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Abstract

Environmental policy instruments, such as marketable permits, exist to help monitor and

regulate environmental practices of organizations, i.e. companies and institutions (see [60],

[77] and discussion in Chapter 2). Market-based instrumentsare already employed for the

implementation of environmental policies on European scale (European Emission Trad-

ing Scheme - EU ETS) and on global scale (Kyoto protocol). In an effort to bridge the

gap between the theoretical emission permit price and observed market-price behavior, we

investigate the historical time series of the marketable permit price. More precisely, in

Chapter 3 we advocate the use of a new GARCH-type structure for the analysis of inherent

heteroskedastic dynamics in the returns of SO2 in the U.S. and of CO2 emission permits

in the EU ETS. In Chapter 4 we show that the presence of asymmetric (or incomplete)

information plays a central role. In other words, market-prices of permits are affected by

the different information sets based on which market-players found their financial and in-

vestment strategies. A CO2-option pricing model comparison is developed in Chapter 4.7.

The option pricing method can be used for hedging purposes and for pricing CO2-linked

projects and investments.
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ETH - Zürich) was both an exiting and threatening experience for me! Discussions with

classmates and colleagues of the Institute were always bothprovocative and stimulating.

A special thank goes to Urs Schweri for his enormous patiencein listening and transmit-

ting me his outstanding computational skills. The financialsupport from the University

Research Priority Program ”Finance and Financial Markets” and by the National Centre of

Competence in Research “Financial Valuation and Risk Management” (NCCR FINRISK),

respectively research instruments of the University of Zürich and of the Swiss National
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Chapter 1

Summary

”You are using profit motive to achieve a public good, and thisis just

brilliant . . .”

-Henry Derwent, head of IETA

”Until people consciously realise the situation that the world is in and

change their own patterns of behaviour, you can’t change anything. . . One

of the reason carbon trading is so acceptable to the powers-that-be is that it

doesn’t substantially impact on existing operations.”

-Toby Carroll, research fellow, Lee Kuan Yew School of PublicPolicy

”The point of the market is to find the most efficient way to reduce emissions. . .”

-Bill Hare, Greenpeace

Global warming is on the top of many agendas nowadays. In the last decade several

organizations, policy regulators and scholars have been studying and discussing possible

strategies to tackle the problem. Most of the proposed solutions include increasing energy

1



2 CHAPTER 1. SUMMARY

efficiency and conservation, examining the potential for capture, sequestration and storage

of carbon, expanding the production of renewable energy, and even reviving nuclear energy

production. But most of the recently proposed strategies include a form of cap-and-trade

system for carbon dioxide emissions based on marketable permits. In such a system, the

regulator allocates a number of emission permits to the responsible installations, and at pre-

settled compliance dates, each source must have enough permits to cover all its recorded

emissions or be the subject of significant penalties. The rationale for such a system is that

the exchange of permits between firms through trading will minimize the overall social

costs since companies that can easily reduce emissions willdo so, and those for which

it is harder will buy permits. Today several countries already implemented cap-and-trade

schemes in their efforts to curb greenhouse gases (GHG) and markets for emission permits

do exist in the U.S. and in Europe. In Chapter 2 we will survey the environmental eco-

nomics principles (and assumptions) under which marketable permits are a cost-effective

choice to reduce pollution.

One of the aims of emissions trading is the introduction and internalisation of the value

of emitting CO2 in the economy. For the parties participating in the European scheme,

optimizing every-day operations while taking into accountthe value of emission permits

seems obvious today. However, knowledge of the statisticaldistribution of the prices of

marketable permits, and their forecastability, were not sufficiently studied by the litera-

ture. Such notions are crucial in constructing, among otherthings, purchasing and risk

management strategies. Chapter 3 analyzes the two main markets for permits designed for

air-pollution control in Europe and in the U.S. and investigates a model for dealing with

the unique stylized facts of this type of data.
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The first 4 years of the European cap-and-trade system for carbon dioxide emissions

have proven cap-and-trade can work. We address those readers interested in the economic

impacts and social results of the EU ETS to the numerous papers cited in Chapter 2. The

current thesis concentrates more on the development of a valid dynamic price model. The

transaction of permits -market liquidity- has been increasing from 300,000 emission per-

mits per day in January 2005 to 4.9 million permits per day in January 2007. As such,

the market does much more than simply transfer permits from companies with a surplus

in permits to companies with a deficit. This implies that emission permits are not only

considered a compliance tool, but are also transacted as financial contracts, putting them

on the same level as other commonly traded securities. Such trading interest is important

in establishing the market value of the CO2 permits and is modeled in Chapter 4. The

goal of this Chapter is to develop a mathematical model for theshort-run equilibrium price

of the emission permit in the presence of partial information, and to analyze the possible

economic price equilibria when different initial permits endowments or companies charac-

terizations are introduced.

Today derivative contracts play an important role in the markets for emission permits.

By allowing market participants to reduce exposure to price risk, permit buyers and sellers

can better plan their businesses. The availability of thesemarkets can eventually provide

the means to allow greater risk to be spanned, thus facilitating growth and efficiency in each

of the associated industries. In the last part of Chapter 4, webriefly introduce a European-

style (financial and real) option pricing model comparison.The benchmark model is that of

Black, Merton and Scholes (1973) where one assumes the permitprice evolves according

to a geometric Brownian motion. The second option approach relies on the equilibrium

price dynamics adjusted for the risk, i.e. under the risk neutral probability measure.



4 CHAPTER 1. SUMMARY

The thesis contribution is threefold. First, the econometric analysis provides companies

with a comprehensive approach for analyzing the statistical distribution of the prices of

emission permits and constructing effective risk management strategies for those portfolios

which include emission permits. Second, the equilibrium model is designed to empower

policy makers into designing emissions markets capable to meet emissions target while

at the same time, accounting for the presence of partial (asymmetric) information and the

existence of strategic interactions in the trades of permits. Finally, the equilibrium price

dynamic under the risk-neutral measure can be easily employed for pricing CO2-based (fi-

nancial and real) contracts such as option derivatives or project investments (for example,

those projects developed under the Clean Development Mechanism).

I would mention that some of the technical issues raised by this thesis involve new

mathematical models in environmental economics and very general competitive equilib-

rium problems. They all lead to new mathematical challengesof optimization techniques

including conditional Monte Carlo simulations. Finally, wehope the importance of the

applications and the relevance of the tools of stochastic analysis and stochastic numerics

highlight the role that mathematics has to play in major policy making decisions.



Chapter 2

Environmental Economics

”Private markets are perfectly efficient only if there are nopublic goods, no

externalities, no monopoly buyers or sellers, no increasing returns to scale, no

information problems, no transaction costs, no taxes, no common property and

no other distortions between the cost paid by buyers and the benefits received

by the sellers.”

-Fullerton and Stavins (1998)

Virtually every aspect of economic activity results in greenhouse gas emissions (GHG),

so when the environmental revolution arrived in the late 1960s, the (environmental) econo-

mists were ready and waiting. Economists had what they saw asa coherent and compelling

view of the nature of pollution with a straightforward set ofpolicy implications. The prob-

lem of externalities1 and the associated market failure had long been a part of the micro-

economic theory. Economists saw pollution as the consequence of an absence of prices for

1Externalities refers to situations when the effect of production or consumption of goods and services
imposes costs or benefits on others which are not reflected in the prices charged for the goods and services
being provided.

5



6 CHAPTER 2. ENVIRONMENTAL ECONOMICS

certain scarce environmental resources such as clean air and water, and they prescribed the

introduction of surrogate prices in the form of unit taxes or“effluent fees” to provide the

needed signal to economize on the use of these resources. This explain why the source of

the basic economic principles of environmental policy is tobe found in the theory of exter-

nalities. The literature on this subject is enormous; it encompasses hundreds of books and

papers. An attempt to provide a comprehensive and detailed description of the literature

on externalities theory reaches beyond the scope of this survey. Instead, we shall attempt

in this paper to sketch the central results from this literature, with an emphasis on their

implication for the quantitative analysis of the price dynamics of the marketable permits.

And so, we begin in section 2.1 with a review of the theory of environmental regulation

in which we explore theoretical results regarding the choice among the key policy instru-

ments for the control of externalities: taxes, subsidies and marketable permits. Section 2.2

overviews those factors that affect the effectiveness of marketable permits addressed by

several authors in the last decade. Section 2.3 concludes analyzing the recent attempts to

develop a valid dynamic price model for emission permits.

2.1 Environmental Economics: A Primer

In a competitive market equilibrium, firms with free access to environmental resources will

continue to engage in polluting activities until the marginal return of their production is

zero. We thus obtain the familiar result that because of their disregard for the external

costs that they impose on others, polluting agents will engage in socially excessive levels

of polluting activities. The policy implication of this result is then clear in economics. Pol-

luting agents need to be confronted with a price equal to the marginal external cost of their

polluting activities to induce them to internalize at the margin the full social costs of their

pursuits. Such a price incentive can take the form of the familiar “Pigouvian tax” , after
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[65]. This is a levy on the polluting agent equal to the marginal social damage. However,

the Pigouvian solution to the problem of externalities has been the subject of repeated at-

tack along Coasian lines. [21] has elaborated on the externalities question by emphasizing

that the root of the problem is that of undefined property rights. The author claims that

if the ownership rights to clean air, for instance, were clearly defined and enforced, then

self-interested parties would use legal and market mechanisms to bring about a socially

acceptable level of externalities. However, such a theory holds in absence of transaction

costs and strategic behavior (more on this in the next section).

Beside a tax on polluting activities, two alternative policyinstruments have received

extensive attention in the literature: subsidies and marketable permits. Early on it was

recognized that a subsidy per unit of emissions reduction could establish the same incen-

tive for the abatement activity as a tax of the same magnitudeper unit of pollution emitted.

Soon it became apparent that there are important asymmetries between these two policy

instruments -see [47] for a comprehensive analysis. In particular, they have quite different

implication for the profitability of production in a polluting industry: subsidies increase

profits, while taxes decrease them. The policy instruments thus have quite different impli-

cations for the long-run, entry-exit decisions of firms. Thesubsidy approach will shift the

industry supply curve to the right and result in a larger number of firms and higher industry

output, while the Pigouvian tax will shift the supply curve to the left with a consequent

contraction in the size of the industry -see [5]. The basic point is that there is a further

condition, an entry-exit condition, that lung-run equilibrium must satisfy for an efficient

outcome. To obtain the correct number of firms in the long run,it is essential that firms

pay not only the cost of the marginal damages of their emissions, but also the total cost

arising from their emissions. Only if firms bear the total cost of their emissions will the

prospective profitability of the enterprise reflect the truesocial net benefit of entry and exit

into the industry.
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The second policy instrument is a market-based instrument:marketable permits. Sug-

gested applications for the use of market approach abound inthe economics literature,

especially in the fields of air and water pollution -see [5]. In a world of perfect knowl-

edge, marketable emission permits are, in principle, a fully equivalent alternative to unit

taxes. With a system of marketable permits in place for air-pollution control for instance,

instead of setting the proper Pigouvian tax and obtaining the efficient quantity of pollution

as a result, the environmental authority could issue (emission) permits equal in the aggre-

gate to the efficient quantity of pollution and allow firms to bid for the permits. One can

show that the market-clearing price of the (emission) permits will produce an outcome that

satisfies the first-order conditions both for efficiency in pollution abatement activities in

the short-run and for entry-exit decisions in the long run. The regulator can, in short, set

either “price” (tax) or “quantity” (emission cap) and achieve the desired result. This sym-

metry between the price and quantity approaches is, however, critically dependent upon

the assumption of perfect knowledge. In a setting of imperfect information concerning the

marginal benefit and cost functions, the outcomes under the two approaches can differ in

important ways.

In a seminal paper, [79] investigated this asymmetry between price and quantity instru-

ments and produced a theorem with extremely important policy implications. The theorem

establishes the conditions under which the expected welfare gain under a unit tax exceeds,

is equal to, or falls short of that under a system of marketable permits (quotas). In short, the

theorem states that in the presence of uncertainty concerning the costs of pollution control,

the preferred policy instrument depends on the relative steepness of the marginal benefit

and cost curves. The intuition of Weitzman is straightforward. Consider, for example, the

case where the marginal benefits curve is quite steep but marginal control costs are fairly

constant over the relevant range. This could reflect some kind of environmental threshold
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effect where, if pollutant concentrations rise only slightly over some range, dire environ-

mental consequences follow. In such a setting, it is clearlyimportant that the environmental

authority have a close control over the quantity of emissions. If, instead, a price instrument

were employed and the authority were to underestimate the true costs of pollution control,

emissions might exceed the critical range with a resulting environmental disaster. In such

a case, the Weitzman theorem tell us, quite sensibly, that the regulator should choose the

quantity instrument (because the marginal benefits curve has a great absolute slope than

the marginal cost curve). Suppose, next, that it is the marginal abatement cost curve that is

steep and that the marginal benefits from pollution control are relatively constant over time.

The danger here is that because of imperfect information, the regulatory agency might, for

example, select an overly stringent standard, thereby imposing large, excessive costs on

polluters and society. Under these circumstances, the expected welfare gain is larger under

the price instrument. Polluters will not get stuck with inordinately high control costs, since

they always have the option of paying the unit tax on emissions rather than reducing their

pollution further. The Weitzman theorem thus suggests the conditions under which each

of these two policy instruments is to be preferred to the other in the presence of abatement

cost uncertainty. Not surprisingly, an even better expected outcome can be obtained by

using price and quantity instruments in tandem, see [67].

After two decades, [74] showed that also benefit uncertaintymatters. In particular, the

instrument-neutrality long identified with equal absolutevalued slopes of marginal benefits

and marginal costs likewise disappears when there exists a significant correlation between

them. Quite remarkably, Stavins’ results suggest that the conventional identification - under

Weitzman policy instrument recommendations - of a price (tax) instrument can in fact be

reversed, to favor instead a quantity (marketable) measure. On the other hand, the results

also suggest that it is less likely that the conventional identification of a quantity measure

as being more efficient to a price measure will be reversed.
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In sum, there is a basic sense in which systems of taxes and marketable emission per-

mits are equivalent: the environmental authority can, in principle, set a price (i.e. a tax) and

then adjust it until emissions are reduced sufficiently to achieve the prescribed environmen-

tal standard. Alternatively, it can issue the requisite number of permits directly and allow

the bidding of polluters to determine the market-clearing price. However, the basic equiv-

alence obscure some crucial differences between the two approaches in a policy setting;

they are by no means equivalent policy instruments from the prospective of a regulatory

agency. A major advantage of the marketable permit approachis that it gives the environ-

mental authority direct control over the quantity of emissions. Under the tax approach, the

regulator must set a tax, ad if, for example, the tax turns outto be too low, the pollution will

exceed permissible levels. In sum, the regulatory agency might have to enact periodic (and

unpopular) increases in taxes. In contrast, a system of marketable permits automatically

accommodates itself to growth and inflation. Since there canbe no change in the aggre-

gate quantity of emissions without some explicit action on the part of the agency, increased

demand will simply translate itself into a higher market-clearing price for permits with no

effects on levels of pollution. On the other side, pollutersare likely to prefer the permit

approach because it can involve lower levels of compliance costs.

As a result, marketable permits have often been identified assecond-best2 approaches

to policy design. When we cannot assume the existence of a perfectly competitive equi-

librium, market based measure can be seen as effective regulatory instruments for the

achievement of predetermined environmental standards, see [4] and next section for further

discussions. The chief appeal of economic incentives as theregulatory device for achiev-

ing environmental standards is the large potential cost-savings that they promise. There

2The Theory of the Second Best concerns what happens when one or more optimality conditions are not
satisfied in an economic model.
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is now an extensive body of empirical studies that estimate the cost of achieving stan-

dards for environmental quality under existing command-and-control regulatory programs.

These are typically programs under which the environmentalauthority prescribes the treat-

ment procedures that are to be adopted by each source. The studies compare costs under

command-and-control programs with those under a more cost effective system of economic

incentives. The results have been quite striking: they indicate that control costs under ex-

isting programs have often been several times the least-cost levels -see [77] for a survey on

cost studies. The source of these large cost savings is the capacity of economic instruments

to take advantage of the large differentials abatement costs across polluters. In addition,

the information problems confronting regulators under themore traditional command-and-

control approaches are enormous and they lead regulators tomake only very rough and

crude distinctions among sources. In a setting of perfect information, such a problem

would, of course, disappear. But in the real world of imperfect information, economic in-

struments have the important advantage to economize on the need for the environmental

agency to acquire information on the abatement costs of individual sources. This is just

another example of the more general principles concerning the capacity of markets to deal

efficiently with information problems. The estimated cost savings in the studies mentioned

above result from a more cost effective allocation of abatement efforts within the context

of existing control technologies. From a more dynamic perspective, economic incentives

promise additional gains in terms of encouraging the development of more effective and

less costly abatement techniques. As reported by [46] and more recently by [10], a market

for permits provides a greater incentive to R&D efforts in control technology than will a

regulation that specifies some given level of pollution.3

3A U.S. Congressional Budget Office study in 2006 concludes that a strategy combining both research
and development to cut GHG emissions and emission permits -in particular carbon dioxide permits- would
prove more effective and better balanced economically, than one relying simply on new technologies.
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Largely for the reasons mentioned above, policy makers in the U.S. have found mar-

ketable permits preferable to taxes as a mechanism for providing economic incentives for

pollution control. The major program of this genre is the EPA’s Emission Trading Program

for sulfur dioxide (SO2). This market has been created under the 1990 Amendments to the

Clean Air Act. It was designed to address the acid rain problemby cutting back annual sul-

fur emissions by 10 million tons. This market permitted affected power plans to meet their

emissions reduction quotas by whatever means they will, including the purchase of extra

emissions reductions from other sources. The scheme significantly increased the flexibility

with which sources can meet their pollution limitations, and this has been important for it

has allowed substantial cost savings -see [32] and [31] for detailed descriptions. In early

stage the great majority of the trades have been internal ones.4 A real and active market

in emissions permits involving different firms has developed under the program only quite

recently. For an in deep econometric analysis of the SO2 market see Chapter 3.

