−convex function.
Then x̄ ∈ WEff (X, f) if and only if ∃λ ∈ C+ such that f(x̄) ∈ S0(f(X)).

We stress that in vector optimization the image set of a convex function is not
necessarily convex. For example, consider the set X = co { (0, 0), (0, 1), (1, 0) } that
is the convex hull of three points in R

2. Let f(x, z) = (x2, z2) and C = R
2
+. Obviously

X is a convex set and f is a C−convex function but f(X) is not a convex set.
The weak point of this method is that appreciable results are locked up to convexity
requirements and in any case the solution set of a vector problem is the union of the
solution sets of many, more than one, scalar problems. To avoid these difficulties
nonlinear scalarization has been introduced. In the next section we introduce the
nonlinear scalarization based on the so-called oriented distance function.
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2.4.2 The oriented distance function

The notion of oriented distance function was introduced by Hiriart-Urruty in 1979
([51],[52]) to develop stability conditions in nonsmooth analysis. Later it has been
employed by several authors to compare different degrees of efficiency ([123], [93],
[56], [19], [117] among others). Indeed this function allows to emphasize the geomet-
rical features of an optimal solution considering a distance notion from a point to a
fixed set.

Definition 2.32. Let A be a subset of a normed vector space Y . The oriented
distance function for A is ∆A(y) : Y → R ∪ ±{∞ } defined as

∆A(y) = dA(y) − dY \A(y)

where dA(y) = infx∈A ‖y − x‖ .

The main properties of function ∆A are gathered in the following proposition.

Proposition 2.33. ([123])

(i) If A 6= ∅ and A 6= Y then ∆A is real valued;

(ii) ∆A is 1-Lipschitzian;

(iii) ∆A < 0, ∀y ∈ intA, ∆A = 0, ∀y ∈ ∂A and ∆A > 0, ∀y ∈ intAc;

(iv) if A is convex, then ∆A is convex;

(v) if A is a cone, then ∆A is positively homogeneous;

(vi) if A is a closed convex cone, then ∆A is nonincreasing with respect to the
ordering relation induced on Y , if y1, y2 ∈ Y then

y − z ∈ A ⇒ ∆A(y) ≤ ∆A(z);

if A has nonempty interior, then

y − z ∈ intA ⇒ ∆A(y) < ∆A(z).

To derive scalar representations in vector optimization we refer to our problem
(X, f) and choose A = −C, thus function ∆−C is deeply linked to the norm defined
in R

l and to the cone −C. We recall two examples to underline the geometrical
meaning of this function ([123]).

Example 2.34. Let ‖y‖ =
√

∑l
i=1 y2

i be the Euclidean norm and C = R
l
+. Then,

for i = 1, . . . , l

∆−C(y) =

{

max (yi, 0) if y /∈ −C
max yi if y ∈ −C
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Example 2.35. Let ‖y‖∞ = max |yi| and C = R
l
+. Then, ∆−C(y) = maxi yi.

The first thing we ask for a scalar representation is to separate efficient and
weakly efficient solutions of (X, f); in general we need a function which is sensible
to different degrees of minimality. Let p ∈ R

l be a parameter, Y = f(X) and define
a scalar problem (Y,∆−C) as follows:

min
y∈Y

∆−C(y − p). (2.3)

Theorem 2.36. ([123]) Let ȳ ∈ Y . We have ȳ ∈ Min (X, f) if and only if ∃p ∈ R
l

such that ȳ is a strictly global minimum point for (Y,∆−C).

Theorem 2.37. ([123]) Let ȳ ∈ Y . We have ȳ ∈ WMin (X, f) if and only if ∃p ∈ R
l

such that ȳ is a global minimum point for (Y,∆−C).

We close this section with two remarks. First we note that the oriented distance
function ∆−C used for solving nonconvex optimization problems and the smallest
monotone function ha introduced to characterize generalized convexity are deeply
connected. In fact, it was shown ([19]) that under a particular assumption on the
norm of the image space, the smallest monotone function ha is a special case of the
oriented distance function, that is

ha(y) = ∆−C(y).

The scalarization by the smallest monotone function ha gives a characterization of
every weakly efficient solution of the vector problem.

Proposition 2.38. ([16]) For every vector e ∈ intC, every x ∈ WEff (X, f) is an
optimal solution of the scalarized problem minx∈X(ha ◦ f)(x).

We have seen another application of function ha that will be employed in the
sequel to derive scalar representations preserving well-posedness properties.
The second remark justifies the next section of this chapter. The approach of both
oriented distance function and ha (and also of weighted sum scalarization), is to
interpret the measure of the distance, in one sense, between a point and a set,
generally between two sets. The importance of this can be found not only in vector
optimization or in well-posedness theory but in general when the subject of the
analysis are functions. In fact it is well known that every function, in particular under
convexity assumptions, may be identified with its epigraph and the study for example
of a sequence of functions may be approached considering the epiconvergence, that
is the convergence of their epigraphs.

2.5 Distance between two sets

In this section we recall two important tools to measure the distance between sets
from which set-convergences are derived: the Hausdorff distance and the Kuratowski-
Painlevè set-convergence (for a deeper exposition on this topic see e.g. [3], [109],
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[79]). Their role will be crucial in next chapters devoted to well-posedness notions
and stability conditions, speaking of convergence of sets.
One of the most used ways to measure the distance between closed sets is the so-
called Hausdorff distance, based on the following pseudometric h.

Definition 2.39. Let A, B ⊆ R
l nonempty subsets. We define the excess of A over

B
e(A, B) := sup

a∈A

d(a, B) ∈ [0,∞],

where d(a, B) := infb∈B d(a, b).

When A = B = ∅, we set e(A, B) = ∅. Finally, we call Hausdorff distance
between A and B

h(A, B) := max { e(A, B), e(B, A) } .

Definition 2.40. Let { An } be a sequence of subsets of R
l. We say that An con-

verges in the Hausdorff sense to A ⊆ R
l and write An

H
→ A, when h(An, A) → 0.

We can distinguish between upper and lower convergence as follows:

An
H
⇀ A ⇐⇒ e(An, A) → 0

An
H
⇁ A ⇐⇒ e(A, An) → 0.

Let us turn now on a set-convergence idea based on the limits of sets introduced
by Painlevé in 1902, and popularized by Kuratowski in his book ([67]), thus often
called Kuratowski lower and upper limits of sequences of sets. Let { An } be a
sequence of sets of R

l and define the following sets:

Ls An :=

{

x ∈ R
l : x = lim

k→+∞
xk, xk ∈ Ank

, nk a selection of the integers

}

and

Li An :=

{

x ∈ R
l : x = lim

k→+∞
xk, xk ∈ Ak, eventually

}

.

The set Ls An is called the Limsup of the sequence { An }, while the set Li An is
called the Liminf of the sequence { An }.

Definition 2.41. The sequence { An } is said to converge to A in the Kuratowski
sense if

Ls An ⊆ A ⊆ LiAn.

We denote this convergence by An
K
→ A and observe that lower and upper limits

are closed, may be empty, sets.

Example 2.42. Let

An :=

{ {

1
n

}

× [0, 1] if n even
{

1
n

}

× [0, 1] if n odd
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Then LiAn = { 0 }, while Ls An = [−1, 1].
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Chapter 3

Scalar well-posedness

In this chapter we focus on the presentation of well-posedness for scalar minimization
problems, along with illustrative examples and remarks. We denote by (X, g), the
minimization problem given by

min
x∈X

g(x)

where g : X ⊆ R
n → R and X is a closed set.

The notions of well-posedness that will be crucial in the next chapters are vec-
tor generalizations of Tykhonov’s idea. Thus we need to recall the notion due to
Tykhonov ([120]) together with some scalar generalizations preparing this notion for
a vector framework, such as generalized Tykhonov well-posedness proposed by Furi
and Vignoli in [44] (see also [45]), metrically and topologically well-setness due to
Bednarczuk and Penot ([10], [11]). For the sake of completeness we recall also the
notion of Levitin-Polyak ([69]) well-posedness. Then in a short section we underline
the geometrical and variational features of scalar well-posedness considering suffi-
cient conditions and remarks under generalized convexity assumptions. Finally, we
recall with a rephrased version of Tykhonov well-posedness in terms of the Ekeland’s
variational principle. Before the end, again on the variational nature of well-posed
problems, we give a short review of the mixed approach by Zolezzi which combines
Hadamard and Tykhonov ideas embedding (X, g) in a family of perturbed problems
depending on a parameter ([125], [29]).

3.1 Tykhonov well-posedness

The basic idea behind the well-posedness of an optimization problem requires ex-
istence of a unique solution towards which every minimizing sequence converges.
The mathematical formulation of this words may be realized equivalently by several
tools, such as minimizing sequences, forcing maps, ǫ−solutions map and so on. We
decide to follow the characterization by minimizing sequences, to simplify the com-
parison among different concepts (for more details [29]). Recalling that a sequence
{ xn } ⊆ X is said to be minimizing for (X, g) when g(xn) → inf g(X), Tykhonov
introduced the following definition:
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Definition 3.1. ([120]) Problem (X, g) is said to be Tykhonov well-posed (for short
T-wp) or correctly posed, if and only if:

(i) there exists a unique global minimum point x̄ ∈ X;

(ii) every minimizing sequence converges to x̄.

Obviously, the existence of a unique global minimum point is not sufficient to
name a minimization problem T-wp.

Example 3.2. Let g : R → R defined by

g(x) =

{

x, if x > 0
|x − 1| , if x ≤ 0

and X = R. Then arg min(X, g) = { −1 } but the minimizing sequence xn = 1
n

doesn’t converge to −1.

An useful representation of Tykhonov well-posedness in terms of sublevel sets
has been established.

Proposition 3.3. Let g : X ⊆ R
n → R a l.s.c. function. The following are

equivalent:

(i) g is T-wp;

(ii) infa>inf g diam (Levg(a)) = 0.

Furi and Vignoli in [45] give a somewhat more general definition of well-posed
problem which does not require the uniqueness of the minimum point; since the
uniqueness requirement may be too strong and thus it is more convenient to eval-
uate a nonempty set of solutions. Consequently the well-posedness idea is refor-
mulated relaxing the uniqueness of solution but saving the underlying structure of
convergence.

Definition 3.4. Problem (X, g) is said to be generalized Tykhonov well-posed (for
short GT-wp) if and only if:

(i) arg min(X, g) 6= ∅;

(ii) every minimizing sequence { xn } ⊆ X admits a subsequence xnk converging to
some x̄ ∈ arg min(X, g).

A problem which is GT-wp is always T-wp while the converse is not true, in
general.

Example 3.5. Let g : X ⊆ R → R given by g(x) = ||x| − 1| and X = R. One has
arg min(X, g) = { −1, 1 } and Min (X, g) = { 0 }. Problem (X, g) is GT-wp but not
T-wp.
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The notion by Furi and Vignoli implicitly requires the compactness of the solu-
tions set, as the following example shows.

Example 3.6. Let g : X ⊆ R → R given by g(x) = max(1 − |x| , 0) and X =
R. One has arg min(X, g) = { x ∈ R : x ≤ −1 and x ≥ 1 } and Min (X, g) = { 0 }.
Problem (X, g) is not GT-wp as one can see considering the minimizing sequence
xn = n.

As for Tykhonov well-posedness, a useful representation of generalized Tykhonov
well-posedness in terms of sublevel sets has been established by Beer et al. in [13]
thanks to the property of quasi inf-compactness for a scalar function.

Definition 3.7. Function g : X ⊆ R
n → R is said to be quasi inf-compact when for

some α > inf g(X) the sublevel set Levg(α) is compact.

Theorem 3.8. ([13]) Let g : X ⊆ R
n → R a l.s.c. function with Levg(α) arcwise

connected for every α ∈ R. The following are equivalent:

(i) g is quasi inf-compact;

(ii) (X, g) is GT-wp;

(iii) arg min(X, g) 6= ∅ and compact.

The generalizations of the well-posedness concept by Bednarczuk and Penot do
not impose compactness and provide a formulation based on the metric structure
(metrically well-setness) and a further expression in which only topological proper-
ties are invoked. We recall that stability is usually expressed by a semicontinuity
condition of a map, in fact here constructing an appropriate ǫ−solutions multifunc-
tion the definitions of metrically and topologically well-setness may be rewritten in
terms of upper semicontinuity (see [10], [11]). This further generalizations are due
to the presence of many vector problems in which the solutions set is unbounded
and thus also compactness is, in some sense, a very strong requirement.

Definition 3.9. Problem (X, g) is said to be metrically well-set (for short MS) if and
only if for every minimizing sequence { xn } ⊆ X it holds d(xn, arg min(X, g)) → 0.

Definition 3.10. Problem (X, g) is said to be topologically well-set (for short TS)
if and only if every minimizing sequence { xn } ⊆ X \ arg min(X, g) has a cluster
point x̄ ∈ arg min(X, g).

TS implies MS but the converse is not true, in general. The equivalence is realized
when diam (arg min(X, g)) = 0 that means the problem has a unique minimum point.

Example 3.11. Let g : X ⊆ R
2 → R be given by g(x, y) = x and the feasible region

X =
{

(x, y) ∈ R
2 : 0 ≤ x ≤ 1, y ≥ 0

}

.
One has arg min(X, g) =

{

(0, y) ∈ R
2 : y ≥ 0

}

and Min (X, g) = { 0 }. Problem
(X, g) is MS but not TS.
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We end this section with a strengthening of T-wp introduced by Levitin-Polyak in
1966 ([69]) considering a notion of generalized minimizing sequences for (X, g). The
authors justify their work observing that some numerical optimization methods for
constrained problems produce a sequence of points which fail to be feasible, but tend
asymptotically to fulfill the constraints, while the corresponding values approximate
the optimal one (see [29]). Let { xn } ⊆ R

n a sequence such that g(xn) → inf g(X)
and let g : X ⊆ R

n → R. Then { xn } is called generalized minimizing sequence for
(X, g) if and only if d(xn, X) → 0.

Definition 3.12. Problem (X, g) is said to be Levitin-Polyak well-posed (for short
LP-wp), if and only if:

(i) arg min(X, g) 6= ∅;

(ii) every generalized minimizing sequence converges to some x̄ ∈ arg min(X, g).

Since every minimizing sequence is also a generalized minimizing sequence, Le-
vitin-Polyak well-posedness implies Tykhonov well-posedness while the equivalence
is true assuming function g is uniformly continuous.

Example 3.13. Let g : X ⊆ R
2 → R given by g(x, y) = x2 − (x4 + x)y2.

Problem (X, g) where X = { (x, 0) : x ∈ R } is T-wp but not LP-wp. For instance
the generalized minimizing sequence

(

n, 1
n

)

diverges.

3.2 Well-posedness and generalized convexity

When the objective function satisfies generalized convexity requirements, sufficient
conditions for well-posedness can be derived. In this section we recall some results
in this direction and we show some further generalizations.
A convex function g is T-wp assuming that there exists a unique global minimum
point x̄ ∈ arg min(X, g) ([29]). Weakening the convexity hypothesis, one can show
the following proposition.

Proposition 3.14. Let g : X ⊆ R
n → R be quasiconnected and l.s.c. and assume

arg min(X, g) = { x̄ }. Then problem (X, g) is T-wp.

Recalling that, by definition, T-wp implies GT-wp, MS and TS the previous
proposition establishes a sufficient condition for all these properties. A similar result
can be proved for LP-wp.

