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Unitary and Anti-Unitary Quantum
Descriptions of the Classical Not Gate

Abstract Two possible quantum descriptions of the classical Not gate are
investigated in the framework of the Hilbert space C2: the unitary and the
anti–unitary operator realizations. The two cases are distinguished interpret-
ing the unitary Not as a quantum realization of the classical gate which on
a fixed orthogonal pair of unit vectors, realizing once for all the classical bits
0 and 1, produces the required transformations 0→ 1 and 1→ 0 (i.e., logical
quantum Not). The anti–unitary Not is a quantum realization of a gate
which acts as a classical Not on any pair of mutually orthogonal vectors,
each of which is a potential realization of the classical bits (i.e., universal
quantum Not). Although the latter is not completely positive, one can give
an approximated unitary realization of the gate by appending an ancilla. Fi-
nally, we consider the unitary and the anti–unitary operator realizations of
two important genuine quantum gates that transform elements of the com-
putational basis of C2 into its superpositions: the square root of the identity
and the square root of the Not.
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1 Introduction

As well known the classical realization of the Not gate is described by the
Boolean function ¬ which transforms the bits (0, 1) according to the corre-

spondences 0
¬−−→ 1 and 1

¬−−→ 0.
From the pure point of view of quantum logic, the quantum version of the

classical Not gate (see for instance [1], [2]) is described by an operator from
the class U(C2) of all unitary operators on the single qubit Hilbert space C2.

(QL) For a given orthonormal basis B = {|u0〉 , |u1〉} of the Hilbert space
C2, the unitary operator UB = |u0〉 〈u1| + |u1〉 〈u0| realizes the required
transformations of the unit vector |u0〉 into the unit vector UB |u0〉 = |u1〉
and of the unit vector |u1〉 into the unit vector UB |u1〉 = |u0〉. Formally,

∀B = {u0, u1} ∃UB ∈ U(C2) : |u0〉
UB−−−→ |u1〉 and |u1〉

UB−−−→ |u0〉 (1)

Note that in terms of density operators, the transitions of (1) are extended
into the following ones:

ρ|u〉
U|u〉−−−→ U|u〉ρ|u〉U

−1
|u〉 = ρ|u⊥〉

U|u〉−−−→ (U|u〉)
2ρ|u〉(U

−1
|u〉 )

2 = ρ|u〉 (2)

Fixed the computational basis B, the unit vectors (states) |u0〉 and |u1〉
are the quantum representatives of the classical bits 0 and 1, respectively,
and the (1) formalizes the right requirement of the quantum version of a Not
gate. Of course, it is not required (and in general this operator does not make)
the same transformation for any other orthonormal basis {|w0〉 , |w1〉} of C2.
The formulation (1) is a particular case of the general situation summarized
in the following two points:

(S-OG) The single vector orthogonality condition

∀ |u〉 ∃U|u〉 ∈ U(C2) : 〈u|U|u〉u〉 = 0 (3)

(SR) The self–reversibility condition (U|u〉)
2 = I, which can be reformulated

as (U|u〉)
−1 = U|u〉.

where the first orthogonality condition (S-OG) says that the pair of unit
vectors |u〉 and

∣∣u⊥〉 := U|u〉u constitutes an orthonormal basis of C2 and
the second one describes the expected behavior of a quantum Not gate.
The orthogonality condition can be geometrically characterized in the fol-
lowing way. If the density operator (pure state) ρ|u〉 is represented by the

real triple (Px, Py, Pz) on the surface S1(R3) of the Poincaré/Bloch (from

now on Poincaré) unit sphere the transformation in T C+1 (C2) of the state
ρ|u〉 into the state ρU|u〉|u〉 corresponds in S1(R3) to the transformation of

the original point n = (Px, Py, Pz) into its antipodal −n = (−Px,−Py,−Pz).
For this reason, in the literature the transition |u〉 →

∣∣u⊥〉 is also denoted as
|n〉 → |−n〉.

Starting from the orthogonality condition alone, recently a certain number
of contributions [4], [5], [6], [7], [8] has been published about a totally different
formulation which consists in the following universal requirement:
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(U-OG) whether it is possible to construct a unique operator which trans-
forms any unit vector |ψ〉 ∈ C2 into its orthogonal unit vector (up to a
phase factor) performing in this way in the Poincaré sphere the transfor-
mation of any point on its surface into its antipodal. This can be formal-
ized by the following universal orthogonality requirement:

∃Θ ∀ |ψ〉 , 〈ψ|Θψ〉 = 0 (4)

This is a quite different situation from the one formalized by (3). Indeed, in
the (S-OG) case the statement is of the form “for any (∀) fixed vector, there
exists (∃) an operator such that (...)”, whereas in the present (U-OG) case
we have to do with a statement of the universal form “there exist (∃) an
operator, such that for every (∀) vector (...)”. Thus, operators of the latter
case are called mathematical representations of the quantum universal Not
gate (U–Not), differently from the former case of the simple logical Not
gate (L–Not).

Of course, “it is not a problem to complement a classical bit, i.e., to
change a value of a bit, a 0 to a 1 and vice versa. This is accomplished by a
Not gate”[4]. Similarly, from the quantum point of view if “complementing”
(or flipping) an a priori known qubit means the choice of a (specific) state
|u〉 and to transform it into its orthogonal state

∣∣u⊥〉, then according to (1)
this is done by the unitary L–Not operator U|u〉. But, if “the question we
want to address is: Is it possible to build a device that will take an arbitrary
(unknown) qubit and transform it into the qubit orthogonal to it? [Then]
complementing a qubit (i.e., inverting the state of the spin–1/2 particles),
[...] is another matter” [4].

A positive answer to this problem has been given by BHW in [4] by
an anti–unitary operator Θ|u〉 defined, using an orthonormal basis B =

{|u〉 ,
∣∣u⊥〉} of C2, by its action on the generic vector |ψ〉 ∈ C2 given by

Θ|u〉 |ψ〉 = 〈u⊥|ψ〉∗ |u〉 − 〈u|ψ〉∗
∣∣u⊥〉. The interesting point is that for any

arbitrary vector |ψ〉, whatever be the unit vector |u〉 (and so the basis B),
it is Θ|u〉 |ψ〉 =

∣∣ψ⊥〉 since 〈ψ|Θ|u〉 ψ〉 = 0 holds. In the sequel we denote by

A(C2) the class of all anti–unitary operators on C2.
Summarizing, “the problem is that one cannot flip a spin of unknown

polarization. Indeed, it is easy to see that the flip operator defined as[
∃Θ ∀n ∈ S1(R3)

]
, Θ |n〉 = |−n〉 (5)

is not unitary but anti–unitary. Thus there is no physical operation which
could implement such a transformation” [5]. As usual in some physical tra-
dition, in the just quoted original statement no mention is done about the
exact role of the quantifiers ∃,∀, and this is the reason of the part under the
square brackets inserted by us. Anyway, this polar formulation (5) is trivially
equivalent to the original (U-OG) formalized by (4).

