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Abstract

In the literature several parametric methods have been proposed to test the mean

variance e¢ ciency of a given portfolio. These tests serve to value the e¢ ciency only

in the case the underlying portfolios are uniquely determined by the mean and the

variance. However, the return distributions could depend on many parameters. In

addition, investors are not always risk averse and they do not necessarily follow the

classical stochastic dominance rules. In this paper we propose a class of parametric,

semi-parametric and non parametric methods to value the e¢ ciency of a given port-

folio with respect to a given ordering of preferences. Parametric and semi-parametric

tests suggest to value the distributional distance of some parameters between the

given portfolio and few other optimal portfolios. Non-parametric tests value the ef-

�ciency preference of the given portfolio with respect to all optimal portfolios. The

empirical application reveals that the Fama and French market portfolio is e¢ cient

with respect to all preference orderings while the S&P500 stock index is ine¢ cient.

Key words and phrases: Nonparametric, Stochastic Ordering, Dominance E¢ -

ciency.
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1 Introduction

The portfolio problem is essentially a choice problem among random variables. The

theory of the choice under uncertainty conditions has been manly developed under

the assumption that investors maximize their expected utility. In particular, many

studies assume that investors act as non satiable and risk averse agents and thus they

should have increasing and concave utility functions. For this reason most of the

criteria to verify the e¢ ciency of a given portfolio (see, among others, Gibbons, Ross,

and Shenken (1989)) are based on the �rst and second order stochastic dominance,

see e.g. the review papers by Kroll and Levy (1980) and Levy (1992), the classi�ed

bibliography by Mosler and Scarsini (1993), and the books by Shaked and Shanthiku-

mar (1994) and Levy (1998). Stochastic dominance theory aims at comparing random

variables in the sense of stochastic orderings expressing the common preferences of

rational decision-makers. Scaillet and Topaloglou (2008) develop consistent tests for

stochastic dominance e¢ ciency at any order for time-dependent data (see also Linton,

Post and Wang (2005)), relying on weighted Kolmogorov-Smirnov type statistics in

testing for stochastic dominance. Other stochastic dominance tests are suggested in

the literature; see e.g. Anderson (1996), Beach and Davidson (1983), Davidson and

Duclos (2000).

Another approach for portfolio selection, proposed by Markowitz, reduces the port-

folio choice to a set of two criteria, reward and risk, with possible trade-o¤ analysis.

Usually the reward�risk model is not consistent with the utility maximization ap-

proach, even when the decision is independent from the speci�c form of the risk averse

expected utility function, i.e. when one investment dominates another one by second

order stochastic dominance. Ogryczak and Ruszczynski (1997) propose semi-variance

models, where the reward�risk approach is maintained, but the choice of semi-variance

instead of variance makes the model consistent with second order stochastic domi-

nance. Moreover, Ruszczynski and Vanderbei (2003) propose mean-risk models that

are solvable by linear programming and the generated optimal portfolios are not dom-

inated in the sense of second order stochastic dominance. Other risk measures have

been proposed for portfolio selection, as for example Value-at-Risk (Jorion, 1997,

Du¢ e and Pan, 1997) or Expected-Shortfall (see Acerbi and Tasche, 2002, and Szegö

(2004)), which is consistent with second order stochastic dominance. Value-at-risk

is widely used in practice, but it is only consistent with respect to �rst order sto-

chastic dominance. P�ug (1998) considered various classes of risk measures and gave
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the general properties for these classes. Generalizing the approach of Ogryczak and

Ruszczynski (1997) he introduced expectation�dispersion risk measures and showed

that under some conditions they are consistent with stochastic dominance, but usu-

ally not coherent. De Giorgi (2005) solves a portfolio selection problem based on

reward-risk measures consistent with second order stochastic dominance. If investors

have homogeneous expectations and optimally hold reward-risk e¢ cient portfolios,

then in the absence of market frictions, the portfolio of all invested wealth, or the

market portfolio, will itself be a reward-risk e¢ cient portfolio. The market portfolio

should therefore be itself e¢ cient in the sense of second order stochastic dominance

according to that theory (see De Giorgi and Post (2005) for a rigorous derivation of

this result).

However, the investor behavior is not known, except in some obvious circumstances.

As a matter of fact, while it is obvious that investors prefer more to less, several

behavioral �nance analyses indicate that investors are neither risk preferring nor risk

averting (see Levy and Levy (2002)). Since there exist many alternative orderings

of investor preferences, we need to value the e¢ ciency with respect to any of these

orderings.

The goal of this paper is to develop and empirically compare semi-parametric, as

well as non-parametric tests for valuing the e¢ ciency of a given portfolio with re-

spect to a given ordering of preferences. We �rst propose some criteria for ordering

investors�preferences when all portfolios are uniquely determined by a �nite number

of parameters. Then, we show how to classify investors choices by the point of view

of non-satiable investors with di¤erent risk aversion preferences. Using the estima-

tion function theory (see among others, Lehmann and Casella (1998)) we describe

and discuss several semi-parametric tests for the e¢ ciency of a given portfolio with

respect to di¤erent ordering preferences. Semi-parametric tests suggest to value the

distributional distance of some parameters between the given portfolio and few other

optimal portfolios. Non-parametric tests value the e¢ ciency preference of the given

portfolio with respect to all optimal portfolios.

The paper is organized as follows. In section 2, we recall some of the most recent

classi�cation of risk and reward measures, their properties and characteristics (un-

certainty and aggressiveness), and their connection with the preference orderings. In

section 3, we discuss a semi-parametric methodology, based on the estimating function

theory, to value the e¢ ciency with respect to the �rst and the second order stochastic
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dominance order when the return distributions are uniquely determined by a �nite

number of moments. Furthermore, we classify the ordering of portfolio distributions

when these are uniquely determined by a reward measure, a deviation measure, and a

�nite number of other parameters. Thus, we extend the previous methodology to test

the e¢ ciency when we have this parametric dependence of the portfolios. In section

4, we discuss nonparametric methods to value the e¢ ciency of portfolios with respect

to behavioral orderings. Numerical implementation of the reward/risk measures with

many parameters is di¢ cult since we need to develop quadratic programming for-

mulations. Nevertheless, widely available algorithms can be used to compute these

models. In Section 5 we provide empirical illustrations. We analyze whether the

Fama and French market portfolio can be considered as e¢ cient according to the

proposed semi-parametric tests when confronted to diversi�cation principles made of

six Fama and French benchmark portfolios formed on size and book-to-market equity

ratio (Fama and French (1993)). We additionally test whether the S&P500 index

could be e¢ cient in comparison with �the best�20 assets of the S&P500. Finally we

test non parametrically the e¢ ciency of these portfolios. We give some concluding

remarks in Section 6. Proofs are gathered in an appendix.

2 Risk/reward measures and ordering derived by

their use

In portfolio theory there are used several types of risk, reward, and uncertainty mea-

sures that associate a real value to a random wealth de�ned on a probability space

(
;=; P ). The use of these measures is strictly connected with an ordering of pref-
erence. Let us recall the main classi�cation of measures and orderings and their

connection (see Szegö (2004), Ortobelli et al (2006), (2007) for a detailed review).

The strongest risk ordering applied in the �nancial literature is the strict inequal-

ity between random variables also called monotony order. Thus, the orderings de-

rived by the monotony order (i.e., X>Y implies that X is preferred to Y ) are

called risk orderings. Typical examples of risk orderings are the stochastic domi-

nance and the behavioral �nance orderings. About stochastic dominance orderings,

recall that X dominates Y with respect to � � th (� � 1) order stochastic domi-

nance (namely X �
�
Y; for some X; Y 2 L��1

�
X=E

�
jXj��1

�
< +1

	
if � > 1 and

X; Y 2 L0 = fall random variablesg if � = 1) if and only if the below inequality holds
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for every real t

F
(�)
X (t) =

1

�(�)

Z t

�1
(t� y)��1dFX(y) =

E
�
(t�X)��1+

�
�(�)

� F (�)Y (t) if �>1 and

F
(1)
X (t) := FX(t) = Pr(X � t) � F (1)Y (t) if � = 1;

where �(�) =
R +1
0

z��1e�zdz. Furthermore, we observe that for any m>n, X �
n
Y

implies X �
m
Y and if X �

�
Y then E(u(X ))�E(u(Y )) for every utility function

u2 U�

U� =
n
u(x) = c�

R +1
x+
(y � x)��1dv(y) jc; x 2 R; where

v is positive �-�nite measure
R +1
�1 jyj��1 dv(y) <1

o
:

Thus, if X �
1
Y , any von Neuman Morgestern non satiable investor (with increas-

ing utility function) prefers X to Y and if X �
2
Y then any von Neuman Morgestern

non satiable risk averse investor (with increasing and concave utility function) prefer

X to Y. Other examples of risk orderings are the dominance rules of behavioral �-

nance (see Friedman and Savage (1948), Markowitz (1952), Tversky and Kahneman

(1992), Levy and Levy (2002), Baucells and Heukamp (2006), Rachev et al. (2008)

Edwards (1996), and the references therein). With these orderings we consider non

satiable investors that are neither risk averse nor risk lover such as prospect theory

type investors (see Tversky and Kahneman (1992)) and Markowitz type investors

(see Markowitz (1952)). Prospect theory type investors are non satiable risk lovers

at lower levels of wealth and risk averse at higher levels, while Markowitz type in-

vestors are non satiable risk averse with respect to losses and are risk seeking with

respect to gains as long as the outcomes are not very extreme. Typically, given

c; d 2 supp fX;Y g, c � d we say that X dominates Y in the sense of prospect theory

( X PSD Y ) if and only if 8y 2 (�1; c]

gX(y) :=

Z d+c�y

d

FX(u)du � gY (y) and ~gX(y) :=
Z c

y

FX(u)du � ~gY (y)

if and only if 8(x; y) 2 [0; 1]� (�1; c],

gX(x; y) := xgX(y) + (1� x)~gX(y) � gY (x; y):

(see Ortobelli et al (2008) Levy and Levy (2002) and Baucells and Heukamp (2006)).

