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Unitary and Anti-Unitary Quantum
Descriptions of the Classical Not Gate

Abstract Two possible quantum descriptions of the classical NOT gate are
investigated in the framework of the Hilbert space C2: the unitary and the
anti—unitary operator realizations. The two cases are distinguished interpret-
ing the unitary NOT as a quantum realization of the classical gate which on
a fized orthogonal pair of unit vectors, realizing once for all the classical bits
0 and 1, produces the required transformations 0 — 1 and 1 — 0 (i.e., logical
quantum NOT). The anti—unitary NOT is a quantum realization of a gate
which acts as a classical NOT on any pair of mutually orthogonal vectors,
each of which is a potential realization of the classical bits (i.e., universal
quantum NOT). Although the latter is not completely positive, one can give
an approximated unitary realization of the gate by appending an ancilla. Fi-
nally, we consider the unitary and the anti—unitary operator realizations of
two important genuine quantum gates that transform elements of the com-
putational basis of C? into its superpositions: the square root of the identity
and the square root of the NOT.
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1 Introduction

As well known the classical realization of the NOT gate is described by the
Boolean function — which transforms the bits (0, 1) according to the corre-
spondences 0 — 1 and 1 — 0.

From the pure point of view of quantum logic, the quantum version of the
classical NOT gate (see for instance [1], [2]) is described by an operator from
the class U(C?) of all unitary operators on the single qubit Hilbert space C2.

(QL) For a given orthonormal basis B = {|ug),|u1)} of the Hilbert space
C?, the unitary operator Up = |ug) (u1] + |u1) (ug| realizes the required
transformations of the unit vector |ug) into the unit vector Up |ug) = |u1)
and of the unit vector |uy) into the unit vector Ug |u1) = |ug). Formally,

VB = {ug, w1} s € U(C?) : |ug) —25 Juy) and |ug) —25 Jug) (1)

Note that in terms of density operators, the transitions of (1) are extended
into the following ones:

Ujuy _ Uy _
Pluy = Uty Py Upy = Pty — (Ugy)* oy (Uy)> = ppay— (2)

Fixed the computational basis B, the unit vectors (states) |ug) and |uy)
are the quantum representatives of the classical bits 0 and 1, respectively,
and the (1) formalizes the right requirement of the quantum version of a NoT
gate. Of course, it is not required (and in general this operator does not make)
the same transformation for any other orthonormal basis {|wy) , |w1)} of C2.
The formulation (1) is a particular case of the general situation summarized
in the following two points:

(S-OG) The single vector orthogonality condition
V|u) AU,y € U(C?) : (u|Upyu) =0 (3)

(SR) The self-reversibility condition (Uj,)? = I, which can be reformulated
as (U\m)fl = U|u>.

where the first orthogonality condition (S-OG) says that the pair of unit
vectors |u) and ’ul-> := Ujyyu constitutes an orthonormal basis of C* and
the second one describes the expected behavior of a quantum NOT gate.
The orthogonality condition can be geometrically characterized in the fol-
lowing way. If the density operator (pure state) pj, is represented by the
real triple (P, P,, P,) on the surface S;(R?) of the Poincaré/Bloch (from
now on Poincaré) unit sphere the transformation in 7C; (C?) of the state
Pluy into the state py,,, |y corresponds in S1(R?) to the transformation of
the original point n = (P, P,, P,) into its antipodal —n = (=P, —P,, —P,).
For this reason, in the literature the transition |u) — |ul> is also denoted as
n) = [-n).

Starting from the orthogonality condition alone, recently a certain number
of contributions [4], [5], [6], [7], [8] has been published about a totally different
formulation which consists in the following universal requirement:



(U-OG) whether it is possible to construct a unique operator which trans-
forms any unit vector |¢) € C? into its orthogonal unit vector (up to a
phase factor) performing in this way in the Poincaré sphere the transfor-
mation of any point on its surface into its antipodal. This can be formal-
ized by the following universal orthogonality requirement:

OVIP), ($lOP) =0 (4)

This is a quite different situation from the one formalized by (3). Indeed, in
the (S-OG) case the statement is of the form “for any (V) fixed vector, there
exists (3) an operator such that (...)”, whereas in the present (U-OG) case
we have to do with a statement of the universal form “there exist (3) an
operator, such that for every (V) vector (...)”. Thus, operators of the latter
case are called mathematical representations of the quantum universal NOT
gate (U-Nor), differently from the former case of the simple logical NOT
gate (L-NoT).

Of course, “it is not a problem to complement a classical bit, i.e., to
change a value of a bit, a 0 to a 1 and vice versa. This is accomplished by a
NoT gate” [4]. Similarly, from the quantum point of view if “complementing”
(or flipping) an a priori known qubit means the choice of a (specific) state
lu) and to transform it into its orthogonal state |u), then according to (1)
this is done by the unitary L-NOT operator U,). But, if “the question we
want to address is: Is it possible to build a device that will take an arbitrary
(unknown) qubit and transform it into the qubit orthogonal to it? [Then]
complementing a qubit (i.e., inverting the state of the spin—1/2 particles),
[...] is another matter” [4].

