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Abstract: The paper presents a methodology for obtaining a more efficient estimator of 
design effect with reference to complex multistage sampling designs used for large scale 
surveys on households. Finally, the results of a simulation using real data are presented. 
 

1. Introduction 

The methodology proposed in this paper aims at providing, for each estimate, 
an efficient estimator of the design effect (deff) with reference to each target 
domain. This statistic, first proposed by Kish (1965), is expressed by the ratio 
between the variance of the estimator of the parameter of interest under the 
complex sample design employed with respect to that of an hypothetical simple 
random sample of equal size in terms of elementary units. Thus it measures the 
inflation or deflation of the variance resulting from the sample design adopted, 
compared to that of the design of the simple random sample used as a basic 
reference design. Since its first formulation, deff has been used extensively in the 
field of sampling, both at the sample design planning stage and in the critical 
analysis of the design adopted. Ex-ante, during the planning phase of sampling 
design, deff should be estimated on the basis of information derived from previous 
surveys of the same type (the same variables of interest has to be considered). On 
the contrary, ex-post, during the estimation phase it is possible to use data derived 
from the survey itself. 

The proposed methodology may be applied either in the case of planned 
domains, obtained as aggregation of complete design strata, or when unplanned 
domains, cutting across design strata, are of interest. These domains are 
considered as small domains when sampling errors of the direct domain estimates 
are considered too high to allow their publication. As noted by Kalton (1994), the 
estimator, of the sampling variance may prove to be particularly complex in the 
case of multi-stage sample designs, such as those adopted in surveys on 
households and individuals carried out by the main centers for official statistical 
information at national and international levels. In fact, of itself, it may happen 
frequently that the number of primary units selected in each stratum, and/or 
overall in each domain of interest, it is low (no more than a few units) and  
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ultimate clusters  variance estimation – which is based on deviations between 
estimates of the totals of the variable of interest with reference to primary 
sampling units falling within the domain (or the stratum) – may be extremely 
imprecise with few degrees of freedom. In such cases, Kalton suggests calculating 
a synthetic estimation of the variance relative to the domain of interest. This is 
obtained by multiplying the estimator of the domain (or stratum) sampling 
variance with reference to the simple random sample design for a synthetic 
estimation of deff calculated on a suitable macro-domain (including the domain, 
or the stratum of interest). The methodology proposed in this paper is influenced 
by the above-mentioned ideas. Getting a more precise estimation of sampling 
variances and deffs will produce positive effects both on sample allocation, as well 
as on the choice of the estimator. 
As regards the allocation phase in large-scale surveys, it should be noted that, in 
most cases, surveys have multiple objectives, which means it is unrealistic to hope 
for sample sizes that can guarantee predetermined levels of precision for all 
estimates of interest. Furthermore, an additional problem – which arises in nearly 
all the large scale surveys – is represented by the need to produce parameter 
estimations for a high number of planned domains under study. In seeking out – 
independently for each planned domain under study – an optimum solution to this 
problem, as a result we are trying to reconcile different tasks, each of which 
demands for a different type of response and whose solutions may be at odds with 
each other. Following a direction pursued by many other national statistical 
institutions to solve such problems, National Statistical Institute of Italy (ISTAT) 
has investigated multivariate allocation methodologies that take a global view of 
the problem of the optimum determination of sample size given a multiplicity of 
objectives and ties. More precisely, the methodology in question allows for the 
determination of the minimum sample size able to guarantee – with the desired 
level of precision – the production of parameter estimations of interest with 
reference to a variety of planned domains. Clearly, such a solution to the problem 
may be excellent in a global sense, but at the level of each individual domain 
under study it provides solutions that are generally less efficient than those which 
may be obtained via an autonomous determination of sample size for each 
planned domain under study. The methodology studied and applied by ISTAT, 
presented in Falorsi and Russo (2001), generalizes – in the context of multi-stage 
sample design and in the context of multiple planned domains under study – the 
method proposed by Bethel (1989), aimed at determining optimum size from a 
multivariate viewpoint, and related to the case of a design with one stage of 
stratification and with a single domain under study. More specifically, the 
generalization for multi-stage designs, proposed in Falorsi and Russo (2001), is 
based on the inflation of the estimator of the variance for each stratum, under a 
simple random sampling, by means of an estimator of design effect referred to the 
stratum itself.  
 