Analogously, we say that X dominates Y in the sense of Markowitz order ( X MSD
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Y ) if and only if 8y 2 (�1; c]

mX(y) :=

Z y

�1
FX(u)du � mY (y) and ~mX(y) :=

Z +1

d+c�y
FX(u)du � ~mY (y)

if and only if 8(x; y) 2 [0; 1]� (�1; c],

mX(x; y) := xmX(y) + (1� x) ~mX(y) � mY (x; y):

Instead we call uncertainty ordering any ordering that classi�es the di¤erent degree of

uncertainty of the admissible choices. Typically these orderings of preference main-

tain the same order between the random variables and their opposite, that is, X is

preferred to Y if and only if �X is preferred to -Y. Classical example of uncertainty

order is Rothschild and Stiglitz ordering also called concave order in the ordering lit-

erature (see, among others, Shaked and Shanthikumar (1993) and Müller and Stoyan

(2002)). We state that X dominates Y in the sense of Rothschild and Stiglitz ( X

R�S Y ) if and only if E(u(X ))�E(u(Y )) for every concave utility function u, if and
only if X �

2
Y and E(X )=E(Y ) if and only if X �

2
Y and �X �

2
�Y (see Rothschild

and Stiglitz (1970)). Clearly, risk, reward, and uncertainty measures are classi�ed

with respect to their properties. However, the most important property in portfolio

theory is the consistency (isotonicity) with investor�s preferences � : Recall that we
say that a measure � is consistent (isotone) with investor�s preferences �, if X�Y,
implies �(X) � �(Y ) (�(X) � �(Y )). This property serves to distinguish risk, reward,
uncertainty and aggressive measures. An uncertainty measure is a measure consis-

tent with an uncertainty ordering of preference. An aggressive measure is a measure

isotone with an uncertainty ordering of preference. Thus an aggressive measure is

the opposite of an uncertainty one. A risk (or monotone) measure is any measure

consistent with monotony order, that is �(X) � �(Y ) when X�Y. A reward measure
is the opposite of a risk measure, that is, when a risk measure is consistent with a

given ordering, then the associated reward measure (opposite of the risk measure) is

isotone with the same ordering (i.e., �(X) � �(Y ) when X�Y ). Moreover, when the

measure is either an uncertainty measure or an aggressive measure, we could have

either an uncertainty risk measure (consistent with a risk ordering and with an un-

certainty order) or an aggressive risk measure (consistent with a risk ordering and

isotone with an uncertainty order). Thus when investors minimize an uncertainty risk

measure obtain portfolios with minimum uncertainty and risk, while when investors

minimize an aggressive risk measure obtain portfolios with minimum risk and maxi-

mum uncertainty. Observe that minimizing a risk measure is equivalent to maximize
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the associated reward measure. Clearly the distinction between risk and uncertainty

orderings imply a di¤erent use of risk/reward and uncertainty/aggressive measures

to get optimal choices (see Ortobelli et al (2005)). Generally, we say that:

1) a measure � is simple (or invariant in law) if � associates the same values

�(X) = �(Y ) at random variables X and Y identically distributed;1

2) a risk measure � is translation equivariant if �(X + C )= �(X )-C for any con-

stantC (while translation equivariant reward measures satisfy the property �(X+C )=

�(X )+C ;

3) a measure � is translation invariant if �(X+C )= �(X ) for any constant C ;

4) a risk measure � is functional translation invariant2 if �(X+C )� �(X ) for any
constant C>0 (for reward measures we have the inverted inequality);

5) a measure � is positively homogeneous (either scale or scalar invariant 3) if �(0)

=0, and �(aX )=a �(X ), for all admissible random variables X and all a > 0;

6) a measure � is positive (negative) �(X ) � 0 ( �(X ) �0) for all X ;
7) a measure � is sub additive �(X + Y ) � �(X ) + �(Y ), for all X and Y

8) a measure � is super additive �(X + Y ) � �(X ) + �(Y ), for all X and Y

9) a measure � is convex �(aX+(1-a)Y ) �a �(X )+(1-a) �(Y ), for all X and Y

and a 2 [0; 1]; the opposite of a convex measure is a concave measure, (i.e.,
�(aX+(1-a)Y )�a �(X )+(1-a) �(Y ), for all X and Y );

10) a measure � satis�es the Fatou property if for any sequence fXngn2N of inte-
grable random variables that converges to the integrable random variable X with

respect to the L1 norm (namely, Xn !L1 X, i.e., E (jXn �Xj)
n!1���! 0), then

� (X) � lim inf
n!1

� (Xn).

All these properties serve to de�ne and classify di¤erent classes of measures. Ac-

cording to Artzner et al. (1999) a functional � is called coherent risk measure if it is

monotone translation equivariant, sub additive and positive homogeneous. According

1This property is in heritage from probability metric theory (see Rachev (1991)). However this

property is necessary only when we consider the consistency with a particular ordering (see Ortobelli

et al (2008)) .
2We use the Gaivoronsky and P�ug�s de�nition of translation invariance (conceptually right) to

distinguish the translation invariance in the sense of Artzner et al. (1999) that we call translation

equivariance (as suggested by Gaivoronsky and P�ug (2001)). The functional translation invariance

contains both concepts and thus it is a natural generalization of them.
3In the paper we use the alternative de�nition of scale or scalar equivariant as suggested in

Ortobelli (2001). However, as suggested by Prof Lucio Bertoli-Barsotti this property should be

de�ned as scale or scalar equivariant.
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to Föllmer, and Sheid (2002) a functional � is called convex (concave) risk measure

if it is monotone, translation equivariant, convex (concave) measure. According to

Rockafeller, Uryasev, and Zabarankin (2006) a deviation measure is as a positive, sub-

additive, positively homogeneous, translation invariant measure and an expectation-

bounded measure is any translation equivariant, subadditive, positively homogeneous

measure � that associates the value �(X )>-E(X ) with a non-constant random vari-

able X, whereas �(X )=E(X ) for constant X. These classi�cations are connected each

one with the others. In particular, convex risk measures contains the class of coherent

risk measures. Expectation-bounded measures that are monotone are also coherent

and there is a correspondence one to one between expectation-bounded measures and

deviation measures. Moreover, from Bauerle and Müller (2006) we know the links

between all the previous measures and Rothshild Stiglitz order, �rst and second order

stochastic dominance order. In particular:

a) any simple monotone measure is a risk measure consistent with �rst order sto-

chastic dominance ;

b) and any simple convex measure that satis�es the Fatou property is consistent

with Rothshild Stiglitz order.

Thus, simple deviation measures and simple expectation-bounded measures that

satisfy the Fatou property are uncertainty measures consistent with Rothshild Stiglitz

order, while all simple convex (or coherent) risk measures that satisfy the Fatou

property are uncertainty risk measure consistent with �rst, second orders stochas-

tic dominance and with Rothshild Stiglitz order. From Bauerle and Müller (2006)

we also deduce that simple concave measures that satisfy the Fatou property are

aggressive measures isotonic with Rothshild Stiglitz order. Thus all simple concave

and monotone measures that satisfy the Fatou property are aggressive risk measure

consistent with �rst order stochastic dominance and isotonic with Rothshild Stiglitz

order.

Remark 1 The above classi�cation can be seen in terms of reward measures. Thus

we call:

1) coherent reward measure v the opposite of a coherent risk measure � (i.e., v(X)=-

�(X) for all X), that is any monotone, translation equivariant, super additive and pos-

itive homogeneous measure;

2) concave reward measure v the opposite of a convex risk measure � (i.e., v(X)=-

�(X) for all X), that is any monotone, translation equivariant, concave measure;
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3) aggressive reward measure4 v the opposite of an uncertainty risk measure, that

is also equal to an aggressive risk measure � valued on the opposite of the random

variable (i.e., v(X)= �(-X) for all X);

4) uncertainty reward measure v the opposite of an aggressive risk measure, that

is also equal to an uncertainty risk measure � valued on the opposite of the random

variable (i.e., v(X)= �(-X) for all X);

5) aggressive deviation measure v the opposite of a deviation measure, that is a

negative, super additive, positively homogeneous, translation invariant measure;

6) aggressive expectation-bounded measure v the opposite of an expectation-bounded

measure, that is a translation equivariant (v(X+C)=v(X)+C), super additive, pos-

itively homogeneous measure v that associates the value v(X)<E(X) with a non-

constant random variable X, whereas v(X)=E(X) for constant X;

7) coherent expectation-bounded reward measure any aggressive expectation-bounded

measure that is isotone with monotony order.

As observed previously all these risk/reward measures are connected to classical

stochastic orderings. However, as suggested by behavioral �nance, while it is credible

that investors are non satiable they could be neither risk averse, nor risk lover. For this

reason it has sense to consider measures that are monotone, but they are not consistent

with an uncertainty/aggressive order. Typical examples are the so called aggressive

coherent reward measures c���X � d�̂X , where c, d>0 and ��X �̂X are two simple

coherent risk measures that satisfy the Fatou property (see Rachev et al (2008)).

These functionals are isotone with the monotony order, but ���X is consistent with

Rothshild Stiglitz order and ��̂X is isotone with Rothshild Stiglitz order. We refer
to Ortobelli et al (2005) and to Rachev et al (2008) for further examples of the above

measures. The largest class of measures consistent with preference orderings is the

class of FORS measures (see Ortobelli et al (2006) (2007)). We call FORS measure

induced by the order of preference � any probability functional � : � � � ! R

that is consistent with respect to the order of preferences � de�ned on the space of

real-valued random variables � (where � is a space of admissible benchmarks. The

random variables belonging to � or � are de�ned on the probability space (
;=; P )).
Therefore if X dominates Y with respect to a given order of preferences � on � (X �

4This de�nition is di¤erent from that proposed by Rachev et al. (2008) that call aggressive reward

measure the opposite of an aggressive risk measure. This di¤erence is justi�ed since we previously

de�ne as aggressive measure any measure isotone with an uncertainty order therefore it must be the

opposite of an uncertainty measure.
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Y ), this implies that �(X;Z) � �(Y; Z) for a �xed benchmark Z belonging to �. The
benchmark could not be speci�ed and in this case the functional � is de�ned from �

to R ( � : �! R). According to Bauerle and Müller�s analysis all the above measures

are particular risk/reward, uncertainty/aggressive FORS measures. Moreover, given

a class of FORS measures that identify the random variables belonging to � we

can easily generate an ordering from this measure. As a matter of fact, suppose

�X : [a;b] ! �R (where [a;b] � �Rn, a = [a1; :::; an]0;b = [b1; :::; bn]0 such that �1 �
ai < bi � +1 i=1,. . . ,n) is a bounded variation function, for every random variable

X belonging to a given class � and assume that the functional �X is simple (i.e., for

every X; Y 2 �, �X = �Y , FX = FY ). If, for any �xed � 2 [a;b], �X (�) is a FORS
risk measure induced by a risk ordering �, then, we call FORS risk orderings induced
by � the following ordering X FORS

�;1
Y i¤ �X(u) � �Y (u); 8u 2 [a;b]. In particular,

when n=1 and [a;b] � �R, we can easily de�ne a new class of orderings de�ned for

every � � 1, 8X; Y 2 �(�) =
n
X 2 �

������R ba jtj��1 d�X(t)��� <1o
X FORS

�;�
Y i¤ �X;�(u) � �Y;�(u); 8u 2 [a;b]

where �X;�(u) =

8<:
1

� (�)

R u
a
(u� t)��1d�X(t) if� > 1

�X(u) if� = 1
. We call �X the FORS risk

measure associated with the FORS ordering of random variables belonging to class �.