From the formal point of view, the BHW anti-unitary operator Θ|u〉 sat-
isfies something more than the above condition of universal orthogonality
(U-OG), since it verifies:

(W-OG) The universal orthogonality (or flipping) condition

∀ |u〉 ∃Θ|u〉 ∈ A(C2) : ∀ |ψ〉 , 〈ψ|Θ|u〉ψ〉 = 0
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(A-SR) The anti self–reversibility condition Θ2
|u〉 = −I, which can be refor-

mulated as Θ−1|u〉 = −Θ|u〉.

With respect to the linear case the transitions (1) are substituted by the
transitions true for any |ψ〉

|ψ〉
Θ|u〉−−−−→ Θ|u〉 |ψ〉

Θ|u〉−−−−→ Θ2
|u〉 |ψ〉 = − |ψ〉 (6)

whose extensions to density operators are obtained by the von Neumann–
Lüders operation T|u〉 := Θ|u〉 ( · )Θ−1|u〉 according to:

ρ|ψ〉
T|u〉−−−→ Θ|u〉 ρ|ψ〉Θ

−1
|u〉 = ρ|ψ⊥〉

T|u〉−−−→ Θ2
|u〉 ρ|ψ〉 (Θ

−1
|u〉)

2 = ρ|ψ〉 (7)

From now on, for the sake of simplicity, we will consider the fixed com-
putational basis Bc =

{
|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)}
of C2 as concrete realization of

the orthogonality pair {|u〉 ,
∣∣u⊥〉} and as qubit description of the Boolean

classical bits 0 and 1. Then, denoted a vector on the unit surface S1(R3)
with its polar representation n = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) ≡ (ϑ, ϕ),
the generic unit vector of C2 and its orthogonal can be represented as the
pair

|n〉 =

(
e−i

ϕ
2 cos ϑ2

ei
ϕ
2 sin ϑ

2

)
|−n〉 =

(
e−i

ϕ
2 sin ϑ

2

−ei
ϕ
2 cos ϑ2

)
(8)

with 〈n | − n〉 = 0, whose Poincaré surface representations are just the two
mutually antipodal points n and −n.

The BHW anti–unitary realization of the U–Not gate, in this context
simply denoted by Θ instead of Θ|0〉, is characterized by the transition(
c0
c1

) Θ−→
( c∗1
−c∗0

)
, whatever be the input vector from C2 or, making reference

to (8), by the transition |n〉 Θ−→ |−n〉.
Coming back to the orthogonality condition, we have two possible strate-

gies.

1.1 The unitary strategy

Let us stress that a variation of the unitary operator of the kind (1), in the
present notation the unitary operator N1 = |0〉 〈1| − |1〉 〈0|, actually stays in
an intermediate position between the two above discussed versions (S-OG)
and (U-OG). Of course, it is not a description of a unitary universal Not
gate, but it “complements” a lot of orthonormal pairs of states. Precisely, all
the input states with real components, or equivalently all the orthonormal
pairs of the type (8) satisfying the condition ϕ = 0, with ϑ ranging into the
real interval [0, 2π).

From the polarization interpretation of unit vectors of C2, the unitary
operator N1 can be considered partially universal in the sense that it trans-
mits any (pure or mixed) state of linear polarization into its orthogonal state
of linear polarization. But this does not happen in the case, for instance, of
circular or elliptic polarization states.
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1.2 The anti–unitary strategy

Of course, there could be another strategy based on the BHW anti–unitary
operator which is a universal Not transmitting any polarization state into
its orthogonal (for instance also circular or elliptic polarization states). The
strategy is to approximate an anti-unitary transformation on the two–di-
mensional Hilbert space C2 by a unitary transformation on a larger Hilbert
space. Quoting [6]:“This operation is anti–unitary and therefore cannot be
realized exactly. So, how well we can do? We find a unitary transformation
acting on an input qubit and some auxiliary qubits, which represent degrees
of freedom of the quantum Not gate itself, which approximately realizes
the Not operation on the state of the original qubit. We call this ‘device’
a universal–Not because the size of the error it produces is independent of
the input state.”

Formally, and without entering in technical details which can be found
in the just quoted BHW paper, the procedure can be summarized in the
following steps:

(St1) One considers the dynamical evolution of an open quantum system as the
result of an interaction between the system under consideration described
inside the system Hilbert space C2 and an additional one (the reservoir)
described by the ancilla Hilbert space Ha.
The resulting system is a closed quantum system whose dynamical evo-
lution must be described by a unitary operator on the tensor product
Hilbert space C2 ⊗Ha.

(St2) The action gate on the basis vectors {|0〉 , |1〉} of the Hilbert space C2 is
described by the two following rules of some operator W on the Hilbert
space C2 ⊗Ha.

|0〉 |Q〉 W7→ |1〉 |Q0〉+ |0〉 |Y0〉 (9a)

|1〉 |Q〉 W7→ |0〉 |Q1〉+ |1〉 |Y1〉 (9b)

where |Q〉 describes the known states in which the ancilla is originally
prepared, and |Qi〉 and |Yi〉 some ancilla output states which must be
determines by suitable conditions. In particular the unitary condition on
W determines some constraints on these vectors.

(St3) The input global state |Ψ〉in = |ψ〉 |Q〉 (in the Hilbert space C2 ⊗ Ha)
constituted by the general system input state |ψ〉 = cosϑ |0〉+eiϕ sinϑ |1〉
and the ancilla state |Q〉, under the conditions (9) and the linearity of
the operator W , produces the transition:

|ψ〉 |Q〉 W7→ |Ψ〉out = cosϑ
(
|1〉 |Q0〉+|0〉 |Y0〉

)
+eiϕ sinϑ

(
|0〉 |Q1〉+|1〉 |Y1〉

)
(St4) It is constructed the global output density operator ρ|Ψ〉out on C2 ⊗ Ha

and its partial traced system density operator
(
ρ|Ψ〉out

)
s

on C2, both
depending from the parameters ϑ and ϕ which characterized the generic
system input vector |ψ〉.
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(St5) Then one calculates the fidelity of the system output state
(
ρ|Ψ〉out

)
s

with respect to the output state ψ⊥ ∈ C2 expected as the result of the

transition |ψ〉 Θ−→
∣∣ψ⊥〉 performed by the BHW anti–unitary operator:

F (ϑ, ϕ) =
〈
ψ⊥
∣∣ (ρ|Ψ〉out

)
s

∣∣ψ⊥〉
(St6) The important requirement is now that the fidelity must be independent

from ϑ and ϕ in order to obtain a result which involves all the system
input vectors.
This result is obtained imposing first the vanishing of the coefficients of
all terms with a particular kind of ϕ dependence, and then demanding
the vanishing of the remaining terms depending from ϑ. These conditions
lead to the fidelity (independent from the angle pair ϑ and ϕ, and so true
for any arbitrary system input vector |ψ〉):

F = ||Q0||2 = 1− ||Y0||2

So, in order to maximize F we have to minimize ||Y0||2, in such way that
for any system input pure state |ψ〉 the system output state is “as close
as possible” to the orthogonal qubit state Θ |ψ〉 =

∣∣ψ⊥〉. This leads to the

results that the ancilla Hilbert space is three dimensional, Ha = C3, and
that the vectors appearing in the (9) can be taken to form the orthonormal
basis:

|Q0〉 =

√
2

3

1
0
0

 |Q1〉 =

√
2

3

0
1
0

 |Y0〉 =

√
1

3

0
0
1


The corresponding fidelity is then F = 2/3 .

