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Abstract— This paper proposes and compares portfolio selection 

models under the assumption that the portfolios of returns follow a 

GARCH type process. We compute the price/return distribution at 

some future time approximating the GARCH process with a Markov 

chain. We  consider either a GARCH(1,1) model or an asymmetric 

GARCH type model (E-GARCH, GJR-GARCH) . We present an ex-

post comparison of portfolio selection strategies applied to some 

assets of the US Market. Since the optimization problems present 

more local optima, we implement an heuristic algorithm for the 

global optimum in order to overcome the intrinsic computational 

complexity of the models.  

Keywords— GARCH models, Portfolio selection, Performance 

strategies, Ex-post analysis , Heuristic, Global optimization, Markov 

chains.

I. INTRODUCTION

N this paper, we model the return portfolios with a Markov 

chain that account the GARCH evolution of the returns. In 

particular, we use the Duan and Simonato’s  approximation of 

the returns evolution (Duan, Simonato 2001) in portfolios 

selection problems. Under this distributional hypothesis we 

compare the ex-post performance of some portfolio selection 

strategies.

There is a general consensus on the importance to model 

the time varying volatility (Engle [1982], Bollerslev [1986]) 

and the leverage effect (Black [1976]). Several  empirical 

studies have showed that these statistical aspects serve to 

solve many biases between theoretical and empirical prices 

(see Bakshi, Cao and Chen [1997], Engle and Mustafa [1992], 

and Heston and Nandi [2000]). Because there is wide 

consensus that the variance of the financial asset returns is 

time variant, a great amount of efforts are directing to realize 

mathematical models which, by choosing the variance 

dynamics as the model corner-stone, should be effectively 

able to model financial prices. Surely the GARCH model is a 

reference instrument to study the volatility dynamics, and 

among its advantages there is its high flexibility to be suitable 

to capture the most important features of the financial 

variables. In this work we analyze the impact of choices based 

on the GARCH parametric characterization of financial asset 

series. It is to note that the passage from the GARCH 

parametric characterization of financial asset series to the 

computation of the price/return distribution at some future 

time is not immediate. In order to build portfolio wealth 

distribution we use Duan and Simonato's GARCH 

approximation (Duan, Simonato 2001). Moreover, we extend 

the Duan and Simonato's ideas to other possible GARCH type 

models (see Glosten, et al.(1993), Nelson (1991)). As these 

authors explain many GARCH models and in particular the 

GARCH(1,1)  models can be represented as a bivariate 

Markovian system (i.e., the state of the process is uniquely 

represented by price and variance states). This feature allows 

to approximate GARCH models by a discrete Markov chain. 

The Markovian and semi-Markovian models has been used in 

different fields of the financial literature typically in option 

pricing and credit risk (see, among others, Duan and Simonato 

(2001); D’Amico and Di Biase, (2009), D’Amico et al. (2009, 

2010)), and in portfolio theory (see Angelelli and Ortobelli 

(2009), Iaquinta et al. (2010)). To build the transition matrixes 

we use the method discussed by Duan and Simonato (2001), 

Duan et al. (2003) for parametric Markovian processes.  

With parametric portfolio selection models the transition 

matrix depends on the parameters of the underlying 

multivariate Markov process and the parameters are functions 

of the portfolio weights. Therefore we should check for a 

global optimum  for most of the portfolio selection problems. 

In the paper we implement  an optimization heuristic 

algorithm Angelelli and Ortobelli (2009) that reduces 

enormously the computational complexity with respect to 
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other global optimization approaches like simulated annealing. 

In the following empirical comparison, we present some 

portfolio selection strategies that use different GARCH 

models. All of them are based on the estimation of the 

distribution of the returns at future times under the assumption 

that the residuals of log returns portfolios follow a GARCH 

process.  

The paper is organized as follows.  

In Section 2 we show the models implemented. In Section 3 

we discuss the Markovian approximation of portfolio value 

and we formalize the portfolio selection model discussing the 

computational complexity of the problem. In section 4 we 

perform an empirical comparison among different portfolio 

selection models. Finally, we briefly summarize the paper.  

II. PORTFOLIO VALUE WITH GARCH VOLATILITY DYNAMICS

Let us consider a discrete-time economy and   risky assets 

with log returns1
1 1, 1 , 1

, , '
t t n t

r r r . If we denote by  

1
, , '

n
x x x  the vector of the positions taken in the n

risky assets, then the portfolio wealth at time 1t   is given by  

, 1

1

=1

( ) = e .i t

n
r

t i

i

W x x (1) 

In particular, we assume that investors want to maximize 

the performance of their choices at a given future date T.

