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Abstract: This paper proposes the markovian approach to price exotic options
under Lévy processes. The markovian approach is simpler than the others pro-
posed in literature for these processes and it allows to define hedging strategies.
In particular, we consider three Lévy processes (Variance-Gamma, Meixner and
Normal Inverse Gaussian) and we show how to compute American, barrier, com-
pound and lookback option prices. We first discuss the use of an homogeneous
Markov chain approximating the risk neutral log-return distribution. Then, we de-
scribe the methodology to price exotic contingent claims under the three different
distributional assumptions and we compare the convergence results.
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1. Introduction

It is well known that log returns are not Gaussian distributed. As a matter
of fact, several empirical investigations have shown that the log-returns present
skew distributions with excess kurtosis and, for this reason, many alternative dis-
tributions have been proposed to characterize their distributional behavior. In
particular Lévy processes have been widely used in the recent financial literature
since they are a natural generalization of the Brownian motion, and they take into
account the log-return skewness and kurtosis. Examples of such processes are the
α Stable Lévy (see Mandelbrot and Taylor (1967) and Hurst, Platen and Rachev
(1997)), the Tempered Stable (see Tweedie (1984)), the Normal Inverse Gaussian
(see Barndorff-Nielsen (1995)), the Meixner (see Schoutens (2001)), the Variance
Gamma (Madan and Seneta (1987, 1990)), the CGMY (see Carr et al. (2002)) and
the Generalized Hyperbolic process (see, Eberlein et al. (1998), Prause (1999)).
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Ortobelli Lozza. The research has been partially supported by grants from EX-MURST 60%
2006, 2007. We are grateful to seminar audiences at University of Milan - Bicocca for helpful
comments.



In this paper we face the problem to compute option prices assuming Lévy-
exponential models. In this setting, we cannot always guarantee the classical
predictable representation property that implies the completeness of the mar-
ket. Thus, a more realistic market model based on a non-Brownian and a non-
Poissonian Lévy process, will lead to incomplete markets. Clearly the complexity
increases with respect to the usual framework of Black & Scholes model, since
generally, there is not a unique risk neutral martingale measure and we have to
solve a partial differential integral equation. European options, except for the few
cases we know the risk neutral density distribution, can be priced using Fourier-
based methods where we have to evaluate a Fourier transform numerically. These
methods, like those due to Carr and Madan (1998) and Lewis (2001), can be
easily applied using the FFT algorithm, but they cannot be easily used to price
path dependent options. Generally, the methods proposed to price path depen-
dent options when the log returns follow a Lévy process (such as those based on
the Wiener-Hopf factorization) imply highly complex calculations with numerical
integrations and numerical inversion methods, that do not always present stable
results or that require long computational times, such as those based on Monte-
Carlo simulations, (see, among others, Yor and Nguyen (2001), Boyarchenko and
Levendorskii (2002), Schoutens (2003) and Cont and Tankov (2004) and the ref-
erences therein).
In this paper we examine the markovian approach to price American, compound,
barrier, and lookback options assuming Lévy-exponential models for the underly-
ing. In particular, we compare option pricing results under the assumption the log
return follows either a NIG process, or a Variance Gamma process or a Meixner
process. The markovian approach to price contingent claims is as a logical exten-
sion of the well known binomial model (see Amin (1993)). The main idea is to
exploit the possibility to build a sequence of Markov chains converging weakly to
the Lévy process defined into the model. As suggested by Amin (1993), Krushner
and Dupuis (2001), in many cases it is very simple to price contingent claims
approximating the underlying markovian process with an homogeneous Markov
chain. Moreover, with the markovian approach it is also possible to price contin-
gent claims when the underlying follows a markovian non parametric process (see
Iaquinta and Ortobelli (2006)). In the paper we obtain the arbitrage free prices,
approximating the underlying risk neutral Markovian process. However, we can
also obtain the absence of arbitrage by imposing some moment matching condi-
tions that permit to estimate the risk neutral transition matrix (see Krushner and
Dupuis (2001), Cont and Tankov (2003)). In particular, we adopt the methodology



proposed by Duan and Simonato (2001) and Duan et al. (2003). who have used
the markovian approach to approximate Wiener processes and GARCH processes
with Gaussian residuals in order to price American and barrier options. There-
fore, the main contribution of this paper consists in showing the simplicity of the
markovian approach to price exotic contingent claims when the underlying follows
an exponential Lévy process. We first build a Markov chain that approximates
the markovian behavior of three non Gaussian Lévy processes (Variance-Gamma,
Meixner and Normal Inverse Gaussian) and the Brownian motion. This discretiza-
tion process presents the same advantages of the binomial model since it permits
us to price path dependent contingent claims. Then, we show the convergence of
the compound option prices in the case analyzed by Geske (1979) for the Brown-
ian motion and we extend the same analysis to the other three Lévy processes.
For American and barrier options we just apply the markovian approach to Lévy
processes as suggested by Duan et al (2003) for GARCH processes. For look-
back options, instead, we show how to extend Cheuk and Vorst’s algorithm in a
Markov chain framework (see Babbs (2000) and Cheuk and Vorst (1997)). Recall
that in the Black and Scholes framework there is an analytical pricing formula
for lookback options derived by Goldman et al. (1979) and extended by Conze
and Viswanathan (1991). However, discretizing the continuous markovian models
we can approximate much better the right prices of lookback contracts, since in
these contracts the maximum and/or the minimum of the underlying asset price
are computed over some prespecified dates only, such as daily, weekly or monthly
(see Cheuk and Vorst (1997)).
The paper is organized as follows. Section 2 introduces Lévy-exponential models
and their risk neutral valuation. Section 3 discusses the markovian approach and
shows some convergence results for American, European options and their Greeks
when the log return follows either a NIG process, or a Variance Gamma process or
a Meixner process. In Section 4 we deal with the compound, barrier, and lookback
options. Finally we briefly summarize the results.

