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Abstract

Mair and Hatzinger (2007b) have recently proposed in the Journal of Statistical Soft-
ware the R package eRm (extended Rasch models) for computing Rasch models and
several extensions. Undoubtedly, in the eRm class the partial credit model (PCM) —
for practical testing purposes — is one of the best known. The package, using a unitary
conditional maximum likelihood (CML) procedure, estimates the item parameters of the
above-mentioned models.

Although the eRm belong to the Rasch family of models and share their distinguishing
characteristics, they suffer from the problem of possible non-existence of estimates. In
literature, both in the joint and in the conditional ML approach, the configurations and the
conditions of non-existence for the RM are well-known (Fischer 1981). The eRm package
performs a preliminary data check only for the RM. The conditions of non-existence are
known for the PCM only in the joint case (Bertoli-Barsotti 2005).

In this article, the main focus is on the PCM; the above-mentioned JML non-existence
configurations for this model will be the starting point. A class of counter examples
is illustrated, which leads to “false” CML estimates with the eRm package, i.e., values
that appear to be estimates but, through a more accurate analysis of the maximization
function, they are rather a clear signal of non-existence. Moreover, the obtained results
emphasize the presence of additional CML non-existence configurations, compared to
those valid in the JML case.

Keywords: Rasch model, partial credit model, conditional maximum likelihood estimate, R
package eRm.

1. Introduction

More generally, the analysis of the relation between latent continuous variables and observed
categorical variables — which can be either dichotomous or (ordered) polytomous — is known
as Latent Trait Analysis (LTA). In psychometrics and educational testing, LTA is called Item
Response Theory (IRT).

*Lavoro svolto nell’ambito del progetto di ricerca ex60%, fondi di Ateneo 2006, dal titolo: “Effetti Di Disegni
A Blocchi Sulla Stima Del Modello Di Rasch”.
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In this paper the attention will be focused on polytomous IRT models (see, just to cite
a few, Ostini and Nering 2006, or van der Linden and Hambleton 1997a, Chap. I). Poly-
tomous items are categorical items in the same way as dichotomous items; they simply
have more than two possible response categories. The simplest and most obvious reason
for the development of polytomous IRT models is the fact that polytomous items exist and
are commonly used in applied psychological measurement. The need for polytomous re-
sponse formats may be most acute in the measurement of personality and social variables.
Kamakura and Balasubramanian (1989, p. 514) suggest that dichotomous distinctions are
often less clear in this context than in ability measurement settings and that “more subtle nu-
ances of agreement /disagreement” are needed than dichotomous items permit. Similarly, Cox
(1980) argues that items with only two response alternatives are inadequate in this context
because they cannot transmit much information and they frustrate respondents. Psychome-
tric issues also exist that make polytomous items attractive in comparison to dichotomous
items. At a general level, such an issue is that polytomous items measure across a wider range
of the trait continuum than the dichotomous items. This simply occurs by virtue of the fact
that polytomous items contain more response categories than dichotomous items do. Masters
(1988) and Bejar (1977) note that the purpose of using more than two categories per item
is to try to obtain more information about the trait level of the people being measured so
that more precise trait-level estimates can be obtained. Samejima (1976, 1979) demonstrates
the increase in statistical information that is available from a polytomous IRT model in com-
parison to a dichotomous model. Conversely, though in a different context, Cohen (1983)
demonstrates that reducing continuous or multiple category data to the dichotomous level
leads to a systematic loss of measurement information.

The discussion will concentrate on the case of polytomous models for items with ordered cat-
egories. Ordered polytomous items are simply those where the response categories have an
explicit rank ordering with respect to the trait of interest. In this context, the partial credit
model (PCM; Masters 1982) is one of the best known and simple unidimensional parametric
IRT models for polytomous items with ordered categories. The PCM differs from the other
IRT models of this category in that it belongs to the Rasch family of models (i.e., models
that attempt to conform to the fundamental measurement theory) and shares the distinguish-
ing characteristics of the family: separable person and item parameters, sufficient statistics,
and, hence, conjoint additivity. These features enable “specifically objective” comparisons
of persons and items (Rasch 1960, 1977; Fisher Jr 1992) and allow each set of model pa-
rameters to be conditioned out of the estimation procedure. The PCM can be considered —
conceptually and structurally — as the basis for almost all other unidimensional polytomous
Rasch models. This includes the rating scale, Binomial trials, and Poisson counts models
(cf. Wright and Masters 1982), as well as other models for rating data developed by Andrich
(1982) and by Rost (1988). Furthermore, in the special case of an item with two ordered
categories, the PCM becomes the simple dichotomous Rasch model (RM; Rasch 1960). The
importance of the model arises from these characteristics.