Now we introduce the alternative GARCH volatility 

dynamics models implemented in this work. 

Suppose that under the historical measure P the daily 

portfolio log-return is described by the following relation: 

1

1 1 1
ln

t

t t t

t

W x
r

W x
 (2) 

where 
t

W x  is the portfolio value at time t, with asset 

position  x , and 
1

| ~ 0,1
t t

  under P .

For convention we consider the initial portfolio wealth 

equal to 1 (i.e.
0

1W ). In this work we use the standard 

GARCH(1,1) (see Bollerslev, T.(1986)) and some well-known 

extension of the standard GARCH(1,1). Each model can be 

represented as: 

1
, ,

t t t
f

where the relation expresses that the conditional variance at 

time 1t is function of the lagged value of the variance (
t
),

the lagged shock (
t
) and a set of parameters ( ).

The variance dynamics models we consider are: 

Model I: GARCH (1,1) (G11): (see Bollerslev, T.(1986)) 
2 2 2 2

1t t t t
  (3) 

1 Generally, we assume the standard definition of log return between time t

and time t+1 of asset i, as , 1 ,[ , 1]

, 1

,

= log
i t i t t

i t

i t

S d
r

S
 , where 

,i tS  is the price of 

the i-th asset at time t and 
,[ , 1]i t t

d   is the total amount of cash dividends paid 

by the asset between t and t+1.

where , 0  and 0 1 . 

Model II: GJR-GARCH (GJR-G): (see Glosten, et 

al.(1993)) 
2 2 2 2 2 2

1t t t t t t t
I   (4) 

where , 0  and 0 1 and 
1; 0

0;otherwise

t

t
I

Model III: E-GARCH (E-G): (see Nelson (1991)) 
2 2

1
ln ln | |

t t t t
  (5) 

where 0   and  0 1.

The parameters of the models are , where  is 

the constant drift term and , , ,  is the parameter 

vector related to the variance dynamics. 

In the model II and III the parameter allows to model the 

asymmetric behavior of the variance, sometime called Black's 

effect. It consists of a greater response of the variance when 

the news arrived in the market are negative ( 0
t

) than 

when the news are positive ( 0
t

).

All conditions on the parameters , are used to avoid 

theoretical inconsistence on the value for 2

t
 (i.e., 0

should mean a potential negative value for the variance, while   

0 should mean that greater shock movements induce a 

decreasing variance), while the conditions on allow the 

variance process to be covariance-stationary. Let us consider 

the value of the stationary variance level in each model, 

supposing the weakly stationarity on 
2

t then we obtain2 : 

* 2

21
t P

t

h E
E

   in the G11 

* 2

2 21
t P P

t t t

h E
E E I

  in the GJR 

* 2
| |

ln
1

P

t t

t

E
q E     in the E-G 

Since we have to avoid the asymptotic divergence and the 

negativity of the variance process we need the following 

additional conditions: 
2 1P

t
E in the G11 

2 2 1P P

t t t
E E I in the GJR 

Note that in the normal innovation case (i.e., 

1
| 0,1

P

t t
N  ) 

2 We use the GARCH property that: 

t t t t
E f g E f E g  where f  and g  are some 

measurable function, since 
t

, and thus each its function, is measurable with 

respect to the sigma-algebra at time 1t
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*

1
h in G11,  *

1 / 2
h  in GJR, 

* * 2 /
exp exp

1
h q  in E-G. 

and the conditions are: 1  in the G11, / 2 1

in the GJR-G. In the E-GARCH model the value h* is

approximated with the exponential of the expected log 

volatility. The GARCH(1,1) model is a benchmark model and 

it is used for model comparisons. The main characteristics of 

other GARCH models used can be summarized in: 

1. Parsimonious model, only 4 parameters to model the 

variance dynamics 

2. Two state variables: price and variance 

3. Time varying variance: GARCH models drive the 

variance process. 

