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Introduction

Most of the important models in finance rest on the assumption that randomness
is explained through a normal random variable. However there is ample empirical
evidence against the normality assumption, since stock returns are heavy-tailed,
leptokurtic and skewed, see [99, 29, 98] for example. Returns from financial assets
show well-defined patterns of leptokurtosis and skewness which cannot be captured
by the normality assumption. Both continuous and discrete time models can be
developed by considering a non-normal infinitely divisible distribution.

Since Mandelbrot introduced the α-stable distribution to model the empirical
distribution of asset prices in [81], the α-stable distribution became an alternative to
the normal distribution. A conclusion of the literature is that although the empirical
evidence does not support the normal distribution, it is not always consistent with an
α-stable distribution. The distribution of returns for assets has heavier tails relative
to the normal distribution and thinner tails than the α-stable distribution. Partly in
response to those empirical inconsistencies, there is a search for suitable alternatives
to the α-stable distribution. One such alternative are the families of tempered stable
(TS) and tempered infinitely divisible (TID) distributions. The recent ISA Medal for
Science to the authors of the model CGMY (Carr, Geman, Madan and Yor), which
is a parametric example of TS distribution, has represented a revolutionary step
beyond the Black and Scholes world. There is a general consensus in the literature
to consider jump processes both with finite and infinite activity besides diffusion
processes. The long standing problem of non-normality of returns and the issue of
discontinuity of prices can be overcome:

At the beginning of the XXI century the CGMY model represents the
model of asset price dynamics destined to substitute the diffusive pro-
cesses that reigned throughout most of last century1.

and furthemore [114]:

A great deal of empirical research has stressed the importance of model-
ing non-Gaussian features in financial time series dynamics and option
pricing frameworks. Yet, due to their simplicity, many practitioners still
employ models based on the assumption of normality. Unfortunately,
these approaches, although simpler, can lead to dangerous underestima-
tion of extreme losses in risk management or badly mispriced derivative
products.

1http://www.isa.unibo.it/ISA/Activities/OtherEvents/2008/07/CGMYmodel.htm

http://www.isa.unibo.it/ISA/Activities/OtherEvents/2008/07/CGMYmodel.htm
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Thank to the seminal work on the CGMY model [21] and the recent attention on
the applications of Lévy processes and infinitely divisible distribution to finance, the
theoretical and empirical literature has focused on the formalization and extension
of TS models, readers are referred to [79, 60, 4, 87] and references therein.

TS distributions may have all moments finite and exponential moments of some
order. The latter property is essential in the construction of TS option pricing
models. The formal definition of TS processes as been proposed in the seminal
work of Rosiński [107]. The KoBoL [19], the CGMY [21], the Inverse Gaussian (IG)
and the TS of Tweedie [111] are only some parametric examples in this class, that
have an infinite dimensional parametrization by a family of measures [115]. Further
extensions or limiting cases are also given by the fractional TS framework [52], the
bilateral gamma [73] and the generalized TS distribution [29, 95].

Recently, by taking into consideration the Rosiński approach, the TID framework
has been developed [14]. In some cases, the characteristic function of a TID random
variable is extendible to an entire function on C, that is, it admits any exponential
moment. The latter property is desirable in discrete time model with volatility
clustering.

The general TS and TID formulation is difficult to use in practical applications,
but it allows one to prove some interesting results regarding the calculus of the
characteristic function and the random numbers generation. The infinite divisibility
of these distributions allows one to construct the corresponding Lévy process and
to analyze the change of measure problem and the process behavior as well. In the
Chapter 5 an exponential Lévy model will be construct and some empirical results,
based on the S&P 500 index, will be shown.

In general, the use of infinitely divisible distributions is obstructed by the diffi-
culty of calibrating and simulating them. We address some numerical issues resulting
from TS and TID modelling, with a view toward the density approximation and sim-
ulation [15]. Thus, we are in the position to work with the characteristic function
of these distributions, estimate parameters and simulate random numbers in order
to calculate option prices via Monte Carlo simulation. Even if in the CGMY case
we can generate random numbers by considering a time changed Brownian motion
[79], in general for TS and TID processes we do not know how one can find the time
process to transform the Brownian motion into a TS process or a TID process as
well. By following the approach of [105, 14], a series representation is considered to
simulate TS and TID processes and distributions.

Finally, infinitely divisible distributions can be considered also for discrete time
financial modelling. A typical finding concerning stock price returns and GARCH
models is that they continue to exhibit a fat-tail behavior in the innovation distribu-
tion. This evidence raises a question concerning the appropriateness of conditional
normality assumption [36]. For this reason, we want to consider a more flexible
distributional assumption for the innovation, to allow leptokurtosis and skewness,
and to study the effect on option pricing and volatility smile. By considering the
Duan’s GARCH model [35] where a normal distribution is taken into account, we
will present in Chapter 7 an infinitely divisible GARCH framework [67]. We then
construct a new GARCH model with the infinitely divisible distributed innovation
and different subclasses of that GARCH model that incorporates three observed
properties of asset returns: volatility clustering, fat tails, and skewness. We will
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present the algorithm to find the risk-neutral return processes for those GARCH
models using the change of measure for TS and TID distributions. To compare
the performance of these GARCH models, we report the results of the parameters
estimated for the S&P 500 index and investigate the in-sample and out-of-sample
performance for the S&P 500 option prices. The so called fundamental approach can
be considered, that is option prices can be calculated by using parameters estimated
by fitting the underlying asset process together with a suitable change of measure.

The remainder of this work is organized as follows. In Chapter 1 basic definitions
and results on Lévy processes and infinitely divisible distributions are recall. In
Chapter 2 we review the definition of TS distributions and focus our attention on
same parametric examples. Then, the TID distribution is introduced in Chapter 3.
Since it is by construction infinitely divisible, the corresponding Lévy process will
be also considered. By following the density transformation result of Sato [109], the
change of measure problem in the TS and TID class is solved in Chapter 4. The
continuous TS stock returns model is presented in Chapter 5 and algorithms for
the evaluation of the density function are also studied. A general random number
generation method for the TS and TID class is develop in Chapter 6 and finally, it
is applied, together with the change of measure argument, to the infinitely divisible
(ID) GARCH framework.





Chapter 1

Preliminaries

This chapter summarizes the main results for infinitely divisible distributions and
continuous-time stochastic processes, in particular Lévy processes. We focus our
attention on definitions and properties, we will need in the following. More detailed
introductions can be found in, for example, [109], [97] and [63].

1.1 Basic definitions and notations

In this section, we resume some basic definitions concerning probability theory. In
the following, the readers are supposed to be familiar with Lebesgue’s theory of
integration.

Definition 1.1. A probability space (Ω,F , P ) is a triplet of a set Ω, a family F of
subsets of Ω, and a mapping P form F into R satisfying the followings conditions.

(a) Ω ∈ F and ∅ ∈ F , where ∅ is the empty set.

(b) If An ∈ F for n = 1, 2, . . ., then
⋃∞
n=1An and

⋂∞
n=1An are in F .

(c) If A ∈ F , then Ac ∈ F , where Ac is the complement of A (Ω\A)

(d) 0 ≤ P (A) ≤ 1, P (Ω) = 1, and P (∅) = 0.

(e) If An ∈ F for n = 1, 2, . . . and they are disjoint (that is, An ∩ Am = ∅ for
n 6= m), then P (

⋃∞
n=1An) =

∑∞
n=1 P (An).

By following the terminology of measure theory, a probability space is a measure
space with total measure 1. If F satisfies conditions (a), (b), and (c) of Definition
1.1, then we call F σ-algebra on Ω, or also tribe on Ω. The pair (Ω,F) will be our
measurable space. A mapping P , which satisfies the condition (d) of Definition 1.1
is called a probability measure. Let (Ω,F , P ) be a probability space, we call any
A ∈ F an event, and P (A) the probability of the event A.

Definition 1.2. Let (Ω,F , P ) be a probability space. A mapping X on (Ω,F),
which takes values in a second measurable space (E, E) is a random variable if it is
F-measurable, that is, {ω ∈ Ω : X(ω) ∈ B} is in F for each element B ∈ E.
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By the Definition above, if X is a random variable then we obtain that all sets
of the following form

X−1(B) = {X ∈ B} = {ω ∈ Ω : X(ω) ∈ B},

where B ∈ E , are in our σ-algebra F .
The collection of the sets {X ∈ B}, with B ∈ E, is also a σ-algebra and we call

it the σ-algebra generated by X, i.e.,

σ(X) = {X−1(B) : B ∈ E}.

It is the smallest sigma algebra on Ω such that X is a measurable function into
(E, E). We call the measurable space (E, E), the state space. For convenience, we
write P ({ω ∈ Ω : X(ω) ∈ B}) as P{X ∈ B}. The measure µ (or PX) on (E, E), is
called distribution (or law) of X respect to P .

The law of X is the measure µ on E , such that

µ(B) = P{X ∈ B}.

in particular, we have

µ(E) = P{X ∈ E} = P (Ω) = 1,

therefore µ is a probability measure on E .
A measure space (E, E , µ) is said to be σ-finite (or the measure µ is σ-finite)

if E is the countable union of measurable sets of finite measure. A measure space
(E, E , µ) is said to be complete (or the measure µ is complete) if every subset of a set
of null measure is measurable. For example, the Lebesgue measure on R is σ-finite
and complete.

Definition 1.3. The collection of all Borel sets on R
d, denoted by B(Rd), is called

the Borel σ-algebra. It can be generated by the open sets in R
d, that is, it is the

smallest σ-algebra that contains all open sets in R
d.

Roughly speaking, one motivation to explain, the reason why we consider the
Borel σ-algebra, is that we want a σ-algebra rich enough to contain the intervals of
the following form

- open intervals (a, b), with a < b

- closed intervals [a, b], with a ≤ b

Furthermore, it is possible to prove that the Borel σ-algebra is generated by the
collection of all open intervals (or closed intervals).