2. Lévy Processes and Risk Neutral Valuation

In this section we discuss the risk neutral valuation of Lévy processes when
in the market there are two assets: a riskless asset with price process Bt =

exp
³R t

0
r(s)ds

´
, where the right continuous with left-hand limits time-dependent

function r(t) defines the short term interest rate, and a risky asset that pays



no dividends with price process St = S0 exp(Xt). Thus, assume that log-return
process X = (Xt)t≥0 (i.e., Xt = log(St/S0)) is an adapted RCLL process defined
on a filtered probability space

¡
Ω,=, (=t)0≤t≤∞ , P

¢
, that satisfies the usual con-

ditions. In particular, let us assume that the log-return process follows a Lévy
process.
This assumption takes into account the skewness and the heavy tails often ob-
served in the log-return distribution. As a matter of fact, Lévy processes are all the
stochastic processes with stationary, independent increments and stochastically
continuous sample paths. Since they have infinitely divisible distributions, their
characteristic function φ(u) is univocally determined by the triplet [γ, σ2, ν] that
identifies the so called Lévy-Khintchine characteristic exponent ψ(u) = log φ(u)
given by:

ψ(u) = iγu− 1
2
σ2u2 +

Z +∞

−∞
(exp(iux)− 1− iux1{|x|<1})ν(dx),

where γ ∈ R, σ2 > 0 and ν is a measure on R\{0} with
R +∞
−∞ (1∧x2)ν(dx) <∞. In

particular the Lévy triplet [γ, σ2, ν] identifies the three main components of any
Lévy process: the deterministic component (γ), the Brownian component (σ2)
and the pure jump component (ν). For further details on the theoretical aspects
we refer to Sato (1999). Next, we consider three Lévy processes alternative to the
Brownian motion that present skewness and semi heavy tails: the Normal Inverse
Gaussian process (NIG), the Variance-Gamma process (VG) and the Meixner one.
Normal Inverse Gaussian: Under the assumption that the log return follows
a NIG process NIG(α, β, δ, q), with parameters α > 0, β ∈ (−α, α), δ > 0, q ∈ R
, we have that the characteristic function of the process at time t is given by:

φNIG(u;α, β, tδ, tq) = exp

µ
−(tδ)

µp
α2 − (β + iu)2 −

q
α2 − β2

¶
+ iutq

¶
.

That is the density of the log return at time t is given by:

fNIG(x;α, β, tδ, tq) =
tδα

π
exp

µ
tδ

q
α2 − β2 + β(x− tq)

¶
×

×K1(α
p
(tδ)2 + (x− tq)2)p

(tδ)2 + (x− tq)2
(1)

where Kλ(x) denotes the modified Bessel function of the third kind with index λ.
Variance Gamma: The Variance-Gamma process can be also defined as the



difference between two independent Gamma processes. Under the assumption
that the log return follows a VG process V G(σ, ν, θ, q) with parameters σ > 0,
ν > 0 and q, θ ∈ R, the characteristic function of the process at time t is given
by:

φV G(u;σ
√
t, ν/t, tθ, tq) =

µ
1− iuθν +

1

2
σ2νu2

¶t/ν

eiuqt

That is the density of the log return at time t is given by:

fV G(x;σ
√
t, ν/t, tθ, qt) =

2e
θ(x−qt)

σ2

³
(x−qt)2
2σ2/ν+θ2

´ t
2ν
− 1
4

νt/ν
√
2πσΓ(t/ν)

×

×K t
ν
− 1
2

µ
1

σ2

q
(x− qt)2(2σ2/ν + θ2)

¶
(2)

whereK t
ν
−1
2
(x) is the modified Bessel function of the third kind with index

t

v
− 1
2
.

Meixner: Under the assumption that the log return follows a Meixner process
Meixner(α, β, δ, q) with parameters α > 0, β ∈ (−π, π), δ > 0, m ∈ R the
characteristic function of the process at time t is given by:

φMeixner(u;α, β, δt, qt) =

µ
cos(β/2)

cosh((αu− iβ)/2)

¶2δt
eiuqt

That is the density of the log return at time t is given by:

fMeixner(x;α, β, δt, qt) =
(2 cos (β/2))2δt

2πΓ(2δt)α
exp

µ
β(x− qt)

α

¶
×

×
¯̄̄̄
Γ

µ
δt+

i(x− qt)

α

¶¯̄̄̄2
(3)

In order to value the best approximation of these distributions, we consider quota-
tions of the index S&P500 from January 2006 to March 2007. Then we compute
the parameters maximizing the likelihood function when the log-returns follow
either a NIG process, or a Meixner process or a VG process (see Table 1). Finally
we consider the Kolmogorov-Smirnov test

D = sup
x∈R

|F (x)− FE(x)|,



Table 1. MLE of parameters and Kolmogorov-Smirnoff test of daily 
S&P500 log-returns assuming or a Normal Inverse Gaussian process, 
or a Variance-Gamma process or a Meixner process. 
NIG α=153.866β=7.603 δ=1.562 q=-0.00029D=0.0653 
VG θ=0.0756 σ=0.0984v=0.0024 q=0.00055 D=0.0667 
Meixner α=0.0146 β=0.1116δ=94.676q=-0.00026D=0.0661 
 

Figure 1. QQ plot among the sample and the Gaussian, NIG and VG distributions 
 

 

where FE is the empirical cumulative distribution and F the assumed distribu-
tion. Considering that the Brownian Motion hypothesis gives a value of the test
D = 0.0766, then the other three distributional hypotheses present a better ap-
proximation. This empirical result is confirmed by the QQ-plot analysis of Figure
1.
Figure 1 reports a QQ-plot among the sample and the Gaussian, NIG and VG
distributions (we get similar results with the Meixner distribution). Thus we can
see how the empirical and theoretical distributions are closer on the whole real
line when we use the NIG or VG distributions to model the log-returns. Under
the assumption the log-return process follows a Lévy process whose trajectories
are neither almost surely increasing nor almost surely decreasing we can always
guarantee that there exists at least one equivalent martingale measure. Since the
market is generally incomplete, then more than one equivalent martingale mea-
sure could exist. Given the risk neutral probability measure P̃ , we can use it to



determine the free-arbitrage price of any contingent claims with maturity T. That
is, given the contingent claims function H : Ω → R (=T -measurable function),
then its price at time t is:

Πt(H) = exp

µ
−
Z T

t

r(s)ds

¶
EP̃ (H|=t) . (4)

There exist several techniques to determine a risk neutral martingale measure. A
two steps methodology commonly used is:
1) determine a class of equivalent martingale measures;
2) determine the risk neutral measure, among the equivalent martingale mea-
sures, that minimizes a distance with respect to some historical contingent claim
prices.
Typically, in order to determine the optimal parameters that better approxi-

mate the risk neutral distribution, we minimize the root mean squared prediction
error (RMSE) with respect to the observed prices. Therefore, we consider N his-
torical contingent claim prices cci (i=1,. . . ,N ) and we determine the risk neutral
Lévy process parameters ' ∈ Θ that minimize

RMSE=min
'∈Θ

NX
i=1

¡
cci − Lpi(')