From the above de�nition we understand that any FORS risk measure �X : [a;b]! �R

associated with the FORS ordering is identi�ed by two properties:

a) the identity property, i.e., �X = �Y , FX = FY

b) the consistency property, i.e., any timeX is preferred to Y (X � Y ), �X � �Y .

Therefore with FORS orderings we can build orderings and probability functionals

consistent with the preferences of di¤erent investors�categories. In particular, even

the Markowitz and prospect behavioral type orderings are some particular FORS

orderings. Moreover, we can also consider many other types of behavioral orderings

for satiable investors who are neither risk averse nor risk lover. As a matter of fact,

many times we can identify an aggressive coherent risk FORS measure �X : [a;b]! �R

associated with a behavioral FORS ordering. For example, we can consider the FORS

risk ordering induced by the monotony order with the associated risk FORS measure:

�X(�; �) = dES�(X)� cES�(�X) �; � 2 [0; 1]; c; d>0 (1)
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where ES�(X) =
�1
�

R �
0
F�1X (u)du is the coherent risk measure that satis�es the

Fatou property called expected shortfall (or conditional value at risk, namely CVaR)

de�ned as function of the left inverse of cumulative distribution

F�1X (p) = inf fx : Pr(X � x) = FX(x) � pg 8p 2 [0; 1]:

Since the function �X(�; �) identify the distribution of X (even for a �xed � or �)

and it is consistent with the monotony order, this FORS measure identify a particular

behavioral ordering for non satiable investors who are neither risk averse nor risk

lover. Clearly, we can create many other examples of behavioral orderings. However,

an open question is how can we verify that a portfolio is optimal with respect to

a particular ordering of preferences. In the sections that follow we deal with this

problem considering either a non parametric methodology or assuming that portfolios

belong to a parametric family of distributions.

3 Testing parametric preference orderings

Let us consider the optimal portfolio choice problem among n+1 assets: n of those

assets are risky with gross returns Z = [Z1; :::; Zn]0 and the (n+1)th asset has risk-

free gross return Z0. When unlimited short selling is allowed, every portfolio of gross

returns is a linear combination of the constant riskless gross return Z0, and the risky

gross returns Zi i.e. x0Z0 +
nP
i=1

xiZi where (x0; x1; :::; xn) 2 <n+1. However in the
following we describe portfolio selection problems under institutional restrictions on

the market: no short sales, limited liability, i.e. x0Z � 0 where Zi =
Pi;t+1
Pi;t

> 0 and

xi � 0 8i. Under this hypothesis we can assume that the family } of all admissible
portfolios of gross returns is a scale invariant family which admits positive translations

(i.e., if X 2 } then even �X 2 };X + t 2 } for any �; t � 0).

3.1 Semi-parametric tests for stochastic orderings depending

on the �rst moments

In the literature several parametric methods have been proposed to test the mean

variance e¢ ciency of a given portfolio (see, among others, Gibbons, Ross, and Shenken

(1989)). These tests serve to value the e¢ ciency only in the case the underline

portfolios are uniquely determined by the mean and the variance. However return
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distributions could depend on more parameters. For example, let us assume that

all portfolios of gross returns belong to a scale invariant family of positive random

variables which admits positive translations and it is uniquely determined by the �rst

four moments. Suppose we have a portfolio with vector weights, mean, standard

deviation, skewness and kurtosis respectively given by xp = [xp1; :::; x
p
n]
0, mp; �p; s; k

then as proved by Ortobelli (2001) all non-satiable investors will prefer the portfolios

solution of the following optimization problems

Problem (1) max
x
x0Qx subject to

x0E(Z)p
x0Qx

� mp

�p
; x0e = 1; xi � 0; i = 1; ::; n

E((x0Z�E(x0Z))3)
(x0Qx)3=2

= s;
E((x0Z�E(x0Z))4)

(x0Qx)2
= k

Problem (2) max
x

x0E(Z)p
x0Qx

subject to
p
x0Qx � �p; x0e = 1;xi � 0; i = 1; ::; n

E((x0Z�E(x0Z))3)
(x0Qx)3=2

= s;
E((x0Z�E(x0Z))4)

(x0Qx)2
= k

(2)

where Q is the variance covariance matrix of the n assets. Similarly, all non-satiable

risk averse investors will prefer the portfolios solution of the following optimization

problem

Problem (3) max
x
E(x0Z) subject to

x0E(Z)p
x0Qx

� mp

�p
; x0e = 1; xi � 0; i = 1; ::; n

E((x0Z�E(x0Z))3)
(x0Qx)3=2

= s;
E((x0Z�E(x0Z))4)

(x0Qx)2
= k

Problem (4) max
x

x0E(Z)p
x0Qx

subject to

E(x0Z) � mp; x
0e = 1; xi � 0; i = 1; ::; n

E((x0Z�E(x0Z))3)
(x0Qx)3=2

= s;
E((x0Z�E(x0Z))4)

(x0Qx)2
= k

(3)

Let x(1) = [x
(1)
1 ; :::; x

(1)
n ]0, m1; �1, x(2), m2; �2, x(3), m3; �3, and x(4), m4; �4 be the

vector of weights, the mean and the standard deviation respectively of the portfolio

solutions of the above problems. Thus, theoretically non satiable investors prefer the

portfolio with mean, standard deviation, skewness and kurtosis mi; �i; s; k, i=1,2, to

the portfolio with parameters mp; �p; s; k. Similarly non-satiable risk averse investors

prefer the portfolio with parameters mi; �i; s; k, i=3,4, respect to portfolio with pa-

rameters mp; �p; s; k. In order to test the �rst (second) order stochastic dominance

e¢ ciency of the portfolio with parameters mp; �p; s; k we consider the null hypothesis

H0 that the portfolio with parameters mp; �p; s; k is �rst (second) order stochastic

dominance e¢ cient (non dominated) against the hypothesis H1 that portfolio with

parameters mi; �i; s; k, i=1,2, ( mi; �i; s; k, i=3,4) �rst (second) order stochastically

dominates it. In the recent literature have been proposed several tests based on the

Kolmogorov Smirnov statistic to compare stochastic ordering preferences (see, among

others, Scaillet and Topaloglou (2008)). Alternatively, we discuss a semi parametric

statistic obtained by estimating functions theory (see Lehmann and Casella (1998)).
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Then, suppose that R = (R1; :::; RT ) is a random vector on a probability space and the

distribution family of this vector is parameterized by � = (�1; :::; �p). An estimating

function h(Rs; �) is called unbiased if E(h(R; �)) = 0 for all admissible �. Generally,

the number of EFs is set equal to the number of parameters �k (k=1,. . . ,p) considering

the linear combinations l�;k =
TP
s=1

nP
i=1

ak;i;shi(Rs; �) k=1,. . . ,p of unbiased Efs hi(R; �)

(i=1,. . . ,n). The unbiased estimating functions hi(R; �) are also mutually orthogo-

nal, i.e., for every i 6= j; i,j=1,. . . ,n, E(hi(R; �)hj(R; �)) = 0. In particular, among

all the linear combination l�;k =
TP
s=1

nP
i=1

ak;i;shi(Rs; �) of unbiased mutually orthogo-

nal estimating functions the functions l��;k =
TP
s=1

nP
i=1

E
�
@hi(Rs;�)
@�k

�
E(h2i (Rs; �))

hi(Rs; �) k=1,. . . ,p

are optimal estimating functions. Then, an estimate �̂ of � is obtained by solving

the system of estimating equations l��;k = 0; k=1,. . . ,p. According to the estimating

function theory the optimal Efs obtained as consistent solution of equations l��;k = 0;

after orthogonalization, standardization and optimal combination have the property
p
T
�
�̂ � �

�
!MVN(0; V �1EF )

where VEF = [vi;j]i;j=1;:::;p and vi;j = E(
@l��;i
@�j
) i,j=1,...,p. In estimating function theory

the estimators are implicitly de�ned. On the other hand not all the solutions of esti-

mating equations can be considered optimal estimators. Thus, using some convergent

methods to compute the roots of equations it is important to start by an approximate

solution to get optimal estimates (see Crowder (1986)). However, in some cases we

can easily obtain optimal solutions. Typical examples of optimal estimating func-

tions are those proposed by Godambe and Thompson (1989) based on the �rst four

central moments of a given statistic. In Godambe and Thompson�s model we have

two unbiased and mutually orthogonal estimating functions:

h1(Rt; �) = f(Rt)�m(�)

and

h2(Rt; �) = (f(Rt)�m(�))2 � �2(�)� s(�)�(�) (f(Rt)�m(�))

where f is a measurable real function E(f(Rt)) = m(�), E
�
(f(Rt)�m(�))2

�
= �2(�),

and s(�) =
E
�
(f(Rt)�m(�))3

�
�3(�)

. Therefore the optimal estimating functions are

given by

l��;k =

TX
s=1

(ak;1;sh1(Rs; �) + ak;2;sh2(Rs; �))

12



where ak;i;s =
E
�
@hi(Rs;�)
@�k

�
E(h2i (Rs; �))

i=1,2, k=1,. . . ,p. We call this class of estimating func-

tions GT estimating functions. Under regularity assumptions the following proposi-

tion determines the class of consistent solutions of m(�) root of equations l��;k = 0.

Proposition 1. Suppose we have a sample R = (R1; :::; RT ) of i.i.d. observations.

The consistent estimates of m(�) of GT estimating equations l��;k = 0 are given by the

values �̂k solutions of the equations for k=1,...,p,:

bm(�) =
8>>>>><>>>>>:

1

T

TP
t=1

f (Rt) + ck �
 
c2k �

1

T

TP
t=1

�
f (Rt)�

1

T

TP
t=1

f (Rt)

�2
+ �2(�)

!1=2
if ck > 0

1

T

TP
t=1

f (Rt) + ck +

 
c2k �

1

T

TP
t=1

�
f (Rt)�

1

T

TP
t=1

f (Rt)

�2
+ �2(�)

!1=2
if ck � 0

where ck =
ak;1 � ak;2s(�)�(�)

2ak;2
, ak;1 =

E
�
@h1(Rs;�)

@�k

�
E(h21(Rs; �))

and ak;2 =
E
�
@h2(Rs;�)

@�k

�
E(h22(Rs; �))

. More-

over, we get optimal GT estimates of �̂k as solutions of the above equations when the

regularity conditions of implicit function theorem are satis�ed and we can determine

the estimates in all the domain of its de�nition.

