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Abstract

The theory of logical gates in quantum computation has suggested new forms of
quantum logic, called quantum computational logics. The basic semantic idea is the
following: the meaning of a sentence is identified with a quregister (a system of qubits
in a pure state) or, more generally, with a mixture of quregisters (called qumix ).
Following an approach proposed by Domenech and Freytes, we apply residuated
structures associated with fuzzy logic to develop certain aspects of information
processing in quantum computing from a logical perspective. For this purpose, we
introduce an axiomatic system whose natural interpretation is the irreversible quan-
tum Poincaré algebra. Such a system allows to establish a completeness theorem for
the treatment of quantum information.
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1 Introduction

The theory of logical gates in quantum computation has suggested new forms
of quantum logic that have been called quantum computational logics (6). The
main difference between orthodox quantum logic (first proposed by Birkhoff
and von Neumann (1)) and quantum computational logics concerns a basic
semantic question: how to represent the meanings of the sentences of a given
language? The answer given by Birkhoff and von Neumann was the following:
the meanings of the elementary experimental sentences of quantum theory
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have to be regarded as determined by convenient sets of states of quantum
objects. Since these sets should satisfy some special closure conditions, it turns
out that, in the framework of orthodox quantum logic, sentences can be ade-
quately interpreted as closed subspaces of the Hilbert space associated to the
physical systems under investigation (1). Interesting applications of orthodox
quantum logic (and of its weaker variant, orthologic) have been recently in-
vestigated (19; 20; 22; 23; 18). Quantum computational logics give a different
answer to our basic semantic question. The meaning of a sentence is identified
with a quantum information quantity: a quregister or, more generally, a mix-
ture of quregisters (briefly, a qumix ) (6). Following an approach proposed by
Domenech and Freytes (7) we study the logical formalization of the treatment
of quantum information during the computational process. More precisely, we
want to establish a lowest bound that allows to appreciate the relevance of
inputs that are known with certainty with respect to the possible outputs.
In order to accomplish this purpose, we use an approximate reasoning frame-
work, which is a crucial theme studied within fuzzy logic and we introduce
an axiomatic system for quantum computational logics. We show the relation
between quantum computational logics and fuzzy logics in a rigorous manner,
more precisely, the relation of the axiomatic system with the infinite valued
product ÃLukasiewicz calculus. Such a system allows to establish a completeness
theorem for the treatment of quantum information.

In this paper we come to a completion of the partial results obtained by
Domenech and Freytes taking the square root of the identity into account. In
the simplest case this connective corresponds to the Walsh-Hadamard gate. In
the Domenech and Freytes approach, one can even shift down by one dimen-
sion and replace qumixes by points of the closed disc whereas in our approach
we really make use of the Poincaré sphere.

The paper is organized as follows. In sections 2-5 we include some background
material needed for what follows. In section 6 we introduce a quasi prod-
uct many-valued algebra and a quantum product many-valued algebra. These
structures have a reduct which is a generalization of the concept of MV alge-
bra, whence an interesting connection arises with mainstream fuzzy logic. In
section 7 an irreversible quantum computational logic with a ÃLukasiewicz frag-
ment is also introduced and a completeness theorem is proved in section 8.

2 Quregisters and qumixes

We will first sum up some basic concepts of quantum computation that are
used in the framework of quantum computational logics. Consider the two-
dimensional Hilbert space C2 (where any vector |ψ〉 is represented by a pair
of complex numbers). Let B(1) = {|0〉, |1〉} be the canonical orthonormal basis
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for C2, where |0〉 =

(
1

0

)
and |1〉 =

(
0

1

)
.

Recalling the Born rule, any |ψ〉 = c0|0〉 + c1|1〉 (with |c0|2 + |c1|2 = 1) can
be regarded as an uncertain piece of information, where the answer NO has
probability |c0|2, while the answer YES has probability |c1|2. The two basis-
elements |0〉 and |1〉 are usually taken as encoding the classical bit-values 0
and 1, respectively. From a semantic point of view, they can be also regarded
as the classical truth-values Falsity and Truth.

Definition 1 Quregister.
An n-quregister is represented by a unit vector in the n-fold tensor product
Hilbert space ⊗nC2 := C2 ⊗ . . .⊗ C2

︸ ︷︷ ︸
n−times

.

We will use x, y, . . . as variables ranging over the set {0, 1}. At the same
time, |x〉, |y〉, . . . will range over the basis B(1). Any factorized unit vector
|x1〉 ⊗ . . . ⊗ |xn〉 of the space ⊗nC2 will be called an n-configuration (which
can be regarded as a quantum realization of a classical bit sequence of length
n). Instead of |x1〉 ⊗ . . . ⊗ |xn〉 we will also write |x1, . . . , xn〉. Recall that
the dimension of ⊗nC2 is 2n, while the set of all n-configurations B(n) =
{|x1, . . . , xn〉 : x1, . . . , xn ∈ {0, 1}} is an orthonormal basis for the space ⊗nC2.
We will call this set a computational basis for the n-quregisters. Since any
element of the computational basis can be labeled by a binary string which
represents a natural number j ∈ [0, 2n − 1] in binary notation (where j =
2n−1x1 + 2n−2x2 + . . . + xn), any quregister can be briefly expressed as a
superposition having the following form:

∑2n−1
j=0 cj|j〉, where cj ∈ C, |j〉 is the

n-configuration corresponding to the number j and
∑2n−1

j=0 |cj|2 = 1.

For semantic aims, it is useful to distinguish the true from the false in any
space ⊗nC2. We assume the following convention (which is a natural general-
ization of classical semantics): any n-configuration corresponds to a classical
truth-value that is determined by its last element (i.e. xn = 1 := true and
xn = 0 := false or, in other words, by the parity of j, i.e. odd:=true and
even:=false). Let us now decompose the Hilbert space ⊗nC2 into its true and
false subspaces ⊗nC2

0 and ⊗nC2
1 respectively, i.e. ⊗nC2 = ⊗nC2

0 ⊕⊗nC2
1, and

denote by P
(n)
1 and P

(n)
0 the pertaining orthogonal projectors, P

(n)
1 + P

(n)
0 =

I(n), where I(n) is the identity operator of ⊗nC2. Therefore, the projectors
P

(n)
1 and P

(n)
0 represent the Truth-property and the Falsity-property in ⊗nC2,

respectively. Let D(⊗nC2) be the set of all positive trace class operators of
⊗nC2 and let D :=

⋃∞
n=1 D(⊗nC2).

Definition 2 Qumix.
A qumix is a density operator in D.
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Needless to say, quregisters correspond to particular qumixes that are pure
states (i.e. projections onto one-dimensional closed subspaces of ⊗nC2). Re-
calling the Born rule, we can now define the probability-value of any qumix.

Definition 3 Probability of a qumix.
For any qumix ρ ∈ D(⊗nC2): p(ρ) = tr(ρ P

(n)
1 ).

p(ρ) is the probability that the information stocked by the qumix ρ is true. In
the particular case where ρ corresponds to the 1-quregister

|ψ〉 = c0|0〉+ c1|1〉,

we obtain that p(ρ) = |c1|2.

For any quregister |ψ〉, we will write p(|ψ〉) instead of p(P|ψ〉), where P|ψ〉 (also
indicated by |ψ〉〈ψ|) is the density operator represented by the projection onto
the one-dimensional subspace spanned by the vector |ψ〉. In particular, we have

the matching of notions P
(1)
0 ≡ P|0〉 and P

(1)
1 ≡ P|1〉, with the projector also

representing a pure state.

An interesting relation connects qumixes with the real numbers in the interval
[0, 1]. For any n ∈ N+, any real number λ ∈ [0, 1] uniquely determines a qumix

ρ
(n)
λ :

ρ
(n)
λ := (1− λ)knP

(n)
0 + λknP

(n)
1

(where kn = 1
2n−1 is a normalization coefficient). From an intuitive point of

view, ρ
(n)
λ represents a mixture of pieces of information that might correspond

to the Truth with probability λ. We will also write ρλ instead of ρ
(1)
λ .