¢2
,

where Lpi(') is the price of the i-th contingent claim obtained using the relation
(4) under the equivalent martingale Lévy density with the parameters ' ∈ Θ.
Here in the following we briefly recall two classes of equivalent martingale mea-
sures used in Lévy processes literature: the mean-correcting equivalent martingale
measure and the Esscher transform one.
Mean-correcting (see, among others, Schoutens (2003)): Mimicking the Black
and Scholes model, the discounted price process S̃t = exp

³
−
R t
0
r(s)ds

´
St be-

comes a martingale if we change the price process St = S0 exp(Xt) with St =
S0 exp(

R t
0
μ(s)ds+Xt), where μ(s) = q+ r(s)− log φ(−i) and q is the translation

parameter previously introduced for the three distributions. Therefore, we have
to define a new equivalent probability measure P̃ on (Ω,=) under which the log-
returns follow the Lévy process {

R t
0
μ(s)ds +Xt}. In the three processes defined

above, we have

μ(NIG)(s) = r(s) + δ

µp
α2 − (β + 1)2 −

q
α2 − β2

¶
, (5a)



μ(VG)(s) = r(s) +
1

ν
log

µ
1− θν − 1

2
σ2ν

¶
, (5b)

μ(Meixner)(s) = r(s)− 2δ(log(cos(β/2))− log(cos((α+ β)/2))). (5c)

Esscher Transform (see Gerber, Shiu (1994, 1996)): Assume for simplicity
that r(t) = r constant. We observe that the discounted price process S̃t =
S0 exp (−rt+Xt) becomes a martingale if we assume the new equivalent mar-
tingale density distribution

fX̃t
(u) =

fXt(u) exp(θ
∗u)R +∞

−∞ fXt(q) exp(θ
∗q)dq

where θ∗is obtained as solution of the equationZ +∞

−∞
fX1(u) exp(θu)du =

Z +∞

−∞
fX1(u) exp ((θ + 1)u− r) du.

That is, we define a new equivalent probability measure P̃ that has Radon-

Nikodym derivative with respect to P given by
dP̃/=t
dP/=t

=
exp(θXt)

E (exp(θXt))
. Then

the three processes above admit the equivalent martingale density given by:

f̃NIG(x;α, β, tδ, tq) =
tδα

π
exp

µ
δ(t− 1)

q
α2 − β2 + (β + θ∗)(x− tq)+

+δ
p
α2 − (β + θ∗)2

´K1(α
p
(tδ)2 + (x− tq)2)p

(tδ)2 + (x− tq)2
,

f̃V G(x;σ
√
t, ν/t, tθ, tq) =

µ
1 + θ∗θν − 1

2
(σθ∗)2 ν

¶−1/ν
×

×
2e
(θ+σ2θ∗)(x−tq)

σ2

³
(x−tq)2
2σ2/ν+θ2

´ t
2ν
−1
4

νt/ν
√
2πσΓ(t/ν)

K t
ν
−1
2

µ
1

σ2

q
(x− tq)2(2σ2/ν + θ2)

¶
,

f̃Meixner(x;α, β, δt, tq) =

µ
cos(β/2)

cosh(−i(αθ∗ + β)/2)

¶−2δ
(2 cos (β/2))2δt

2πΓ(2δt)α
×

× exp
µ
(β + αθ∗) (x− tq)

α

¶ ¯̄̄̄
Γ

µ
δt+

i(x− tq)

α

¶¯̄̄̄2
.



3. Pricing and hedging American and European options
with Lévy processes

In this section, we opportunely adapt to Lévy processes the markovian method-
ology proposed by Duan et al.(2003). Since Lévy processes are particular Markov
processes we suggest to use an approximating Markov chain in order to price
exotic options when the log return follows a Lévy process. This discretization
process provides the same ductility of the binomial model and for this reason it
is possible to price almost every path dependent contingent claim once we know
the risk neutral distribution of the underlying Markov process.

3.1. The markovian approach

Assume the maturity of the contingent claim is T. Our task is to approximate,
under the risk neutral probability P, the log price process {ln(St)}0≤t≤T at times
{0,∆t, 2∆t, . . . , s∆t = T} by a sequence of Markov chains {Ỹ (m)

n∆t , n = 0, 1, 2, . . . , s}m=2i+1,i∈N
with state space {p1, p2, . . . , pm} and transition probability matrixQ(m) =[qij]1≤i,j≤m,
where m is an odd integer and p(m+1)/2 = ln(S0). In order to fix the ideas, we
adopt the mean correcting risk neutral valuation considering the riskless rate
r(t) = r constant. Thus, we build a sequence of Markov chains {Ỹ (m)

n∆t , n =
0, 1, 2, . . . , s}m=2i+1,i∈N with state space {p1, p2, . . . , pm}, converging weakly to
the risk neutral Lévy process {ln(S0) + μt + Xt, t = 0,∆t, 2∆t, . . . , T} (here
X = (Xt)t≥0 is the log-return process) as the state number m tends to infinite,
where μ is defined (for the three processes introduced in the previous section) by
formulas (5). Therefore, given the current price S0, we define an interval centered
in ln(S0) such that the probability that ln(ST ) + μT belongs to the interval is
almost equal to 1, i.e.,

P (ln(ST ) + μT ∈ [ln(S0)− I(m), ln(S0) + I(m)]) ≈ 1.

The m states of the Markov chain are defined as pi = ln(S0) +
2i−m− 1
m− 1 I(m),

i = 1, . . . ,m. Note that p1 = ln(S0)− I(m), pm = ln(S0) + I(m) and p(m+1)/2 =
ln(S0). Fixed the m values pi, we can always determine other m values starting

by any other state pik = pi +
2k −m− 1

m− 1 I(m). In particular, pik = pj if and only

if k = j − i+ m+1
2
, that is

pik = pi +
2k −m− 1

m− 1 I(m) = ln(S0) +
2(i+ k − m+1

2
)−m− 1

m− 1 I(m).