A positive answer to this problem has been given by BHW in [4] by
an anti-unitary operator ©),), defined, using an orthonormal basis B =
{Juy, |ul->} of C2, by its action on the generic vector |[¢)) € C? given by
Oy [¥) = (uh|v)* [u) — (uly)* ‘uJ-> The interesting point is that for any
arbitrary vector |¢), whatever be the unit vector |u) (and so the basis B),
it is O}y [¢) = }wL> since (1|0),) ) = 0 holds. In the sequel we denote by
A(C?) the class of all anti—unitary operators on C2.

Summarizing, “the problem is that one cannot flip a spin of unknown
polarization. Indeed, it is easy to see that the flip operator defined as

[360 Vn € 51(R?)], ©|n) = |-n) (5)

is not unitary but anti—unitary. Thus there is no physical operation which
could implement such a transformation” [5]. As usual in some physical tra-
dition, in the just quoted original statement no mention is done about the
exact role of the quantifiers 3,V, and this is the reason of the part under the
square brackets inserted by us. Anyway, this polar formulation (5) is trivially
equivalent to the original (U-OG) formalized by (4).

From the formal point of view, the BHW anti-unitary operator O, sat-
isfies something more than the above condition of universal orthogonality
(U-0OG), since it verifies:

(W-OG) The universal orthogonality (or flipping) condition
V|u) 36}y € A(C?) : ¥ [), ($]Oye) =0



(A-SR) The anti self-reversibility condition @\2@ = —I, which can be refor-
mulated as @@% = —0O-

With respect to the linear case the transitions (1) are substituted by the
transitions true for any |¢)

[0) 205 O 1) —1s O2, 1) = — 1)) (6)

whose extensions to density operators are obtained by the von Neumann—
Liiders operation T}y := Oy ( - )@lzj according to:

Tiu) _ Tiu) _
Ploy = Oy Py Oy = Pty — Oy iy O1))> = pry  (7)

From now on, for the sake of simplicity, we will consider the fixed com-
putational basis B, = {]0) = (§),]1) = (9)} of C? as concrete realization of
the orthogonality pair {|u), |u™)} and as qubit description of the Boolean
classical bits 0 and 1. Then, denoted a vector on the unit surface S;(R?)
with its polar representation n = (sin? cos, sin¥ sinp, cos) = (¥, ¢),
the generic unit vector of C? and its orthogonal can be represented as the
pair

"% cos 2 €% gin 2
= . 2 —n) = ) 2
= () = (e 0

2 2

(NS

with (n | —n) = 0, whose Poincaré surface representations are just the two
mutually antipodal points n and —n.

The BHW anti—unitary realization of the U-NoOT gate, in this context
simply denoted by © instead of O, is characterized by the transition

(&) o, (_‘1), whatever be the input vector from C? or, making reference
0

to (8), by the transition |n) o, |—n).
Coming back to the orthogonality condition, we have two possible strate-
gies.

1.1 The unitary strategy

Let us stress that a variation of the unitary operator of the kind (1), in the
present notation the unitary operator Ny = |0) (1] — |1) (0|, actually stays in
an intermediate position between the two above discussed versions (S-OG)
and (U-OG). Of course, it is not a description of a unitary universal NoT
gate, but it “complements” a lot of orthonormal pairs of states. Precisely, all
the input states with real components, or equivalently all the orthonormal
pairs of the type (8) satisfying the condition ¢ = 0, with ¢ ranging into the
real interval [0, 27).

From the polarization interpretation of unit vectors of C?, the unitary
operator N can be considered partially universal in the sense that it trans-
mits any (pure or mixed) state of linear polarization into its orthogonal state
of linear polarization. But this does not happen in the case, for instance, of
circular or elliptic polarization states.



1.2 The anti—unitary strategy

Of course, there could be another strategy based on the BHW anti—unitary
operator which is a universal NOT transmitting any polarization state into
its orthogonal (for instance also circular or elliptic polarization states). The
strategy is to approximate an anti-unitary transformation on the two—di-
mensional Hilbert space C? by a unitary transformation on a larger Hilbert
space. Quoting [6]: “This operation is anti—unitary and therefore cannot be
realized exactly. So, how well we can do? We find a unitary transformation
acting on an input qubit and some auxiliary qubits, which represent degrees
of freedom of the quantum NOT gate itself, which approximately realizes
the NOT operation on the state of the original qubit. We call this ‘device’
a universal-NOT because the size of the error it produces is independent of
the input state.”

Formally, and without entering in technical details which can be found
in the just quoted BHW paper, the procedure can be summarized in the
following steps:

(St1) One considers the dynamical evolution of an open quantum system as the
result of an interaction between the system under consideration described
inside the system Hilbert space C? and an additional one (the reservoir)
described by the ancilla Hilbert space H,.

The resulting system is a closed quantum system whose dynamical evo-
lution must be described by a unitary operator on the tensor product
Hilbert space C? @ H,,.

(St2) The action gate on the basis vectors {|0),|1)} of the Hilbert space C? is
described by the two following rules of some operator W on the Hilbert
space C? @ H,.

0)1@)
Q)

1) [Qo) +10) [Yo) (9a)
0)1@1) +[1) [Y1) (9b)

1= I=

where |@Q) describes the known states in which the ancilla is originally
prepared, and |@;) and |Y;) some ancilla output states which must be
determines by suitable conditions. In particular the unitary condition on
W determines some constraints on these vectors.