3 Quantum Gates

In quantum computation, quantum logical gates (briefly, gates) are unitary op-
erators that transform quregisters into quregisters. Being unitary, gates repre-
sent characteristic reversible transformations. The canonical gates (which are
studied in the literature) can be naturally generalized to qumixes. Generally,
gates correspond to some basic logical operations that admit a reversible be-
haviour. We will consider here the following gates: the not, the Petri-Toffoli’s
(17; 21) (also called controlled-controlled-not), the controlled-not, the square
root of the not, the square root of the identity, the ÃLukasiewicz’s.

Let us first describe our gates in the framework of quregisters.

Definition 4 The not gate.
For any n ≥ 1, the not gate on ⊗nC2 is the linear operator Not(n) such that

4



for every element |x1, . . . , xn〉 of the computational basis B(n):

Not(n)(|x1, . . . , xn−1, xn〉) = |x1, . . . , xn−1, 1− xn〉.

In other words, Not(n) inverts the value of the last element of basis-vector of
⊗nC2.

Clearly, Not(n) = I(n−1) ⊗X, where X is the Pauli matrix, X =




0 1

1 0


 .

Definition 5 The Petri-Toffoli gate.
For any n ≥ 1 and any m ≥ 1 the Petri-Toffoli gate is the linear opera-
tor T (n,m,1) defined on ⊗n+m+1C2 such that for every element |x1, . . . , xn〉 ⊗
|y1, . . . , ym〉 ⊗ |z〉 of the computational basis B(n+m+1):

T (n,m,1)(|x1, . . . , xn〉⊗|y1, . . . , ym〉⊗|z〉) = |x1, . . . , xn〉⊗|y1, . . . , ym〉⊗|xnym ¢ z〉,

where ¢ represents the sum modulo 2.

Clearly, T (n,m,1) = (I(n+m) − P
(n)
1 ⊗ P

(m)
1 )⊗ I(1) + P

(n)
1 ⊗ P

(m)
1 ⊗X.

One can easily show that both Not(n) and T (n,m,1) are unitary operators.

Consider now the set R =
⋃∞

n=1⊗nC2 (which contains all quregisters |ψ〉
“living” in ⊗nC2, for an n ≥ 1). The gates Not and T can be uniformly
defined on this set in the expected way:

Not(|ψ〉) := Not(n)(|ψ〉), if |ψ〉 ∈ ⊗nC2

T (|ψ〉 ⊗ |ϕ〉 ⊗ |χ〉) := T (n,m,1)(|ψ〉 ⊗ |ϕ〉 ⊗ |χ〉), if |ψ〉 ∈ ⊗nC2, |ϕ〉 ∈ ⊗mC2and |χ〉 ∈ ⊗1C2.

On this basis, a conjunction And, a disjunction Or can be defined for any pair
of quregisters |ψ〉 and |ϕ〉:

And(|ψ〉, |ϕ〉) := T (|ψ〉 ⊗ |ϕ〉 ⊗ |0〉);

Or(|ψ〉, |ϕ〉) := Not(And(Not(|ψ〉), Not(|ϕ〉))).

Notice that our definition of And is reversible and, as such, needs a third
ancillary system. Indeed, in this framework, And(|ψ〉, |ϕ〉) should be regarded
as a metalinguistic abbreviation for T (|ψ〉 ⊗ |ϕ〉 ⊗ |0〉). A similar observation
holds for Or.

One can easily verify that, when applied to classical bits, Not, And and Or

behave as the standard Boolean truth-functions.
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An exclusive disjunction Xor can be defined by using the controlled-not gate.

Definition 6 The controlled-not gate.
For any n ≥ 1 and any m ≥ 1 the controlled-not gate is the linear oper-
ator Xor(n,m) defined on ⊗n+mC2 such that for every element |x1, . . . , xn〉 ⊗
|y1, . . . , ym〉 of the computational basis B(n+m):

Xor(n,m)(|x1, . . . , xn〉 ⊗ |y1, . . . , ym〉) = |x1, . . . , xn〉 ⊗ |y1, . . . , ym−1, xn ¢ ym〉,

where ¢ represents the sum modulo 2.

Clearly, Xor(n,m) = P
(n)
0 ⊗ I(m) + P

(n)
1 ⊗ Not(m).

The gate Xor can be uniformly defined in the expected way:

Xor(|ψ〉 ⊗ |ϕ〉) := Xor(n,m)(|ψ〉 ⊗ |ϕ〉) if |ψ〉 ∈ ⊗nC2and |ϕ〉 ∈ ⊗mC2.

The quantum logical gates we have considered so far are, in a sense, “semi-
classical”. A quantum logical behaviour only emerges in the case where our
gates are applied to superpositions. When restricted to classical registers, such
operators turn out to behave as classical (reversible) truth-functions. We will
now consider two important genuine quantum gates that transform classical
registers (elements of B(n)) into quregisters that are superpositions: the square
root of the not and the square root of the identity.

Definition 7 The m-th root of the not.

For any n ≥ 1, the m-th root of the not on ⊗nC2 is the linear operator m
√
Not

(n)

such that for every element |x1, . . . , xn〉 of the computational basis B(n):

m
√
Not

(n)
(|x1, . . . , xn〉) = |x1, . . . , xn−1〉⊗ 1

2
((1+ ei π

m )|xn〉+(1− ei π
m )|1− xn〉),

where i :=
√−1.

One can easily show that m
√
Not

(n)
is a unitary operator. The basic property

of m
√
Not

(n)
is the following:

for any |ψ〉 ∈ ⊗nC2, m
√
Not

(n)
(. . . m

√
Not

(n)

︸ ︷︷ ︸
m

(|ψ〉) . . .) = Not(n)(|ψ〉).

In other words, applying m times the m-th root of the not means negating.

Clearly, m
√
Not

(n)
= I(n−1) ⊗M, where M := 1

2




1 + ei π
m 1− ei π

m

1− ei π
m 1 + ei π

m


 .
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From a logical point of view,
√
Not

(n)
can be regarded as a “tentative par-

tial negation” (a kind of “half negation”) that transforms precise pieces of
information into maximally uncertain ones. For, we have:

p(
√
Not

(1)
(|1〉)) =

1

2
= p(

√
Not

(1)
(|0〉)).

As expected, the square root of the not has no Boolean counterpart. Clearly,
there exists no function f : {0, 1} → {0, 1} such that for any x ∈ {0, 1} :
f(f(x)) = 1− x, since such a function is none of the possible four.

Interestingly enough,
√
Not also does not have a continuous fuzzy counterpart.

Lemma 8 There is no continuous function f : [0, 1] → [0, 1] such that for
any x ∈ [0, 1] : f(f(x)) = 1− x (6).

Definition 9 The m-th root of the identity.
For any n ≥ 1, the m-th root of the identity on ⊗nC2 is the linear operator
m
√
I

(n)
such that for every element |x1, . . . , xn〉 of the computational basis B(n):

m
√
I

(n)
(|x1, . . . , xn〉) = |x1, . . . , xn−1〉

⊗ 1
2
√

2
([(−1)1−xn +

√
2 + ((−1)xn +

√
2)ei 2π

m ]|xn〉+ [1− ei 2π
m ]|1− xn〉).

The basic property of m
√
I

(n)
is the following:

for any |ψ〉 ∈ ⊗nC2, m
√
I

(n)
(. . . m

√
I

(n)

︸ ︷︷ ︸
m

(|ψ〉) . . .) = |ψ〉.

Clearly,
√
I

(n)
= I(n−1) ⊗ H, where H is the Walsh-Hadamard matrix H :=

1√
2




1 1

1 −1


 .

As happens in the case of
√
Not

(n)
, also

√
I

(n)
can be regarded as a “tentative

partial assertion” (a kind of “half assertion”) that transforms precise pieces
of information into maximally uncertain ones. Apparently, one application

of
√
I

(n)
to a precise information produces a maximal disorder, while two

applications of
√
I

(n)
lead back to the initial information.

The gates considered so far can be naturally generalized to qumixes.

Definition 10 Gates.
For any qumix ρ ∈ D(⊗nC2),

G(n)(ρ) = G(n)ρ G(n)†,
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where G(n)† is the adjoint of G(n).

When our gates will be applied to density operators, we will use capital letters.
Like in the quregister-case, the gates NOT,

√
NOT,

√
I, AND, can be uniformly

defined on the set D of all qumixes.

The following theorems describe some basic properties of our gates.