The solutions of GT estimating functions de�ned in the above proposition could

serve to identify quickly the optimal estimators. In our context, the above equations

permits us to de�ne optimal estimators. As a matter of fact, let us suppose we have

the historical observations R = (R1; :::; RT ) of a portfolio with parameters m;�; s =
E((R�E(R))3)
E((R�E(R))2)

3=2 , k =
E((R�E(R))4)
E((R�E(R))2)

2 . Then we can consider the following GT estimating

functions

lm =

TX
t=1

(a1;th1(Rt;m; �) + b1;th2(Rt;m; �))

l� =
TX
t=1

b2;th2(Rt;m; �)

where h1(Rt;m; �) = Rt �m, h2(Rt;m; �) = (Rt �m)2 � �2 � s� (Rt �m) ; a1;t =
E
�
@h1(R;m;�)

@m

�
E(h21(R;m;�))

= � 1
�2
; b1;t =

E
�
@h2(R;m;�)

@m

�
E(h22(R;m;�))

= s
�3(k�1�s2) , a2;t =

E
�
@h1(R;m;�)

@�

�
E(h21(R;m;�))

= 0, b2;t =
E
�
@h2(R;m;�)

@�

�
E(h22(R;m;�))

= �2
�3(k�1�s2) : By equaling to zero the function lm we get the consistent
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estimating function of the mean

m̂ =

8>>><>>>:
�R� (k�1)�

2s
+ 1

2

��
(k�1)�
s

�2
� 4

�
1

T

TP
t=1

�
Rt � �R

�2 � �2��1=2 if s > 0
�R� (k�1)�

2s
� 1

2

��
(k�1)�
s

�2
� 4

�
1

T

TP
t=1

�
Rt � �R

�2 � �2��1=2 if s < 0 (4)

where �R =
1

T

TP
t=1

Rt. By equaling to zero the function l� we get the consistent

estimating function of the standard deviation

�̂ =

8>>><>>>:
s

2

�
�R�m

�
� 1

2

�
s2
�
�R�m

�2
+
4

T

TP
t=1

(Rt �m)2
�1=2

if s > 0

s

2

�
�R�m

�
+ 1

2

�
s2
�
�R�m

�2
+
4

T

TP
t=1

(Rt �m)2
�1=2

if s < 0

However, imposing the vector (lm; l�) equal to zero we get the joint estimates of

the mean and of the standard deviation that are respectively the sample mean

�R = m̂ =
1

T

TP
t=1

Rt and the sample standard deviation �̂ =
�
1

T

TP
t=1

�
Rt � �R

�2�1=2
.

The estimates

 
1p
T

TP
t=1

Rt;

�
TP
t=1

�
Rt � �R

�2�1=2!0
must converge in distribution to a

bivariate Gaussian vector with mean
�
m
p
T ; �

p
T
�0
and variance covariance matrix

given by V �1 where V = [vi;j] i,j=1,2 v1;1 = E
�
@lm
@m

�
= k�1

�2(k�1�s2) ; v1;2 = v2;1 =

E
�
@lm
@�

�
= �2s

�2(k�1�s2) ; v2;2 = E
�
@l�
@�

�
= 4

�2(k�1�s2) , that is V
�1 =

�2

4

"
4 2s

2s k � 1

#
.

When the portfolio with weights xp is not dominated the above optimization prob-

lems should give as solution the portfolio xp. The null hypothesis ( H i
0 i=1,2) is that

the portfolio xp is not �rst order dominated from the i-th portfolio. A simple test for

�rst order e¢ ciency should based on the decision rule

Reject H i
0 if

( p
T (m̂i � m̂p) � ci1;�p
T (�̂i � �̂p) � ci2;�

for i = 1; 2; (5)

where m̂i; m̂p and �̂i; �̂p are respectively the sample means and the sample standard

deviations of portfolios with weights x(i); xp. Similarly, if portfolio xp is not �rst order

dominated, then the null hypothesis H i
0 i=3,4 is that the portfolio with weights x

p is

not second order dominated from the i-th portfolio (i=3,4). Then a simple test for

second order e¢ ciency should based on the decision rule

Reject H i
0 if

( p
T (m̂i � m̂p) � ci1;�p
T (�̂i � �̂p) � ci2;�

for i = 3; 4; (6)
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As con�rmed by the following proposition the intuitive ideas of the above tests are

justi�ed by a theoretical point of view.

Proposition 2. When the portfolios are uniquely determined by the �rst four mo-

ments we can guarantee that there exist opportune values cij;� (see the appendix),

i=1,2,3,4, j=1,2, such that

lim
T!1

P
�
reject H i

0

�� H i
0 is true

�
� � and lim

T!1
P
�
reject H i

0

�� H i
0 is false

�
= 1:

Using estimating function theory we can also value the e¢ ciency when we use

di¤erent reward, risk measures. However, in these cases we need to know the ordering

of portfolio distributions with respect to the new parameters. In particular we can

generalize some results proved by Ortobelli (2001).

3.2 Stochastic orderings depending on reward and risk mea-

sures

Under institutional restrictions on the market we can assume that the portfolios of

gross returns are positive random variables belonging to scale family, denoted with

��+k (�a), that admits positive translations and it has the following characteristics
5 mX

is a positive, positive homogeneous reward measure consistent with monotone order

that satis�es the relation mX+t = mX + t for every real t � 0.:
1. Every distribution FX belonging to ��+k (�a) is associated to a positive random

variable X and is identi�ed by k parameters (mX ; �X ; a1;X :::; ak�2;X) 2 A � Rk,

where mX and �X are respectively a simple positive reward measure isotone with the

monotony order (i.e., X � Y implies mX � mY ), and a positive scale parameter

associated to the random variable X. We assume that the class ��+k (�a) is weakly de-

termined from its parameterization. That is, the equality (mX ; �X ; a1;X :::; ak�2;X) =

(mY ; �Y ; a1;Y :::; ak�2;Y ) implies that FX
d
= FY , but the converse is not necessarily true

6.

2. For every admissible real t � 0 and for every FX 2 ��+k (�a), the distribution
function FX has the same parameters of the distribution FX+t 2 ��+k (�a), except the

5In this classi�cation we consider reward measures instead of the mean and this represents the

main di¤erence with the classi�cation proposed by Ortobelli (2001).
6We use the same notation of Ortobelli (2001). However in all the examples dealt in the paper

we use only distribution families uniquely determined from the parameters.
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reward measure and the scale parameter. In particular, the reward measure is trans-

lation equivariant (i.e., mX+t = mX + t for every real t � 0) and the application

fX(t) = �X+t is a non increasing continuous function.

3. For every admissible positive � and for every FX 2 ��+k (�a), the distribution
function FX has the same parameters of the distribution F�X except the reward mea-

sure and the scale parameter which are positive homogeneous, i.e., m�X = �mX and

��X = ��X .

Remark 2 Observe that for any positive random variable a reward measure isotone

with the monotony order is positive. In particular, any coherent reward measure and

any aggressive-coherent reward measure applied to random variables belonging to a

��+k (�a) is consistent with monotony order, positive, positive homogenous and trans-

lation equivariant (see Rachev et al. 2008).

Remark 3 Requiring that all the other parameters except the reward and risk mea-

sures must be translation and scale invariant is not a very strong assumption. As a

matter of fact, as observed by Ortobelli 2001, we can always assume that the family

depends on some given parameters and then we can �nd another parametrization of

the family that satis�es the above conditions. Typical example is the case of portfolios

depending on a �nite number of moments (see Ortobelli 2001).

When portfolios belong to a ��+k (�a) class, we can identify stochastic dominance rela-

tions among portfolios.

Theorem 1 Assume all random admissible portfolios of gross returns belonging to a

��+k (�a) class. Let w
0Z and y0Z be a couple of portfolios respectively determined by

the parameters (mw0Z ; �w0Z ; a1;p; :::; ak�2;p) and (my0Z ; �y0Z ; a1;p; :::; ak�2;p). Then, the

following implications hold:

1. mw0Z
�w0Z

� my0Z
�y0Z

and �w0Z � �y0Z (with at least one inequality strict) implies

w0Z FSD y0Z.

2. Suppose
mw0Z

�w0Z
=
my0Z

�y0Z
. Then �w0Z > �y0Z if and only if w0ZFSDy0Z

3. w0Z FSD y0Z implies that mw0Z � my0Z and w0ZFORS�
y0Z for any simple

FORS risky ordering.

From the previous theorem we deduce that most of the results relative to the �rst

order stochastic dominance proposed in the Ortobelli�s classi�cation are still valid

when we consider reward measures di¤erent from the mean. Thus, as follows by
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the next example we can easily �nd optimal portfolios assuming that the portfolio

depends on a reward measure and �nite number of parameters.

Example 1 Let us assume that all portfolios of gross returns belong to a scale

invariant family of positive random variables ��+4 (�a)which is uniquely determined by

parameters (mX ; �X ; a1;X ; a2;X). Suppose we have a portfolio with vector weights, and

parameters respectively given by xp = [xp1; :::; x
p
n]
0, mp; �p; s; k then all non-satiable

investors will prefer the portfolios solution of the following optimization problems

max
x
�x0Z subject to

mx0Z

�x0Z
� mp

�p
; x0e = 1; a1;x0Z = s;

a2;x0Z = k; xi � 0; i = 1; ::; n

max
x

mx0Z

�x0Z
subject to

�x0Z � �p; x0e = 1; a1;x0Z = s;
a2;x0Z = k; xi � 0; i = 1; ::; n

(7)

However in the previous analysis we do not analyze the relations of di¤erent reward

measures.

Proposition 3. Suppose the two parametric family ��+2 (�a) admits two possible pa-

rameterizations (m1;X ; �X) and (m2;X ; �X) with the same translation invariant scale

parameter (i.e. �X+t = �X for any real t). Then for any random variable X belonging

to ��+2 (�a) we have that (m1;X � m2;X)=�X is a constant. That is, if there exist a

random variable X 2 ��+2 (�a) such that m1;X > m2;X then m1;Y > m2;Y 8Y 2 ��+2 (�a).

The same proposition is substantially valid for scale and translation invariant fam-

ilies ��2(�a) of (non necessarily positive) random variables. Moreover considering that

it is theoretically indi¤erent using one or any other existing translation invariant scale

parameter for a ��2(�u) (or ��+2 (�a)) class. Then the above proposition tells us that

the ranking among di¤erent portfolios given by the ratio between any reward measure

and a deviation measure is practically the same if we assume that all portfolios are

uniquely determined by two parameters. Observe that when we �x all parameters

except the reward measure and the scale parameter of a given ��+k (�a) family, we

obtain a particular ��+2 (�a) class. Therefore, every ��
+
k (�a) class weakly determined

by the parameters (m;�; y) (where m is a reward measure, � is the scale parameter

and y 2 B � Rk�2 is the vector of the other parameters) can be seen as the union of
��+2 (m;�; �y) =: V (�y) families (i.e., ��

+
k (�a) =

[
�y2B
V (�y)). Therefore, the above propo-

sition can be applied to the respective components of the union. However, we cannot

guarantee that the constant ratio between the di¤erence of two admissible reward

measures and the dispersion measure of the same component V (�y) remains equal for
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every other component of the union (i.e. it is not necessarily true that the ratio

remains constant for all the distributions of the family ��+k (�a)). In fact, it could be

that di¤erent ranking measures penalize the asymmetry or the kurtosis parameters

in a di¤erent way. The above Proposition can be used even to prove second order

stochastic relations using reward measures di¤erent from the mean.