Proposition 3.15. Let g : X ⊆ R
n → R be quasiconnected and l.s.c. and assume

arg min(X, g) = { x̄ }. Moreover, assume that the continuous path γ(t; x̄, xn) such
that g(γ(t; x̄, xn)) ≤ max { g(x̄), g(xn) } satisfies the condition d(γ(t; x̄, xn), X) ≤
d(txn +(1− t)x̄, X) for every generalized minimizing sequence { xn }. Then problem
(X, g) is LP-wp.
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Proof: Without loss of generality, let x̄ = 0 and g(0) = 0 = min g(X).
By contradiction, (X, g) is not LP-wp. Then there exists a subsequence { xnk } of a
generalized minimizing sequence { xn } such that

g(xnk) → 0, d(xnk , X) → 0, but xnk 6→ x̄.

We distinguish two cases.
Let xnk → c 6= x̄. Then by l.s.c.

0 = lim inf
xnk→c

g(xnk) ≥ g(c),

that means c ∈ arg min(X, g), a contradiction.
Let ‖xnk‖ → ∞. By assumption,

d

(

1

‖xnk‖
xnk +

(

1 −
1

‖xnk‖

)

x̄, X

)

≤
1

‖xnk‖
d(xnk , X) +

(

1 −
1

‖xnk‖

)

d(x̄, X),

thus
(

xnk

‖xnk‖ , X
)

→ 0. Since g is quasiconnected,

g

(

1

‖xnk‖
xnk +

(

1 −
1

‖xnk‖

)

x̄

)

≤ g(xnk),

with g
(

xnk

‖xnk‖

)

→ 0. Then, xnk

‖xnk‖ is a generalized minimizing sequence such that
xnk

‖xnk‖ → y with ‖y‖ = 1 6= ‖x̄‖ = 0, a contradiction. ¤

A sufficient condition for GT-wp under quasiconnectedness assumption can be
derived from Theorem 3.8.

Corollary 3.16. Let g : X ⊆ R
n → R be quasiconnected and l.s.c. and assume

arg min(X, g) 6= ∅ and compact. Then problem (X, g) is GT-wp.

Proof: The proof follows by Theorem 3.8 observing that for a quasiconnected function
all sublevel sets are connected. ¤

The scenary changes when we consider well-setness, in fact the assumption of
convexity for the objective function is not sufficient to name (X, g) MS.

Example 3.17. Let g : X ⊆ R
2 → R given by g(x, y) = x2

y
and

X =
{

(x, y) ∈ R
2 : x ≥ 0, y ≥ 1 and y ≥ x

}

.

One has arg min(X, g) =
{

(0, y) ∈ R
2 : y ≥ 1

}

and Min (X, g) = { 0 }. Function
g is convex, but problem (X, g) is not MS, for instance the minimizing sequence
xn = (n, n3) doesn’t satisfy the stability condition.

The previous example allows us to conclude that without further assumption on
the efficient set, such as compactness, the convexity of g is not sufficient to identify
a class of well-set problems. Hence the notion of well-setness allows unbounded
solution sets, but a sufficient condition under convexity assumption without some
compactness requirement, is not able to separate a set of MS or TS problems.
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3.3 T-wp and variational analysis

As we have already pointed out in the introduction the first approach in well-
posedness is associated with the name of Hadamard with reference to problems in
mathematical physics such as boundary value problems for partial differential equa-
tions. These problems often have a variational origin.
In this section we intend to underline the variational nature of T-wp referring, in
particular, to the Ekeland’s variational principle (see [29], [79]). Ekeland’s Theorem
was discovered in 1974 by Ivar Ekeland ([32], [33]) and provides an approximate
minimizer of a bounded from below l.s.c. function in a given neighborhood of a
point. This localization property is very useful and its importance is stressed by the
extensively use of this result since its discovery. Here we focus on the key role of
Ekeland’s variational principle to get density or genericity results.

Theorem 3.18. (Ekeland’s variational principle)
Let g : X ⊆ R

n → (−∞, +∞] be a l.s.c. and lower bounded function. Let ǫ > 0, r >
0 and x̄ ∈ X such that g(x̄) < infx∈X g(x) + rǫ. Then there exists x̂ ∈ X enjoying
the following properties:

(i) d(x̂, x̄) < r;

(ii) g(x̂) ≤ g(x̄) − ǫd(x̄, x̂);

(iii) g(x̂) < g(x) + ǫd(x̂, x), ∀x 6= x̂.

Condition (iii) in Theorem 3.18 essentially states a well-posedness result, in fact
it can be rewritten as

(iii) the function g(·) + ǫd(x̂, ·) is T-wp.

Further, condition (iii) essentially states a density result for Tykhonov well-posed
problems ([29], [79]). To see this Lucchetti in [79] proposed an example considering
the space F of real valued, l.s.c. positive functions on a complete metric space.
Endowing F with a suitable distance d compatible with uniform convergence on
bounded sets he showed the following proposition.

Proposition 3.19. In (F , d) the set of the functions which are T-wp is dense.

He remarks that the same line of reasoning can be made for other classes F of
functions, including convex functions. A reader who is interested in genericity results
in the Baire category sense can see [79] and [61] and the references therein.
It is worth pointing out a little remark on terminology. Sometimes the authors
speak of well-posed function instead of well-posed problem, but they refer to the
minimization problem (X, g), globally considered.
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3.4 Extended well-posedness

In 1996 Zolezzi ([125]) introduced a well-posedness property, under the name of
extended well-posedness, considering problems with many minimizers and mixing
Tykhonov and Hadamard approaches. A given original problem (X, g) is embedded
in a family of perturbed ones depending on a parameter and it is extended well-
posed when every asymptotically minimizing sequence converges to some solution.
In this way, a strengthening of Tykhonov well-posedness is realized because more
sequences are tested and, at the same time, a form of continuous dependence of the
solution on the parameter, as required by Hadamard idea, is obtained. This form of
well-posedness is relevant for applications, in particular to problems of the calculus
of variations and optimal control and a local form of this concept is suitable for
applications to mathematical programming (see [125] and the references therein).

Let (P, ρ) a metric space and p∗ a fixed point of P ; L is a closed ball in P of center
p∗ and positive radius. The functions

g : X ⊆ R
n → (−∞, +∞], I : X × L → (−∞, +∞]

are proper, extended real valued functions such that

g(x) = I(x, p∗), x ∈ X.

Thus (X, g) is the original problem, while (X, I(·, p)) model perturbations of it cor-
responding to the parameter p. We are interested in studying the behavior of ap-
proximate solutions of (X, I(·, p)) if we slightly change the initial data. To check
this, let us define the value function

V (p) := inf { I(x, p) : x ∈ X } , p ∈ L.

Definition 3.20. Problem (X, g) is said to be extended well-posed (for short E-wp)
(w.r.t. I), if and only if:

(i) arg min(X, g) 6= ∅;

(ii) V (p) > −∞, ∀p ∈ L;

(iii) ∀pn ∈ P with pn → p∗ and { xn } ⊆ X such that I(xn, pn) − V (pn) → 0 exists
a subsequence { xnk } converging to some x̄ ∈ arg min(X, g).

Zolezzi showed that E-wp (w.r.t. I) implies GT-wp while the converse is not
true, in general. The equivalence is satisfied under compactness assumption for
arg min(X, g) and semicontinuity requirements.
We end this section with an example showing that E-wp (w.r.t. I) doesn’t imply
T-wp.

Example 3.21. Let X = R, L = [0, 2], p∗ = 1 and I(x, p) = (x2 − p)2. Then
g(x) = (x2 − 1)2, arg min(X, g) = { −1, +1 } and Min (X, g) = { 0 }. Problem (X, g)
is E-wp (w.r.t. I) and GT-wp but it is not T-wp, the uniqueness requirement is not
satisfied.
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Chapter 4

Vector well-posedness

We turn now to vector results, thus we refer to the vector optimization problem
(X, f) presented at the beginning of Chapter 2 assuming, here and for all next
Chapters, that the feasible region X is a closed set.
We review some main notions of Tykhonov’s type, classified as pointwise and global
by Miglierina et al. in [93], considering also extended well-posedness introduced by
Huang in the nonparametric case and we try to compare these notions constructing
some examples. The hierchical structure will be established, thanks to which we
shall show that the class of minimization problems in which the objective function
is strictly C−quasiconvex is well-posed under several approaches. Thus in the main
theorem of this part, assuming f strictly C−quasiconvex, it will be proved that prob-
lem (X, f) is well-posed according to all pointwise and global notions here presented.
In the last section we propose a density result for pointwise notions generalizing the
approach due to Lucchetti ([79]) in the scalar case, thanks to a vector version of
Ekeland’s variational principle proposed by Araya in [1]. In this way, we give a
characterization of all pointwise notions here presented.

4.1 Pointwise notions

Under the label pointwise well-posedness, Miglierina et al. ([93]) classify those no-
tions in which a minimal point or an efficient solution is fixed. In this way pointwise
concepts avoid uniqueness assumption but investigate a local condition of stabil-
ity, with reference to a single element. In the early eighties Bednarczuk ([7]) and
Lucchetti ([78]) published the first attempts to approach well-posedness in vector
optimization. In particular Lucchetti (1987) gave a first tentative definition for well-
posedness in vector optimization together with initial remarks on how properties
of minimum problems can be translated in a vector framework, while Bednarczuk
proposed in 1994 ([8]) several definitions based on the properties of ǫ−minimal so-
lutions to vector optimization problems. Since in vector optimization there isn’t a
commonly accepted definition of well-posed problem, in the following years many
papers have been published on this topic, and each of them can be viewed as gener-
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alization of the classical approach existing in scalar optimization. In fact every new
notion preserves, in some sense, a characterizing property of Tykhonov’s idea.
Among the others, we focus on the concepts introduced by Bednarczuk ([8]) and by
Loridan ([74]) considering a fixed minimal value, by Dentcheva and Helbig ([27]) and
by Huang ([58]) considering a fixed efficient solution.

Definition 4.1. ([74]) Let ȳ ∈ Min (X, f). A sequence { xn } ⊆ X is called
ȳ−minimizing for problem (X, f), when there exists a sequence { ǫn } ⊆ C, ǫn → 0,
such that f(xn) ≤C ȳ + ǫn.

Definition 4.2. ([8]) Let ȳ ∈ Min (X, f). Problem (X, f) is said to be B–ȳ well-posed
(for short B–ȳ-wp) if and only if every ȳ−minimizing sequence { xn } ⊆ X \ f−1(ȳ)
admits a subsequence { xnk } such that xnk → x̄ ∈ f−1(ȳ).

Definition 4.3. ([74]) Let ȳ ∈ Min (X, f). Problem (X, f) is said to be L–ȳ well-
posed (for short L–ȳ-wp) if and only if every ȳ−minimizing sequence admits a sub-
sequence converging to an element of f−1(ȳ).

Let ȳ ∈ Min (X, f). If problem (X, f) is L–ȳ-wp then it is B–ȳ-wp ([74]), while the
converse is not true, in general; the equivalence is satisfied when f−1(ȳ) is compact.

Example 4.4. Let f : X ⊆ R
2 → R

2 be given by f(x, y) = (0, 0), the feasible region
X =

{

(x, y) ∈ R
2 : x = y and y ≥ 0

}

, with the image set ordered by C = R
2
+. One

has Eff (X, f) = X and Min (X, f) = { (0, 0) }. Problem (X, f) is B–(0, 0)-wp but not
L–(0, 0)-wp as one can see considering the (0, 0)−minimizing sequence xn = (n, n).

In 1996 Dentcheva and Helbig ([27]), using new concepts of ǫ−solutions, extended
some variational principles to vector-valued objective functions and from this, they
established a kind of well-posedness for the resulting perturbed vector problems.
Thus they generalized Tykhonov’s approach in order to obtain similar characteriza-
tions of their new concept in terms of sublevel sets (Proposition 3.3) and in terms of
variational properties (Section 3.3).

Definition 4.5. ([27]) Let x̄ ∈ Eff (X, f). Problem (X, f) is said to be DH–x̄ well-
posed (for short DH–x̄-wp) if and only if

inf
α>0

diam (L(x̄, c, α)) = 0, ∀c ∈ C,

where L(x̄, c, α) = { x ∈ X : f(x) ≤C f(x̄) + αc } .

Let x̄ ∈ Eff (X, f). If problem (X, f) is DH–x̄-wp then it is L–ȳ-wp ([93]), while
the converse is not true, in general; the equivalence is satisfied when f−1(ȳ) = x̄.

Example 4.6. Let f : X ⊆ R → R
2 given by

f(x) =

{

(0, 0) if 0 ≤ x ≤ 1
(x − 1, x − 1) otherwise

and X = R+ with the image set ordered by C = R
2
+. One has Eff (X, f) = [0, 1]

and Min (X, f) = { (0, 0) }. Problem (X, f) is L–(0, 0)-wp but not DH–1-wp, for
instance.
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In 2001, Huang ([58]) proposed new pointwise notions along with sufficient con-
ditions to guarantee these new properties of well-posedness for perturbed vector op-
timization problems, in connection with a vector valued variational principle. Huang
stressed that the main importance in studying well-posedness of the perturbed op-
timization problems in connection with a vector valued variational principle is the
possibility to develop approximate algorithms for vector optimization problems.

Definition 4.7. ([58]) Let x̄ ∈ Eff (X, f). Problem (X, f) is said to be H–x̄ well-
posed (for short H–x̄-wp) if and only if ∀ { xn } ⊆ X such that f(xn) → f(x̄), xn →
x̄.

Let x̄ ∈ Eff (X, f). In [58] Huang showed that DH–x̄-wp implies H–x̄-wp while
the converse is not true, in general, as one can see in the counterexample 2.1 in
[58]. The same example showed that H–x̄ implies neither L–ȳ-wp nor B–ȳ-wp. The
equivalence is possible under a strengthening of the minimality degree.

Proposition 4.8. Let x̄ ∈ Eff (X, f) such that ȳ = f(x̄) ∈ StMin (X, f). Then
(X, f) is H–x̄-wp if and only if it is DH–x̄-wp.

Proof: We must show only one direction, that is H–x̄-wp ⇒ DH–x̄-wp.
Assume by contradiction that (X, f) is not DH–x̄-wp. Thus there exist sequences
{ xn } ⊆ X, { αn } with αn → 0+ and n̄ ∈ N such that ∀n > n̄ and for some c ∈ C
one has

xn ∈ L(x̄, c, αn) but xn 6→ x̄

and

f(xn) ≤C f(x̄) + αnc, but f(xn) 6→ f(x̄),

otherwise (X, f) is not H–x̄-wp.
Let zn = f(xn) ⊆ f(X). By definition of L(x̄, c, α) follows the existence of a se-
quence { yn } ⊆ f(X) such that yn ∈ zn + C and yn → ȳ, contradicting the strictly
minimality of ȳ (Proposition 2.8). ¤

The relationships among the various pointwise concepts recalled here are sum-
marized in the following scheme.

H–x̄-wp
f(x̄) ∈ StMin (X, f) ⇓ ⇑

DH–x̄-wp
⇓ ⇑ f−1(ȳ) = x̄

L–ȳ-wp
⇓ ⇑ f−1(ȳ) compact

B–ȳ-wp
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4.2 Global notions

Global well-posedness means that the stability condition is investigated with refer-
ence to the whole solutions set. To get a tidy and complete comparison between
some properties of this class, we divide them in two groups: first we consider global
well-posedness and efficient solutions, then global well-posedness and weakly efficient
solutions. In each section we compare the notions between them, we underline, when
it is possible, the relationships with the previous concepts and finally we stress the
geometrical features characterizing the image set through an example that permit us
to achieve another well-posedness property which enlarge, in some way, the class of
well-posed problems. Then we compare the notions belonging to the different groups
in order to draw a final outline that will be our start point to study well-posedness
under generalized convexity assumptions.

4.2.1 Global notions and efficient solutions

The passage from pointwise to global notions was traced by Bednarczuk ([8]), con-
sidering the concept of B–minimizing sequence and the generalization of the stability
condition.