Conversely, in the past, the use of taxes was more prevalent inEurope where they

have been extensively employed in systems of water quality management -see [78] for

a comprehensive summary. However, taxes have typically been low and have tended to

apply to average or expected pollution rather than to provide a clear cost signal at the

margin. Moreover, the charges were overlaid on an extensivecommand-and-control system

of regulations that mute somewhat further their effects as economic incentives. Recently,

following the example of the Kyoto protocol, European policy makers implemented the

largest and most important market for emission permits: theEuropean Emission Trading

Scheme (EU ETS). At its launch in 2005, the scheme covered thecarbon dioxide (CO2)

emissions from energy-intensive industry sectors in the then 25 member states, responsible

for nearly half of the EU’s CO2 emissions. Today, the scheme includes 27 countries and

4This fact explains the large presence of zeros in the return time series of SO2 - see the discussion in
Chapter 3.
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claims 80 per cent of the value of the worlds’s markets for marketable permits. The scheme

has so far worked as it was envisioned: a European-wide priceon emission of CO2 was

established, businesses began incorporating this price into their decision-making, and the

market infrastructure for a multi-national trading program is now in place.

Since market-based instruments are extensively being usedas a tool for pollution con-

trol at a regional and international scale, there is an increasing need to develop effective

dynamic models for the price of marketable permits. In fact,a valid price model is an es-

sential component for any decision-making process, and forconstructing optimal hedging

and purchasing strategies in a (carbon) constrained market. Furthermore, firms trade per-

mits not exclusively for compliance purposes but some take also speculative positions, as

reported by several analysts in early 2008. The last sectionsurveys the few model attempts

which exist in literature.

2.2 Marketable Permits Systems and Effectiveness

One of the first references to marketable permits can be foundin the seminal works of [25]

and [27]. In these papers the pollution abatement problem isviewed within an economic,

cost-benefit framework in conjunction with the concept of property rights introduced in the

previous section. Based on such an idea, [60] provides a rigorous theoretical justification of

how marketable emission permits leads to the efficient allocation of abatement costs across

various ”sources of pollution”. Necessary and sufficient conditions for market equilibrium

and efficiency are derived given the setting of multiple profit-maximizing firms who at-

tempt to minimize total compliance costs. Literature discussing those factors which can

adversely affect the performance of marketable permits systems and not addressed directly

in Montgomery (1972) has followed. Among the most important, we recall concentration
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in the permit market [38] and [55], concentration in the output market [52], the preexist-

ing regulatory environment [8], the degree of monitoring and enforcement [48], and the

presence of non-negligible transaction costs in the market[73]. We briefly overview these

papers below.

The appeal of using marketable permits as a means of allocating scarce resources stems

in large part from the assumption that a market for permits will approximate the competitive

ideal. When the competition is not a foregone conclusion, thequestion arises as to how a

firm might manipulate the market to its own advantage. [38] has discussed such issues as

market manipulation developing a one-period model where one firm has market power and

all transactions of emission permits take place at a single price. The author’s principal

finding is that the degree of inefficiency observed in the market is systematically related

to the distribution of permits. In other words, in the presence of market power, the initial

distribution of permits matters, with regard not only to equity considerations but also to

cost.5 This is to say, it is the demand of the firm with market power which determines

the equilibrium price of the emission permits. Building on the theory of cost-minimizing

manipulation and the literature on raising rivals’ costs, [55] have discussed a different form

of market manipulation: exclusionary manipulation. Because permit prices are sensitive

to the purchases (or sales) of the firm with market power, exclusionary manipulation can

aggravate the inefficiencies which occur in both the market for permits and the product

market.6

Similarly, the efficiency of marketable permits system depends on the competitiveness

5Traditional models of marketable permits view problems of initial permit distribution as being strictly an
equity issue. The analysis of [60] is one such example where firms are assumed to be all price takers. For the
case of one pollutant and one market, the author finds that thedistribution of permits will have no effect on
achieving the target in a cost-effective manner.

6Anticipating discussions in the next section, in the dynamic model presented in [19] permit prices are
sensitive to the strategic trading interactions of all buyers and sellers in the market.
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of the output markets in which polluting firms compete. [52] has shown that the introduc-

tion of marketable permits increases aggregate “welfare”if the output markets are compet-

itive. In contrast, in the presence of non-competitive output markets, a system of emission

permits may reduce social “welfare”even if the market for the emission permits is perfectly

competitive.

The strength and effectiveness of the incentives created bya cap-and-trade scheme will

depend in large part on the rules that regulators apply to permit transactions. These rules

will determine how affected firms will be compensated for investments in emission per-

mits and whether ratepayers and shareholders will share in the benefits of trading emission

permits. The influence of uncertainty regarding the regulation policy of public utility com-

missions in the U.S. market for SO2 have been discussed by [8]. The authors develop and

analyze a model of individual utility decisions that focuses on the choice between pur-

chasing permits or investing in SO2 abatement measures to comply with the law. The key

finding is that policy rules influence the relative cost of investments in emission permits

versus switching to low sulfur fuels (a medium-term abatement measure) or investments in

emission control equipment (typically long-term abatement measures). Furthermore, such

rules may distort the incentives of utilities to adopt the least cost combination of emission

permits and other compliance strategies required to satisfy the U.S. regulation.

The degree of monitoring and enforcement has also been subject of several studies. In

[48], the author extends the previous research on marketable permits with noncompliant

firms. Keeler makes a specific comparison between command-and-control and marketable

permits systems when regulatory authorities are unable to achieve full compliance. In par-

ticular, the author studies the sensitivity of the shape of the penalty function faced by non-

compliant firms. His analysis indicates that under plausible penalty functions marketable

permits may allow more pollution or higher fraction of regulated firms out of compliance.

These results highlight the importance of implementation in the success of pollution control



16 CHAPTER 2. ENVIRONMENTAL ECONOMICS

strategies relying on marketable permits.

After [2], the presence of transaction costs in the markets for permits was a fact. Though

already [39] and [5], among several other authors, have commented on the potential impor-

tance of transaction costs in the markets for emission permits, [73] has been the first to

include transaction costs into a formal model. Another source of indirect evidence of the

prevalence of transaction costs in the U.S. market for SO2 permits comes from the well

documented “internal trading” within firms, as opposed to “external trading” among firms.

It has been hypothesized that the crucial difference favoring the internal trades and dis-

couraging the external trades is the existence of significant transaction costs that arise once

trades are between one firm and another [39].7 Stavins claims that transaction costs reduce

the volume of permits trading, regardless of the specific forms that the marginal control cost

functions and transaction cost functions take, as long as the marginal control cost functions

are nondecreasing.8 Not surprisingly, equilibrium permit allocations are sensitive to ini-

tial distributions of permits. This result is fully consistent with the Coase Theorem, which

states that in the presence of transaction costs, the anticipated outcome from a process of

bilateral negotiation is variant with respect to the initial assignment of property rights [21].

In sum, the presence of transaction costs reduce trading levels and the discretion of each

environmental agency which, as opposed to [60], “can[not] distribute licenses as it pleases.”

The attempt to find a specific initial permit allocation to overcome some of the prob-

lems described so far, can actually result in a scheme that will be far more costly than

planned. This may argue for the economist’s favorite permit-allocation mechanism: Auc-

tions. This approach, for instance, becomes even more attractive in the presence of trans-

action costs. [24] have analyzed the distributional implications of allocating CO2 emission

7This fact explains the large presence of zeros in the return time series of the SO2 as discussed in [64].
8A proof of this statement is found in [72]
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permits through auctions rather than through some form ofgrandfathering.9 The authors

argue that auctioning is superior because it increases efficiency by reducing existing tax

distortions; it also offers greater incentives for innovation and gives more flexibility in the

distribution of costs; finally, it reduces the need for politically contentious arguments over

the allocation of rents. On this latter issue, [75] considers a construction of an allocation

scheme in the presence of market power. These authors also point out that auctions may not

be chosen due to vested interests bringing on a powerful voice in favor of grandfathering.

Finally, [16, 17] has conducted an experimental analysis onauction and rules design.

2.3 Modeling Marketable Permits

As obvious from previous section, literature focusing on the economic and policy aspects

of marketable permits is extensive. However, an explicit and formal study of the dynamic

price of the emission permits is an almost unexplored area. Most of the present research

relies on the key result that, in a competitive market with perfect information, the equilib-

rium price of the emission permits is equal to the marginal costs of the cheapest pollution

abatement solution. This statement underpins the belief that a high price level for emission

permits brings about the relevant companies with lower marginal abatement costs in order

to exploit consequent price differences. Such companies make profits by lowering the level

of pollution more than is necessary to comply with regulations and subsequently sell their

unused permits relying on baking opportunity.10 Instead of limiting intertemporal trading

to banking, [69] allows both borrowing and banking and extends the work of [77] and [26]

9For a detailed discussion of initial allocation criteria see [3] and references therein. For a comprehensive
analysis of the social and economic impact of allocation criteria see [9] and [15].

10To generate permits, a firm may choose to pollute less than thecurrent standard and sell the “un-
used”permits to a different firm or deposit them in an “emission bank account”to be used later by the firm
or sold at a later time to another firm. The borrowing of permits occurs when a firm pollutes more than its
current standard, but the cumulative deficit must be repaid by the end of the planning scheme.
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providing a more general treatment of permit trading in continuous time through the use

of optimal-control theory. In particular, the author explores the problem of minimizing the

cost of intertemporal emission control byN heterogeneous firms in the presence of emis-

sion permits that are tradable across firms and through time.In such a setting, firms may

directly abate emissions, and they may purchase, sell, bankand borrow emission permits

in order to meet applicable standards or to take advantage ofany speculative opportunities

that may arise. The equilibrium permit price is shown to be constant in time and equal

to the marginal cost of pollution abatement when each firm canbank and borrow permits.

Conversely, if the firm desires to borrow but this is not permitted, the equilibrium permit

price is decreasing. A special case arises when the discountrate is nil. In this situation firms

have no incentive to undertake abatement measures until thefuture. If pollution emission

rates becomes more strict through time, firms tend to save more or buy more permits in

the beginning time periods for later use. Higher discount rates lower the value of future

cost savings and decrease the incentive for firms to bank permits. Perhaps one of the most

important findings of Rubin is the ability of firms to shift their emission stream through

time as a consequence of banking and borrowing. In particular, when social damages are

an increasing function of the level of pollution emitted at any one time and pollution stan-

dards are becoming stricter through time, banking is good. It provides cost saving to firms

by allowing them to adjust their own internal rates of emission reduction to an externally

set regulations. However, when regulations are constant oreasing, then allowing firms to

borrow will raise social damages while lowering firms’ costs.

Though [69] provides a comprehensive treatment of intertemporal emission trading, its

analysis has been framed in a world of certainty where strategic interaction was not taken

into consideration. [70] has introduced uncertainty in Rubin’s model (1996): this reduces

the expected permit price growth rate. This paper is one of the first that implicitly analyzes

the permit price in a stochastic, continuous-time and infinite-time horizon model. In line
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with previous research, in the model of Schennach a level of pollution abatement is chosen

such that the current marginal cost of abating equals the current emission permit price.

However, this is not true in practice as observed permit market prices are typically far away

from their expected theoretical levels.

Recently, in an effort to bridge the gap between theory and observed market-price

behavior, an increasing number of empirical studies has been investigating the historical

time series of the permit price. In [28] several different diffusion and jump–diffusion

processes were fitted to the European CO2 futures time series. [6] analyze the short-term

spot price behavior of CO2 permits employing a Markov–switching model to capture the

heteroskedastic behavior of the return time series. In contrast, in Chapter 3 we advocate the

use of a new GARCH-type structure for the analysis of inherent heteroskedastic dynamics

in the returns of SO2 in the U.S. and of CO2 emission permits in the EU ETS.

With a precise focus on the European emission market and in anattempt to develop

a valid dynamic price model, [71] and [34] elaborate a quantitative analysis of the CO2

permits price founded on the pivotal results from environmental economics literature. In

particular, [71] consider one representative agent who decides whether or not to spend

money on lowering emission levels. The model is based on the optimal abatement decision

of an affected company, therefore it very much depends on itstotal expected emissions.

With a distinction between long-term and short-term abatement measures, [34] concentrate

on the energy sector consideringn affected utilities which decide their abatement levels

by relying on the cheapest possible abatement option in the short-term, i.e. so-called fuel-

switching.11 Chapter 4 contributes to this increasing body of literature on quantitative

11It involves the replacement of high–carbon (sulfur) fuels with low–carbon (sulfur) alternatives. The most
common form of fuel switching in the U.S. is the replacement of high–sulfur coal with a low–sulfur coal. In
Europe, coal is typically replaced by natural gas.
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environmental economics. This is a new strand of research which focuses on financial and

quantitative issues originating from solutions proposed by environmental economists.

In common with Fehr and Hinz, we differentiate short-term and long-term abatement

measures and by means of the dynamic optimization we developan endogenous model for

the emission permit price dynamics. In particular, we assume that companies are charac-

terized by exogenous pollution dynamics and they optimize their cost functions by con-

tinuously adjusting their permit portfolio allocations and by choosing the optimal permit

amount to purchase (in the shortage permit case) or to sell (in the excess permit case). The

result is an equilibrium price for emission permits where the price is sensitive to the trad-

ing interaction of all buyers and sellers which found their strategies on their own (different)

information sets.



Chapter 3

Econometric Analysis of the Marketable

Permits

”Lack of clarity. . . post-2012 is countering growth of markets such as the

EU ETS. . . The market is truly at a crossroads as participants appreciate the

complexity and risks of carbon trading.”

-Andrew Ertel, chief executive of Evolution Markets (May - 2008)

Title IV of the Clean Air Act Amendment (CAAA) in the U.S., and the Emission Trad-

ing Scheme in Europe (EU ETS), createdde factoproperty rights for pollution, referred to

asemission permitsor allowancesin the programs, that can be freely traded.1 The right

gives relevant subjects2 complete flexibility in determining how they will comply with their

obligations under the programs, see Chapter 2 for a comprehensive introduction to the ba-

sic principles of environmental economics. Permits can be traded nationally in the case

1The original version of this chapter was co-written with Marc Paolella and is to appear inJournal of
Banking & Finance, under the title “An Econometric Analysis of the Emission Allowance Prices” .

2Title IV in the U.S. affects mainly electric utilities and EUETS affects different sectors like iron, steel,
cement, glass and ceramics, pulp and paper producers and theenergy sector as well.

21
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of the U.S., and internationally under the EU ETS, with no necessity of prior approval.

The purchase and holding of permits is not restricted to the companies affected by the

programs–which means that all sources, as well as third parties such as brokers, are free to

buy and sell permits with any other party.3

Knowledge of the statistical distribution of the prices of marketable permits, and their

forecastability, are crucial in constructing, among otherthings, purchasing and risk man-

agement strategies in those markets recently affected by tighter environmental regulations.

Therefore, this chapter analyzes the two main markets for permits designed for air-pollution

control and described in the introduction of Chapter 2: the CO2 market in Europe, and the

SO2 market in the U.S. This chapter investigates a model for dealing with the unique styl-

ized facts of this type of data. Its effectiveness in terms ofmodel fit and out-of-sample

value-at-risk forecasting, as compared to models commonlyused in risk-forecasting con-

texts, is demonstrated.

Along with the working papers of [28] and [6], this paper provides one of the first

econometric investigations of the behavior of the new emission permits. Our approach is

completely different than that used in both the aforementioned papers. [28] use a jump–

diffusion model to approximate the random behavior of the CO2 emission spot price, while

[6] analyze the short-term spot price behavior of CO2 emission permits and employ a

Markov–switching model to capture the heteroskedastic behavior of the return series. In

contrast, we build upon a recently developed GARCH-type structure particularly suited

to the stylized facts of the data. Our approach differs also from those alternative pricing

models driven by economic considerations. According to this strand of literature, energy

3As mentioned in a footnote in Chapter 2, the option of full transferability of emission permits leads to
the relevant question of which type ofagentact in the emission market with respect to the different priorities
and aims. We leave this question for future research.
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prices and climatic conditions are the most important drivers of the emission permits (see

for instance [20], [13], and [23] among others). Though the empirical findings of these

models differ notably due to diverging input variables and different modeling approaches,

the common result is a loose identification of what are the factors and with which intensity

they affect the price of the emission permits.