2. The estimation of the intraclass correlation coefficient 
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2.1. General formulation 

 

The proposed methodology for the estimation of design effect is based on a 
reformulation of the intra-class correlation coefficient. To this aim we introduce 
the following general notation in which k and l are, respectively, indices of cluster 
and elementary units of target population, G is the total number of clusters, E is 
the overall number of elementary units and E  is the mean number of elementary 
units per cluster; where, hypothetically, the size, kE , of each cluster is constant 

and therefore equal to E . Furthermore, with reference to the target variable y, klY  

is the observed value for elementary unit l belonging to cluster k, kY  is the total 

relative to cluster k, Y  is the overall total. Given the notation introduced, the 
intra-class correlation coefficient of variable y may be expressed as 
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being GYY =  , )(YY EG= ; 1SQy  and  ySQ  are the sum of squares (SQ) of 

the target variable respectively for the cluster totals and for the elementary units. 
Last quantities are formally expressed as 
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By substituting the expression of 2
1Sy  with that of yρ  an alternative formula for 

the intraclass correlation coefficient is obtained  
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In the case in which y is a binary variable equal to “1” if the unit under 

observation possesses characteristics of interest (for example, is employed), or 
otherwise equal to “0”, the expression of intra-class correlation coefficient, 

denoted as yρbin , may be further simplified, since the mean value Y  and the sum 

of squares ySQ  coincide with the relative frequency, yP  , of units having the 

characteristic of interest and  
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Then formula (5) becomes 
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As may be noted, the above-mentioned expression depends both on the 

population size,G  and E , as well as on yP  and 1SQy , the entity of these last two 

quantities varying with changes in the variable of interest under consideration. 
 

2.2. Approximation of intraclass correlation coefficient 

An approximation of (5) may be obtained by substituting the cluster totals, kY  

)1( G,...,k = , of the target variable in 1SQy  with the corresponding values 

estimated by means of a linear model. Under the unit level linear mixed model klY  

),...,1;1( kElG ,...,k ==  is a random variable expressed as 

 

 klkkklklY ε+ν+= βx'        (8) 

 
where klx  and kβ  are the q-dimensional vectors of the auxiliary variables and of 

the regression coefficients, klε  and kν are independent random variables with 0 

mean and constant variances equal to 2
εσ  and 2

νσ  respectively. 

The simplest model of type (8) is obtained when 1' ≡klx  and 0=νk  

),...,1;1( kElG ,...,k == . Under this model, the Best Linear Unbiased Predictor 

(BLUP) of klY  , on the basis of all the units of the finite population, is  
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and the BLUP of 1SQy  is  
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Substituting (10) in place of 1SQy in (5), the following approximation of intra-

class correlation coefficient is obtained  
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that may be expressed in a more compact way as 
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For binary variables formula (12) may be further simplified as  
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Formula (14) is particularly noteworthy because it expresses yρbin ′  as a 

exclusive function of yP , apart from the knowledge of the population sizes (G  

and E ) and the variability, 2
Eσ , of cluster sizes  in terms of elementary units. This 

quantity may be computed via the distribution of cluster sizes to be found from 
administrative registers or from census data.  