1.3 The comparison of the two strategies

In summary,

1. the quantum logical L–Not gate N1 has the positive aspect to be unitary,
but with the drawback of performing only a partial, also if great (the
cardinality of the continuum), number of orthogonal complementations
(all the photon states of linear polarization);

2. the BHW gate Θ gives a positive answer to the full complementing re-
quirement, i.e., it realizes the quantum universal U–Not gate, but with
the drawback of being unphysical. However, it is possible, by appending
a three dimensional auxiliary ancilla to the input qubit, to realize a uni-
tary operator on the larger system which, partial traced on the system,
furnishes the required transformations performed by the BHW gate with
an approximation (the “size” of the error) quantified by the fidelity 2/3,
independent of the input state.
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Let us stress that in this paper we don’t treat this approximated realization
of the universal Not gate, but we are particularly interested to formalize
the procedure of constructing both the linear and the anti–linear unitary
realization of any classical n-in/n-out reversible gate, applying it to the par-
ticular case of the classical Not gate obtaining in this way the usual unitary
quantum Not gate and the anti–unitary quantum BHW operator.

1.4 The non–linear versions of the square root of the Identity and of the
Not gates

In section 5, the unitary and anti–unitary versions of the square root of the
Not and of the square root of the identity gates are investigated. This is
obtained simply applying by analogy the previously discussed procedure, in
particular to both the unitary and the anti–unitary versions of the Not gate
which cannot be either unitary or anti–unitary, and so a specific solution is
given by non–linear operators.

This result can be inserted in an investigation about non–linear quantum
mechanics. As well as the work of Beltrametti and Bugajski [11], [12], [13], [14]
and Bugajski [15], there have also been attempts to incorporate non–linear
operators in quantum mechanics by, amongst others, Mielnik [16], [17], [18],
Haag and Bannier [19] and Weinberg [20], [21]. In the just quoted non–linear
contributions to quantum mechanics the non–linearity is applied to the case
of observables, which in general are not additive (∃ |ψ〉 , |φ〉 s.t. A(|ψ〉+|φ〉) 6=
A |ψ〉+A |φ〉), but satisfies either the homogeneity (∀ |ψ〉, ∀α ∈ C, Aα |ψ〉 =
αA |ψ〉), or the anti–homogeneity (∀ |ψ〉, ∀α ∈ C, Aα |ψ〉 = α∗A |ψ〉), or the
absolute homogeneity (∀ |ψ〉, ∀α ∈ C, Aα |ψ〉 = |α|A |ψ〉) (see for instance
[22]). In this paper we obtain non–linear realizations of unitary operator
which are both additive, but neither homogeneous, nor anti–homogeneous,
nor absolutely homogeneous.

2 Quantum gate description of Boolean gate: semi–classical
quantum gates

Computational models are usually based upon Boolean logic, and use some
universal set of primitive connectives such as, for example, {And, Not}.
From a general point of view, a classical (Boolean) n–input/m–output gate
(where n,m are positive integers) is a special–purpose computer schematized
as a device able to compute (Boolean) logical functions G : {0, 1}n → {0, 1}m.

Reversible logic is a theoretical model of computation whose principal aim
is to compute with zero internal power dissipation. Most of the times, com-
putational models lack of reversibility ; that is, one cannot in general deduce
the input values of a gate from its output values. Lack of reversibility means
that during the computation some information is lost. As shown by R. Lan-
dauer [24] (see also C.H. Bennett [25], [26] which can be found in [27]), a
loss of information implies a loss of energy and therefore any computational
model based on irreversible primitives is necessarily informationally dissi-
pative. In this context, it is possible to prove that there is no information
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energy dissipation by a classical gate iff the logical function computed by the
gate is reversible (one-to-one and onto). Let us recall that any irreversible
Boolean function G : {0, 1}n → {0, 1}m can always be transformed into a
reversible function Gr : {0, 1}m+n → {0, 1}m+n assigning to the input pair
(x, z) ∈ {0, 1}n × {0, 1}m the output pair (x, z⊕G(x)) ∈ {0, 1}n × {0, 1}m,
where ⊕ is the extension to Boolean strings of the sum modulo 2 (i.e., the
Xor 2–input/1–output) Boolean gate. The original Boolean function can be
recovered putting the second input z to 0: (x,0)→ (x, G(x)).

A system of n-qubits, or quantum register of n–length, is represented by
a unit vector |Ψ〉 in the n–fold tensor product Hilbert space ⊗nC2. A n–
configuration is a unit vector |x1, ..., xn〉 ∈ ⊗nC2, quantum realization of the

classical n–length string of bits (x1, ..., xn) ∈ {0, 1}n. Recall that B(n)c :=
{|x〉 ∈ ⊗nC2 : x = (x1, . . . , xn) ∈ {0, 1}n} is an orthonormal basis of this
space, called the computational basis for the n–quregisters.

Generally, the quantum realization of a n–input/n–output reversible Bo-
olean gate G : {0, 1}n 7→ {0, 1}n is a transformation TG : ⊗nC2 → ⊗nC2

which, as a necessary condition, transforms quregisters of the computational

basis B(n)c of ⊗nC2 into quregisters of the same basis according to the con-
dition:

|x〉 7→ TG |x〉 = eiω(x) |G(x)〉 (10)

where ω(x) ∈ [0, 2π) is a given phase factor depending on the Boolean n
length register x := (x1, . . . , xn) ∈ {0, 1}n. Since under the reversibility of
the Boolean gate G, the condition (10) means in particular that it transforms
an orthonormal basis of ⊗nC2 into an orthonormal basis of the same space,
the operator TG turns out to be unitary or anti–unitary according to its
linear or anti–linear extension to the whole Hilbert space. To be precise, let
us denote by |Ψ〉 =

∑
x∈{0,1}n〈x |Ψ〉 |x〉 the Fourier expansion of a generic

vector Ψ from ⊗nC2 with respect to the computational basis B(n)c , then we
have the two possible extensions of (10):

T lG |Ψ〉 =
∑

x∈{0,1}n
eiω(x) 〈x |Ψ〉 |G(x)〉 Linear (11a)