In order to get the convergence, we have to guarantee that I(m) → ∞ and
I(m)/m → 0 as the number of the states converges to infinity (m → ∞),
see, among others, Pringent (2002). For example, when the Markov process
Y = {ln(St)}0≤t≤T admits finite mean (i.e., E (|ln(S∆t)|) < ∞), we can use
I(m) = max(|z1/m|, |z1−1/m|), where zk is the k% quantile of ln(ST ) + μT . Since
I(m) → ∞ and I(m)/m → 0, we can guarantee the convergence of the Markov
chain sequence. However, the speed of convergence is strictly linked to the choice
of I(m). Thus, we have to choose opportunely I(m). Duan et al. (2003) sug-
gest to use I(m) = (2 + ln(ln(m)))σ

√
T for the Brownian Motion. When we

assume the mean correcting risk neutral valuation for the three processes intro-
duced in the previous section, we observe an higher speed of convergence us-

ing I(m) = z +
log(log(m))

2
,where with log we mean logarithm with base 10,

z = max(|z0.01|, |z0.99|), z0.01 and z0.99 are respectively the 1% and 99% quantiles
of the ln(ST )+μT distribution. The transition probability between the i-th state
and the k-th state is given by

qik = P
¡
ln(S∆t) + μ∆t ∈ (cik, cik+1]

¢
,

where ci1 = pi1 −
log(log(m))

2
, cik = (pik + pik−1)/2, k = 2, . . . ,m and cim+1 =

pim +
log(log(m))

2
. Then we deduce the convergence of the sequence of Markov

chains {Ỹ (m)
n∆t , n = 0, 1, 2, . . . , s}m=2i+1,i∈N with state space {p1, p2, . . . , pm}, to the

risk neutral Lévy process {μt+ ln(St), t = 0,∆t, 2∆t, . . . , T} because

ci2 − ci1 = cim+1 − cim =
I(m)

m− 1 +
log(log(m))

2m
→ 0, as m→∞

and

cik+1 − cik = 2

µ
I(m)

m− 1

¶
→ 0, as m→∞, k = 2, . . . ,m− 1.

Since pik = pj if and only if k = j − i + m+1
2
, then we have not to compute all

the entries qij of the transition matrix Q(m). As a matter of fact, if we define
k(j) = j − i + m+1

2
, j = 1, . . . ,m, then the entries of the transition matrix Q(m)

are given by:
if i < m+1

2
:



qij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1+m+1
2
−iP

k=1

R cik+1−pi−μ∆t

cik−pi−μ∆t
fX∆t

(x)dx if j = 1R ci
k(j)+1

−pi−μ∆t

ci
k(j)

−pi−μ∆t
fX∆t

(x)dx if j = 2, . . . , i+
m− 1
2

0 if j = i+
m+ 1

2
, . . . ,m;

if i > m+1
2
:

qij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if j = 1, . . . , i− m+ 1

2R ci
k(j)+1

−pi−μ∆t

ci
k(j)

−pi−μ∆t
fX∆t

(x)dx, if j = i− m− 1
2

, . . . ,m− 1
mP

k=m−i+m+1
2

R cik+1−pi−μ∆t

cik−pi−μ∆t
fX∆t

(x)dx, if j = m;

if i = m+1
2
:

qij =

Z cij+1−pi−μ∆t

cij−pi−μ∆t

fX∆t
(x)dx, j = 1, . . . ,m,

where fX∆t
(·) is the density function of the log-return Lévy process. When m

increases the intervals (cik, c
i
k+1] become so small that we can well approximate

any integral with the area of only one rectangle, i.e.,Z cik+1−pi−μ∆t

cik−pi−μ∆t

fX∆t
(x)dx ≈ fX∆t

µ
ck + ck+1

2

¶
(ck+1 − ck).

3.2. Pricing of European contingent claims

When the maturity of an European contingent claim is T and we consider s steps
(i.e., s∆t = T ), then the price of the contingent claims is given by the ((m+ 1)/2)-
th component of the price vector

V (p, 0) =
¡
Q(m)

¢s
Z, (6)

where Z is the m-dimensional vector of payoff at the maturity correspondent to
the vector of log prices p = [p1, p2, . . . , pm].
So we can assume that the payoff vector is given by Z = [gw,1, ..., gw,m]

0 where
gw,i = max{w[exp(pi)−K], 0}, w is equal to 1 for a call and -1 for a put. Anal-
ogously, to the example reported by Duan and Simonato (2001) with the Black



Table 2. European put option prices under NIG, VG, and 
Meixner processes. 
 

NIG process VG process Meixner process STATES 
 Weekly     daily weekly     daily weekly     daily 

m=101  1.7428    1.7984  1.6795    1.7489  1.7343    1.8022 
m=501  1.7442    1.7442  1.6809    1.6852  1.7357    1.7357 

m=1001  1.7442    1.7442  1.6810    1.6840  1.7358    1.7358 
m=1501  1.7442    1.7442  1.6810    1.6810  1.7358    1.7358 
m=2001  1.7442    1.7442  1.6810    1.6810  1.7358    1.7358 
m=2501  1.7442    1.7442  1.6810    1.6810  1.7358    1.7358 
m=3001  1.7442    1.7442  1.6810    1.6810  1.7358    1.7358 

and Scholes model, in Table 2 we show the convergence of this methodology un-
der the three different distributional assumptions. In order to determine some
prices which refer to the same underline stock process, for this table and all the
following ones we use the mean correcting risk neutral measure applied to the pa-
rameters estimated in Table 1. Table 2 reports European put option prices at the
money under NIG, VG, and Meixner processes on a stock price with current value
S0 = 100 euro, maturity T = 0.5 years, short interest rate r = 5% a.r.. Moreover,
we consider that the temporal horizon is shared either in 24 periods or in 126 pe-
riods (i.e. ∆t is equal respectively either to one week or to one day). In both cases
we observe the convergence of the option prices when the number of the states m
increases. The convergence price is the same we obtain approximating the integral
that defines the risk neutral put option price exp(−rT )100

R 0
−∞(1− ex)fX̃T

(x)dx.

3.3. Pricing and hedging American contingent claims

Let us consider an American option with maturity T and strike price K. We
assume that the contract may be exercised at times {0,∆t, 2∆t, . . . , s∆t}, where
T = s∆t. Fixed the number of states m we build the vector of the state values p =
[p1, p2, . . . , pm] of an approximatingMarkov chain {Ỹ (m)

n∆t , n = 0, 1, 2, . . . , s}m=2i+1,i∈N ,
with risk neutral transition matrix Q(m). Since the states remain the same for all
the time steps, then at each time {0,∆t, 2∆t, . . . , s∆t} there is an unique payoff



vector
gw(p,K) = [gw,1, ..., gw,m]

0

where gw,i = max{w[exp(pi)−K], 0}, w is equal to 1 for a call and -1 for a put.
For every couple of vectors a = [a1, ..., am]

0, b = [b1, ..., bm]
0 we assume the vec-

torial notation max[a, b] := [max(a1, b1),max(a2, b2), ...,max(am, bm)]0. Therefore,
the price of the American option can be computed using the recursive vectorial
formula:

Vw(p, T ) = gw(p,K),
Vw(p, ti) = max

£
gw(p,K), e

−r∆tQ(m)Vw(p, ti+1)
¤
,

i = 0, . . . , s− 1, ti = i∆t, s∆t = T.
(7)

The option price at time 0 is given by the ((m+ 1)/2)-th element of Vw(p, 0).
When we price a contingent claim with the markovian approach we get the vector
Vw(p, 0) whose elements are option prices corresponding to discrete values of the
stock price. Thus we can compute the Greeks in a way very similar to the finite-
difference approach using the option prices adjacent to the ((m+ 1)/2)-th element
of Vw(p, 0). However, as suggested by Duan et al., in order to obtain higher quality
Greeks it is advisable to have adjacent prices very close to the initial stock price.
This approximation problem can be easily solved considering the states pm+1

2
+ ε,

and pm+1
2
− ε in the Markov chain with ε opportunely small. In this way we can

use the following approximation of delta and gamma values:

∆ =
∂Vw
∂ lnS0

1

S0
≈

Vw
³
pm+1

2
+ ε, 0

´
− Vw

³
pm+1

2
− ε, 0

´
2ε

1

S0
,

Γ =
∂

∂S0

µ
∂Vw
∂ lnS0

1

S0

¶
≈

⎛⎝Vw
³
pm+1

2
− ε, 0

´
− Vw

³
pm+1

2
+ ε, 0

´
2ε

+

+
Vw
³
pm+1

2
+ ε, 0

´
+ Vw

³
pm+1

2
− ε, 0

´
− 2Vw

³
pm+1

2
, 0
´

ε2

⎞⎠ 1

S20
.

Consider American put options with exercise prices K=98 euro or K=102 euro
under the assumption the log returns follow either a NIG, or a VG, or a Meixner
process. We use the mean correcting risk neutral measure applied to the parame-
ters estimated in Table 1 for puts on a stock price with current value S0 = 100
euro, maturity T = 0.5 years, short interest rate r = 5% a.r.. In Table 3 we



Table 3. Delta, Gamma and American put option prices under 
NIG, VG, and Meixner processes. 

NIG process VG process Meixner process   
    K=98      K=102   K=98      K=102   K=98      K=102 

m=501   1.2419    3.0101   1.2067    2.9527   1.2349    3.0025 
delta  -0.2919   -0.5686  -0.2914   -0.5739  -0.2914   -0.5692 

gamma   0.0560    0.0816   0.0572    0.0829   0.0561    0.0820 
m=1001   1.2419    3.0101   1.1882    2.9529   1.2349    3.0025 

delta  -0.2919   -0.5686  -0.2881   -0.5732  -0.2914   -0.5692 
gamma   0.0560    0.0816   0.0571    0.0847   0.0561    0.0820 
m=1501   1.2419    3.0101   1.1869    2.9509   1.2349    3.0025 

delta  -0.2919   -0.5686  -0.2879   -0.5732  -0.2914   -0.5692 
gamma   0.0560    0.0816   0.0571    0.0848   0.0561    0.0820 
m=2001   1.2419    3.0101   1.1868    2.9507   1.2349    3.0025 

delta  -0.2919   -0.5686  -0.2879   -0.5732  -0.2914   -0.5692 
gamma   0.0560    0.0816   0.0571    0.0848   0.0561    0.0820 
m=2501   1.2419    3.0101   1.1868    2.9508   1.2349    3.0025 

delta  -0.2919   -0.5686  -0.2879   -0.5732  -0.2914   -0.5692 
gamma   0.0560    0.0816   0.0571    0.0848   0.0561    0.0820 



report the option prices and the values of delta and gamma when we assume
ε = 10−6. Even in this case we observe the convergence of these values for a
number of states m greater than 500. We compare the results using Montecarlo
simulations. However we observe that with Montecarlo simulations we need more
than 10 millions simulations to get the same results we get with the Markovian
approach approximated at 10−3. Moreover, we observe that the results obtained
with Montecarlo simulations are very unstable in comparison with those obtained
from the Markovian procedure.

4. Compound, barrier, and lookback option prices with Lévy
processes

In this section we propose to value exotic option prices assuming that a sequence
of Markov chains {Ỹ (m)

n∆t , n = 0, 1, 2, . . . , s}m=2i+1,i∈N describes the risk neutral
behavior of ln(St) at times {0,∆t, 2∆t, . . . , s∆t = T}. We compute compound,
barrier, and lookback option prices under the three distributional assumptions. In
particular, the methodology proposed is innovative for compound, and lookback
options that have not been dealt by Duan and Simonato (2001) and Duan et al.
(2003).
Compound options. Compound options are options written on options and can
be of four types: a call on call, a put on call, a call on put, and a put on put.
Consider a call on call. At the first maturity T1 the compound option holder has
the right to pay the first exercise price K1 and get a call. Then, the call gives to
the compound option holder the right to buy the underlying asset at the second
maturity T2 paying the second exercise price K2. The markovian approach allows
to price easily compound options. Using the recursive system to price an option
with maturity T2 − T1 and exercise price K2, we find a vector which represents
the possible prices at time T1 of the American (or European) option on which the
first option is written. Denote this vector as

Ṽw1(p, T1) = [Ṽw1,1, ..., Ṽw1,m]
0

where w1 is equal to 1 for a call and -1 for a put. The payoff at time T1of the
compound option is given by the vector

Vw2(p, T1) = max{w2[Ṽw1(p, T1)−K11], 0},

where 1and 0 are respectively vectors of ones and zeros, w2 is equal to 1 for
a call and -1 for a put. Thus, using again the recursive system with s steps



(i.e., s∆t = T1), the price at time 0 of an European option on an American (or
European) option is given by the ((m+ 1)/2)-th element of the vector Vw2(p, 0) =
e−rT1Qs