 

2.3. The case of stratified cluster sampling design 

 

The formulas of the previous pages are derived under the condition of equality 
of cluster sizes, this is not the real situation for large scale surveys conducted by 
multistage stratified sampling design in which the Primary Stage Units (PSUs), 
i.e. the clusters selected at the first stage of selection, are selected, inside each 
stratum, with probability proportional to size and the average cluster size may be 
highly variable between strata. Furthermore many of these surveys adopt a 
stratification of PSUs by size and from the list of PSUs ordered according their 
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size the “biggest” clusters (in terms of size) are included in the first strata and so 
on until the last strata that include  the “smallest” clusters. For the above reasons it 
is more convenient to evaluate intra-class correlation coefficient inside each 
stratum. To this aim we utilize the subscript h to denote that the quantities above 
introduced are related to stratum h, being H the total number of strata in which the 
population of interest is divided. With reference to h-th stratum ),...,1( Hh =  , 

let’s denote with: k and l the cluster and the elementary unit indexes; hklY  the 

value of the target variable related to the elementary unit hlk ;  hkE  the population 

size, in terms of elementary units, referred to cluster hk; hg  and hG  the 

population sizes, in terms of clusters;  hE  and  hE respectively the total  number 

and the mean number of elementary units per cluster. Then for the h-th 
( H,...,h 1= ) stratum, formula (5) may be written conformably as 
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while for binary case, formula (7) become 
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Correspondent approximations are possible. 
The correspondent approximated expressions are 
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2.4. Estimation of intra-class correlation coefficient 

 

Referring to the case of stratified sampling designs, with reference to each 
stratum h, it possible to derive a direct estimator, hy,ρ̂  of the correspondent intra-

class correlation coefficient (15) estimating, on the basis of the sample data, the 

unknown quantities dependent by y, i.e. 2
,

-
hyσ , 2Yh and hy ,1SQ . The direct Horvitz-

Thompson (HT) estimators of these unknown quantities, denoted as 2
,ˆ -
hyσ , 2Y

ˆ
h  and 

hy ,1Q̂S  are calculated by weighting the observations of the elementary sampling 

units, selected in stratum h, by means of the inverse of their inclusion 
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probabilities. The direct estimator, hy,binρ̂  , of (16) is obtained by means of the 

direct estimators hy,P̂ , of hy,P  , and hy ,1Q̂S . 

The same is for the direct estimators of (17) and (18): hy,ρ̂′  is a function of the 

direct estimator, )Y
ˆˆ(v̂c 2

h
2
,

2
,

−− σ= hyhy , of 2
,cv−
hy while hy,binρ̂′  is dependent only by 

hy,P̂ .  

It is reasonable to expect too that population parameters 2
,cv−
hy  and hy,P  

),...,1( Hh =  will vary little from stratum to stratum, compared to a high level of 
variation for the corresponding direct estimates which are based on strata sample 
sizes. Then for each stratum h ),...,1( Hh =  a much more precise estimation, 

denoted as 2
,v~c −
hy and hy,P

~
, could be obtained by means of a linear mixed model 

with strata random effects. The fixed effect of the model may borrow strength 
from the overall population or from sub-populations including the strata. It is 
important to note that the choice of the more appropriate model will have to 
balance between variance reduction and increase of the bias. The resulting 
estimators of intra-class correlation coefficient, denoted as hy,ρ

~ , hy,binρ
~ , hy,ρ

~′ , 

hy,binρ
~′ , are known as small area estimators (Rao, 2003) and in the following will 

be called indirect estimators. 
 

2.5. Regression model for the intra-class correlation coefficient 

 

The condition of equality of cluster sizes rarely holds also inside each stratum, 
then with the scope of improving the reliability of the estimation of intra-class 
coefficient, derived in par 2.3 a further passage is proposed aimed to the 
adaptation of a linear regression model between the intra-class correlation 
coefficients calculated for the different strata and corresponding factors derived 
from formulas (17) and (18). To this aim by means of a logarithmic 
transformation expression (17) and (18) become 
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In the above expressions, the terms )v̂cln( ,hy  and )Pln( ,hy  are unknown and need 

to be estimated from the sample data while )ln( ,hEσ  may be evaluated from the 
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sample data too, using a direct estimator hE,σ̂  of hE,σ , or may be calculated 

exploiting the available information on PSU’s sizes coming from administrative 

registers. This estimator will be denoted as hE,σ′  and will be utilized as in the 

subsequent expressions. 