Definition 4.9. A sequence { xn } ⊆ X is called B–minimizing for problem (X, f),
when for each n ∈ N there exists ǫn ∈ C and yn ∈ Min (X, f) such that f(xn) ≤C

yn + ǫn, ǫn → 0.

Definition 4.10. ([8]) Problem (X, f) is said to be B–well-posed (for short B-wp)
if and only if:

(i) Min (X, f) 6= ∅;

(ii) every B–minimizing sequence { xn } ⊆ X \ Eff (X, f) admits a subsequence
converging to some element of Eff (X, f).

Proposition 4.11. ([8]) Let Min (X, f) a compact set. If problem (X, f) is B–ȳ-wp
for every ȳ ∈ Min (X, f), then (X, f) is B-wp.

Example 4.12. Let f : X ⊆ R
2 → R

2, f(x1, x2) = (x1, x1) with X = C = R
2
+. The

only minimal value is (0, 0), while Eff (X, f) = { (0, x2) : x2 ≥ 0 }. Problem (X, f) is
not B-wp as for example the B–minimizing sequence xn =

(

1
n
, n

)

doesn’t admit any
subsequence converging to some efficient solution.

To enlarge the class of well-posed problems, Bednarczuk proposed a new defi-
nition in which the stability condition is based on the distance, in the norm sense,
from the efficient solutions set instead of the convergence of appropriate minimizing
subsequences.

Definition 4.13. ([8]) Problem (X, f) is said to be Bw–well-posed (for short Bw-
wp) if and only if:
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(i) Min (X, f) 6= ∅;

(ii) for every B–minimizing sequence { xn } ⊆ X, d(xn, Eff (X, f)) → 0.

B–well-posedness implies Bw–well-posedness, while the converse is in general not
true. The equivalence can be stated under the compactness of the efficient set.

Proposition 4.14. Let Eff (X, f) be a nonempty compact set. If (X, f) is Bw-wp
then it is also B-wp.

Proof: We distinguish two cases.
Assume Eff (X, f) = X. Then there aren’t B–minimizing sequences out of the effi-
cient set and hence (X, f) is B-wp.
Assume Eff (X, f) ⊂ X. By compactness assumption one has d(xn, Eff (X, f)) → 0 if
and only if ∃xnk → x̄ ∈ Eff (X, f) for every B–minimizing sequence. ¤

The notion of Bw–well-posedness fails when the image set and the ordering cone
have some asymptote in common as the following example shows.

Example 4.15. Let f : X ⊆ R
2 → R

2, f(x, y) = (x, y), the feasible region X =
{

(x, y) ∈ R
2 : y ≥ 0 or y ≥ −x

}

and C = R
2
+. Problem (X, f) is not Bw-wp as

for example the B–minimizing sequence xn = (−n, 0) doesn’t satisfy the stability
condition.

To avoid this difficulty, Miglierina and Molho proposed to relax the requirement
of convergence of the minimizing sequences also in the feasible region.

Definition 4.16. ([92]) Problem (X, f) is said to be M–well-posed (for short M-
wp) when for every { xn } ⊆ X such that d(f(xn), Min (X, f)) → 0, one has
d(xn, Eff (X, f)) → 0.

Miglierina and Molho in [92] proved that Bw–well-posedness implies M–well-
posedness while the converse is not true in general as it is showed in Example 4.15.
The equivalence is proved assuming a strict degree of minimality [93].

Theorem 4.17. ([93]) If (X, f) is M-wp and for every ǫ > 0 there exists δ > 0 such
that

(f(X) − Min (X, f)) ∩ (δB − C) ⊆ ǫB, (4.1)

then it is also Bw-wp.

Note that Definition 4.16 is always satisfied when the efficient solution set is
empty and in this particular case there is no attention to the structure of the op-
timization problem with reference to a weak concept of minimal points identified
by the given ordering cone. In the next subsections we focus on global definitions
seeking a weaker concept of efficient solution.
Till now, we can trace the following scheme:
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B-wp
⇓ ⇑ Eff (X, f) compact

Bw-wp
⇓ ⇑ Min (X, f) = StMin (X, f)

M-wp

4.2.2 Global notions and weakly efficient solutions

We introduce three notions due to Huang ([56]) as generalization of the previous
global concepts and keeping attention to the original idea of extended well-posedness
published by Zolezzi ([125]). In this subsection we consider a nonparametric version,
in order to compare these concepts with the others.

Definition 4.18. A sequence { xn } ⊆ X is called Hs–minimizing for problem (X, f),
if there exists c ∈ intC, tn > 0, tn → 0 such that f(X) − f(xn) + tnc /∈ −C.

Definition 4.19. Problem (X, f) is said to be Hs–well-posed (for short Hs-wp) if
and only if:

(i) WEff (X, f) 6= ∅;

(ii) every Hs–minimizing sequence { xn } ⊆ X admits a subsequence converging to
some element of WEff (X, f).

An example of minimization problem that doesn’t satisfy the previous definition
is the following.

Example 4.20. Let f : X ⊆ R
2 → R

2, f(x, y) = (x, y), the feasible region
X =

{

(x, y) ∈ R
2 : y ≥ xe−x, x ≥ 0

}

and C = R
2
+. The problem (X, f) is not

Hs-wp as for example the Hs–minimizing sequence xn = (n, ne−n) doesn’t admit
any subsequence converging to some weakly efficient solution.

The following notion of well-posedness is a generalization of B–well-posedness in
which the stability condition is referred to the weakly efficient solutions set.

Definition 4.21. A sequence { xn } ⊆ X is called H–minimizing for problem (X, f)
if there exist c ∈ intC, αn > 0, αn → 0, and yn ∈ Min (X, f) such that f(xn) ≤C

yn + αnc.

Definition 4.22. Problem (X, f) is said to be H–well-posed (for short H-wp) if and
only if:

(i) WEff (X, f) 6= ∅;

(ii) every H–minimizing sequence { xn } ⊆ X admits a subsequence converging to
some element of WEff (X, f).
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Huang in [56] pointed out that Hs-wp ⇒ H-wp, but the converse is not true in
general. In fact, the problem in Example 4.20 is H–well-posed but not Hs–well-posed.
The geometrical feature of the image set of a problem that doesn’t satisfy Definition
4.22 is the same we have already met considering Bw–well-posedness, that is the
presence of some asymptote in common with the ordering cone.

Example 4.23. Let f : X ⊆ R
2 → R

2, f(x, y) = (x, y) the feasible region
X =

{

(x, y) ∈ R
2 : y ≥ −xex, x ≤ 0

}

and C = R
2
+. The problem (X, f) is not

H-wp as for example the H–minimizing sequence xn = (−n, nen) doesn’t admit any
subsequence converging to some weakly efficient solution.

To extend the class of well-posed problems, Huang used the same trick of distance
instead of convergence of every appropriate minimizing sequence in the image set.

Definition 4.24. Problem (X, f) is said to be Hw–well-posed (for short Hw-wp)
when for every { xn } ⊆ X such that d(f(xn), WMin (X, f)) → 0, there exists a
subsequence converging to a weakly efficient solution.

As in the parametric case, the following implications hold:

Hs-wp ⇒ H-wp ⇒ Hw-wp.

Problem (X, f) in Example 4.23 is Hw–well-posed, while the problem in Example
4.15 is neither H–well-posed nor Hw–well-posed, as for instance the H-minimizing
sequence xn = (−n, 0) doesn’t admit any subsequence converging to some weakly
efficient solution.
As pointed out by Huang ([56]), any one of Definitions 4.19, 4.22, 4.24 implies that
WEff (X, f) is compact; so to establish the equivalence of these three notions with
a property in which there isn’t a requirement of convergence in the domain, it is
necessary to assume WEff (X, f) compact.

Theorem 4.25. ([101]) Let Eff (X, f) = WEff (X, f) be a compact set. Then prob-
lem (X, f) is B-wp if and only if it is H-wp.

Proof: First, we show that B-wp ⇒ H-wp.
Suppose, to the contrary, that the problem (X, f) is not H-wp. Then there exists
a sequence { xn } ⊆ X, c ∈ intC, αn > 0, αn → 0 and yn ∈ Min (X, f) such that
f(xn) ≤C yn + αnc. We distinguish two cases.
Let { xn } ⊆ X \ Eff (X, f). In this case { xn } is a B-minimizing sequence, so there
exists a subsequence converging to some element of Eff (X, f).
Let { xn } ⊆ Eff (X, f). By compactness of Eff (X, f), there exists a subsequence
converging to an efficient point.

The reverse implication is equivalent to show that for c ∈ intC, ∃αn > 0, αn →
0, such that

{ xn : f(xn) − yn ∈ ǫn − C } ⊆ { xn : f(xn) − yn ∈ αnc − C }
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which holds if ∀ǫn ∈ C, ǫn → 0, ∃αn > 0, αn → 0 such that ǫn − C ⊆ αnc − C.
The previous inclusion can be rewritten as ǫn − αnc − C ⊆ −C, and it is satisfied
if ∆−C(ǫn − αnc − z) ≤ 0, ∀z ∈ C, as C is a closed, convex cone. Since ∆−C is
subadditive, we have

∆−C(ǫn − αnc − z) ≤ ∆−C(ǫn) + ∆−C(−αnc) + ∆−C(−z).

The righthandside in this inequality is negative requiring ∆−C(ǫn)+∆−C(−αnc) ≤ 0
(since ∆−C(−z) ≤ 0). Observing that ∆−C(ǫn) > 0, while ∆−C(−αnc) < 0, the
inequality implies ∆−C(ǫn) + ∆−C(−αnc) ≤ 0 and by homogeneity of the oriented
distance function, we get

∆−C(ǫn) + αn∆−C(−c) ≤ 0 when 0 < αn ≤ −
∆−C(ǫn)

∆−C(−c)
.

So it is always possible to choose αn such that H-wp implies B-wp. ¤

A comparison with the notions based on the efficient solutions, under the as-
sumption Eff (X, f) = WEff (X, f), gives the following outline

Hs-wp
⇓

Bw-wp = H-wp
⇓ ⇓

M-wp = Hw-wp
(a)

where (a) = WEff (X, f) compact and the link between M–well-posedness and Hw–
well-posedness follows directly from definitions.
We note that Hw-wp implies H-wp under the same assumptions for which M-wp
implies Bw-wp.

Remark 4.26. Huang and Yang ([60]) introduced six different types of generalized
well-posedness in the extended sense inspired by the scalar notion due to Levitin-
Polyak ([69]) and the scalar generalization in [59] where the constraint is specified by
a function. It is worth noting that in our framework, in which the stability condition
is investigated with reference to an appropriate notion of minimizing sequence when
it belongs to the feasible region, the notions presented in [60] coincide with Hw, H
and Hs–well-posedness.

Keeping in mind the variational nature of Tykhonov well-posedness and recalling
that scalar variational inequalities provide a very general model for a wide range of
problems, in particular equilibrium problems (see e.g. [65]) Crespi et al. ([20])
proposed a new notion of well-posedness. The links between variational inequalities
of differential type (that means in which the operator involved is the gradient of
a primitive function) and optimization problems have been studied (see [65] and
more recently [17] and [18]). Moreover, by means of Ekeland’s variational principle
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a notion of well-posed scalar variational inequality has been introduced ([29], [82])
and its relations with the well-posedness of the primitive optimization problem has
been investigated. Moving from this general view, the new notion presented is an
extension of Tykhonov’s idea, avoiding the uniqueness requirement, for optimization
problems deeply linked with a given notion of well-posed vector variational inequality
(of differential type). Studying the relations with well-posedness of the primitive
optimization problem, the authors show that for C−convex functions the two notion
of well-posedness coincide. Focusing on our minimization problem, we formalize
their concept in the following definition.

Definition 4.27. ([20]) A sequence { xn } ⊆ X is called CGR–minimizing for prob-
lem (X, f), when there exist c0 ∈ intC, ǫn ≥ 0, ǫn → 0 such that f(x) − f(xn) +
ǫnc0 /∈ −intC, ∀x ∈ X.

Definition 4.28. ([20]) Problem (X, f) is said to be CGR–well-posed (for short
CGR-wp) if and only if:

(i) WEff (X, f) 6= ∅;

(ii) for every CGR–minimizing sequence d(xn, WEff (X, f)) → 0 as n → +∞.

The problem in Example 4.23 is not CGR-wp.

Remark 4.29. The vector well-posedness in the extended sense introduced in [22]
coincides with CGR-wp in the nonparametric case.

All the notions introduced till now assume the existence of a solution for the
vector problem and the authors can obtain sufficient conditions under generalized
convexity assumptions. In Section 2.2 we have seen as the existence may derive from
a coercivity condition for the objective function. Deng in [26] studying the issue of
well-posedness for vector optimization, showed that coercivity implies well-posedness
without any convexity assumptions on problem data. The motivation to explore this
direction is that, as showed by the same author in [25], the level-coercivity property
is closely related to certain error bounds for scalar optimization problems. Thus he
derived a criterion for well-posedness in terms of associated scalar problems and a
consequence in terms of error bounds.

Definition 4.30. ([26]) A sequence { xn } ⊆ X is called D–minimizing for problem
(X, f), when d(f(xn), WMin (X, f)) → 0.

Definition 4.31. Problem (X, f) is said to be D–well-posed (for short D-wp) if and
only if:

(i) WMin (X, f) is closed;

(ii) for every D–minimizing sequence d(xn, WEff (X, f)) → 0 as n → +∞.

We underline that Deng introduced the previous definition in the particular case
of the Pareto order. In this chapter we consider the general case in which the cone
satisfies the requirements specified in Chapter 2.
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Theorem 4.32. Let WMin (X, f) be closed. If problem (X, f) is CGR-wp then it is
D-wp.

Proof: To prove the statement is equivalent to show that

{ xn ∈ X : d(f(xn), WMin (X, f)) → 0 } ⊆
{

xn ∈ X : f(X) − f(xn) + ǫnc0 /∈ −intC
}

.

By definition x̄ ∈ WEff (X, f) when, f(x) − f(x̄) /∈ −intC, ∀x ∈ X.
If d(xn, WEff (X, f)) → 0, one can find a sequence ǫn ≥ 0, ǫn → 0 and a vector
c0 ∈ intC such that Definition 4.27 is satisfied. ¤

The assumption WMin (X, f) closed in Theorem 4.32 cannot be avoided.

Example 4.33. Let f : X ⊆ R
2 → R

2, f(x, y) = (x2, ey), X = R
2, C = R

2
+.

Problem (X, f) is CGR-wp but not D-wp, and WMin (X, f) is not closed.

The converse of Theorem 4.32 is not true in general, for instance problem in
Example 4.23 is not CGR-wp but it is D-wp.

Proposition 4.34. If problem (X, f) is D-wp and for every ǫ > 0 there exists δ > 0
such that

(f(X) − WMin (X, f)) ∩ (δB − C) ⊆ ǫB, (4.2)

then it is also CGR-wp.

Proof: Suppose, to the contrary, that problem (X, f) is not CGR-wp, that is
∃ { xn } ⊆ X satisfying the following two properties:

1. { xn } is CGR–minimizing, thus ∃ǫn > 0, ǫn → 0, c0 ∈ intC such that f(X)−
f(xn) + ǫnc0 /∈ −intC;

2. ∃α > 0 such that xn ∈ [WEff (X, f) + αB]c for all n large enough.

Either of the two following cases occur:

(i) xn is such that d(f(xn), WMin (X, f)) → 0. In this case xn is also a D-
minimizing sequence and hence by the assumption problem (X, f) is D-wp,
it follows it is also CGR-wp as we contradict the previous point 2.