The PCM contains only fwo sets of parameters: one for persons and one for items. All
parameters in the model are locations on an underlying variable. This feature distinguishes the
PCM from measurement models including item “discrimination” or “dispersion” parameters,
which qualify locations thus confounding the interpretation of variables.

The simplicity of the model formulation makes it easy to implement, and a range of software
packages are dedicated to it (see, e.g., Adams and Khoo 1991; Sheridan, Andrich, and Luo
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2002; Linacre and Wright 2004; Mair and Hatzinger 2007b). Successful applications of the
PCM to a wide variety of measurement problems have been reported in the literature (see,
e.g., Andersen 1995b; van der Linden and Hambleton 1997a, pp. 101-102). This model and
its main characteristics are presented in Section 2.

Parameter estimates are the only realizations of the ideas embodied in measurement models. A
variety of estimation approaches are available for IRT models in general and for Rasch model in
particular (see, e.g., Baker and Kim 2004). For Rasch models, the commonly used approaches
are: joint mazximum likelihood (JML; Wright and Panchapakesan 1969), conditional mazimum
likelihood (CML) and marginal mazimum likelihood (MML; Bock and Aitkin 1981). With the
term “Rasch-based measures” one refers to item/person parameter estimates arising from one
of these approaches. In the implementation of partial credit analysis, all parameters can be
estimated for an item only if observations occur in each of the available response categories
(if one or more response categories for an item are unused, these categories are said “null”).

The joint approach estimates person and item parameters simultaneously. This method suffers
from a serious drawback. Martin-Lof (1973), see also Andersen (1970, 1973); Haberman
(1977); Andersen (1980, Chap. 6), showed that the JML estimates for the item parameters
are inconsistent when n (the number of subjects) approaches infinity whereas k (the number of
items) and m (the number of categories) are fixed. At the same time the individual parameter
estimates can only take a finite number of values and cannot accordingly approach the true
value. To go into detail of the dichotomous case see, for example, Haberman (1977) or Ghosh
(1995).

As an alternative, Rasch (1960) suggested estimating the item parameters by the CML
method, where the conditioning is with respect to the sufficient statistics for the individ-
ual parameters. Rasch supports CML estimation because it is the only estimation method
within the Rasch measurement context fulfilling the requirement of person-free item calibra-
tion and, thus, it maps the epistemological theory of specific objectivity to a statistical ML
framework. Under suitable conditions on the variability of the ability 6 in the population,
these CML estimates are consistent, as shown in Andersen (1970, 1973).

MML approach treats person parameters as “nuisance” parameters and removes them (by
integration) from the likelihood function by assuming that persons are sampled randomly from
a population in which ability 6 is distributed according to some (parametric or nonparametric)
density function f(#). The MML estimates are asymptotically equivalent to the CML ones
and provide, consequently, consistent estimators (Pfanzagl 1994); however, if the density
specification is inadequate, MML is inferior to CML.

For the sake of completeness, some other methods for the estimation of the item parameters are
present in literature. The pairwise conditional ML method, in which items are taken in pairs
to eliminate the person parameter, is an adaptation of the CML. The estimates for the dichoto-
mous case have been shown to be consistent (Zwinderman 1995); the same result may holds
in the polytomous case as well (Wright and Masters 1982; Garner and Engelhard Jr 2002).
This estimation method has been implemented in the RUMM2020 program (Sheridan et al.
2002). Moreover, Anderson, Li, and Vermunt (2007) propose a pseudo-ML approach, Linacre
(2004a) and Molenaar (1995) give an overview of various (heuristic) non-ML methods, and
Bayesian techniques can be found in Baker and Kim (2004, Chap. 7).

In this paper CML is used for the above-mentioned desirable epistemological and mathe-
matical properties. This conditional approach, for the PCM, is described in Section 3. The
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discussion is focused on the existence of the CML estimates of the PCM item parameters
under the assumption of a complete data matrix. Section 4 is devoted to the presentation of
the state of art on this issue for both JML and CML case.