Then for the scatter of H  points )v̂c,,,,ˆ( ,,, hyhhhEhy EGσ′ρ  ),...,1( Hh =  the 

following working model may be adapted 
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while for binary variables to the scatter of H  points )P̂,,,,ˆ( ,,,bin hyhhhEhy EGσ′ρ  

),...,1( Hh = the following model may be fitted  
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Taking into account that 1)P1( , ≅− hy  when hy,P  is small and then 0)1ln( = , in 

many real situations model (22) may be reduced to  
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Let’s denote with kα̂  (k=1,…,5) the least squares estimators of kα . Then the 

direct regression estimator (dre) of intra-class correlation coefficient of the h-th  
stratum ),...,1( Hh =  is  
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while for binary target variables the dre is 
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If in (24) is utilized an indirect estimator (synthetic or empirical best linear 

unbiased predictor), hy,v~c , of hy,cv  the indirect regression estimator (ire), hy,ρ
~′′ , 

of hy,ρ ′′  is obtained. In the same way for a binary target variable, formula (25) 

shows that the ire, hy,binρ
~′′  , of  hy,binρ ′′   is dependent by the indirect estimator, hy,P

~
, 

of hy,P . 

3. Variance estimation using design effect  

 

In large scale surveys complex multi stage sampling design with stratification 
of Primary Stage Units (PSUs) and selection of units at different stages with 
probability proportional to size without replacement (ppswor) are generally 
adopted. In this context it is not unusually to consider only the first stage of 
selection , i.e. ignoring 2nd and later stage of selection, especially when later 
stages of selection have low probabilities of selecting units and each selected 
cluster can be considered as an ultimate cluster, i.e. the aggregate of all 
elementary units selected from the same PSU. A common choice, in this context, 
is to consider the hypothesis of selecting the PSUs with probability proportional 
to size without replacement (ppswr). For this simplified framework – in which are 
available simple estimators formulas for sampling variances not requesting the 
calculus of second order inclusion probabilities between PSU’s - each stratified 
multistage sampling design can be approximated by a ppswr selection of PSUs 
inside each stratum and all the units selected at later stage of selection are 
considered as belonging  to the same ultimate cluster. Under this simplified 
context it is useful to add some notation to that given in previous pages. Then let’s 
denote with: hklY  and hklπ  the target variable and the inclusion probability related 

to the elementary hlk-th unit;  hke  the sample size, in terms of elementary units, 

referred to PSU hk; dhU  the sub-population of elementary units, of size dhN  , 

belonging to domain d (d=1,…,D), being ∑=
d dhh UU  and ∑=

d dhh NN . The 

symbol ∑=
h dhd UU  denotes the subset of elementary units of the population 

belonging to domain d (d=1,…,D) and ∑=
d dUU is the overall population. 

Furthermore let’s denote withdhklY = dhklhkl IY  the value of the target variable for 

hkl-th unit related to its belonging to domain d, being 1I =dhkl  if unit dUhkj ∈)(  

and 0I =dhkl  otherwise. It is worthwhile to note that when dU  (d=1,…,D) are 

planned domains, they are obtained as aggregation of complete strata, and 
population domain do not cut across strata, being hdh UU ≡ , hkldhkl YY ≡  