Theorem 2 Assume that all random admissible portfolios of gross returns belonging

to a ��+k (�a) class. The family ��
+
k (�a) admits two possible parameterizations with

the same parameter except the reward measure. Assume that the scale parameter is

translation invariant (i.e., �X+t = �X for any real t) and the mean is one of the two

possible reward measures. Let w0Z and y0Z be a couple of portfolios respectively de-

termined by the parameters (mw0Z ; �w0Z ; a1;p; :::; ak�2;p) and (my0Z ; �y0Z ; a1;p; :::; ak�2;p)

(or (E(w0Z); �w0Z ; a1;p; :::; ak�2;p) and (E(y0Z); �y0Z ; a1;p; :::; ak�2;p)). Then, we distin-

guish two cases.

1) Suppose mw0Z > E(w0Z) (or equivalently my0Z > E(y0Z)), then the following

implications hold:

1a) mw0Z
�w0Z

� my0Z
�y0Z

and mw0Z � my0Z (with at least one inequality strict) implies

w0Z SSD y0Z.

1b) mw0Z � my0Z and �w0Z � �y0Z (with at least one inequality strict) implies

w0Z SSD y0Z.

1c) w0Z SSD y0Z and E(w0Z) = E(y0Z) (i.e. w0ZR� S y0Z) implies mw0Z < my0Z

and �w0Z < �y0Z.

2) Suppose mw0Z < E(w0Z) (or equivalently my0Z < E(y0Z)), then the following

implications hold:

2a) w0Z SSD y0Z implies mw0Z � my0Z.

2b) w0Z SSD y0Z but w0Z does not dominates at �rst order y0Z (this assumption

includes the case w0ZR� S y0Z) implies mw0Z � my0Z and �w0Z < �y0Z.

The previous theorem classi�es reward measures with respect to the consistency

with second order stochastic dominance and Rothshild Stiglitz uncertainty order:

1) those bigger than the mean are consistent with Rothshild Stiglitz uncertainty

order;
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2) those smaller than the mean are isotonic with second stochastic order and

Rothshild Stiglitz order.

Therefore, when the aggressive-coherent reward measures maintaining their value

bigger than the mean and performance ratio bigger than a �xed one we �nd port-

folios that cannot be dominated by non satiable risk lover investors (investors with

increasing and convex utility function). This portfolio is SSD dominant, but it could

be further dominated at the second order by portfolios that have the same mean and

lower dispersion. While if we maximize aggressive-coherent reward measures main-

taining their value lower than the mean, we get portfolios that are not SSD dominated.

Moreover, in all cases, maximizing uncertainty or coherent or aggressive-coherent re-

ward measures we get portfolios that are not FSD dominated.

Example 2 Let us assume that all portfolios of gross returns belong to a scale

invariant family of positive random variables ��+4 (�a) which is uniquely determined

by parameters (mX ; �X ; a1;X ; a2;X). Suppose we have a portfolio with vector weights,

and parameters respectively given by xp = [xp1; :::; x
p
n]
0, mp; �p; s; k. Assume that the

dispersion parameter �X is translation invariant (i.e., �X+t = �X for any real t). If

mp > E
�
(xp)

0
Z
�
then mX > E (X) for any portfolio X with the same parameters

s; k and all non-satiable risk averse investors will prefer the portfolios solution of the

following optimization problem

max
x

mx0Z subject to
mx0Z

�x0Z
� mp

�p
; x0e = 1; a1;x0Z = s;

a2;x0Z = k; xi � 0; i = 1; ::; n

max
x

mx0Z

�x0Z
subject to

mx0Z � mp; x
0e = 1; a1;x0Z = s;

a2;x0Z = k; xi � 0; i = 1; ::; n

(8)

The solution of these problems give us:

a) dominating portfolios w.r.t. SSD order if mp > E
�
(xp)

0
Z
�
. However it could

exist a portfolio that is still preferred to the solution by all non-satiable risk averse

investors, but certainly it does not exist a portfolio that is preferred by all non satiable

risk lover investors.

b) non-dominated portfolios w.r.t. SSD order among those portfolios with the

same parameters s; k, if mp � E
�
(xp)

0
Z
�
.

Moreover, for all the solutions of optimization problems (7) and (8) we get non

dominated FSD portfolios (among those portfolios with the same parameters s; k).

About risk FORS orderings we can determine the following results.

Theorem 3 Assume �X is a FORS risk measure associated to a FORS ordering

de�ned on the real interval [a,b]. Then, for any � > 1 the following implications
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hold:

1) If �X(t) � �Y (t) for every t � t0 2 (a; b) and �X(t) � �Y (t) for t � t0 2 (a; b)
and the inequalities are strict for some t, then �1 < lim

x!b
�X;�(x)��Y;�(x) � 0 if and

only if XFORS
�;�

Y .

2) Assume all random admissible portfolios of gross returns belong to a ��+k (�a) class

where the translation parameter is mY = �
�(�)

(b� a)��Y;�(b) for � > 1 and jaj ; jbj <
1. Suppose �X is a monotone decreasing FORS risk measure that is negative, positive
homogeneous and translation equivariant for the random variables belonging to ��+k (�a)

( i.e., �cX+d = c�X � d8c; d 2 R+, 8X 2 ��+k (�a)). Let w0Z and y0Z be a couple of

portfolios respectively determined by the parameters (mw0Z ; �w0Z ; a1;p; :::; ak�2;p) and

(my0Z ; �y0Z ; a1;p; :::; ak�2;p). Then,
mw0Z
�w0Z

� my0Z
�y0Z

and mw0Z > my0Z (with at least one

inequality strict) implies w0ZFORS
�;�

y0Z, while w0ZFORS
�;�

y0Z implies mw0Z � my0Z.

The above theorem suggests a methodology to �nd optimal FORS portfolios for

any � > 1.

Example 3 Assume as FORS ordering the � ( � > 1) bounded inverse stochastic

dominance order, i.e., X dominates Y in the sense of the � inverse stochastic domi-

nance order (namely X >
��
Y ), if and only if �X;�(p) = �F (��)X (p) � �F (��)Y (p)8p 2

[0; 1] (see Ortobelli et al. (2008)) where F (�1)X (p) = F�1X (p) 8p 2 [0; 1]

F
(��)
X (p) =

1

�(�)

Z p

0

(p�u)��1dF (�1)X (u) =
1

�(�� 1)

Z p

0

(p�u)��2F (�1)X (u)du 8p 2 [0; 1]:

Assume that all random admissible portfolios of gross returns belong to a ��+k (�a)

class where the translation parameter is mX = (� � 1)
R 1
0
(1 � u)��2F

(�1)
X (u)du

for � > 1. �X = �F (�1)X is a monotone decreasing FORS risk measure that is

negative, positive homogeneous and translation equivariant for any positive ran-

dom variable. Suppose we have a portfolio with parameters (mp; �p; a1;p; :::; ak�2;p):

Then all non-satiable investors with � inverse stochastic dominance preference will

prefer the portfolios solutions of the following optimization problems (8), where

mw0Z = (� � 1)
R 1
0
(1 � u)��2F�1w0Z(u)du can be approximated considering the consis-

tent estimator (for i.i.d. observations) m̂X =
(�� 1)
N

NP
i=1

�
N � i
N

���2
Xi:N , and Xi:N

is the i-th ordered observation. In particular, when �=2, we get mX = E(X) and

the solutions of problems (8) are optimal for non satiable risk averse investors (as a

matter of fact X >
�2
Y i¤X SSD Y ).

20



3.3 Semi-parametric tests for orderings depending on reward

and risk measures

Next, we discuss semi-parametric tests for the stochastic dominance in the case we

use di¤erent reward and risk measures as in the previous examples. Thus, let us

assume that all portfolios of gross returns belong to a scale invariant family of positive

continuous random variables ��+4 (�a) which is uniquely determined by parameters

(mX ; �X ; a1;X ; a2;X). In particular, we assume the aggressive-coherent reward measure

mX = ES�(�X)� ES�(X) = E
�
I[X�t�(X)]X

(1� �) +
I[X�t�(X)]X

�

�
(9)

with t�(X) = F�1X (�), � < � and the parameters

�X = E

 �
I[X�t�(X)]X

(1� �) +
I[X�t�(X)]X

�
�mX

�2!0:5
;

a1;X =

E

 �
I[X�t�(X)]X

(1� �) +
I[X�t�(X)]X

�
�mX

�3!
�3X

and

a2;X =

E

 �
I[X�t�(X)]X

(1� �) +
I[X�t�(X)]X

�
�mX

�4!
�4X

:

where I[X2A] =

(
1 if X 2 A
0 otherwise

: Suppose we haveT observations of the vector of gross

returns, then we can assume � =
q

T
; � =

r

T
with q; r 2 N and q < r < T such that the

�; � percentiles are respectively the q-th and r-th ordered observations, i.e., t�(X) =

Xq:T and t�(X) = Xr:T . Hence, given a portfolio of gross returns with vector weights,

and parameters respectively given by xp = [xp1; :::; x
p
n]
0, mp; �p; s; k, (here s = a1;(xp)0Z ;

k = a2;(xp)0Z) we can propose an estimating function test to verify the e¢ ciency of

the portfolio. Let x(1) = [x(1)1 ; :::; x
(1)
n ]0, m1; �1, x(2), m2; �2, be the vector of weights,

the reward measures and the dispersions of the portfolios respectively solutions of

problems (7). In particular we know from the previous subsection that all non-

satiable investors with the behavioral �nance ordering (1) will prefer the portfolios

with parameters mi; �i; s; k, i=1,2, to the portfolio with parameters mp; �p; s; k of the

optimization problems (7). Consider the historical observations R = (R1; :::; RT ) of
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the portfolio. As for the moments estimators, we can consider the following estimating

function statistics

lm =
TX
t=1

(a1;th1(Rt;m; �) + b1;th2(Rt;m; �))

l� =
TX
t=1

b2;th2(Rt;m; �)

where

h1(Rt;m; �) =
I[Rt�t�(Rt)]Rt

(1� �) +
I[Rt�t�(Rt)]Rt

�
�mR;

h2(Rt;m; �) =

�
I[Rt�t�(Rt)]Rt

(1� �) +
I[Rt�t�(Rt)]Rt

�
�mR

�2
� �2R+

� s�R
�
I[Rt�t�(Rt)]Rt

(1� �) +
I[Rt�t�(Rt)]Rt

�
�mR

�
;

a1;t =
E
�
@h1(R;m;�)