(m)Vw2(p, T1).
Table 4 exhibits the prices of compound options obtained under Brownian

motion, NIG, VG, and Meixner processes (considering different number of states
m). In particular we compare the results we get under the Brownian Motion and
those given by Geske0s closed formula (see Geske (1979)). These prices concern
European calls on European calls, where the current asset price is S = 100,
the first call has strike price K1 and maturity T1 = 0.25 years, and the second
call has strike price K2 and maturity T2 = 0.25 years. We consider two possible
strike prices K1 ( K1=1.5, 2) and three possible strike prices K2 (K2=98,100,102).
Moreover, the short interest rate is r = 5%, the annual volatility of the Brownian
motion is σ = 10.14%, and the parameters of the NIG, Meixner and VG processes
are always those ones of Table 1.
Barrier options Barrier options may be of two types, knock-out and knock-in.
We proceed explaining how to use the markovian approach to price knock-out
options and we refer to Duan et al. (2003) for knock-in options. An option is said
knock-out when it becomes worthless if the underlying asset touches or crosses a
constant barrier H at any monitoring time. The barrier can be lower or upper
(i.e., H or H∗). A barrier option is double when there are two barriers and the
underlying asset must remain between these two barriers at the monitoring days.
Following Duan et al. (2003), we introduce an auxiliary variable at which takes
the value 1 if the barrier condition is triggered before or at time t, and the value 0
otherwise. If we denote with v(pi, t; at) the option price at time t, for a knock-out
option we have:
1) for every time

vw(pi, tk; atk = 1) = 0,

2) for ts = s∆t = T ,

vw(pi, T ; aT = 0) = max{w[exp(pi)−K], 0},
3) tk = k∆t, k=0,. . . ,s-1,

vw(pi, tk; atk = 0) = max
£
gw (pi,K, atk = 0) , e−r∆t×

×
Pm

j=1 P̃
¡
Xtk+1 = pj, atk+1 = 0|Xtk = pi, atk = 0

¢
v(pj, tk+1; atk+1 = 0)

i
,

where w is equal to 1 for a call and -1 for a put and

gw(pi,K, atk = 0) =

½
max{w[exp(pi)−K], 0} if American

0 if European.



 Table 4.  Compound option prices under Brownian motion, NIG, VG, and 
Meixner processes. We consider European calls on European calls, where the 
current asset price is 100S = , the first call has strike price 1K  and maturity 

1 0.25T =  years, and the second call has strike price 2K  and maturity 2 0.25T =  
years. 
 

Brownian motion Brownian motion 
K1=2 K2=98     K2=100     K2=102 K1=1.5 K2=98     K2=100     K2=102 
m=101 3.7530     2.5803      1.6764 m=101 4.1629     2.9332      1.9609 
m=501 3.7540     2.5851      1.6747 m=501 4.1637     2.9381      1.9598 
m=1001 3.7542     2.5851      1.6747 m=1001 4.1637     2.9385      1.9598 
m=1501 3.7542     2.5852      1.6746 m=1501 4.1637     2.9386      1.9598 
m=2001 3.7542     2.5852      1.6747 m=2001 4.1637     2.9386      1.9597 
Geske 3.7542     2.5852      1.6747 Geske 4.1637     2.9386      1.9597 

NIG process NIG process 
K1=2 K2=98     K2=100     K2=102 K1=1.5 K2=98     K2=100     K2=102 
m=101 3.7380     2.5584      1.6607 m=101 4.1479     2.9127      1.9438 
m=501 3.7360     2.5655      1.6577 m=501 4.1459     2.9189      1.9415 
m=1001 3.7359     2.5660      1.6574 m=1001 4.1459     2.9190      1.9413 
m=1501 3.7359     2.5660      1.6575 m=1501 4.1459     2.9191      1.9414 
m=2001 3.7359     2.5660      1.6575 m=2001 4.1458     2.9191      1.9414 

Meixner process Meixner process 
K1=2 K2=98     K2=100     K2=102 K1=1.5 K2=98     K2=100     K2=102 
m=101 3.7304     2.5519      1.6552 m=101 4.1394     2.9065      1.9365 
m=501 3.7289     2.5578      1.6494 m=501 4.1389     2.9107      1.9330 
m=1001 3.7288     2.5580      1.6496 m=1001 4.1388     2.9108      1.9329 
m=1501 3.7287     2.5580      1.6495 m=1501 4.1388     2.9110      1.9329 
m=2001 3.7287     2.5580      1.6495 m=2001 4.1387     2.9110      1.9330 

VG process VG process 
K1=2 K2=98     K2=100     K2=102 K1=1.5 K2=98     K2=100     K2=102 
m=101 3.6634     2.4874      1.5795 m=101 4.0738     2.8397      1.8610 
m=501 3.6800     2.5043      1.5965 m=501 4.0904     2.8564      1.8776 
m=1001 3.6805     2.5048      1.5971 m=1001 4.0909     2.8570      1.8781 
m=1501 3.6806     2.5049      1.5971 m=1501 4.0910     2.8571      1.8782 
m=2001 3.6807     2.5050      1.5972 m=2001 4.0911     2.8571      1.8783 

 



To compute the transition probability, we define the set of the states for which
the option is knocked out and becomes worthless:

Λ =

⎧⎨⎩ {i ∈ {1, . . . ,m} : exp(pi) ≤ H} down-and-out option
{i ∈ {1, . . . ,m} : exp(pi) ≥ H∗} up-and-out option
{i ∈ {1, . . . ,m} : exp(pi) ≤ H or exp(pi) ≥ H∗} double option

When the states pi and pj do not belong to Λ, the conditional probabilities are
the same of the matrix Q(m)=[qij] as described in the previous section, otherwise
they are equal to zero. Therefore, the probability to transit from state pi to state
pj are given by:

πij = P̃{Xt+1 = pj, at+1 = 0|Xt = pi, at = 0} =
½

qij if i ∈ Λc and j ∈ Λc

0 otherwise

where Λc is the complement of Λ. Therefore the matrixes that define the con-
ditional probabilities (that we call quasi-transition probabilities matrices) for the
down-and-out, up-and-out, and double barrier-out options are respectively given
by:

ΠDO =

∙
0k−1,k−1 0k−1,m−k+1
0m−k+1,k−1 Q(k,m; k,m)

¸
,

ΠUO =

∙
Q(1, l; 1, l) 0l,m−l
0m−l,l 0m−l,m−l

¸
,

ΠDBO =

⎡⎣ 0k−1,k−1 0k−1,l−k+1 0k−1,m−l
0l−k+1,k−1 Q(k, l; k, l) 0l−k+1,m−l
0m−l,k−1 0m−l,l−k+1 0m−l,m−l

⎤⎦ ,
where k is the index number of the log price located immediately above the lower
barrier H, l is the index number of the price located immediately below the upper
barrier H∗, 0i,j is an i × j matrix of zeros, and Q(i, j; k, l) is the sub-matrix of
Q(m) taken from rows i to j and from columns k to l inclusively. Thus the knock-
out option price with maturity T and strike price K can be computed using the
recursive vectorial formula:

Vw(p, T ; aT = 0) = [vw(p1, T ; aT = 0), ..., vw(pm, T ; aT = 0)]
0

and for tk = k∆t, k=0,. . . ,s-1,

Vw(p, tk, atk = 0) = [vw(p1, tk, atk = 0), ..., vw(pm, tk, atk = 0)]
0 = (8)

= max[gw(p,K, atk = 0), e
−r∆tΠVw(p, tk+1; atk+1 = 0)],



Table 5. European barrier option prices under NIG, VG, and Meixner processes. The current asset price, the 
short interest rate and the maturity are respectively S=100, r=5% and T=0.5. 