Theorem 11 (10)

(1) ∀n ∈ N+: NOT(kn P
(n)
0 ) = kn P

(n)
1 ;

(2) ∀n ∈ N+: NOT(kn P
(n)
1 ) = kn P

(n)
0 ;

(3) p(NOT(ρ)) = 1− p(ρ).

Theorem 12 (10)

(1)
√
NOT(

√
NOT(ρ)) = NOT(ρ);

(2)
√
NOT(NOT(ρ)) = NOT(

√
NOT(ρ));

(3) ∀n ∈ N+: p(
√
NOT(knP

(n)
1 )) = p(

√
NOT(knP

(n)
0 )) = 1

2
.

Theorem 13 (2; 10)

(1) p(AND(ρ, σ)) = p(ρ)p(σ);
(2) p(

√
NOT(AND(ρ, σ))) = 1

2
.

Theorem 14 (6)

(1)
√
I(
√
I(ρ)) = ρ;

(2) ∀n ∈ N+: p(
√
I(knP

(n)
1 )) = p(

√
I(knP

(n)
0 )) = 1

2
;

(3) ∀n ∈ N+: p(
√
I(
√
NOT(knP

(n)
1 ))) = p(

√
I(
√
NOT(knP

(n)
0 ))) = 1

2
;

(4) ∀n ∈ N+: p(
√
NOT(

√
I(knP

(n)
1 ))) = p(

√
NOT(

√
I(knP

(n)
0 ))) = 1

2
;

(5) p(
√
I(
√
NOT(ρ))) = p(

√
I(ρ));

(6) p(
√
NOT(

√
I(ρ))) = 1− p(

√
NOT(ρ));

(7) p(
√
I(AND(ρ, σ))) = 1

2
;

(8) p(
√
I(
√
NOT(AND(ρ, σ)))) = p(

√
NOT(

√
I(AND(ρ, σ)))) = 1

2
.

The gates we have considered so far represent typical reversible logical opera-
tions. Are there other interesting irreversible operations that might be consid-
ered in quantum computation? Some natural candidates are represented, for
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instance, by a ÃLukasiewicz-like conjunction and a ÃLukasiewicz-like disjunction
(6).

Definition 15 The ÃLukasiewicz disjunction.
Let τ ∈ D(⊗nC2) and σ ∈ D(⊗mC2).

τ ⊕ σ := ρ
(1)
p(τ)⊕p(σ),

where ⊕ in p(τ)⊕p(σ) is the ÃLukasiewicz “truncated sum” defined on the real
interval [0, 1] (i.e. p(τ)⊕ p(σ) = min {1, p(τ) + p(σ)}) (24).

The following theorems sum up some basic properties of the ÃLukasiewicz dis-
junction:

Theorem 16 Let τ ∈ D(⊗nC2) and σ ∈ D(⊗mC2) (6).

(1) τ ⊕ σ =





ρ
(1)
p(τ)+p(σ), if p(τ) + p(σ) ≤ 1;

P
(1)
1 , otherwise;

(2) p(τ ⊕ σ) = p(τ)⊕ p(σ);
(3) p(

√
NOT(τ ⊕ σ)) = 1

2
;

(4) p(
√
I(τ ⊕ σ)) = 1

2
;

(5) p(
√
I(
√
NOT(τ ⊕ σ))) = p(

√
NOT(

√
I(τ ⊕ σ))) = 1

2
.

Lemma 17 Let ρ ∈ D(⊗nC2).

(1) ∀n ∈ N+: ρ⊕ knP
(n)
1 = P

(1)
1 ;

(2) ∀n ∈ N+: ρ⊕ knP
(n)
0 = ρ

(1)
p(ρ);

(3) ρ⊕ NOT(ρ) = P
(1)
1 .

PROOF. Straightforward.

From Lemma 17 it follows that p(ρ ⊕ knP
(n)
1 ) = 1, p(ρ ⊕ knP

(n)
0 ) = p(ρ) and

p(ρ⊕ NOT(ρ)) = 1.

An interesting preorder relation can be defined on the set D of all qumixes.

Definition 18 Preorder.
ρ 4 σ iff the following conditions hold:

(1) p(ρ) ≤ p(σ);
(2) p(

√
NOT(σ)) ≤ p(

√
NOT(ρ));

(3) p(
√
I(ρ)) ≤ p(

√
I(σ)).
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One immediately shows that 4 is reflexive and transitive, but not antisym-
metric (take, for example, ρ = 1

2
I and σ = P 1√

2
(|01〉+|10〉)). From an intuitive

point of view, ρ 4 σ means that the information σ is “closer to the truth”
than the information ρ.

The preorder 4 permits us to define on the set of all qumixes an equivalence
relation ≡ in the expected way.

Definition 19 Equivalence.

ρ ≡ σ iff ρ 4 σ and σ 4 ρ.

Clearly, ≡ is an equivalence relation. Let

[D]≡ := {[ρ]≡ : ρ ∈ D} .

Unlike the qumixes (which are only preordered by 4), the equivalence-classes
of [D]≡ can be partially ordered in a natural way.

Definition 20 Partial order.

[ρ]≡ 4 [σ]≡ iff ρ 4 σ.

The relation 4 (which is well defined) is a partial order.

Lemma 21

(1) ∀n ∈ N+: [P1]≡ =
[
knP

(n)
1

]
≡;

(2) ∀n ∈ N+: [P0]≡ =
[
knP

(n)
0

]
≡;

(3) ∀n ∈ N+ ∀λ ∈ [0, 1]:
[
ρ

(1)
λ

]
≡ =

[
ρ

(n)
λ

]
≡.

PROOF. Straightforward.

One can prove that ≡ is a congruence relation with respect to the operations
AND, ⊕, NOT,

√
NOT,

√
I.

In this framework, we can define, in the expected way, the operations:

Definition 22 Operations.
Let ρ ∈ D(⊗nC2) and σ ∈ D(⊗mC2).

(1) [ρ]≡AND[σ]≡ = [AND(ρ, σ)]≡;
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(2) [ρ]≡ ⊕ [σ]≡ = [ρ⊕ σ]≡;
(3) NOT([ρ]≡) = [NOT(ρ)]≡;
(4)

√
NOT([ρ]≡) = [

√
NOT(ρ)]≡;

(5)
√
I([ρ]≡) = [

√
I(ρ)]≡.

Lemma 23

(1) The operation AND is associative and commutative;
(2) The operation ⊕ is associative and commutative;
(3) NOT(NOT([ρ]≡)) = [ρ]≡;
(4)

√
NOT(

√
NOT([ρ]≡)) = NOT([ρ]≡);

(5)
√
I(
√
I([ρ]≡)) = [ρ]≡.

PROOF. Straightforward.

On this basis, we can define the following quotient-structure:

Definition 24 The standard irreversible quantum computational algebra.
The structure

([D]≡, AND,⊕, NOT,
√
NOT,

√
I, [P (1)

0 ]≡, [P
(1)
1 ]≡, [ρ

(1)
1
2

]≡),

is called the standard irreversible quantum computational algebra.

4 The Poincaré quantum computational structures

We will now restrict our analysis to the qumixes living in the two-dimensional
space C2. As is well known, every density operator of D(C2) has the following
matrix representation:

1

2
(I + r1X + r2Y + r3Z) ,

where r1, r2, r3 are real numbers such that r2
1 + r2

2 + r2
3 ≤ 1 and X, Y, Z are

the Pauli matrices:

X =




0 1

1 0


 Y =




0 −i

i 0


 Z =




1 0

0 −1


 .

It turns out that a density operator 1
2
(I + r1X + r2Y + r3Z) is pure iff r2

1 +
r2
2 + r2

3 = 1. Consequently,
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• Pure density operators are in 1 : 1 correspondence with the points of the
surface of the Poincaré sphere;

• Proper mixtures are in 1 : 1 correspondence with the inner points of the
Poincaré sphere.

Let ρ be a density operator of D(C2). We will denote by ρ̄ the point of the
Poincaré sphere that is univocally associated to ρ.

Let (r1, r2, r3) be a point of the Poincaré sphere. We will denote by ̂(r1, r2, r3)
the density operator univocally associated to (r1, r2, r3).

In the Domenech and Freytes approach one disregards the r1 component of
the Poincaré sphere whereas taking the square root of the identity gate into
account one does not.