@m

�
E(h21(R;m;�))

= � 1
�2R
; b1;t =

E
�
@h2(R;m;�)

@m

�
E(h22(R;m;�))

= s
�2R(k�1�s2)

, a2;t =
E
�
@h1(R;m;�)

@�

�
E(h21(R;m;�))

= 0,

b2;t =
E
�
@h2(R;m;�)

@�

�
E(h22(R;m;�))

= �2
�2R(k�1�s2)

: By equaling to zero the functions lm and l� we

get the estimating functions of the aggressive-coherent reward measure ES�(�X)�
ES�(X) and its standard deviation. The estimating functions formulas are the same

of the previous subsection (formula (4) and subsequent), where instead of Rt there is�
I[Rt�t�(Rt)]Rt

(1� �) +
I[Rt�t�(Rt)]Rt

�

�
. Thus by setting equal to zero the vector (lm; l�) we

get the joint estimates:

�R = m̂ =
1

T

TX
t=1

�
I[Rt�t�(Rt)]Rt

(1� �) +
I[Rt�t�(Rt)]Rt

�

�
and

�� = �̂ =

 
1

T

TX
t=1

�
I[Rt�t�(Rt)]Rt

(1� �) +
I[Rt�t�(Rt)]Rt

�
� �R

�2!1=2
:

The estimates
p
T
�
�R�mR; �� � �R

�0
converge in distribution to a bivariate Gaussian

vector with null mean and variance covariance matrix given by V �1 =
�2

4

"
4 2s

2s k � 1

#
.

According to the previous analysis, when the portfolio with weights xp is not domi-

nated a simple test for �rst order stochastic dominance and behavioral �nance order-

ing (1) should based on the decision rule

Reject H i
0 if

( p
T (m̂i � m̂p) � ci1;�p
T (�̂i � �̂p) � ci2;�

for i = 1; 2: (10)
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As for the moment case, when the i-th portfolio has the same distribution of portfolio

with weights xp and we assume that all its parameters are known (i.e., m̂p = mp =

mi; �̂p = �p = �i) we can choose (ci1;�; c
i
2;�) 2 R2+ such that

1

��2p
p
k � 1� s2

Z +1

ci1;�

Z +1

ci2;�

e

� (k � 1)
2(k � 1� s2)

24x2
�2p

�
4sxy

�2p (k � 1)
+

4y2

�2p (k � 1)

35
dxdy = �

Clearly, in this case the parameters have a di¤erent interpretation. Moreover, using

the example 3, we can propose tests to value the e¢ ciency with respect to an �

( � > 1) inverse stochastic dominance order. Thus, assume all random admissible

portfolios of gross returns belong to a ��+4 (�a) class where the parameters are:

mX = (�� 1)E
�
X(1� FX(X))��2

�
;

�X =
�
(�� 1)2E

�
X2(1� FX(X))2��4

�
�m2

X

�0:5
a1;X =

E
�
((�� 1)X(1� FX(X))��2 �mX)

3
�

�3X

and

a2;X =
E
�
((�� 1)X(1� FX(X))��2 �mX)

4
�

�4X
:

and suppose we have a portfolio with parameters (mp; �p; s; k) (where s = a1;(xp)0Z ;

k = a2;(xp)0Z). In particular, we can assume that the distribution function FR is

the empirical one, i.e., FR(x) =
1

T

TP
t=1

I[Rt�x]. Then all non-satiable investors with

� inverse stochastic dominance preference will prefer the portfolios solutions of the

following optimization problems. Let x(1) = [x
(1)
1 ; :::; x

(1)
n ]0, m1; �1, x(2), m2; �2, be

the vector of weights, the reward measures and the dispersions of the portfolios re-

spectively solutions of problems (8). So when we propose the estimating function

estimators imposing the vector (lm; l�) equal to zero we get the joint estimates:

�R = m̂ =
(�� 1)
T

TX
i=1

�
T � i
T

���2
Ri:T ;

and

�� = �̂ =

0@ 1
T

TX
t=1

 
(�� 1)

�
T � t
T

���2
Rt:T � �R

!21A1=2

:
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When the portfolio with weights xp is not dominated a simple test for � inverse

stochastic dominance e¢ ciency should based on the decision rule

Reject H i
0 if

( p
T (m̂i � m̂p) � ci1;�p
T (�̂i � �̂p) � ci2;�

for i = 1; 2;

These examples have shown how to use estimating function theory to test preference

orderings when we assume that portfolios are uniquely determined by a �nite num-

ber of parameters. Next we will discuss non parametric tests for behavioral �nance

orderings.

4 Non parametric tests for behavioral �nance or-

derings

Let us consider a FORS risk measure �X : [a;b] ! �R (where [a;b] � �Rn) associ-

ated to a FORS behavioral ordering of portfolios X belonging to a class of admissible

portfolios. Assume that 8u 2 [a;b] �X(u) = E(f(X; u)) for a given measurable

function f : R � [a;b] ! R such that sup
X2�;u2[a;b]

E(f 2(X; u)) < +1. Then we

know that given a sample (Z1; :::; ZT ) of i.i.d. return vectors the empirical estima-

tor �̂x0Z(u) =
1

T

TP
i=1

f(x0Zi; u) converges to the mean E(f(x0Z; u)) and from central

limit theorem follows that
p
T (�̂x0Z(u)� �x0Z(u)) converge to a Gaussian random

variable with null mean and variance E(f 2(x0Z; u)) � (�x0Z(u))2 for any u 2 [a;b]
and for any admissible portfolio x0Z. Now suppose we have a portfolio with vector

weights xp = [xp1; :::; x
p
n]
0. According to our previous de�nition the portfolio (xp)0Z

dominates in the sense of the FORS ordering another admissible portfolio y0Z (i.e.,

(xp)0ZFORS
�;1

y0Z) if and only if �(xp)0Z(u) � �y0Z(u) 8u 2 [a;b]. Thus, we assume
that the null hypothesis H0; �(xp)0Z(u) � �y0Z(u) 8u 2 [a;b] and for any portfolio
y0Z. So, similarly to stochastic dominance tests suggested by Scailet and Topaloglu,

a nonparametric test for FORS order e¢ ciency should based on the following decision

rule for some positive c�

reject H0 if Ŝ� =
p
T sup

u2[a;b];y:
nP
i=1

yi=1;yi�0

�
�̂(xp)0Z(u)� �̂y0Z(u)

�
� c� (11)

where � =
�
y 2 Rn

����yi � 0; nP
i=1

yi = 1

�
. Let u� 2 [a;b] and y� 2 � such that Ŝ� =

Ŝ�� :=
p
T
�
�̂(xp)0Z(u

�)� �̂(y�)0Z(u�)
�
. Then under the H0 hypothesis, we have that
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�
�(xp)0Z(u

�)� �(y�)0Z(u�)
�
� 0 and

Ŝ� = Ŝ
�
� �

p
T
�
�(xp)0Z(u

�)� �(y�)0Z(u�)
�
+
p
T
�
�(xp)0Z(u

�)� �(y�)0Z(u�)
�

�
p
T
�
�̂(xp)0Z(u

�)� �(xp)0Z(u�)
�
�
p
T
�
�̂(y�)0Z(u

�)� �(y�)0Z(u�)
�

and we have the equality if (xp)0Z has the same distribution of (y�)0 Z. Thus

lim
T!1

Pr
�
Ŝ� � c� j H0 is true

�
� lim

T!1
Pr (X � c�) = �(c)

where X is Gaussian distributed with null mean and variance:

~� = E
�
f 2((xp)0Z)

�
�
�
�(xp)0Z(u

�)
�2
+ E

�
f 2((y�)0Z)

�
�
�
�(y�)0Z(u

�)
�2
+

�2E (f((y�)0Z)f((xp)Z)) + 2�(xp)0Z(u�)�(y�)0Z(u�):

Thus with test (11) we provide a test that never rejects more often than �(c) for any

portfolio (xp)0Z that satis�es the null hypothesis. Moreover when H0 hypothesis is

false there exists a �u 2 [a;b] and a portfolio y 2 � =
�
y 2 Rn

����yi � 0; nP
i=1

yi = 1

�
such that �(xp)0Z(�u) � �y0Z(�u) = 
 > 0. Since, Ŝ� �

p
T
�
�̂(xp)0Z(�u)� �̂y0Z(�u)

�
then

lim
T!1

Pr
�
Ŝ� � c jH0 is false

�
= 1. Let us consider the following behavioral �nance

examples.

Example 4 Consider the FORS measure �X(�; �) = ES�(X) � ES�(�X) where
(�; �) 2 [0; 1] � [0; 1] associated to the FORS behavioral ordering. In this case we
have that

Ŝ� =
p
T sup
(�;�)2[0;1]2;y2�

�
�̂(xp)0Z(�; �)� �̂y0Z(�; �)

�
where �̂R(�; �) =

�1
T

TP
t=1

I[Rt�t�(Rt)]Rt

(1� �) +
I[Rt�t�(Rt)]Rt

�
for a given portfolio R with

historical observations (R1; :::; RT ). Observe that we still obtain a FORS behavioral

�nance ordering if we �x the parameter � (either �) in the above de�nition of �X(�; �).

In this case it is like if we �x the coherency (aggressiveness) of investors.

Example 5 Let us consider the FORS measure mX(z; u) where (z; u) 2 [0; 1] �
(�1; 0]). That is, we assume the Markowitz behavioral ordering described by Levy
and Levy (2002). In this case we obtain:

Ŝ� =
p
T sup
(z;u)2[0;1]�(�1;0];y2�

�
�̂(xp)0Z(z; u)� �̂y0Z(z; u)

�
where �̂R(z; u) = bmR(z; u) =

1

T

TP
t=1

�
zI[u�Rt�0] (u�Rt) + (1� z)I[Rt+u�0] (Rt + u)

�
for a given portfolioR with historical observations (R1; :::; RT ) : Similar considerations

can be easily veri�ed for prospect behavioral orderings.
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5 An empirical application

In this section we present the results of an empirical application. To illustrate the

potential of the proposed semi-parametric and non-parametric test statistics, we test

whether di¤erent reward/risk measures rationalize the market portfolio. Thus, we

test for the e¢ ciency of the market portfolio with respect to all possible portfolios

constructed from a set of assets. Although we focus the analysis on non-parametric

tests, we additionally test parametrically the e¢ ciency of the market portfolio to

compare our results with previous studies.