Remark 1.4. The Borel σ-algebra B(Rd) does not contain all subsets of R
d. Readers

are referred to [2].

In general, we can consider a metric or topological space E endowed with its Borel
σ-algebra B(E) generated by the topology (for example, the class of open subsets)
in E or other σ-algebras otherwise specified. For our purposes, the state space will
be the d-dimensional Euclidean space equipped with the σ-algebra of Borel sets on
R
d.
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Definition 1.5. Let (Ω,F , P ) be a probability space. A mapping X on (Ω,F), is a
real valued random variable if it is a random variable, which take values in a second
measurable space (R,B(R)). The function F defined by

F (x) = µ((−∞, x]) = P{X ≤ x}

is called the distribution (or law) of X.

If X is a real valued random variable and if the integral
∫

Ω
X(ω)P (dω)

exists, then it is called expectation of X and denote by E[X] or EP [X], if there is
some ambiguity as to the measure P . The following equalities are fulfilled

EP [X] =

∫

Ω
X(ω)P (dω) =

∫

R

xµ(dx) =

∫

R

xdF (x).

If X is a random variable on R
d, and g(x) is a bounded measurable function on R

d,
then

E[g(X)] =

∫

Rd

g(x)µ(dx).

A random variable X is said to have a given property k almost surely (a.s.), if
there is Ω0 ∈ F with P (Ω0) = 1 such X(ω) has the property k for every ω ∈ Ω0.
We consider Lp = Lp(Ω,F , P ) for p ∈ [1,∞), the space of all real valued random
variables X such that |X|p is integrable, with the usual identification of any two a.s.
equal random variables.

Definition 1.6. Let λ and µ be two measure on (E, E). We said that λ is absolutely
continuous respect to µ, λ≪ µ, if ∀B ∈ E, such that µ(B) = 0, then λ(B) = 0. We
said that λ and µ are equivalent, λ ∼ µ, iff λ≪ µ and µ≪ λ

Now, we recall a well known theorem

Theorem 1.7 (Radon-Nikodim theorem). Let (E, E , λ) be a σ-finite measure space
and let µ be another measure on (E, E). Then, µ ≪ λ iff there is a non-negative
function f ∈ L1(E, E , µ), such that

µ(B) =

∫

B
fdλ (1.1)

for all B ∈ E.

Proof. See [2].

In our case, we consider µ as the measure on (R,B(R)) previously defined and let
λ be the Lebesgue measure on R. If µ≪ λ, then we can find a non-negative function
f ∈ L1(E, E , µ), such that the equality (1.1) is satisfied. We call this function f the
density of the random variable X with respect to the Lebesgue measure on R, that
is

P{X ∈ B} = µ(B) =

∫

B
f(x)dx
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for each B ∈ B(R). If the measure µ admits a density with respect to the Lebesgue
measure on R, by Definition 1.5, we obtain the equality

f(x) = F ′(x) a.s..

The n-th moment of a random variable X on R is defined by mn(X) = E[Xn].
We said that a random variable has exponential moment if there is a θ ∈ [−a, b],
with a, b ∈ R+ such that

E[eθX ] <∞.

We want to recall and important definition for next applications.

Definition 1.8 (Characteristic function or Fourier transform). The characteristic
function µ̂(z) of a probability measure µ on R

d is

µ̂(z) =

∫

Rd

ei〈z,x〉µ(dx), z ∈ R
d. (1.2)

If X is a real valued random variable with probability distribution F , we indicate
the characteristic function of X (or of F ) as the function φ defined for z ∈ R by

φ(z) = µ̂(z) =

∫ ∞

−∞
eizxF (dx) (1.3)

to put it better,
φ(z) = E[eizX ].

For distribution F with a density f ,

φ(z) =

∫ ∞

−∞
eizxf(x)dx.

In functional analysis, people prefer to call it Fourier transform and indicate it
as f̂ , instead, in probability theory, it is commonly called characteristic function
or Fourier transform. A detailed introduction, can be found, for example, in [43],
[118], [16], [109], [2] and references therein.

The characteristic function takes value in the complex plane C, although f is
real.

Proposition 1.9. If E[|X|n] < ∞, then φ has n continuous derivatives at z = 0
and the equality

mn = E[Xn] =
∂φ(z)

∂zn

∣
∣
∣
∣
u=0

.

If X is a real valued random variable, then

- φ is continuous and φ(0) = 1.

Therefore, there exists a unique continuous function ψ defined in a neighborhood of
zero such that

ψ(0) = 0 and φ(z) = eψ(z).
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The function ψ is called the cumulant generating function or characteristic exponent
of the random variable X. When µ is a distribution on [0,∞), the Laplace transform
of µ is defined

Lµ(λ) =

∫ ∞

0
e−λxµ(dx) (1.4)

If µ is a probability distribution and Lµ its Laplace transform 1.4, then Lµ possesses
derivatives of all orders given by

(−1)nLnµ(λ) =

∫ ∞

0
e−λxxnµ(dx)

with λ > 0.

Remark 1.10. The probability measure µ admits a finite n-th moment if and only
the limit

lim
λց0

Lnµ(λ)

is finite.

Definition 1.11. Let X be a real valued random variable and F its distribution.
The function

MX(t) = E[etX ] =

∫ ∞

−∞
etxF (dx), t ∈,R (1.5)

in which the integral is assumed to converge for t in some subinterval of the reals is
called the moment generating function of X.

Remark 1.12. Contrarily to the characteristic function, which is always well-defined,
the moment generating function in not always defined.

It is not difficult to see, that the integral (1.5) may not converge for some values
of t. When the integral (1.5) converges, then we obtain the following equality

MX(t) = φ(−it)

and if the integral converges on a neighborhood [−ǫ, ǫ], then all n-th moments can
be calculated as

mn = E[Xn] =
∂MX(t)

∂tn

∣
∣
∣
∣
t=0

.

Another important result, we are going to use in the following is a Lemma in
[109, Lemma 25.7].

Lemma 1.13. If µ is a probability measure on R and µ̂ is extendible to an entire
function on C, then µ has finite exponential moments, that is, it has finite ec|x|-
moment for every c > 0.

Now, we recall a fundamental notion of Probability theory.

Definition 1.14. Let X be an integrable random variable on (Ω,F , P ), X ∈ L1, A ⊂
F a sub-σ-algebra and Q the restriction of P to A, Q = P |A. An A-measurable and



18 1. Preliminaries

Q-integrable random variable V is said to be a version of the conditional expectation
of X given A, if the equality

∫

A
XdP =

∫

A
V dP

holds for each A ∈ A.

Definition 1.15. Consider the assumptions of Definition 1.14, we call conditional
expectation of X given A, and denote it as E[X|A], the equivalence class in L1 of
all versions of the conditional expectation of X given A.

In the following proposition, we recall some elementary properties.

Proposition 1.16. Let X and Y be a couple of real valued and integrable random
variables on on (Ω,F , P ), and a, b ∈ R. The following properties are verified

1. If P{X = a} = 1, then E[X|A] = E[X] = a.

2. E[aX + bY |A] = aE[X|A] + bE[Y |A].

3. If V is a version of E[X|A], then E[V ] = E[X].

4. If X is A-measurable, then X is a version of E[X|A].

5. If X is independent of A, then E[X] is a version of E[X|A].

6. If Y is A-measurable, then E[XY |A] = Y E[X|A].

Proof. See [58].

1.2 Stochastic processes

Let us fix some terminology:

Definition 1.17. Let (Ω,F) be a measurable space, then we call filtration a nonde-
creasing family (Ft)t≥0 of sub-σ-algebra of F , that is Fs ⊆ Ft ⊆ F for 0 ≤ s < t <
∞. We set F∞ = σ(

⋃

t≥0 Ft). Furthermore, if we choose a probability measure P
on (Ω,F), we call (Ω,F , P, (Ft)t≥0) a filtered probability space.

Definition 1.18. A filtered probability space (Ω,F , P, (Ft)t≥0) is said to satisfy the
usual hypotheses if

- the measure P is complete;

- (Ft)t≥0 is right continuous, that is Ft =
⋂

u>tFu for all t, 0 ≤ t <∞.

- F0 contains all the P -null sets of F .

A stochastic process is a mathematical model of a random phenomenon in time
evolution. Let (Ω,F) be a measurable space, on which probability measure can be
placed. We can consider (Ω,F) as the source of randomness and call it sample space.
A stochastic process is a collection of random variables X = {Xt}0≤t<∞ on (Ω,F),
which take value in a measurable space (E, E).
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Definition 1.19. A stochastic process is a family (Xt)t≥0 of random variables from
(Ω,F , P ) to (E, E).

A process may be considered as a mapping from (Ω×R+,B(R+)⊗F) into (E, E),
via

(ω, t) −→ X(ω, t) = Xt(ω).

Each mapping t→ Xt(ω), for a fixed ω ∈ Ω, is called a path, or a trajectory , of the
process X.

Given a stochastic process, the simplest choice of a filtration is that generated
by the process itself, i.e.

FX
t = σ(Xs; 0 ≤ s ≤ t).

Here, we recall some definitions.

Definition 1.20. The stochastic process X is adapted to the filtration (Ft)t≥0 if,
for each t ≥ 0, Xt is an Ft-measurable random variable.

By definition, every process X is adapted to (FX
t )t≥0.

Definition 1.21. A stochastic process X is said to be càdlàg if it a.s. has sample
paths which are right continuous, with left limits.

Letting Xt− = lims↑tXs , the left limit at t, we define

∆Xt = Xt −Xt− .

Definition 1.22. Two stochastic processes X and Y are modifications if Xt = Yt
a.s., each t.

Definition 1.23. Two processes X and Y are indistinguishable if almost all their
paths agree:

P (Xt = Yt,∀0 ≤ t <∞) = 1.

The Definition 1.23 is strongest, see [63]. Now, we given a essential definition
for the application of stochastic processes to mathematical finance.