4. Models are potentially able to explain the well-known 

stylised-facts as the "Leverage effect" (  parameter) and the 

"Clustering effect" in the stochastic volatility ( parameter) 

III. PORTFOLIO VALUE DYNAMICS AS MARKOVIAN EVOLUTION PROCESS

Duan and Simonato have shown that the GARCH(1,1) 

model can be represented as a bivariate Markovian system 

(i.e., the state of the process is uniquely represented by 
2

1
,

t t
W  so the process is markovian of the first order). This 

feature allows to approximate GARCH models by a discrete 

Markov chain. Duan and Simonato’s analysis can be extended 

to GJR-GARCH and E-GARCH models as we show here in 

the following. In particular, we present the Markov chain 

approximation of a GARCH (1,1) process (Duan, Simonato 

2001) adapted to the work models. 

Let us consider an underlying portfolio log-return modeled 

by the equation (2) or equivalently let us consider 

1
ln ln

t t t t
W x W x z where 

t
W  denote the portfolio 

value at day t . Let Q  be some probability measure and 
t

be 

the variance modeled by G11, GJR or E-G. Let 
t

z a

standardized random variable independently distributed with 

respect to the information up to time 1t , i.e.,  

1
| ~ 0,1

Q

t t
.

Following Duan and Simonato's suggestions, we form the  

partitions by using the logarithm of adjusted wealth and log 

variance for the two state variables considered. The adjusted 

wealth is used to reduce the dimension of the transition matrix 

by a wealth conversion. The logarithms of the values used are 

justified mainly for its better convergence behavior. 

The adjusted wealth is computed by 
* t

t t
W e W  where   

and 
* / 2h  is the stationary variance, the pre-adjusted 

wealth can be easily recover later. Also the unconditional 

variance can be computed in all the GARCH model 

mentioned. 

Note that in term of log-adjusted wealth the log return 

dynamics becomes: 
*

* 2

*

1 1

1
ln ln

2

t t

t t t

t t

W W
h

W W
.

The unconditional expectation of the continuously 

compounded return on the adjusted wealth is zero, since 
2 *Q

t
E h  and 0

t t
E .

Let
t

p and  
t

q be the logarithm of the adjusted wealth (let 

us say log wealth) and the logarithm of the variance 

respectively (i.e., 
*ln

t t
p W and 

2ln
t t

q ) then the 

models can be rewritten with: 

*

1

1

2
t tq q

t t t
p p h e e

2

1
ln t tq q

t t
q e e in the G11 case, 

2 2

1
ln t t tq q q

t t t t
q e e e I  in the GJR case  

or

1t t t t
q q in the E-G case. 

To find a states partition to approximate the GARCH 

process we use: 

1) A log wealth partition centered on the logarithmic of the 

initial portfolio wealth: 
0 0

[ , ]
p p

p I p I , where 
p

I is

determined by studying the conditional behavior of the 

logarithm of the adjusted portfolio wealth over the investor 

time horizon T :

2

01
|

T
Q

p p tt
I m E   (6) 

2) An analytical formula of the conditional variance of the 

log wealth can be derived for many GARCH processes. 

3) Log variance partition: to form the partition we would 

study the conditional behavior of the logarithm of the variance 
2ln

T T
q . From the GARCH process features we know 

that there are two notable values of the variance:  

a) the initial variance, which the process starts from,  

b) the unconditional variance ( *h ) to whom the process 

asymptotically is attracted.  

Both these values have to be considered in the variance 

partition, but the second has increasing importance as we are 

far from the begin instant The partition center can be 

computed as: * 2 *

1 1

min , min ,
ln

T T
q h  . The 

value of  is a temporal index used to form the weights. As it 

increases as the relative weight of the unconditional variance 

respect to the initial variance increases. Then in the study of 

long-term horizon has to be small. Anyway it is important to 

ensure that 
1

q belongs to the partition. The log variance 

partition is * *

1 1
[ , ]

q q
q I q I . In order to compute the width 

q
I

of the partition it should be enough to study  
0

|Q

T
Var q ,

but in-G11 and GJR-G it could result analytically complex. 

We know by the Jensen inequality that   so Duan and 
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Simonato propose to use a width 
2

0 0
| ln |Q Q

T T
Var q Var :

1 2

0 1
ln |

q Q

q q T
I e n Var q   (7) 

Only in the E-G case we have to note that the log variance 

partition can be constructed directly by the E-GARCH 

equation, because it expresses the variance in logarithmic 

terms: * *

1 1
[ , ]

q q
q I q I   where: 

* 2 *

1 1

min , min ,
ln ln

T T
q h   and 

01
|

T
Q

q q tt
I n Var q   (8) 

In the E-G the sum of the conditional variance up to T  is 

given by3:
2 2

0

1

2
| 1

T

Q

T

t

Var q T

Duan and Simonato showed that 
m

p
m and  

0
m

p
m

m
are sufficient partition conditions for the 

approximating Markov chain to converge to its target GARCH 

process. 