In Section 5, some configurations of non-existence of JML estimates has been analyzed, ob-
serving that they are still problematic in the CML setting. They indeed produce false critical
points detection in the maximization process. This issue has been the point of departure
of a systematic analysis concerning fixed small-dimensional datasets, developed in Section 6.
The results have been obtained using the R (R Development Core Team 2007) package eRm
(Mair and Hatzinger 2007a,b).

2. The model

Consider the responses of a n-dimensional set S = {S1,...,5,...,5,} of subjects to a k-
dimensional sequence Z = {I,...,I;,..., I} of items. Each subject may respond to item I;
in m+1 (m > 1) ordered categories, Cy,C1,...,Cp,...,Cy. The PCM can be applied in any
situation in which the item is conceptualized as a series of ordered steps and the respondent
receives a unitary credit for each successfully completed step (Wright and Masters 1982). The
response scores are chosen to be 0, 1,...,m in correspondence to Cy, C1, ..., Cyy,, respectively.
It is convenient to write the actual response for individual S, to I; as the selection vector
x); = (Tyio, Tyil, - - -, Toim) (as usual, the transposition is indicated with a prime; all vectors
in this paper are to be regarded as column vectors), where x,; is an observation from the
random variable X ,; and x,;; = 1 if the response is in category C}y, and 0 otherwise. Let x,;
be also a single element in the n x k data matrix . The model assumes that, for each item,
the subject chooses one and only one of the m + 1 categories. Moreover, let

m
Spi = max  hxyp = Ry
vl he{0,1,.m} vih };} vih
be the score of a respondent S, to an item I;. Naturally, s,; € {0,1,...,m}. Let s = (s4;)

be the score matriz. It is to be noted that there is a one-to-one correspondence between the
3-dimensional data matrix & and the 2-dimensional score matrix s.

Usually, the model is introduced through the specification of the probability — the so-called
probability function (pf) — that a subject S,, with parameter 6, will respond to item I; in
category Cy,. There are several equivalent parameterizations of the pf (cf. Masters and Wright
1997). The original one, used by Masters (1982), is the following

h
exp ((%h — Z (5¢l>

=0
m t ’
Z exp <9vt — Z 5il>
t=0 1=0

where 0, are person parameters, §;, are called uncentralized threshold parameters and &, =
(0i0, 0i1y - - -y Oify - - -, Oiny) 1s the item parameter vector related to I;. It is easy to note that,
while 6, represent the position of S, on the underlying unidimensional latent trait, the sin-
gle item I; is characterized by a (m + 1)-dimensional vector §; so that the model is capa-
ble of accommodating each possible interaction between items and categories. This fact

P(Xvih - 1| 91)751') -

h=0,1,...,m, (1)
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may be considered cumbersome for the interpretation of the parameters (Hemker 2001;
Verhelst, Glas, and De Vries 1997). For example, Sijtsma and Hemker (2000, p. 395) con-
clude that “no item difficulty exists” for the PCM. Nevertheless, a scalar parameter determin-
ing the “item location” is usually obtained quite naturally through the following reparameter-
ization

h
exp l(@v — ;) h— Zm]

1=0

m t )
Zexp [(Gv — )t — Z Til]
=0 1=0

where the 7s are called centralized threshold parameters whereas the parameter o; = ;5 — Tin
is said mean difficulty and it can be understood as “item location”. By definition of «;, it
holds Y7t 7in = 0. The parameterization (2) allows, besides, the following consideration:
when 7;, = 73, the PCM gives the rating scale model (RSM; Andrich 1978) (in applications,
the PCM is often preferred to the RSM because it allows different thresholds for different
items).

P (Xuin = 1] 0y, 05, 7) = h=0,1,...,m, (2)

In this paper the PCM is defined, conforming to Mair and Hatzinger (2007a,b), using the
parameterization due to Andersen (1983):

exXp (evh - ﬁzh)

P (Xvin =1[0.,8;)) = ) h=0,1,...,m, (3)
> exp (st — Bir)
t=0
where (3;, = Z;L:o 5 are item-category parameters and B = (Bio, Bity-- -, Bins -+ Bim), 1S

the item parameter vector related to I; (see, also, Andersen 1980; Fischer and Ponocny
1994; Andersen 1995a). The only difference between this parameterization and one given
in Mair and Hatzinger (2007a,b), is the minus sign that link the two sets of parameters (due
to a better interpretation of the item parameters). The choice of this parameterization is in
view of the use of (R Development Core Team 2007) package eRm in the following.