(St3) The input global state [¥)" = |1))|Q) (in the Hilbert space C? ® H,)
constituted by the general system input state 1)) = cos ) |0) + € sind 1)
and the ancilla state |@Q), under the conditions (9) and the linearity of
the operator W, produces the transition:

[0) Q) 5 )" = cos 9( [1) |Qo)+10) [Yo) )+ sind (10) |Q1)+[1) |¥3))

(St4) It is constructed the global output density operator pjgyout on C?®H,
and its partial traced system density operator (plw>out)s on C2, both
depending from the parameters ¢ and ¢ which characterized the generic
system input vector [).



(St5)

(St6)

Then one calculates the fidelity of the system output state (p‘mom)s
with respect to the output state 1)+ € C? expected as the result of the
transition |¢) e, |1/JJ‘> performed by the BHW anti—unitary operator:

F(9,0) = (W] (pyent) , [97)

The important requirement is now that the fidelity must be independent
from 9 and ¢ in order to obtain a result which involves all the system
input vectors.

This result is obtained imposing first the vanishing of the coefficients of
all terms with a particular kind of ¢ dependence, and then demanding
the vanishing of the remaining terms depending from 9. These conditions
lead to the fidelity (independent from the angle pair 9 and ¢, and so true
for any arbitrary system input vector |)):

F=|Qo|” =1—|Yo|f?
So, in order to maximize F' we have to minimize ||Yp||?, in such way that
for any system input pure state |¢)) the system output state is “as close
as possible” to the orthogonal qubit state © |i) = |¢L>. This leads to the

results that the ancilla Hilbert space is three dimensional, H, = C3, and
that the vectors appearing in the (9) can be taken to form the orthonormal

basis:
1 0 0
2 2 1
Qo) = \@ 0 Q1) = \/g 1 |Yo) = \/; 0
0 0 1

The corresponding fidelity is then F =2/3.

1.3 The comparison of the two strategies

In summary,

1.

the quantum logical L-NOT gate V7 has the positive aspect to be unitary,
but with the drawback of performing only a partial, also if great (the
cardinality of the continuum), number of orthogonal complementations
(all the photon states of linear polarization);

the BHW gate © gives a positive answer to the full complementing re-
quirement, i.e., it realizes the quantum universal U-NoOT gate, but with
the drawback of being unphysical. However, it is possible, by appending
a three dimensional auxiliary ancilla to the input qubit, to realize a uni-
tary operator on the larger system which, partial traced on the system,
furnishes the required transformations performed by the BHW gate with
an approximation (the “size” of the error) quantified by the fidelity 2/3,
independent of the input state.



Let us stress that in this paper we don’t treat this approximated realization
of the universal NOT gate, but we are particularly interested to formalize
the procedure of constructing both the linear and the anti-linear unitary
realization of any classical n-in/n-out reversible gate, applying it to the par-
ticular case of the classical NOT gate obtaining in this way the usual unitary
quantum NOT gate and the anti—unitary quantum BHW operator.

1.4 The non-linear versions of the square root of the Identity and of the
NoT gates

In section 5, the unitary and anti—unitary versions of the square root of the
NoT and of the square root of the identity gates are investigated. This is
obtained simply applying by analogy the previously discussed procedure, in
particular to both the unitary and the anti—unitary versions of the NoT gate
which cannot be either unitary or anti—unitary, and so a specific solution is
given by non-linear operators.

This result can be inserted in an investigation about non—linear quantum
mechanics. As well as the work of Beltrametti and Bugajski [11], [12], [13], [14]
and Bugajski [15], there have also been attempts to incorporate non-linear
operators in quantum mechanics by, amongst others, Mielnik [16], [17], [18],
Haag and Bannier [19] and Weinberg [20], [21]. In the just quoted non-linear
contributions to quantum mechanics the non—linearity is applied to the case
of observables, which in general are not additive (3 |[¢) , |¢) s.t. A(|9)+|¢)) #
A )+ Alg)), but satisfies either the homogeneity (V |¢), Vo € C, Aa|y) =
aA 1)), or the anti-homogeneity (V|¢), Yo € C, Aa i) = a*A|y)), or the
absolute homogeneity (V|¢), Va € C, Aa|y) = |a|A|¢)) (see for instance
[22]). In this paper we obtain non-linear realizations of unitary operator
which are both additive, but neither homogeneous, nor anti-homogeneous,
nor absolutely homogeneous.

2 Quantum gate description of Boolean gate: semi—classical
quantum gates

Computational models are usually based upon Boolean logic, and use some
universal set of primitive connectives such as, for example, {AND, NOT}.
From a general point of view, a classical (Boolean) n—input/m—output gate
(where n, m are positive integers) is a special-purpose computer schematized
as a device able to compute (Boolean) logical functions G : {0,1}" — {0,1}™.