Lemma 25 Let ρ ∈ D(C2) such that ρ̄ = (r1, r2, r3). The following conditions
hold:

(1) p(ρ) = 1−r3

2
, p(

√
NOT(ρ)) = 1−r2

2
, p(

√
I(ρ)) = 1−r1

2
;

(2) 0 < p(ρ) < 1, 0 < p(
√
NOT(ρ)) < 1 and 0 < p(

√
I(ρ)) < 1, whenever ρ is

a proper mixture.

(3) p(ρ)
4

+ p(
√
NOT(ρ))
4

+ p(
√
I(ρ))
4

≤ 3+
√

3
8

PROOF. (i) Easy computation;
(ii) Since proper mixtures are in 1:1 correspondence with inner points of the
Poincaré sphere, we have: r2

1 + r2
2 + r2

3 < 1. Hence: r2
1, r

2
2, r

2
3 < 1 and −1 <

r1, r2, r3 < 1. Consequently: 0 < p(ρ) = 1−r3

2
< 1, 0 < p(

√
NOT(ρ)) = 1−r2

2
< 1

and 0 < p(
√
I(ρ)) = 1−r1

2
< 1.

(iii) By (i), p(ρ)
4

+ p(
√
NOT(ρ))
4

+ p(
√
I(ρ))
4

= 1−r3

8
+ 1−r2

8
+ 1−r1

8
and any point of the

Poincaré sphere fulfills r1 + r2 + r3 ≥ −√3. This bound is given by a simple
problem of minimization with conditional extremes. The factor 1

4
is used to

make the left-hand member of the inequality less than 1.

An irreversible conjunction can be now naturally defined on the set of all
qumixes of D(C2).

Definition 26 The irreversible conjunction.
Let τ, σ ∈ D(C2).

τ • σ := ρ
(1)
p(τ)p(σ)

Interestingly enough, the density operator τ • σ can be described as a reduced
state of AND(τ, σ). Suppose we have a compound physical system consisting of

12



r (possibly compound) subsystems, and let

H = Hn1
1 ⊗ . . .⊗Hnr

r

be the Hilbert space associated to the total system (where Hnj

j = ⊗njC2).

Let ρ ∈ D(H) and 1 ≤ j ≤ r. The reduced state of ρ with respect to the j-th
subsystem is the unique density operator redj(ρ) that satisfies the following
condition, for any self-adjoint operator Aj of Hnj

j :

tr(Aj redj(ρ)) = tr((I(n1) ⊗ . . .⊗ I(nj−1) ⊗ Aj ⊗ I(nj+1) ⊗ . . .⊗ I(nr))ρ),

(where I(nh) is the identity operator of Hnh
h ).

Clearly, ρ and redj(ρ) turn out to be statistically equivalent with respect to
the j-th subsystem of the total system.

One can prove that:
τ • σ = red 3(AND(τ, σ)).

In other words, τ • σ represents the reduced state of AND(τ, σ) on the third
subsystem.

An interesting situation arises when both τ and σ are pure states. For instance,
suppose that:

τ = P|ψ〉 and σ = P|ϕ〉,

where |ψ〉 and |ϕ〉 are proper qubits. Then,

AND(τ, σ) = PT (1,1,1)(|ψ〉⊗|ϕ〉⊗|0〉),

which is a pure state. At the same time, we have:

τ • σ = red 3(PT (1,1,1)(|ψ〉⊗|ϕ〉⊗|0〉)),

which is a proper mixture. Apparently, when considering only the properties
of the third subsystem, we lose some information. As a consequence, we ob-
tain a final state that does not represent a maximal knowledge. As is well
known, situations where the state of a compound system represents a maxi-
mal knowledge, while the states of the subsystems are proper mixtures, play
an important role in the framework of entanglement-phenomena.

Lemma 27

(1) • is associative and commutative;
(2) ρ • P0 = P0;
(3) ρ • P1 = ρp(ρ);
(4) p(ρ • σ)) = p(ρ)p(σ);

13



(5) p(
√
NOT(ρ • σ)) = 1

2
;

(6) p(
√
I(ρ • σ)) = 1

2
.

PROOF. Easy.

Consider now the structure
(
D(C2) , • ,⊕ , NOT ,

√
NOT ,

√
I , P0, P1 , ρ 1

2

)
.

We will call such a structure the Poincaré irreversible quantum computational
algebra (shortly, the Poincaré IQC-algebra).

Theorem 28 The Poincaré algebra is isomorphic to the standard irreversible
quantum computational algebra, via the map
g : D(C2) → [D]≡ such that ∀ρ ∈ D(C2):

g(ρ) = [ρ]≡.

Moreover, for any ρ , σ ∈ D(C2): ρ 4 σ iff g(ρ) 4 g(σ) (6).

5 The quantum computational algebra

An interesting algebraic property of the Poincaré IQC-structure is the fol-
lowing: our structure turns out to be isomorphic to a structure based on a
particular subset of the set R3. Let

S :=
{
(a, b, c) | a, b, c ∈ R and (1− 2a)2 + (1− 2b)2 + (1− 2c)2 ≤ 1

}
.

Note that for all triples (a, b, c) ∈ S, the elements a, b, c belong to the real
interval [0, 1].

Let 0 :=
(
0, 1

2
, 1

2

)
, 1 :=

(
1, 1

2
, 1

2

)
, 1

2
:=

(
1
2
, 1

2
, 1

2

)
.

The following operations (NOTS,
√
NOT

S
,
√
IS, •S, ⊕S) can be defined on S.

Definition 29 Operations.

(1) NOTS(a1, a2, a3) = (1− a1, 1− a2, a3);

(2)
√
NOT

S
(a1, a2, a3) = (a2, 1− a1, a3);

(3)
√
IS(a1, a2, a3) = (a3, 1− a2, a1);

(4) (a1, a2, a3)•S(b1, b2, b3) =
(
a1b1,

1
2
, 1

2

)
;

14



(5) (a1, a2, a3)⊕S (b1, b2, b3) =





(a1 + b1,
1
2
, 1

2
), if a1 + b1 ≤ 1;

1, otherwise.

One can easily see that S is closed under the operations of Definition 29.

Lemma 30

(1) The operations •S and ⊕S are commutative and associative;
(2) (a1, a2, a3)•S0 = 0;

(3) (a1, a2, a3)⊕S 0 =
(
a1,

1
2
, 1

2

)
;

(4) (a1, a2, a3)•S1 =
(
a1

1
2
, 1

2

)
;

(5) (a1, a2, a3)⊕S 1 = 1;
(6) NOTSNOTS(a1, a2, a3) = (a1, a2, a3);

(7)
√
NOT

S
NOTS(a1, a2, a3) = NOTS

√
NOT

S
(a1, a2, a3);

(8)
√
NOT

S√
NOT

S
(a1, a2, a3) = NOTS(a1, a2, a3);

(9) (a1, a2, a3) is a fixed point of NOTS iff (a1, a2, a3) is a fixed point of
√
NOT

S

iff (a1, a2, a3) = 1
2
;

(10)
√
IS
√
IS(a1, a2, a3) = (a1, a2, a3);

(11) 1
2

is a fixed point of
√
IS.

PROOF. Easy computation.

Definition 31

(a1, a2, a3) ¹ (b1, b2, b3) iff a1 ≤ b1, b2 ≤ a2 and a3 ≤ b3.

Consider now the structure
(
S , •S ,⊕S , NOTS ,

√
NOT

S
,
√
IS , 0 , 1 , 1

2

)
. We will

call such a structure the S quantum computational algebra (shortly the SQC-
algebra).

We will prove that the Poincaré IQC-algebra and the SQC-algebra are iso-
morphic.

Let (a, b, c) ∈ S and let ρ(a, b, c) be the density operator associated to the
triple (1− 2c, 1− 2b, 1− 2a). Thus,

ρ(a, b, c) := ̂(1− 2c, 1− 2b, 1− 2a).

Hence:

ρ(a, b, c) =




1− a (1
2
− c)− i(1

2
− b)

(1
2
− c) + i(1

2
− b) a



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Lemma 32

(1) ρ(NOTS(a1, a2, a3)) = NOT(ρ(a1, a2, a3));

(2) ρ(
√
NOT

S
(a1, a2, a3)) =

√
NOT (ρ(a1, a2, a3));

(3) ρ(
√
IS(a1, a2, a3)) =

√
I(ρ(a1, a2, a3));

(4) ρ((a1, a2, a3)•S(b1, b2, b3)) = ρ(a1, a2, a3) • ρ(b1, b2, b3);
(5) ρ((a1, a2, a3)⊕S (b1, b2, b3)) = ρ(a1, a2, a3)⊕ ρ(b1, b2, b3).