T aG |Ψ〉 =
∑

x∈{0,1}n
eiω(x) 〈x |Ψ〉∗ |G(x)〉 Anti–linear (11b)

On the set of density operators on ⊗nC2, these quantum realizations of
a Boolean gate G correspond to the intensity preserving operation generated
by TG expressed by ΩG : ρ 7→ ΩG(ρ) := TG ◦ρ ◦T−1G . In particular, whatever
be the phase factor mapping ω : x → ω(x), both these operators get a
transformation of a pure state into a pure state according to

ρ|x1,...,xn〉 7→ ΩG(ρ|x1,...,xn〉) = ρ|G(x1,...,xn)〉

As well known, in finite dimensional Hilbert spaces, both in the linear
and in the anti–linear cases the above condition of being an operator Θ
which transforms an orthonormal basis into another orthonormal basis can
be assumed as the condition which defines unitary and anti–unitary operators



9

respectively. This condition is equivalent to the preservation of the norm (and
so also of the distance – isometry condition): for every ψ, ‖Θψ‖ = ‖ψ‖. The
two cases differ between them in a third equivalent formulation which in the
linear case reads as: ∀ψ,ϕ, 〈Θψ|Θϕ〉 = 〈ψ|ϕ〉 and in the anti–linear case
as: ∀ψ,ϕ, 〈Θψ|Θϕ〉 = 〈ψ|ϕ〉∗. This latter condition involving anti–linear
operators can be formulated in the further equivalent way: “the operator
Θ admits inverse Θ−1 and for any pair ψ,ϕ, 〈ψ|Θ−1ϕ〉 = 〈Θ−1ϕ|ψ〉∗ =
〈ϕ|Θψ〉”. The analogous formulation for the linear case is straightforward.

The role of anti–linear operators has been stressed by [28]: “it is becoming
increasingly clear that anti–linear operators have an indispensable role in
quantum field theory, so much so that the definition of the adjoint of such
an operator can be found in a textbook on field theory by Itzykson and
Zuber” [29]. To be precise, let us quote [30]: “The adjoint Θ† of an anti–linear
operator Θ is determined by the relation 〈ψ|Θ†ϕ〉 = 〈ϕ|Θψ〉 for all ψ,ϕ.

Notice
(
Θ†
)†

= Θ. The standard rule (AB)† = B†A† for linear operators
remains valid if one or both operators are replaced by anti–linear ones. In

particular, with a complex number a and anti–linear Θ one gets
(
aΘ
)†

=

aΘ†, i.e., taking the adjoint [Θ → Θ†] is a linear procedure for anti–linear
operators. [...] One calls Θ anti–linearly unitary or simply anti–unitary if
Θ† = Θ−1. Basic knowledge about anti–unitary operators is due to Wigner
[31]”.

The construction of the above operator (11b), in such a way that the
computational basis is transformed into itself, means that the involved ad-
joint satisfies (T aG)† = (T aG)−1, i.e., it is anti–unitary according to the just
quoted definition.

From the physical point of view an anti–unitary operator can be con-
sidered an internal symmetry of the system. Indeed, for any state described
by a non–zero vector ψ and any observable described by a linear bounded

self–adjoint operator A let us denote by ψ̂ := Θψ and Â := ΘAΘ−1 the
transformed state and observable according to Θ. Then, the physical infor-

mation on the system, enclosed into the real quantity Exp{ψ,A} = 〈ψ|Aψ〉
‖ψ‖2 ,

describing the expectation value of the observable A for the system prepared
in ψ, is invariant with respect to the new description of the physical system
produced by Θ. Indeed,

〈ψ̂|Âψ̂〉
||ψ̂||2

=
〈Θψ|ΘAψ〉
||ψ||2

=
〈ψ|Aψ〉∗

||ψ||2

and so, from the self–adjoint property of A, Exp{ψ,A} = Exp{ψ̂, Â}.

2.1 Unitary and anti–unitary quantum description of the Boolean
Identity gate

Let us apply these considerations to the simple Boolean identity gate id :
{0, 1} 7→ {0, 1}, characterized by the two trivial single bit transitions 0 →
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id(0) = 0 and 1 → id(1) = 1. By the simplest choice of the phases ω(0) =
ω(1) = 0, the (10) assumes in the present case the form of the two transitions:

Tid |0〉 = |0〉 and Tid |1〉 = |1〉 (12)

and so the two formulations (11) applied to the generic vector |ψ〉 assume
the forms:

T lid |ψ〉 = 〈0|ψ〉 |id(0)〉+ 〈1|ψ〉 |id(1)〉 = |ψ〉
T aid |ψ〉 = 〈0|ψ〉∗ |id(0)〉+ 〈1|ψ〉∗ |id(1)〉

So the unitary realization is the standard linear identity operator on C2,
T lid = I. On the contrary, in the Heisenberg matrix representation of C2

with respect to the canonical computational basis Bc := {|0〉 , |1〉} in which

any vector |ψ〉 ∈ C2 is represented by the “matrix”
( 〈0|ψ〉
〈1|ψ〉

)
, the anti–unitary

realization of the Boolean identity gate can be summarized by the transition:(
c0
c1

)
Ta
id−−→
(
c∗0
c∗1

)
(13)

which, of course, satisfies the minimal conditions (12) and behaves as the
identity on all the vectors of C2 with real components c0, c1 ∈ R. Let us
note that the anti–linear version T aid produces on the Poincaré sphere the
transition (Px, Py, Pz)→ (Px,−Py, Pz).

By the trivial extension of this complex conjugation anti–unitary operator
to n–length qubits it is possible to express the following general link between
the two unitary and unitary versions (11) of a classical reversible gate G
given by the following relationship:

T aG = T lG ◦ T aid = T aid ◦ T lG (14)

where the second commutativity identity follows from the fact that T lG trans-
forms the computational basis into itself (reversibility of the classical gate
G).

3 Unitary and anti-unitary quantum description of the classical
Not gate

The classical Not gate is a one-in/one-out Boolean gate N : {0, 1} 7→ {0, 1}
defined by the transitions 0→ 1 and 1→ 0. Since this classical gate is char-
acterized by a single line, its quantum description is mathematical realized
on the single qubit Hilbert space C2. Hence, any quantum, either unitary or
anti–unitary, realization TN of the classical Not gate on the Hilbert space
C2 must satisfy the minimal conditions (10) translated to the present case:

TN (|0〉) = eiω(0) |1〉 and TN (|1〉) = eiω(1) |0〉 (15)

These must be extended to the whole Hilbert space C2 according to one of
the (11). In this way, the obtained transformation turns out to be unitary
or anti-unitary according to the linear or anti-linear extension of TN to any
vector |ψ〉 ∈ C2 such that |ψ〉 = 〈0|ψ〉 |0〉+ 〈1|ψ〉 |1〉.
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3.1 Unitary extensions of the classical Not gate

In this subsection we introduce a first unitary extension of the above minimal
rules (15) describing the quantum behavior of the Not classical gate, under
the phase conditions ω(0) = ω(1) = 0:

T lN (|ψ〉) = 〈1|ψ〉 |0〉+ 〈0|ψ〉 |1〉 (16)

whose (unitary) inverse is (T lN )−1 = (T lN )† = T lN , condition which expresses
the self–reversibility of T lN . This unitary operator is nothing else than the
Pauli spin matrix σx along the x direction.