Reversible logic is a theoretical model of computation whose principal aim
is to compute with zero internal power dissipation. Most of the times, com-
putational models lack of reversibility; that is, one cannot in general deduce
the input values of a gate from its output values. Lack of reversibility means
that during the computation some information is lost. As shown by R. Lan-
dauer [24] (see also C.H. Bennett [25], [26] which can be found in [27]), a
loss of information implies a loss of energy and therefore any computational
model based on irreversible primitives is necessarily informationally dissi-
pative. In this context, it is possible to prove that there is no information



energy dissipation by a classical gate iff the logical function computed by the
gate is reversible (one-to-one and onto). Let us recall that any irreversible
Boolean function G : {0,1}" — {0,1}" can always be transformed into a
reversible function G, : {0,1}™*" — {0,1}™" assigning to the input pair
(x,2z) € {0,1}" x {0,1}™ the output pair (x,z ® G(x)) € {0,1}" x {0,1}™,
where @ is the extension to Boolean strings of the sum modulo 2 (i.e., the
XOR 2-input/I1-output) Boolean gate. The original Boolean function can be
recovered putting the second input z to 0: (x,0) — (x, G(x)).

A system of n-qubits, or quantum register of n—length, is represented by
a unit vector |¥) in the n—fold tensor product Hilbert space ®@"C2. A n—
configuration is a unit vector |xy, ..., ,) € ®"C?, quantum realization of the
classical n-length string of bits (x1,...,z,) € {0,1}". Recall that B =
{|x) € @"C? : x = (x1,...,7,) € {0,1}"} is an orthonormal basis of this
space, called the computational basis for the n—quregisters.

Generally, the quantum realization of a n—input/n—output reversible Bo-
olean gate G : {0,1}" + {0,1}" is a transformation Tg : ®"C? — @"C>
which, as a necessary condition, transforms quregisters of the computational
basis Bgn) of ®"C? into quregisters of the same basis according to the con-
dition:

%) = T [x) = €09 [G(x)) (10)

where w(x) € [0,27) is a given phase factor depending on the Boolean n
length register x := (x1,...,2,) € {0,1}™. Since under the reversibility of
the Boolean gate G, the condition (10) means in particular that it transforms
an orthonormal basis of ®™C? into an orthonormal basis of the same space,
the operator T turns out to be unitary or anti—unitary according to its
linear or anti-linear extension to the whole Hilbert space. To be precise, let
us denote by |¥) = er{o,l}n (x |¥)|x) the Fourier expansion of a generic

vector ¥ from ®"C? with respect to the computational basis Bé"), then we
have the two possible extensions of (10):

TH W) = ) e (x|7) |G(x)) Linear (11a)
xe{0,1}™

TG W)= Y e (x[#)" |G(x)) Anti-linear (11b)
xe€{0,1}»

On the set of density operators on ®"C?, these quantum realizations of
a Boolean gate G correspond to the intensity preserving operation generated
by T expressed by 2 : p— Qq(p) :=Tgopo Tal. In particular, whatever
be the phase factor mapping w : x — w(x), both these operators get a
transformation of a pure state into a pure state according to

Plesyzn) P 2G(Plas,..;z0)) = PIG(1,.. )

As well known, in finite dimensional Hilbert spaces, both in the linear
and in the anti-linear cases the above condition of being an operator ©
which transforms an orthonormal basis into another orthonormal basis can
be assumed as the condition which defines unitary and anti—unitary operators



respectively. This condition is equivalent to the preservation of the norm (and
so also of the distance — isometry condition): for every v, ||©v|| = ||¢||. The
two cases differ between them in a third equivalent formulation which in the
linear case reads as: Vi, ¢, (O9|O¢) = (¥|¢) and in the anti-linear case
as: Y, p, (O9|Op) = (P|p)*. This latter condition involving anti-linear
operators can be formulated in the further equivalent way: “the operator
© admits inverse O~ and for any pair ¢, p, (P07 ty) = (O L) =
(p|©1)”. The analogous formulation for the linear case is straightforward.
The role of anti-linear operators has been stressed by [28]: “it is becoming
increasingly clear that anti-linear operators have an indispensable role in
quantum field theory, so much so that the definition of the adjoint of such
an operator can be found in a textbook on field theory by Itzykson and
Zuber” [29]. To be precise, let us quote [30]: “The adjoint O of an anti-linear
operator @ is determined by the relation ()|@Tp) = (|Oy) for all ¥, p.

Notice (@T)T = O. The standard rule (AB)" = BTA' for linear operators
remains valid if one or both operators are replaced by anti-linear ones. In
particular, with a complex number a and anti-linear @ one gets (oz@)T =
aB1, ie., taking the adjoint [© — O] is a linear procedure for anti-linear
operators. [...] One calls @ anti-linearly unitary or simply anti—unitary if
Ot = ©~!. Basic knowledge about anti-unitary operators is due to Wigner
[31]7.

The construction of the above operator (11b), in such a way that the
computational basis is transformed into itself, means that the involved ad-
joint satisfies (T4)T = (T&)™1, i.e., it is anti-unitary according to the just
quoted definition.