(ii) ∃δ > 0 and n0 ∈ N such that

f(xn) ∈ [WMin (X, f) + δB]c , ∀n > n0. (4.3)

Since { xn } is CGR–minimizing

f(X) − f(xn) + ǫc0 /∈ −intC

f(xn) − f(X) − ǫc0 /∈ intC

f(xn) ∈
[

f(X) + ǫc0 + intC
]c

.
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So, ∀ȳ ∈ WMin (X, f) one has ȳ + ǫc0 ∈ ȳ + δB, ∀n > n1 and hence

f(xn) ∈ [ȳ + δB + intC]c

and also

f(xn) ∈ f(X) ∩ [ȳ + δB + intC]c .

Recalling (4.3), we have a contradiction to the assumption (4.2).

¤

Now, we compare CGR–well-posedness and D–well-posedness with the previous
notions, in particular with reference to the work of Huang we have the following
result (see [102]).

Proposition 4.35. Let WEff (X, f) be a compact set. Problem (X, f) is CGR-wp if
and only if it is Hs-wp.

The proof follows form the easily comparison of the two stability conditions and
hence is omitted.
The compactness assumption is fundamental only to show that CGR–well-posedness
implies Hs–well-posedness.

Example 4.36. Let f : X ⊆ R
2 → R

2, X =
{

(x, y) ∈ R
2 : y ≥ 0 or y ≥ −x

}

, C =
R

2
+ and f(x, y) = (x, y). The problem (X, f) is CGR-wp, but not Hs-wp, as, for

example, the Hs–minimizing sequence xn =
(

n,−n + 1
n

)

doesn’t admit any subse-
quence converging to a weakly efficient solution.

The final outline, completed with all global definitions, is based on the following
assumptions

(-) Eff (X, f) = WEff (X, f)

(+) Eff (X, f) compact

(*) WEff (X, f) compact

(**) WMin (X, f) closed

(***) WEff (X, f) compact and WMin (X, f) closed.

(*)
B-wp Hs-wp = CGR-wp

(+) ⇑ ⇓ (-) ⇓
Bw-wp = H-wp (**)⇓ (4.2) ⇑

(4.1) ⇑ ⇓ ⇓
M-wp = Hw-wp = D-wp

(*,-) (***)
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We have pointed out that any new notion of well-posedness of this section en-
larges, in some way, the class of problems characterized by that property, but an in-
teresting investigation about well-posedness properties consists in identifying which
classes of functions satisfy, for sure, a given concept. It is known that, under appro-
priate generalized convexity assumptions, some well-posedness properties are satis-
fied (see for instance [20], [91], [92], [93]).
We end this section with a similar result involving all global notions here presented.

Theorem 4.37. Assume WEff (X, f) be nonempty and bounded. If f : X ⊆ R
n →

R
l is continuous and strictly C−quasiconvex then all global notions here presented

coincide.

Proof: The proof follows from Proposition 2.24 since under compactness of
WEff (X, f) C−quasiconvex functions are CGR-wp. ¤

4.3 A density result

In this section we wish to extend a density result presented in the book edited by
Lucchetti ([79]) in vector optimization considering the pointwise notion introduced
by Dentcheva and Helbig. To this goal we need a vector version of Ekeland’s varia-
tional principle and a deepening of properties of DH–well-posed problems.
We begin to introduce the vectorial version of Ekeland’s variational principle by
Araya ([1]). In the sequel c0 ∈ intC is a fixed vector such that

∥

∥c0
∥

∥ ≤ 1.

Theorem 4.38. ([1]) Let f : X ⊆ R
n → R

l be a vector-valued function satisfying:

(G) For every ǫ > 0 there is an initial point x0 ∈ X such that f(X)∩ (f(x0)−ǫc0−
intC) = ∅;

(H)
{

x′ ∈ X : f(x′) + ‖x′ − x‖ c0 ≤C f(x)
}

is closed for every x ∈ X.

Then there exists x̄ ∈ X such that

(i) f(x̄) <C f(x0);

(ii)
∥

∥x0 − x̄
∥

∥ ≤ 1;

(iii) f(x) + ǫ ‖x − x̄‖ c0 6≤C f(x̄) for all x 6= x̄;

(iv) (X, g) with g(x) = f(x) + ǫ ‖x − x̄‖ c0 is DH-x̄-wp.

Proof: We must prove only point (iv). To see this we use the smallest monotone
function ha studied by Krasnoselski and Rubinov in the sixties and seventies and
later by Luc, with a equal to the zero vector together with, of course, its important
properties (see Lemma 2.27). Thus, for simplicity, we write h instead of h0(y) :=
inf

{

t ∈ R : y ∈ tc0 − C
}

.
We know that (X, g) is DH-x̄-wp if and only if (X, h) with h(g(x) − g(x̄)) is T-wp
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([93]).
By (iii), one has g(x) − g(x̄) 6≤C 0, ∀x 6= x̄ that means h(g(x) − g(x̄)) > 0, ∀x 6= x̄.
Moreover h(g(x̄) − g(x̄)) = h(0) = 0, thus x̄ is the unique minimum point for
h(g(x) − g(x̄)).
Let z(x) = h(g(x) − g(x̄)) = h(f(x) − f(x̄)) + ǫ ‖x − x̄‖ and let xn be a sequence
such that ‖xn‖ → ∞. Then

0 ≤ lim
‖xn‖→∞

z(xn) = lim
‖xn‖→∞

h(f(xn) − f(x̄)) + ǫ ‖xn − x̄‖ = +∞

hence we can conclude that function h(g(x) − g(x̄)) is coercive and thus T-wp. ¤

Consider the space

F :=
{

f : X ⊆ R
n → R

l : f is C − convex
}

.

We endow F with a distance. Fix θ ∈ X and set for any two functions f, v ∈ F and
n ∈ N,

‖f − v‖n = sup
‖x−θ‖≤n

‖f(x) − v(x)‖ .

If ‖f − v‖n = ∞ for some n, then set d(f, v) = 1, otherwise

d(f, v) =
∞

∑

n=1

2−n ‖f − v‖n

1 + ‖f − v‖n

.

To introduce our density result, we need five lemmas.

Lemma 4.39. Let c : R
n → R a proper convex function and g : R

n → R a quadratic
convex function. Then s(x) = c(x) + g(x) is coercive.

Proof: Since c is proper, it is sufficient to distinguish the following two cases.
Let xn be a sequence with ‖xn‖ → +∞ and lim c(xn) > −∞. Then, by definition of
s, it holds lim s(xn) = +∞.
Let now xn be a sequence with ‖xn‖ → +∞ and lim c(xn) = −∞ and let x0 ∈ R

n

be a point such that c(x0) is finite. Without loss of generality, assume g(x) =
〈x, x〉 =

∑n
i=1 x2

i . Since c(x) is convex, the set ∂c(x0) of all subgradients of c at x0

is nonempty (see [108], Theorem 23.4) and by definition of subgradient, for every
x∗ ∈ ∂c(x0) it holds c(x) ≥ c(x0) +

〈

x∗, x − x0
〉

,∀x ∈ R
n. Hence,

lim s(xn) = lim

[

c(xn) +
n

∑

i=1

(xn
i )2

]

≥ lim

[

c(x0) +
〈

x∗, xn − x0
〉

+
n

∑

i=1

(xn
i )2

]

= +∞

showing that s is coercive. ¤
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Lemma 4.40. Let f ∈ F , j > 0 and v : X ⊆ R
n → R

l defined by v(x) :=
f(x) + 1

j
‖x − θ‖2 c0. Then v is strictly C−convex.

Proof: Clearly, function x 7→ ‖x − θ‖2 is strictly convex. From this, ∀x, z ∈ X, x 6= z
and x̃ = t(x) + (1 − t)z, t ∈ (0, 1), the following inequalities hold:

tv(x) + (1 − t)v(z) = t(f(x)) + (1 − t)f(z) +
t

j
‖x − θ‖2 c0 + (1 − t)

1

j
‖z − θ‖2 c0

≥C f(x̃) +
1

j
[t ‖x − θ‖2 + (1 − t) ‖z − θ‖2]c0

>C f(x̃) +
1

j
‖x̃ − θ‖2 c0

= v(x̃)

hence v is strictly C−convex. ¤

Lemma 4.41. Let v : X ⊆ R
n → R

l be a strictly C−quasiconvex function. If
Eff (X, v) 6= ∅, then (X, v) is DH-x-wp, ∀x ∈ Eff (X, v).

Proof: It follows from Proposition 6.2 in [93] and Proposition 2.24. ¤

Lemma 4.42. Let f ∈ F , j > 0, X unbounded and v : X ⊆ R
n → R

l defined by
v(x) := f(x) + 1

j
‖x − θ‖2 c0. Then h ◦ v is coercive and convex.

Proof: Note that ∀x ∈ X:

h(v(x)) = h(f(x)) +
1

j
‖x − θ‖2

by properties of function h. To prove that h(v(x)) is convex, it is sufficient to prove
that h(f(x)) is convex. For every x, z ∈ X, t ∈ [0, 1], it holds:

h(f(tx + (1 − t)z)) ≤ h(tf(x) + (1 − t)f(z)),

≤ th(f(x)) + (1 − t)h(f(z)),

hence h(v(x)) is convex.
Coercivity follows now by Lemma 4.39. ¤

Lemma 4.43. Let f ∈ F , j > 0 and v : X ⊆ R
n → R

l defined by v(x) :=
f(x) + 1

j
‖x − θ‖2 c0. Then function v has bounded sublevel sets.

Proof: Let y ∈ R
l. Set t = h(y) and K := { x ∈ X : h(v(x)) ≤ t }. By Lemma

4.42 we know that K is a bounded set. If Levv(y) ⊆ K, since y is arbitrary, v has
bounded sublevel sets.
Let x ∈ Levv(y). Then v(x) ≤C y and by C−monotonicity of h it follows h(v(x)) ≤
h(y) = t and thus x ∈ K. ¤
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Now, we are ready to present our density result.

Theorem 4.44. The set of functions f ∈ (F , d) such that

(i) Eff (X, f) 6= ∅;

(ii) (X, f) is DH-x-wp, ∀x ∈ Eff (X, f);

is dense in (F , d).

Proof: Fix σ > 0, f ∈ (F , d) and take j so large that

v(x) := f(x) +
1

j
‖x − θ‖2 c0 satisfies d(f, v) <

σ

2
.

Then v ∈ (F , d), in fact v is strictly C−convex by Lemma 4.40.

Since C−convex functions are continuous ([119]), the sets
{

x ∈ X : v(x) + ‖x − y‖ c0 ≤C v(y)
}

are closed and thus v satisfies assumption (H) in Theorem 4.38.

By Lemma 4.43, v has bounded sublevel sets and thus there exist y ∈ R
l and

M > 0 such that Levv(y) is contained in B(θ, M) and since B(θ, M) is compact,
WEff (Levv(y), v) 6= ∅. Moreover

WEff (Levv(y), v) ⊆ WEff (X, v)

and Eff (Levv(y), v) ⊆ Eff (X, v).

Since v is strictly C− convex (Lemma 4.40), by Proposition 2.24 WEff (X, v) =
Eff (X, v) and thus Eff (X, v) 6= ∅. It follows that assumption (G) in Theorem 4.38
is trivially satisfied by function v, indeed it is enough to choose any point x0 ∈
Eff (X, v).

Apply the vectorial Ekeland’s variational principle with ǫ = σ
2s

, s =
∑+∞

n=1 2−n(n +
M +1). By Lemmas 4.42 and 4.43 there exists a bounded sublevel set of v containing
θ and x0. Thus there exists M > 0 such that x0 ∈ B(θ, M). Find x̂ such that
∥

∥x̂ − x0
∥

∥ ≤ 1 and define
u(·) = v(·) + ǫ ‖· − x̂‖ c0,

with u(x) 6≤C v(x̂), ∀x 6= x̂. Note that u ∈ (F , d) and

‖x − x̂‖ ≤
∥

∥x − x0
∥

∥ +
∥

∥x0 − x̂
∥

∥

≤
∥

∥x − x0
∥

∥ + 1

≤ ‖x − θ‖ +
∥

∥θ − x0
∥

∥ + 1.

It follows:

‖u − v‖n = sup
‖x−θ‖≤n

‖u(x) − v(x)‖

= sup
‖x−θ‖≤n

∥

∥v(x) + ǫ ‖x − x̂‖ c0 − v(x)
∥

∥

= sup
‖x−θ‖≤n

ǫ
∥

∥‖x − x̂‖ c0
∥

∥

≤ ǫ(n + M + 1).
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Hence:

d(u, v) ≤
+∞
∑

n=1

2−n ǫ(n + M + 1)

1 + ‖f − v‖n

≤
+∞
∑

n=1

2−n(n + M + 1)ǫ

= sǫ = s ·
σ

2s

=
σ

2
.

Problem (X, u) is DH-x̂-wp with x̂ ∈ Eff (X, u) 6= ∅, by Theorem 4.38 and since u is
strictly C−convex, by Lemma 4.41, (X, u) is DH-x-wp, ∀x ∈ Eff (X, u). To complete
the proof invoke the triangle inequality. ¤

Comparing some pointwise notions we have seen that DH–well-posedness is stron-
ger than Loridan and Bednarczuk concepts, thus Theorem 4.44 states a character-
ization of density also with reference to Loridan and Bednarczuk pointwise well-
posedness.

46



Chapter 5

Extended well-posedness

Extended well-posedness was introduced in the scalar case by Zolezzi ([125]) using
the embedding technique and it has been generalized in vector optimization firstly by
Huang ([56]) who introduced three notions of well-posedness, employing always the
embedding technique, based on several ways to understand the approximation of the
objective values to the optimal value set. In particular the notion of well-posedness in
the weakly extended sense is based on the understanding of approximation in terms
of the norm distance, similarly to Definition 4.13 by Bednarczuk. Well-posedness in
the extended sense refers to the approach of ȳ−minimizing sequence introduced by
Loridan ([74]), and well-posedness in the strongly extended sense is new with respect
to the previous papers.
It is worth mentioning that extended well-posedness includes usual well-posedness
as a special case.

Let (P, ρ) a metric space, p∗ a fixed point of P and L be a closed ball in P with
center p∗ and positive radius. Let I : R

n × L → R
l be a vector-valued function such

that

I(x, p∗) = f(x), ∀x ∈ X.

Thus (X, f) is the original problem, while (X, I(·, p)) model perturbations of it cor-
responding to the parameter p. Let

V (p) := inf { I(x, p) : x ∈ X }

where y ∈ V (p) means that

(i) y ∈ R
l;

(ii) ∀x ∈ X, I(x, p) − y /∈ −intC;

(iii) there exists a sequence { xn } ⊆ such that I(xn, p) → y as n → +∞.

Huang, assuming e ∈ intC arbitrarily fixed, based its definitions on the following
conditions:
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Eff (X, f) 6= ∅ (5.1)

V (p) 6= ∅, ∀p ∈ L (5.2)

Definition 5.1. Problem (X, f) is called well-posed in the weakly extended sense
if (5.1) and (5.2) hold and for any sequences pn → p∗ in P and { xn } in X such
that d(I(xn, V (pn))) → 0, there exist a subsequence { xnk } of { xn } and some point
x∗ ∈ Eff (X, f) such that xnk → x∗.

Definition 5.2. Problem (X, f) is called well-posed in the extended sense if (5.1)
and (5.2) hold and for any sequences pn → p∗ in P and { xn } in X such that
∃ { αn } , αn ≥ 0, αn → 0 and yn ∈ V (pn) with I(xn, pn) ≤C yn + αne, there exist
a subsequence { xnk } of { xn } and some point x∗ ∈ Eff (X, f) such that xnk → x∗.