The logarithmic adjusted wealth partition and the 

logarithmic variance partition are equally divided in   and   

odd parts respectively in order to determine the state of the 

bivariate process: 

•
0

2 1

1
p

i m
p i p I

m
 and the corresponding cells are 

[ , 1 )C i c i c i  for 1,...,i m , where  1c ,

1

2

p i p i
c i   for  2,...,i m and 1c m

•
*

1

2 1

1
q

j n
q j q I

n
 and the corresponding cells are 

[ , 1 )D j d j d j for 1,...,j n , where 1d ,

1

2

q i q i
d j for 2,...,j n  and 1d n .

The Markov transition probability from state ,i j at time 

t  to state ,k l at time 1t  is defined as 

1 2 1
, ; , Pr { , | , }Q

t t t t
i j k l p C k q D l p p i q q j

for  0,..., 1t T .

It is typical in the GARCH(1,1) models that the variance at 

time 2t  is a deterministic function of the information set at 

time 1t . In particular in the models investigated we can 

write the variance as function of its lagged value, and two 

lagged wealth, i.e.
2 1 1

, ,
t t t t

q q p p .

3   Note that in E-G case: 
2

2 2 2

0

2
| | | 2 / 1Q Q

t
Var q E

where ~ 0,1N

First we recover 
1t

from the log price equation written 

one time forward: 

1

1

*

1

1

1

2
t

t

q

t t

t
q

p p e h

e
and substituting in the log 

variance equation we obtain: 

1 1 1

11

1 1

2

*

1

, ,

1
ln

2
t t t

G

t t t

q q q

t t

q p p

e p p e h e

1 1

1 1

2

*

1

, ,

1
ln

2
t t

GJR

t t t

q q

t t t

q p p

e I p p e h

1 1

1

1 1

1 1

* *

1 1

, ,

1 1

2 2
t t

t

t t

E G

t t t

q q

t t t t
q

q q

q p p

p p e h p p e h

e
e e

This implies a source of sparsity in the markovian transition 

matrix: for each combination of , ,i j k  it exists only an 

index l  where the transition probability can be non zero. Thus 

we can rewrite the Markov transition probability as: 
Q

1 1
Pr { | , }

, , , , ,

0,otherwise                                            

t t t
p C k p p i q q j

i j k l if q j p k p i D l

The conditional probability can be computed as: 

1 1
Pr { | , }Q

t t t
p C k p p i q q j

*

1

1
Pr ( ) ( ) ( 1)

2

q j q jQ

t
c k p i h e e c k

* *

1

1 1
( ) ( ) ( 1) ( )

2 2Pr

q j q j

Q

t
q j q j

c k p i h e c k p i h e

e e

Clearly these transition probabilities can be easily computed 

for any classical distributional assumption on the innovations. 

In this paper we use Gaussian distributed innovations.  

Once we have computed the transition matrix M we can 

obtain the wealth distribution at time T considering the power 

of the transition matrix MT. As a matter of fact, given the state 

(i,j) of the bivariate process (return, variance) corresponding 

to the k-th raw of the transition matrix, the distribution of the 

bivariate process at time T conditioned to start by (i,j) state is 

given by the k-th raw of  the matrix MT . Thus, to get the 

probability the log wealth is in the state “s” after T steps 

starting by (i,j) state we have to sum the probabilities for the 

different variance states, i.e., 
1

, , , , ,
n

T Ti
i j s i j s l

where , , ,
T

i j s l is the probability corresponding to the k-th 

raw of the matrix MT to go in the state (s,l) after T steps. 

Doing so we easily obtain the cumulative distribution of the 

forecasted final wealth for any described GARCH type model. 
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IV. PORTFOLIO VALUE DYNAMICS AS MARKOVIAN TREE PROCESS

In the portfolio selection problem we assume the initial 

wealth
0

= 1W and all admissible wealth processes 

( ) = {W x
0

( )}
t t

W x  depending on an initial portfolio x S are

defined on a filtered probability space 
0

, , , Pr
t t

.