PROOF. Easy computation.

Theorem 33 The SQC-algebra

(
S , •S ,⊕S ,

√
NOT

S
,
√
I
S
, 0 , 1 ,

1

2

)

is isomorphic to the Poincaré IQC-algebra

(
D(C2) , • ,⊕ ,

√
NOT ,

√
I , P0 , P1 , ρ 1

2

)
.

PROOF. Let h be the map of S into D(C2) such that ∀(a1, a2, a3) ∈ S:

h((a1, a2, a3)) := ρ(a1, a2, a3).

That h is a homomorphism follows from Lemma 32. We now prove that
h is injective. Suppose (a1, a2, a3) 6= (b1, b2, b3). Suppose, by contradiction,
that h((a1, a2, a3)) = h((b1, b2, b3)). Then, ρ(a1, a2, a3) = ρ(b1, b2, b3). Thus,
p(ρ(a1, a2, a3)) = p(ρ(b1, b2, b3)), p(

√
NOT(ρ(a1, a2, a3))) = p(

√
NOT(ρ(b1, b2, b3)))

and p(
√
I(ρ(a1, a2, a3))) = p(

√
I(ρ(b1, b2, b3))). By Lemma 25, we obtain

p(ρ(a1, a2, a3)) = a1 = b1 = p(ρ(b1, b2, b3)),

p(
√
NOT(ρ(a1, a2, a3))) = a2 = b2 = p(

√
NOT ρ(b1, b2, b3)),

p(
√
I(ρ(a1, a2, a3))) = a3 = b3 = p(

√
I(ρ(b1, b2, b3))).

Hence: (a1, a2, a3) = (b1, b2, b3), contradiction. We now prove that h is surjec-
tive. Let ρ be a density operator of D(C2) and let (a1, a2, a3) be the point of
the Poincaré sphere associated to ρ. Thus, (a1, a2, a3) = ρ̄.

Take
(

1− a3

2
,
1− a2

2
,
1− a1

2

)
∈ S. By Lemma 25, ρ

(
1− a3

2
,
1− a2

2
,
1− a1

2

)
=

ρ. Consequently, ρ = h
((

1− a3

2
,
1− a2

2
,
1− a1

2

))
.

As a consequence of Theorem 28 and of Theorem 33, we obtain that the IQC-
algebra and the SQC-algebra are isomorphic.
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6 Quantum Many-valued algebra

Definition 34 Many-valued algebra.
A many-valued algebra (MV-algebra for short) is a structure A = (A,⊕,¬, 0)
of type (2, 1, 0) such that the following conditions are satisfied:

(1) (A,⊕, 0) is a commutative monoid
(2) x⊕ ¬0 = ¬0
(3) ¬¬x = x
(4) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x

In each MV-algebra, one can define the following additional constant and
connectives:

• 1 = ¬0
• xª y = ¬(¬x⊕ y)
• x¯ y = ¬(¬x⊕ ¬y)
• x → y = ¬x⊕ y
• x ∨ y = (xª y)⊕ y
• x ∧ y = ¬(¬x ∨ ¬y)

One can also define the relation ≤ (∀x, y x ≤ y iff x → y = 1) as a
natural lattice order with top element 1 and bottom element 0 w.r.t. the
lattice operations ∨ and ∧ (because (A,∨,∧, 0, 1) forms a lattice).

Definition 35 Quasi many-valued algebra (14).
A quasi many-valued algebra is a structure A = (A,⊕,¬, 0) of type (2, 1, 0)
such that, letting 1 = ¬0, x ª y = ¬(¬x ⊕ y), the following conditions are
satisfied:

(1) x⊕ (y ⊕ z) = (x⊕ z)⊕ y
(2) x⊕ 1 = 1
(3) ¬¬x = x
(4) (xª y)⊕ y = (y ª x)⊕ x
(5) ¬(x⊕ 0) = ¬x⊕ 0
(6) (x⊕ y)⊕ 0 = x⊕ y

Of course, a quasi-MV algebra is an MV algebra if and only if it satisfies
the additional equation x ⊕ 0 = x. Axioms (5) and (6) are there to enforce
some regularity on the otherwise too wild behaviour of truncated sum: the
operation of adding a zero should leave sums unaltered and should commute
with inversion. In this setting, the relation ≤ turns out to be a preordering,
but not necessarily a partial ordering of A.

Definition 36 Product many-valued algebra (15).
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A product many-valued algebra (PMV-algebra for short) is a structure (A,⊕, •,¬, 0)
of type (2, 2, 1, 0) such that the following conditions are satisfied:

(1) (A,⊕,¬, 0) is an MV-algebra
(2) (A, •, 1) is a commutative monoid
(3) x • (y ª z) = (x • y)ª (x • z)

An important example of PMV-algebra is [0, 1]PMV = ([0, 1], •,⊕,¬, 0) such that
[0, 1] is the real unit segment and •,⊕,¬ are defined as follows: x • y = x y,
x⊕ y = min{1, x + y}, ¬x = 1− x. Note that every Boolean algebra becomes
a PMV-algebra by letting the product operation coincide with the infimum
operation. The following is almost immediate consequence of the definition.

We can now refer to the following equivalence relation:

ρ ¹u σ iff p(ρ) = p(σ).

For any ρ ∈ D(C2), let

[ρ]¹u :=
{
σ ∈ D(C2) | ρ u σ

}
. (1)

Further define

[D(C2)]¹u :=
{
[ρ]¹u | ρ ∈ D(C2)

}
. (2)

The operations • ,⊕ , NOT and the relation ¹ can be defined on [D(C2)]¹u in
the expected way.

On this basis we obtain the following quotient-structure

(
[D(C2)]¹u , • ,⊕ , NOT , [P0]¹u, [P1]¹u

)
.

One can easily show:

Proposition 37 ([D(C2)]¹u , • ,⊕ , NOT , [P0]¹u, [P1]¹u) is a PMV-algebra iso-
morphic to [0, 1]PMV.

The isomorphism is given by ρλ → λ. The operations ∧,∨ give the PMV
lattice structure in [D(C2)]¹u. This proposition shows that a logic associated
to gates would admit an algebraic counterpart associated with PMV-algebras.

Lemma 38 In each PMV-algebra we have

(1) 0 • x = 0
(2) If a ≤ b then a • x ≤ b • x
(3) x¯ y ≤ x • y ≤ x ∧ y

18



Consider the subalgebra S of [0, 1]PMV generated by 1
2

which will play an im-
portant role in the logical treatment. The set S is contained in the rationals
of [0, 1] and (S,≤) is a dense order in [0, 1].

Definition 39 Quasi product many-valued algebra.
A quasi product many-valued algebra is a structure A = (A,⊕, •,¬, 0) of type
(2, 2, 1, 0) such that, letting 1 = ¬0, xªy = ¬(¬x⊕y), the following conditions
are satisfied:

(1) (A,⊕,¬, 0) is a quasi-MV algebra
(2) x • (y • z) = (x • z) • y
(3) x • (y ª z) = (x • y)ª (x • z)
(4) ¬(x • 1) = ¬x • 1
(5) (x • y) • 1 = x • y
(6) (x • y)⊕ 0 = x • y
(7) (x⊕ y) • 1 = x⊕ y

We can think of a quasi-PMV algebra as identical to an PMV algebra, except
for the fact that 0 need not be a neutral element for the truncated sum and
1 need not be a neutral element for the product. Of course, a quasi-PMV
algebra is an PMV algebra if and only if it satisfies the additional equations
x⊕ 0 = x and x • 1 = x. Axioms (4)–(7) are there to enforce some regularity
on the otherwise too wild behaviour of product.