Definition 1.24. A real valued, adapted process (Xt)t≥0 is called a martingale (resp.
supermartingale, submartingale) with respect to the filtration (Ft)t≥0 if

- Xt ∈ L1;

- if s ≤ t, then E[Xt|Ft] = Xs, a.s. (resp. E[Xt|Ft] ≤ Xs, resp. E[Xt|Ft] ≥
Xs).

1.3 Lévy processes

In this section, we introduce Lévy processes and discuss some of their general prop-
erties. In the following we use the approach of [97] and [109]. Here we are assuming
given a filtered probability space (Ω,F , P, (Ft)t≥0) satisfying the usual hypotheses.

Definition 1.25. An adapted process (Xt)t≥0 with X0 = 0 a.s. is a Lévy process if
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(a) X has increments independent, that is, Xt − Xs. is independent of Fs, 0 ≤
s < t <∞;

(b) X has stationary increments, that is, Xt − Xs has the same distribution as
Xt−s, 0 ≤ s < t <∞;

(c) Xt is continuous in probability, that is, limt→sXt = Xs, where the limit is
taken in probability.

A particular important example of Lévy process is the Brownian motion. It is
not only a basis for the theory of stochastic processes, but it is also the core of many
financial models.

Definition 1.26. An adapted process W = (Wt)t≥0 with W0 = 0 a.s. is a Brownian
motion if

(a) X has increments independent, that is, Xt − Xs. is independent of Fs, 0 ≤
s < t <∞;

(b) X has stationary increments, that is, Xt − Xs has the same distribution as
Xt−s, 0 ≤ s < t <∞;

(c) P a.s. the map s→Ws(ω) is continuous.

This definition induces the distribution of the process Wt.

Theorem 1.27. If (Wt)t≥0 is a Brownian motion, then Wt−W0 is a normal random
variable with mean rt and variance σ2, where r, σ ∈ R.

Proof. See [48].

We recall the the density fnor of a normal random variable N (µ, σ2), respect to
the Lebesgue measure on R, is the function so defined

fnor(x) =
1

σ
√

2π
e−

1
2
(x−µ

σ
)2 .

We denote by µn∗ the n-fold convolution of a probability measure µ with itself,
that is,

µn∗ = µ ∗ · · · ∗ µ
︸ ︷︷ ︸

.

Definition 1.28. A probability measure µ on R
d is infinitely divisible if, for any

positive integer n, there is a probability measure µn on R
d such that µ = µn

n.

If we take the Fourier transform of each Xt we get a function φt(z), so defined

φt(z) = E[eizXt ]

where φ0(z) = 1 and φt+s(z) = φt(z)φs(z) and φt(z) 6= 0 for every (t, z). In
particular, by using the property (c) of Definition 1.25, we obtain that if X is a Lévy
process, then, for each t > 0, Xt has an infinitely divisible distribution. Inversely, it
can be prove the following result.
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Proposition 1.29. Let µ be a infinitely divisible distribution, then there exists a
Lévy process (Xt)t≥0 such that µ is the distribution of X1.

Proof. See [109, Theorem 7.10].

Some books add to the Definition 1.25 an additional condition, that is the càdlàg
property of the path. We prefer to prove this condition, by starting from the previous
definition.

Definition 1.30. Let X a Lévy process. There exists a unique modification Y of X
which is càdlàg and which is also a Lévy process.

Proof. See [97, Chapter I, Theorem 30].

In the following, we will assume that we are using the unique càdlàg version of
any given Lévy process. In the following, we will call indicator function of the set
A, the function so defined

IA =

{
1, x ∈ A
0, x 6∈ A

Theorem 1.31 (Lévy-Khintchine formula). A probability law µ of a real valued
random variable is infinitely divisible with characteristic exponent ψ,

∫

R

eiθxµ(dx) = eψ(θ) for θ ∈ R

if and only if there exists a triple (a, σ, ν) where a ∈ R, σ ≥ 0 and ν is a measure
on R\{0} satisfying

∫

R\{0}
(1 ∧ x2)ν(dx) <∞

such that

ψ(θ) = iaθ − 1

2
σ2θ2 +

∫

R\{0}
(eiθx − 1 − iθxI{|x|<1})ν(dx) (1.6)

for every θ ∈ R.

We say that our infinitely divisible distribution has a triplet of Lévy character-
istics or Lévy generating triplet (or Lévy triplet for short) (a, σ, ν). The measure ν
is called the Lévy measure of µ. If the Lévy measure is of the form ν(dx) = u(x)dx,
we call u(x) the Lévy density . It follows that, if (Xt)t≥0 is a Lévy process, there is
always a Lévy triplet (a, σ, ν), such that

E[eiuXt ] = etψ(u).

Remark 1.32. The integrand in (1.6)

eiθx − 1 − θxI{|x|<1} = O(|x2|)

as |x| → 0 and it is integrable with respect to ν, because it is bounded outside any
neighborhood of 0. More generally, if c(x) is a measurable function and if

eiθx − 1 − iθxc(x)
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is integrable with respect to a given Lévy measure ν, then we obtain the representation

ψ(θ) = iacθ −
1

2
σ2θ2 +

∫

R\{0}
(eiθx − 1 − iθxc(x))ν(dx) (1.7)

with ac ∈ R defined by

ac = a+

∫

R

x(c(x) − I{|x|<1})ν(dx). (1.8)

If ν satisfies ∫

|x|>1
|x|ν(dx) <∞,

by considering c(x) = 1, we obtain

ψ(θ) = ia1θ −
1

2
σ2θ2 +

∫

R\{0}
(eiθx − 1 − iθx)ν(dx). (1.9)

This representation will be convenient in the following, since

a1 =

∫

R

xµ(dx),

that is, a1 is the mean of the distribution.

1.3.1 Poisson random measure and Lévy-Itô decomposition

Next turn briefly our attention to the analysis of the Lévy measure and its connection
with jumps of a Lévy process.

Definition 1.33. Let (E, E) be a measurable space and m a σ-finite measure on
this space. Then (M(A), A ∈ E) a Poisson random measure satisfies the following
conditions.

(i) For any A ∈ E0, where

E0 = {A ∈ E : m(A) <∞},

then M(A) = M(ω,A) is a Poisson random variable on (Ω,F , P ) such that

M(A) ∼ Poisson(m(A)).

(ii) For any A ∈ E/E0 we have

M(A) = ∞ a.s.

(iii) If A1, . . . , Ak are disjoint sets in E0, then M(A1), . . . ,M(Ak) are independent.

(iv) There is an event Ω0 ∈ F with P (Ω0) = 1such that for every ω ∈ Ω0,
(M(A), A ∈ E) is a measure.
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Let C be a set in (0,∞) × R
d. For a Lévy process {X(t), t ≥ 0} we define the

counting process
N∗(C) = #{t > 0 : (t,∆X(t)) ∈ C}.

Theorem 1.34. For any Lévy process {X(t), t ≥ 0}, the jump counting measure
N∗ is a Poisson random measure on (0,∞) × R

d with mean measure Leb × ν = n,
where ν is the Lévy measure of X(1).

By following the notation of [62, 105], we can also write

N∗ =
∑

{t:∆Xt 6=0}
δ(t,∆Xt). (1.10)

Think of a Poisson random measure N∗ as a point process on E: for each A ∈ E0,
N∗(A) can be regarded as the random number of points belonging to A, which is why
N∗ is also called a counting measure. That is, there are random elements {Ti}i≥1

on (Ω,F , P ) with value on E such that

N∗(A) =
∞∑

i=1

IA(Ti).

Now we want to underline some properties of this random measure.

Proposition 1.35. Let N be a Poisson random measure on (E, E) with mean mea-
sure n. Let (Ẽ, Ẽ) be another measurable space and h : E → Ẽ a measurable
function. Then (Ñ(A), A ∈ Ẽ) is a Poisson random measure on (Ẽ, Ẽ) with σ-finite
mean measure

ñ = n ◦ h−1

Proof. See [102, 4.3].

Corollary 1.36. We assume additionally that Ñ is defined on a probability space
rich enough to support an independent of Ñ uniform random variable U on (0,1)
and N can be written as

N =
∞∑

i=1

IA(Ti)

for random elements {Ti}i≥1 defined on (Ω,F , P ) with values in (E, E). Then there
exists a sequence of random elements {T̃i}i≥1 defined on the same probability space
as Ñ such that

{T̃i}i≥1
d
= {Ti}i≥1

and

Ñ =
∞∑

i=1

IÃ(H(T̃i)) a.s.

Proof. See [62, Corollary 5.11].

Theorem 1.37. If ν(Rd) = ∞, then, almost surely, jumping times are countable
and dense in [0,∞). If 0 < ν(Rd) < ∞, then, almost surely, jumping times are
infinitely many and countable in increasing order, and the first jumping time T (ω)
has exponential distribution with mean 1/ν(Rd).



24 1. Preliminaries

Proof. See [109, Theorem 21.3].

Furthermore, also by analyzing the structure of paths of a Lévy process, it is
possible to obtain the expression of the characteristic exponent (1.6).

Theorem 1.38 (Lévy-Itô decomposition). Let X be a Lévy process and ν the Lévy
measure of X. Then X has a decomposition

Xt = Wt + at+

∫

|x|<1
x(Nt(·, dx) − tν(dx)) +

∑

0<s≤t
∆XsI{|∆Xs|≥1}

where (Wt)t≥0 is Brownian motion; for any set Λ, 0 6∈ Λ̄, NΛ
t =

∫

ΛNt(·, dx) is a
Poisson process independent of (Wt)t≥0; N

Λ
t is independent of NΓ

t if Λ and Γ are
independent and NΛ

t has parameter ν(Λ).

From Theorem 1.38 it follows that a Lévy process X can be write as a sum

X = X(1) +X(2) +X(3),

where X(1) ia a scaled Brownian motion with drift, X(2) is a square integrable
martingale with an almost surely countable number of jumps on each finite time
interval which are of magnitude less than unity and X(3) is a compound Poisson
process. Furthermore, Theorem 1.38 allows one to give an alternative proof to
Theorem 1.31.