From the physical point of view an anti—unitary operator can be con-
sidered an internal symmetry of the system. Indeed, for any state described
by a non—zero vector 1 and any observabl\e described by a linear bounded
self-adjoint operator A let us denote by @ := O and A= 0AO7! the
transformed state and observable according to ©. Then, the physical infor-

mation on the system, enclosed into the real quantity Fxzp{y, A} = <1\l|)1‘:\‘|12/}>’

describing the expectation value of the observable A for the system prepared
in 7, is invariant with respect to the new description of the physical system
produced by ©. Indeed,

(DAY (Op|O Ay)  (p|Ap)*

ez Il

and so, from the self-adjoint property of A, Fxp{y, A} = Ea:p{{/;, ;1\}

2.1 Unitary and anti—unitary quantum description of the Boolean
IDENTITY gate

Let us apply these considerations to the simple Boolean identity gate id :
{0,1} — {0,1}, characterized by the two trivial single bit transitions 0 —
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id(0) = 0 and 1 — id(1) = 1. By the simplest choice of the phases w(0) =
w(1) = 0, the (10) assumes in the present case the form of the two transitions:

Tial0) = [0) and Tig|1) = 1) (12)

and so the two formulations (11) applied to the generic vector |¢) assume
the forms:

Tiq ) = (0[) [id(0)) + (L]} |id(1)) = [3))
Tig [9) = {0[9)™ [id(0)) + (L]4)" |id(1)

So the unitary realization is the standard linear identity operator on C2,
Tild = [. On the contrary, in the Heisenberg matrix representation of C2

with respect to the canonical computational basis B. := {|0), |1)} in which

any vector |¢)) € C? is represented by the “matrix” (E?m ), the anti—unitary

realization of the Boolean identity gate can be summarized by the transition:

()=

which, of course, satisfies the minimal conditions (12) and behaves as the
identity on all the vectors of C? with real components cy,c; € R. Let us
note that the anti-linear version T7,; produces on the Poincaré sphere the
transition (P, Py, P,) = (Py,—P,, P,).

By the trivial extension of this complex conjugation anti—unitary operator
to n—length qubits it is possible to express the following general link between
the two unitary and unitary versions (11) of a classical reversible gate G
given by the following relationship:

T& =TGo Ty =Tiyo Ty (14)

where the second commutativity identity follows from the fact that Té trans-
forms the computational basis into itself (reversibility of the classical gate

G).

3 Unitary and anti-unitary quantum description of the classical
Not gate

The classical NOT gate is a one-in/one-out Boolean gate N : {0,1} — {0,1}
defined by the transitions 0 — 1 and 1 — 0. Since this classical gate is char-
acterized by a single line, its quantum description is mathematical realized
on the single qubit Hilbert space C2. Hence, any quantum, either unitary or
anti—unitary, realization Ty of the classical NOT gate on the Hilbert space
C? must satisfy the minimal conditions (10) translated to the present case:

Ty(0)) =P 1) and Tn([1) =W |0) (15)

These must be extended to the whole Hilbert space C? according to one of
the (11). In this way, the obtained transformation turns out to be unitary
or anti-unitary according to the linear or anti-linear extension of Ty to any
vector [¢) € C? such that |¢) = (0]¢) [0) + (1|) [1).
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3.1 Unitary extensions of the classical NOT gate

In this subsection we introduce a first unitary extension of the above minimal
rules (15) describing the quantum behavior of the NOT classical gate, under
the phase conditions w(0) = w(1) = 0:

Ty () = (L) [0) + (0l [1) (16)

whose (unitary) inverse is (T%) "' = (T%)" = T, condition which expresses
the self-reversibility of T%. This unitary operator is nothing else than the
Pauli spin matrix o, along the x direction.

For analogy with the forthcoming anti—unitary discussion we introduce
now a second unitary extension T ]l\,l : C? — C? of the minimal conditions
(15), under the phase conditions w(0) = 0 and w(1) = 7:

Th, ([9)) = (1[4} [0) — (0]y) [1) (17)
described by the matrix

0 1\ _.
T, = (1 0) = ioy (18)

Let us note that for any vector [1/) = ¢ [0) + 1 |1) of C2, it is (adopting
the standard Hilbert space notation ug = |0) and u; = |1), and not the Dirac
one)

(¢|T}V1w> = (coup + cru|crug — cour) = ¢jer — e

which in general is different from 0. But in all the particular cases of real

linear combinations |1),.) = 7¢|0) + r1|1), with ro,71 € R, trivially one has

that (¢,|T, ¥r) = 0. We can conclude that in general the transformed of

a 1) by T]l\,1 is not orthogonal to this vector: T]l\,1 [y # ‘1/1J->. But if we

consider the collection C? := {|1)) = 10 |0) + r1|1) : ro,1 € R}, which is a

real 2-dimensional linear space, then V|¢,.) € CZ, it is T}, [¢by) = |wﬂ-> .
More generically, any unitary operator on C? of the matrix form

0 e® I -1 1 0 e ™
Tn, = (e” 0 > with inverse Ty =Ty = 5 (19)
The first of which can also be formalized by the rule involving a generic
superposition of the computational orthonormal basis as follows:
T, (co[0) + 1 [1)) = € e1 [0) + €™ o [1)

Trivially, also in this general case the transitions (15) are verified and this
assures that any operator (19) is a good unitary realization of the classical
Boolean NOT gate. Let us notice that the following holds:

(W|Tn, ¥y = Re(cger) (€ + ™) + ilm(cfer) (e — ™) (20)
Thus,
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1. in the particular case of 6 = v = 0, corresponding to the unitary NoT—
gate of (16), the (20) assumes the form (¢¥|Tn) = 2Re(cfcr);

2. in the particular case of § = 0 and v = m, corresponding to the unitary
Not;-gate of (17), the (20) assumes the form(y|Tn,v) = 2iIm(cjcr),
with the previously noticed property of complementation (¢|Tn, 1) = 0
in the real component case cg,c; € R.