  
  

European down-out call  
options under NIG process 

European down-out call  
options under VG process 

European down-out call  
options under Meixner process 

        Weekly               Daily          Weekly               Daily          Weekly               Daily  Strike price
   K=100       H=94      H=98     H=94     H=98      H=94     H=98      H=94     H=98      H=94     H=98      H=94     H=98 
   m=501     4.1358    3.1026     4.1059    2.8162     4.0826    3.0813    4.0536    2.7955     4.1288    3.0986    4.0993    2.8123 
  m=1001    4.1359    3.1033     4.1059    2.8183     4.0825    3.0820    4.0625    2.8071     4.1288    3.0993    4.0993    2.8145 
  m=1501     4.1359    3.1031     4.1058    2.8177     4.0825    3.0812    4.0553    2.7991     4.1288    3.0991    4.0991    2.8139 
  m=2001      4.1359    3.1029     4.1059    2.8171     4.0825    3.0815    4.0544    2.7996     4.1288    3.0989    4.0990    2.8132 
  m=2501     4.1359    3.1028     4.1059    2.8168     4.0825    3.0813    4.0546    2.7991     4.1288    3.0988    4.0991    2.8129 

  
  

European up-out call options 
under NIG process 

European up-out call options 
under VG process 

European up-out call options 
under Meixner process 

        Weekly                 Daily          Weekly                 Daily          Weekly                 Daily  Strike price 
   K=90      H=102   H=106    H=102   H=106     H=102   H=106    H=102   H=106     H=102   H=106    H=102   H=106 
   m=501      1.1594    4.1648    0.9289    3.8133     1.1844    4.2817    0.9680    4.0230     1.1610    4.1780    0.9301    3.8265 
  m=1001     1.1563    4.1616    0.9203    3.8025     1.1847    4.2820    0.9439    3.9200     1.1579    4.1730    0.9210    3.8096 
  m=1501     1.1568    4.1607    0.9217    3.7997     1.1847    4.2818    0.9420    3.9126     1.1579    4.1735    0.9210    3.8115 
  m=2001      1.1565    4.1607    0.9206    3.7996     1.1849    4.2820    0.9425    3.9123     1.1580    4.1730    0.9214    3.8099 
  m=2501     1.1564    4.1604    0.9204    3.7995     1.1847    4.2818    0.9420    3.9119     1.1579    4.1732    0.9211    3.8103 

where

gw(p,K, atk = 0) = [gw(p1, K, atk = 0), ..., gw(pm,K, atk = 0)]
0

and Π is either ΠDO, or ΠUO, or ΠDBO, depending on the nature of the knock-
out option. The knock-out option price at time 0 is given by the ((m+ 1)/2)-th
element of Vw(p, 0; a0 = 0). Barrier option prices are very sensitive to the position
between discrete asset prices and barrier value. Thus, to reduce this effect it is
important to define the cells of the markovian approach so that the barrier value
correspond exactly to a cell’s border.
Table 5 exhibits European barrier option prices. We consider two possible strike
prices K=100 and K=90 for different fixed barriers and different distributional
assumptions (NIG, VG, and Meixner). Even for this table we assume that the
temporal horizon is shared either in 24 periods or in 126 periods (i.e., ∆t is equal
respectively either to one week or to one day). These prices refer to European
down-out and up-out call options on a stock price with current value S0 = 100
euro, maturity T = 0.5 years, short interest rate r = 5% a.r.. We also compare
some of these results with those obtained with Montecarlo simulations. Since even
in this case we get unstable results with more than five millions simulations, we
did not report these partial results. Similarly, Table 6 displays American barrier
option prices on a stock with the same current asset price, short interest rate



Table 6. American down-out and up-out  put option prices, where both early exercise and 
monitoring are on daily basis under NIG, VG, and Meixner processes. The current asset price, 
the short interest rate and the maturity are respectively S=100, r=5% and T=0.5. 

  
  

American down-out put 
with daily monitoring 

American down-out put 
with daily monitoring 

American down-out put  
with daily monitoring 

 NIG process  VG process  Meixner process Strike price 
K=101        H=96                 H=99        H=96                 H=99        H=96                 H=99 
m=501       2.2453               1.1477       2.2568               1.1579       2.2496               1.1452 

m=1001       2.2453               1.1462       2.2394               1.1540       2.2496               1.1438 
m=1501       2.2454               1.1459       2.2382               1.1535       2.2497               1.1436 
m=2001       2.2454               1.1458       2.2380               1.1534       2.2497               1.1434 
m=2501       2.2454               1.1455       2.2380               1.1533       2.2498               1.1432 

  
  

American up-out put  
with daily monitoring 

American up-out put  
with daily monitoring 

American up-out put  
with daily monitoring 

 NIG process  VG process  Meixner process Strike price 
K=101       H=101               H=104       H=101               H=104       H=101               H=104 
m=501       1.1425               2.0802       1.1174               2.0635       1.1302               2.0747 

m=1001       1.1334               2.0800       1.1165               2.0417       1.1308               2.0744 
m=1501       1.1335               2.0793       1.1164               2.0407       1.1309               2.0736 
m=2001       1.1341               2.0793       1.1164               2.0405       1.1316               2.0736 
m=2501       1.1337               2.0795       1.1165               2.0404       1.1312               2.0737 

and maturity. In particular, we consider American down-out and up-out put
option prices assuming a strike price K=101 and that the early exercise and the
monitoring are on daily basis. As for American and European vanilla options
Tables 5 and 6 show a good tendency towards a specific price when we increase
the number of states of the Markov chain.
Lookback options An European lookback put option gives the right to sell the
underlying asset at maturity for the maximum price monitored discretely during
the time to maturity, while a call gives the right to buy the underlying asset for
the minimum price. The option is American if the right is extended to the whole
time to maturity. The pricing and hedging for a lookback option can be faced
under the assumption that the asset follows a Markov chain. In the following,
we consider an European lookback put option with maturity T and monitored at
times k = iT/n, where n is the number of dates of monitoring and i = 0, 1, . . . , n.
In this setting it is implicitly assumed that the asset is monitored at constant time
intervals where ∆t = T/n. Clearly, we can easily extend these considerations to
the case of lookback call options. Since we adapt Cheuk and Vorst’s technique
to the markovian approach, we express the final payoff in units of the asset price
(see Babbs (2000) and Cheuk and Vorst (1997)). The payoff at the maturity T is



equal to
max {S(iT/n) : i = 0, 1, . . . , n}− S(T ). (9)