1.3.2 Properties of Lévy processes

In the following, we want to point out some properties of Lévy processes, related to
the Lévy generating triplet (a, σ, ν). Here, we give a basic classification

Definition 1.39. Let X = (Xt)t≥0 a Lévy process on R with generating triplet
(a, σ, ν). It is said to be of

- type A if σ = 0 and ν(R) <∞;

- type B if σ = 0, ν(R) = ∞ and
∫

|x|≤1 |x|ν(dx) <∞;

- type C if σ 6= 0 or
∫

|x|≤1 |x|ν(dx) = ∞.

If σ = 0, then X = (Xt)t≥0 is called purely non-Gaussian or pure jump Lévy
process. We have also the following definitions for Lévy processes.

Definition 1.40. Let X = (Xt)t≥0 a Lévy process on R with generating triplet
(a, σ, ν). It is said to be of

- if
∫

|x|≤1 ν(R) <∞ the process is of finite activity;

- if
∫

R
ν(R) = ∞ process is of infinite activity.

An finite activity Lévy process has finitely many jumps in any finite interval.
Conversely, an infinite activity Lévy process are able to capture both rare large
moves and frequent small moves. High activity is accounted for by a large (in most
cases infinite) number of small jumps [111].
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Proposition 1.41. A Lévy process is a compound Poisson process with drift if and
only if its generating triplet (a, σ, ν) satisfies

σ = 0 and ν(R) <∞.

We recall the definition of finite variation [103]. Let ∆ e a subdivision of the
interval [0, t] with 0 = t0 < t1 < . . . < tn = t and f a function f : [a, b] → R

d; the
number |∆| = supi |ti+1 − ti| is called the modulus or mesh of ∆. We consider the
sum

S∆
t =

∑

t

|f(ti+1) − f(ti)|

Definition 1.42. The function f is of finite variation if for every t

St = sup
∆
S∆
t < +∞

The function t → St is call the total variation of f and St is the variation of f on
[0, t]. The function S is obviously positive and increasing and if

lim
t→∞

St < +∞,

the function f is said to be of bounded variation.

The same notions could be extended on any interval [a, b]. For example, trajec-
tories of Brownian motion are almost surely of infinite variation. Therefore, a Lévy
process with a Brownian component is of infinite variation.

Proposition 1.43. The Brownian paths are a.s. of infinite variation on any inter-
val.

Proof. See [103, Corollary 2.5].

Consequently, it could be prove the following result.

Proposition 1.44. A Lévy process is of finite variation if and only if its generating
triplet (a, σ, ν) satisfies

σ = 0 and

∫

|x|≤1
|x|ν(dx) <∞. (1.11)

Note that the finiteness of the integral in (1.11) also allows one to write the
characteristic exponent (1.6) as

ψ(θ) = idθ +

∫

R\{0}
(eiθ−1x)ν(dx) (1.12)

where the constant d ∈ R relates to the constant a and the measure ν via

d =

(

a−
∫

|x|<1
xν(dx)

)

. (1.13)
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Suppose now that ν(−∞, 0) = 0, then the corresponding Lévy process has no
negative jumps. If further it has σ = 0,

∫ ∞

0
(1 ∧ x)ν(dx) <∞

and d in (1.13) is positive, it becomes clear that the Lévy process has nondecreasing
paths. We call such process a subordinator . A subordinator is a nonnegative nonde-
creasing Levy process. It has no Brownian part (σ = 0), a nonnegative drift and a
Lévy measure which is zero on the negative half-line (it has only positive increments).
Note that a subordinator is nondecreasing and always of finite variation.

Remark 1.45. When X = (Xt)t≥0 is a subordinator, the Laplace transform of its
distribution is more convenient than the characteristic function. The general form
is as follows

E[e−uXt ] = exp[t(

∫ ∞

0
(e−ux − 1)ν(dx) − du)] (1.14)

where u ≥ 0, see [109, Remark 21.6].

The tail behavior of the distribution of a Lévy process and, in consequence, its
moments, are determined by the Lévy measure.

Proposition 1.46. Let X = (Xt)t≥0 be a Lévy process on R with generating triplet
(a, σ, ν). The n-th absolute moment of Xt, is finite if and only if

∫

|x|≥0
|x|nν(dx) <∞

We remark, that it is not always an easy task to find the analytical behavior
of tails of a infinitely divisible distribution. Now, we recall another useful property
associated to the Lévy measure ν.

Proposition 1.47. Let X = (Xt)t≥0 be a Lévy process on R with generating triplet
(a, σ, ν) and let u ∈ R. The exponential moment E[euXt ] is finite for some t or,
equivalently, for all t > 0 if and only if

∫

|x|≥1 e
uxν(dx) <∞. In this case

E[euXt ] = etψ(−iu)

where ψ is the characteristic exponent of the Lévy process defined by (1.6).

Proof. See [109, Theorem 25.17] or [74, Theorem 3.6]

To model stock price dynamic, we will consider discounted processes process Yt
define as

Yt = eωt+Xt

where Xt is a Lévy process and ω is a convexity correction, defined by

ω = −ψX(−i) (1.15)

where ψ is the characteristic exponent of a given distribution µ as defined in (1.6).
Under some measure Q, this process will be a martingale, but to prove that, we will
need additional assumptions.
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Proposition 1.48. Let (Ω,F , P ) be a probability space and X = (Xt)t≥0 be a Lévy
process on R with generating triplet (a, σ, ν). If for some u ∈ R

∫

|x|≥1
euxν(dx) <∞. (1.16)

Then the process Y = (Yt)t≥0, defined as

Yt =
euXt

E[euXt ]
t ≥ 0,

is a martingale.

Proof. By Proposition 1.24 and condition 1.16, we have Yt ∈ L1 and thus we can
calculated the conditional expectation. Since X is a Lévy process we can write for
0 ≤ s ≤ t

EP

[
euXt

E[euXt ]

∣
∣
∣
∣
Fs
]

= EP

[

eu(Xt−Xs)

E[eu(Xt−Xs)]

euXs

E[euXs ]

∣
∣
∣
∣
Fs
]

= XsEP

[

eu(Xt−Xs)

E[eu(Xt−Xs)]

∣
∣
∣
∣
Fs
]

= Xs.

1.4 Stable distributions

There are several equivalent ways to define the class of α-stable distribution (stable
paretian distribution or, shortly, stable distribution). For a complete study of stable
non-gaussian distribution, we refer to [120], for the one dimensional case, [108] and
[99] for a complete overview of financial applications.

Definition 1.49. A random variable X is said to have a stable distribution, if it
has a domain of attraction, i.e., if there is a sequence of i.i.d. random variables
Y1, Y2, . . . and sequences of positive {dn} and real numbers {an}, such that

Y1 + Y2 + . . .+ Yn
dn

+ an
d→ X, (1.17)

where the notation
d→ denotes convergence in distribution.

This definition states that stable distribution are the only distributions that can
be obtained as limits of normalized sums of i.i.d. random variables. This definition
can be viewed as an extension of the classical central limit theorem (CLT) [43], in
fact, if we take X a gaussian distribution and the Yis are i.i.d with finite variance,
then Definition 1.49 becomes the ordinary central limit theorem.

Definition 1.50. A random variable X is said to have a stable distribution if there
are parameters 0 < α ≤ 2, σ ≥ 0, −1 ≤ β ≤ 1 and µ ∈ R such that its characteristic
function has the following form:

E[eiθX ] =

{
exp{−σα|θ|α(1 − iβ(sign(θ) tan πα

2 )) + iµθ}, if α 6= 1,
exp{−σ|θ|(1 + iβ 2

π (sign(θ) ln |θ|)) + iµθ}, if α = 1,
(1.18)
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Figure 1.1: Standard symmetric α-stable densities (β = 0, σ = 1, µ = 0) for varying α.

where the function sign is so defined

sign(θ) =







1, if θ > 0,
0, if θ = 0,
−1, if θ < 0.

We write X ∼ Sα(σ, β, µ).

The parameter α is the index of stability and can also be interpreted as a shape
parameter, β is the skewness parameter, σ is a scale parameter and µ is a location
parameter. It can be prove that Definitions 1.49 and 1.50 are equivalent.

Proposition 1.51. A distribution µ on R
d is α-stable with 0 < α < 2 if and only if

it is an infinitely divisible with characteristic triplet (a, 0, ν) and there exists a finite
measure σ on Sd−1, the unit sphere on R

d, such that

ν(B) =

∫

Sd−1

σ(dξ)

∫ ∞

0
IB(rξ)

dr

r1+α
. (1.19)

A distribution on R
d is α-stable with α = 2 if and only if it is Gaussian.

Proof. See [109, Theorem 14.3].

The measure σ is called spherical measure and it is uniquely determined by the
distribution µ of the α-stable random variable X. Therefore, if X is a real valued
α-stable random variable, with 0 < α < 2 then its Lévy measure (1.19) has the
following form

ν(x) =
a+

xα+1
I{x>0} +

a−
xα+1

I{x<0} (1.20)
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Figure 1.2: Standard symmetric α-stable densities (α = 1.5, σ = 1, µ = 0) for varying β.

with a+, a− ∈ R. The representation of an α-stable distribution as in Proposition
1.51, will be important to understand the construction of a tempered stable distri-
bution. Here we will show another property of α-stable distribution.

Definition 1.52. Let µ be a probability measure on R
d. It is called selfdecomposable

if, for any b > 1, there is a probability measure ρb on R
d such that

µ̂(z) = µ̂(b−1z)ρ̂b(z).

where we indicate with µ̂, the Fourier transform of µ.

It can be prove that any α-stable distribution on R
d is selfdecomposable, see

[109, Example 15.2].
By considering the Lévy measure (1.20), we can prove the following fact:

Remark 1.53. An α-stable distributions on R never admit the second moment, and
if α > 1, they admit only the first moment.

Since the distribution of an α-stable process is infinitely divisible, we can define
an α-stable process.