3.2 Anti-unitary extensions of the classical NOT gate.

In this subsection we analyze two anti—unitary extensions of the minimal
conditions (15) along a parallelism with the just introduced linear extensions
by an application of the general rule (11b). The first one is defined by the
rule (compare with (16)):

T (1) = (1[¥)"[0) + (0f%)" 1) (21)

The operator 7% is anti-unitary and self-reversible, with inverse (7%)~! =
(T3)! = T%.

If for an application of the rule (11b) one takes inspiration from (17), we
have the anti—unitary case defined by the law:

Ty, (19)) = (L[¥)" [0) = (0l)" [1) (22)

This operator Ty, : C? v C? is just the one introduced in [4] and denoted by
O in the introduction. Applying Ty, twice one obtains —Il and so the inverse
of T, is given by the anti-unitary operator (Tj{,l)’1 =-Tx,-

Differently from the linear case, for every |¢),|¢) we have that

(V| T o) = (o | (T) ) =((Te) 0| ¢)” (23)

As seen at the end of section 2, this is the condition which defines the adjoint
of the anti-linear operator Ty as (T, )" = (T%,)~*. In the particular case of
|¢) = |1) one has that <w | T]‘\‘hw> = <(T]‘\lfl)_11/) | 1/J>, which corresponds to
the fact that (Tji,l)*l is the so—called diagonal adjoint of T, . In particular
<w | Tj\l,lz/J> = 0 whatever be the vector |1).This result cannot be achieved by
any of the other possible unitary and anti-unitary extensions of the classical
NoT gates described before.

Making use of the conjugate anti-unitary operator T}, defined by (13)
(and also of the unitary version of the NOT gate (16)), and according to the
general relationship (14), we have that T, = T]l\,1 oT% =io, 0TS, property
which expresses “what can be called the spin flip transformation, [...]. For a
pure state of a single qubit, the spin flip [...] is defined by

|¢L> =10y [v*)

where |[¢*) is the complex conjugate of |1)) when it is expressed in a fixed
basis such as {|1),[l)}, and o, expressed in the same basis is the matrix
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i 0
and indeed reverses the direction of the spin” [32].
For any pure state (density operator) pjyy, it is

0 —i . . . . .
( 1). For a spm—% particle this is the standard time reversal operation

TR, o0y (TR,) ™" = prg. 10y

corresponding to the fact that the von Neumann-Liiders operation (in the
sense of [3]) generated by the anti-unitary operator 7% transforms the pure
state p|y) into the “orthogonal” pure state prg |y) = pjyty-

1

4 Poincaré Sphere Considerations

In this section we analyze the unitary and anti-unitary operators introduced
in the previous section as transformations on the Poincaré sphere. Let p be
a density operator in the Hilbert space C? uniquely represented in the form
p = % (I+ Pyo, + Pyoy + P.o.) = % (I+ P -¢) under the condition P2 +
P2+ P? < 1. The correspondence p € TC7 (C?) «— P = (P,, P,, P.) is one-
to-one and onto and so any density operator on C? is univocally represented
as a point of the Poincaré sphere of R3. Then, we have that:

1. pr T opo(Th)~! corresponds to the transformation (P, Py, P,) —
(Py, —Py, —P,) in which the involved points are antipodes with respect
to the x axis. In particular, any point on the zy plane of the Poincaré
sphere (0, Py, P,) is transformed into the real antipode (0, —P,, —P,).

2. p— Tk opo(Th,)~" corresponds to the transformation (P, Py, P) —
(—Py, Py, —P,) in which the involved points are antipodes with respect to
the y axis. Also in this case any point of the zz plane (P, 0, P.) is trans-
formed by the unitary operator T]l\,1 into its real antipodal (—P,,0, —P,).

3.p = T&opo (TY)™! corresponds to transformation (P, Py, P,) —
(P, Py, —P;) in which the involved points are antipodes with respect to
the xy plane.

4. pr> Ty opo (TR, )~" corresponds to the transformation (P, Py, P;) —
(—P,,—P,,—P.), such that all the involved pairs are antipodes of each
other.

1

From point 4 we have that the anti—unitary BHW operator 7%, describes
the gate which transforms any mixed state in another mixed state whose
Poincaré representations are antipodal.

From the unitary point of view, the operator more similar to T%; is T}Vl

3£ 9
which applied to a generic vector |9, ¢) = (Zi %2 S?Eif) of C? produces the
2
transition:
Tx,
19, 0) —= — [0 +m,—¢) =9 +m,—(p+2m)) (24)

The outgoing vector |¢ + 7, —) is the antipodal of the incoming one |1, ),
not with respect to the origin of the space R? in which the Poincaré sphere
is embedded, but with respect to its y axis.
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The inner product (¢, p|d + 7, —¢) = 2isinpcos g sing is trivially 0

(orthogonality) under the condition ¢ = 0, i.e., for any pure state of the

9
form|¥,0) = cos 3) i.e., with both the components real, whose Poincaré
2
surface representation is on the xz plane. Under this condition the above
transition (24) becomes

[#,0) — — |9+ 7,0) = |¢+ 7, —27)

and so “if we relax the ‘universality’ condition, the U-NOT operation may
become available: if we are promised that the elements of the density matrix
(or the components of |¢)) are real, the state lie in the y = 0 plane so that
the inversion at the center is equivalent to a proper rotation by 7 around the
y—axis”. [6].