),...,1;1;,...,1;,...,1( hkh El  G,...,k  Hh  Dd ====  otherwise in the case of 

unplanned domains they cut across strata. 
Given the above,  
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indicates the HT estimator of the total 
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where hkldhkldhkl KYŶ =  and 1K -
hklhkl π=  is the sampling weight of unit (hkl) on 

the basis of the adopted multistage sampling design. Then, the sampling variance 

of the total dŶ  for the multistage stratified complex random sampling (crs) design 

under examination may be expressed as 
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In the case of two stage sampling plans, e.g. utilized by many large scale surveys 
on households conducted by face to face interview, under ppswr approximation, 

the variance, )Ŷ( dh crsV , under crs   for stratum h ),...,1( Hh =  is 
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where with reference to the hk-th PSU, 0>hkZ  )1( h,...Gk =  is the probability or 

relative size assigned to the PSU, being 1
1

=∑
=

hG

k
hkZ , 2

dhkS  is the variance of the 

target variable dhklY  values among elementary units and )( hkhkhk /Eef =  is the 

sampling rate of the elementary units. An unbiased estimator, )Ŷ(ˆ
d crsV , of 

)Ŷ( d crsV  is given by  
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)1(

)Ŷ
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Formula (29) also holds for multistage stratified sampling under ppswr of PSUs, 

provided that hkŶ  is an unbiased estimator of hkŶ  and that sub-sampling is 

independent whenever a primary unit is drawn.  

In this context let’s consider now the sample variances, )Ŷ( dhcrsV  and )Ŷ( dhsrsV , 

of dhŶ  ),...,1( Hh =  referred respectively to the actual complex random sample 

and to the hypothetical simple random sample (srs) of equal size, “e” , in terms of 
elementary units, to that related to the real complex sample. 

Under srs the sampling variances of dŶ  and dhŶ  ),...,1( Hh =  are 
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respectively where 2
dS  and 2

dhS  represent the overall and h-th stratum variances of 

the target variable  values, dhklY , among elementary units. In formula (32) the 

finite population corrections (fpc) are ignored supposing )(e/Ef =  and 

)( hhh /Eef =  near to zero. The direct estimators, )Ŷ(ˆ
d srsV  and 

)Ŷ(ˆ
dh srsV ),...,1( Hh = , of variances (32) are obtained by means of direct 

estimators, 2ˆ
dS  and 2ˆ

dhS  ),...,1( Hh = , of correspondent population variances 

included in (32). 

The design effect of the estimator dŶ , )Ŷ( dδ , is  
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It is useful to rewrite )Ŷ( dcrsV  as 
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where )Ŷ( dhδ  is the design effect of dhŶ  ),...,1( Hh =  
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For stratum h-th ),...,1( Hh = , under multistage sampling design with ppswr 
selection of PSUs, and supposing PSUs sizes to be reasonably constant in terms of 
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elementary units, the design effect (Cicchitelli et al., 1992) of dhŶ  may be 

approximated via the following function of intra-class correlation coefficient  
 

)1(ρ1)Ŷ( , −+=δ dhhydh e
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where hyd ,ρ  denotes that formula (15) is applied to the values dhklY  
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Given the above, the design effect formula (33) become   
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that under the hypothesis  22
dhd SS =  ),...,1( Hh =  , using (32) may be rewritten as 
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Finally in the case in which larger PSUs are certainly selected, let denote with 

srH  the number of self representing (sr) strata, nrsH  the number of non self 

representing (nrs) strata. For sr strata are valid the following conditions: hk ≡ , 
1== hh gG , a is the SSU index, hM  and hm  denote the number of population 

and sample SSUs of h-th stratum-PSU respectively, where for stratum (i.e. PSU 
selected with certainty)  h-th ),...,1( srHh = in sr domain is 

 

 ∑
=

=
hM

a
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1
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=

=
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a
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1

   ,   dha

m

a
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h

ee I
1
∑

=
=  (40) 

 
If, inside each stratum-PSU, no SSUs are selected, then 1== hh mM    

while where for stratum h-th ),...,1( nsrHh =  in nsr domain is 

 