Definition 40 Quantum product many-valued algebra.
A quantum product many-valued algebra (QPMV-algebra for short) is a struc-

ture A =
(
A,⊕, •,√¬,

√
i, 0

)
of type (2, 2, 1, 1, 0) such that, letting 1 = ¬0,

xª y = ¬(¬x⊕ y) and ¬x =
√¬√¬x, the following conditions are satisfied:

(1) (A,⊕,¬, 0) is a quasi-PMV algebra
(2) 1

2
=
√¬ 1

2

(3)
√¬(x⊕ y)⊕ 0 = 1

2

(4)
√
i
√
ix = x

(5) 1
2

=
√
i 1

2

(6)
√
i(x⊕ y)⊕ 0 = 1

2

(7)
√
i
√¬x⊕ 0 =

√
ix⊕ 0

(8)
√¬√i x⊕ 0 = ¬√¬x⊕ 0

(9)
√
i
√¬√i

√¬√i
√¬x = x

Examples of infinite QPMV algebras are given by the next two structures C
(for cube) and S (for sphere).
Example Standard QPMV algebras.

C is the algebra ([0, 1]× [0, 1]× [0, 1], •C ,⊕C ,
√¬C

,
√
i

C
, 0C , 1C), where:

√¬C〈a1, a2, a3〉 = 〈a2, 1− a1, a3〉
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√
i

C〈a1, a2, a3〉 = 〈a3, 1− a2, a1〉
〈a1, a2, a3〉 ⊕C 〈b1, b2, b3〉 = 〈min(a1 + b1, 1), 1

2
, 1

2
〉

〈a1, a2, a3〉 •C 〈b1, b2, b3〉 = 〈a1b1,
1
2
, 1

2
〉

Note that 〈a1, a2, a3〉 ⊕C 〈0, 1
2
, 1

2
〉 6= 〈a1, a2, a3〉.

S is the subalgebra of C whose universe is the set
S = {(a, b, c) | a, b, c ∈ R and (1− 2a)2 + (1− 2b)2 + (1− 2c)2 ≤ 1}.

Proposition 41 Let nx be x⊕ . . .⊕ x︸ ︷︷ ︸
n

,

r(x) := ¬4(¬x • x)⊕ ¬4(¬√¬x • √¬x)⊕ ¬4(¬√ix • √ix).
In any QPMV algebra the following conditions hold:

(1) x⊕ 0 = xª 0
(2) x • y = x • (y ⊕ 0)
(3)

√
i
√¬x • 1 =

√
ix • 1

(4)
√¬√i x • 1 = ¬√¬x • 1

(5) r(x) = r(
√¬x)

(6) r(x) = r(
√
i x)

PROOF.

(1) x⊕ 0 = ¬(¬x⊕ 0) = ¬¬(x⊕ 0) = xª 0
(2) x•y = (x•y)⊕0 = (x•y)ª0 = (x•y)ª (x•0) = x• (yª0) = x• (y⊕0)
(3)

√
i
√¬x • 1 = (

√
i
√¬x⊕ 0) • 1 = (

√
ix⊕ 0) • 1 =

√
i x • 1

(4) Similarly.
(5) r(x) = ¬4(¬x • x)⊕ ¬4(¬√¬x • √¬x)⊕ ¬4(¬√ix • √ix)

= ¬4(¬√¬x • √¬x)⊕ ¬4(x • ¬x)⊕ ¬4((¬√ix⊕ 0) • (
√
i x⊕ 0))

= ¬4(¬√¬x•√¬x)⊕¬4(¬√¬√¬x•√¬√¬x)⊕¬4(¬√i
√¬x•√i

√¬x)
= r(

√¬x)
(6) Similarly.

In a forecoming paper we will study some properties of quasi-PMV and QPMV
algebra.

7 Irreversible quantum computational logics

The quantum computational structures we have investigated suggest a nat-
ural semantics, based on the following intuitive idea: any sentence α of the
language is interpreted as a convenient qumix; at the same time, the logical
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connectives are interpreted as operations that either are gates or can be con-
veniently defined in terms of gates. We will consider a propositional quantum
computational language L that contains privileged atomic formula ⊥ (whose
intended interpretation is the truth-value Falsity) and the following primitive
connectives: a square root of the negation

√¬, a square root of the identity√
i, a conjunction • (which corresponds to the Petri-Toffoli gate), a ÃLuka-

siewicz conjunction ¯, a ÃLukasiewicz disjunction ⊕ (which corresponds to
the truncated sum gate), a ÃLukasiewicz implication →. When we omit paren-
theses, we assume these connectives bind from strongest to weakest in this
order. Let FormL be the set of all formulas of L. In this framework, ¬α is
dealt with a metalinguistic abbreviation for

√¬√¬α,
√¬n

α :=
√¬ . . .

√¬︸ ︷︷ ︸
n

α,

√
i

n
α :=

√
i . . .

√
i︸ ︷︷ ︸

n

α, αn := α¯ . . .¯ α︸ ︷︷ ︸
n

, α ≡ β is an abbreviation for

(α → β) ¯ (β → α). We will use the following metavariables: q,q1,q2, . . .
for atomic formulas and α, β, . . . for formulas. The privileged formula > rep-
resenting the Truth is defined as the negation of ⊥ (> := ¬⊥) while the con-
stant s̄ represent the elements ρs of the Poincaré IQC-algebra. In particular,
⊥,> ∈ S̄ represent P0 and P1 respectively. This minimal quantum computa-
tional language can be extended to richer languages containing other primitive
connectives that we will not consider here. We will deal with the usual no-
tion of complexity of formulas (i.e. Comp : FormL → N, which associates to
any formula α of the language a non-negative integer: Comp(α) = 0 if α is an
atomic formula; Comp(β)+1 if α =

√¬β or α =
√
i β; Comp(β)+Comp(γ)+1

if α = β ∗ γ for each binary connective ∗).

Let us now introduce the concept of irreversible quantum computational model
(briefly, IQC-model), where the “quasi-intensional” character of reversible
models is lost. In fact, the interpretation of a formula in an irreversible model
does not generally reflect the logical form of our formula: the meaning of the
whole does not include the meanings of its parts (that are trace out).

Definition 42 IQC-model.
An IQC-model of L is a function Qum : FormL → D(C2) (which associates to
any formula α of the language a qumix of C2):

Qum(α) :=





ρ if α is an atomic formula

ρs if α = s̄;
√
NOT(Qum(β)) if α =

√¬β;
√
I(Qum(β)) if α =

√
i β;

Qum(β) • Qum(γ) if α = β • γ;

Qum(β)⊕ Qum(γ) if α = β ⊕ γ.
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Clearly, if two models Qum, Qum′ coincide over atomic formulas, then Qum =
Qum′.

Given an IQC-model Qum, any formula α has a natural probability-value.

Definition 43 The probability-value of α in a model Qum.

Qump(α) := p(Qum(α)).

Note that the probability-value of s̄ is independent of the model. As we al-
ready know, qumixes are naturally preordered. This suggests to introduce the
following consequence relation.

Definition 44 Consequence and truth in a model Qum.
A formula β is a consequence in a model Qum of a formula α (α |=Qum β) iff
Qum(α) 4 Qum(β).
A formula α is true in a model Qum iff > |=Qum α.

The notions of logical consequence and truth can be now defined in the ex-
pected way.

Definition 45 Logical consequence and logical truth.
A formula β is a logical consequence of a formula α (α |= β) iff for any model
Qum, α |=Qum β.
A formula α is a logical truth iff for any model Qum, α is true in Qum.

We will indicate by IQCL, the logic that is semantically characterized by the
logical consequence relation. In other words, we have: β is a logical consequence
of α in the logic IQCL (α |=IQCL β) iff β is a logical consequence of α.

The logical consequence is syntactically strongly related to the implication.

Proposition 46 Let α, β be formulas. Then we have

α |= β iff α → β is a logical truth.

The following formulas are axioms of the IQCL.