Definition 5.3. Problem (X, f) is called well-posed in the strongly extended sense
if (5.1) and (5.2) hold and for any sequences pn → p∗ in P and { xn } in X such
that lim infn→+∞[infy∈V (pn) h(y − I(xn, pn))] ≥ 0, there exist a subsequence { xnk }
of { xn } and some point x∗ ∈ Eff (X, f) such that xnk → x∗.

As pointed out by Huang, Definition 5.3 implies Definition 5.2 that implies Def-
inition 5.1, while the converse is not true in general (see [56]).

Crespi et al. ([21], [22]) slightly generalize the previous notion of extended well-
posedness in the strongly extended sense in order to consider also perturbations of
the feasible region of the problem. Thus, they introduced appropriate asymptotically
minimizing sequences when both the objective function and the feasible region are
subject to perturbation. In particular the authors focus on convex problems, that
means problems in which both the objective function and the perturbations are
C−convex ([21]) and quasiconvex problems, assuming C−quasiconvexity. The main
result shows that, under some assumptions, vector quasiconvex functions enjoy such
well-posedness property (and a fortiori enjoy Definition 5.3).

Definition 5.4. Let fn : R
n → R

l be a sequence of functions, let f : R
n → R

l and
let Xn be a sequence of subsets of R

n. Problem (X, f) satisfies property (P ) (with
respect to the perturbations defined by the sequences fn and Xn) when, for every
sequence xn ∈ Xn such that

(fn(Xn) − fn(xn)) ∩ (−intC − ǫne) = ∅, (5.3)

for some sequence ǫn → 0+, there exists a subsequence xnk of xn such that
d(xnk , WEff(X, f)) → 0, as k → +∞.

It can be shown that the previous definition does not depend on the choice of
the vector e ∈ intC. The proof of this statement can be given along the lines of
Proposition 3.3 in [20].
Observe that when WEff (X, f) is compact, the requirement d(xnk , WEff (X, f)) → 0,
amounts to the existence of a point x̄ ∈ WEff (X, f) such that xnk converges to x̄.
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To obtain sufficient conditions for property (P ), some stability results are needed.
Crespi et al. gave some extentions of stability properties of vector optimization prob-
lems studied in [80] when the objective function is C−convex. Thus they investigated
the behavior of the sets WEff (Xn, fn), Eff (Xn, fn), WMin (Xn, fn), Min (Xn, fn),
when fn and Xn “approach” to f and X respectively.

Lemma 5.5. Let fn : R
n → R

l and f : R
n → R

l be continuous C−quasiconvex
functions, y ∈ R

l and yn → y. Assume

(i) fn → f in the continuous convergence,

(ii) Xn
K
→ X,

(iii) Levf (y, X) is nonempty and bounded.

Then ∀ǫ > 0 it holds:

Levfn
(yn, Xn) ⊆ Levf (y, X) + ǫB,

eventually.

Proof: Assume the contrary. Then one can find a number ǭ > 0 such that ∀n of
some subsequence, there exists a point xn ∈ Levfn

(yn, Xn) with

xn /∈ Levf (y, X) + ǭB.

(i) Assume xn is bounded. Then without loss of generality we can assume xn → x̄.

Since Xn
K
→ X, it follows x̄ ∈ X and from

fn(xn) ∈ yn − C,

passing to the limit, and recalling fn → f in the continuous convergence, we
get f(x̄) ∈ y − C, that is x̄ ∈ Levf (y, X), a contradiction.

(ii) Assume now xn is unbounded and let x̂ ∈ Levf (y, X). Since Xn
K
→ X, we can

find a sequence x̂n ∈ Xn such that x̂n → x̂. Since f is continuous we have
f (x̂n) → f (x̂) ∈ y − C and hence for α > 0, we get fn (x̂n) ∈ y − C + αe,
eventually, that means

x̂n ∈ Levfn
(y + αe, Xn) . (5.4)

Moreover, since yn → y, for e ∈ intC and α > 0, we have yn ∈ y − C + αe,
eventually and hence it follows fn(xn) ∈ y − C + αe, eventually. Let xn(t) =
txn + (1 − t)x̂n, t ∈ [0, 1]. From the C-quasiconvexity of fn we obtain the
existence of an integer n̄ = n̄(α) such that fn(xn(t)) ∈ y − C + αe for every
t ∈ [0, 1] and n > n̄.
There exists a positive number ǭ such that for every n > n̄, we can find a
number tn ∈ [0, 1], which satisfies xn(tn) ∈ ∂[Levf (y, X) + ǭB]. Indeed, it is

49



enough to observe that, since x̂n → x̂, then there exists ǭ such that for every
ǫ < ǭ it holds x̂n ∈ Levf (y, X) + ǫB, eventually, while xn /∈ Levf (y, X) + ǭB.
Since Levf (y, X) + ǭB is compact, without loss of generality we can assume
xn(tn) → x̃ ∈ ∂[Levf (y, X) + ǭB] and from fn → f in the continuous con-

vergence, we get also fn(xn(tn)) → f(x̃) ∈ y − C + αe. Since Xn
K
→ X, we

get x̃ ∈ X and since α is arbitrary we conclude f(x̃) ∈ y − C, or equivalently
x̃ ∈ Levf (y, X), which is a contradiction.

¤

Theorem 5.6. Let fn : R
n → R

l, f : R
n → R

l be continuous, C−quasiconvex

functions with fn → f in the continuous convergence and Xn
K
→ X. Assume the

level sets of f , Levf (y, X) are bounded when nonempty.

(i) If y ∈ Min (X, f) there exists a sequence yn ∈ Min (Xn, fn), such that yn → y,
that means LiMin (Xn, fn) ⊇ Min (X, f).

(ii) If y ∈ Min (X, f) there exist x̄ ∈ f−1(y) and a sequence xn ∈ Eff (Xn, fn),
which admits a subsequence xnk converging to x̄.

(iii) If f is strictly C−quasiconvex then we have:

(a) Min (Xn, fn)
K
→ Min (X, f);

(b) Eff (Xn, fn)
K
→ Eff (X, f).

Proof:

(i) Let y ∈ Min (X, f) and consider the level set Levf (y, X) = f−1(y). The as-
sumptions ensure f−1(y) is compact. Let x̄ ∈ f−1(y).

From x̄ ∈ X, and Xn
K
→ X, we get the existence of a sequence zn ∈ Xn, zn → x̄.

Since fn → f in the continuous convergence, we get fn(zn) → f(x̄) and hence,
for e ∈ intC, we can find a sequence αn → 0+, such that

fn(zn) ∈ y + αne − C,

that means zn ∈ Levfn
(wn, Xn) with wn = y + αne → y. Using Lemma 5.5,

for every ǫ > 0 we get

Levfn
(wn, Xn) ⊆ Levf (y, X) + ǫB = f−1(y) + ǫB, (5.5)

eventually. From the assumptions we get that both Levfn
(wn, Xn) and

fn(Levfn
(wn, Xn)) are compact. Hence Min (Levfn

(wn, Xn), fn, ) is nonempty
(see [75]). From the assumptions and (5.5) we get

f (Levfn
(wn, Xn)) ⊆ f (Levf (y, X) + ǫB) ,
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eventually and hence

Min (Levfn
(wn, Xn) , fn) ⊆ f (Levf (y, X) + ǫB)

= f
(

f−1(y) + ǫB
)

,

eventually. Since f is continuous, for every δ > 0 there exists ǫ > 0, such that
f

(

f−1(y) + ǫB
)

⊆ y + δB and hence:

Min (Levfn
(wn, Xn) , fn) ⊆ y + δB,

eventually. Let yn ∈ Min (Levfn
(wn, Xn) , fn). Then we can assume yn → y,

and the proof is complete observing that

Min (Levfn
(wn, Xn), fn) ⊆ Min (Xn, fn).

(ii) Let yn ∈ Min (Levfn
(wn, Xn), fn, ) be the sequence previously found at point

(i) and let xn ∈ f−1(yn). We have

xn ∈ Eff (Levfn
(wn, Xn) , fn, ) ⊆ Eff (Xn, fn) .

Since Eff (Levfn
(wn, Xn) , fn) ⊆ Levfn

(wn, Xn) ⊆ f−1(y) + ǫB, eventually, ǫ
is arbitrary and f−1(y) is compact, we obtain the existence of a subsequence
of xn converging to some point x̄ ∈ f−1(y).

(iii) At point (i) we have proved

Li Min (Xn, fn) ⊇ Min (X, f) .

It remains to prove LsMin (Xn, fn) ⊆ Min (X, f). Let yn ∈ Min (Xn, fn) and
assume yn admits a convergent subsequence ynk . Since f is strictly C−qua-
siconvex we have Min (X, f) = WMin (X, f) (see Assume by contradiction
ynk → y /∈ Min(X, f). Hence there exists x̄ ∈ X such that f(x̄) − y ∈ −intC.

Since x̄ ∈ X and Xn
K
→ X, there exists a sequence xn ∈ Xn, with xn → x̄. From

f(x̄)−y ∈ −intC, recalling fnk
(xnk) → f(x̄), it follows easily fnk

(xnk)−ynk ∈
−intC − αe ⊆ −intC, eventually, which contradicts ynk ∈ Min (Xnk

, fnk
) and

(a) is proved.
To prove (b) it is enough to recall f−1(y) is a singleton and the proof easily
follows from (ii).

¤

Remark 5.7. One can easily check that in Theorem 5.6 the boundedness assumption
on the level sets can be replaced with the weaker requirement that f−1(y) is bounded
for every y ∈ Min (X, f). This condition is certainly satisfied when f is strictly C-
quasiconvex (see Proposition 2.24).
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Remark 5.8. It is known that every C-convex functions is continuous [119]. Hence,
when f and fn are C-convex functions, the continuity assumption in Theorem 5.6
is superfluous. Further, in this case, in Theorem 5.6, it is enough to require the
existence of y ∈ R

l such that Levf (y, X) is nonempty and bounded. Indeed for a
C−convex function, the boundedness of one of the nonempty level sets Levf (y, X)
is equivalent to the boundedness of all the level sets (see [80]).

Now we are ready to present a sufficient condition for property (P ).

Theorem 5.9. Let f : R
n → R

l and fn : R
n → R

l be continuous and C-quasicon-
vex, with fn → f in the continuous convergence. Let Xn be a sequence of closed

convex subsets of R
n such that Xn

K
→ X. Assume that for every y ∈ R

l, Levf (y, X)
is bounded and let WEff (X, f) be bounded. Assume further that there exists n̄ ∈ N

such that Levfn
(y, Xn) is bounded for every y ∈ R

l and for every n > n̄. Then
problem (X, f) satisfies property (P ) with respect to the perturbations defined by the
sequences fn and Xn.

Proof: Let

WEff ǫne(Xn, fn) = { x ∈ Xn : (fn(Xn) − fn(x)) ∩ (−intC − ǫne) = ∅ } .

Assume that (X, f) does not satisfy property (P ). Then we can find sequences
ǫn → 0+, xn ∈ WEff ǫne (Xn, fn) , such that, for some δ > 0 it holds xn 6∈ WEff(X, f)
+δB, eventually.
We claim that for every sufficiently large n there exists a point zn ∈ ∂[WEff (X, f)+
δB] such that zn ∈ WEff ǫne(Xn, fn). Indeed, if such a zn does not exist, we would
have for some n

WEff ǫne (Xn, fn) ⊆ int [WEff (X, f) + δB] ∪ [WEff (X, f) + δB]c . (5.6)

Clearly WEff ǫne (Xn, fn) ∩ [WEff (X, f) + δB]c 6= ∅. We now prove that

WEff ǫne (Xn, fn) ∩ int [WEff (X, f) + δB] 6= ∅, (5.7)

eventually. Since
WEff (Xn, fn) ⊆ WEff ǫne (Xn, fn) ,

it is enough to prove

WEff (Xn, fn) ∩ int [WEff (X, f) + δB] 6= ∅, (5.8)

eventually. Let y ∈ f(X) be fixed. The level set Levf (y, X) is nonempty since
f−1(y) ⊆ Levf (y, X) and from the assumptions we obtain that both Levf (y, X) and
f(Levf (y, X)) are compact.
It follows [75] that Min (Levf (y, X), f) is nonempty and since Min (Levf (y, X), f)
⊆ Min (X, f) also Min (X, f) is nonempty.
Let y ∈ Min (X, f). From Theorem 5.6 (ii), we get the existence of a point x̄ ∈
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f−1(y) ⊆ Eff (X, f) and a sequence vn ∈ Eff (Xn, fn) , which admits a subsequence
converging to x̄. Avoiding relabeling, we can assume, without loss of generality,
vn → x̄.
Recalling Eff (X, f) ⊆ WEff (X, f), it follows easily that (5.8) holds and hence (5.7)
holds.
Since there exists n̄ ∈ N such that Levfn

(y, Xn) is bounded ∀y ∈ R
l and for all

n > n̄, the sets WEff ǫne(Xn, fn) are connected, nonempty and closed for n > n̄ (see
Theorem 4 in [20]) and hence (5.6) cannot hold. It follows the existence of a sequence
zn ∈ ∂ [WEff (X, f) + δB]∩WEff ǫne (Xn, fn) . Since WEff (X, f) is compact, we can

assume zn converges to a point z̄ and since Xn
K
→ X, it follows z̄ ∈ X. Since

zn ∈ WEff ǫne (Xn, fn) it follows z̄ ∈ WEff (X, f). Indeed, if z̄ /∈ WEff (X, f), there
exists x ∈ X such that f(x)−f(z̄) ∈ −intC and hence we can find a positive number
δ̄, such that

f(x) − f(z̄) ∈ −intC − δ̄e. (5.9)

Since x ∈ X, there exists a sequence wn → x, wn ∈ Xn and from (5.9), we obtain
fn(wn)−fn(zn) ∈ −intC−δ̄e, eventually, which contradicts to zn∈ WEff ǫne(Xn, fn).
To complete the proof it is enough to observe that from zn ∈ ∂ [WEff (X, f) + δB]
we get the contradiction z̄ /∈ WEff (X, f). ¤

Remark 5.10. Actually, we cannot apply Lemma 5.5, to achieve boundedness of
Levfn

(y, Xn) from the same property for Levf (y, X). Indeed here we require some-
thing stronger, namely that it can be fixed the same n̄ for every y, while Lemma 5.5
implies only that such n̄ exists for every y, possibly depending on it.

When f and fn are C-convex functions, the assumptions of Theorem 5.9 can be
simplified. Indeed, we get the following:

Corollary 5.11. Let f : R
n → R

l and fn : R
n → R

l be C-convex functions, with
fn → f in the continuous convergence and assume WEff (X, f) is bounded. Then
problem (X, f) satisfies property (P ) with respect to the perturbations defined by fn

and Xn.

Proof: It is known [119] that C−convex functions are continuous. If ȳ = f(x̄),
with x̄ ∈ WEff (X, f), the level set Levf (ȳ, X) is clearly nonempty and further
we have Levf (ȳ, X) ⊆ WEff (X, f). Indeed, assume there exists a point x′ ∈
Levf (ȳ, X) \WEff (X, f). Hence f(x′) ∈ f(x̄) − C and we can find a point x′′ ∈ X
such that f(x′′) ∈ f(x′) − intC. This entails f(x′′) ∈ f(x′) − intC ⊆ f(x̄) − intC,
which contradicts to x̄ ∈ WEff (X, f).
The inclusion Levf (ȳ, X) ⊆ WEff (X, f) proves Levf (ȳ, X) is bounded. From
Lemma 5.5, we get

Levfn
(ȳ, Xn) ⊆ Levf (ȳ, X) + ǫB, (5.10)

eventually. Hence there exists n̄ ∈ N such that Levfn
(ȳ, Xn) is bounded for n > n̄.