It is to be noted that if 6 = 0, + ¢ and 3}, = Bin + hc for any constant ¢ € , then
ho;, — 35, = ht, — Bin. In order to avoid overparameterization, and to allow the identifiability
of the model, the parameters must be normalized, for instance, with the following k£ + 1
constraints:

Bio = di0 = 0, 1=1,...,k, (4)

and

k m

> > Bu=0. (5)

i=1t=1
Really, one could replace the condition (4), alternatively, with 3;,» = 0 for any other category
Ch+, i = 1,...,k (cf. Fischer and Ponocny 1995; Andersen 1995a, p. 278); in the same way,
one could substitute the condition (5) with, for example: 7,6, = 0, f11 = 0, 6; = 0,
Sk @i =0, ete.. (cf. Linacre and Wright 2004; Wright and Masters 1982, p. 89). There are
thus n+k(m+1) —k —1 = n+ km — 1 unconstrained parameters to be estimated from (3).

It is worthwhile to recall that the PCM, like all polytomous Rasch models, is built on the
successive dichotomization of adjacent categories. In particular, it can be defined by means



6 Existence of the CML estimates in the PCM

of adjacent-category logits:

n P[thzl] :ev_éiha h:l,...,m.
P [Xm'(h—l) = 0}

Moreover, it is straightforward to show that the model defines an exponential family (Andersen
1983).

3. CML approach to estimate the item parameters

The essentials of the CML procedure are here summarized. The usual “dot” notation is
adopted (e.g., Tyep stands for Zle Zyih, and so on).

As mentioned briefly, the separability of parameters, stressed by Rasch as the main justifica-
tion for the model, is connected with the use of CML procedure. The item parameters are
thus estimated based on the conditional likelihood, given the person’s raw scores

m

k. m
o= > hwin = htven
1=1 h=0

h=0

which are, according to standard results for the exponential family, minimal sufficient statistics
for the person parameters 6,, v = 1,...,n. Thus, by conditioning the likelihood onto 7’ =
(r1y.+ s 7wy ,Tn), the person parameters 8 = (61,...,0,,...,0,), which in this context are
nuisance parameters, vanish from the likelihood equation, thus, leading to the estimated item

~

parameters 3 = (,@1, vy By ,,@k)
Given the nk independent observations x,;, v = 1,...,n, 1 =1,...,k, the CML estimate of
the parameters 3 is obtained by maximizing the following conditional likelihood function

[ £ E ] e[ £ ]

LC (B) _ m’l])cillizl h=0 _ mkjlzl h=0 ’ (6)
[y (B)]" IT b3
r=1 r=1

where n, is the number of persons with a particular score r and

k. m
Y (B) = exp (—ZZﬂmxmh>, r=0,1,...,m. (7)
()

i=1 h=0

Equation (7) defines the known elementary symmetric functions and >_(r) 1s the sum over all
response vectors that produce the score r. Based on (6), it is straightforward to note that the
item/category totals xe;, are minimally sufficient for (;;,. Moreover, the product ]_[;":kf Lin
equation (6) implicitly excludes extreme person’s raw score of 0 or mk because these subjects

do not affect the conditioned procedure.

The 7, (B3) functions are crucial for the CML approach. An elaborated derivation of these
terms for ordinary RM can be found in Fischer (1974) and an overview of various computa-
tion algorithms is given in Liou (1994). For example, in the eRm package the numerically
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stable summation algorithm, as suggested by Andersen (1972), is implemented. In the past,
computational problems (speed, numerical accuracy) involved in calculating the elementary
symmetric function limited the practical usage of the CML approach (see, e.g., Gustafsson
1980). Nowadays, these issues are less crucial due to increased computer power.

Alternatively, starting from relation (6), the CML estimate of the parameters 3 can be ob-
tained by maximizing the conditional log-likelihood function

m mk—1
lo(B)=In[Le (B)] ==Y Bintein — Y neInfy (8)]. (8)
i=1 h=0 =1

Based on (8), it is straightforward to realize that the conditional pf belongs to the exponential
family with minimal representation. Then, it is known that the conditional log-likelihood
function (8) is strictly concave (this issue is important in phase of maximization).