The remainder of the chapter proceeds as follows: Sections 3.1 and 3.2 provide the em-

pirical analysis of the SO2 and CO2 returns, respectively. Section 3.3 provides concluding

remarks and ideas for future research.

3.1 An Econometric Approach for Analyzing the SO2 Data

We consider a time-series model applied to the return series, rt = 100(ln pt − ln pt−1),

generated by the price sequencept. This section discusses in detail the analysis on the SO2

spot price data set, using the 1,780 returns from January 4, 1999 to May 16, 2006. The

spot closing prices SO2 have been collected by the Chicago Climate Exchange on the OTC

market.

3.1a Illiquidity

The emission permits market is nonstandard due to the fact that the traded asset is itself a so-

callednonstandard commodity. Electric power companies, for example, do not physically

need the emission-right to produce and, therefore, to pollute; in most cases it is feasible to

delay action and wait for new information before purchasingpermits. This also applies the

other way around: A firm that holds more permits than it expects to need may still hold onto

the surplus because they have some option value, given that it may be costly to get them

back once they are sold. So,illiquidity arises endogenously from the fact that firms can
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emit without having permits and thus fear that they may face amarket squeeze at the end

of the year. The relevance of the (incomplete) information-flow in the market for permits

and the impact of the strategic interaction of relevant companies is subject of research in

Chapter 4 for the specific case of the CO2 market.

Historically, markets for permits have never been completely liquid. However, volume

and liquidity on the emission permit markets have increasedover time, particularly from

the end of 2005. Nevertheless, the data set exhibits a relatively large (29%) number of

zero returns, due in part because of the relatively small number of agents interacting on

the market. This is a common finding of exchange-traded assets which, on a daily scale,

possesses a low floating capital and an even lower traded volume. For example, SO2 is

a regional problem in the U.S., where covered utilities include only a few hundred large

energy producers (a few thousand facilities). As anticipated in Chapter 2, another plausible

explanation is that within-firm trading at the same price could be taking place. For example,

AES, the largest electricity producer in the U.S., has numerous facilities covered by the

CAAA Title IV, and it is not unreasonable to assume that emission permits are financially

transferred from one balance sheet to another, at market price.4

3.1b Basic Analysis

Below we will present a statistical analysis of the returns, emphasizing the interplay be-

tween the standard features of the data (fat tails and volatility clustering) and the less-

standard fact that the data exhibit a much greater percentage of zero-returns than the more

commonly analyzed financial markets.

4At the time of writing, data to confirm this are not available,although from the USEPA website, the intra-
company transaction volume is available, thus confirming atleast that within-firm trading does take place on
a large scale. A similar argument is described in [29]. Furthermore, as discussed in Chapter 2, within-firm
trading reduced transaction costs.
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The top panel in Figure 3.1 plots the return data, from which we clearly see the pres-

ence of volatility clustering. The sample autocorrelationfunction (SACF) for the returns

is typical in the sense that very little correlation structure is present in the data, and is not

shown. Unsurprisingly, there is much stronger correlationinvolving the absolute returns.

The bottom panel of Figure 3.1 shows the SACF of the absolute returns, but having first

stripped the data set of the zeros: By removing the zeros, the revealed correlation struc-

ture is stronger, though the SACF with the zeros still in placeis similar - graph available

from the author. Thus, other than the larger-than-usual number of zeros, the returns exhibit

the usual stylized facts of asset returns, including a very low predictive component for the

mean, strong volatility clustering, and tails which are farfatter than the normal.

To emphasize the tail behavior, Figure 3.2 shows a kernel density estimate of the returns

data, but having removed the zeros (explaining the small dipin the curve near zero), which

does not affect the tail of the distribution, but would otherwise jeopardize the quality of

a fitted distribution. The kernel density of the data with thezeros looks similar, but with

a higher peak near zero. Fitting a normal or stable distribution5 to the returns, including

the zeros, leads to a very misleading fit in the tails. A mixture of normals could be fit to

such data, and this is done in the more general context of the conditionally heteroskedastic

model below. We see that the nonzero returns are virtually symmetric, obviating the need

for distributions which support asymmetry. The graph also shows an overlaid normal with

matching mean and variance, and a location-scale symmetricstable distribution (fit via

maximum likelihood). While the normal fit is disastrous, the stable distribution fits the

data rather well, with estimated tail index (and estimated standard error)α = 1.453 (0.045),

location termµ = 0.092 (0.047) and scale termc = 0.980 (0.037).

In light of the excess number of zeros, a conditional time series model for the returns

5See [66], Paolella (2007, Ch. 8) and the references therein for the history, the theoretical and practical
value, and computational issues of using the stable Paretian distribution in financial modelling.
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Figure 3.1: Daily SO2 returns (top), and the SACF of the
zeros-removed absolute returns (bottom).

would have to account for any dependency structure in the occurrence of zeros. To test this,

we use the standard runs–test, reducing the data to a sequence of zeros (zero return) and

ones (nonzero return), and using the asymptotic normality of the test statistic. Inspection

of the return series shows that relatively more zeros occur in the first third of the data set

(from January, 1999 up to March, 2002) than later, so that theruns–test applied to the

whole series leads to blatant rejection of the null hypothesis. To account for this, we could

test just, say, the last two thirds of the data, but more informative is to perform the test on

the return series starting from thesth return to the end of the series,s = 1, . . . , T − 50,

whereT = 1, 780 is the total number of returns. Figure 3.3 plots the resulting p-values, and
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Figure 3.2: Kernel density (solid) of the SO2 return series, with the
best-fitting normal density (dashed) and best-fitting
symmetric stable density (dash-dot). Right panel is just the
magnified view of the right tail.

shows that, for the latter half of the data set, the null hypothesis of no correlation structure

in the occurrence of zeros cannot be rejected. This fact is important for the conditional

model employed below; if the assumption of randomness of thezeros were not tenable,

then a more complicated model involving Markov-switching structures would have been

necessary.

3.1c Stable-GARCH Model

Perhaps the most common effective conditional model used inboth academic and finan-

cial institutions contexts for the analysis of asset returns data is a variant of the power-

GARCH(r, s) model given by

rt = µt + σtzt, σd
t = θ0 +

r∑

i=1

θi |rt−i − µt−i|d +
s∑

j=1

φjσ
d
t−j, d > 0. (3.1)
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Figure 3.3: Thep-values from the runs–test performed on segments of
the SO2 return series. The first segment is the returns in the
whole series, the second is from the second return to the
end, etc., up to the(T − 50)th observation to the end.

In the ubiquitousr = s = 1 case, we requireθ0 > 0, θ1 ≥ 0, φ1 ≥ 0. Here,zt
iid∼ fZ (·)

with fZ a zero-location, unit-scale continuous probability density function (pdf). In the

standard GARCH model,fZ is the Gaussian density andd = 2; thet-GARCH takesfZ to

be the Student’st pdf andd = 2; the stable-GARCH model, denotedSα,β-GARCH, takes

fZ to be theSα,β density andd = 1; see [58] for details.6

The stable-GARCH model possesses two important advantages over use of thet-GARCH.

Firstly, theSα,β-GARCH in-sample fit and out-of-sample Value-at-Risk (VaR) forecasting

ability are generally superior tot-GARCH [57]. Secondly, the use of stable Paretian in-

novations is theoretically more appealing because of its relation to the generalized central

limit theorem (GCLT) and which, via the stability property ofthe distribution, can be tested

and confirmed to be applicable in some financial asset return series [61].

6In general,d can be estimated. For the stable-GARCH model, we require0 < d < α. In practice,α > 1
and, for numerous financial return series, the out-of-sample forecasting ability is barely affected by the choice
of d ∈ [1, α).
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For the SO2 data, because of the aforementioned issue with a preponderance of zeros

in the return series, the data generating process (DGP) is not consistent with any typical

distributional assumption (such as Student’st or stable Paretian), in either the unconditional

or conditional (GARCH) case (though a mixture model suggests itself, and is the method

used below). Because fatter-than-normal tails of a unimodaldistribution imply a more

peaked center, the excess amount of zeros will have the effect of causing the tail index

(the thickness of the tail) to be biased downwards (thicker), thus overestimating the risk of

extreme tail events.

To illustrate, we estimate theSα,β-GARCH model for the SO2 return series. The esti-

mated asymmetry term iŝβ = −0.003, which is practically and statistically insignificant.

Note that the resulting estimate of the tail indexα pertains to the stable Paretian innovations

of the GARCH process describing the returns, i.e., the GARCH effects (which also give

rise to the fat-tails of the returns) are taken into account,so that the resulting index will be

greater (i.e., correspond to thinner tails) than the unconditional counterpart. The resulting

estimate of the tail index (and approximate standard error)areα̂ = 1.0278 (0.015), sug-

gesting the plausibility of Cauchy (α = 1) innovations, which do not even possess a finite

mean and is therefore not a tenable assumption. If we numerically restrictα̂ to be above

1.3, we obtain̂α = 1.498 (0.018), showing that a local maximum of the likelihood does

exist in a “plausible” region of the sample space. This occurs because the innovations in

the conditional model are not stable Paretian (there are toomany zeros, yielding the near-

Cauchy fit), but the tails are thinner than Cauchy, which resulted in the trade-off value for

α̂ of about 1.5.

If, for illustrative purposes, we strip all the zeros from the return series and then fit

theSα,0-GARCH model, we obtain̂α = 1.640 (0.022). This value is in agreement with

the range of estimated tail indexes of numerous other financial data sets and is a far better

reflection of the true thickness of the (conditional) tail. However, given the ad-hoc nature
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of the removal of zeros, this is still an unsatisfying approach for building a realistic model

of the return series. Similar results are obtained when using thet-GARCH model.

In fact, the abundance of zeros also precludes effective useof other GARCH-type mod-

els which otherwise tend to perform excellent in terms of VaRforecasting. In particular,

one might think that the GARCH-EVT model, which focuses on tailestimation of the

residuals of GARCH-filtered returns via methods of extreme value theory, would be par-

ticularly suited for VaR prediction of the SO2 data, given its unique behavior in the center

(but not the tails) of the distribution. The problem, however, is that the choice of innova-

tions assumption used with the GARCH filter in the first step of the GARCH-EVT model is

decisive for its forecasting performance, as detailed in [50]. Thus, the same problem arises

as with the use of conventional fat-tailed-GARCH models. Similar findings apply to the

use of the–otherwise highly effective–method of filtered historical simulation (FHS). More

encouragingly, Kuester et al. (2005) show that the mixed-normal GARCH model (which is

our proposed solution to the zeros problem) delivers highlycompetitive VaR forecasts on

par with the quality of GARCH-EVT and FHS.

3.1d Mixed Normal GARCH: Model and Numerical Issues

As discussed above, the problem with GARCH formulation (3.1) for the data under study is

the excess number of zero-returns, which precludes use of the usual array of distributions

useful in this context, such as Student’st, skewedt extensions, hyperbolic, andSα,β, to

name a few.

One candidate distribution which is perfectly suited for capturing this phenomenon is

to use a mixture-model, takingfZ to be a weighted sum of two or more pdfs. It might

seem natural to have one component be degenerate at zero, andthe other(s) continuous,

but it suffices, and is operationally easier to implement, tochoose all components offZ to
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be continuous pdfs, in this case, each Gaussian, with the first one possessing a very small

variance and a mean at zero (more on this below).

A further advantage of the mixture model is that it lends itself to economic interpreta-

tion. For example, [51] attribute volatility clustering and the emergence of fat-tailed returns

mainly to agents’ switching between fundamentalist and chartist strategies. A mixture of

two or more normals could arise from different groups of actors, with one group acting,

for example, more volatile than the others, or, possibly, processing market information dif-

ferently. This idea is related to recent research with experimental data by [49], who show

that heterogeneous fundamental information is a major source for the emergence of fat tails

and volatility clustering.7 This could apply to the SO2 market: With the approaching of the

more stringent Phase II in Title IV and with the SO2 emission level taking shape for the

different utilities, companies obtained a better indication of their Phase I net positions and

some appeared to refrain from speculation covering their short positions on a forward basis

and saving the remaining permits.

A GARCH-type model with mixed normal innovations, denoted MixN-GARCH, has

already been proposed and studied independently by [37] and[1]. The model was not

designed with the zeros-problem in mind, but rather motivated by the aforementioned eco-

nomic interpretation of different groups of market participants, and the fact that the mixture

of normals distribution is extremely flexible, fat-tailed and asymmetric, thus easily able to

capture the distributional regularities of financial returns data. A third benefit of the model

is that it automatically induces time-varying skewness andkurtosis, which have been advo-

cated in this context by [41], [42], [68], and [11]. Finally,and of great practical importance,

[37] and [50] have demonstrated that the model delivers highly competitive out-of-sample

7Similar results are also obtained in the equilibrium model developed in Chapter 4, where large drops in
the simulated equilibrium price are a result of the presenceof incomplete information among the relevant
market players.
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VaR forecasts.

We say time series{εt} is generated by ann–component MixN-GARCH(r, s) process

if the conditional distribution ofεt is ann–component mixed normal with zero mean, i.e.,

εt | Ft−1 ∼ MN
(
ω,µ,σ2

t

)
, (3.2)

where the mixed normal pdf is
∑n

j=1 ωjφ(z;µj, σ
2
j ), φ is the normal pdf,ω = (ω1, . . . , ωn)′

is the set of component weights such thatωj ∈ (0, 1) and
∑n

j=1 ωj = 1, µ = (µ1, . . . , µn)′

is the set of component means, such that, to ensure E[εt] = 0, µn = −∑n−1
j=1 (ωj/ωn)µj,

andσ
(2)
t = (σ2

1t, . . . , σ
2
nt)

′ ∈ R
n
+ are the positive component variances at timet.

In order to model the dynamics in the second (and higher) moments of the returns,

then × 1 component variancesσ(2)
t are allowed to evolve according to the GARCH–like

structure

σ
(2)
t = γ0 +

r∑

i=1

γiε
2
t−i +

s∑

j=1

Ψjσ
(2)
t−j, (3.3)

whereγi = (γi1, γi2, . . . , γin)′, i = 0, . . . , r, aren × 1 vectors, andΨj, j = 1, . . . , s,

aren × n matrices with typical entryψjhk =
[
Ψj

]
hk

(which we write asψhk when, as

in most applications,s = 1). We restrictΨj to be diagonal, which, as discussed in [37],

yields a much more parsimonious model with little loss in goodness-of-fit. In this case, and

with r = s = 1, the parameter constraintsγ0i > 0, γ1i ≥ 0, andψii ≥ 0, i = 1, . . . , n,

are necessary and sufficient to ensure the nonnegativity of the variance terms. With one

component (n = 1), the model reduces to the standard GARCH model. With two or more

components, the model is able to capture the asymmetry and most of the excess kurtosis

common in normal-GARCH residuals. Moreover, withn ≥ 2, the structure of (3.3) also

gives rise to rich conditional dynamics in the 2nd, 3rd and 4th moments which cannot be

modeled by the classic GARCH model of the form (3.1) with any distributional assumption,
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but do appear in real financial returns data [37].

It has been found that the component of the mixture assigned to the most volatile ob-

servations often consists of randomly and infrequently occurring jumps in the volatility, so

that a GARCH structure is not required. We denote by MixN(n, g) the model given by (3.2)

and (3.3), withn component densities, but such that onlyg, 1 ≤ g ≤ n, follow a GARCH

process (andn− g components restricted to be constant). In the context of theSO2 returns,

the component which picks up the zeros will also not require aGARCH component, so

that we only entertain models of the form MixN(n, g), 1 ≤ g < n, for n ≥ 2, and, for

comparison purposes, the MixN(1, 1), which is just the standard GARCH model.

In line with the vast majority of studies involving the standard GARCH model and those

involving the MixN-GARCH(r, s), the choicer = s = 1 has been found to be adequate

for the SO2 returns, and we subsequently suppress reference tor ands. As is common in

GARCH applications, the AR(1) structurert = a0 +a1rt−1 + εt is included in the model to

pick up the extremely mild autocorrelation structure in themean. Thus, all future reference

to a MixN(n, g) model implies an AR(1)-MixN-GARCH(1,1) structure with diagonal Ψ1

matrix. So, for example, in the MixN(3, 2) case (which, anticipating our results below, is

the preferred model), (3.3) takes the form




σ2
1t

σ2
2t

σ2
3t


 =



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
+


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0


 ε
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
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





σ2
1,t−1

σ2
2,t−1

σ2
3,t−1


 . (3.4)

In this case, there are 13 parameters to estimate, noting that µ3 andω3 are constrained, as

discussed above, andγ13 andψ33 are held at zero.