Definition 1.54. Let X = (Xt)t≥0 be a Lévy process on R
d. It is called a stable

process if the distribution of Xt in t = 1 is α-stable.

From the explicit form of the Lévy measure (1.20), we can consider r−1−αdr as
the radial part of the Lévy measure of the α-stable process. As α decrease, r−1−α

gets smaller for 0 < r < 1 and bigger for 1 < r <∞. Roughly speaking, an α-stable
process moves mainly by big jumps if α is close to 0, and mainly by small jumps
if α is close to 2. This tendency of paths of an α-stable process can be view, for
example, in the computer simulation performs in [59].
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The canonical representation (1.18) has a disadvantage. The characteristic func-
tion is not a continuous function of the parameters, therefore if we want to look at the
simulation problem, we prefer to consider the alternative representation [120, 117].

Definition 1.55. A random variable X is α-stable if and only if its characteristic
function is given by

E[eiθX ] =

{
exp{−σα2 |θ|α exp{−iβ2(sign(θ)π2K(α))} + iµθ}, if α 6= 1,
exp{−σ2|θ|(π2 + iβ2sign(θ) ln |θ|) + iµθ}, if α = 1,

(1.21)

where

K(α) = α− 1 + sign(1 − α)

{
α, α < 1,
α− 2, α > 1.

The parameters σ2 and β2 are related to σ and β, from the representation (1.18), as
follows. For α 6= 1, β2 is such that

tanβ2
πK(α)

2
= β tan

πα

2
,

and the new scale parameter is

σ2 = σ
(

1 + β2 tan2 πα

2

)1/(2α)
.

For α = 1, β2 = β and σ2 = 2
πσ. Furthermore, we define γ0 as

γ0 = −π
2
β2
K(α)

α
. (1.22)

1.4.1 Basic properties

In the following, we recall some basis properties of stable distribution. Proofs of
these facts could be found on [108].

Proposition 1.56. Let X1 and X2 be independent random variable such that X1 ∼
Sα(σ1, β1, µ1) and X2 ∼ Sα(σ2, β2, µ2). Then X1 +X2 ∼ Sα(σ,β,µ), with

σ = (σα1 + σα2 )
1
α , β =

β1σ
α
1 + β2σ

α
2

σα1 + σα2
, µ = µ1 + µ2

It is not true in general, that the sum of two stable distribution with different α
is stable.

Proposition 1.57. X ∼ Sα(σ, β, µ) is symmetric if and only if β = 0 and µ = 0.

Proof. A random variable is symmetric, if and only if the characteristic function
1.18 is real, therefore, if and only if β = 0 and µ = 0.

We write SαS for a symmetric α-stable distribution. The form of its character-
istic function takes the particularly simple form

E[eiθX ] = e−σ
α|θ|α .
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Now, we want to analyze the asymptotic behavior of the tail probability P (X <
−λ) and P (X > λ) as λ → ∞ for an α-stable distribution X. If α = 2, the tail
probabilities decrease exponentially as λ→ ∞, i.e.,

P (X < −λ) = P (X > λ) ∼ 1

2σλ
√
π
e
−λ2

4σ2 ,

see, for example, [42]. If α < 2, the tail behavior is totally different.

Proposition 1.58. Let X ∼ Sα(σ, β, µ) with 0 < α < 2. Then

{
limλ→∞ λαP (X > λ) = Cα

1+β
2 σα,

limλ→∞ λαP (X < −λ) = Cα
1−β

2 σα,
(1.23)

where Cα is a constant depending on α,

Cα =

{
1−α

Γ(2−α)cos(πα
2

) , if α 6= 1
2
π , if α = 1

The tail behavior (1.23) is a widely use property of stable distribution.

Proposition 1.59. Let X ∼ Sα(σ, β, µ) with 0 < α < 2. Then

E[|X|p] <∞ for any 0 < p < α

E[|X|p] = ∞ for any p ≥ α.

There are stable distribution totally skewed on the right and for such distribution,
the integral E[e−µX ], with µ ≥ 0, exists.

Proposition 1.60. Let X ∼ Sα(σ, 1, 0), with 0 < α ≤ 2, then the expectation
E[e−µX ], with µ ≥ 0, equals

E[e−µX ] =

{

exp{− σα

cos( πα
2

)γ
α}, if α 6= 1

exp{σ 2
πγ ln(γ)}, if α = 1.

Proof. See [108, Proposition 1.2.12].

1.4.2 α-stable random measure

In this section, we want to recall the definition of α-stable random measures. Let
(Ω,F , P ) be a probability space and L0(Ω) the set of all real random variables defined
on it. Furthermore, let us consider (E, E ,m) a measure space and β a measurable
function

β : E → [−1, 1].

Define the subset E0 of E such that

E0 = {A ∈ E : m(A) <∞}.
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Definition 1.61. An independently scattered σ-additive set function

M : E0 → L0(Ω)

such that for each A ∈ E0,

M(A) ∼ Sα

(

(m(A))α,
β(x)m(dx)

m(A)
, 0

)

is called an α-stable random measure on (E, E) with control measure m and skewness
intensity β.



Chapter 2

Tempered stable distributions and

processes

A tempered stable (TS) Lévy process combines both α-stable and gaussian trends.
TS processes are well known processes in finance and statistical physics. In physics
literature they appeared with the name of truncated Lévy flight model , in papers
[72] and later in [93], by considering ideas contained in [82]. Contrarily to the
stable distribution, a TS distribution may have finite variance, we may have the
local behavior of the α-stable distribution, but tails are tempered. Since a TS
distribution is infinitely divisible, we can construct a TS process. In [72] is shown
that the convergence of the the sum of truncated Lévy flights to a normal process can
be so slow that a huge number (n ∼ 104) of independent events may be necessary
to ensure convergence to a gaussian stochastic process. In mathematical finance,
they were introduced with the name of KoBoL in [19], a four parameters subclass
of TS processes was called CGMY in [21, 22], see also [64] for other applications to
finance. We can find the mathematical formalization of TS processes, also called
tempering stable process, in [107], where the entire class of TS processes is resumed,
a formal and elegant definition is proposed and a view toward simulation is given.
In the following, we will refer principally to [107] and [115], where some subclass
previously cited are contained.

The tempering is related to an old idea of tilting a density function. Let f be a
probability density function on R+, with finite Laplace transform L(θ), defined in
(1.4). For every θ > 0 define a tilted density fθ by

fθ(x) =
1

L(θ)
e−θxf(x) = exp{−θx+ l(θ) + k(x)},

where, taking into account the condition f(x) > 0, f(x) = exp{k(x)} and L(θ) =
exp{−l(θ)}. The Laplace transform Lθ of fθ is given by

Lθ(λ) = exp{−l(λ+ θ) − l(θ)}. (2.1)

Assume additionally that f is infinitely divisible, therefore we obtain from (1.14)

l(λ) =

∫ ∞

0
(1 − e−λx)ν(dx) + λd,
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where ν is a Lévy measure on R+ and d ≥ 0. From (2.1) we get

Lθ(λ) = exp{
∫ ∞

0
(e−λx − 1)e−θxν(dx) − λd}.

Therefore, tilting an infinitely divisible density f 7→ fθ leads to the tilting of the
corresponding Lévy measure ν 7→ νθ, where νθ(dx) = e−xθν(dx). More generally, we
take products of convolution powers f∗riθi

of fθi with ri, θi > 0, where f is infinitely
divisible, and then their limits, therefore we obtain distributions having the Laplace
transform of the form

exp{
∫ ∞

0
(e−λx − 1)q(x)ν(dx) − λd},

where q is a completely monotone function with q(∞). We call such operation on
Lévy measure ν, tempering or tilting if q(x) = e−xθ. In the following, we focus our
attention on tempering stable Lévy measure (1.19).

2.1 Definitions and properties

In this section we will review the definition and properties of the TS distributions
introduced by [107]. The polar coordinates representation of a measure ν = ν(dx)
on R

d
0 := R

d \ {0} is the measure ν = ν(dr, du) on (0,∞) × Sd−1 obtained by the
bijection x 7→ (‖x‖, x

‖x‖). By the radial representation (1.19), the Lévy measure ν0

of an α-stable distribution on R
d in polar coordinates is of the form

ν0(dr, du) = r−α−1drσ(du) (2.2)

where α ∈ (0, 2) and σ is a finite measure on Sd−1. A tempered α-stable distribution
is defined by tempering the radial term of ν0 as follows:

Definition 2.1. A probability measure µ on R
d is called tempered α-stable (abbre-

viated as TS) if is infinitely divisible without Gaussian part and has Lévy measure ν
that can be written in polar coordinated

ν(dr, du) = r−α−1q(r, u)dr σ(du), (2.3)

where α and σ are as above, and

q : (0,∞) × Sd−1 7→ (0,∞)

is a Borel function such that q(·, u) is completely monotone with q(∞, u) = 0 for
each u ∈ Sd−1. A TS distribution is called a proper TS distribution if

lim
r→0+

q(r, u) = 1

for each u ∈ Sd−1.

The completely monotonicity of q(·, u) means that

(−1)n
d

dr
q(r, u) > 0

for all r > 0, u ∈ Sd−1, and n = 0, 1, 2, . . .. In particular q(·, u) is strictly decreasing
and convex.



2.1.1 The Rosiński measure 35

Remark 2.2. (a) The class of TS distributions contains β-stable distributions
with β > α. Indeed, one takes q(r, u) = rα−β in 2.3.

(b) Proper TS distributions do not contain any stable distribution.

(c) TS distributions are selfdecomposable in the sense of Definition (1.52), this
follows from [109, Theorem 15.10], since q is a Borel function decreasing in
r > 0.

2.1.1 The Rosiński measure

Sometimes the only knowledge of the Lévy measure cannot be enough to obtain
analytical properties of TS distributions. Therefore, the definition of Rosiński mea-
sure allows one to overcome this problem and to obtain explicit analytic formulas
and more explicit calculations. More detailed, the tempering function q can be
represented as the Laplace transform

q(r, u) =

∫ ∞

0
e−rsQ(ds|u) (2.4)

where {Q(·|u)}u∈Sd−1 is a measurable family of Borel measures on (0,∞).