 ∑
=
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1
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=
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1
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=
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If the same number of elementary units in each PSU is selected and under the 

hypothesis that 2
d

2
dhsr, SS =  for srHh ,,1K=  and 2

d
2

dhnsr, SS =  for nsrHh ,,1K=  the 

design effect is given by  
 

 ∑∑
==

δ+δ=δ
nsrsr H

1h
dhnsr

hnsr,

hnsr,
H

1h
dhsr

hsr,

hsr,
d e

E

e

E
  

E

e
 })Ŷ()Ŷ({)Ŷ(

22

2   (42) 

 

in which )Ŷ( dhsrδ  ),,1( srHh K=  and )Ŷ( dhnsrδ  ),,1( nsrHh K= denotes design 

effect for sr and nsr strata respectively. Using (36), the above formula may be 
approximated as  
 

 

∑

∑

=
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d
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d

H
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e
e
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e
e
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e
 

})]1(ρ1[

)]1(ρ1[{)Ŷ(

,

2

,

2

2&

   (43) 

 
where hdhsr,dh sr, mee /=  and hdhnsr,dh nsr, gee /=  are the mean number of 

elementary units at PSU level for h-th stratum in sr and in nsr domain. On the 
basis of what has been described in previous paragraphs, in order to get an 

estimator, )Ŷ(
~

dωδ  of )Ŷ( dδ , as precise as possible, different estimators of the 

unknown intra-class correlation coefficients hsr,yd ,ρ  and hsr,yd n,ρ  may be used:  

(1) direct estimators, hsr,yd ,ρ̂  and hsr,yd n,ρ̂ , or indirect estimators, hsr,yd ,ρ~  and 

hsr,yd n,ρ~ , of expression (15) (or expression (16) if the target variable is 

binary) as described in par. 2.4. The resulting estimator of )Ŷ( dδ  is 

denoted as )Ŷ(
~

dir dδ , i.e. dirbeing,)Ŷ(
~

)Ŷ(
~

dir ≡ωδ=δω dd ; 

(2) direct estimators, hsr,yd ,ρ̂′  and hsr,yd n,ρ̂′ , or indirect estimators, hsr,yd ,ρ~′  and 

hsr,yd n,ρ~′ , of approximated expression (17) (or expression (18) if the target 

variable is binary) as described in par. 2.4. The resulting estimator of 

)Ŷ( dδ  is denoted as )Ŷ(
~

apx dδ , i.e. apxbeing,)Ŷ(
~

)Ŷ(
~

apx ≡ωδ=δω dd ; 

(3) dre, hsr,yd ,ρ̂ ′′  and hsr,yd n,ρ̂ ′′ , or ire, hsr,yd ,ρ~′′  and hsr,yd n,ρ~′′ , under model (24) 

(or model (25) if the target variable is binary) as described in par. 2.5. The 

resulting estimators of )Ŷ( dδ  are denoted as )Ŷ(
~

dre dδ  and            

)Ŷ(
~

ire dδ  respectively; i.e. apxbeing,)Ŷ(
~

)Ŷ(
~

dre ≡ωδ=δω dd and 

,)Ŷ(
~

)Ŷ(
~

ire dd δ=δω  irebeing ≡ω . 
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5. Application of proposed methodology to labor force surveys 
 

5.1. Introduction 

 

This section will present the application of the proposed methodology for the 
estimation in the context of the sampling design used in ISTAT surveys on 
households, carried out via direct interview.  