Maximization of [ (3) follows by equating to 0 all derivatives with respect to 3;. To do this,
it is useful to note that

gﬁﬁﬁ:-ﬁ%ﬂﬂ, i=1,....k, h=0,1,...,m, (9)

9 Bin
where 'yﬁz_) (B) denotes the elementary symmetric function evaluated by omitting item I;.
Some algebra leads to the following set of CML equations:

(@)
Zeih = €xp (—LFin) Z nrw

. di=1,...k, h=0,1,...,m. 10
¥ (8) (10)

To solve the CML equations (10) most computer algorithms (among them the algorithm of
the eRm package) use a Newton-Raphson procedure, which is fast in the sense that it usually
requires few iterations, and in the sense that the quantities involved are ratios of elementary
symmetric functions, easily obtained from convenient recurrence relations (cf. Andersen 1995a,
relation (15.26), p. 279).

4. Existence of ML estimates

The aim of this section is to resume the state of the art about the existence of a finite solution
to ML estimation equations. Generally speaking, the n.s. conditions for the existence and
uniqueness of the ML estimates are known in literature (cf. Barndorff-Nielsen 1978, Theorem
8.2, p. 117 and Corollary 9.6, p. 153); for an alternative n.s. condition, see Bertoli-Barsotti
(2002).

For the simple RM, Fischer (1981) elaborates, both for complete and incomplete designs, the
n.s. conditions for the existence and uniqueness of a solution of the joint and conditional ML
estimation equations. The basic critical condition (cf. Fischer and Molenaar 1995, p. 43) is
essentially the same in both cases and it occurs when the set Z of the items can be subdivided
into two non-empty subclasses, Z; and Zs, such that all persons have either positive (or
missing) answers to all items in the class Z7, or negative (or missing) answers to all items in
the class Zs. Then the items from the class Zo appear to be “infinitely more difficult” than
those from the class 77, and no comparison of item parameters from the two classes is possible.
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Such data are called ill-conditioned. If no such subclasses exist, the data are said to be well-
conditioned. The latter property is n.s. for the existence of a finite, unique normalized
CML solution (in this context, the R package eRm performs a preliminary data check to
confirm the presence/absence of ill-conditioning); the same property is only necessary in the
JML approach. It becomes also sufficient, provided that the subjects with zero and perfect
scores have been removed. Fischer (1981) also presents useful methods for establishing well-
conditioning, both for complete and incomplete designs. For the complete data case, Pfanzagl
(1994) gives asymptotic results indicating that Fisher’s conditions are almost always fulfilled
for large enough samples of persons.

Unfortunately, more complicated conditions are necessary for the existence of the ML estimate
in the PCM context. Undoubtedly, a source of trouble is the presence of a null category in the
data matrix. Clearly, as a result of algebraic simplifications occurring with binary data, in the
special case of the simple RM the condition of a null category, for an item I;, coincides with
the presence of a perfect item total score or a null item total score. When m > 1 the situation
is more complex because a perfect (or null) item total score implies the existence of a null
category, but the reverse is not necessarily true: a null category may exist without a perfect (or
null) item total score (the condition of presence/absence of null categories is routinely checked
by some estimation programs, see e.g. LPCM-WIN 1.0, Fischer and Ponocny-Seliger 1998).
Wilson and Masters (1993) have developed a procedure for automatically reparameterizing
the model to provide JML estimates of a smaller number of item parameters when one or more
response categories for an item are null. Moreover, in the JML case, Wright and Masters (1982,
p. 61) recommended removing each person with a perfect (or null) total score. Bertoli-Barsotti
(2005), in the complete case, gives a n.s. condition for the existence and uniqueness of the
JML estimate, in the form of a method simply verifiable on the basis of the total scores of
x. The result is based on the redefinition of the concept of ill-conditioned matrix introduced
by Fischer (1981). Roughly speaking, the author defines a dataset as ill-conditioned if there
exists at least a partition of the respondent set S into (at least) two non-empty subsets, S;
and Sp, such that if a subject belongs to Sa, his response score on I; is not better than the
response score on I;, i = 1,..., k, of any other subject in S;. If no such subsets exist, the data
are said to be well-conditioned. The latter property is necessary for the existence of a finite,
unique normalized JML solution for the PCM; it is also sufficient, provided that the items
with at least a null category have been removed. Only for complete designs, Bertoli-Barsotti
(2005, p. 523) also presents a useful method for establishing ill-conditioning.