Remark 2.3. In the case of proper TS distribution, Q(·|u) is a probability measure.

Define a measure Q on R
d by

Q(A) :=

∫

Sd−1

∫ ∞

0
IA(vu)Q(dr|u)σ(du), A ∈ B(Rd), (2.5)

we also define the measure R by

R(A) :=

∫

Rd

IA(
x

‖x‖2
)‖x‖αQ(dx), A ∈ B(Rd). (2.6)

Clearly R({0}) = 0 and Q({0}) = 0 and Q can be expressed in terms of the measure
R as follows:

Q(A) =

∫

Rd
0

(
x

‖x‖2
)‖x‖αR(dx), A ∈ B(Rd). (2.7)

As we said above, the measure R is consider to obtain a most convenient de-
scription of distributional properties of TS distributions. In order to understand the
relation between the Lévy measure ν, as consider in (2.3), and the measure R, we
show a fundamental result, see also [107, Theorem 2.3].

Theorem 2.4. Lévy measure ν of a TS distribution can be written in the form

ν(A) =

∫

Rd
0

∫ ∞

0
IA(tx)αt−α−1e−tdtR(dx), A ∈ B(Rd). (2.8)

where R is a unique measure on R
d such that R({0}) = 0

{ ∫

Rd(‖x‖2 ∧ ‖x‖α)R(dx) <∞, α ∈ (0, 2)
∫

Rd(log(1 + ‖x‖) + 1)R(dx) <∞, α = 0
(2.9)
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If ν is as in (2.3) then R is given by (2.6).
Conversely, if R is a measure satisfying (2.9), then (2.3) defines the Lévy measure

of a TS distribution. ν corresponds to a proper TS distribution if and only if
{ ∫

Rd ‖x‖αR(dx) <∞., α ∈ (0, 2)
R(Rd) <∞, α = 0

(2.10)

Proof. In the following we will prove only the case α = 0, for the case α ∈ (0, 2) and
the proof of existence and uniqueness of the measure R satisfying (2.9), readers are
referred to Theorem 2.3 of [107]. Let us assume that α = 0, then the condition

∫

Rd

(log(1 + ‖x‖) + 1)R(dx) <∞ (2.11)

is necessary and sufficient for ν to be a Lévy measure. In order to prove the necessity,
we assume that ν is a Lévy measure, i.e.

∫

‖x‖≥1
ν(dx) <∞

By equality (2.8), it follows that

∞ >

∫

‖x‖>1
ν(dx) =

∫

Rd

∫ ∞

1
‖x‖

t−1e−tdtR(dx)

=

∫

‖x‖≤1

∫ ∞

1
‖x‖

t−1e−tdtR(dx) +

∫

‖x‖>1

∫ ∞

1
‖x‖

t−1e−tdtR(dx)

≥
∫

‖x‖≤1
KR(dx) + e−1

∫

‖x‖>1
log(‖x‖)R(dx)

therefore, (2.11) holds. Conversely, if (2.11) is fulfilled, then ν is a Lévy measure,
indeed

∫

‖x‖≤1
‖x‖2ν(dx) =

∫

Rd

‖x‖2

∫ 1
‖x‖

0
te−tdtR(dx)

≤
∫

Rd

‖x‖2(1 − e−
1
x (1 +

1

x
))R(dx)

≤
∫

‖x‖≤1
(log(1 + ‖x‖))R(dx) +

∫

‖x‖>1
R(dx)

and
∫

‖x‖>1
ν(dx) =

∫

Rd

∫ ∞

1
‖x‖

t−1e−tdtR(dx)

≤
∫

‖x‖≤1

∫ ∞

1
‖x‖

1

t(1 + t2

2 )
dtR(dx) +

∫

‖x‖>1

∫ ∞

1
‖x‖

t−1e−tdtR(dx)

≤ 1

2

∫

‖x‖≤1
log(1 + 2‖x‖2)R(dx) +K ′′

∫

‖x‖>1
R(dx),

≤ K ′
∫

‖x‖≤1
log(1 + ‖x‖)R(dx) +K ′′

∫

‖x‖>1
R(dx),

where K ′ and K ′′ are positive constants.
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Definition 2.5. The unique measure R in (2.8) is called the Rosiński measure or
the spectral measure of the corresponding TS distribution.

In the following we will call the measure R, Rosiński measure, as in [115]. By
considering Lévy measures of proper and general TS distributions, we explain the
motivation of their differences.

Proposition 2.6. Let ν be a given measure by (2.8). The function s→ sαν{‖x‖ >
s}, s>0 is decreasing with

lim
s→0+

sαν{‖x‖ > s} = α−1

∫

Rd

‖x‖αR(dx) and lim
s→∞

sαν{‖x‖ > s} = 0. (2.12)

Hence ν is a Lévy measure of a proper TS distribution if and only if

lim
s→0+

sαν{‖x‖ > s} <∞.

In the general case the limit (2.12) as s→ 0+ is not finite. TS distributions may
have moments of any order, even exponential moments of some order. The behavior
of the tail depends on their Rosiński measure.

Proposition 2.7. Let µ be a TS distribution with Lévy measure given by (2.8).
Then

(a)
∫

Rd ‖x‖pµ(dx) <∞ for p ∈ (0, α);

(b)
∫

Rd ‖x‖αµ(dx) <∞ ⇐⇒
∫

‖x‖>1 ‖x‖α log(‖x‖)R(dx) <∞;

(c)
∫

Rd ‖x‖pµ(dx) <∞ ⇐⇒
∫

‖x‖>1 ‖x‖pR(dx) <∞ when p > α;

(d)
∫

Rd exp{θ‖x‖}µ(dx) <∞ ⇐⇒ R({x : ‖x‖ > θ−1}) = 0 where θ > 0.

Proof. See [107, Proposition 2.7]

Remark 2.8. By (d) of the above Proposition, if the support of R is a bounded set,
then some exponential moment are also finite.

Now, we consider the characteristic function of a TS distribution. It is expressed
not by using the Lévy measure ν, but by considering only the Rosińsky measure R.
A feature of the Rosińsky measure, is that, allows one to write the characteristic
function in an easy form.

Proposition 2.9 (Characteristic function). Let X be a random vector with TS dis-
tribution µ with Lévy measure (2.8).

(a) If α ∈ (0, 2) and E[‖X‖] <∞, then the characteristic function φ of X is given
by

φ(u) = µ̂(u) = exp(

∫

Rd
0

ψα(〈u, x〉)R(dx) + i〈u, b〉) (2.13)

where

ψα(y) =







Γ(−α)((1 − iy)α − 1 + iαy), 0 < α < 1 and 1 < α < 2
(1 − iy) log(1 − iy) + iy, α = 1
− log(1 − iy) − iy, α = 0

(2.14)

and b = E[X].
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(b) If α ∈ (0, 1) and
∫

‖x‖≤1
‖x‖R(dx) <∞, (2.15)

holds, then X ∼ TS0
α(R, b0) means that the characteristic function φ0 of X is

of the form

µ̂ = exp(

∫

Rd
0

ψ0
α(〈u, x〉)R(dx) + i〈u, b0〉) (2.16)

where

ψ0
α(y) =

{
Γ(−α)((1 − iy)α − 1), α ∈ (0, 1)
− log(1 − iy), α = 0

(2.17)

and b0 ∈ R
d is the drift vector (i.e. b0 =

∫

‖x‖≤1 ‖x‖ν(dx)).

Before the proof, we recall some results on the limit behavior of the function ψα
at zero and infinity, see [107].

Lemma 2.10. The following limits are verified

lims→0 s
−2ψα(s) = −1

2Γ(2 − α), α ∈ [0, 2),
lims→∞ s−1ψ0(s) = −i, α = 0,
lims→∞ s−1ψα(s) = −iΓ(1 − α), α ∈ (0, 1),
lims→∞(s−1ψ1(s) + i log(s)) = −π

2 + i, α = 1,

lims→∞ s−αψα(s) = Γ(−α)e−
iαπ
2 , α ∈ (1, 2),

(2.18)

Furthermore if α ∈ (0, 1)

lims→0 s
−2ψ0

α(s) = Γ(1 − α)

lims→∞ s−αψ0
α(s) = Γ(−α)e−

iαπ
2

(2.19)

Consequently, for each α there is a finite positive constant Cα such that for all s ∈ R

C−1
α (s2 ∧ |s|α∨1) ≤ |ψα(s)| ≤ Cα(s2 ∧ |s|α∨1), α 6= 1,

C−1
1 [s2 ∧ |s|(1 + log+ |s|)] ≤ |ψ1(s)| ≤ Cα[s2 ∧ |s|(1 + log+ |s|)], α = 1,

C−1
α (s2 ∧ |s|α) ≤ |ψ0

α(s)| ≤ Cα(s2 ∧ |s|α), α ∈ (0, 1).

C−1
0 [(1 + log(1 + s))] ≤ |ψ1(s)| ≤ C0[|s|(1 + log(1 + s))], α = 0.

(2.20)

Proof. First, integrals (2.13) and (2.16) are well define due to conditions (2.9) and
(2.20) of Lemma 2.10. It is well known that if the mean is finite, that is if the first
absolute moment exists, i.e.