The portfolio selection problem when no short sales are 

allowed, can be represented as the maximization of a 

functional : , , Prf applied to the random final 

wealth WT(x) obtained with the portfolio weights belonging to 

the n -dimensional simplex 

=1
= | = 1; 0 ,

n
n

i ii
S x x x

 i.e.,  max ( ( ))
T

x S
f W x

Typical examples are the performance measure type 

functionals 1

2

( )
( ) =

( )

X
f X

X
 where 

1 2
(.), (.)  are two 

positive increasing functions of coherent risk measures (see 

Rachev et al. (2008) and the reference therein). These 

functionals are isotone with the monotony order, but 
1
(.)

and 
2
(.)  are consistent with risk averse preferences. Thus, 

the functional 1

2

( )
( ) =

( )

X
f X

X
 is not isotone neither with 

risk lover nor with risk averse preferences. We refer to 

Rachev et al. (2008) for further examples of the above 

measures. Here in the following we introduce the two 

performance type measure used in the choice problem: the 

Sharpe ratio and the Rachev ratio. 

Sharpe ratio (SR). The Sharpe ratio (see Sharpe (1994)) 

serves to value the expected excess return for unity of risk 

(standard deviation), i.e., 

,
)(

=)(SR

b
rX

brXE
X

where br  is a given benchmark and 
b

rX  is the standard 

deviation of the random variable .brX  When the 

benchmark br  is the riskfree rate and X  is the portfolio 

return, the Sharpe ratio is isotonic with non-satiable risk 

averse preferences. 

Rachev ratio This performance functional is defined as 

( )

( , )

( )

( ( ) 1)
OA RR ( ( )) =

( ( ) 1)

T b x

T

T x b

ETL W r z
W x

ETL W z r

When the benchmark 
b

r  is the riskfree rate and 
x

z  is the 

chosen portfolio gross return (i.e.
( )

exp( )
x x

z r ) and 

( )
( ) 1

T x b
W z r  is the final wealth at time T  we obtain 

investing in the excess return 
( )

.
x b

z r

ETL is the Expected Tail Loss or Average Value at Risk 

(AVaR) which is a coherent measure defined as 

1

0

1
( ) = ( )

Y
ETL Y F u du

where 1( ) = inf / Pr
Y

F u t Y t u  is the left inverse 

of the distribution function. Recall that the classic consistent 

estimator of expected tail loss is given by  

1=1 [ ( )]

1
( )

T

tt Y Ft Y

ETL Y Y I
T

where 

1

1[ ( )]

1 if ( )
= .

0 otherwise

t Y

Y Ft Y

Y F
I

When the benchmark 
b

r  is the riskfree rate, X  is the 

portfolio return, and the numerator and the denominator are 

positive (negative), then the Rachev ratio is isotonic 

(consistent) with non-satiable preferences of investors who are 

neither risk averse nor risk lover (see Rachev et al. (2008)). 

A. Computational Complexity and an heuristic for global 

optimization 

Some recent studies (see Stoyanov et al. (2007), and Rachev 

et al. (2008)) have classified the computational complexity of 

reward-risk portfolio selection problems. In particular, 

Stoyanov et al. (2007) have shown that we can distinguish 

four cases of reward/risk ratios 
)(

)(

(2)

(1)

Xf

Xf
 that admit an unique 

optimum in myopic strategies: 

1. The ratio is a quasi-concave function when the risk 

functional )((2) Xf  is convex and the reward 

functional )((1) Xf  is concave. 

2. The optimal ratio problem reduces to a convex 

programming problem when in addition to the 

conditions of point 1, both functions )((1) Xf  and 

)((2) Xf  are positively homogeneous. 

3. The optimal portfolio problem reduces to a quadratic 

programming problem if in addition to the conditions 

of point 2, the reward function )((1) Xf  is linear (or 

linearizable), and the risk function )((2) Xf  is an 

increasing function of a quadratic form. 

4. The optimal ratio problem reduces to a linear 

programming problem if the reward function 

)((1) Xf  is linear and the risk function )((2) Xf  is 

linearizable .  

While the maximization of the Sharpe ratio can be solved as a 

quadratic type problem (it enters in the third category), the 

Rachev ratio (that is the ratio between two convex measures) 

is not included in this classification and it could present more 

local maxima. Moreover, when we approximate the bivariate 

process with a Markov chain, the transition matrix change 

with the portfolio weights x . Thus, the discretization process 
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we adopt when we build up the approximating Markov chain 

implies that none of the above cases apply and the 

computational complexity increases. For example, Angelelli 

and Ortobelli (2009) have shown that non-parametric Markov 

portfolio models generally admit many local maxima even if it 

has to give a unique maximum as a consequence of the 

monotony of the integral. Thus we can loss the monotony of 

the utility functional when we adopt our discretization 

process.  