Since fn are C−convex, this implies that for n > n̄ all the level sets of fn are bounded
[80]. Hence, the assumptions of Theorem 5.9 hold and the proof is complete. ¤
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The boundedness assumption on WEff (X, f) cannot be avoided, as the following
example shows.

Example 5.12. Let f : R
2 → R

2, f(x, z) = (z2, ex), C = R
2
+ and X = R

2, fn = f,
and Xn = X, for every n.
The objective function is C−convex, the set WMin (X, f) =

{

(y1, y2) ∈ R
2 : y1 = 0

}

while WEff (X, f) =
{

(x, z) ∈ R
2 : z = 0

}

.
The sequence (xn, zn) = (−n,−n) satisfies (5.3), but doesn’t admit any subsequence
(xnk , znk) such that d(f(xnk , znk), WEff (X, f)) → 0.

This formulation can be rewritten considering the framework of Huang. Let δ > 0
and Z : B(p∗, δ) Ã R

n be a set-valued function.
The perturbed problem corresponding to the parameter p is denoted by

min
x∈Z(p)

I(x, p).

In this framework we formulate a notion of extended well-posedness which is a
generalization of well-posedness in the strongly extended sense formulated in [56],
[57].

Definition 5.13. Problem (X, f) is well-posed, with respect to the perturbations
defined by the sequences I(·, p) and Z(p), when

(i) WEff (X, f) 6= ∅;

(ii) for any sequences pn → p∗ and xn ∈ Z(pn) such that ∃ǫn > 0, ǫn → 0+, with

(I(Z(pn), pn) − I(xn, pn) + ǫne) ∩ (−intC) = ∅ (5.11)

there exists a subsequence xnk of xn such that d(xnk , WEff (X, f)) → 0, as
k → +∞.

Sequences xn satisfying (5.11) are called asymptotically minimizing sequences.

Remark 5.14. Sequences xn and xnk in Definition 5.13 may fail to be feasible for
the original problem (X, f).
We regard this feature as an extension of Levitin-Polyak approach to well-posedness.

Huang’s notion is generalized in Definition 5.13 mainly by the following two facts:

(a) it allows for perturbations of the feasible region and not only of the objective
function;

(b) requirement (ii) in Definition 5.13 weakens the convergence requirement of
Huang’s definition.

Theorem 5.15. Let I(·, p) be continuous C-quasiconvex functions, and let Z(p) be
a closed convex subset of R

n, for every p ∈ B(p∗, δ).
Assume the following:
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(i) ∀pn → p∗ and xn → x∗, xn ∈ Z(pn), it holds I(xn, pn) → I(x∗, p∗) := f(x∗)

and Xn := Z(pn)
K
→ X;

(ii) ∀y ∈ R
l, Levf (y, X) is bounded;

(iii) ∀pn → p∗ there exists n̄ ∈ N such that LevI(·,pn)(y, Z(pn)) is bounded for every

y ∈ R
l and for every n > n̄;

(iv) WEff (X, f) is nonempty and bounded.

Then problem (X, f) is well-posed (with respect to the perturbations defined by the
sequences I(·, p) and Z(p)).

Proof: Let pn → p∗ and set fn(·) = I(·, pn) and Xn := Z(pn), ∀n. The proof follows
easily from Theorem 5.9. ¤

Corollary 5.16. Assume I(·, p) are C−convex functions and let Z(p) be a convex
subset of R

n, for every p ∈ B(p∗, δ). Let assumptions (i), (ii) and (iv) of Theorem
5.15 hold. Then problem (X, f) is well-posed (with respect to the perturbations defined
by the sequences I(·, p) and Z(p)).

Proof: It is an immediate consequence of Corollary 5.11. ¤

It remains an open question whether, in the case of C-quasiconvex functions,
the assumptions of Theorem 5.9 can be simplified. Proposition 5.20 below, shows
however that, when Z(p) = X for every p ∈ B(p∗, δ), this is the case if we strengthen
the convergence requirement on the sequences I(·, pn).

Lemma 5.17. Let fn : R
n → R

l be a sequence of functions converging to f in the
uniform convergence. Assume that for every y ∈ R

l, Levf (y, X) is bounded. Then
there exists n̄ ∈ N such that for every n > n̄ and for every y ∈ R

l, Levfn
(y, X) is

bounded.

Proof: We begin observing that under the assumptions, for every y ∈ R
l we have

∆−C(f(x)− y) → +∞, as ‖x‖ → +∞, x ∈ X. Indeed, assume, on the contrary one
can find a sequence xn ∈ X, with ‖xn‖ → +∞ and ∆−C(f(xn) − y) 6→ +∞. We
distinguish two cases.

1. The set { ∆−C(f(xn) − y), n ∈ N } is bounded. Then, without loss of general-
ity, we can assume ∆−C(f(xn) − y) → β ∈ R and the following two cases are
possible.

(i) β < 0. Then it holds f(xn) ∈ y − C, eventually, which contradicts the
boundedness of the level sets.

(ii) β ≥ 0. In this case, it is easily seen that we can choose α > 0 such that
f (xn) ∈ y + αe − C, eventually, contradicting again the boundedness of
the level sets.
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2. The set { ∆−C(f(xn) − y), n ∈ N } is unbounded. Since ∆−C(f(xn) − y) 6→
+∞, it is possible to find a subsequence xnk of xn such that ∆−C(f(xnk)−y) →
−∞. In this case it holds again f(xnk) ∈ y − C, eventually, which contradicts
the boundedness of the level sets.

Assume now, ab absurdo, that for every n there exists yn ∈ R
l, such that

Levfn
(yn, X) is unbounded. Hence, for a fixed n̄ ∈ N, we can find a sequence

zk, k ∈ N, with zk ∈ X, ∀k,
∥

∥zk
∥

∥ → +∞, as k → +∞ and zk ∈ Levfn̄
(yn̄, X), for

every k, that means
fn̄(zk) − yn̄ ∈ −C, ∀k.

We distinguish the following two cases:

(i) fn̄

(

zk
)

−yn̄ ∈ −C, for every k except a finite number. In this case we contradict
the boundedness of the level set Levf (yn̄, X) .

(ii) fn̄

(

zk
)

− yn̄ 6∈ −C for infinitely many k. Without loss of generality we can
assume fn̄

(

zk
)

− yn̄ 6∈ −C for every k and we have

∥

∥

∥
f(zk) − fn̄(zk)

∥

∥

∥
=

∥

∥

∥
f(zk) − yn̄ − (fn̄(zk) − yn̄)

∥

∥

∥

≥ ∆−C(f(zk) − yn̄).

From ∆−C(f(zk) − yn̄) → +∞ as k → +∞, we obtain

sup
x∈Rn

‖f(x) − fn̄(x)‖ = +∞.

Since n̄ is arbitrary, we contradict the uniform convergence of fn to f .

¤

The previous lemma does not hold (even in the quasiconvex case) if we assume
fn → f in the continuous convergence, as the following example shows.

Example 5.18. Let f : R → R and fn : R → R, be defined as:

f(x) = |x| ;

fn(x) =

{

|x| x ∈ [−n, n]
|n| otherwise

and let X = R and C = R+. We have fn → f in the continuous convergence, but
not in the uniform convergence and it can be easily seen that the level sets of f are
bounded, but each function fn admits unbounded level sets.

Proposition 5.19. Let fn : R
n → R

l and f : R
n → R

l be continuous C-quasiconvex
functions and let WEff (X, f) be nonempty and bounded. Assume that fn → f in
the uniform convergence and that for every y ∈ R

l, Levf (y, X) is bounded. Then
problem (X, f) satisfies property (P ) (with respect to the perturbations defined by the
sequences fn and Xn).

56



Proof: Recalling Theorem 5.9, it is enough to prove that there exists n̄ > 0 such
that for every n > n̄ and for every y ∈ R

l, Levfn
(y, X) is bounded. But this follows

immediately from Lemma 5.17. ¤

The proof of the next result is an immediate consequence of Proposition 2.33.

Proposition 5.20. Let I(·, p) be continuous C-quasiconvex functions ∀p ∈ B(p∗, δ),
let Z(p) = X, ∀p ∈ B(p∗, δ) and assume that ∀pn → p∗, sup ‖I(x, pn) − f(x)‖ → 0,
as n → +∞. If for every y ∈ R

l, Levf (y, X) is bounded and WEff (X, f) is nonempty
and bounded, then problem (X, f) is well-posed (with respect to the perturbations
defined by the sequences I(·, p) and Z(p)).

The research on the topic of extended well-posedness in vector and set-valued
optimization is very recent and thus in progress (among others see [34], [59], [60]
and the references therein).
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Chapter 6

Well-posedness of scalarized

problems

In this section we deal with the relationships between the well-posedness of a vector
optimization problem and the well-posedness of associated scalar ones. For the
clarity of exposition we divide the results of this chapter in six sections considering
nonlinear and linear approach to the three main classes of pointwise, global and
extended well-posedness. Sections devoted to nonlinear scalarization employing the
oriented distance function; no convexity assumption is needed and a vector problem
is associated to one scalar problem. In linear scalarization, the main results are
showed under some generalized convexity requirements and considering a family of
scalarized problems. However linear scalarization will permit us to rewrite the proof
of the density theorem given in Chapter 4, in a particular case, emphasizing a strict
link between scalar and vector setting in Tykhonov’s approach.

6.1 Nonlinear scalarization and pointwise well-posed-

ness

Consider the scalar problem (X, ∆−C) associated to the vector problem (X, f) given
by

min ∆−C(f(x) − p), x ∈ X

where p ∈ Y = f(X). Using this scalar problem Miglierina et al. ([93]) derived
the following results as link with the pointwise well-posedness of the vector problem
(X, f).

Theorem 6.1. Let ȳ ∈ Min (X, f). Problem (X, ∆−C) with p = ȳ is TS, if and only
if problem (X, f) is B–ȳ-wp.

We observe that no assumption of generalized convexity or monotonicity is re-
quired and that function ∆−C doesn’t imply any boundedness assumption on the
feasible region X.
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Corollary 6.2. Let ȳ ∈ Min (X, f). Problem (X, ∆−C) with p = ȳ is GT-wp, if and
only if problem (X, f) is L–ȳ-wp.

Corollary 6.3. Let x̄ ∈ Eff (X, f). Problem (X, ∆−C) with p = ȳ is T-wp, if and
only if problem (X, f) is DH–x̄-wp.

Remark 6.4. A direct link between nonlinear scalarization and H–x̄ well-posedness
is established in [30].

Thanks to the scalarization with oriented distance function, the results of this
section are equivalence, that means pointwise well-posedness of a vector problem is
completely represented by a scalar model.

6.2 Linear scalarization and pointwise well-posedness

The links between well-posedness of a linearly scalarized problem and well-posedness
of a vector problem, are proved under convexity or generalized convexity assump-
tions.
Consider the scalar problem (X, gλ), associated to the vector problem (X, f), given
by

min gλ(x), x ∈ X,

where gλ(x) = 〈λ, f(x) − p〉 in which λ ∈ C+ ∩ ∂B and p ∈ Y = f(X).

Theorem 6.5. Let ȳ ∈ Min (X, f). If there exists λ̄ ∈ C+ ∩ ∂B such that problem
(X, gλ̄) with p = ȳ is TS and arg min(X, gλ̄) = f−1(ȳ), then (X, f) is B–ȳ-wp.

Proof: Recalling Theorem 6.1, if ab absurdo problem (X, f) is not B–ȳ-wp, then

∃xn ∈ X \ arg min(X, ∆−C) such that ∆−C(f(xn) − ȳ) → 0,

but 6 ∃xnk such that xnk → x̄ ∈ arg min(X, ∆−C).

Since ∆−C(f(xn) − ȳ) = max { 〈λ, f(xn) − ȳ〉 : λ ∈ C+ ∩ ∂B } (see [93]), it follows

0 ≤
〈

λ̄, f(xn) − ȳ
〉

≤ ∆−C(f(xn) − ȳ)

and recalling the assumptions, arg min(X, ∆−C) = arg min(X, gλ̄) = f−1(ȳ). But
this means gλ̄(xn) → 0, a contradiction with topologically well-setness of (X, gλ). ¤

The assumption arg min(X, gλ̄) = f−1(ȳ) cannot be avoided as the following
example shows.

Example 6.6. Let f : X ⊆ R
2 → R

2, f(x, y) = (x, 0) with X = C = R
2
+. Let

λ̄ = (0, 1) and gλ̄(x, y) = 0. The set Min (X, f) = { (0, 0) }, all the assumptions
of Theorem 6.5 are satisfied except one: arg min(X, gλ̄) = X 6= f−1(0, 0) =
{ (x, y) : x = 0, y ≥ 0 }. Problem (X, gλ̄) is TS, but problem (X, f) is not B–(0, 0)-
wp, for instance the B-minimizing sequence { xn } =

(

1
n
, n

)

does not converge.
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Corollary 6.7. Let ȳ ∈ Min (X, f). If there exists λ̄ ∈ C+ ∩ ∂B such that problem
(X, gλ̄) with p = ȳ is GT-wp and arg min(X, gλ̄) = f−1(ȳ), then (X, f) is L–ȳ-wp.

Corollary 6.8. Let ȳ ∈ Min (X, f). If there exists λ̄ ∈ C+ ∩ ∂B such that problem
(X, gλ̄) with p = ȳ is T-wp and arg min(X, gλ̄) = f−1(ȳ), then (X, f) is DH–x̄-wp.

Remark 6.9. The existence of a linear scalarized satisfying a well-posedness notion
is a sufficient condition in order that problem (X, f) is pointwise well-posed. If
the ordering cone C satisfies the geometrical requirement C ⊆ R

l
+, the sufficient

condition can be tested by a single scalar problem (X, fi) where fi is a component
of the vector objective function f . In the most interesting case, consisting in the
investigation of DH–x̄-wp, it is possible to prove that if there exists at least one
problem (X, fi) Tykhonov well-posed, then problem (X, f) is DH–well-posed in x̄.

Corollary 6.10. Let C ⊆ R
l
+. If, for some i ∈ { 1, . . . , l } , (X, fi) is T-wp in x̄

then (X, f) is DH–x̄-wp.

The results of this section will permit us to present two applications. The first is
the identification of a class of well-posed vector problems which satisfy a a further
regularity condition, that is the existence of a vector λ̄ such that the scalarized
problem (X, gλ̄) is well-posed. We call this property λ̄−well-posedness. The link
between well-posedness of a linearly scalarized problem and well-posedness of the
original one is weaker than the relation involving nonlinear scalarization, since the
results are only in one direction, but we haven’t yet imposed convexity or generalized
convexity requirements.
The next result identifies the class of ∗−quasiconvex functions as satisfying a λ̄−well-
posedness; for these functions it is possible to replace the well-posedness analysis of
the vector problem with both nonlinear and linear scalarization.

Theorem 6.11. Let f : X ⊆ R
n → R

l be ∗−quasiconvex and arg min(X, gλ̄) =
f−1(ȳ) be a bounded set. Then, problem (X, f) is B–ȳ-wp if and only if ∃λ̄ ∈ C+∩∂B
such that

〈

λ̄, y − ȳ
〉

≥ 0, ∀y ∈ f(X) and (X, gλ̄) is TS.

Proof: Recalling Theorem 6.5 we only need to prove one direction. As function
f is ∗−quasiconvex, the set (f(X) + C) is convex ([39]) and thanks to a classical
separation theorem, every ȳ ∈ Min (X, f) is unique solution of a scalarized problem.
Function gλ̄(x) is quasiconvex as linear combination of continuous functions and
hence problem (X, gλ̄) is TS since arg min(X, gλ̄) is bounded. ¤

Corollary 6.12. Let f : X ⊆ R
n → R

l be ∗−quasiconvex and arg min(X, gλ̄) =
f−1(ȳ) be a bounded set. Then, problem (X, f) is L–ȳ-wp if and only if ∃λ̄ ∈ C+∩∂B
such that

〈

λ̄, y − ȳ
〉

≥ 0, ∀y ∈ f(X) and (X, gλ̄) is GT.