For analogy with the forthcoming anti–unitary discussion we introduce
now a second unitary extension T lN1

: C2 7→ C2 of the minimal conditions
(15), under the phase conditions ω(0) = 0 and ω(1) = π:

T lN1
(|ψ〉) = 〈1|ψ〉 |0〉 − 〈0|ψ〉 |1〉 (17)

described by the matrix

T lN1
=

(
0 1
−1 0

)
= iσy (18)

Let us note that for any vector |ψ〉 = c0 |0〉+ c1 |1〉 of C2, it is (adopting
the standard Hilbert space notation u0 = |0〉 and u1 = |1〉, and not the Dirac
one)

〈ψ|T lN1
ψ〉 = 〈c0u0 + c1u1|c1u0 − c0u1〉 = c∗0c1 − c∗1c0

which in general is different from 0. But in all the particular cases of real
linear combinations |ψr〉 = r0 |0〉 + r1 |1〉, with r0, r1 ∈ R, trivially one has
that 〈ψr|T lN1

ψr〉 = 0. We can conclude that in general the transformed of

a |ψ〉 by T lN1
is not orthogonal to this vector: T lN1

|ψ〉 6=
∣∣ψ⊥〉. But if we

consider the collection C2
r := {|ψ〉 = r0 |0〉 + r1 |1〉 : r0, r1 ∈ R}, which is a

real 2–dimensional linear space, then ∀ |ψr〉 ∈ C2
r, it is T lN1

|ψr〉 =
∣∣ψ⊥r 〉 .

More generically, any unitary operator on C2 of the matrix form

TNg =

(
0 eiδ

eiγ 0

)
with inverse T−1Ng

= T †Ng
=

(
0 e−iγ

e−iδ 0

)
(19)

The first of which can also be formalized by the rule involving a generic
superposition of the computational orthonormal basis as follows:

TNg (c0 |0〉+ c1 |1〉) = eiδ c1 |0〉+ eiγ c0 |1〉

Trivially, also in this general case the transitions (15) are verified and this
assures that any operator (19) is a good unitary realization of the classical
Boolean Not gate. Let us notice that the following holds:

〈ψ|TNg
ψ〉 = Re(c∗0c1)

(
eiδ + eiγ

)
+ iIm(c∗0c1)

(
eiδ − eiγ

)
(20)

Thus,
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1. in the particular case of δ = γ = 0, corresponding to the unitary Not–
gate of (16), the (20) assumes the form 〈ψ|TNψ〉 = 2 Re(c∗0c1);

2. in the particular case of δ = 0 and γ = π, corresponding to the unitary
Not1–gate of (17), the (20) assumes the form〈ψ|TN1

ψ〉 = 2 i Im(c∗0c1),
with the previously noticed property of complementation 〈ψ|TN1

ψ〉 = 0
in the real component case c0, c1 ∈ R.

3.2 Anti-unitary extensions of the classical Not gate.

In this subsection we analyze two anti–unitary extensions of the minimal
conditions (15) along a parallelism with the just introduced linear extensions
by an application of the general rule (11b). The first one is defined by the
rule (compare with (16)):

T aN (|ψ〉) = 〈1|ψ〉∗ |0〉+ 〈0|ψ〉∗ |1〉 (21)

The operator T aN is anti-unitary and self–reversible, with inverse (T aN )−1 =
(T aN )† = T aN .

If for an application of the rule (11b) one takes inspiration from (17), we
have the anti–unitary case defined by the law:

T aN1
(|ψ〉) = 〈1|ψ〉∗ |0〉 − 〈0|ψ〉∗ |1〉 (22)

This operator T aN1
: C2 7→ C2 is just the one introduced in [4] and denoted by

Θ in the introduction. Applying T aN1
twice one obtains −I and so the inverse

of T aN1
is given by the anti–unitary operator (T aN1

)−1 = −T aN1
.

Differently from the linear case, for every |ψ〉 , |ϕ〉 we have that〈
ψ
∣∣ T aN1

ϕ
〉

=
〈
ϕ
∣∣ (T aN1

)−1ψ
〉

=
〈
(T aN1

)−1ψ
∣∣ ϕ〉∗ (23)

As seen at the end of section 2, this is the condition which defines the adjoint
of the anti–linear operator T aN1

as (T aN1
)† = (T aN1

)−1. In the particular case of

|φ〉 = |ψ〉 one has that
〈
ψ
∣∣ T aN1

ψ
〉

=
〈
(T aN1

)−1ψ
∣∣ ψ〉, which corresponds to

the fact that (T aN1
)−1 is the so–called diagonal adjoint of T aN1

. In particular〈
ψ
∣∣ T aN1

ψ
〉

= 0 whatever be the vector |ψ〉.This result cannot be achieved by
any of the other possible unitary and anti-unitary extensions of the classical
Not gates described before.

Making use of the conjugate anti–unitary operator T aid defined by (13)
(and also of the unitary version of the Not gate (16)), and according to the
general relationship (14), we have that T aN1

= T lN1
◦T aid = iσy ◦T aid , property

which expresses “what can be called the spin flip transformation, [...]. For a
pure state of a single qubit, the spin flip [...] is defined by∣∣ψ⊥〉 = iσy |ψ∗〉

where |ψ∗〉 is the complex conjugate of |ψ〉 when it is expressed in a fixed
basis such as {|↑〉 , |↓〉}, and σy expressed in the same basis is the matrix
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(
0 −i

i 0

)
. For a spin- 12 particle this is the standard time reversal operation

and indeed reverses the direction of the spin” [32].
For any pure state (density operator) ρ|ψ〉, it is

T aN1
ρ|ψ〉(T

a
N1

)−1 = ρTa
N1
|ψ〉

corresponding to the fact that the von Neumann–Lüders operation (in the
sense of [3]) generated by the anti–unitary operator T aN1

transforms the pure
state ρ|ψ〉 into the “orthogonal” pure state ρTa

N1
|ψ〉 = ρ|ψ⊥〉.