In general, the number of components,n, needs to be determined empirically. As

discussed in [37], standard model likelihood-based selection criteria can be successfully
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employed to compare models with different numbers of components. For a model with

K parameters,T observations and log-likelihoodL, evaluated at the maximum likelihood

estimator, we report the AIC= −2L+2K and BIC= −2L+K log T ; see [14] for original

references and a detailed textbook presentation of the use of these measures.

The likelihood of the general AR(p)-MixN-GARCH(r, s) model is straightforward to

program and evaluate, and its numeric maximization has proven to be unproblematic using

standard quasi-Newton-type optimization routines (as implemented in Matlab). One non-

standard issue which arises in the context of the data in our study involves the point masses

at zero, which are picked up as one of then components in the MixN(n, g) model. Because

these form a degenerate distribution, one variance component, namelyγ03 in (3.4), is zero,

and the likelihood is not defined. One way around this is to setγ03 andµ3 to zero andω3

(the weight of this component) to the percentage of zeros in the data set. This turns out to

be problematic because the other normal components (which are close to centered around

zero) have a “gap” at zero, which (given the discrete nature of the returns data) renders

the normal distribution inappropriate. Instead, we propose to replace the zero returns with

realizations of i.i.d. normally distributed random variables with mean zero and standard de-

viationσk, whereσk is chosen to be a small number relative to the unconditional variance

of the returns.

At first blush, this appears to be an uncomfortable solution,because adding random

noise to the data implies both a loss of “objectivity” as wellas non-reproducibility of our

estimation results. With respect to the first issue of objectivity, we note the relationship be-

tween this approach and that of [40], which is a quasi-Bayesian approach to estimating the

(unconditional) mixed normal distribution involving (algebraically) adding observations

to the data which reflect prior information and then maximizing a quasi-likelihood. His

method not only results in greater numeric stability of estimation, but also (with a nonzero
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and very small amount of prior information) leads to better small-sample estimation perfor-

mance than pure maximum likelihood. In our model context, weobserve the same results

in terms of improved reliability of the numerical maximization of the likelihood and, as

verified by simulations, more accurate parameter estimates. For the second issue of non-

reproducibility, we remark that the parameter estimates are not sensitive (with respect to

their approximate standard errors) to a range ofσk values from 0.01 to 0.2. In what follows,

we use this method withσk = 0.1.

3.1e Mixed Normal GARCH: Estimation Results and Diagnostics

Table 3.1 reports the likelihood-based goodness-of-fit measures for the various MixN(n, g)

fitted models, as well as thet-GARCH. As expected, the worst performer is MixN(1,1), the

standard (one-component) normal-GARCH model. Much better than the standard GARCH

is the t-GARCH model, although because of the zero-returns issue discussed above, it

performs, as expected, disastrously compared to the mixture models which, by design, can

pick up the zeros.

To help confirm that there is no structure in the pattern of zeros throughout the return

series, we also estimated the MixN(2,2) model. Observe thatits likelihood is virtually the

same as the MixN(2,1), showing that there is no GARCH dynamic inthe component which

picks up the zero-returns. From the table, we see that the best model according to both the

AIC and BIC is the MixN(3,2). With respect to the AIC, the MixN(4,2) and MixN(4,3)

models are close, while the BIC strongly favors the MixN(3,2). We subsequently restrict
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Model K L AIC BIC
t-GARCH 6 −2968.6 5949.3 5982.16
MixN(1,1) 5 −4072.0 8134.0 8181.42
MixN(2,1) 8 −2919.6 5855.2 5899.07
MixN(2,2) 10 −2919.3 5858.6 5913.44
MixN(3,1) 11 −2873.8 5769.6 5829.93
MixN(3,2) 13 −2835.7 5697.4 5768.70

MixN(4,2) 16 −2834.5 5701.0 5781.75
MixN(4,3) 18 −2831.6 5699.2 5797.92

Table 3.1: Likelihood-based goodness-of-fit for the SO2 return series.
The best values for each criteria are marked in boldface.

attention to the MixN(3,2). The estimated volatility equation (3.4) for the MixN(3,2) is8
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with the remaining parameters in (3.2) given byω̂1 = 0.165, ω̂2 = 0.595 (implying ω̂3 =

0.239), µ̂1 = −0.001, µ̂2 = 0.001 (implying µ̂3 = −0.045). Observe that the weight of the

component associated with the zero-returns (the third component) isω̂3 = 23.9%, which is,

as expected, somewhat less than the unconditional (model free) estimate of the percentage

of zeros (29%) in the data set, because the other two components are normal distributions

with modes near zero, and thus account for some of the zero-returns.

As shown in Haas et al. (2004, Section 2.2), a measure of volatility persistence of the

MixN-GARCH(1,1) model is the largest eigenvalue ofΨ1 + γ1ω
′, which indeed reduces

8Parameter estimates and standard errors for the MixN(2,1),MixN(3,1) and MixN(3,2) models are tabu-
lated in a working version of this chapter - available upon request.
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for n = 1 component to the well-known persistence measure ofθ1 + φ1 in the normal-

GARCH(1,1) model with notation in (3.1). For our fitted MixN(3,2) model, this measure

is 0.964, which, being less than unity, implies the model is covariance stationary. Looking

separately at the two components driving the nonzero observations, we see that the first

component, which accounts for an estimated 16.5/(16.5+59.5)=21.7% of the volatility of

the nonzero returns, has a persistence parameter ofγ̂11 + ψ̂11 = 1.273. Thus, this GARCH

component accounts for the extreme observations in the sample and, taken alone, is not

covariance stationary. However, the fitted weight is sufficiently small so that the overall

model is stationary. The second component has a persistenceparameter of̂γ12 + ψ̂22 =

0.861, which is clearly picking up the milder movements in the returns. Typically, an

estimated univariate GARCH model has a persistence parameterθ1 + φ1 very close to one

(or equal to one; the so-called integrated, or IGARCH model), whereas the MixN-GARCH

model can disentangle the volatility components into “mild” and “wild” ones, but still

yielding an overall stationary process.

To help confirm that the fitted MixN(3,2) model successfully reflects the distributional

properties of the SO2 return series, Figure 3.4 shows a QQ-plot of the actual data and a

(same length) simulated time series generated from the fitted model. The graph is typical

of numerous generated ones, and shows that the entire distribution, most notably the tails,

is well-captured by the proposed model.

Besides demonstrating that the MixN(3,2) model is a plausible approximation to the

true (and undoubtedly far more complicated) DGP, the excellent fit in the tails shown in

the QQ-plot has obvious implications for calculations of risk measures such as VaR. To

substantiate this latter claim, we conduct the following out-of-sample forecasting exercise.

Starting with the first 500 observations, we estimate the MixN(3,2) model and calculate the

forecasted distribution function̂F501|500, and evaluate it at the observed returnr501. This

is repeated for moving windows of length 500 until the end of the sample, with parameter
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Figure 3.4: QQ–plot of a simulated time series versus the return series
for the SO2 price index.

re-estimation done every 20 steps. The resulting values indicate the quality of the one-

step-ahead predicted VaR. In particular, if the model is accurate, then1% of the 1,280 tail

values should be less than 0.01. For the MixN(3,2) model, we obtain 0.94%, which is

indeed extremely close to the nominal value of 1%.

To compare, we repeat the same exercise with thet-GARCH model. We argued above

that, because of the zeros-problem, this model is highly misspecified and will not be ex-

pected to perform well. In this case, thet-GARCH model gave an average of 1.17% viola-

tions. The MixN(3,2) value is preferable both in terms of being closer to the nominal value

of 1%, as well as being less than the target value instead of above it, as underprediction of

risk can be costlier than overprediction. Nevertheless, the value of 1.17 is still reasonably
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accurate; it is certainly not as bad as one might have expected from a demonstrably mis-

specified model, and this begs explanation. Figure 3.5 showswhat is going on. The plot

shows, for each of the two models, a graphical depiction of the deviations from their nom-

inal values ofall the empirical VaR values from under 1% to 10%. Thus, an ideal model

would yield a straight line at zero, and in the plot, the aboveresults for the 1% nominal

VaR value are shown at the vertical dashed line.

We see that, indeed, thet-GARCH model performs well at and below the 1% nominal

VaR value, but worsens in a steep linear fashion as the nominal value increases, indicating

that the model fit is poor. This is not the case for the MixN(3,2) model, which is consistently

accurate throughout the whole tail. Essentially, thet-GARCH model “got lucky” at 1%

(which, perhaps conveniently, is among the most widely-used values), similar to many

studies which have shown that the standard GARCH model happensto perform reasonably

well at the 5% value. These VaR forecast results are consistent with the in-sample fits of

thet-GARCH and MixN(3,2) models, as shown in Table 3.1.

In addition to an excellent in-sample fit, the mixture model in this context allows for a

potential interpretation of the components. Clearly, the third component is used to pick up

the zeros and embed them adequately in a stochastic process.The remaining two GARCH

mixture components can be viewed as capturing the result of the two major groups of

market participants: affected units who buy and sell permits based primarily on their current

and forecasted needs (i.e., the permits are viewed as a factor of production), and speculative

traders or simply non–affected agents (i.e., banks and investment funds).9 Of course, these

two groups could possibly interact. Observe that the general mixed normal GARCH model

(3.2) and (3.3) allows for a type of dynamic interaction between the components, though

for the SO2 data set, the diagonal model was statistically superior to the full model.

9Using a parallelism with Chapter 4, the two major groups may be firms which expect the market being
in extreme shortage, and those which expect precisely the opposite,i.e. extreme excess of emission permits.
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Figure 3.5: Deviation probability plot; solid is fort-GARCH, dashed is
for MixN(3,2). Plotted values are
“Deviation” := 100(FU − F̂ ) (vertical axis) versus100F̂
(horizontal axis), whereFU is the cdf of a uniform random
variable;F̂ refers to the empirical cdf formed from
evaluating the 1,280 one–step, out–of–sample distribution
forecasts at the true, observed, next-day return.

3.2 Analysis of CO2 Returns

For the CO2 price series, we have only 454 daily returns; these are plotted in Figure 3.6.

The larger presence of covered companies under the EU ETS translates into a higher daily

traded emission volume and therefore into a much lower presence of zeros in the return

time series (only 8). Without the zeros-problem, all conventional GARCH models can,

in theory, be entertained, though the small sample size effectively prohibits use of the

more elaborate models. In this study, we consider an AR(1)-GARCH(1,1) model with the

following innovation distributions: Student’st, symmetric and asymmetric stable, and the
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generalized asymmetrict distribution. The latter, abbreviated GAt, has pdf

fGAt (z; d, ν, θ) = K ×





(
1 +

(−z · θ)d

ν

)−(ν+ 1
d)

, if z < 0,

(
1 +

(z/θ)d

ν

)−(ν+ 1
d)

, if z ≥ 0,

(3.6)

for d, ν, θ ∈ R>0. Expressions for the integrating constantK, the cdf, moments, and the

expected shortfall are given in Paolella (2007, p. 273).
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Figure 3.6: Daily CO2 returns

The in-sample fits are summarized in Table 3.2. The best fitting model for all criteria is

the GAt-GARCH.

We conduct a model comparison for assessing the forecastingquality of the models by

repeating the exercise done for the SO2 data. This resulted in Figure 3.7, which is similar

to Figure 3.5 but corresponds to the CO2 returns and is based on moving window of size

250 (and yielding 204 cdf values).
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Model K L AIC BIC
normal-GARCH 5 −1260.8 2531.6 2552.2
t-GARCH 6 −1192.5 2397.1 2421.8
GAt-GARCH 8 -1181.9 2379.9 2412.8
Sα,0-GARCH 6 −1218.2 2448.5 2473.2
Sα,β-GARCH 7 −1192.0 2398.1 2426.9
MixN(3,2) 13 −1190.1 2406.2 2459.7

Table 3.2: Likelihood-based goodness-of-fit for the CO2 return series.
The best values for each criteria are marked in boldface.
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Figure 3.7: Deviation probability plot for CO2 returns based on moving
window of size 250; see caption in Figure 3.5 for
description. Solid is fort-GARCH, dashed is MixN(3,2),
dash-dot is GAt-GARCH, and dotted is GAt-GARCH using
a weighted likelihood.

To avoid an overly cluttered graph, the figure just shows the VaR forecasting results for

the t-GARCH, MixN(3,2), GAt-GARCH, and GAt-GARCH using a weighted likelihood,
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the latter to be discussed below. The plots for theSα,0-GARCH andSα,β-GARCH (not

shown) lie mostly betweent and GAt-GARCH, with the latter having performed overall

slightly better thanSα,β-GARCH. This agrees with the in-sample results reported above.

We see that, of all the models so far discussed, all perform reasonably well near the1%

level, but none performs adequately for other tail values, lowering our confidence in their

realistic applicability in practice. In this case, the MixN(3,2) performs worse than the stable

and GAt models, but still on par with thet-GARCH. Similar results hold for MixN(2,2)

and MixN(3,3) models.

The GAt-GARCH model has been found by other authors such as [56], [36] and [50] to

deliver competitive VaR predictions. In our case, it performed overall best for the CO2 data

set, though still not adequately, and finding a better model seems necessary. One might

argue that the short window size of 250, which corresponds tojust one year of trading-day

data, is too short for reliably estimating and forecasting any GARCH-type model. However,

in their large study using NASDAQ index returns data, [50] shows that this need not be

the case and VaR forecasts based on 250 observations can be highly accurate, and even

outperform those based on windows of length 500 and 1000. As such, it is not necessarily

the short window size, but rather that all the models we entertained are highly misspecified.

To remedy this, one could try a full battery of GARCH and relatedmodels and choose the

best-performing one, though such a data-snooping exercisemay not be successful, and

even if it is, it could lead to a model choice which is “too trained” to the current, very

small, dataset and perform poorly in the future. To avoid this problem, we attempt to

directly address the reason why the models do not perform well; namely, that the true data

generating process (DGP) is changing too quickly over time.The CO2 emissions market

is rather new, and it is expected to be evolving, as do all emerging markets. Indeed, the

particular dependencies of this market on political and regulatory uncertainties amplify the

effects of news arrivals, such as the announcements in May 2006 that the market was overall
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in emission excess. As such, it seems plausible that the DGP will experience significant

changes in the short term.10

To deal with an unknown and changing DGP, we suggest choosinga tractable paramet-

ric structure which reasonably captures the salient features of the DGP and estimating it

with more weight given to recent observations. Observe that, if the DGP were a GARCH

model with parameters which vary smoothly over time in an unknown fashion, then this

method acts as a way of balancing the tradeoff between using only very recent observa-

tions (and inducing a high variance in the estimates) and using all the data equally weighted

(and thus delivering highly biased estimates). To negotiate this tradeoff optimally, we use

the criteria of one-step VaR prediction with a geometric weighting scheme with weights

τt ∝ ρT−t (and then scaled to sum to one), where the single parameterρ dictates the shape

of the weighting function. Values ofρ with 0 < ρ < 1 cause more recent observations to be

given relatively more weight than values further in the past; ρ = 1 corresponds to standard

ML estimation. Each value in a large grid ofρ values is used in the forecasting exercise

and the one which delivers the best forecasts is used. This weighting scheme was shown in

[56] to be effective in a financial returns density prediction context. It is interesting to note

that the idea of weighting recent events more heavily is embedded by the decision weight

function in Prospect Theory; see, e.g., [43].

Another source of inaccuracy in the prediction of downside risk is likely to stem from

asymmetries in the data which are not adequately captured bythe chosen model, even when

the model allows for both an asymmetric response to shocks inthe GARCH equation and

a flexible asymmetric innovations distributional assumption. Indeed, if instead of accurate

forecasting of the entire density, interest is restricted to just VaR, then it would seem wise

to place more weight on the negative observations in the sample. This is demonstrated in

10To overcome the loose results of the econometric model for CO2, we develop an equilibrium model for
the price of the emission permits in Chapter 4.
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[63], who investigate numerous schemes of placing more weight on negative returns. By

combining the two weighting schemes, they show, using a variety of financial returns data

sets and asymmetric GARCH models, that considerable improvement in forecast accuracy

can be obtained which exceeds use of only one (or none) of the weighting schemes. In

this paper, we use the following weighting scheme for placing more weight on the negative

returns: first constructπt = 1 + rt/maxt(−rt), and, forγ ≥ 0, let

ωt =





γ(1 − FBeta(πt; p, q)) + 1, if rt < 0,

1, otherwise.

whereFBeta is the cumulative distribution function of a beta random variable with para-

metersp and q. The choice ofγ determines how much weight is assigned to negative

returns, with a value of zero yielding the default case of equal weights. In the final step the

weights are standardized so that the sum of all weights (negative and positive) equals one,
∑T

t=1 ωt = 1. The appropriate value ofγ is determined in the same fashion as parameterρ

in the time-weighting scheme.