Corollary 6.13. Let f : X ⊆ R
n → R

l be ∗−quasiconvex and arg min(X, gλ̄) = x̄.
Then, problem (X, f) is DH–x̄-wp if and only if ∃λ̄ ∈ C+∩∂B such that

〈

λ̄, y − ȳ
〉

≥
0, ∀y ∈ f(X) and (X, gλ̄) is T-wp.
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We observe that Corollary 6.13 cannot be improved considering arg min(X, gλ̄)
unbounded or the larger class of C-quasiconvex functions as it is possible to see in
the following examples.

Example 6.14. Let f : X ⊆ R
2 → R

2, the identity function and the feasible region
X =

{

(x, y) ∈ R
2 : y ≥ −x

}

and C = R
2
+. Function f is ∗−quasiconvex, problem

(X, f) is DH–(0, 0)-wp, but it is not λ̄-well-posed for any λ̄ ∈ C+ ∩ ∂B.

Example 6.15. Let f : X ⊆ R → R
2, f(x) = (x,−x3) with X = R and C = R

2
+.

Function f is C-quasiconvex but not ∗−quasiconvex. Problem (X, f) is DH–0-wp,
but it is not λ̄-well-posed for any λ̄ ∈ C+ ∩ ∂B.

In Chapter 4, Theorem 4.44 is the formulation of a density result for the pointwise
well-posed vector problems, according to the definition given by Dentcheva Helbig.
In that result an arbitrarily closed convex and pointed cone gives the partial order in
the image space. As already pointed out the proof of Theorem 4.44 is a generalization
of a scalar result due to Lucchetti in [79] with reference to the notion of Tykhonov
well-posedness and the Ekeland’s variational principle. Now we have emphasized
a deep link between Dentcheva-Helbig and Tykhonov well-posedness under certain
choices of scalarization. From this we are able to show a strong connection in terms
of variational principles, rewriting the proof of Theorem 4.44 in the particular case
of the Paretian cone. For the reader convenience, we recall the density result.

Theorem 6.16. Let C = R
l
+. The set of functions f ∈ (F , d) such that

(i) Eff (X, f) 6= ∅;

(ii) (X, f) is DH-x-wp, ∀x ∈ Eff (X, f)

is dense in (F , d).

Proof: Fix σ > 0, f ∈ (F , d) and take j so large that

v(x) := f(x) +
1

j
d2(x, θ)c0 satisfies d(f, v) <

σ

2
.

Then v ∈ (F , d), indeed v is strictly C−convex by Lemma 4.40.
Since the cone is the paretian one, vi(x) := fi(x) + γid

2(x, θ) with γi = 1
j
c0
i is

convex and thus continuous and by Proposition 4.39 there exists i ∈ { 1, . . . , l }
such that limd(x,θ)→+∞ vi(x) = +∞. It follows that there exists M > 0 such that
Levvi

(1) ⊆ B(θ, M). Apply Ekeland’s variational principle, for scalar function, to
find

ui(·) = vi(·) + ǫd(·, x̂)

such that (X, ui) is Tykhonov well-posed in x̂ and d(ui, vi) ≤ σ
2 . Construct u(·) =

v(·)+ǫd(·, x̂). Then u ∈ (F , d), in particular u is strictly R
l
+−convex and d(u, v) ≤ σ

2 .
To complete the proof, recall Corollary 6.10 that since (X, ui) is Tykhonov well-
posed, (X, u) is DH-x̃-wp, ∀x̃ ∈ Eff (X, u). ¤
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6.3 Nonlinear scalarization and global well-posedness

In Chapter 4 we distinguish global well-posedness notions involving the efficient
frontier from those considering the weakly efficient solutions. Since in scalar case
efficient and weakly efficient points coincide, all global notions of well-posedness
generalizes the weak concept of well-setness. Hence, to get a scalarized procedure
for global notions in which the efficient frontier does not include also weakly efficient
solutions, we need to separate in some way the two concepts, maybe checking different
properties of the scalarizing function. Only after a scalar characterization of solutions
set, one can seek a scalar well-setness condition.
In [101] the authors proposed a scalar problem associated to the vector one and
studied the CGR-well-posedness.

Let (X, g) the scalar problem defined as

min g(x), x ∈ X,

where g(x) = − infz∈X ∆−C(f(z) − f(x)).
Function g is always nonnegative, in fact it is enough to observe that for z = x, we
have ∆−C(f(x) − f(x)) = ∆−C(0) = 0.
We observe that function g can be rewritten as

g(x) = sup
z∈X

[−∆−C(f(z) − f(x))]

and, as in [19] ∆−C(f(z) − f(x)) = maxξ∈C+∩S 〈ξ, f(z) − f(x)〉, hence

g(x) = sup
z∈X

min
ξ∈C+∩S

〈ξ, f(x) − f(z)〉 .

We start to show that the weak solutions of the vector problem (X, f) can be com-
pletely characterized by solutions of the scalar problem (X, g).

Theorem 6.17. ([102]) Let x̄ ∈ X. Then x̄ ∈ WEff(X, f) if and only if g(x̄) = 0
(and hence x̄ ∈ arg min(X, g)).

Proof:

⇒) Let x̄ ∈ WEff (X, f). By definition of weakly efficient solution, f(z) − f(x̄) 6∈
−intC, ∀z ∈ X. So

∆−C(f(z) − f(x̄)) ≥ 0, ∀z ∈ X

and hence g(x̄) ≤ 0, but we have just seen that g(x) is always nonnegative,
and then g(x̄) = 0 which means x̄ ∈ Eff (X, g).

⇐) Let g(x̄) = 0. Then, clearly, x̄ ∈ arg min(X, g). From g(x̄) = 0, we get
∆−C(f(z) − f(x)) ≤ 0, ∀z ∈ X, which means f(z) − f(x) /∈ −intC, ∀z ∈ X
and hence x̄ ∈ WEff (X, f).

¤
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The next result provides the equivalence between well-posedness of the vector
problem (X, f) and of the related scalar problem (X, g).

Theorem 6.18. Problem (X, f) is CGR-wp if and only if (X, g) is MS.

Proof: From Theorem 6.17 we know that WEff (X, f) = { x ∈ X : g(x) = 0 } =
Eff (X, g).
We shall prove that CGR-minimizing sequences for problem (X, f) are minimizing
for problem (X, g) and conversely.
Indeed, let xn ∈ X a CGR-minimizing sequence, which means

f(x) − f(xn) + ǫnc0 /∈ −intC, ∀x ∈ X,

that is equivalent to ∆−C(f(x) − f(xn) + ǫnc0) ≥ 0, ∀x ∈ X, and hence, by subad-
ditivity of ∆−C(·),

∆−C(f(x) − f(xn)) ≥ −∆−C(ǫnc0) := −γn

where γn ≥ 0 and γn → 0. It follows

0 ≤ g(xn) = − inf
z∈X

∆−C(f(z) − f(xn)) ≤ γn,

hence g(xn) → 0, that is xn is minimizing for problem (X, g).
Conversely, assume xn is minimizing for problem (X, g). Hence g(xn) → 0, which
implies g(xn) ≤ βn, for some sequence βn ≥ 0, βn → 0. It holds,

− inf
z∈X

∆−C(f(z) − f(xn)) ≤ βn,

that is infz∈X ∆−C(f(z) − f(xn)) ≥ −βn and this is equivalent to

∆−C(f(z) − f(xn)) ≥ −βn, ∀z ∈ X.

Since ∆−C(y) = maxξ∈C+∩S 〈ξ, y〉 (see e.g. [19]), choosing a vector e ∈ intC, with
〈ξ, e〉 ≥ 1, ∀ξ ∈ C+ ∩ S we obtain, ∀z ∈ X:

∆−C(f(z) − f(xn) + βne) = max
ξ∈C+∩S

〈ξ, f(z) − f(xn) + βne〉

≥ max
ξ∈C+∩S

〈ξ, f(z) − f(xn)〉 + min
ξ∈C+∩S

〈ξ, βne〉

≥ max
ξ∈C+∩S

〈ξ, f(z) − f(xn)〉 + βn

≥ −βn + βn = 0.

Hence ∆−C(f(z) − f(xn) + βne) ≥ 0, ∀z ∈ X and this is equivalent to say f(z) −
f(xn) + βne /∈ −intC, ∀z ∈ X.
Hence xn is a CGR-minimizing sequence for the vector problem (X, f). Recalling
WEff (X, f) = { x ∈ X : g(x) = 0 } = Eff (X, g), the proof of the result is easily
completed. ¤
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6.4 Linear scalarization and global well-posedness

Consider a convex vector optimization problem, that is minimize or maximize an
objective function f satisfying C−convexity definition on a convex feasible region X.
We recall that the functions gλ(x) = 〈λ, f(x)〉 with λ ∈ C+ \{ 0 } are convex when f
is C−convex ([75]). Consider the family of parametric scalar problems (X, gλ) given
by

min gλ(x) = 〈λ, f(x)〉 , x ∈ X,

where λ ∈ C+ ∩ ∂B.
By convexity assumption follows that a point x ∈ X is a weakly efficient solution
for vector problem (X, f) if and only if it is an optimal solution for a scalar problem
(X, gλ).

Theorem 6.19. ([21]) Let f : X ⊆ R
m → R

l be C−convex on the convex set X and
assume WMin (X, f) is closed.
If problems (X, gλ) are MS for every λ ∈ C+ ∩ ∂B, then problem (X, f) is D-wp.

Proof: We know that an asymptotically minimizing sequence for problem (X, f), is
always asymptotically minimizing for problem (X, g) defined section 6.3.
Let xn be an asymptotically minimizing sequence for problem (X, f). Then g(xn) →
0 and by the compactness of C+ ∩ ∂B, there exists a sequence λn → λ∗ ∈ C+ ∩ ∂B
such that

min
λ∈C+∩∂B

〈λ, f(xn) − f(x)〉 = 〈λn, f(xn) − f(x)〉 ,

and hence
sup
x∈X

〈λn, f(xn) − f(x)〉 → 0,

that means
〈λn, f(xn)〉 − inf

x∈X
〈λn, f(x)〉 → 0.

Since gλ(x) is a convex function for every λ ∈ C+∩∂B ([75]) and λn → λ∗, it follows
〈λn, f〉 → 〈λ∗, f〉. Hence (see e.g. [79]),

gλn(xn) = 〈λn, f(xn)〉 → inf
x∈X

〈λ∗, f(x)〉 = inf
x∈X

gλ∗(x).

We claim that gλ∗(xn) → infx∈X gλ∗(x).
Since λn → λ∗, ∀ǫ > 0, ∃n̄ such that ∀n > n̄

|〈λ∗, f(xn)〉 − 〈λn, f(xn)〉| <
ǫ

2
,

thus |〈λ∗ − λn, f(xn)〉| < ǫ
2 . Hence, ∀n > n̄

0 ≤ 〈λ∗, f(xn)〉 − inf
x∈X

〈λ∗, f(x)〉

= gλ∗(xn) − inf
x∈X

〈λ∗, f(x)〉

= 〈λn, f(xn)〉 − inf
x∈X

〈λ∗, f(x)〉 + 〈λ∗ − λn, f(xn)〉

≤ 〈λn, f(xn)〉 − inf
x∈X

〈λ∗, f(x)〉 +
ǫ

2
.
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Since 〈λn, f(xn)〉 → infx∈X 〈λ∗, f(x)〉 and ǫ is arbitrary, we prove the claim. Hence
recalling the assumption of metrically well-setness on (X, gλ) the proof is completed.

¤

In general, the reverse of Theorem 6.19 is not true as the following example
shows.

Example 6.20. Let f : X ⊆ R
2 → R

2 defined as f(x1, x2) =
(

x2
1

x2
, x1

)

, C = R
2
+

and X =
{

(x1, x2) ∈ R
2 : x1 ≥ 0, x2 ≥ 1

}

. The objective function is C−convex,
WMin (X, f) = { (0, 0) }, WEff (X, f) = { (0, x2) : x2 ≥ 1 } the problem is D-wp
since every D-minimizing sequence is identified when x1 tends to zero, but the scalar
problem (X, gλ) with λ = (1, 0) is not MS.

6.5 Nonlinear scalarization and extended well-posed-

ness

We relate to (X, f) the scalar optimization problem

min g(x), x ∈ X,

where g(x) = − infz∈X ∆−C(f(z) − f(x)) as in section 6.3 for global notions.
Further, for fn and Xn defined like in Chapter 5, we consider the scalar perturbed
problem

min gn(x), x ∈ Xn

where gn(x) = − infz∈Xn ∆−C(fn(z) − fn(x)).
We shall investigate the behavior of solutions of problem (X, g) when it is subject
to the perturbation (Xn, gn) induced by fn and Xn.

Definition 6.21. A sequence xn ∈ Xn is called asymptotically minimizing for prob-
lem (X, g) when

gn(xn) → inf
x∈X

g(x).

Definition 6.22. Problem (X, g) is well-posed (with respect to the perturbations
defined by the sequences fn and Xn) when for every asymptotically minimizing se-
quence xn there exists a subsequence xnk such that d(xnk , arg min(X, g)) → 0 as
k → ∞.

Next result characterizes solutions of (X, f) in terms of solutions of the scalar
problem (X, g) ([21]).

Remark 6.23. Recalling that x̄ ∈ WEff (X, f) if and only if g(x̄) = 0, when
WEff (f, X) 6= ∅, Theorem 6.17 states infx∈X g(x) = 0 and hence Definition 6.21
recalls the notion of extended well-posedness introduced in [125].

Theorem 6.24. ([21]) Problem (X, f) is well-posed (with respect to the perturbations
defined by the sequences fn and Xn) if and only if (X, g) is well-posed (with respect
to the perturbations defined by the sequences gn and Xn).
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Proof: Since WEff (X, f) 6= ∅, it follows infx∈X g(x) = 0. We show that the asymp-
totically minimizing sequences of the two problems coincide.
Let xn be an asymptotically minimizing sequence for problem (X, f), that means

fn(x) − fn(xn) + ǫne /∈ −intC, ∀x ∈ Xn.

This is equivalent to ∆−C(fn(x)− fn(xn) + ǫne) ≥ 0, ∀x ∈ Xn and hence by subad-
ditivity of ∆−C(·),

∆−C(fn(x) − fn(xn)) ≥ −∆−C(ǫne) := −γn, ∀x ∈ Xn,

where γn ≥ 0 and γn → 0. It follows

0 ≤ gn(xn) = − inf
z∈Xn

∆−C(fn(z) − fn(xn)) ≤ γn,

hence gn(xn) → 0, that is xn is asymptotically minimizing for problem (X, g).
Assume now xn is an asymptotically minimizing sequence for problem (X, g), that
means

gn(xn) → 0,

which implies gn(xn) ≤ βn, for some sequence βn ≥ 0, βn → 0. It holds,

− inf
z∈Xn

∆−C(fn(z) − fn(xn)) ≤ βn,

that is ∆−C(fn(z) − fn(xn)) ≥ −βn, ∀z ∈ Xn.
Since ∆−C(y) = maxλ∈C+∩∂B 〈λ, y〉 , choosing a vector e ∈ intC with 〈λ, e〉 ≥
1, ∀λ ∈ C+ ∩ ∂B, we obtain, ∀z ∈ Xn :

∆−C(fn(z) − fn(xn) + βne) = max
λ∈C+∩∂B

〈λ, fn(z) − fn(xn) + βne〉

≥ max
λ∈C+∩∂B

〈λ, fn(z) − fn(xn)〉 + min
λ∈C+∩∂B

〈λ, βne〉

≥ max
λ∈C+∩∂B

〈λ, fn(z) − fn(xn)〉 + βn

≥ −βn + βn = 0.