We use two di¤erent data sets. The �rst one is the six Fama and French benchmark

portfolios. They are constructed at the end of each June, and correspond to the

intersections of two portfolios formed on size (market equity, ME) and three portfolios

formed on the ratio of book equity to market equity (BE/ME). The size breakpoint

for year t is the median NYSE market equity at the end of June of year t. BE/ME

for June of year t is the book equity for the last �scal year end in t � 1 divided by
ME for December of t� 1. Firms with negative BE are not included in any portfolio.
The annual returns are from January to December. We use data on monthly excess

returns (month-end to month-end) from July 1963 to October 2001 (460 monthly

observations) obtained from the data library on the home page of Kenneth French

(http://mba.turc.dartmouth.edu/pages/faculty/ken.french). The test portfolio is the

Fama and French market portfolio, which is the value-weighted average of all non-

�nancial common stocks listed on NYSE, AMEX, and Nasdaq, and covered by CRSP

and COMPUSTAT. Moreover, we apply our tests to a data-set of daily returns on

the 20 best (in terms of returns) S&P500 stock returns from 12 March 1999 to 12

March 2008, a total of 2348 return observations. As the market portfolio, we use the

S&P500 stock index.

5.1 Description of the data

We use two di¤erent data sets for the empirical application. In the �rst one, we

use the six Fama and French benchmark portfolios as our set of risky assets. They

are constructed at the end of each June, and correspond to the intersections of two

portfolios formed on size (market equity, ME) and three portfolios formed on the

ratio of book equity to market equity (BE/ME). The size breakpoint for year t is

the median NYSE market equity at the end of June of year t. BE/ME for June
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of year t is the book equity for the last �scal year end in t � 1 divided by ME
for December of t � 1. Firms with negative BE are not included in any portfolio.
The annual returns are from January to December. We use data on monthly excess

returns (month-end to month-end) from July 1963 to October 2001 (460 monthly

observations) obtained from the data library on the homepage of Kenneth French

(http://mba.turc.dartmouth.edu/pages/faculty/ken.french). The test portfolio is the

Fama and French market portfolio, which is the value-weighted average of all non-

�nancial common stocks listed on NYSE, AMEX, and Nasdaq, and covered by CRSP

and COMPUSTAT. In the second data set, we use the 20 best assets (in terms of

historical returns) of the S&P500.

First we analyze the statistical characteristics of the data that are used in the

test statistics. Table 1, exhibits the �rst four moments of the Fama and French

MArket portfolio and the 6 benchmark portfolios covering the period from July 1963

to October 2001 (460 monthly observations).

Descriptive Statistics

No. Mean Std. Dev. Skewness Kurtosis

Fama and French Market portfolio 0.462 4.461 -0.498 2.176

Benchmark portfolios

1 0.316 7.07 -0.337 -1.033

2 0.726 5.378 -0.512 0.570

3 0.885 5.385 -0.298 1.628

4 0.323 4.812 -0.291 -1.135

5 0.399 4.269 -0.247 -0.706

6 0.581 4.382 -0.069 -0.929

Table 1: Descriptive statistics of monthly returns in % from July 1963 to October

2001 (460 monthly observations) for the Fama and French market portfolio and the

six Fama and French benchmark portfolios formed on size and book-to-market equity

ratio. Portfolio 1 has low BE/ME and small size, portfolio 2 has medium BE/ME

and small Size, portfolio 3 has high BE/ME and small size, ..., portfolio 6 has high

BE/ME and large size.
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Figure 1: Mean-standard deviation e¢ cient frontier of six Fama and French bench-

mark portfolios. The plot also shows the mean and standard deviation of the individ-

ual benchmark portfolio returns and of the Fama and French market (M) portfolio

return, which is the test portfolio.

Table 2 exhibits the �rst four moments of the S&P500 index and the 20 assets

covering the period from 12 March 1999 to 12 March 2008, a total of 2348 daily return

observations.

We observe from both Tables that asset returns exhibit considerable variance

in comparison to their mean. Moreover, the skewness and kurtosis indicate that

normality cannot be accepted for the majority of them.

One interesting feature is the comparison of the behavior of the market portfolio

with that of the individual portfolios. Figure 1 shows the mean-standard deviation

e¢ cient frontier of the six Fama and French benchmark portfolios. The plot also shows

the mean and standard deviation of the individual benchmark portfolio returns and of

the Fama and French market (M) portfolio return. We observe that the test portfolio
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(M) is mean-standard deviation ine¢ cient. It is clear that we can construct portfolios

that achieve a higher expected return for the same level of standard deviation, and a

lower standard deviation for the same level of expected return. If the investor utility

function is not quadratic, then the risk pro�le of the benchmark portfolios cannot be

totally captured by the variance of these portfolios. Generally, the variance is not a

satisfactory measure. It is a symmetric measure that penalizes gains and losses in

the same way. Moreover, the variance is inappropriate to describe the risk of low

probability events. Figure 1 is silent on return moments other than mean-variance

(such as higher-order central moments and lower partial moments). This motivates

us to test whether the market portfolio is e¢ cient when higher moments are taken

into account.

5.2 Semi-Parametric Tests

First, we parametrically test for the e¢ ciency of the Fama and French portfolio with

respect to the 6 benchmark portfolios. We solve the optimization models (2) and (3)

to test for the �rst and second order stochastic dominance e¢ ciency of the market

portfolio. Both models are infeasible, meaning that we cannot construct a portfo-

lio that dominates the market portfolio under the �rst and second order stochastic

dominance criteria. Although Figure 1 shows that the Market portfolio is ine¢ cient

in the Mean-Variance framework, the infeasibility of the models proves the oppo-

site. Remember that these models take into account the �rst four moments and

not only the mean and the variance. Scaillet and Topaloglou (2002) show that al-

though the market portfolio is ine¢ cient compared to the benchmark portfolios in

the mean-variance scheme, the �rst and second order stochastic dominance e¢ ciency

of the market portfolio prove the opposite under more general schemes. These results

indicate that the whole distribution rather than the mean and the variance plays

an important role in comparing portfolios. When a di¤erent reward/risk scheme is

used (9) the model is again infeasible, indicating the e¢ ciency of the market portfolio

in these semi-parametric tests.

We observe di¤erent results when we test for the e¢ ciency of the S&P500 in-

dex with respect to the 20 best assets. In order to test for the �rst and second

order stochastic dominance e¢ ciency we solve the optimization models (2) and (3).

To test for di¤erent reward/e¢ ciency preference ordering, we solve the optimization

model (8). Then, we use the test statistics (5) and (6) and (10), where m̂i and �̂i
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are the mean and the standard deviation of the optimal portfolios for models (2), (3)

and (8) respectively. In this empirical experiment we �rst set the critical level ci of

the test statistics to the conventional 0.05 (5%) and this will be the signi�cance level

for composite null hypotheses. The results are summarized in Table 3. We observe

that we reject the null hypothesis H i
0, for each model i we solve. In all cases, the test

statistic is greater than the critical value ci. This indicates that the e¢ ciency of the

S&P500 is rejected. We can construct optimal portfolios that dominate the market

in all the presented reward/risk models.

Although the Fama and French market portfolio is e¢ cient compared to the bench-

mark portfolios in all the di¤erent reward/risk models, the S&P500 index found to

be ine¢ cient. This ine¢ ciency of the market portfolio is interesting for investors. If

the market portfolio is not e¢ cient, individual investors could diversify across diverse

asset portfolios and outperform the market.

6 Concluding remarks

In this paper we discuss several methodologies to value the portfolio e¢ ciency with

respect to a given preference ordering. Moreover we introduce some stochastic domi-

nance rules when all portfolio returns are uniquely determined by a reward measure,

a deviation measure and others scale and translation invariant parameters. Several

extension are possible. First most of the previous discussion can be extended to sta-

tionary series that are not necessarily independent. As a matter of fact, estimating

function theory has been introduced in a very general context and all the asymptotic

results are still true under some regularity assumptions (see, among others, Li and

Turtle (2000), Godambe and Thompson (1989), Crowder (1986)). Second we can

obtain analogous results adding a further estimating equation as proposed by Go-

dambe and Thompson (1989), and Iaquinta et al (2003). In this case we determine

the estimating parameters as functions of the �rst six central moments. Clearly this

choice should be motivated by some observed anomalies of the return distributions.

Moreover, even the proposed classi�cation of parametric choices under uncertainty

conditions can be further extended to random variables which are not necessarily

positive. Finally the tests here introduced can be used and applied to many possi-

ble orderings and for many risk/reward measures. So, for obvious space reasons, we

should analyze and discuss several examples in a separate empirical work.
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7 APPENDIX: Proofs

Proof of Proposition 1: If we solve the estimating equations l��;k = 0 in terms of

m(�) we get the two solutions

m(�) =
1

T

TX
t=1

f (Rt) + ck �

0@c2k � 1

T

TX
t=1

 
f (Rt)�

1

T

TX
t=1

f (Rt)

!2
+ �2(�)

1A1=2

:

However when T ! +1 the unique consistent admissible equations are:

m(�) =
1

T

TP
t=1

f (Rt) + ck �
 
c2k �

1

T

TP
t=1

�
f (Rt)�

1

T

TP
t=1

f (Rt)

�2
+ �2(�)

!1=2
when

ck > 0 and

m(�) =
1

T

TP
t=1

f (Rt)+ck+

 
c2k �

1

T

TP
t=1

�
f (Rt)�

1

T

TP
t=1

f (Rt)

�2
+ �2(�)

!1=2
if ck � 0.

Proof of Proposition 2: Under the H i
0 hypothesis, when the portfolios are uniquely

determined by the �rst four moments and the portfolios present the same skewness

and kurtosis we have that (mi �mp) � 0 (�i � �p) � 0 for i=1,2 and (mi �mp) � 0;
(�i � �p) � 0 for i=3,4. Therefore

p
T (m̂i � m̂p) =

p
T (m̂i �mi � m̂p +mp) +

p
T (mi �mp) �

�
p
T (m̂i �mi)�

p
T (m̂p �mp) for i = 1; 2; 3; 4

p
T (�̂i � �̂p) =

p
T (�̂i � �i � �̂p + �p) +

p
T (�i � �p) �

�
p
T (�̂i � �i)�

p
T (�̂p � �p) for i = 1; 2

and
p
T (�̂i � �̂p) �

p
T (�̂i � �i)�

p
T (�̂p � �p) for i = 3; 4

Thus, choosing opportunely the values cij;�, i=1,2,3,4, j=1,2, we can guarantee that

lim
T!1

P (reject H i
0 j H i

0 is true) � �. Similarly when H i
0 hypothesis is false then

(mi �mp) > 0, (�i � �p) > 0 for i=1,2 and (mi �mp) > 0, (�i � �p) < 0 for i=3,4
then

lim
T!1

P
�
reject H i

0

�� H i
0 is false

�
= 1:

When H i
0 hypothesis is veri�ed, then, in the worst case, the i-th portfolio has the

same distribution of portfolio with weights xp. So, if we assume that all parameters

of the portfolio with weights xpare known i.e., m̂p = mp = mi; �̂p = �p = �i the

asymptotic density of the vector
hp
T (m̂i �mp) ;

p
T (�̂i � �p)

i
is given by
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f(x; y) =
e

� (k � 1)
2(k � 1� s2)

24x2
�2p

�
4sxy

�2p (k � 1)
+

4y2

�2p (k � 1)

35
��2p

p
k � 1� s2

:

Thus, for any � � 0:5, and for i=1,2, we can choose (ci1;�; ci2;�) 2 R2+ such that

1

��2p
p
k � 1� s2

Z +1

ci1;�

Z +1

ci2;�

e

� (k � 1)
2(k � 1� s2)

24x2
�2p

�
4sxy

�2p (k � 1)
+

4y2

�2p (k � 1)

35
dxdy = �

so that

lim
T!1

P (rejectH i
0 jH i

0istrue) � lim
T!1

P
�p
T (m̂i �mp) � ci1;�;

p
T (�̂i � �p) � ci2;�

�
=

�.