The two weighting methods are easily combined by multiplying the two weight vectors

elementwise, and then scaling so it sums to one. For a matrix of pairs of (ρ, ω) values,

the forecasting exercise is conducted and that pair which yields the smallest VaR forecast

deviation for VaR-probability values lower than 10% is chosen. Based on the 204 forecast

values, we found thatρ = 0.7 andγ = 4 were optimal. Use of these values gives rise to the

dotted plot in Figure 3.7, which offers an improvement over all the non-weighted models

at all risk levels, notably 1% and 5%.
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3.3 Conclusions

In this chapter, we rely on an empirical approach for the modeling and forecasting of the re-

turns on the emissions permits. Because of the relatively high presence of zeros in the SO2

return series, we argue and show that standard GARCH models cannot be used in this con-

text. To handle this peculiarity, we propose and operationalize the use of the mixed-normal

GARCH model, because it inherently can allocate a component tothe extra mass around

zero of the return distribution, unlike standard and even highly sophisticated GARCH mod-

els. Besides “solving the zeros problem”, the mixed-normal GARCH model provides both

an excellent in-sample fit and out-of-sample VaR forecasts,and also allows for economic

interpretation not shared by most GARCH models. As such, the model appears to be very

well suited for modeling and forecasting the risk of the SO2 emission market.

For the CO2 data, no model which assumes a constant data generating process resulted

in accurate VaR forecasts at all risk levels. By using a parametric model which places more

weight, via the likelihood function, both on more recent returns and on negative returns,

improved forecasting ability is achieved. However, since knowledge of the (unconditional

and conditional) distribution of emission permit prices isessential for constructing optimal

hedging and risk management strategies in the carbon market, further investigations are

required.

One might suggest that the inclusion of a longer (up to the submission of this thesis,

August 2008) and more updated time series could lead to some improvements. This would

generate a fundamental mistake. The existence of banking restrictions (of the emission

permits -see Chapter 2 for a detailed description of the market mechanisms and references)

between the two first phases makespotcontracts in phase I different fromspotcontracts

in phase II. Therefore, a convenient merge of the two time series is simply not possible.

Furthermore, since the emission spot price was overing above zero from mid 2007, the
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inclusion of the rest of phase I time series into the analysiswould have not enhance the

results bout the true DGP of the CO2.

An interesting direction for future research would be to consider implementing the fun-

damental analysis (fuel prices are considered to be the primary approximate fundamentals

for the emission permits - see section 4.2 for a discussion) into the mean equation of the re-

turn process and use GARCH-type structures, as discussed in this chapter, for the variance

equation.



Chapter 4

Continuous Time Model: An

Equilibrium Approach

”Of course it was ambitious to set up a market for something youcan’t see

and to expect to see immediate changes in behavior. . .”

-Jacqueline McGlade, executive director, European Environment Agency

(June - 2008)

In Chapter 2 we discuss the environmental economics literature which focuses on the

the economic and policy aspects of marketable permits starting from the seminal paper of

[60].1 Theoretical aspects that Montgomery (1972) does not consider have been addressed

1The original version of this chapter was co-written with Marc Chesney. It is included in the NCCR-
FinRisk Working Paper Series under the title “The Endogenous Price Dynamics of Emission Allowances:
An Application to CO2 Option Pricing” . The paper has been presented at the following conferences: “IX-
Workshop on Quantitative Finance” , January 2008, University of Rome “Tor Vergata” - Roma, Italy; “8th
Ritsumeikan International Symposium on Stochastic Processes and Application to Mathematical Finance
and 8th Columbia-Jafee Conference on Mathematical Finance” , April 2008, Ritsumeikan University, Kyoto
- Japan; “EAERE - European Association of Environmental andResource Economists” , June 2008, School
of Business, Economics and Law, Goteborg - Sweden; and “35thEuropean Finance Association meeting” ,
August 2008, Athens - Greece.
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by the studies listed below and which are more extensively discussed in Chapter 2. The

influence of uncertainty, regarding the regulation policy of public utility commissions on

the behavior of regulated firms, have been discussed by [8] and [22]. Concentration in

the permit market and in the output market have been exploited respectively by [38], [55]

and by [52]. [73], [30] and [59] have developed models to include transaction costs in the

theoretical frame. Finally, [16, 17] has conducted an analysis on auction and rules design.

Though such literature is fairly extensive, an explicit study of the dynamic of the price

of the emission permits in the presence of market uncertainty is an almost unexplored area.

Most of the present research relies on the key result - largely discussed in Chapter 2 -

that, in an efficient market, the equilibrium price of the emission allowances is equal to

the marginal costs of the cheapest pollution abatement solution. This statement underpins

the belief that a high price level for emission permits brings about the relevant companies

with lower marginal abatement costs in order to exploit consequent price differences. Such

companies make profits by lowering the level of offending gases more than is necessary

to comply with regulations and subsequently sell their spare permits. Through the use

of optimal-control theory, [69] extends the discrete-timeand deterministic setting of [77]

and [26] and provides a trading model for permits in continuous time. The author, intro-

ducing the possibility of banking and borrowing permits, demonstrates that the discounted

marginal costs of abatement are, theoretically, constant over time. As a consequence the

permit price grows in equilibrium with discount rates (i.e.risk-free interest rates).

Recently, in an effort to bridge the gap between theory and observed market-price

behavior, an increasing number of empirical studies has been investigating the historical

time series of the permit price. In [28] several different diffusion and jump–diffusion

processes were fitted to the European CO2 futures time series. [6] analyze the short-term

spot price behavior of CO2 permits employing a Markov–switching model to capture the

heteroskedastic behavior of the return time series. In contrast, in Chapter 3 we advocate the
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use of a new GARCH-type structure for the analysis of inherent heteroskedastic dynamics

in the returns of SO2 in the U.S. and of CO2 emission permits in the EU ETS.

As discussed in Chapter 2, with a precise focus on the Europeanemission market and

in an attempt to develop a valid dynamic price model, [71] and[34] elaborate a quantita-

tive analysis of the CO2 permits price founded on the pivotal results from environmental

economics literature. In particular, [71] consider one representative agent who decides

whether or not to spend money on lowering emission levels. The model is based on the

optimal abatement decision of an affected company, therefore it very much depends on

its total expected emissions. With a distinction between long-term and short-term abate-

ment measures, [34] concentrate on the energy sector consideringn affected utilities which

decide their abatement levels by relying on the cheapest possible abatement option in the

short-term, i.e. so-called fuel-switching.2

In common with the last-mentioned paper, we differentiate short-term and long-term

abatement measures. As extensively discussed in section 4.2, a few options are available to

the majority of affected companies and even fewer fall into the list of so-called short-term

abatement possibilities. [18] prove that most abatement technologies in the U.S. energy

sector are perceived as durable and irreversible investments whereas emission permits pro-

vide a greater flexibility in adapting to changing conditions. As a result, the compliance

aim in the short run becomes a market problem, rather than a strictly engineering one. Ac-

cordingly, in our model we assume that the companies’ pollution dynamics are exogenous

processes. Relevant companies optimize their cost functionby continuously adjusting their

permit portfolio allocations and by choosing the optimal permit amount to purchase (in the

2It involves the replacement of high–carbon (sulfur) fuels with low–carbon (sulfur) alternatives. The most
common form of fuel switching in the U.S. is the replacement of high–sulfur coal with a low–sulfur coal. In
Europe, coal is typically replaced by natural gas.
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shortage permit case) or to sell (in the excess permit case).The main objective is to de-

velop an endogenous model for the permit-price dynamics. Remarkably, the underlying of

the price of the emission permits are the net accumulated pollution processes of the relevant

companies. Permit prices are sensitive to the strategic purchases and sales of all relevant

companies. Moreover, each specific position in permits determines the final value of the

emission price, as opposed to [34] where the boundary condition comes from the aggregate

market position in permits.

The organization of the remaining sections of the chapter isas follows. In section 4.1,

we briefly introduce the formal design of the markets for emission permits and we recall

the EU ETS market characteristics. Section 4.2 addresses the fundamental distinction be-

tween long-term and short-term abatement policies. In section 4.3 we present the model

and its formulation for the basic case of one company with emission-trading opportunity

only at time zero. Then, in section 4.4, we extend the model toaccount for two-firm interac-

tions that may continuously trade permits which are coupledwith asymmetric information.

In section 4.5 we give a proposition for the model with multi-firms. Finally, section 4.6

concludes with an extensive numerical exercise to derive the equilibrium price for CO2

permits.

4.1 Marketable Permits for Air-control

A marketable permits scheme for air pollution control is constructed as follows. Mar-

ketable permits are issued to relevant facilities. These emission permits (or allowances) are

denominated in units of a specific pollutant (for example in tons of CO2) and in amounts

proportional to their size and emissions according to a referred year as baseline. For a

detailed discussion of initial allocation criteria see [3]and references therein.

At regular intervals, facilities submit emission reports for their compliance period, at
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the end of which facilities must own sufficient permits to cover their emissions. This im-

plies that each facility must hold at least as many valid credits as emissions during the

compliance period. A penalty is levied if a facility does notdeliver a sufficient amount of

permits at the end of the compliance period. The payment of a fine does not remove the

obligation to achieve compliance, which means that undelivered permits have to be handed

in. Having been used to cover emissions, these “credits” arethen deleted from the regula-

tory compliance system, preventing subsequent use or transfer. The compliance date marks

the end of each period for which a facility has to file an emissions report, which is due on

the certification date.

The largest and most important emission-trading program has been developed by the

European Union to facilitate implementation of the Kyoto Protocol. The EU ETS covers

five different industrial sectors and almost 12,000 installations in 27 countries, responsible

for nearly half of the EU’s CO2 emissions. They have been allocated permits giving them

the right, over the first phase (2005-2007), to emit 6.6 billion tons of CO2. The second

phase coincides with the first Kyoto commitment period, beginning in 2008 and continuing

through 2012. At the time of writing, ongoing negotiations are specifying the details of the

imminent third phase.3 The EU ETS has createdde factoproperty rights for emissions

that are freely tradable. All permits are transferable, i.e. a facility that generates excess

permits by reducing emissions below its allocated levels can sell those extra “credits” to

other relevant entities. In addition to the so-called spatial trading,4 both schemes allow for

3It worth to mention that beside emission permits, relevant companies can also use “certificates” acquired
from outside the European Union, via the Joint Implementation (JI) or the Clean Development Mechanism
(CDM) to meet their obligations under the EU ETS. The Kyoto protocol allows the utilization of so-called
flexible mechanisms. Through JI, developed countries can receive emissions reduction units whenever they
finance projects that reduce net pollution emissions in other developed countries. Through CDM, developed
countries may finance GHG emission reduction or removal projects in developing countries, and receive
credits for doing so. Interested readers may refer to the Intergovernmental Panel on Climate Change (IPCC)
for relevant scientific, technical and socio-economic information related to these flexible mechanisms.

4According to environmental terminology, spatial trading means that a unit can reduce its emissions below
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inter-temporal trading, so that companies can save their permits for use in the future. This

is reflected by a larger time flexibility for pollution-control investments. More precisely,

the EU ETS allows onlywithin–phasebanking, i.e. permits can be banked from one year

to the next. Unused allowances, however, are not valid during the following phase.

The economic incentives embedded in the tradable permits are designed to force com-

panies to participate in the permits market. As discussed inChapter 2, this leads to a the-

oretical equalization of marginal abatement costs across different pollution sources. How-

ever, in the short run, the observed permit price does not coincide with the expected the-

oretical level.5 Though this might be ascribed to a market which is in the initial stage of

development, in the next section we will attempt to address directly the reasons why this

mismatch is present.

4.2 Abatement Opportunities in the Short Term

According to the market-based approach which we have described in Chapter 2, a gener-

ating unit is endowed with high flexibility in determining the best strategy of achieving

compliance under a cap-and-trade program: each firm faces a basic choice between buying

(or selling) permits, and reducing emissions through use ofalternative technologies. Three

general classes of techniques for the physical reduction ofemissions are available. Firstly,

emissions can be reduced by lowering the output scale. Secondly, the production process

or the inputs used - for example, fuels - can be altered. Finally, tail-end cleaning equipment

can be installed to remove pollutants from effluent streams before they are released into the

its allocated number of permits, transferring those unusedto other units within the same company or selling
them to other companies or brokers. Conversely, it can decide not to abate its emissions but to purchase
permits covering emissions above its allocation. Spatial trading along with temporal trading are one key
characteristics of marketable permits, see Chapter 2.

5It should be noted that in the long run too, the equality permit price and cheapest marginal abatement
cost hold only in the presence of a non-evident permit-excess situation - see section 4.6 for numerical results.
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environment.

European firms, in order to accomplish Europe’s severe environmental regulations, have

mostly achieved high environmental standards either in production processes or in the re-

duction of offending gases released as a byproduct into the air. Due to this advanced tech-

nological situation, and coupled with a typical inelastic demand for particular products –

such as electricity or ore-mining materials6 – the first abatement alternative can be con-

sidered as the exception rather than the rule, see [44] and [76] for a more comprehensive

discussion.

Although in the EU ETS the largest-affected sector, which received the lower amount

of initial permits, i.e. the fuel-burning energy producers, has one of the cheapest abatement

alternatives (so-called fuel-switching), it is worth noticing that fuel-switching is rarely im-

plemented at present. A possible reason for this is that medium-sized to large utilities

purchase fuel signing-up contracts with long maturities inorder to lock in a particular

price premium, providing in such a way an element of irreversibility to fuel-switching de-

cisions -see [45]. More plausibly, since fuel switching is generally implemented whenever

there exists a sensible fuel-input price difference, the actual CO2 price/cost ratio does not

currently trigger the hypotheticaldaily fuel-switching. In fact, considering the marginal

optimization procedures, fuel-switching is mainly dependent on the marginal generation

costs. CO2 is also an important cost-component but a plausibly more relevant component

is the cost associated to the change of fuel. Moreover, a firm cannot fuel-switching in-

stantaneously: the process requires implementation-time. We concentrate our attention,

therefore, on the short-term period. A reference to the possible incorporation of the typi-

cal production management decisions based on daily CO2 price movements is available in

section 4.3.

6The largest permit allocations correspond respectively toiron and steel producers, non-metallic mineral
producers and energy producers.
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A market-based approach leads to an efficient allocation of abatement costs across dif-

ferent pollution sources, as shown by [60]. However, this heavily depends on the implicit

assumption that any technological abatement solution, forinstance the installation of scrub-

bers on smokestacks to extract noxious fumes as solid residues,7 is perceived as a perfect

substitute for emission allowances. This only holds true inan efficient market with no

uncertainty. Those facilities which are affected, on the contrary, face considerable uncer-

tainty. [18] show that companies perceive abatement technologies - in particular scrubber

plants for SO2 - as inferior substitutes for emission allowances. In contrast to emission

permits, investments in pollution-reduction infrastructures are irrevocable commitments

which last for decades and typically need some lead time in order to become effective. For

a more extensive discussion refer to [33] and [80]. The purchase of permits is adjustable

to changing market conditions whereas a scrubber might be under-utilized if demand falls.

Moreover, the cost of a scrubber might be excessive following a fall in permit price. Hence,

since pollution abatement technologies are often expensive, durable and irreversible invest-

ments, they are not commonly deemed to be perfect substitutefor emission permits. Plau-

sibly, other sources of uncertainties - regulatory uncertainty, for instance - can distort the

theoretical equilibrium price, but the overall effect would always be a mismatch.

Following this line of reasoning, we develop an equilibriummodel for the short-term

permit price and we propose possible model extensions for the inclusion of general tech-

nological abatement measures coupled with long-run management strategies.

7It is important to note that currently there is no commercially availableend-of-the-stacktechnology to
extract CO2.
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4.3 The Formal Model:”Wait-and-see” for One Company

In the tradable permit price modeling, as outlined by [60], the existence of an efficient

market has been generally assumed. This leads to an equalization of marginal abatement

costs across the different pollution emitters and to an emergence of an alignment of compa-

nies’ interests with those of a representative agent (as in [71]), or with a social planner (as

in [34]).8 Employing the existence of a single representative firm in the market (as in [71]),

we model the permit price process in an elementary situationwhere trading is only pos-

sible at the inception of an environmental program that has afinite length T. To simplify

matters, we do not account for the possibility of trading theemission certificates generated

by JI and CDM projects. The study of their stochastic impact onthe emission market is left

for future research. Additionally, in addressing the cost minimization problem, we derive

the permit price in analytic form.

Let (Ω,F ,P) be the probability space,F = (F0) the filtration whereF0 = σ(Q0).

We denote withQ0 the initial pollution level and withX0 the quantity of permits that the

company buys (X0 > 0) or sells (X0 < 0) at time zero, and withN the initial permits

endowment. We labelδ0 the overall net amount of permits for the company at initial time,

whereδ0 = N +X0 and it gives the company the right to emit a volume of offending gases

up to such a level. We assume that the firm continuously emits offending gas according to

a stochastic exogenous process over the period[0, T ]. The process evolves accordingly to

a geometric Brownian motion:9

dQt

Qt

= µdt+ σdWt, or equivalently Qt = Q0e
(µ−σ2

2
)t+σWt (4.1)

8In [34] the coincidence of the equilibrium permit price withthe solution of social planner problem is a
result of the model since fuel-switching is considered as a perfect substitute of emission permits.