Hence ∆−C(fn(z) − fn(xn) + βne) ≥ 0, ∀z ∈ Xn and this is equivalent to say
fn(z) − fn(xn) + βne /∈ −intC, ∀z ∈ Xn.
Thus xn is an asymptotically minimizing sequence for the vector problem (X, f).
Recalling WEff (X, f) = { x ∈ X : g(x) = 0 } = arg min(X, g), the proof of the result
is easily completed. ¤

6.6 Linear scalarization and extended well-posedness

Let fn and Xn be defined as in Chapter 5. Consider the scalar optimization problem
(X, g)

min g(λ, x), x ∈ X
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where g(λ, x) = 〈λ, f(x)〉 , λ is a fixed vector belonging to the set C+ ∩ ∂B and X
is the feasible region of function f .
We consider the perturbed problem (Xn, gn)

min gn(λ, x), x ∈ Xn

where gn(λ, x) = 〈λ, fn(x)〉 .

Definition 6.25. A sequence xn ∈ Xn is called asymptotically minimizing for prob-
lem (X, g) when

gn(λ, xn) → inf
x∈X

g(λ, x).

Definition 6.26. Problem (X, g) is well-posed (with respect to the perturbations
defined by the sequences fn and Xn) when

(i) arg min(X, g) 6= ∅;

(ii) for every asymptotically minimizing sequence xn there exists a subsequence xnk

such that d(xnk , arg min(X, g)) → 0 as k → ∞.

Recalling Proposition 2.31 ([75], [112]), one has x̄ ∈ WEff (f, X) if and only if

x̄ ∈
⋃

λ∈C+∩∂B

arg min(X, g).

Theorem 6.27. Let f : R
n → R

l and fn : R
n → R

l be C−convex functions with
fn → f in the continuous convergence. Let Xn be a sequence of sets such that

Xn
K
→ X. If, for every λ ∈ C+ ∩ ∂B, problem (X, g) is well-posed (with respect

to the perturbations defined by the sequences gn and Xn), then problem (X, f) is
well-posed (with respect to the perturbations defined by the sequences fn and Xn).

Proof: Similar to the proof of Theorem 6.19. ¤

The following example shows that the converse of Theorem 6.27 is not true in
general.

Example 6.28. Let f : R → R
2, f(x) = (x2, ex), C = R

2
+ and X = R, fn = f and

Xn = X, ∀n.
Function f is C−convex and WEff (X, f) = { x ∈ R : x ≤ 0 }. Problem (X, f) is well-
posed (with respect to the perturbations defined by fn and Xn), but the scalarized
function g(λ, x) = ex obtained by λ = (0, 1) is not well-posed, since arg min(X, g) =
∅.
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Chapter 7

Conclusions

The motivation for studing the well-posedness notions for optimization problems
is clearly inspired by practical considerations. First we stress that most numerical
methods for the minimization of a real-valued functions on a feasible region provide
minimizing sequences that are appreciable when the approximate solutions are not
far from the minimum, thus well-posedness properties play an important role in the
convergence analysis of many algorithms.
The same idea has been extended to vector optimization when an ordering cone
is fixed and a notion of minimizing sequence is adopted. Under some convexity
([93],[102],[30]) or coercivity ([26]) assumptions on problem data, exploring the struc-
ture of the solution sets, a number of positive results in terms of associated scalar
problems have been established.

In the introduction we have presented an optimization problem as a mathematical
model to simplify and study many daily real situations in which one or more subjects
need to make a decision, but usually the decision-makers interact. Game theory aims
to help us understand such situations or, more in general, game theoretic reasoning
can be used to understand economic, social, political and biological phenomena. For
this reason game theory offers possible applications of many well-posedness prop-
erties. In the sequel we give a short survey considering some particular cases such
as quadratic games, zero-sum games, noncooperative games, potential games and
multicriteria games. Moreover a remind to Cournot and Stackelberg models will be
stressed.
Some game theoretics idea can be traced to the 18th century, but the major de-
velopment of the theory was in the last century. An introduction on game theory
as theory of rational choice both historically and mathematically can be found in
several handbooks such as [111], [107], [28], [4], [100], [16] among others.
By definition, an optimization problem can be viewed as special case of a game, a
competitive activity in which players contend with each other according to a set of
rules. Formally:

Definition 7.1. ([85]) A game with n players is a 2n-tuple G = (X1, . . . , Xn,
u1, . . . , un) where X1, . . . , Xn are nonempty sets representing the players strategy
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spaces and ui : X1 × . . . × Xn → R, ∀i = 1, . . . , n are n real-valued functions repre-
senting the payoffs of the players.

The notion of equilibrium was introduced by John Nash ([98], [99]): given a
game with two players an equilibrium is a couple of strategies such that each player’s
strategy is an optimal reponse to other players’ strategies.

Definition 7.2. Given a game G = (X, Y, f, g) a Nash equilibrium (NE) for G is a
couple (x̄, ȳ) ∈ X × Y such that

f(x̄, ȳ) ≥ f(x, ȳ), ∀x ∈ X,

g(x̄, ȳ) ≥ g(x̄, y), ∀y ∈ Y.

From Definition 7.2, it is evident the link between optimization and game theory.
The Tykhonov well-posedness was generalized from minimum problems to Nash
Equilibrium problems using asymptotic Nash equilibria, instead of minimizing se-
quences ([85], [87]).

Definition 7.3. Given a game G = (X1, . . . , Xn, u1, . . . , un), a sequence (xm) =
(xm

1 , . . . , xm
n ) is said to be an asymptotic Nash equilibrium (a-NE) if

sup
ti∈Xi

ui(ti, x
m
−i) − ui(x

m
i , xm

−i) → 0, ∀i = 1, . . . , n, as m → +∞

where x−i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ X1 × . . . × Xi−1 × xi+1 × . . . × xn.

Margiocco, Patrone and Pusillo in [85], considering finite games, look for a well-
posedness property for game as a combination of T-wp and generalized T-wp for
minimization problem, taking also into account the additional important information
provided by the value. Following this way, a natural extension of well-posedness
properties for games was given:

Definition 7.4. ([87]) Given a game G = (X1, . . . , Xn, u1, . . . , un), where Xi are
topological spaces ∀i = 1, . . . , n, we say that G is Tykhonov well-posed if there exists
a unique NE x̄ = (x̄1, . . . , x̄n) towards which every a-NE (xm) converges.

Interesting results on this topic concern the investigation of a link between already
known theorems that guarantee the existence and uniqueness of NE and Tykhonov
well-posedness for NE; Margiocco, Patrone and Pusillo ([87]) proved that in some
particular case, (quadratic games and zero-sum games), an existence and uniqueness
theorem provides also sufficient conditions for Tykhonov well-posedness property.
Several authors (see [104], [105], [122], [116], [85], [106], [86], [87] among others)
studied the classical model of Cournot ([121]), reformulated as an oligopoly game,
as application of theoretical results on existence and uniqueness of the equilibrium.
Using the standard way to prove Tykhonov well-posedness, that is to show that the
sets of ǫ−equilibria are compact, Margiocco et al. ([87]) can identify the assumptions
under which the Cournot oligopoly game is Tykhonov well-posed.
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Given a preference system, it may be represented by bounded or unbounded
utility functions and this justifies the introduction of (ǫ, k) equilibria ([83]). With
reference to game theory, whenever the preferences of players have to be considered
as the real data of the game, instead of their utility functions, the ordinal properties
becomes relevant. In fact the problems data are the preferences of the players, not a
special choice of the utility function. Recall that two games G1(X, Y, f1, g1), G2 =
(X, Y, f2, g2) are called ordinally equivalent games (G1 ∼ G2) if there exist two func-
tions φ, ϕ such that φ : I → R, I ⊃ f1(X×Y ), I interval, ϕ : J → R, J ⊃ f2(X×Y ),
J interval, φ, ϕ strictly increasing and continuous functions, f2 = φ ◦ f1, g2 = ϕ ◦ g1.
For non cooperative games, the most most plausible solution is the Nash equilibrium
([105]) for which a notion of Tykhonov well-posedness has been generalized. Fo-
cusing on the definition of (ǫ, k) equilibrium, a new well-posedness notion has been
introduced ([88]) proving that it is an ordinal property if the payoff functions are
bounded from below. The relations between this ordinal property and the classical
Tykhonov well-posedness notion have been studied.
We remind the definition of (ǫ, k) equilibrium.

Definition 7.5. ([88]) Given ǫ > 0, x ∈ X is an ǫ−best reply to y if

f(x, y) ≥ sup
t∈X

f(t, y) − ǫ.

Given k ∈ R, x ∈ X is a k−guaranteeing reply to y ∈ Y if

f(x, y) ≥ k.

If x ∈ X is either an ǫ−best reply or a k−guaranteeing reply (or both) to y then x
is called (ǫ, k) best reply to y.
Furthermore, we say that (x̄, ȳ) ∈ X ×Y is an (ǫ, k) equilibrium if x̄ is an (ǫ, k) best
reply to ȳ and conversely.

This approach is a generalization of the well-posedness idea as an ordinal prop-
erty, introduced with reference to optimization problem by Patrone in [104].

Another application of well-posedness for games involves the classical Stackerl-
berg problem introduced in 1939 by von Stackelberg ([115]) to describe many eco-
nomic competitions characterized by a leader and a follower. Translated in a game
with two players, the leader (player I) chooses his strategy from set X1 and deter-
mines his strategy first, while the follower (player II), chooses from set X2 conforming
his strategy to the policies of the leader. The goal of leader and follower is to maxi-
mize their utility functions.
The problem was deeply studied by several authors (see for example [113], [68],
[6], [5], [15]), in particular Morgan ([71], [95]) characterized the two level optimiza-
tion problems which are well-posed and thus a notion of approximate Stackelberg
solutions (very different from Nash approximate ones) and thus of Stackelberg well-
posedness.
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In [89], the authors considering the optimistic Stackelberg well-posedness and the
pessimistic one (already known in literature also as strong and weak well-posedness
respectively), established some relations between them and in particular the equiv-
alence in the case of hierarchical potential games including a metric characteriza-
tion. For the clarity of exposition we recall the preliminary notions to define a
well-posedness property (see [89]).

Definition 7.6. Let G = (X, Y, f, g) be a game and consider the following problem:
find x̄ ∈ X such that

inf
y∈RII(x̄)

f(x̄, y) ≥ inf
y∈RII(x)

f(x, y), ∀x ∈ X (7.1)

where RII(x̄) = arg maxy∈Y g(x̄, y). A pair (x̄, ȳ) ∈ X × Y with x̄ satisfying (7.1)
and ȳ ∈ RII(x̄) is called a pessimistic Stackelberg equilibrium and x̄ is called a
pessimistic Stackelberg solution.
If we write sup instead of inf, we have the optimistic Stackelberg equilibrium.

Definition 7.7. Given (ǫ, η) ∈ R
2 with ǫ, η ≥ 0, x̄ ∈ X is an (ǫ, η)pessimistic

Stackelberg Solution to problem (7.1) if, ∀x ∈ X

inf
y∈RII(x,η)

f(x, y) − inf
y∈RII(x̄,η)

f(x̄, y) ≤ ǫ (7.2)

where RII(x, η) = { ỹ ∈ Y : g(x, y) − g(x, ỹ) ≤ η, ∀y ∈ Y }.

That is if player I is unlucky, he does not lose more than ǫ. Moreover we say
that (x̄, ȳ) is a pessimistic (ǫ, η) Stackelberg equilibrium if x̄ satisfies (7.2) and ȳ ∈
RII(x̄, η). Similarly for the optimistic case.

Definition 7.8. The sequence (xn, yn) ∈ X × Y is a pessimistic maximizing Stack-
elberg sequence if there is a sequence (ǫn, ηn) ∈ R+ × R+ converging to (0, 0) for
n → ∞ such that

(i) xn is a pessimistic (ǫn, ηn) Stackelberg solution;

(ii) yn ∈ RII(x
n, yn).

That is (xn, yn) is a (ǫn, ηn) pessimistic Stackelberg equilibrium for any n.
Recalling that in general, well-posedness means existence, uniqueness of the solution
together with a notion of approximate sequences approaching the solution:

Definition 7.9. ([95]) A game G is said to be pessimistic Stackelberg well-posed if:

(i) there is only one pessimistic Stackelberg equilibrium (x̄, ȳ);

(ii) every (xn, yn) pessimistic maximizing Stackelberg sequence converges to (x̄, ȳ).
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Analogously for optimistic Stackelberg well-posedness.

A special class of games has been introduced by Monderer and Shapley ([94])
under the name of potential games, because their properties are dictated by a single
function called the exact potential function. Formally:

Definition 7.10. A game G = (X, Y, f, g) is called an exact potential game if there
exists a potential function P : X×Y → R such that ∀x, x1, x2 ∈ X and ∀y, y1, y2 ∈ Y
it holds

(i) f(x1, y) − f(x2, y) = P (x1, y) − P (x2, y);

(ii) g(x, y1) − g(x, y2) = P (x, y1) − P (x, y2).

The famous game called prisoner’s dilemma is an exact potential game and so
all symmetric game with two players.
This class of games is particular because the problem of equilibria is reduced to the
study of maximum points of the potential function. Thus Margiocco et al. ([90])
related the Tykhonov well-posedness and other well-posedness properties such as the
ordinal one to the same properties of the potential function as maximum problem.
Moreover they studied the well-posedness of the game to establish some links with
the same property of the potential function in terms of maximum problem. In this
case the link between optimization and game theories is very strong.

For parametric noncooperative games and for optimization problems with con-
straints defined by parametric Nash equilibria, Lignola et al. ([73]) presented and
studied a well-posedness concept in line with the notion introduced in [24] for opti-
mization problems with variational inequality constraints, motivated by the numer-
ical method due to Fukushima ([43]).
This notion originated from the definition of α−well-posedness for variational in-
equalities ([72]) which had inspired the definition of α−well-posedness for Nash
equilibria which, in turns, had been inspired from the Tykhonov well-posedness for
minimization problems. These links are justified by the transformation of any vari-
ational inequality into an equivalent minimization problem by using a gap function.
We remind to the paper of Lignola et al. [73] and the references therein to more
details on this topic.

Less developed is the topic of well-posedness for multicriteria games, that are
games with vector payoffs. Recently, much attention has been attracted by this class
of games because of their applications to real-world situations. On this argument
we remind to the paper of Morgan ([96]) that firstly introduced and investigated a
parametrically well-posedness notion for a multicriteria game as generalization of the
well-posedness of an optimization problem with respect to a parameter considered
by Zolezzi in the scalar case. The author stressed also the interests in studying the
behaviour of perturbations of a multicriteria game.

73



In the introduction we have briefly recalled some important steps on the history
of well-posedness research, from which two theoretical remarks may be emphasized:
first we note that in every paper on vector well-posedness the existence of some
solution is assumed, uniqueness is not considered and thus the contributions focus
on the stability condition. Secondly, the optimization problem is only one of the
possible models to depict easier realities. Actually the study of well-posedness for
various models of equilibrium theory and variational inclusions is weakly connected.
In our opinion it would be interesting to explore well-posedness through a unifying
approach which allow to establish also existence of solutions. In a recent paper ([76])
a general variational relation model giving a unifying approach to many structures
modeling, including vector optimization problem, has been proposed; moreover exis-
tence and stability results are provided ([76], [64]). This helps in thinking abstractly
about minimization and well-posedness and in achieving a single framework for the
development of properties and results.
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