Definition 47 • ÃLukasiewicz axioms:
W1 α → (β → α)
W2 (α → β) → ((β → γ) → (α → γ))
W3 (¬α → ¬β) → (β → α)
W4 ((α → β) → β) → ((β → α) → α)
• Equivalence axioms
E1 > ≡ ¬⊥
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E2 ¬α ≡ α → ⊥
E3 (α¯ β) ≡ ¬(¬α⊕ ¬β)
E4 (α → β) ≡ (¬α⊕ β)
• Product axioms
P1 α • β → β • α
P2 > • β ≡ α
P3 α • β → β
P4 (α • β) • γ ≡ α • (β • γ)
P5 α • (β ¯ ¬γ) ≡ (α • β)¯ ¬(α • γ)
• S axioms For each s̄, t̄ ∈ S̄
S1 s̄¯ t ≡ s¯ t
S2 s̄ → t ≡ s → t
S3 s̄ • t ≡ s • t
• Square root axioms
Q1

√¬ s̄ ≡ 1̄
2
,
√
i s̄ ≡ 1̄

2
, for each s̄ ∈ S̄

Q2
√¬(α ∗ β) ≡ 1̄

2
,
√
i(α ∗ β) ≡ 1̄

2
, for any binary connective ∗

Q3
√¬√i

√¬√i
√¬√iα ≡ α

Q4
{

1
4
• √¬n1α⊕ 1

4
• √¬√¬n1α⊕ 1

4
• √i

√¬n1α → s̄,

1
4
•√¬n2

√
i
√¬n3α⊕ 1

4
•√¬√¬n2

√
i
√¬n3α⊕ 1

4
•√i

√¬n2
√
i
√¬n3α → s̄,

1
4
•√i

√¬2√
i
√¬n4α⊕ 1

4
•√¬√i

√¬2√
i
√¬n4α⊕ 1

4
•√¬2√

i
√¬n4α → s̄ :

n1, n2, n3, n4 ∈ {0, 1, 2, 3}, s ≥ 3+
√

3
8

}

The unique deduction rule of IQCL is the modus ponens.

Note that axioms W1-W4 and E1-E4 conform the same propositional deduc-
tive system as the infinite valued ÃLukasiewicz calculus. Equivalence axioms
are introduced in order to make the notion of model well defined. In fact,
if we had defined ¬α as α → ⊥, then we would have had to require that
Qum(

√¬¬α) = Qum(
√¬(α → ⊥)) = ρ 1

2
. But this is not in general true except

when Qum(α) = ρs for some s. Moreover, the axioms Q4 refer to the relation
between density operators ρ,

√
NOT(ρ),

√
I(ρ) with respect to the probability-

values p(
√
I(ρ)) = r1, p(

√
NOT(ρ)) = r2, p(ρ) = r3 (see Lemma 25).

Definition 48 Proof and theorem.
A formula β is provable in a set of formulas T (T ` β) iff β is the last
formula of a sequence β1, . . . , βn such that each member is either an axiom of
IQCL or follows from some preceding members of the sequence using modus
ponens.
α is a theorem of IQCL iff ∅ ` α (` α, for short).

A model Qum of IQCL is a model of a theory T iff p(Qum(α)) = 1 for each
α ∈ T . We will use T |= α when p(Qum(α)) = 1 for each model Qum of a theory
T . A theory T is inconsistent iff T ` ⊥, otherwise it is consistent.
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Proposition 49 Let α, β, γ ∈IQCL. Then we have (7)

(1) (α → β) → ((α → γ) → (β → γ))
(2) (α¯ β) → α
(3) (α¯ β) → (β → α)
(4) (α¯ (α → β)) → (β ¯ (β → α))
(5) (α → (β → γ)) → ((α¯ β) → γ)
(6) ((α¯ β) → γ) → (α → (β → γ))
(7) ((α → β) → γ) → (((β → α) → γ) → γ)
(8) ⊥ → α

Proposition 50 Let α, β, γ ∈IQCL and T be a theory. Then we have (7)

(1) ` α → (β → α)
(2) ` α → (β → α¯ β)
(3) ` (α → β) → (α¯ γ → β ¯ γ)
(4) T ` α¯ β iff T ` α and T ` β
(5) T ` α ≡ β iff T ` α → β and T ` β → α
(6) T ` α → β and T ` β → γ then T ` α → γ
(7) ` T
(8) ` α → (T ¯ α)
(9) ` (T → α) → α

(10) ` ¬¬α → α
(11) ` (α → β) → (¬β → ¬α)
(12) ` (α → β) → ((α⊕ γ) → (β ⊕ γ))
(13) ` ((α ≡ β)¯ (β ≡ γ)) → (α ≡ γ)
(14) ` ((α ≡ β)¯ (β → γ)) ≡ (β → γ)
(15) ` ((α ≡ β)¯ (γ → α)) ≡ (γ → β)
(16) ` (α → β) → (γ • α → α • β)
(17) ` (α → β) → (α • γ → β • γ)
(18) ` α¯ β → α • β

The following theorem establishes a kind of deduction theorem for the IQCL
calculus.

Theorem 51 Deduction theorem.
Let T be a theory and α, β be formulas. Then we have that if T

⋃{α} ` β then
there exists n ∈ N such that T ` αn → β (11).

Definition 52 Relevance degree and proof degree.
Let T be a theory over IQCL and α be a formula.
The relevance degree of T over α is ||α||T = inf{p(Qum(α)) : p(Qum(T )) = 1}.
The proof degree of α is |α|T = sup{s ∈ S : T ` s̄ → α}.

The truth degree in the Pavelka style logics represents the semantic relevance
of a theory T with respect to a formula α, that is, the greatest lower bound of
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the probability-values that α may take if all probability-values of the formulas
of T are known to be 1. Following Domenech and Freytes approach we show
the Pavelka style strong completeness theorem. The equality between relevance
degree and proof degree will give a syntactic notion of the relevance degree,
that is, the lowest upper bound s ∈ S such that T ` s̄ → α.

8 Completeness

In order to establish the formal connection between IQCL and fuzzy logic
via a Pavelka style strong completeness theorem, we will deal with a frag-
ment of IQCL whose algebraic counterpart is a PMV-algebra. We consider
the subsystem of IQCL given by the axioms W1-W4, E1-E4, P1-P5, S1-S3 as
the axiomatic system for the PMV-fragment IQCLPMV. We must take formulas
that do not contain •,⊕ (such as

√¬q,
√
iq) as atomic formulas of the frag-

ment. We denote such formulas by p,p0,p1, . . . and by `PMV deductions on the
PMV-fragment. A valuation over IQCLPMV is a function v : IQCL → [0, 1]PMV
such that v(α ∗ β) = v(α) ∗ v(β) for any binary connective ∗, v(¬α) = ¬v(α)
and v(s̄) = s for each s̄ ∈ S̄.

Let T be a theory and α be a formula, both in IQCLPMV. A formula α is
called IQCLPMV logical truth if and only if for each valuation v, v(α) = 1. The
relevance degree in IQCLPMV ||α||PMV

T is defined as in IQCL but in terms of
the valuation over IQCLPMV. Similarly, the proof degree |α|PMV

T is defined in
the PMV-fragment taking the axiomatic system of IQCLPMV.

Definition 53 Completeness.
Let T be a theory in IQCLPMV. Then T is complete iff for each pair of formulas
α, β, we have: T `PMV α → β or T `PMV β → α.

Lemma 54 Let T be a theory and α be a formula, both in IQCLPMV. Suppose
that T does not prove α in the PMV-fragment. Then there exists a consistent
complete theory T ′ in IQCLPMV such that T ⊆ T ′ and T ′ does not prove α in
the PMV-fragment (11).

Theorem 55 Let T be theory over IQCLPMV. For each formula α, we define
[α] = {β : T `PMV α ≡ β}. Let LT = {[α] : α ∈ IQCLPMV}. If we define, for
each binary connective ∗, the following operations in LT : 0 = [⊥], 1 = [>],
¬[α] = [¬α], [α] ∗ [β] = [α ∗ β], then we have 〈LT , •,¯,⊕,→,¬, 0, 1〉 is a
PMV-algebra and ([s̄])s∈S is a subalgebra isomorphic to the algebra S.
If T is a complete theory then LT is totally ordered (7).

We will refer to LT as the Lindenbaum algebra associated to the theory T .
Now we will establish a Pavelka style strong completeness theorem for the
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PMV-fragment:

Theorem 56 Let T be a theory and α be a formula, both over IQCLPMV. Then
we have (7)

|α|T = ||α||T

The completeness of IQCL is obtained from the strong completeness of the
PMV-fragment using the following translation of formulas.