The definition of an ill-conditioned matrix given by Bertoli-Barsotti is more general than
Fischer’s. For this reason and for the sake of clearness, the expression “JML-ill-conditioned”
will be referred to the definition given by Bertoli-Barsotti (2005, p. 522). In fact, it may
be noted that if m = 1 (dichotomous case) the JML conditions of Bertoli-Barsotti (2005,
Theorem 3, p. 523) are equivalent to those given by Fischer (1981, Theorem 1, p. 64), except
for trivial details that, in Fischer’s formulation, the partition leading to an ill-conditioned score
matrix is defined by the set of items (instead of persons); accordingly, Fischer’s additional
condition 0 < r, < k, v = 1,...,n, is formulated with respect to persons, while Bertoli-
Barsotti’s additional condition is referred to the category/item total scores.

For the CML approach, the conditions are in principle known either in the original Barndorft-
Nielsen form (Barndorff-Nielsen 1978; cf. Andersen 1991, p. 45), or in the form given by
Jacobsen (1989). It is not known yet, however, whether these conditions can be brought
into such a form that the existence of solutions can be verified from the item totals as
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easily in the polytomous case as in the dichotomous case (see Andersen 1995a, p. 278;
van der Linden and Hambleton 1997b, p. 23; Andersen 1997, p. 72; Fischer and Parzer 1991,
p. 650; Fischer and Ponocny 1994, p. 182).

5. False critical points detection

Given that the n.s. conditions for the existence of a finite solution for the PCM, described in
Bertoli-Barsotti (2005), are just referred to the JML procedure, and given that in this work
the attention is directed to the same problem but in the CML approach, it may be interesting
to analyze the effect of JML-ill-conditioned configurations in this new context. To do this, a
JML-ill-conditioned complete artificial score matrix s with n = 8 persons and k = 4 items,
each of them with m + 1 = 3 categories, is considered in Table 1.

Ly I I3 Iy,
S 2 1 2 2 7
So 2 2 1 1 6
Sy S3| 2 2 1 0 5
Sy 2 1 0 1 4
S5 | 2 1 0 0 3
Ss[2TT0"0T0 T
Sy S7 1 1 0 0 2
Ss| O 1 0 0 1
¢ |13 9 4 4

Table 1: JML-ill-conditioned score matriz. The horizontal dotted line delimits one of the
possible partitions of S into S and Ss.

From the JML method point of view, a finite solution for the item parameters does not exist.
From the CML method point of view, instead, this matrix could be “estimable” (for what is
so far known in literature) since it does not contain null categories.

The CML estimates of the item parameters, obtained by means of the R package eRm, are
summarized in Table 2. The [’s estimates are obtained with the constraint (5). ¢’s, a’s and
T’s estimates are obtained thanks to their relationships with the 3’s.

7 Bi1 Bia di1 Jio Q; Ti1 Ti

I -8,2599 -41.9281 -8,2599 -33.6682 | -20.9641  12.7042 -12.7042
I -33.6682 -16.6808 | -33.6682  16.9873 -8.3404 -25.3277  25.3277
I3 16.2940  33.9745 16.2940  17.6804 16.9872 -0.6932 0.6932
n 16.2940  33.9745 16.2940  17.6804 16.9872 -0.6932 0.6932

Table 2: CML estimates of the item parameters related to score matriz in Table 1, obtained
with the R package eRm.

It is straightforward to note that the estimates in Table 2 do not appear to be “meaningful” if
one considers that the results are expressed in logits. This inkling of concern is confirmed by
an exhaustive numerical analysis of the conditional log-likelihood function accomplished in
Mathematica environment (Wolfram Research 2007). Indeed, increasing the numerical accu-
racy of the maximization algorithm, also the estimates of the parameters (in absolute value)
increase. Some examples of the obtained results, in relation to several setting of the accuracy
of the numeric maximization algorithm, are given in Table 3.
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Working ~ ~ = =

precision z B Bi2 i1 di2 Q; Ti1 Ti2
I -10.8717 -52.3071 | -10.8717 -41.4354 | -26.1536  15.2819 -15.2819
40 I -41.4354 -20.3731 | -41.4354  21.0623 | -10.1866 -31.2488  31.2488
I3 20.3691 42.1245 20.3691 21.7554 21.0623 -0.6932 0.6932
1 20.3691  42.1245 20.3691  21.7554 21.0623 -0.6932 0.6932
I -13.2050 -63.9738 | -13.2050 -50.7687 | -31.9869  18.7019 -18.7019
50 I -50.7687 -25.0398 | -50.7687  25.7289 | -12.5199 -38.2488  38.2488
I3 25.0358  51.4579 25.0358  26.4221 25.7290 -0.6932 0.6932
Iy 25.0358  51.4579 25.0358  26.4221 25.7290 -0.6932 0.6932
I -16.2050 -78.9738 | -16.2050 -62.7687 | -39.4869  23.2819 -23.2819
60 I -62.7687 -31.0398 | -62.7687  31.7289 | -15.5199 -47.2488  47.2488
I3 31.0358  63.4579 31.0358  32.4221 31.7290 -0.6932 0.6932
Iy 31.0358  63.4579 31.0358  32.4221 31.7290 -0.6932 0.6932