Setting ¥ = 2a, the vector |a) = |2c,0) describes the quantum (pure)
state of light linear polarized along the direction « with respect to the ref-
erence axis Aj of the analyzer Nicol prism which constitute the preparation
part of the device. In this interpretation the linear realization T}Vl of the
classical NOT gate performs an antipodal transformation of all possible pure
states of linearly polarizations light.

These considerations can be extended to the case of states obtained
as mixture of linear polarized pure states. Let |a) and |a+ 7/2) be the
two quantum pure states of linear polarization about the mutually antipo-
dal angles o and o + 7/2, for a fixed, but arbitrary «, with the opera-
tor representations p, = |a) (a| and poir/2 = |+ 7/2) (@ +7/2|. Let us
make their generic convex combination py 4 .a4x/2 = Apa + (1 — )\)pa+ﬂ/2 =
1[I+ (2A—1) (sin(2a) 04 +cos(2) 0.)] with 0 < A < 1. Then, the associated
Poincaré representation is the point ((2A—1) sin(2a), 0, (2A —1) cos(2«)) in-
side the unit zz circle of R?, whose antipodes has as corresponding density
Operator juSt p)\,a+7r/2,o¢ = pa+7r/2 + (1 - )‘) Pa = T‘]l\/'1 Opk,a,a+7r/2 o (T]l\fl )71~

5 Unitary and anti-unitary quantum description of the square
root of the identity gate and of the square root of the Not gate

We will now consider two important genuine quantum gates that transform
each element of the computational basis of C? into qubits that are genuine
superpositions of this basis: the square root of the identity and the square
root of the NOT.

In this section, we consider in particular the following two operators on
C?: the identity operator I and the linear version Tzlvl of the NOT gate with
matrix representation (18). The identity operator is trivially positive since
whatever be ¢ # 0 it is (1[Iy)) = |[4]|* > 0, whose unique (positive) square

root is, as expected, the identity operator itself v/I = I. This is a particular
application of the following general result of Functional Analysis.

Theorem. For every positive operator T' > O it exists a unique positive
operator S > @ such that S? = T. In this case we write S = /T and S
is called the (positive) square root of T.
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In order to extend this point of view to the case of unitary operators, one
can take into account the following.

Definition. Given a unitary operator U we will say that a linear (resp.,
anti-linear) operator W is its unitary (resp., anti—unitary) square root iff
W is unitary (resp., anti—unitary) and such that W2 = U. In this case,
for analogy, we will set W = /U.

The crucial point is that the existence of W does nor assure its uniqueness.

In the cases of our interest, the identity operator I and the linear version
Tzlvl of the Boolean NOT gate, are both unitary and then it is possible to apply
to them this definition of, in general non unique, (unitary) square root. For
example, in the case of the identity operator we have seen that one possible
square root is VI = I, which is positive and unitary. Moreover, two other
(unitary) square roots of the identity I are the following Walsh-Hadamard
(from now on simply Hadamard) operator and one of its variations, which
are both self-adjoint and self-reversible but not positive:

1 /1 1 1 /-11
gt —g-1_ _ gt _ -1 _
H=H'"=H _\/§<1—1) and Hl_Hl_(Hl) _\/5< 11)

Let us outline a generalization to the case of a genuine quantum gate
(i.e., a gate which transforms at least an element of the computational basis
into a superpositions of this basis) of the method (11) introduced in the
case of semi—classical (i.e., quantum versions of classical Boolean) gates.
For reasons of simplicity, we treat the case of the qubit Hilbert space C?
(the extension to the generic quregister case is straightforward). Fixed the
computational basis B. = {|0),|1)} of C? let us suppose to know the action
of an operator U, linear or not, on the elements of this basis and formalized
by the transformations:

U0) = ao |0) + a1 |1) (25a)
U 1) = bo [0) + by [1) (25b)

where the outputs are superposition of the pure input qubits, but under the
ortho—normality conditions:

U [0)[|* = lao|* + |a1[* =1 (26a)
1T [1)[|* = [bo]* + [b1]* = 1 (26b)

(U0) | U 1)) = afbo + ajby =0 (26¢)
|

Then, the generalization of (11) to a generic [¢b) = (0[¢)) |0) + (1|h) [1) is
formalized as follows:

Tf; [9) = (0¢) U |0) + (1]3) U [1) linear
TG |) = 0|1¥)*U |0) + (1|¥)*U |1) anti-linear
that is
Ty [#) = lao(Oly) + bo(L[¥)] 0) + [a1(0[e) + ba(L]9)] [1) (27a)

T |¢) = ao{01¥)™ + bo(1]4)"] [0) + [a1(0]¢)" + br (1[¢)"] [1)  (27b)
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The above ortho—normality conditions (26) assure that both these operators
transform an orthonormal basis into an orthonormal basis, and so they define
a unitary and an anti—unitary operator, respectively. Moreover, these two
unitary and anti—unitary versions are linked by an extension of the first
relationship (14) furnished by the complex conjugation anti—unitary operator:

Tf =Ty o Ty (28)

But differently from the second identity of (14), and taking into account the

(25), we have that for an arbitrary |¢) = ¢o |[0) + ¢1 |1)
Ty (Tig(co [0) + 1 1)) = €5 (ao + ar) [0) + €5 (bo + b1) [1) (29a)
Ti(TY (e0 [0) + ex 1)) = ci(ag + ai) [0) + 1 (bg + b7) |1) (29b)

Of course, if the coeflicients involved in the equations (25) are all real, then
we have that T}, o T = T/ o T}, i.e., the involved extension commutes with
the complex conjugation anti—unitary operator.

Moreover, since the involved coefficients are real, the two equations (29)
are identical corresponding to the fact that

In particular, we apply the methods to the peculiar version of (25) for
the case of the square root of the identity gate, formalized as

Vid |0) =
Vid|1) =

% [10) + [1)] (30a)

1
7 [0)

and for the case of the square root of the NOT gate, formalized as
VN1 |0) = [|0 +[1)] (31a)
VEID) = [ 10)+ 1] (31)

— 1] (30b)

Note that both these cases satisfies the ortho—normal conditions (26) which
assure that the corresponding whole operators constructed according to the
rules (27a) and (27b) are, respectively, unitary and anti—unitary. Note that
all the involved coefficients are real, and so their extensions commute with
the complex conjugation operator.

5.1 The unitary and anti—unitary versions of the square root of the identity
gate

Making use of the (27a), the linear formulation of the above rules (30) de-
scribing the square root of the identity gate leads to the operator expressed
by the law:

Tla(l)) = \7[(<0|¢> (1]4)) 10) + (Oy) = (1)) [1)] (32)
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. . . - . . 1 -1 1 il
Thlsgoperato? is unitary an.d self' reversible, i.e., (T\/E) = (T\/H) = Tm,
and its matrix representation with respect to the canonical computational
basis is described by the Hadamard gate H

This unitary matrix acts on the generic vector |¢) according to

l 1
Tal) = floal) + 0. 10)] (33)

and it describes a self-reversible quantum gate, which is nothing else than
the normalized sum of the Pauli spin-1/2 matrixes along the z and z di-
rections. On the Poincaré sphere it produces the transition (P, Py, P,) —
(Pza _Pyv P:r)

On the other hand, the extension of the rules (30) expressed by the law
(27b) leads to the anti—unitary operator

Bl

ﬂ[(<0\¢>* + 1)) [0) + (O)" = ) 1] (34)

T (1)) =

This operator is again self-reversible (T\“/rd)*1 = T\“/m and it produces
the transition (P, P,, P.) — (P., Py, P;) on the Poincaré sphere.

Moreover, with respect to the generic vector [¢)) = ¢o|0) + ¢1 |1), the
orthogonal (up to a phase factor) of the vector o, |¢)) = ¢ |0) — ¢1|1) is the
vector (o, [1))t = —c;|0) — ¢f|1) and the orthogonal of the vector o [1)) =
c1]0) + co|1) is the vector (o, [¥))t = ¢5]0) — ¢} |1). So the above (34),
whatever be the incoming qubit |¢), can be written as

1
Tialt) = 5@ )" = (@ [v)*] (35)

from which it follows that this operator can be expressed in term (besides
others) of the anti—unitary universal NOT as follows

1
T

f}ﬁ = \ﬁ Ty, (om - az) (36)

Thus, the anti—unitary operator T\a/fd describes the transformation which

satisfies the condition to take an arbitrary (unknown) qubit and to trans-
form it into an equally superposition of two suitable qubits. Note that if the
Poincaré representation of the pure state |1) is the triple (P, P, P;), then
the representation of the above pure state o, |¢) (resp., o, [¢)) is the triple
(Py, —P,,—P,) (vesp., (—P,,—P,, P,)), i.e., the antipodal with respect to the
x (resp., z) axis of the representation of [¢). Of course, the representation of
the pure state (o, |1))* (resp., (o [¢))*) is the triple (—Py, Py, P.) (resp.,
(Px’ Py’ _Pz))'
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5.2 The non-linear version of the square root of the identity gate.

Taking inspiration from a comparison of the equations (17) and (22), one
can suggest the rule that the passage from the linear case to the anti-
linear one can be performed by the transformations (1[¢)) [0) — (1]0)* |0)
and (0]¢) |1) — (0|¢)* |1). If we apply this heuristic rule to the (32) we get
the operator defined by the law:

1 * x
ﬂ[<<0\w>+<1|w> )10) + (0" = (1) [D] - (37)

Trivially, this operator is additive, but from

nl i (@co _ 1 [ ac+a o
Tk lo) =Tk (0) = 5 (Lo o)
we immediately get that it is neither homogeneous, nor anti-homogeneous,

nor absolutely homogeneous (but it is “real” homogeneous in the sense that
T"l ( [v)) =7 T"l - |1) for any real number r € R). In other words, we have

to do with an addltlve neither linear nor anti-linear operator T%, which

T(v)) =

is self-revers