In order to illustrate the situation we consider 2000 historical 

observations of three components i j and k of the Dow Jones 

Industrial index and plot the values of different performance 

measures by varying the portfolio composition x  in the 3-

dimensional simplex 1,=|),,{(= kjikji xxxxxxS

0}.,, kji xxx  In particular, we consider Rachev ratio with 

temporal horizon  20=T  days. We consider a Markov chain 

with 28 states for the portfolio of returns and 6 states for its 

variance. Figure 1 reports the value of the Rachev ratio when 

we consider a GARCH(1,1) process. As we could expect the 

problem present more local maximum. 

Figure 1. The Rachev ratio performance when we use a 

GARCH(1,1) model and we vary the composition of a 3 

components portfolio. 

In order to solve this global optimization problem we 

implemented a local search algorithm whose required input is 

an objective function f  and an initial feasible solution x

representing a portfolio from which the search is started. A 

current solution (portfolio) x is first defined as the initial 

solution at hand. Then the algorithm tries to iteratively update 

the current solution by a better one. Improving solutions, if 

any, are searched on a predefined grid of points fixed on the 

directions iex  for ni 1,2,...,=  where x is the current 

portfolio and ie  is the portfolio where the share of asset i is 

equal to 1 and all other assets have share equal to 0. If a better 

solution is found on a search direction the current solution is 

updated and the search is continued from the new one. If no 

direction provides an improved solution the search ends. 

Actually, the search can be performed with two opposite 

orientations. Indeed the share of an asset i can be either 

increased or decreased. Accordingly, the algorithm, performs 

the search in three distinct steps. In the first step the 

algorithms tries to improve the current solution by increasing 

the share of assets i (i=1,…,n); in the second step the 

algorithm tries to improve the current solution by decreasing 

the share of assets i (i=1,…,n),  in the last step the algorithm 

the first two steps changing iteratively the ordering of the 

control and the distance between each portfolio. More details 

are provided below. The general scheme of the algorithm is 

defined by the following MATLAB-like pseudo code. 

function x = Optimize(f,xi) 

[x,improved] := 

improveByIncreasingSingleAssets(f,xi); 

Do: 

[x,improved] := 

improveByDecreasingSingleAssets(f,x); 

if improved 

[x,improved] := 

improveByIncreasingSingleAssets(f

,x); 

end if 

While improved 

return x; 

More in details, procedure 
 improveByIncreasingSingleAssets

tries to improve the current solution x by iteratively increasing 

the share of single assets in the portfolio. The basic idea is to 

choose an asset i such that xi>0, define a finite set of 

alternative portfolios 

( ) = (1 )'

ix x e

where parameter  is assigned values 

p

h
m

h
=  for 

.1,...,= mh  with 1,p and .Nm  If there is a h  such that 

),(>))(( xfxf h  then the current portfolio x is updated by 

)(
h

x  where = arg max { ( ( )}h hh f x . The integer m

defines the number of points in which the objective function 

will be evaluated, whereas the index 1p  defines how the 

points are distributed on the simplex iex)(1 . In 

particular, for 1=p  the points are equidistributed, while if p

gets larger the points get more concentrated around .x  The 

directions in the simplex are searched according to the 

increasing value of .i  Without loss of generality we can 

assume that )(>)( ji efef  for any ji <  so that the attempt to 

increase the share of the asset with highest performance is 

made first. If a better solution is found on a search direction 

kex  for some k , the current solution x  is updated by the 

new solution and the search is continued on the new directions 
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iex  for 1.,1,2,...,1,...,= knki  If no direction provides 

an improved solution the search is stopped. The procedure 

returns the best solution found, possibly the initial one, and a 

flag indicating whether an improvement has been achieved 

during the search. 