Definition 57 PMV-translation.
A PMV-translation is a function α 7→ αt associating to any IQCL formula an
IQCLPMV formula, such that:

(1) q 7→ q,
√¬q 7→ √¬q and

√
iq 7→ √

iq for each atomic formula;
(2)

√¬√¬α 7→ √¬√¬αt;
(3) α ∗ β 7→ αt ∗ βt for each binary connective ∗;
(4)

√¬(α ∗ β) 7→ 1
2

for each binary connective ∗;
(5)

√
i(α ∗ β) 7→ 1

2
for each binary connective ∗.

If T is a theory in IQCL, we define the PMV-translation over the theory as
the set Tt = {αt : α ∈ T}. From the definition of the PMV-translation, we
can immediately establish the following lemma.

Lemma 58 Let α be a formula in IQCL. Then, (7)

`IQCL α ≡ αt

Consider the following theory in IQCLPMV which plays an important role to
deductions on IQCL with respect to deductions in IQCLPMV.

Definition 59 Theory TQ4.

TQ4 =
{ (

1
4
• √¬n1p⊕ 1

4
• √¬√¬n1p⊕ 1

4
• √i

√¬n1p
)
→ s̄,

(
1
4
• √¬n2

√
i
√¬n3p⊕ 1

4
• √¬√¬n2

√
i
√¬n3p⊕ 1

4
• √i

√¬n2
√
i
√¬n3p

)
→ s̄,(

1
4
• √i

√¬2√
i
√¬n4p⊕ 1

4
• √¬√i

√¬2√
i
√¬n4p⊕ 1

4
• √¬2√

i
√¬n4p

)
→ s̄ :

n1, n2, n3, n4 ∈ {0, 1, 2, 3}, s ≥ 3+
√

3
8

} ⋃ { (
1
4
• p⊕ 1

4

)
→ s̄ : s ≥ 1

2

}

Lemma 60 Let α ∈ IQCL, n1, n2, n3, n4 ∈ {0, 1, 2, 3} and s ∈ S.

If s ≥ 3+
√

3
8

then

TQ4 `PMV
(

1

4
• √¬n1α⊕ 1

4
• √¬√¬n1α⊕ 1

4
•
√
i
√¬n1α

)
→ s̄ noted TQ4 `PMV αn1

t

TQ4 `PMV
(

1

4
• √¬n2

√
i
√¬n3α⊕ 1

4
• √¬√¬n2

√
i
√¬n3α⊕ 1

4
•
√
i
√¬n2

√
i
√¬n3α

)
→ s̄
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TQ4 `PMV
(

1

4
•
√
i
√¬2√

i
√¬n4α⊕ 1

4
• √¬

√
i
√¬2√

i
√¬n4α⊕ 1

4
• √¬2√

i
√¬n4α

)
→ s̄

If s ≥ 1
2

then TQ4 `PMV
(

1
4
• α⊕ 1

4

)
→ s̄

PROOF. We use induction on complexity of α. If Comp(α) = 0, we have
the following two cases.

α = s̄. By axiom Q1,
√¬s̄ ≡ 1

2
and by axiom S2, ¬1

2
≡ 1

2
. The result follows

using proposition 50.
α = p. The translation of the formulas is over TQ4.

Suppose this result is valid for Comp(α) < n and consider α such that
Comp(α) = n. We have the following cases.

α =
√¬β. α0

t =
((

1
4
• √¬β ⊕ 1

4
• √¬√¬β ⊕ 1

4
• √i

√¬β
)
→ s̄

)
t

TQ4 `PMV
(

1
4
• (
√¬β)t ⊕ 1

4
• √¬√¬βt ⊕ 1

4
• (
√
i
√¬β)t

)
→ s̄

≡
((

1
4
• √¬√¬β ⊕ 1

4
• √¬β ⊕ 1

4
• √i

√¬β
)
→ s̄

)
t

By inductive hypothesis we have TQ4 `PMV β1
t . For the rest of this case, it

follows in a similar manner by using proposition 50.
α =

√
iβ. Similarly.

α = β ∗ γ for a binary connective ∗. Similar to the atomic case for the elements of
S̄.

The following theorem establishes the relation between the deductive system
of IQCL and the deductive system IQCLPMV.

Theorem 61 Let T be a theory and α be a formula both in IQCL. Then, we
have

T `IQCL α iff Tt ∪ TQ4 `PMV αt

PROOF. Suppose that T `IQCL α. We use induction on the length of the proof
of α (noted by Length(α)). If Length(α) = 1, then we have the following cases:

(1) α is one of the axioms W1-W4, E1-E4, P1-P5, S1-S3. In this case, αt

results an axiom of the IQCLPMV.
(2) α is one of the axioms Q1-Q3 and by using proposition 50 it is PMV-

theorem.
(3) If α is the axiom Q4, then we use Lemma 60.
(4) If α ∈ T , then αt ∈ Tt.
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Suppose the theorem is valid for Length(α) < n. We consider Length(α) = n.
Thus, we have an IQCL-proof α from T as follows:

α1, . . . , αm → α, . . . , αm, . . . , αn−1, α

obtaining α by modus ponens from αm → α and αm. Using inductive hy-
pothesis we have Tt ∪ TQ4 `PMV (αm → α)t and Tt ∪ TQ4 `PMV (αm)t. By using
(αm → α)t ≡ (αm)t → αt and modus ponens we have Tt ∪ TQ4 `PMV αt. The
converse follows from Lemma 58 and from the fact that formulas in TQ4 are
IQCL theorems.

Theorem 61 shows in a formal sense the syntactic relation between IQCL
and fuzzy logic. More precisely, we recall that provable formulas from IQCL-
theories are identifiable to provable formulas from PMV-theories obtained by
translation plus TQ4. In particular, IQCL-theorems are PMV-theorems of TQ4.
Another important result that arises from these theorems is that the connec-
tives

√¬,
√
i have importance only when applied to atomic formulas and their

peculiarity are captured by the PMV-theory TQ4.

Corollary 62
`IQCL α iff ∪ TQ4 `PMV αt

Now we introduce the following sets in order to study the relation between
models of IQCL and valuations of the PMV-fragment:
E = {Qum : Qum is a model of IQCL}
VQ4 = {v : v is a valuation of IQCLPMV with v(α) = 1 for any α ∈ TQ4}

Proposition 63 There exists a bijection E → VQ4, such that Qump(α) =
vQum(αt).

PROOF. Let Qum ∈ E and let vQum = Qump|IQCLPMV . We will see that Qum 7→ vQum
is well defined in the sense that vQum ∈ VQ4. Let α ∈ TQ4. By Lemma 25 we
have Qump(α) = 1. Thus the assignation is well defined. The injectivity follows
from Lemma 25. Now we prove the surjectivity. Let v ∈ VQ4. For each atomic
formula α let Qum(α) = ρ(1− 2v(α), 1− 2v(

√¬α), 1− 2v(
√
iα)). Thus, Qum is

well defined over atomic formulas since v satisfies TQ4. Then we can extend Qum

to IQCL and it is clear that Qump = v since Qump and v coincide over atomic
formulas of IQCLPMV. Finally, for each IQCL formula α, Qump(α) = vQum(αt)
taking into account the inductive argument on the complexity of formulas
and translation.

Using Theorem 61 and Proposition 63 one can prove the following proposition
that shows the rigorous semantic connection between IQCL and fuzzy logic.
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More precisely, models of IQCL are identifiable to PMV-valuations that satisfy
TQ4.

Proposition 64 Let T be a theory and α be a formula, both in IQCL. Then
we have

(1) |α|IQCLT = |αt|PMVTt

⋃
TQ4

(2) ||α||IQCLT = ||αt||PMVTt

⋃
TQ4

PROOF.

(1) Follows from Theorem 61.
(2) Follows from Theorem 63.

Finally, we can establish a Pavelka style strong completeness theorem and a
somehow compactness theorem for IQCL.

Theorem 65 Let T be a theory and α be a formula, both in IQCL. Then we
have (7)

|α|IQCL
T = ||α||IQCL

T

PROOF. Follows from Proposition 64 and Theorem 56.

Corollary 66 Let T be a theory and α be a formula, both in IQCL. Then we
have If |α||IQCL

T = 0, then for each s ∈ S, s̄ → α is not provable from T .

Theorem 67 Let T be a theory and α be a formula, both in IQCL. Then we
have (7)

If r ≤ ||α||IQCL
T then ∃T0 ⊆ T finite such that r ≤ ||α||IQCL

T0
.
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