With this in mind, and for a better understanding of the proposed 
methodology, it we give a preliminary description of the sample design used in 
these surveys. They are based on the complex type of design applied with 
reference to each of the minimum planned territorial domains. This implies that 
the sample is designed in such a way that the most disaggregated territorial 
domains (obtained by aggregating complete strata) within which a predetermined 
sample size may be guaranteed if reliable estimations of the parameters of interest 
are to be produced.  Theses domains are made up of provinces, with the Labour 
Force Survey (LFS). The design applied for each minimum territorial domain 
requires a decreasing ranking of municipalities, on the basis of demographic size 
according to resident population. Once the ranking is determined, the 
demographically larger municipalities are automatically included in the sample, 
each one forming a stratum to itself; the territorial domain made up of these 
municipalities therefore is called the self representative domain. The remaining 
municipalities, identified as not self representative, are subdivided into strata of 
roughly constant size (in terms of resident population) and from each one of them 
a predetermined number of sample municipalities are selected, with ppswor 
sampling. From each municipality in sr and from each sample municipality in nsr, 
households are selected with equal probability and without replacement, by means 
of a systematic selection from official registers; all family components are 
interviewed. To determine the number of families to be selected from the strata of 
each minimum territorial domain, the criterion of self-weighting is used. From 
this it derives that in the sr domain strata, the number of sample households is 
larger according to municipality size, in terms of resident population, while in the 
nsr domain strata, the number of households selected is more or less constant. 

To sum up, the sampling design applied in each planned minimum territorial 
domain requires the use of two different selection designs for, respectively, sr and 
nsr. For the former, a one stage stratified cluster design is used: municipalities 
coincide with strata and households are clusters of individuals; while for the nsr 
domain municipalities, the design is of a two stage stratified type – municipalities 
represent the primary unit and households are the secondary unit, made up of 
clusters of individuals.  

In this context for the estimation of design effect formula (43) must be 
considered. To this aim it is useful to note that, for the complex sampling design 
adopted in ISTAT’s surveys on households, above described, dh sr,e  represents the 

average household size for h-th stratum in sr domain ),...,1( srHh =  while dh nsr,e  
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is the average number of individuals selected for h-th stratum in nsr domain 
),...,1( nsrHh = . Because of  dU ),...,1( Dd =  is a planned domain population (i.e. 

not cutting across strata) obtained as aggregation of complete strata then 

h sr,dh sr, ee =  and h nsr,dh nsr, ee = . 

 

5.2. The empirical study 

 

The following application is intended as a ckeck of the validity of the proposed 
regression methodology for estimating intra-class coefficients and the 
corresponding sample design effect. To this end, a comparative analysis between 

the indirect regression estimator method, )Ŷ(
~

ire dδ  ),...,1( Dd = , proposed in par. 

2.5 and the direct estimator of design effect, )Ŷ(
~

dir dδ  ),...,1( Dd = , has been 

carried out, based on the Monte Carlo simulations. In this way it is possible 
evaluating the empirical properties of the different methods in terms of mean-
square error and bias, calculated in the space of simulated samples.  

Basic data from the general population census for 1991 (C91) and for 2001 
(C01) referred to region Lazio were used for our analysis. The following 
variables, taken from the census, were considered for each individual: 
identification codes for province, municipality and household, and professional 
status according to the two categories of employed and job-seeking. Then two new 
dichotomous variables 1y  and 2y  were built: the first is equal to 1 if the 
individual is employed but otherwise equal to zero, while the second is equal to 1 
if the individual is job-seeking but otherwise equal to zero. 
R=500 samples (known as replications) were selected from the basic Cen01 data, 
on the basis of the complex sample design (as described in par. 5.1) adopted by 
LFS adopting the same first and second stage sizes. 
For each replication r (r=1,…,R), and for each province3 d (d=1,…,D) of Lazio 

estimations, drŶ , of the totals, dY , for employed and job-seeking individuals, 

were calculated. Furthermore the sample design effect, )Ŷ(
~

drr ωδ  of estimation 

drŶ  was calculated, both using )Ŷ(
~

ire dδ  and )Ŷ(
~

dir dδ . The true value of )Ŷ( dδ  

was calculated using  C01 data, as described for formula (42). In building the 

proposed estimators, )Ŷ(
~

drr ωδ  ),...,1( Dd =  for ire≡ω , intra-class correlation 

coefficients hsr,yd,ρ  ),...,1( srHh =  and hnsr,yd ,ρ   ),...,1( nsrHh =  was calculated by 

means of the model (25) using the C01 data (Case 1). Another situation was 

considered (Case 2) in which data of C91 was utilized for the calculation of hE,σ′  

and hy,P . Case 2 was considered in order to evaluate whether or not the 

methodology under study remains valid when using data that had not been 

                                                           
3 Provinces are the smallest planned domains for LFS. 
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updated. The two alternative estimators are indicated as )Ŷ(
~