Similarly, procedure 
improveByDecreasingSingleAssets

tries to improve the current solution x  by decreasing the share 

of an asset i  such that 1<<0 ix . The scheme is the same as 

in procedure improveByIncreasingSingleAssets,

but for any chosen asset ,i  the set of alternative portfolios 

)('x  is defined as  

)()(1=)( xPxx i
'

where )(xPi  is the projection of the portfolio x  from 

portfolio ie  on the hyperplane  

0=

1=

i

k
k

x

x

which can be obtained by  

.
1

)(
=)(

i

ii
i

x

exx
xP

The main advantages of this algorithm are: 

1. The algorithm permits to approximate the global 

optimum with an error of  

p

m

1
when the objective 

function is a non-constant concave function (the 

optimum is unique) and the lines )('x  are not 

particular contour lines of the objective function4.

2. The algorithm checks the m  points h  on the lines 

)( h
'x  of the n -dimensional simplex. So, we can 

better explore the whole simplex and approximate the 

global optimum. 

3. The computational complexity is much less than that 

of classic algorithms for global optimum such as 

Simulated Annealing type algorithms (see Angelelli 

and Ortobelli 2009).  

V. AN EX-POST EMPIRICAL COMPARISON AMONG GARCH TYPE MODELS

In this section, we compare portfolio selection strategies 

based on the GARCH models introduced in the previous 

sections. We use 32 assets quoted on the US markets (NYSE 

and NASDAQ) from 01/02/97 till 06/14/2010 for a total of 

3384 daily observations. We compare the performance of: 

1) Rachev ratio under the hypothesis the log wealth follows 

or  a GARCH(1,1),  or a GJR-GARCH  or an E-GARCH.

2) Sharpe ratio (see Sharpe 1994) under the assumption we 

4
However, we can still approximate the optimum by updating the solution 

x  with a point (1 )h h ix e   choosing an h  among 

= 1,..., 1h m  any time the lines (1 ) ix e  with 0,1]  are 

particular level curves of the concave objective function. 

consider historical iid returns. 

We recalibrate daily the portfolio and for the dynamic 

strategies we use a temporal horizon  T=20 working days.  

Figure 2. Ex-post final wealth process when European 

strategies are applied with daily recalibration and temporal 

horizon T=20 days. 

We forecast the future wealth using 28 states for the 

portfolio of returns and 6 states for its variance. As coefficents 

of AVaR in the Rachev ratio we use 0.05 . The 

comparison consists in the ex post evaluation of the wealth 

produced by the strategies. For each strategy, we consider an 

initial wealth 
0

= 1W  at the date 04/30/2009, and at the k th 

recalibration ( = 0,1, 2,...k ), three main steps are performed to 

compute the ex-post final wealth: 

Step 1 Determine the market portfolio ( )k

M
x  that maximizes 

the performance ratio ( ( ))W x , i.e. the solution of the 

following optimization problem: 
( )

( )

( )

( )

( ( ))max

s.t.

= 1,

0; = 1, , .

k

k
x

'
k

k

i

W x

x e

x i n

As shown by Angelelli and Ortobelli (2009) this type of 

problems could present more local optimum then we use the 

heuristic developed from them to approximate the global 

optimum.  

Step 2 Determine the ex-post final wealth given by: 

( ) ( )

1
= ,

'
k ex post

t t Mk k
W W x z

where 
)(expostz  is the vector of observed gross returns 

between 
k

t and 
1k

t .

Step 3 The optimal portfolio ( )k

M
x  is the new starting point 

for the ( 1)k -th optimization problem. 

Steps 1, 2 and 3 are repeated until the observations are 
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available and for each performance ratio. 

The output of this analysis is represented in Figure 2. 

Figure 2 reports the ex -post wealth process using different 

GARCH models. In particular these results emphasize the 

good performance of the classic GARCH(1,1) model that in 

the last year present earnings of about the 100%. Instead the 

other GARCH models are almost never comparable to the 

classic one. However the comparison with static classic 

strategy is amazing and it suggests us that we should never 

use the classic strategies in portfolio choices. 

Thus, the empirical results show that volatility GARCH 

models could be very important in portfolio theory. 

VI. CONCLUSION

This paper examines the impact of GARCH type return 

evolution in portfolio selection problems. We describe how to 

approximate GARCH type processes with Markov chains and 

we deal the portfolio selection problem under these 

distributional assumptions. Thus we propose algorithms that 

permit to solve computationally complex problems in 

acceptable computational times. Finally, we propose an 

empirical comparison among the myopic portfolio selection 

models and those based on the GARCH approximation. The 

ex-post empirical comparison among classic approaches and 

those based on Markovian trees shows the greater predictable 

capacity of the latter.  
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