Table 3: CML estimates of the item parameters related to score matriz in Table 1. The
estimates are obtained in Mathematica environment with 3 setting of the working precision
(digits of precision maintained in internal computations).

As a matter of fact, from a simple analytic study of the maximization function, it is possible to
realize that a finite maximum point does not exist. This problem is not revealed by the eRm
package because the Newton-Raphson approach fails in the convergence and, consequently,
it detects a false critical point. From a geometrical point of view, this could be attributed
to the fact that the curve to be maximized presents a kind of “plateau”. Consequently,
small variations (in this “flat” zone) of the maximization function value correspond to large
variations in the position of the point.

With reference to the same dimension, in Table 4, further 4 examples of JML-ill-conditioned
score matrices are added.  The CML estimates performed on these matrices present the

L I I3 Ii|r, Ly I I3 Iy|ry L I I3 Iy| 7y L I I3 1|,
S 2 2 1 2 7 S1 2 2 2 1 7 S 2 2 2 1 7 Sy 2 2 2 1 7
Sy 2 2 2 0 6 Sy 2 2 1 1 6 Sy 2 2 1 2 7 Sy 2 2 1 2 7
S3 2 2 1 1 6 S3 2 1 1 2 6 S3 2 2 1 1 6 S3 2 2 2 1 7
Sy 2 2 1 1 6 Sy 2 1 1 1 5 Sy 2 1 2 0 5 Sy 2 2 1 0 5
Ss{2 2 o of4 "S[17 7170 012 TSslT 11Tl 3T Ssl2 2 0 ofd4

Sel2 1 0 013 Sf2 0 0 o2 S|1 1 1 03 ‘Sg[2 0 0 0]z

Sz 0 1 0 0 1 Sz 2 0 0 0 2 Sr| 1 1 0 0 2 S71 1 0O 0 O 1
Ss | 1 0 0 O 1 Ss10 1 0 0 1 Ss |1 0 0 1 0 1 Ss| 0 1 0 0 1
G |13 12 5 4 G |13 8 5 5 ¢ |11 10 9 4 c |13 11 6 4

Table 4: JML-ill-conditioned score matrices. The horizontal dotted line delimits one of the
possible partitions of S into S1 and Ss.

analogous problem compared with the ones obtained for score matrix in Table 1.

To sum up, the item parameters related to datasets in Table 1 and in Table 4 turn out
to be inestimable with both JML and CML method even if, in the CML case, the eRm
package provides false estimates (a false critical point). All matrices so far considered can
be seen as CML-ill-conditioned (that is to say, the “ill-conditioned expression” characterizes
a “defect” in the dataset). For the sake of uniformity, from now on, when a score matrix
presents the problem of a false critical point with the CML procedure, it will be defined as
CML-ill-conditioned.
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6. A systematic analysis on fixed small-dimensional datasets

In the light of the issue advanced in the previous section, and following the Linacre (2004b,
p. 60) setting, an in-depth analysis on fixed small-dimensional datasets with m +1 = 3
categories has been performed. To tell the truth, these kind of matrices have not practical
interest but they turn out interesting from a theoretical point of view.

It is convenient to look at a fixed matrix dimension to introduce the analysis. Consider, for
example, the 4 x 3 score matrices with response categories 0, 1 or 2. An automatized procedure
has been implemented in R environment; initially, it generates all possible 3'2 = 531441
matrices of this kind. Let A be the set of all matrices with at least a null category for at least
an item in Z = {I, I, I3}; these matrices are 484785. Let B be the set of all matrices with
at least an extreme person’s raw score of 0 or mk = 6; these matrices are 140816. As said
before, these persons do not affect the conditioning. In the first step the procedure removes
from the analysis the set C' = A U B; this set has dimension 497037 (a data matrix could
have both null category and extreme person’s raw scores, i.e., AN B # (). In reality, one
could consider the matrices belonging to B but, from a practical point of view, their “real”
row dimension should be equal to the number of rows without extreme total scores whereas
the analysis is restricted on 4 x 3 score matrices.