9The assumption of an (on average) increasing pollution process is aligned with the United Nation Frame-
work on Climate Change (UNFCC) estimations on future consumption of energy, cement and steel.
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whereµ andσ are respectively the instantaneously constant drift term and the constant

volatility of the pollution process.Q0 can be interpreted as the business-as-usual (BAU)

emission level, while the drift and the volatility characterize the gas emission process with

respect to the BAU pollution level. Using Equation (4.1), the accumulated pollution volume

at timet is simply
∫ t

0
Qsds. Thereby, a negativeµ implies a lower (expected) accumulated

pollution level - maybe due to a technological improvement -that is reflected in future GHG

emissions; whereasσ measures the uncertainty about the accumulated pollution volume.

A natural extension of the model would be the introduction ofan endogenous pollution

process. This means that a company can modify its productionprocess according to the

level of accumulated pollution and consequently impact thepermit price evolution. We

leave this exploration for future research.

As described in section 4.1, in order to pollutelegally, the company must have enough

permits by the end of the periodT . If the firm fails to achieve compliance, it will pay a

penalty equal toP . More precisely, in the EU ETS penalty costs may occur at the end of

every year. However, the European Directive allows a one-year borrowing within a trading

period. This means that companies are allowed to use permitswith future maturity for

compliance in the current year without having to buy the permits in the market. It is thus

not unreasonable to assume that companies will not pay penalties for a shortfall within a

particular trading period.

At the end of the period we expect either a shortage or a surplus situation (or possi-

bly a perfect match) between the issued emission permits andthe verified pollution level.

Inevitably, the company will either be holding worthless emission permits or paying the

price for being uncovered - i.e. the penaltyP times the number of uncovered tons - or be

totally and perfectly hedged. Yet, as this last possibilityis quite unlikely, the final cash

outflow boils down to a binary outcome. In fact, the company’sfinal cost in await-and-see
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situation without any trading opportunity during the period [0, T ] is:

max

{
0,

(∫ T

0

Qsds− δ0

)}
· P, (4.2)

where
∫ T

0
Qsds is the firm final accumulated pollution level. Expression (4.2) recalls a

typical option payoff. From here it is obvious that emissionpermits - like many other

tradable permits - are to all intents option contracts. Several features shared with standard

options contracts are discussed in the forthcoming numerical section.

Given the initial endowment of permits and the expected future permits net position, a

firm minimizes its costs at the inception of the period. The total cost is simply the sum of

the cash-flows at initial time (or minus the proceeds from permits sales) and the potential

penalties at the end of the program. Therefore, the resulting minimization problem is:

min
{X0}

{
S0 ·X0 + e−ηT

EP

[(∫ T

0

Qsds− δ0

)+

· P |F0

]}
(4.3)

where the expectation is taken under the historical probability measureP,10 η is the discount

rate - the weighted average cost of capital - andS0 is the permit price (known) at timet = 0.

In order to express the permit price in analytic form, we relyon [35] and write the

objective function as follows:

H ≡
{
S0 ·X0 + e−ηT

EP

[(∫ T

0

Qsds−N −X0

)+

· P
]}

10The historical probabilityP refers to the pollution processes, a non-tradableasset. There is no need to
construct a risk-neutral probability measure for the pollution processes since a corresponding risk-neutral
pollution dynamics has no reason to be evaluated.
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with
∫ T

0

Qsds =
4

σ2
·Q0

∫ σ2T/4

0

e2(
�
Wu+zu)du =

4

σ2
·Q0 · Az

σ2T/4

z :=
2ν

σ
, ν :=

1

σ
· (µ− σ2

2
), and W̃u :=

σ

2
W4u/σ2 is a Brownian motion.

Finally, we denoteAν
T =

∫ T

0
e2(Ws+νs)ds.

Computing the first order condition (FOC),X0 satisfies the following equation (the

detailed derivation is in Appendix A.1):

S0 = e−ηT · P ·
∫ ∞

δ0·σ2/4Q0

P

[
Az

σ2T/4 ∈ dx
]
. (4.4)

It is observable that the emission allowance spot price is a function of the penalty level

and the probability of a permit–shortage situation. The functional form of such probability

is known, but unfortunately is problematic to evaluate numerically. For illustrative pur-

poses, therefore, we letT be an arbitrary small-time interval (∆t = T ) and then compute

the discrete approximation of
∫ T

0
Qsds. This enables us to derive a more intuitive analytical

form for the permit spot price (the detailed derivation is inAppendix A.1):

S0 = e−ηT [P · Φ(d−)] , where d− =
ln(Q0 · ∆t/δ0) + (µ− σ2

2
)∆t

σ
√

∆t
, (4.5)

andΦ(x) is the standard cumulative distribution functionΦ(x) = 1√
2π

∫ x

−∞ e−
u2

2 du.

Equation (4.5) is the discounted value of future expected expenses, i.e. thecontingent

claim payoff, where the claim is the emission permit whose value iscontingent on the

shortage eventω, with ω = {
∫ T

0
Qsds > δ0}.11

In figure 4.1 we give a graphical interpretation of Equation (4.5). In the right picture

the solid line is the permit price as a function ofX0 in a zero-volatility situation. This

11It is worth noting that Equation (4.5) corresponds to the equilibrium permit price described in Theorem
1 of [34].



60 CHAPTER 4. CONTINUOUS TIME MODEL: AN EQUILIBRIUM APPROACH

−150 −100 −50 0 50 100
0

10

20

30

40

X
0

S
0

 

 

µ = −0.15

µ = 0.15

µ = 0.35

−150 −100 −50 0 50 100
0

10

20

30

40

X
0

S
0

 

 

σ = 0

σ = 0.15

σ = 0.30

Figure 4.1: Plot ofS0, the emission permit price at initial time, as a
function ofX0, the amount of permits sold (negative values)
or bought (positive values) at timet = 0. We plot the permit
price for different{µ : µ ∈ R}, left picture, and different
{σ : σ ∈ R

+}, right picture, keeping all other parameters
constant. In this example, N= 170, P = 40 andQ0 = 100.

is equivalent to the exclusion of uncertainty about the finalaccumulated pollution level

of the firm. More precisely, in this particular example, if the company sells less than

50 units of permits, it surely ends up in a permits-excess situation. As a result, the firm

achieves compliance - it has no penalty to pay. However, the permits that are left over

have no longer any monetary value (this potential loss is correctly taken into account in the

extended model version). Conversely, if the firm sells more than 50 units of permits, ending

up with a permits-shortage, it pays the penalty for each uncovered ton of offending gas. In

this last situation, the permit has a value equal to the amount the firm is obliged to pay: the

discounted penaltyP . Theoretically, in a world of certainty, we can evaluate a quantity-

threshold: on the left-hand side the emission allowance hasa value equal toe−ηT ·P , while

on the right-hand side any permit is worthless.

As any pollution process is marked by uncertainty, the emission allowance price lies
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somewhere between zero and the discounted penalty level, i.e. S0 ∈
[
0, e−ηT · P

]
. As

figure 4.1 shows, the difference between the accumulated pollution volume and the net

amount of permits leads either to a shortage or to a surplus. This depends on the the prob-

ability of such an event, and determines where the price lies. Keeping all other parameters

constant, we plot the permit priceS0 for different drift parameter values on the right-hand

side. On the left-hand side we use different instantaneous volatility values. As expected,

the higher isµ or σ the larger has to be the amount of permits to be bought at timet = 0.

Similarly the lower has to be the amount of permits to be sold -in order to reduce the risk

of facing a penalty. It is worth noticing that this figure resembles the graphical results of

the equilibrium spot price in [71].

4.4 Two-companies and Multi-periods Trading

A market for tradable permits is clearly different from the oversimplified situation de-

scribed above. Not just one representative agent, but different companies operate at the

same time on the market. The resulting interaction of the companies’ optimization strate-

gies must be properly taken into account as anticipated in section 2.2. In addition, the inher-

ent uncertainty associated with almost all emission levelsaffects the market efficiency, as

discussed in section 4.2. Several technical, commercial, and operational factors contribute

to the uncertainty observed in emission levels and to the perception of a larger flexibility

for the emission permits compared to other abatement measures. These factors include

uncertainty in the demand for companies’ goods and services. This results in a variation

in the production activity levels, measurement and monitoring uncertainty. These, coupled

with imperfect information regarding emission levels, typically lead to either the facilities

ending up short of, or in excess of emission permits. Both of these are highly undesirable

scenarios. The former results in excessive emissions in theenvironment in conjunction
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with high violation penalties for the facilities while the latter represents unrealized produc-

tive and/or market value for the firm. As a result, facilitiesare forced to participate in the

market in order to reconcile their emission credit accounts. They do this either by sell-

ing or buying permits. Historical price evidence suggests that many of the affected firms

dynamically adjust their positions, thus ensuring compliance. On the one hand some com-

panies continuously purchase/sell the difference betweentheir permit allocation and their

expected net future emission. On the other hand, other players take a more speculative

approach by selling off permits when the permit price is high, and purchasing them back

later on if in a permit need situation or if the permit price isconveniently low.12 In what

follows we extend the basic model, accommodating it to the interaction of two firms that

trade in a multi-period setting and to the presence of asymmetric information.13

Let (Ω,F , {Ft} ,P) be the probability space,F = (Ft)t≥0 is the filtration whereFt =

σ(∪i∈IQ
i
s, s ∈ [0, t]), andI = {1, 2}. Each firm continuously emits offending gas

accordingly to an exogenous process:

dQi,t

Qi,t

= µidt+ σidWi,t.

where we assumedW1,t ·dW2,t = 0. We denote withXi,t andNi,0 respectively the quantity

of permits that thei-th company buys or sells and the initial permits endowment.In a

cap-and-trade, as the EU ETS, the GHG reduction target is settled at the inception of each

phase, therefore the supply side of pollution permits is indeed fixed:N = N1,0 +N2,0.

12An analysis of the interests of the various players in the market (governments, financial institutions,
industrials and energy companies and NGOs) might lead to a different interpretation of permit price dynamics
in the EU ETS.

13Asymmetric information means that firms found their permit trading strategies based on different infor-
mation sets.
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The net amount of permits that thei-th company possesses at timet is denoted by

δi,t := Ni,0 +
t∑

s=0

Xi,s = Ni,t−1 +Xi,t, ∀ t = 1, 2, . . . , T − 1,

where we defineNi,t−1 as the sum of the marginal quantities of emission permits bought

and sold by companyi-th including the initial permit endowment.

Given that the total number of permits is fixed, the market clearing condition is:

δ1,t + δ2,t = N or in another form X1,t = −X2,t ∀ t = 0, 1, . . . , T − 1. (4.6)

Condition (4.6) implies that in equilibrium the permit positions are in zero net supply.

Hence, it satisfies the competitive equilibrium condition that requires equality between

supply and demand for pollution rights in the market.

We label thei-th net accumulated pollution volume at timet as
∫ t

0
Qi,sds − δi,t−1.

At time t ∈ [0, T ], companyi has complete knowledge about its own net accumulated

pollution volume,
∫ t

0
Qi,sds− δi,t−1, and partial knowledge about the net accumulated pol-

lution volumes of companyj,
∫ t−1

0
Qj,sds − δj,t−1. In other words, the presence of asym-

metric information imposes a lag-effect on the expected future net-emission levels of the

other company. A ready extension of the model toI companies is possible splitting the

set I = {1, 2, . . . , I} into two parts,I− := I − i and i, and assuming equal infor-

mation among the companies inI−. Moreover, using constant drift and volatility terms,

{µ,σ} ∈ R
I−1, and relying on standard technique of the methods of moments, one can

approximate the cumulative pollution process,QI−,t =
∑I

j=1,j 6=iQj,t, with a new geomet-

ric Brownian motion, see [12]. However, we focus on the case ofI = {1, 2} and we

formalize the extension of the model in the following theorem.

At time T , if neither of the company is in a permit need, all left-over permits have
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zero value. Conversely, if at least one of the firms is in permitshortage, since by law

all covered companies have to surrender sufficient credits at timeT , the permit has a value

equal to the penalty levelP . This holds assuming that there is no presence of market-power

and each company in shortage is indifferent to purchase permits and to penalty payments.

Analytically, the permit value at timeT is:

ST =





0 if ∀ i ∈ I
∫ T

0
Qi,sds ≤ δi,T−1

P if ∃ i ∈ I
∫ T

0
Qi,sds > δi,T−1

(4.7)

In accordance with the emission market construction at timeT , if companyi is in permit

excess, it can sell to companyj what the latter wants to buy:

min

{(
δi,T−1 −

∫ T

0

Qi,sds

)+

,

(∫ T

0

Qj,sds− δj,T−1

)+
}

=: Γ (4.8)

On the other hand, if companyi is in permit shortage, it can buy from companyj what the

latter wants to sell:

min

{(∫ T

0

Qi,sds− δi,T−1

)+

,

(
δj,T−1 −

∫ T

0

Qj,sds

)+
}

=: Π (4.9)

However, ifΠ <
(∫ T

0
Qi,sds− δi,T−1

)
, by law companyi has to payP for each uncovered

ton of offending gas emitted. Thus, combining equations (4.8) and (4.9), a severe asym-

metry between buyer and seller positions is detectable and the boundary conditions for the

permit-quantity at timeT can be simplified to:

Xi,T =

(∫ T

0

Qi,sds− δi,T−1

)+

− Γ, ∀ i ∈ I.

Let us consider∆t to be the unit time. As in the previous section, given the initial permit
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endowments and expectations on the accumulated pollution volumes, each firm minimizes

its total costs at every timet ∈ [0, T − ∆t]. The minimization problem for companyi = 1

at timeT − ∆t is:

min
{X1,T−∆t}

{
ST−∆t ·X1,T−∆t + e−η∆t

EP [ST ·X1,T |FT−∆t]
}
.

And deriving the FOC:

ST−∆t = e−η∆t · P · EP

[��
T

0 Q1,sds>δ1,T−∆t
|FT−∆t

]
(4.10)

+ e−η∆t · P · EP

[�
δ1,T−∆t>

�
T

0 Q1,sds ·
��

T

0 Q2,sds>δ2,T−∆t
|FT−∆t

]
.

Since
∫ t

0
Qi,sds is a monotonically non-decreasing function int, it follows

EP

[��
T

0 Q1,sds>δ1,T−∆t
|FT−∆t

]
=





Φ(d1,T−∆t) if
∫ T−∆t

0
Q1,sds− δ1,T−∆t ≤ 0

1 else

where d1,T−∆t =
ln
(

Q1,T−∆t·∆t

N1,T−2∆t+X1,T−∆t−
�

T−∆t

0 Q1,sds

)
+
(
µ1 − σ2

1

2

)
· ∆t

σ1 ·
√

∆t
.

And, by independence:14

EP

[�
δ1,T−∆t>

�
T

0 Q1,sds ·
��

T

0 Q2,sds>δ2,T−∆t
|FT−∆t

]
= Φ(-d1,T−∆t) · Φ(d

lag
2,T−∆t),

where d
lag
2,T−∆t =

ln
(

Q2,T−2∆t·2∆t

N2,T−2∆t+X2,T−∆t−
�

T−2∆t

0 Q2,sds

)
+
(
µ2 − σ2

2

2

)
· 2∆t

σ2 ·
√

2∆t
.

14From a practical point of view, the EU ETS covers five different industrial sectors and almost 12.000
installations in 27 European countries. So, it is plausiblethat two companies, although belonging to the same
industrial sector, are affected by different technical, commercial and operational factors.
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Moving on from this, we can then express the emission spot price analytically for com-

pany one at timeT − ∆t as the discounted penalty level weighted by the shortage proba-

bilities (for the computations see Appendix A.2):

ST−∆t = e−η∆t · P ·
[
1 − P

1
T−∆t

]
(4.11)

whereP
1
T−∆t := Φ(-d1,T−∆t) · Φ(-d

lag
2,T−∆t) is the probability of non-shortage future

situations for both companies from the point of view of company one.

Similarly, solving the optimization problem for company two, it follows:

ST−∆t = e−η∆t · P ·
[
1 − P

2
T−∆t

]
, (4.12)

whered2,T−∆t andd
lag
1,T−∆t are defined similarly as above.P2

T−∆t := Φ(-d2,T−∆t) ·
Φ(-d

lag
1,T−∆t) is the probability of non–shortage future situations for both companies from

the point of view of company two. For the sake of simplicity, we use the same discounting

factor η for both companies. A generalization taking two different discounting factors is

straightforward.

Moving backwards and repeating the optimization procedureat each time stepk ∈
[1, 2, . . . , T/∆t], we obtain a pair (i 6= j) of emission price equations (see Appendix A.3):

ST−k∆t = e−ηk∆t · P ·
{

1 − EP

[
Φ(-di,T−∆t) · Φ(-d

lag
j,T−∆t)|FT−k∆t

]}
. (4.13)

With these two equations and the market clearing condition (4.6), at each time step we

determine the equilibrium permit price by numerically evaluating the quantity of permits
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that satisfies the following equality:

EP

[
Φ(-di,T−∆t) · Φ(-d

lag
j,T−∆t)|FT−k∆t

]
= EP

[
Φ(-dj,T−∆t) · Φ(-d

lag
i,T−∆t)|FT−k∆t

]
,

(4.14)

for a given set of parameters ({µ,σ,Q0,N0} ∈ R
2) that characterize the two pollution

processes.