4 Poincaré Sphere Considerations

In this section we analyze the unitary and anti-unitary operators introduced
in the previous section as transformations on the Poincaré sphere. Let ρ be
a density operator in the Hilbert space C2 uniquely represented in the form
ρ = 1

2 (I + Pxσx + Pyσy + Pzσz) = 1
2 (I + P · σ) under the condition P 2

x +

P 2
y +P 2

z ≤ 1. The correspondence ρ ∈ T C+1 (C2)←→ P = (Px, Py, Pz) is one-

to-one and onto and so any density operator on C2 is univocally represented
as a point of the Poincaré sphere of R3. Then, we have that:

1. ρ 7→ T lN ◦ ρ ◦ (T lN )−1 corresponds to the transformation (Px, Py, Pz) −→
(Px,−Py,−Pz) in which the involved points are antipodes with respect
to the x axis. In particular, any point on the zy plane of the Poincaré
sphere (0, Py, Pz) is transformed into the real antipode (0,−Px,−Pz).

2. ρ 7→ T lN1
◦ρ ◦ (T lN1

)−1 corresponds to the transformation (Px, Py, Pz) −→
(−Px, Py,−Pz) in which the involved points are antipodes with respect to
the y axis. Also in this case any point of the xz plane (Px, 0, Pz) is trans-
formed by the unitary operator T lN1

into its real antipodal (−Px, 0,−Pz).
3. ρ 7→ T aN ◦ ρ ◦ (T aN )−1 corresponds to transformation (Px, Py, Pz) −→

(Px, Py,−Pz) in which the involved points are antipodes with respect to
the xy plane.

4. ρ 7→ T aN1
◦ρ ◦ (T aN1

)−1 corresponds to the transformation (Px, Py, Pz) −→
(−Px,−Py,−Pz), such that all the involved pairs are antipodes of each
other.

From point 4 we have that the anti–unitary BHW operator T aN1
describes

the gate which transforms any mixed state in another mixed state whose
Poincaré representations are antipodal.

From the unitary point of view, the operator more similar to T aN1
is T lN1

which applied to a generic vector |ϑ, ϕ〉 =

(
e−i

ϕ
2 cos ϑ2

ei
ϕ
2 sin ϑ

2

)
of C2 produces the

transition:

|ϑ, ϕ〉
T l
N1−−→ − |ϑ+ π,−ϕ〉 = |ϑ+ π,−(ϕ+ 2π)〉 (24)

The outgoing vector |ϑ+ π,−ϕ〉 is the antipodal of the incoming one |ϑ, ϕ〉,
not with respect to the origin of the space R3 in which the Poincaré sphere
is embedded, but with respect to its y axis.
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The inner product 〈ϑ, ϕ|ϑ + π,−ϕ〉 = 2i sinϕ cos ϑ2 sin ϑ
2 is trivially 0

(orthogonality) under the condition ϕ = 0, i.e., for any pure state of the

form|ϑ, 0〉 =

(
cos ϑ2
sin ϑ

2

)
i.e., with both the components real, whose Poincaré

surface representation is on the xz plane. Under this condition the above
transition (24) becomes

|ϑ, 0〉 −→ − |ϑ+ π, 0〉 = |ϑ+ π,−2π〉

and so “if we relax the ‘universality’ condition, the U–Not operation may
become available: if we are promised that the elements of the density matrix
(or the components of |ϕ〉) are real, the state lie in the y = 0 plane so that
the inversion at the center is equivalent to a proper rotation by π around the
y–axis”. [6].

Setting ϑ = 2α, the vector |α〉 = |2α, 0〉 describes the quantum (pure)
state of light linear polarized along the direction α with respect to the ref-
erence axis A1 of the analyzer Nicol prism which constitute the preparation
part of the device. In this interpretation the linear realization T lN1

of the
classical Not gate performs an antipodal transformation of all possible pure
states of linearly polarizations light.

These considerations can be extended to the case of states obtained
as mixture of linear polarized pure states. Let |α〉 and |α+ π/2〉 be the
two quantum pure states of linear polarization about the mutually antipo-
dal angles α and α + π/2, for a fixed, but arbitrary α, with the opera-
tor representations ρα = |α〉 〈α| and ρα+π/2 = |α+ π/2〉 〈α+ π/2|. Let us
make their generic convex combination ρλ,α,α+π/2 = λρα + (1− λ)ρα+π/2 =
1
2

[
I+(2λ−1)

(
sin(2α) σx+cos(2α) σz

)]
with 0 ≤ λ ≤ 1. Then, the associated

Poincaré representation is the point ((2λ−1) sin(2α), 0, (2λ−1) cos(2α)) in-
side the unit xz circle of R3, whose antipodes has as corresponding density
operator just ρλ,α+π/2,α = λ ρα+π/2+(1−λ) ρα = T lN1

◦ρλ,α,α+π/2 ◦(T lN1
)−1.

5 Unitary and anti-unitary quantum description of the square
root of the identity gate and of the square root of the Not gate

We will now consider two important genuine quantum gates that transform
each element of the computational basis of C2 into qubits that are genuine
superpositions of this basis: the square root of the identity and the square
root of the Not.

In this section, we consider in particular the following two operators on
C2: the identity operator I and the linear version T lN1

of the Not gate with
matrix representation (18). The identity operator is trivially positive since

whatever be ψ 6= 0 it is 〈ψ|Iψ〉 = ‖ψ‖2 ≥ 0, whose unique (positive) square

root is, as expected, the identity operator itself
√
I = I. This is a particular

application of the following general result of Functional Analysis.

Theorem. For every positive operator T > O it exists a unique positive
operator S ≥ O such that S2 = T . In this case we write S =

√
T and S

is called the (positive) square root of T .
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In order to extend this point of view to the case of unitary operators, one
can take into account the following.

Definition. Given a unitary operator U we will say that a linear (resp.,
anti–linear) operator W is its unitary (resp., anti–unitary) square root iff
W is unitary (resp., anti–unitary) and such that W 2 = U . In this case,

for analogy, we will set W =
√
U .

The crucial point is that the existence of W does nor assure its uniqueness.
In the cases of our interest, the identity operator I and the linear version

T lN1
of the Boolean Not gate, are both unitary and then it is possible to apply

to them this definition of, in general non unique, (unitary) square root. For
example, in the case of the identity operator we have seen that one possible
square root is

√
I = I, which is positive and unitary. Moreover, two other

(unitary) square roots of the identity I are the following Walsh–Hadamard
(from now on simply Hadamard) operator and one of its variations, which
are both self–adjoint and self–reversible but not positive:

H = H† = H−1 =
1√
2

(
1 1
1 −1

)
and H1 = H†1 = (H1)−1 =

1√
2

(
−1 1

1 1

)
Let us outline a generalization to the case of a genuine quantum gate

(i.e., a gate which transforms at least an element of the computational basis
into a superpositions of this basis) of the method (11) introduced in the
case of semi–classical (i.e., quantum versions of classical Boolean) gates.
For reasons of simplicity, we treat the case of the qubit Hilbert space C2

(the extension to the generic quregister case is straightforward). Fixed the
computational basis Bc = {|0〉 , |1〉} of C2 let us suppose to know the action
of an operator U , linear or not, on the elements of this basis and formalized
by the transformations:

U |0〉 = a0 |0〉+ a1 |1〉 (25a)

U |1〉 = b0 |0〉+ b1 |1〉 (25b)

where the outputs are superposition of the pure input qubits, but under the
ortho–normality conditions:

‖U |0〉‖2 = |a0|2 + |a1|2 = 1 (26a)

‖U |1〉‖2 = |b0|2 + |b1|2 = 1 (26b)〈
U |0〉

∣∣ U |1〉〉 = a∗0b0 + a∗1b1 = 0 (26c)

Then, the generalization of (11) to a generic |ψ〉 = 〈0|ψ〉 |0〉+ 〈1|ψ〉 |1〉 is
formalized as follows:

T lU |ψ〉 = 〈0|ψ〉 U |0〉+ 〈1|ψ〉 U |1〉 linear

T aU |ψ〉 = 〈0|ψ〉∗U |0〉+ 〈1|ψ〉∗U |1〉 anti–linear

that is

T lU |ψ〉 = [a0〈0|ψ〉+ b0〈1|ψ〉] |0〉+ [a1〈0|ψ〉+ b1〈1|ψ〉] |1〉 (27a)

T aU |ψ〉 = [a0〈0|ψ〉∗ + b0〈1|ψ〉∗] |0〉+ [a1〈0|ψ〉∗ + b1〈1|ψ〉∗] |1〉 (27b)
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The above ortho–normality conditions (26) assure that both these operators
transform an orthonormal basis into an orthonormal basis, and so they define
a unitary and an anti–unitary operator, respectively. Moreover, these two
unitary and anti–unitary versions are linked by an extension of the first
relationship (14) furnished by the complex conjugation anti–unitary operator:

T aU = T lU ◦ T aid (28)

But differently from the second identity of (14), and taking into account the
(25), we have that for an arbitrary |ψ〉 = c0 |0〉+ c1 |1〉

T lU (T aid(c0 |0〉+ c1 |1〉)) = c∗0(a0 + a1) |0〉+ c∗1(b0 + b1) |1〉 (29a)

T aid(T
l
U (c0 |0〉+ c1 |1〉)) = c∗0(a∗0 + a∗1) |0〉+ c∗1(b∗0 + b∗1) |1〉 (29b)

Of course, if the coefficients involved in the equations (25) are all real, then
we have that T lU ◦ T aid = T aid ◦ T lU , i.e., the involved extension commutes with
the complex conjugation anti–unitary operator.

Moreover, since the involved coefficients are real, the two equations (29)
are identical corresponding to the fact that

In particular, we apply the methods to the peculiar version of (25) for
the case of the square root of the identity gate, formalized as

√
id |0〉 =

1√
2

[
|0〉+ |1〉

]
(30a)

√
id |1〉 =

1√
2

[
|0〉 − |1〉

]
(30b)

and for the case of the square root of the Not gate, formalized as√
N1 |0〉 =

1√
2

[
|0〉+ |1〉

]
(31a)√

N1 |1〉 =
1√
2

[
− |0〉+ |1〉

]
(31b)

Note that both these cases satisfies the ortho–normal conditions (26) which
assure that the corresponding whole operators constructed according to the
rules (27a) and (27b) are, respectively, unitary and anti–unitary. Note that
all the involved coefficients are real, and so their extensions commute with
the complex conjugation operator.

5.1 The unitary and anti–unitary versions of the square root of the identity
gate

Making use of the (27a), the linear formulation of the above rules (30) de-
scribing the square root of the identity gate leads to the operator expressed
by the law:

T l√
id

(|ψ〉) =
1√
2

[(〈0|ψ〉+ 〈1|ψ〉) |0〉+ (〈0|ψ〉 − 〈1|ψ〉) |1〉] (32)
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This operator is unitary and self–reversible, i.e., (T l√
id

)−1 = (T l√
id

)† = T l√
id

,

and its matrix representation with respect to the canonical computational
basis is described by the Hadamard gate H

This unitary matrix acts on the generic vector |ψ〉 according to

T l√
id
|ψ〉 =

1√
2

[
σx |ψ〉+ σz |ψ〉

]
(33)

and it describes a self–reversible quantum gate, which is nothing else than
the normalized sum of the Pauli spin–1/2 matrixes along the x and z di-
rections. On the Poincaré sphere it produces the transition (Px, Py, Pz) →
(Pz,−Py, Px).

On the other hand, the extension of the rules (30) expressed by the law
(27b) leads to the anti–unitary operator

T a√
id

(|ψ〉) :=
1√
2

[(〈0|ψ〉∗ + 〈1|ψ〉∗) |0〉+ (〈0|ψ〉∗ − 〈1|ψ〉∗) |1〉] (34)

This operator is again self–reversible (T a√
id

)−1 = T a√
id

and it produces

the transition (Px, Py, Pz)→ (Pz, Py, Px) on the Poincaré sphere.

Moreover, with respect to the generic vector |ψ〉 = c0 |0〉 + c1 |1〉, the
orthogonal (up to a phase factor) of the vector σz |ψ〉 = c0 |0〉 − c1 |1〉 is the
vector (σz |ψ〉)⊥ = −c∗1 |0〉 − c∗0 |1〉 and the orthogonal of the vector σx |ψ〉 =
c1 |0〉 + c0 |1〉 is the vector (σx |ψ〉)⊥ = c∗0 |0〉 − c∗1 |1〉. So the above (34),
whatever be the incoming qubit |ψ〉, can be written as

T a√
id
|ψ〉 =

1√
2

[
(σx |ψ〉)⊥ − (σz |ψ〉)⊥

]
(35)

from which it follows that this operator can be expressed in term (besides
others) of the anti–unitary universal Not as follows

T a√
id

=
1√
2
T aN1

(
σx − σz

)
(36)

Thus, the anti–unitary operator T a√
id

describes the transformation which

satisfies the condition to take an arbitrary (unknown) qubit and to trans-
form it into an equally superposition of two suitable qubits. Note that if the
Poincaré representation of the pure state |ψ〉 is the triple (Px, Py, Pz), then
the representation of the above pure state σx |ψ〉 (resp., σz |ψ〉) is the triple
(Px,−Py,−Pz) (resp., (−Px,−Py, Pz)), i.e., the antipodal with respect to the
x (resp., z) axis of the representation of |ψ〉. Of course, the representation of
the pure state (σx |ψ〉)⊥ (resp., (σz |ψ〉)⊥) is the triple (−Px, Py, Pz) (resp.,
(Px, Py,−Pz)).
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5.2 The non–linear version of the square root of the identity gate.