The remaining 34404 matrices have been ordered according to a nonincreasing sorting with
respect to both row and column totals. After this step, only 1333 matrices turn out to be
different among them (“different” means in at least one entry of the matrix). It is to be
noted that these matrices are not yet “really” different; they are different up to row/column
permutations. To realize the issue, it is useful to consider the 2 score matrices in Table 5.

(a) Score matrix (b) Score matrix
L I I3|my L I I3|my
Si112 2 014 Si12 2 04
Sol1 1 113 S0 1 213
Ss12 0 113 Ss12 0 1|3
S0 1 203 Sgl 11 13
¢ |5 4 4 ¢ |5 4 4

Table 5: Example of two 4 x 3 score matrices different up to permutations.

With a simple permutation between the second and the fourth row of the matrix in Table 5(b),
it is easy to note that one obtains the matrix in Table 5(a).

According to this example, it is possible to assert that the “really” different matrices are only
273; each of them can be considered as representative of an equivalence class in which the
equality is meant entry by entry up to row/column permutations. These score matrices are
shown in Table 6.

After an analysis with the eRm package, the 68 matrices shown in roman bold can be consid-
ered as CML-ill-conditioned because they have manifested the problem of false critical point
detection (it is to be noted that an in-depth analysis in Mathematica could produce other
CML-ill-conditioned score matrices). Therefore, the presence of anomalous configurations is
confirmed. Among the 68 matrices CML-ill-conditioned, it is possible to identify only 7 ma-
trices (shown in italics) that are also JML-ill-conditioned; these matrices are the only of this
kind. Consequently, there exist at least 61 JML-well-conditioned matrices (the overwhelming
majority) that result CML-ill-conditioned.

11
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All 273 “substantially different” data matrices, each comprising 3 polytomous items

(columns), with 3 response categories, administered to 4 persons (rows).

Table 6
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From a similar analysis implemented in R on 3x 3, 4x 2, 5x 2 and 6 x 2 matrices with m+1 = 3
categories, a false critical point, systematically enough, whenever a JML-ill-conditioned score
matrix has been detected. Consequently, the JML-ill-conditioning should be seen (whether
by chance or because of problematic issues) as a sort of sufficient condition for the CML-
ill-conditioning. Moreover, from the same analysis, the existence of several CML-anomalous
configurations (leading to false critical points, i.e., CML-ill-conditioned) that are different
from JML-ill-conditioned ones, stands out.

7. Concluding remarks

The existence of the CML estimates for the PCM item parameters has been here investi-
gated by giving several examples of score matrices that, with the R package eRm, lead to
detect false critical points in the log-likelihood function maximization. A systematic anal-
ysis on small-dimensional score matrices, with 3 response categories, has highlighted that
JML-ill-conditioned score matrices are a little subset of CML-ill-conditioned ones; JML-ill-
conditioned score matrices, instead, are CML-ill-conditioned as well, which means that the
JML-ill-conditioning should be a sufficient condition for the CML-ill-conditioning.

The R package eRm — as well as all other packages or softwares performing a CML estimation
procedure — should detect these “anomalous” datasets (by means of an initial data check) or, at
least, the package should check the convergence of the maximization algorithm results. In the
light of the first suggestion, the still open question is to analyze the structure characterizing
these “CML-ill-conditioned” configurations from a theoretical point of view. According to
this, it may be useful to systematically consider matrices of small dimension and by means of
a few number of categories to emphasize the need for specific constraints.

Realizing that further questions can still be raised, the research needs to be carried on. How,
for example, these false critical points influence person parameter estimates, is an important
topic. Also the case of incomplete datasets needs to be furtherly analyzed; according to
the analogy with the dichotomous case (cf. Fischer 1981) and owing to the recent results of
Bertoli-Barsotti and Bacci (2007a,b), the presence of missing data is expected to be a source
of a greater incidence of false critical points. Other important issues are the study of the
non-existence of the CML estimates in the case of response alternatives that are free to vary
in number from item to item (i.e. m is not constant) and in the case of models defined by
Mair and Hatzinger (2007a,b) as extended Rasch models (eRm).
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