4.5 Multi-firm and Multi-periods Trading

Along similar lines of the previous sub-section, and splitting the setI into two parts

(I = I− ∪ i), we can generalize the model toI companies in a multi-period setting. The

equilibrium permit price result from the solution of a system of I equations (see Appendix

A.4).

Proposition 4.5.1 Given the exogenous pollution processes{Qi,t}T
t=0 for companyi =

1, 2, . . . , I the price processS =
{
St

}T

t=0
is called equilibrium permit price process,

if there exists
{
X i,t

}T−∆t

t=0
for i = 1, 2, . . . , I such that for alli = 1, 2, . . . , I and t =

0, . . . , T − ∆t

EP

[
Φ(-di,t) · Φ(-d

lag
I−,t)|Ft

]
= EP

[
Φ(-dj,t) · Φ(-d

lag
I−,t)|Ft

]
, I = I− ∪ i (4.15)

and the market clearing condition is satisfied
∑I

i=1X i,t = 0 for all t = 0, . . . , T − ∆t.

It is remarkable to notice that, at each time step both the permits traded-quantity and

the permit price, in equilibrium, are the result of the companies’ continuous adjusting of

emission portfolio allocations based on the accumulated pollution processes and the avail-

able information about net permit positions. In the next section we delve deeper into these
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aspects by means of an extensive numerical exercise.

4.6 Numerical Evaluation

For illustrative purposes we consider a situation whereI = 2. Based on equation (4.13)

and the market clearing condition (4.6), we simulate several paths of the emission permit

price. In each simulation exercise the time periodT is fixed at one year (i.e. 250 trading

days), the weighted average cost of capital is set at 10% and the penalty,P , is equal to40.

Starting att = 0, and using equation (4.1), we simulate a pair of independentpollution

processes: one for each companyi-th, i ∈ I. Then, according to the initial permits amount

Ni,0, we evaluate numerically the quantity of equilibrium permits such that equation (4.14)

holds. We then calculateS1
0 , the implied equilibrium permit price. This procedure is re-

peatedn-times to evaluate the expected equilibrium permit priceS0 :=
∑n

j=1 S
j
0/n. At

time t = ∆t, the resulting net-permits positions(δi,0; i = 1, 2) are evaluated usingS0

and a fixed pair of accumulated pollution volumes, randomly chosen among then pairs of

pollution simulations. Repeatingn-times the procedure described above, we compute the

expected equilibrium permit priceS∆t. Reiterating this at each time step up toT − ∆t we

obtain the simulated equilibrium permit price history depicted in the figures below.

Figures 4.2 and 4.3 illustrate the equilibrium permit priceevolution stopped at three

different time steps (50, 150 and200 days) of the described procedure. In the first figure,

we depict a situation where both companies’ pollution processes have a positive quick–

paced drift of 15% and 10% respectively, and a mild volatility level, set at 10% for both.

While the second company has been equipped with an initial permit endowment close to its

total expected emissions, i.e.N2,0 ≈ Q2,0 ·
∫ T

0
eµ2sds whereT = 1, the first company has

been allocated an initial amount of permits slightly largerthan its total expected emissions,

i.e. N1,0 > Q1,0 ·
∫ T

0
eµ1sds whereT = 1. As such, we would expect an upward-moving
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Figure 4.2:St permit price evolution (bottom-part) for the pollution
parametersµ = (0.15; 0.10), σ = (0.10; 0.10),
Q0 = (50; 25), N0 = (52; 25). The simulated pollution
processes are depicted in the upper (Q1,t) and middle-part
(Q2,t).

equilibrium permit price: the price evolution in the last row of figure 4.2 confirms this.

Conversely, modifying the pollution drift terms and setting, respectively, a negative value

for the first company,µ1 = −0.15, and a negligible drift term for the second one,µ2 =

0.001, we would expect a reverse effect, other things being equal.The last row of figure

4.3 supports the expectation of a downward-moving equilibrium permit price.
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Figure 4.3:St permit price evolution (bottom-part) for the pollution
parametersµ = (−0.15; 0.001), σ = (0.10; 0.10),
Q0 = (50; 25), N0 = (52; 25). The simulated pollution
processes are depicted in the upper (Q1,t) and middle-part
(Q2,t).

Figure 4.4 depicts a brief sensitivity analysis of the equilibrium permit price with re-

spect to the parameters of the companies’ pollution processes. Starting from a set of con-

veniently chosen parameters, i.e.µ = (0.25; 0.20), σ = (0.15; 0.40), Q0 = (50; 25),
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N0 = (60; 40), we let the drift and volatility terms of company one vary, both in the first

and in the second picture, keeping all the other parameters constant. As expected, the larger

µ1, the higher the probability of being in shortage by the end ofthe period, i.e.T . This rea-

sonably implies an upward trend in the permit price. However, in the particular simulated

case, for each employed drift term except whereµ1 = 0.50, as time moves forward and

uncertainty is resolved, the initial permit endowments aresufficiently large to reverse such

a trend (see upper part of figure 4.4).

Similarly, the largerσ1, the higher the uncertainty about
∫ T

0
Q1,sds − δ1,T−∆t, i.e. the

net permit position before the compliance date, and consequently about the probability of a

non-shortage situation in the future for both companies, i.e.Pi
t, t ∈ [0, T − ∆t]. As can be

observed, higher volatility uncertainty is reflected in a higher permit (option) price. How-

ever, in our particular simulated example, while more information about the accumulated

pollution volumes is collected, the initial permit amount value takes precedence over the

overall uncertainty level. This, in turn leads to a price decrease (see middle part of figure

4.4). Finally, the impact of different pairs of initial permit endowments is observable in

the last picture. The upper line depicts a clear shortage situation. After some trading time,

the shortage status becomes a fact and the permit price is simply the discounted penalty

level. The lower line depicts the opposite situation. Both companies have been allocated

an amount of permits that is over-generous and the permit price hovers slightly above zero

(see lower part of figure 4.4). It is extremely interesting toobserve that the yellow price

path very closely resembles the empirical spot permit priceof CO2 in the European market

during 2005 and 2006. After a period of slow but continuous upward movement, due to

purchasers being convinced of a shortage, the price plummeted by almost 70%, thereafter
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drifting towards zero. This price reverse can be attributedto the disappearance of asym-

metric information among market players in terms of their net permits positions.15 By the

end of 2007, the emission permit spot price for phase I is almost nil; however it would have

been zero only if the probability of an excess situation had been exactly one. This fea-

ture, along with the described price reaction to drift and volatility movement, is common

to standard financial option contracts.

Optimal strategies are readily computable in a static and deterministic framework as

those described in section 2.3. Conversely, regulatory uncertainties and uncertainties in the

evolution of the pollution processes make an identificationof the best strategy, which is less

straightforward in the short-term. Apart from technological issues and physical constraints,

financial concerns are also beginning to creep in. Anecdotalevidence of extreme volatility

in the European and U.S. permit markets suggests an urgent need for the development of ef-

fective hedging techniques.16 In addition, the numerous risks related to market-based prod-

ucts highlight the importance of developing appropriate risk-management tools for those

companies which are subject to environmental programs, as well as to specialized traders.

More importantly, a valid price model is required for pricing any financial instruments or

project whose valuederivesfrom the future CO2 spot permit price. Extremely relevant

examples are project-based investments (see next chapter), that at regular intervals, return

emission reduction certificates, yielding a payoff that depends on the CO2 permit market

price. Other important examples are technological abatement investments or production

process modifications that can be valued in terms of costs saved from purchasing emission

15Referring to the discussion in the subsection 3.1e and considering the model framework in Chapter 3,
the price reverse may be a result of a larger (density) weightplaced on the group (of firms) which expect the
market being in extreme shortage with respect to the (density) weight of those expecting a market in excess
of permits.

16Hedging strategies can be constructed by means of futures contracts or by introducing option instruments
(the first option contract on CO2 was traded in October, 2005 between the French electricity company EDF
and the Amsterdam based company Statkraft). Futures are traded both over–the–counter and on several
exchanges.
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permits or revenue from the sales of extra unused permits.

4.7 CO2 Option Pricing

In the EU ETS there are two major groups of players: that one which is covered by the

regulations and the one that trades permits with the purposeto speculate.17 This last group

consists of brokers, hedge funds, banks and insurers. Due tothe nature of such institutions,

it is clear these players have been attracted by the high volatility of the market of emission

permits. Moreover, the emergence of international exchanges and the consequent enhance-

ment of the liquidity of spot and futures contracts encouraged even more the participation

of financial players in the EU ETS. At the time of writing, mostof the trades concern fu-

tures traded on the London-based European Climate Exchange,the largest pan-European

platform. Banks and insurance invest in emission permits largely trough funds. As a matter

of fact, in the last 2 years several funds emerged in the private sector, raising the appre-

hension for the existence of a speculative bubble. In sum, the financial sector is providing

liquidity by trading futures contracts; it is sharpening the risk-sharing products by offering

ad-hoc insurance contracts; it is serving the market by creating new service-solutions; and,

more importantly, it is pushing for the creation of a solid market for option contracts where

the underlying is the spot price of the emission permits.

The other group consists of all industrial companies which are covered by the EU ETS.

Industry can act as seller or buyer in the market of emission permits like the financial sector.

However, the main difference between these two sectors concerns the market perception.

Financial companies look at emission permits as a new market(a new opportunity), while

industry faces it as an entirely new set of regulations. To some extend, today the industrial

17The original version of this chapter is part of the paper “TheEndogenous Price Dynamics of Emission
Allowances: An Application to CO2 Option Pricing” that was co-written with Marc Chesney.
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sector can be split into two groups in respect to the employedstrategy. More precisely, one

can distinguish between “passive” and “active” strategy. In the “passive” strategy the firm

only takes action at the beginning of the trading period (buying if it expects to be in need

or selling if it expects to be in excess - but maintaining a sufficient reservoir), holds the

rest of the permits on the registry account, and waits for allverified emission data. This

strategy corresponds to the situation described in section4.3 and it is not far from what

has been experienced by some industries in Western Europe. In fact, producers of cement,

ferrous metals, building materials and pulp and paper have generally limited ability to

reduce their emissions but, having received fairly generous initial amount of permits in

phase I, they acted passively on average. The “active” strategy can have several variations.

In the simplest form, a company sells all permits once they appear on the registry account

but immediately buys them back on the forward market. As such, permits are temporarily

transferred into cash which is later on transferred back into permits at a known (forward)

price. The net annual surplus or shortage of permits is then settled every year on the spot

market. In a sophisticated variant of the “active” approach, a company could cover the

buy-back leg of the transaction by insurance or a call option.18 Trivially if, at expiry of the

option, the price of the permit is higher than the strike price of the option, the option is

exercised. If, on the other hand the permit price is below thestrike price of the option, the

option is not exercised and the emission permit can be boughtat the lower market price.

Therefore, also active industrial traders are interested in the development of a large option

market - especially call options.

Based on this discussion, it’s clear why a CO2 option market is slowly growing and

attracting a wide variety of industrials, utilities and financial institutions of various nature.

18A more advanced variant of the “active” strategy corresponds to the dynamic problem described in sec-
tion 4.4.



4.7. CO2 OPTION PRICING 75

With regard to the different scopes listed above, the importance of such a market is two-

fold. First, CO2 option contracts satisfy the primary need of risk transfer from those who

wish to reduce the risk of a permits shortage situation, namely the risk of financial exposure,

to those willing to accept it. By allowing European covered companies to reduce their

exposure to price risk, buyers and sellers can better plan their (active) trading strategies and

their businesses. Second, writing option contracts financial institutions can take a position

on the market.

It worth to mention that the development of a CO2 option pricing approach is not limited

to price standard financial contracts. Any project-based investment, i.e. investments com-

mitted under the so-called CDM and JI mechanisms, which at regular intervals returns CO2

emission reduction certificates yielding a payoff that depends on the CO2 permit market

price, can be considered as (real) option contracts.19 It is natural to interpret such projects

as contracts whose valuederivesfrom the future CO2 spot permit price. Similarly, any tech-

nological abatement investment or production process modification can be valued in terms

of saved costs from purchasing emission permits or revenue from the sales of extra unused

permits. As mentioned in section 4.2, [18] used this argument in order to identify a plausi-

ble reason for the difference between the marginal cost of running abatement technologies

such as scrubbers and the emission allowance price. They called this difference the option

premium. This is the first paper that discovers the option-value implicitly embedded in the

value of an emission permit. In line with this consideration, an option where the underlying

is any sort of marketable permit is in fact a compound option.Finally, all industries which

undertake any kind of technological abatement investmentsin order to free-up emission

permits and sell them are interested in standard put options. Recalling the discussion in

19It has to be noted that each certificate has to succeed a completely regulated verification and certification
procedure before being eligible as CER (for CDM) or as ERU (for JI).
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section 4.2, physical abatement investments often entailsa multi-year time horizon. There-

fore, companies are generally quite reluctant to sell forward excess emission permits. Put

options satisfy the need to lock in a certain price in the casethe implemented abatement

measure delivers the promised amount of permits.

In what follows we develop a CO2 option pricing approach based on the equilibrium

price dynamics obtained in the previous sections. A comparison with a benchmark model,

i.e. the Black-Merton-Scholes formula, follows as an exercise.

4.8 CO2 Option Pricing: A Comparison

In this brief last section we carry over a European-style (financial and real) option pricing

model comparison. In particular, we attempt a comparison ofCO2 option-pricing models

evaluating plain vanilla European options (Call and Put) with strike priceK and maturity

T . The benchmark model is that of Black, Merton and Scholes (1973) (called BMS), where

one assumes the permit price evolves according to a geometric Brownian motion

dS̃t

S̃t

= αdt+ βdWt,

whereα andβ are the constant drift and constant volatility respectively. The second option

approach relies on the endogenous equilibrium price procedure described in the previous

section, thus the underlying price follows a dynamics like (A.9) in the Appendix A.5. Eu-

ropean options are priced numerically by means of Monte Carlosimulations. However, in

order to obtain a fair option pricing comparison under the same probability measure, we

consider the risk adjusted version of (A.9) such that the discounted equilibrium price is a

martingale, i.e. the dynamics (A.10).

To be consistent with the numerical results exposed in section 4.6, we maintain the time
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periodT fixed at one year, the discount factor is 10% and the penaltyP is equal toe 40.

For illustrative purposes, we consider six possible general situations where pollution drift

and volatility terms are varying but we make the initial pollution levels and the initial per-

mits endowments fixed, i.e.Q0 = (50; 25) andN0 = (55; 25). For all models, the risk-free

rate used isr = 0.03. Similarly, to obtain comparable and meaningful results, the parame-

ters of the exogenous geometric Brownian motion used in the BMSoption pricing model

are estimated from the simulated prices obtained appling the equilibrium price procedure.

More precisely, the starting permit price at timet = 0 is the mean of all first points of the

simulated paths, i.e.̃S0 =
∑A

i=1 S
i

0/A whereA is the number of simulations. In addition,

the constant volatility term̂β is the mean ofA annulaized historical volatilities estimated

by the squared difference of the log-returns of each simulated path.

In the first situation, called ”Positive–Positive”, both companies are characterized by

a mild positive drift term of 10% and a rather high volatilitylevel of 20%. In the second

situation, the first company has a positive drift term,µ1 = 10% and a relatively mild

constant volatility,σ1 = 10%, whereas the second company has zero-drift and a volatility

double compared to the previous,σ2 = 20%. With an identical volatility level of 15%

and an equal drift term of 10%, but of opposite sign, we compute the option price in the

situation labelled ”Positive–Negative”. In the fourth case, called ”Stable–Stable”, both

pollution drifts are negligible and the volatility levels are 15% and 20% respectively. The

”Stable–Negative” situation is characterized by identical volatility, 25%, negligible drift

for the first company and a negative one, -10%, for the second company. Finally, in the last

case, drift parameters are both -10% and volatilities are 20% and 15% respectively.