Taking inspiration from a comparison of the equations (17) and (22), one
can suggest the rule that the passage from the linear case to the anti–
linear one can be performed by the transformations 〈1|ψ〉 |0〉 → 〈1|ψ〉∗ |0〉
and 〈0|ψ〉 |1〉 → 〈0|ψ〉∗ |1〉. If we apply this heuristic rule to the (32) we get
the operator defined by the law:

Tnl√
id

(|ψ〉) :=
1√
2

[(〈0|ψ〉+ 〈1|ψ〉∗) |0〉+ (〈0|ψ〉∗ − 〈1|ψ〉) |1〉] (37)

Trivially, this operator is additive, but from

Tnl√
id

(α |ψ〉) = Tnl√
id

(
α c0
α c1

)
=

1√
2

(
α c0 + α∗ c1

∗

−α c1 + α∗ c0
∗

)
we immediately get that it is neither homogeneous, nor anti–homogeneous,
nor absolutely homogeneous (but it is “real” homogeneous in the sense that
Tnl√

id
(r |ψ〉) = r Tnl√

id
|ψ〉 for any real number r ∈ R). In other words, we have

to do with an additive, neither linear nor anti–linear operator Tnl√
id

, which

is self–reversible, (Tnl√
id

)−1 = Tnl√
id

, preserves the “diagonal” inner product〈
Tnl√

id
ψ
∣∣ Tnl√

id
ψ
〉

= 〈ψ|ψ〉 (and so the norm and the distance), whereas in

general
〈
Tnl√

id
ψ
∣∣ Tnl√

id
ϕ
〉
6= 〈ψ|ϕ〉 or

〈
Tnl√

id
ψ
∣∣ Tnl√

id
ϕ
〉
6= 〈ψ|ϕ〉∗.

Moreover, with respect to the generic vector |ψ〉 = c0 |0〉 + c1 |1〉, the
orthogonal (up to a phase factor) of the vector σz |ψ〉 = c0 |0〉 − c1 |1〉 is the
vector (σz |ψ〉)⊥ = −c∗1 |0〉 − c∗0 |1〉 and so the above (37), whatever be the
incoming qubit |ψ〉, can be written as

Tnl√
id
|ψ〉 =

1√
2

[
σz |ψ〉 − (σz |ψ〉)⊥

]
(38)

In particular, this operator can be expressed in term of unitary and anti–
unitary operators (besides others, of the anti–unitary universal Not) as fol-
lows

Tnl√
id

=
1√
2

(
I− T aN1

)
σz

Thus, the non–linear operator Tnl√
id

describes the transformation which

satisfies the condition to take an arbitrary (unknown) qubit and to transform
it into an equally superposition of a suitable qubit and its orthogonal.

5.3 Unitary, anti–unitary, and non–linear versions of the square root of the
Not gate.

Finally, we introduce the unitary version of the above conditions (31) de-
scribing the square root of the Not gate.

T l√
N1

(|ψ〉) =
1√
2

[
(〈0|ψ〉+ 〈1|ψ〉) |0〉+ (−〈0|ψ〉+ 〈1|ψ〉) |1〉

]
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On the Poincaré sphere it produces the transition (Px, Py, Pz)→ (−Pz, Py, Px).
In the anti–linear case we have the operator defined by the law:

T a√
N1

(|ψ〉) =
1√
2

[
(〈0|ψ〉∗ + 〈1|ψ〉∗) |0〉+ (−〈0|ψ〉∗ + 〈1|ψ〉∗) |1〉

]
which according to (28) is obtained by the composition T a√

N1
= T l√

N1
◦ T aid.

Let us note that, as pointed out at the discussion of the equation (31), since
all the involved coefficients are real we have also that T a√

N1
= T aid ◦ T l√N1

.

Hence, T a√
N1
◦ T a√

N1
= T l√

N1
◦ T aid ◦ T aid ◦ T l√N1

= T lN1
.

Let us note that the anti–linear version T a√
N1

produces on the Poincaré

sphere the transition (Px, Py, Pz)→ (−Pz,−Py, Px).
Now, if one wants to describe a possible square root of the BHW anti–

unitary operator (22), i.e., some operator W such that W ◦W = T aN1
, then

such an operator cannot be either unitary or anti–unitary. Thus, it is neces-
sary to seek inside non–linear operators. Making use of the heuristic proce-
dure outlined above, we have the expected non–linear (only additive) opera-
tor defined by the law:

Tnl√
N1

(|ψ〉) =
1√
2

[
(〈0|ψ〉+ 〈1|ψ〉∗) |0〉+ (−〈0|ψ〉∗ + 〈1|ψ〉) |1〉

]
This result, whatever be the qubit |ψ〉, with corresponding orthogonal |ψ〉⊥,
can be written as the following sum of a linear and an anti–linear operator:

Tnl√
N1
|ψ〉 =

1√
2

[
|ψ〉+ |ψ〉⊥

]
(39)

Thus, the non–linear operator Tnl√
N1

describes the transformation which sat-

isfies the universal condition to take an arbitrary (unknown) qubit and to
transform it into an equally superposition of the same qubit and the qubit
orthogonal to it. This operator can be expressed in pure operator notation
as

Tnl√
N1

=
1√
2

(
I + T aN1

)

6 Conclusions

In this paper we concentrate on one of the essential features of quantum
information: the possibility of complementing it and we have seen that if
from a classical point of view this corresponds to the simple transformations
0 7→ 1, 1 7→ 0, when the information is encoded in the generic state |ψ〉
of a quantum system the process of complementing a qubit |ψ〉 7→

∣∣ψ⊥〉 is
generally impossible by a unique unitary operation, where complementing
means flipping a qubit on the Poincaré sphere. The problem can be traced
back to the difference between classical and quantum ignorance, it touches
on the very nature of the quantum state.
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Since the manipulations on qubits have to be performed by unitary op-
erations, the linearity of quantum theory seems to forbid complementing an
unknown state. The process of complementing a qubit can be done perfectly ,
more precisely with fidelity 1, if and only if a basis to which |ψ〉 belongs is
known: when the qubits are in preferred computational basis states the uni-
tary operator T lN1

realizes the quantum computational Not gate perfectly ,
but it is not a universal one.

On the other side, the BHW operator T aN1
represents an anti-unitary

quantum Not that is universal in a very strong sense: it takes any arbitrary
unknown qubit |ψ〉 and transforms it perfectly into its orthogonal

∣∣ψ⊥〉. This
is a very desirable property, but if we ask for the universality condition then
automatically we lose the possibility to realize a quantum not gate: T aN1

is not
completely positive. In this last case a possible solution comes from the quan-
tum not gate introduced by Buzek-Hillery-Werner in [4] that approximates
the anti-unitary transformation T aN1

on the Hilbert space C2 by a unitary
transformation on a larger Hilbert space such that it produces a complement
of an arbitrary qubit |ψ〉 with fidelity 2

3 .
We suggest that the above analysis introduces two complementary ways

to describe the process to complement the information encoded in a two level
quantum system: unitary and anti-unitary one.
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