∫

Rd ‖x‖µ(dx) <∞, then µ̂ can be written as

µ̂ = exp

(∫

Rd

(ei〈y,x〉 − 1 − i〈y, x〉)ν(dx) + i〈y, b〉
)

where b =
∫

Rd xµ(dx). By (2.8), we obtain the equality (2.13), where, if α ∈ [0, 2)

ψα(s) =

∫ ∞

0
(eist − 1 − ist)t−α−1e−tdt, (2.21)
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If α ∈ [0, 1) and
∫

‖x‖≤1 ‖x‖R(dx) < ∞, by Proposition 2.33
∫

‖x‖≤1 ‖x‖ν(dx) < ∞,
in which case µ̂ can be written as

exp

(∫

Rd

(ei〈y,x〉 − 1)ν(dx) + i〈y, b0〉
)

,

where b0 is the drift as defined in [109]. By (2.8), we obtain the equality (2.16),
where

ψ0
α(s) =

∫ ∞

0
(eist − 1)t−α−1e−tdt, (2.22)

and, furthermore, the equality

ψα(s) = ψ0
α(s) − is

∫ ∞

0
t−αe−tdt (2.23)

holds. Now we will prove (2.14) and (2.17). If α ∈ (0, 2) and α 6= 0, by elementary
properties of the gamma function we obtain

∫ ∞

0
(eist − 1 − ist)t−α−1e−tdt =

∞∑

n=2

(is)n

n!

∫ ∞

0
tn−α−1e−tdt

=
∞∑

n=2

(is)n

n!
Γ(n− α)

= Γ(−α)(2F1(−α, b, b; is) − 1 + iαs)

= Γ(−α)((1 − is)α − 1 + iαs)

where 2F1(a, b, c; z) is the hypergeometric function as defined in [1, 15.1.1]. With a
similar calculus, if α ∈ (0, 1), we obtain

∫ ∞

0
(eist − 1)t−α−1e−tdt =

∞∑

n=1

(is)n

n!

∫ ∞

0
tn−α−1e−tdt

=

∞∑

n=1

(is)n

n!
Γ(n− α)

= Γ(−α)(2F1(−α, b, b; is) − 1)

= Γ(−α)((1 − is)α − 1),

and it is easy to check equality (2.23). Now, we consider the case α = 1. We can
write for α ∈ (0, 2)

ψα(s) =
Γ(2 − α)

α

(1 − is)α − 1 + iαs

α− 1
.

By the Dominated Convergence Theorem and l’Hôpital rule, we can calculate the
limit for αց 1 and obtain

ψ1(s) = (1 − is) log(1 − is) + is.
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We analyze also the case α = 0 and write

ψα(s) = Γ(1 − α)
(1 − is)α − 1 + iαs

−α
and by a similar argument, we can calculate the limit for αց 0 and obtain

ψ1(s) = − log(1 − is) − is.

Remark 2.11. Let X be a TS distributed random vector with the spectral measure
R. By Proposition 2.7, see also [107, Proposition 2.7], we can say the following:

1. In the above definition, E[||X||] <∞ if and only if α ∈ (1, 2) or

α = 1 and

∫

||x||>1
||x|| log ||x||R(dx) <∞, (2.24)

or

α ∈ (0, 1) and

∫

||x||>1
||x||R(dx) <∞. (2.25)

2. If α ∈ (0, 1) and
∫

Rd ||x||R(dx) < ∞, then both form (2.13) and (2.16) are
valid for X. Therefore X ∼ TS0

α(R, b0) and X ∼ TS0
α(R, b), where b =

b0 + Γ(1 − α)
∫

Rd xR(dx).

A TS distribution is characterized by an index α ∈ (0, 2), a Rosińsky measure R,
and a shift b. A proper TS distribution is uniquely characterized by three parameters
α, R and b, that is, the following result is verified.

Proposition 2.12. The triple (α,R, b) is identifiable in the subclass of proper TS
distribution.

Proof. By Proposition (2.9), if two TS distribution have the same triple (α,R, b),
are identical distributed. Conversely, let X1 and X2 be two proper TS distribution
identical distributed, with Lévy measures ν1 and ν2 respectively. If α ∈ (1, 2), by
Proposition 2.7, the mean is finite, therefore, we can choose

b1 − b2 =

∫

Rd

‖x‖dν(dx),

and by representation (2.13), the characteristic function is

µ̂i(u) = exp(

∫

Rd
0

ψα(〈u, x〉)Ri(dx) + i〈u, bi〉),

with i ∈ {1, 2}. X1 and X2 are identical distributed, therefore, they have the same
characteristic function [109, Proposition 2.5] and by the Lévy-Khintchine represen-
tation (1.6), we obtain ν1 = ν2. Hence for every B ∈ B(Rd

0), the following equality
is satisfied

∫

Rd
0

∫ ∞

0
IB(tx)αt−α−1e−tdt(R1 −R2)(dx) = (ν1 − ν2)(B) = 0
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and by the positivity of the integrand function, we get R1 = R2.
If α ∈ (0, 1), by inequality (2.10)

∫

‖x‖≤1
‖x‖R(dx) ≤

∫

‖x‖≤1
‖x‖αR(dx) <∞

therefore we can use the representation (2.16) and the result is similar. If α = 1, a
similar result can be proved.

Remark 2.13. If α ∈ (0, 1) and X is not a proper TS, we cannot always define the
drift b.

By Proposition 1.56 the convolution of two stable distributions, with same sta-
bility index α, is still stable. A similar result is true also for TS distribution, that
is, the class of TS with same α is closed under convolution.

Proposition 2.14. Let X1 and X2 be random vectors in R
d, such that Xi ∼

TS(Ri, bi) are independent, then X1 +X2 ∼ TS(R1 +R2, b2 + b1).

In some application, it may be useful to know the form of the moment generating
function, when it exists. TS distributions may have moments of any order, even
exponential moments of some order. This depends on the Rosiński measure.

Proposition 2.15 (Moment generating function). Let X ∼ TS(R, 0) and R({x :
‖x‖ > θ−1}) = 0 for some θ > 0. Then for every yRd with ‖y‖ ≤ θ the moment
generating function of X exists and it is equal to

E[e〈y,X〉] =

{
exp{Γ(−α)

∫
[(1 − 〈y, x〉)α − 1 + α〈y, x〉]R(dx)}, α 6= 1

exp{
∫

[(1 − 〈y, x〉) log(1 − 〈y, x〉) + 〈y, x〉]R(dx)}, α = 1
(2.26)

If X ∼ TS0(R, 0) and R({x : ‖x‖ > θ−1}) = 0, then

E[e〈y,X〉] = exp[Γ(−α)

∫

[(1 − 〈y, x〉)α]R(dx)]. (2.27)

The cumulants order greater than one of a TS distribution can be calculated
purely in term of its Rosińsky measure R. To calculate cumulants, we want to recall
a result of [115] for a multidimensional TS random variable.

Proposition 2.16. Suppose that the Rosińsky measure R satisfies the moment con-
dition ∫

Rd
0

‖x‖mR(dx),

for an m ≥ 1 in case of 0 < α < 1, and for an m ≥ 2, when 1 ≤ α < 2. Then the
mth order cumulant of the TS random variable X ∼ TS(R, b) is given by

cm = Γ(m− α)µR,⊗m,

where

µR,⊗m =

∫

Rd
0

x⊗mR(dx),

where ⊗ stands for the Kronecker product.
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Proof. See Lemma 1 of [115].

Remark 2.17. The case m = 1 is a special one. It is possible to find a random
variable X ∼ TS with finite first moment, but such that the moment of the measure
R is infinite.

The following Lemma shows some relations between the Rosiński measure R
of the TS distribution and the Lévy measure of the α-stable distribution given by
(1.51).

Proposition 2.18. Let ν be a Lévy measure of a proper TS distribution, as in (2.3),
with the Rosiński measure R. Let ν0 be the Lévy measure of α-stable distribution
given by (1.51) or equivalently (1.19). Then

ν0(A) =

∫

Rd

∫ ∞

0
IA(tx)t−α−1dtR(dx), A ∈ B(Rd). (2.28)

Furthermore,

σ(B) =

∫

Rd

IB(
x

‖x‖)‖x‖αR(dx), B ∈ B(Sd−1). (2.29)

Proof. See [107, Lemma 2.14.].

By Proposition 2.18, we can see the relations between parameters of a proper
TS distributions and stable ones.

2.2 Some TS distributions

In the literature the name TS distribution is usually used without taking into account
the seminal work [107]. Results contained in that paper allow one to construct, not
only the classical TS distribution, that is the famous CGMY distribution, but a
potentially infinite family of distributions, i.e. the TS distributions. Additionally
for each given α ∈ (0, 2), this family of distributions is closed under convolution.
The only choice of a measure R, the measure we called Rosiński measure, satisfying
conditions 2.9, or the choice of the tempering function q as in (2.42), give us a
possible TS distribution, see [115]. We will be going to show some examples. In this
examples, random variables with finite expectation are considered, i.e. E[X] < ∞,
therefore, the characteristic function can be written in the form (2.13), that is one
can use the truncation function h(x) = x in the Lévy-Khinchin representation.

2.2.1 Generalized TS (GTS) distribution

As said above, we consider a tilting, that is, given a Lévy measure ν0 of a stable
distribution, we define a new Lévy measure

ν(dr) = e−θrν0(dr).

By following the approach of [72], we consider the more general distribution, as in
[29]. Let 0 < α− < 2, 0 < α+ < 2, c+, c−, λ+ and λ− positive constant, then

ν(dr) =
c−

|r|1+α− e
−λ−rI{r<0} +

c+
|r|1+α+

e−λ+rI{r>0} (2.30)
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is the Lévy measure of the generalized TS . The characteristic exponent for α+, α− 6=
1 has the form

ψ(u) =iub+ Γ(−α−)c−((λ− + iu)α− − λ
α−
− − iuλ

α−−1
− α−)

+ Γ(−α+)c+((λ+ − iu)α+ − λ
α+
+ + iuλ

α+−1
+ α+),

(2.31)

Since we are considering a parameter α− for negative jumps and a parameter α+

for positive jumps, we may see this law as an extension of the TS laws, in the sense
that we can define a random variable X of this kind as the sum of two independent
be TS random variables X+ and X−.