The option prices are consistent across all six described situations. The higher the pol-

lution drift terms the higher the Call options values (sortedfor decreasing strike priceK);

the lower the pollution drift terms, the higher the Put options values (sorted for increasing

strike priceK). Given the unboundedness of a geometric Brownian motion, one would
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Parameters Strike K=10 K=20 K=30
S̃0, β̂; [µ,σ] Model Call Put Call Put Call Put

S̃0 = 18, 46, β̂ = 0.41 PP BMS 8.89 0.14 2.63 3.58 0.63 11.28
[(0.10, 0.10)(0.20, 0.20)] PP Endogenous 7.40 2.65 2.18 7.13 0.00 14.65
S̃0 = 11, 33, β̂ = 0.76 PS BMS 4.00 2.37 1.54 9.61 0.69 18.46

[(0.10, 0.01)(0.10, 0.20)] PS Endogenous 2.46 4.92 0.01 12.17 0.00 21.86
S̃0 = 11, 23, β̂ = 0.69 PN BMS 3.66 2.13 1.21 9.38 0.46 18.34

[(0.10,−0.10)(0.15, 0.15)] PN Endogenous 2.37 4.66 0.01 12.00 0.00 21.69
S̃0 = 8, 80, β̂ = 0.76 SS BMS 2.34 3.24 0.76 11.36 0.30 20.61

[(0.01, 0.01)(0.15, 0.20)] SS Endogenous 1.06 5.43 0.00 14.07 0.00 23.77
S̃0 = 6, 52, β̂ = 0.79 SN BMS 1.20 4.38 0.33 13.21 0.12 22.71

[(0.01,−0.01)(0.25, 0.25)] SN Endogenous 0.27 6.15 0.00 15.58 0.00 25.28
S̃0 = 6, 60, β̂ = 0.61 NN BMS 0.79 3.88 0.11 12.91 0.02 22.53

[(−0.10,−0.10)(0.20, 0.15)] NN Endogenous 0.20 5.23 0.00 14.73 0.00 24.43

Table 4.1: European Call and Put option prices according to two
different option pricing models. The table reports the results
for six possible general situations where we allow the
pollution drift and volatility terms to vary. Initial pollution
levels,Q0 = (50; 25), and initial permits endowments,
N0 = (55; 25), are fixed. The risk-free rate isr = 0.03,
maturity isT = 1; and the penaltyP = 40. The simulated
pollution processesn are500 for each company and
A = 100.

correctly expect the Call prices valuated with BMS model to be higher compared to the

second approach. This is the case in all six situations and for every strike price. Put prices

valuated with BMS model are lower. Indeed, the possibility for the market to be in excess

at maturity generates a non-negligible probability for theeventST = 0. In other words, in

the BMS model, contrary to our model, the probability to be in excess does not play a sig-

nificant role. However, such a price-rank is not always the rule and it is intimately linked to

the initial amount of permits allocated to each company. Forinstance, an emission permits
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market over-allocation (N0 is significantly lager thanQ0), would impact the value-range

for S̃0 shifting it down and implicitly reducing or deleting the option price difference. An

emission permits market under-allocation (N0 is extremely smaller thanQ0), instead could

reverse the price-rank and make BMS Call options cheaper.

Those that attribute the existence of such a difference to a model specification (in fact

the historical volatility is quite high), might suggest employing a more general exogenous

dynamics to describe the CO2 permit price.20 However, this will not fill the price gap

inasmuch as the emission permits market positions are not taken into account. In general,

in a market for emission permits, the lower (higher) the initial allocation the more valuable

would be a Call (Put) option.

20The estimation of several popular continuous-time processes via maximum likelihood in [28] confirms
that the jump-diffusion model proposed by [54] delivers thebest CO2 spot-returns description.
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Figure 4.4:St permit price evolution letting vary the drift and the
volatility terms for company one, respectively upper and
middle picture, and both the initial permits endowments,
lower picture. The common starting pollution parameters
areµ = [−0.15; 0.001], σ = [0.10; 0.10], Q0 = [50; 25],
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A.1 Appendix A.1

The following objective function has to be minimized with respect toX0

H ≡
{
S0 ·X0 + e−ηT

EP

[(
4

σ2
·Q0 · Az

σ2T/4 −N0 −X0

)+

· P
]}

(A.1)

and denotingAν
T =

∫ T

0
e2(Ws+νs)ds, ν: = 1

σ
· (µ− σ2

2
).

The law ofAz
t is P(Az

t ∈ dx) = ϕ(t, x)dx where

ϕ(t, x) = xν−1 1

(2π3t)1/2
e

�
π2

2t
− 1

2x
− ν2t

2 � ∫ ∞

0

yνe−
1
2
xy2

Υy(t)dy,

Υr(t) =

∫ ∞

0

e−
y2

2t · e−r(cosh y) · sinh(y) · sin
(πy
t

)
dy.

Computing the first order condition (FOC) the following is obtained:

S0 = e−ηT · P · P
[
Az

σ2T/4 >
δ0 · σ2

4Q0

]

Therefore we can express the emission allowance price as a function of the penalty and

81
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the probability of permit shortage:

S0 = e−ηT · P ·
∫ ∞

δ0·σ2/4Q0

P

[
Az

σ2T/4 ∈ dx
]
.

For a simple analytical interpretation of the problem we canassumeT = ∆t, where∆t

is a small time interval, and approximate the cumulative pollution process with its discrete

representation: ∫ T

0

Qsds = Q0e
(µ−σ2

2
)∆t+σW∆t · ∆t

.

Substituting in the objective function it follows:

H ≡
{
S0 ·X0 + e−ηT

EP

[(
Q0e

(µ−σ2

2
)∆t+σW∆t · ∆t−N0 −X0

)+

· P
]}

(A.2)

Computing the FOC it follows:

S0 = e−ηT · P · EP

[�
Q0e(µ−σ2

2 )∆t+σW∆t ·∆t>N0+X0

]

= e−ηT · P · P
[
Q0e

(µ−σ2

2
)∆t+σW∆t · ∆t > N0 +X0

]
,

moving on from this, we express the price as a function of the penalty and the proba-

bility of permit shortage and the results of equation (4.5) are obtained.

A.2 Appendix A.2

The following objective function has to be minimized with respect toX1,T−∆t:

H ≡
{
ST−∆t ·X1,T−∆t + e−η∆t

EP [ST ·X1,T |FT−∆t]
}
.
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Deriving the first order conditions, we arrive at equation (4.10). Introducing asymmetric

information as explained in the section 4.4, we consider thediscrete approximation for the

pollution processes and obtain

P

(∫ T

0

Q1,sds > δ1,T−∆t

)
= P

(
Q1,T−∆t · e

�
µ1−

σ2
1
2 � ·∆t+σ1W∆t · ∆t > δ1,T−∆t −

∫ T−∆t

0

Q1,sds

)

= Φ(d1,T−∆t),

whered1,T−∆t is defined in section 4.4. Similarly

EP

[�
δ1,T−∆t>

�
T

0 Q1,sds|FT−∆t

]
= P

(
δ1,T−∆t >

∫ T

0

Q1,sds

)
= Φ(−d1,T−∆t), and

EP

[��
T

0 Q2,sds>δ2,T−∆t
|FT−∆t

]
= P

(∫ T

0

Q2,sds > δ2,T−∆t

)
= Φ(d

lag
2,T−∆t),

whered
lag
2,T−∆t is defined in section 4.4. It follows that:

ST−∆t = e−η∆t · P ·
[
Φ(d1,T−∆t) + Φ(−d1,T−∆t) · Φ(d

lag
2,T−∆t)

]

= e−η∆t · P ·
[
1 − Φ(−d1,T−∆t) · Φ(−dlag

2,T−∆t)
]

The same computation holds for equation (4.12).

A.3 Appendix A.3

The following objective function has to be minimized with respect toX1,T−2∆t:

H ≡
{
ST−2∆t ·X1,T−2∆t + e−η∆t

EP

[
ST−∆t ·X1,T−∆t + e−η∆t · ST ·X1,T |FT−2∆t

]}
.
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Computing the FOC, the following is obtained:

0 = ST−2∆t + e−η∆t
EP

[
ST−∆t ·

∂X1,T−∆t

∂X1,T−2∆t

+X1,T−∆t ·
∂ST−∆t

∂X1,T−2∆t

]

because by equation (4.7),ST = {0, P}, henceX1,T · ∂ST

∂X1,T−2∆t
= 0.

Moreover, considering the existence of a lag–effect due to the presence of asymmetric

information and assuming that

∂X1,T−(j−1)∆t

∂X1,T−j∆t

= −1,
∂X1,T−(j−k)∆t

∂X1,T−j∆t

= 0 where k ∈ [2, j] k ∈ N
+, (A.3)

it follows
∂X1,T

∂X1,T−2∆t

= 0.

The previous assumptions are introduced for the sake of tractability of the model. A

rigorous mathematical approach requires the introductionof backward-forward stochastic

differential equations (BFSDEs) in order to model the decision problem. In fact, it is not

sufficient to solve a stochastic dynamic programming problem since at each time-step(T −
j∆t) the control variable (the quantity of permits to buy or to sell) is a function of the

previous quantity of permits traded ((T − (j + h)∆t), whereh ∈ [1, T/∆t− j] h ∈ N
+)

and of the future quantity of permits that will be traded ((T − (j − k)∆t), wherek ∈
[1, j] k ∈ N

+).

Let us define:

a1 =

(
N1,T−2∆t +X1,T−∆t −

∫ T−∆t

0

Q1,sds

)
,

b
lag
2 =

(
N2,T−2∆t +X2,T−∆t −

∫ T−2∆t

0

Q2,sds

)
,



A.3. APPENDIX A.3 85

sinceX1,s = −X2,s ∀ s ∈ [0, T − 1] .

Recalling equation (4.11), we expand∂ST−∆t/∂X1,T−2∆t:

∂ST−∆t

∂X1,T−2∆t

=
∂

∂X1,T−2∆t

[
e−η∆t · P

[
1 − Φ(-d1,T−∆t) · Φ(-d

lag
2,T−∆t)

]]
(A.4)

= e−η∆t · P · φ(-d1,T−∆t) ·
∂d1,T−∆t

∂X1,T−2∆t

· Φ(-d
lag
2,T−∆t)

+e−η∆t · P · Φ(-d1,T−∆t) · φ(-d
lag
2,T−∆t) ·

∂d
lag
2,T−∆t

∂X1,T−2∆t

.

Using conditions (A.3), the following equations are obtained:

∂d1,T−∆t

∂X1,T−2∆t

=
1

σ1

√
∆t

· −1

(Q1,T−∆t · ∆t) /a1

· (Q1,T−∆t · ∆t) · (a1)
−2 · ∂a1

∂X1,T−2∆t

= 0,

∂d
lag
2,T−∆t

∂X1,T−2∆t

=
1

σ2

√
2∆t

· −1

(Q2,T−2∆t · 2∆t) /b
lag
2

·(Q2,T−2∆t · 2∆t)·(blag
2 )−2· ∂b

lag
2

∂X1,T−2∆t

= 0;

and hence ∂ST−∆t

∂X1,T−2∆t
= 0.

Combining the previous result and conditions (A.3), the spotprice of the emission

allowances at timeT − 2∆t is:

ST−2∆t = e−η∆t · EP

[
ST−∆t|FT−2∆t

]

= e−η2∆t · P ·
{

1 − EP

[
Φ(−d1,T−∆t) · Φ(−dlag

2,T−∆t)|FT−2∆t

]}
. (A.5)

Similarly, solving the minimization problem corresponding to companyi = 2, it fol-

lows:

ST−2∆t = e−η∆t · EP

[
ST−∆t|FT−2∆t

]

= e−η2∆t · P ·
{

1 − EP

[
Φ(-d2,T−∆t) · Φ(-d

lag
1,T−∆t)|FT−2∆t

]}
. (A.6)
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We generalize the proof for the time stepT − j∆t considering the following objective

function that has to be minimized with respect toX1,T−j∆t:

H ≡
{
ST−j∆t ·X1,T−j∆t + e−η∆t

EP

[
j∑

h=1

e−η(h−1)∆tST−(j−h)∆t ·X1,T−(j−k)∆t|FT−j∆t

]}
,

Computing the FOC, it follows:

ST−j∆t ·
∂X1,T−j∆t

∂X1,T−j∆t

=

−e−η∆t
EP

[
j∑

h=1

e−η(h−1)∆tST−(j−h)∆t ·
∂X1,T−(j−h)∆t

∂X1,T−j∆t

+X1,T−(j−h)∆t ·
∂ST−(j−h)∆t

∂X1,T−j∆t

|FT−j∆t

]

After some computation and using conditions (A.3) and equation (A.4), the following

equation is obtained:

ST−j∆t = e−η∆t
EP

[
ST−(j−1)∆t|FT−j∆t

]
,

hence

ST−j∆t = e−η∆t
EP

[
e−η(j−1)∆t · P ·

{
1 − EP

[
Φ(−d1,T−∆t) · Φ(−dlag

2,T−∆t)|FT−(j−1)∆t

]}
|FT−j∆t

]

= e−ηj∆t · P ·
{

1 − EP

[
Φ(−d1,T−∆t) · Φ(−dlag

2,T−∆t)|FT−j∆t

]}
.

A.4 Appendix A.4

Let us defineI = {1, 2, . . . , I} the set of relevant companies. The existence of asym-

metric information is modeled assuming that each companyi observes its accumulated
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pollution process and the accumulated (and aggregated) pollution process of theI− com-

panies with a lag, whereI− := I − i. Modeling the emission permit price in a multi-

period and multi-firm framework requires solvingI minimization problems at each time

stepk ∈ [1, 2, . . . , T/∆t]. Along the line of [12], one can approximate the cumulative pol-

lution process,QI−,t =
∑I

j=1,j 6=iQj,t, with a new geometric Brownian motion and obtain

I emission price equations as described in section 4.4:

ST−k∆t = e−ηk∆t · P ·
{

1 − EP

[
Φ(-di,T−∆t) · Φ(-d

lag
I−,T−∆t)|FT−k∆t

]}
,

where

di,T−∆t =
ln
(

Qi,T−∆t·∆t

Ni,T−2∆t+Xi,T−∆t−
�

T−∆t

0 Qi,sds

)
+
(
µi − σ2

i

2

)
· ∆t

σi ·
√

∆t
,

and

d
lag
I−,T−∆t =

ln

(
Q

I−,T−2∆t
·2∆t

N
I−,T−2∆t

+X
I−,T−∆t

−
�

T−2∆t

0 Q
I−,s

ds

)
+
(
µI− − σ2

I−

2

)
· 2∆t

σI− ·
√

2∆t
.

Using constant drift and volatility terms,{µ,σ} ∈ R
I , and relying on the standard

technique of the methods of moments, we can determine the parameters of the new approx-

imated geometric Brownian motionQI−,t,

dQI−,t

QI−,t

= µI−dt+ σI−dWI−,t
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whereWI− is a Brownian motion and

µI− =
1

t
ln

(∑I
j=1,j 6=iQj,0e

µjt

∑I
j=1,j 6=iQj,0

)
, σ2

I− =
1

t
ln



∑I

j,k=1,j,k 6=iQk,0Qj,0e
(µk+µj+ρk,jσkσj)t

(∑I
j=1Qj,0eµjt

)2


 .

Hence, we determine the equilibrium permit price solving a system ofI equations.

More precisely, we numerically evaluate the quantity of permits that satisfies the following

I − 1 equalities at each time stepk ∈ [1, 2, . . . , T/∆t]:

EP

[
Φ(-di,T−∆t) · Φ(-d

lag
I−,T−∆t)|FT−k∆t

]
= EP

[
Φ(-dj,T−∆t) · Φ(-d

lag
I−,T−∆t)|FT−k∆t

]
,

(A.7)

(for {i, j} ∈ I andi 6= j) and the market clearing condition
∑I

i=1X i,T−k∆t = 0, for a

given set of parameters ({µ,σ,Q0,N0} ∈ R
I) that characterize theI pollution processes.

A.5 Appendix A.5

An interesting finding is the comparison of the resulting permit price dynamics with a

standard geometric Brownian motion. Starting from equation(4.13) (from the point of view

of company1), we introduce the following more convenient notationH =: Φ(-d1,T−∆t) ·
Φ(-d

lag
2,T−∆t).

∆ST−(k+1)∆t

ST−(k+1)∆t

≈ 1 − EP [H|FT−k∆t] − (1 − η∆t) ·
{
1 − EP

[
H|FT−(k+1)∆t

]}

(1 − η∆t) ·
{
1 − EP

[
H|FT−(k+1)∆t

]}

≈
{
η∆t+

∆
{
1 − EP

[
H|FT−(k+1)∆t

]}

1 − EP

[
H|FT−(k+1)∆t

]
}

(1 − η∆t)−1

≈
{
η∆t+

∆ PT−(k+1)∆t

PT−(k+1)∆t

}
, (A.8)
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where∆t is infinitesimally small andPt here is the probability of shortage at timet from

the point of view of company1. Rewriting equation (A.8) for a general time instantt, it

follows:

∆St

St

≈ ∆ Pt

Pt

+ η∆t. (A.9)

Equation (A.9) describes the endogenous dynamics of the emission permit price from

the point of view of company1. A similar equation can be obtained from the point of

view of company two. We determine the equilibrium permit amount equating these two

quantities (along the lines of section 4.4) and then obtain the endogenous permit price. Not

surprisingly, an increase in the probability of shortage (∆ Pt

Pt
> 0) would lead to an increase

in the price of the emission permits. The corresponding risk-neutral dynamic is simply:

∆St

St

≈ r∆t+

(
∆ Pt

Pt

− EP

[
∆ Pt

Pt

])
. (A.10)
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