01C,ire dδ  and 

)Ŷ(
~

91C,ire dδ . For the construction of )Ŷ(
~

ire dδ , when calculating estimates hy,P̂  

mean synthetic estimations were used, based on data from the entire Lazio (to 
which the provinces belongs), with the aim of stabilizing estimations relative to 
each single stratum h ),...,1( Hh = .  

For each province d, the properties of each estimators )Ŷ(
~

drωδ under study 

are generally evaluated, in terms of bias and variability, on the basis of the 
assumed values of the following statistics: 
 

{ } 100
)Ŷ(

)Ŷ()Ŷ(
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The above-mentioned evaluation criteria, expressed as percentages, 

respectively measure Relative Bias and the Root of the Relative Mean-Square 
Error. By calculating the average of all d domains (d=1,…,D) of the absolute 

values { })Ŷ(
~

DR dd ωδ  e { })Ŷ(
~

REQMR dd ωδ  statistics, evaluation criteria are 

obtained, given by:  
  

{ }∑
=

ωδ=
D

d
ddD 1

)Ŷ(
~

RB 
1

RB  ,                                                              (46)  

 

{ }∑
=

ωδ=
D

1d

)Ŷ(
~

RRMSE
D

1
RRMSE dd .,                                                (47)  

In Table 1 are presented the results of the simulation study. In particular, the 

global evaluation indices, RB  and RRMSE , for each of the estimators in Case 1 

and Case 2 are presented. The analysis of both cases shows that the )Ŷ(
~

ire dδ  

estimator is superior both in terms of bias and mean squared error, although in 
Case 1, as expected, the estimator gives better results than those of Case 2, in 
which the intra-class correlation coefficient were estimated on the basis of data 

(for the calculation of hE,σ′  and hy,P ) that had not been updated.  
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6. Conclusion  

The results of the empirical analysis show that the proposed estimation technique, 
based on indirect regression estimator of intra-class correlation coefficient, 
improves the quality of the estimation of deff  with respect to the standard direct 
method. Then this methodology may be exploited in many phases of the statistical 
data production proces in which an efficient estimation of design effect is needed. 
One of the most important way of utilization of deff is related to the allocation of 
sample sizes into strata and, more in general, for planned domains when complex 
sampling plans, based on multistage stratified selections of units, are adopted. In 
particular to overcome the complexity of allocation problem in multipurpose large 
scale surveys multivariate and multi-domain allocation methodologies are applied. 
In this case the availability of coefficient estimations of design effects may 
produce large gains in the quality of the estimates of the target parameters. 
Another phase of statistical process of data production in which the proposed 
methodology may be usefully utilized is related to the estimation of sampling 
variances for small domains. In that case the standard estimator of sampling 
variances may be very unstable due small planned and/or observed sample sizes 
inside each domain.  
 

Table 1: RB  and RRMSE of )Ŷ(
~

01C/ire dδ , )Ŷ(
~

91C/ire dδ  and )Ŷ(
~

dir dδ   

for Employees and People looking for a job 

Estimator RB  RRMSE RB  RRMSE 
 Employees People looking for a job 

)Ŷ(
~

dir dδ  6.83 1.44 15.18 7.35 

)Ŷ(
~

01C/ire dδ  -1.63 0.717 -1.23 1.18 

)Ŷ(
~

91C/ire dδ  5.63 0.73 -8.86 0.02 
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