Analogously, we can choose (ci1;�; c
i
2;�) 2 R2+ for i=3,4 such that

1

��2p
p
k � 1� s2

Z +1

ci1;�

Z ci2;�

�1
e

� (k � 1)
2(k � 1� s2)

24x2
�2p

�
4sxy

�2p (k � 1)
+

4y2

�2p (k � 1)

35
dydx = �

Proof of Theorem 1: Implication 1: As a consequence of the assumptions follows

q = mw0Z �my0Z � 0 and �w0Z � �y0Z � �y0Z+t

for every t � 0. Moreover, for every t � 0 the function g(t) � my0Z + t

�y0Z+t
is an

increasing continuous positive function that tends to in�nity for big values of t. As

a consequence of de�nition of ��+k (�a) family there exist t � q such that the random
variable w0Z

�w0Z
has the same parameters of y0Z+t

�y0Z+t
and hence w0Z

�w0Z

d
= y0Z+t

�y0Z+t
. Then, for

every � � 0:

P (w0Z � �) � P
�
y0Z + t

�y0Z+t
� �

�y0Z+t

�
� P (y0Z � �)

Observe that at least one of the two inequalities �w0Z � �y0Z and q � 0 is strict

by hypothesis. Then, at least one of the previous inequalities is strict for some real

� � 0. Therefore, w0ZFSD y0Z.
Implication 2: According to de�nition of ��+k (�a) family, it follows

w0Z

�w0Z

d
=
y0Z

�y0Z

because the two random variables have the same parameters. If �w0Z > �y0Z , then for

every t � 0

P (w0Z � t) = P
�
w0Z

�w0Z
� t

�w0Z

�
� P

�
w0Z

�w0Z
� t

�y0Z

�
= P (y0Z � t)
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and the above inequality is strict for some t. Conversely, if w0ZFSD y0Z, then there

exists a probability space (
;=; P ) and two random variables X and Y de�ned on

this space such that X>Y and X , Y have the same distributions of w0Z and y0Z.

Since mX is a simple reward measure mw0Z � my0Z and must be �w0Z > �y0Z .

Implication 3: If w0ZFSD y0Z, then there exists a probability space (
;=; P ) and
two random variables X and Y de�ned on this space such that X>Y and X,Y have

the same distributions of w0Z and y0Z. Since the reward measure is law invariant and

it is isotonic with the monotone order then mw0Z � my0Z . Any risky FORS ordering

is isotonic with monotone order if X>Y, XFORS
�

Y . Moreover the ordering is simple

then it is uniquely determined by distributions w0ZFORS
�

y0Z.

Proof of Proposition 3: Let (m1;X ; �X) and (m2;X ; �X) be two parameterizations

of the class. Observe that for every distribution functions FU ; FY 2 ��+2 (a), FV1 :=
FU�m1;U

�U

= FY�m1;Y
�Y

and FV2 := FU�m2;U
�U

= FY�m2;Y
�Y

. Then for every FX 2 ��+2 (�a)
identi�ed by the parameters (mi;X ; �X), i=1,2 we get

FX = F�XV1+m1;X
= F�XV2+m2;X

:

Thus, V1 + (m1;X � m2;X)=�X
d
= V2 and, (m1;X � m2;X)=�X is constant for every

FX 2 ��+2 (�a).
Proof Theorem 2: Case 1 Suppose mw0Z

�w0Z
� my0Z

�y0Z
and mw0Z � my0Z . From theorem

1 if �w0Z � �y0Z implies w0Z FSD y0Z that implies w0Z SSD y0Z. Thus assume

�w0Z < �y0Z . From proposition 1 we know that
mw0Z

�w0Z
�my0Z

�y0Z
=
E(w0Z)

�w0Z
�E(y

0Z)

�y0Z
� 0:

Since mw0Z > E(w
0Z) then

mw0Z � E(w0Z)
�w0Z

= k > 0 that implies 0 � mw0Z �my0Z =

E(w0Z) � E(y0Z) + k (�w0Z � �y0Z), i.e., 0 < k (�y0Z � �w0Z) � E(w0Z) � E(y0Z).
Then by Ortobelli (2001) we know that w0Z SSD y0Z .Similar considerations follow

when we assume mw0Z � my0Z and �w0Z � �y0Z . Moreover if w0Z R � S y0Z it is

not possible that �w0Z � �y0Z since w0Z SSD y0Z implies w0Z FSD y0Z against the

hypothesis E(w0Z) = E(y0Z). Thus it should be �w0Z < �y0Z . From proposition 1

mw0Z �my0Z = E(w
0Z)� E(y0Z) + k (�w0Z � �y0Z) = k (�w0Z � �y0Z) < 0

Case 2 We know thatw0Z SSD y0Z implies thatE(w0Z)�E(y0Z) � 0. If w0Z SSD y0Z
and �w0Z � �y0Z we know by Ortobelli (2001) that implies w0Z FSD y0Z that

implies mw0Z � my0Z for Theorem 1. If w0Z SSD y0Z and �w0Z < �y0Z then
mw0Z � E(w0Z)

�w0Z
= k < 0 becausemw0Z < E(w

0Z). Then using the same arguments of
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case 1 we �nd 0 � mw0Z�my0Z = E(w
0Z)�E(y0Z)+k (�w0Z � �y0Z) that explains case

2a) That is w0Z SSD y0Z implies mw0Z � my0Z that mw0Z � my0Z . If w0Z SSD y0Z

and �w0Z � �y0Z we know by Ortobelli (2001) that implies w0Z FSD y0Z. Thus must
be �w0Z < �y0Z .

Proof Theorem 3: Implication 1 If XFORS
�;�

Y then

�X;�(x) :=
1

�(�� 1)

Z x

a

(x� u)��2�X(u)du � �Y;�(x)

8x 2 (a; b). Conversely, if

�1 < lim
x!b

�X;�(x)� �Y;�(x) =

= lim
x!b

1

�(�� 1)

�Z t0

a

(x� u)��2 (�X(u)� �Y (u)) du+Z x

t0

(x� u)��2 (�X(u)� �Y (u)) du
�
� 0

then 0 �
R x
t0
(x�u)��2 (�X(u)� �Y (u)) du �

R t0
a
(x�u)��2 (�Y (u)� �X(u)) du for any

x 2 (t0; b). that is �X;�(x) � �Y;�(x); 8x 2 [a; b]. Thus XFORS�;�
Y .

Implication 2 Observe that if mY = � �(�)

(b� a)��Y;�(b); then mX is a positive, pos-

itive homogeneous translation equivariant reward measure that is consistent with

monotone order. From theorem 2, mw0Z
�w0Z

� my0Z
�y0Z

, �w0Z � �y0Z implies w0ZFSD y0Z,

which implies w0ZFORS
�

y0Z and thus w0ZFORS
�;�

y0Z. Next, assume �w0Z < �y0Z .

Therefore, there exists t � 0 such that mw0Z
�w0Z

=
my0Z+t

�y0Z+t
and w0Z d

=
y0Z + t

�
where

� =
�y0Z+t
�w0Z

. Thus, we can distinguish two cases:

1. mw0Z � my0Z+t and �w0Z � �y0Z+t. As a consequence of Theorem 2w0ZFSD y0Z.
2. my0Z � mw0Z < my0Z + t and �w0Z < �y0Z+t. Hence, there exists �0 2 [a; b] such
that for every � 2 [a; �0]; �w0Z (�) �M :=

�t
� � 1 ,

�w0Z (�) = �(y0Z+t)=� (�) =
�y0Z (�)� t

�
� �y0Z (�)

and for every � 2 (�0; b] such that �w0Z (�) �M , it holds

�w0Z (�) � �y0Z (�) :

By hypothesis mw0Z > my0Z , thus we cannot have y0Z FORS w0Z (otherwise y0Z

FORS
�;�

w0Z, and mw0Z = �
�(�)

(b� a)��w
0Z;�(b) � my0Z). Hence, there exists � 2 [a; b]
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such that �w0Z (�) � �y0Z (�). If for all w0ZFORS y0Z clearly w0ZFORS�;�
y0Z, other-

wise there exists � 2 [a; b] such that �w0Z (�) � �y0Z (�). Therefore, from implication

1 we get w0ZFORS
�;�

y0Z.
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Descriptive Statistics

No. Mean Std. Dev. Skewness Kurtosis

S&P 500 index 0.007 1.215 0.109 2.468

20 best assets

1 0.250 31.444 3.790 90.910

2 0.244 15.182 0.321 4.661

3 0.211 22.253 0.746 9.669

4 0.203 11.285 0.815 6.259

5 0.199 9.232 0.921 6.832

6 0.197 19.330 0.261 15.486

7 0.193 14.092 0.779 8.679

8 0.175 11.781 0.337 4.975

9 0.171 10.564 -1.591 29.454

10 0.155 5.931 -1.228 28.366

11 0.155 23.699 0.686 7.789

12 0.154 13.117 1.078 10.169

13 0.153 14.081 -0.233 12.545

14 0.152 11.435 -0.136 11.802

15 0.149 13.434 0.323 10.721

16 0.149 24.148 0.826 6.789

17 0.144 8.548 0.145 2.751

18 0.143 9.690 0.311 10.413

19 0.143 8.450 0.412 3.677

20 0.140 21.935 0.750 7.465

Table 2: Descriptive statistics of daily returns in % from 12 March 1999 to 12 March

2008, a total of 2348 daily return observations for the S&P500 stock index and the

best twenty assets.

40



Test statistics for preference ordering e¢ ciency

Model
p
T (m̂i � m̂p)

p
T (�̂i � �̂p)

max
x
x0Qx (model 2) 0.09837 0.93093

max
x
E(x0Z) (model 3) 0.10709 0.76940

max
x
ES�(�x0Z)� ES�(x0Z) (model 8) 0.453404 0.271258

Table 3: Semi-Parametric Test statistics of various preference ordering models for the

S&P500.
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