Dividing the payoff (9) by the asset price S(T ) we obtain the payoff expressed in
asset price units:

Y (T )− 1,
where Y (k) = max {S(iT/n) : i = 0, 1, . . . , nk/T} /S(k). The evolution of the
asset price S at times k = iT/n, i = 0, 1, . . . , n, is described by the Markov chain
{X(i) := S(iT/n) |i = 0, 1, . . . n} with state numberm and risk neutral transition
matrix Q(m) = [qij]1≤i,j≤m. The random variables X(i), i = 1, . . . , n, can assume
the ordered values x(j), j = 1, . . .m (with x(j) < x(j + 1)). Let us define the
discrete stochastic process Z(k;h,w), h, w = 1, . . .m, k = iT/n, i = 0, 1, . . . , n,
where Z(k;h,w) is the value at time k of a contingent claim with final payoff
Y (T ) − 1 when the current asset price is equal to x(w) and the maximum asset
price from time 0, to time k −∆t is been x(h). Therefore, at time T we consider
the final payoff matrix:⎡⎢⎢⎢⎣

0 0 · · · 0
Z(T ; 2, 1) 0 · · · 0

...
...

. . .
...

Z(T ;m, 1) Z(T ;m, 2) · · · 0

⎤⎥⎥⎥⎦ .
According to the risk-neutral pricing at time T −∆t, we have

Z(T −∆t;h,w) =
mX
j=1

qwjZ(T ;h, j)

µ
x(j)

x(w)

¶
e−r∆t, if h > w, (10)

Z(T −∆t;h,w) =
mX
j=1

qwjZ(T ;w, j)

µ
x(j)

x(w)

¶
e−r∆t, if h ≤ w. (11)

Formulas (10) and (11) have a quite immediate explanation. qwj is just the prob-
ability to move from the state x(w) to the state x(j); in (10) we have Z(T ;h, j)
because x(h) > x(w) and thus the maximum at time T −∆t is x(h), while in (11)
we have Z(T ;w, j) because x(h) ≤ x(w) and the maximum is x(w); the factor
x(j)/x(w) allows to express Z(T −∆t;h,w) in units of x(w); e−r∆t is the discount
factor. Iterating the procedure, at time k we get

Z(k;h,w) =
mX
j=1

qwjZ(k +∆t; max(h,w), j)

µ
x(j)

x(w)

¶
e−r∆t.



 Table 7. European and American lookback put option prices, where monitoring 
is on daily and weekly basis under NIG, VG and Meixner processes.  

 
 European lookback put 
 Brownian Motion NIG process VG process Meixner process 
 weekly     daily weekly     daily weekly     daily weekly     daily 

m=501  2.7121     3.1344  2.6680    3.0511  2.5998    3.0058  2.6605    3.0439 
m=801  2.7125     3.1355  2.6683    3.0524  2.6000    2.9866  2.6609    3.0452 
m=1001  2.7126     3.1358  2.6684    3.0528  2.6001    2.9843  2.6610    3.0456 
m=1501  2.7127     3.1361  2.6685    3.0531  2.6002    2.9832  2.6611    3.0459 

 
 American lookback put 
 Brownian Motion NIG process VG process Meixner process 
 weekly     daily weekly      daily weekly     daily weekly     daily 

m=501     2.8587    3.2919 2.8176    3.2253     2.7528    3.1780 2.8113   3.2195 
m=801     2.8695    3.3216 2.8180    3.2266     2.7532    3.1646 2.8117   3.2209 
m=1001     2.8696    3.3218 2.8181    3.2269     2.7533    3.1630 2.8118   3.2212 
m=1501     2.8697    3.3221 2.8182    3.2273     2.7534    3.1624 2.8119   3.2215 

After n backward steps we obtain a matrix whose element Z(0;h,w) is the value in
units of x(w) of the contingent claim with payoff Y (T )−1 when the current asset
price is x(w) and the maximum before time 0 is been x(h). In our construction of
the Markov chain {X(i) : i = 0, . . . , n} the current asset price is x(m+1

2
), thus the

price of the European lookback put option is given by Z(0; m+1
2
, m+1

2
) multiplied

by x(m+1
2
). American style options can be priced using the formula for k = iT/n,

i = 0, 1, . . . , n− 1:

Z(k;h,w) = max

(
mX
j=1

qwjZ(k +∆t; max(h,w), j)

µ
x(j)

x(w)

¶
e−r∆t, Y (k)− 1

)
,

and then multiplying the element Z(0; m+1
2
, m+1

2
) by x(m+1

2
). In Table 7 we show

the prices of European and American lookback put options, based on daily and
weekly monitoring under the Brownian Motion, NIG, VG and Meixner processes.
The current asset price, the short interest rate and the maturity are respectively
S=100, r=5% and T=0.25. We compare the results for the European put with
NIG and the VG processes with the prices obtained with 1000000 Montecarlo
simulations and we obtain that the prices are respectively 2.6653 and 2.6025 with
weekly monitoring and 3.0564 and 3.0011 with daily monitoring. Moreover we



could observe that the results obtained with Montecarlo simulations are not very
stable even when we simulate ten millions of values. While the prices obtained
with the markovian approach are much more stable even with one thousand of
states. As a matter of fact, for the European put with NIG and the VG processes
we get 2.6691 and 2.6009 with weekly monitoring and 3.0534 and 2.9838 with
daily monitoring. Thus even if these prices are much more near to those obtained
with the Markovian approach they require much more computational time and
present an higher level of instability.

5. Concluding remarks

The paper shows the simplicity of the markovian approach to price vanilla options
and some types of exotic options when the log return follows a Lévy process.
Clearly, we couldn’t be exhaustive since this approach can be used to price many
other markovian processes and exotic options. In particular, the discretization
process with Markov chains permits to price path dependent options once we are
able to approximate the risk neutral distribution of the underlying markovian
log return process. Typically we can apply the markovian approach on GARCH
type processes with markovian residuals, stochastic volatility Lévy processes and
subordinated Lévy processes (see, among others, Shoutens (2003), DeGiovanni et
al. (2007)).
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