Remark 2.19. Let X be a random variable with GTS distribution, that is X has
Lévy measure given in 2.30. Then X can be written as the sum of independent TS
distribution X+ and X−, with characteristic triplet (γ−, 0, ν−) and (γ+, 0, ν+), where

ν−(dr) =
c−

|r|1+α− e
−λ−rI{r<0} ν+(dr) =

c+
|r|1+α+

e−λ+rI{r>0}

2.2.2 KoBoL distribution

A subclass of the previous example is given by choosing α+ = α− = α and α ∈ (0, 2).
Such distribution is a TS in the sense of Rosińsky [107], and it is appeared in the
literature under the name of KoBoL distribution. By Proposition 2.4, to define an
one dimensional TS distribution, it is sufficient to choice a completely monotone
function q(r, u) and a finite measure σ(du) on S0 = {±1}. If we set

q(r,±1) = e−λ±r, λ > 0, (2.32)

and the measure
σ({−1}) = c− and σ({1}) = c+, (2.33)

by the Definition 2.1, we get (2.30). The measures Q and R are given by formulas

Q = c−δ−λ− + c+δλ+ (2.34)

and
R = c−λ

α
−δ− 1

λ−

+ c+λ
α
+δ 1

λ+

, (2.35)

where δλ is the Dirac measure at λ. Since E[X] <∞, we can write the characteristic
exponent (2.13), i.e., if α 6= 1,

ψ(u) =iub+ Γ(−α)c−((λ− + iu)α − λα− − iuλα−1
− α)

+ Γ(−α)c+((λ+ − iu)α − λα+ + iuλα−1
+ α),

(2.36)

where we are considering the representation (1.9). If α = 1

ψ(u) =iu(b+ c+ − c−) + c+(λ+ − iu) log(1 − iu

λ+
)

+ c−(λ− + iu) log(1 +
iu

λ−
).
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In the limiting case α = 0, we obtain the Bilateral Gamma (BΓ) distribution [73]
of parameters (c+, c−, λ+, λ−, b) defined as the convolution of two Gamma random
variables Γ(c+, λ+) and Γ(c−, λ−) plus a shift, where the characteristic exponent
has the form

ψ(u) = iub+ c+

(

log
( λ+

λ+ − iu

)

− iu

λ+

)

+ c−

(

log
( λ−
λ− + iu

)

+
iu

λ−

)

(2.37)

2.2.3 CGMY distribution

Now, by taking into account the previous definition of KoBoL distribution, we recall
a well known law, widely applied in finance. Let be λ+ = M , λ− = G, c+ = c− = C,
α = Y and b = m, we obtain the characteristic exponent, if Y 6= 1,

ψ(u) = ium+ Γ(−Y )C((G+ iu)Y −GY + (M − iu)Y −MY )

− Γ(1 − Y )C(iuMY−1 − iuGY−1),
(2.38)

and, if Y = 1

ψ(u) = ium+ C(M − iu) log(1 − iu

M
) + C(G+ iu) log(1 +

iu

G
) (2.39)

therefore, we have a CGMY distribution with parameters (C,G,M, Y,m), where m
is the mean of the distribution, shortly CGMY (C,G,M, Y,m).

Proposition 2.20. The Variance Gamma distribution is a special case of the CGMY
distribution. If Y → 0, the CGMY reduces to V G, i.e.

CGMY (C,G,M, Y,m) = V G(C,G,M,m).

Proof. Let us assume without loss of generality, m = 0. By equation (2.38), we
can write the characteristic function of a CGMY distribution with parameters
(C,G,M, Y, 0),

φCGMY (u) = exp

(

CΓ(−Y )((G+ iu)Y −GY − iuY GY−1)

+ CΓ(−Y )((M − iu)Y −MY + iuYMY−1)

)

and, by the L’Hospital rule, we obtain the following inequalities

lim
Y→0

exp

(

− CΓ(1 − Y )

(
(G+ iu)Y −GY − iuGY−1

Y

+
(M − iu)Y −MY + iuMY−1

Y

))

= exp

(

− C(log(G+ iu) − log(G) + log(M − iu)

− log(M))

)

+ exp(C
G−M

MG
)

=

(
GM

GM + (M −G)iu+ u2

)C

+ exp(C
M −G

MG
),

that is, the characteristic function of the distribution V G(C,G,M, 0), see [111].
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2.2.4 Inverse gaussian (IG) distribution

The Lévy measure of the inverse gaussian distribution IG(a, b) is

νIG(dx) =
a√
2π
x−

3
2 e−

b2

2
xI{x>0}dx

By the Definition 2.1, we set

α =
1

2
,

the completely monotone function q(r, 1) is

q(r, 1) = e−
b2

2
r,

and the measure σ on {1} is

σ({1}) =
a√
2π
.

The measures Q and R are given by formulas

Q =
a√
2π
δ b2

2

and

R =
ab

2
√
π
δ 2

b2
,

where δλ is the Dirac measure at λ. We recall well known properties of the gamma
function,

Γ(1 + z) = zΓ(z),

and

Γ(
1

2
) =

√
π.

Furthermore, all positive and negative moments exist, see [111] and we can consider
the characteristic function (2.13). By the following equality

Γ(−1

2
) = −2

√
π.

we obtain

φIG(u) = exp(
ab

2
√
π

Γ(−1

2
)((1 − iu

2

b2
) − 1 +

iu

b2
))

= exp(−a(
√

b2 − 2iu− b) − iu
a

b
)

that is, the characteristic function of IG(a, b) with zero mean.
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2.3 KR distribution

The class of TS distribution has an infinite dimensional parametrization by a family
of measures, which makes their fitting to real data a difficult task. For this reason,
we propose a more flexible parametric model, we obtain explicit analytic formulas
and, therefore, a parametric statistical estimation can be developed.

Consider a TS distribution on R whose Lévy measure ν in polar coordinate is

ν(dr, du) = s−α−1q(r, u)dr σ(du) (2.40)

where

σ(A) =
k+r

α
+

α+ p+
IA(1) +

k−rα−
α+ p−

IA(−1), A ⊂ S0, (2.41)

and

q(r, 1) = (α+ p+)r
−α−p+
+

∫ +∞

0
e−rtI{t> 1

r+
}t
−α−p+−1dt

q(r,−1) = (α+ p−)r
−α−p−
−

∫ +∞

0
e−rtI{t> 1

r−
}t
−α−p−−1dt,

(2.42)

with α ∈ (0, 2), k+, k−, r+, r− > 0 and p+, p− > −α.

By Definition (2.4), it is straightforward to check that the probability measures
{Q(·|s)}s∈S0 corresponding to the Lévy measure ν can be deduced as

Q(r|1) = ((α+ p+)r
−α−p+
+ I{r> 1

r+
}r
−α−p+−1

Q(r| − 1) = (α+ p−)r
−α−p−
− I{r<− 1

r−
}|r|−α−p−−1)dx.

(2.43)

Then by Definition (2.5) and equation (2.41) we can write

Q(A) = k+r
−p+
+

∫ ∞

1/r+

IA(r)r−α−p+−1dr + k−r
−p+
−

∫ ∞

1/r−

IA(−r)|r|−α−p+−1dr

For a future use we define also

‖σ‖ := σ(S0) =
k+r

α
+

α+ p+
+

k−rα−
α+ p−

, (2.44)

thus the measure Q/‖σ‖ is a probability measure on (R,B(R)), since it is a normal-
ized finite measure. The finiteness of the measure Q can be easily verified.
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Taking into account Definition (2.6), we can write

R(B) =

∫

R

IB

(
sign(x)

x

)

|x|αQ(dx)

= k+r
−p+
+

∫ ∞

0
IB

(
sign(x)

|x|

)

|x|αI{x> 1
r+
}x
−α−p+−1dx

+ k−r
−p−
−

∫ 0

−∞
IB

(
sign(x)

|x|

)

|x|αI{x<− 1
r−
}|x|−α−p−−1dx

= k+r
−p+
+

∫ ∞

0
IB

(
1

x

)

I{x> 1
r+
}x
−p+−1dx

+ k−r
−p−
−

∫ 0

−∞
IB

(
1

x

)

I{x<− 1
r−
}|x|−p−−1dx

= k+r
−p+
+

∫ ∞

0
I{0<y<r+}y

p+−1dy

+ k−r
−p−
−

∫ 0

−∞
I{−r−<y<0}|y|p−−1dy

and the Rosińsky measure has the following form

R(dx) = (k+r
−p+
+ I(0,r+)(x)|x|p+−1 + k−r

−p−
− I(−r−,0)(x)|x|p−−1) dx. (2.45)

Definition 2.21. Let α ∈ (0, 2), , k+, k−, r+, r− > 0, p+, p− ∈ (−α,∞) \ {−1, 0},
and m ∈ R. A TS distribution is said to be the KR tempered stable distribution (or
KR distribution) with parameters (α, k+, k−, r+, r−, p+, p−, m) if is infinitely
divisible without gaussian part and has Lévy measure ν that can be written in polar
coordinates as

ν(dr, du) = r−α−1q(r, u)drσ(du)

where the function q is given in (2.42) and the measure σ is given in (2.41) or
equivalently if has Rosińsky measure of the following form

R(dx) = (k+r
−p+
+ I(0,r+)(x)|x|p+−1 + k−r

−p−
− I(−r−,0)(x)|x|p−−1) dx.

If a random variable X follows the KR distribution then we denote

X ∼ KR(α, k+, k−, r+, r−, p+, p−,m).

Now, we analyze some properties of KR distributions.

Proposition 2.22. Let X be a TS distribution defined by the Rosińsky measure in
(2.45), then X is a proper TS distribution with finite mean and with Lévy measure

ν(A) = k+r
−p+
+

∫ r+

0

∫ ∞

0
IA(tx)t−α−1e−txp+−1dt dx

+ k−r
−p−
−

∫ r−

0

∫ ∞

0
IA(−tx)t−α−1e−txp−−1dt dx,

(2.46)

for each Borel set A ∈ B(R0).
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Proof. By Theorem 2.4, the condition 2.10 is satisfies, that is,
∫

R

|x|αR(dx) <∞,

therefore, X is a proper TS distribution. By Proposition 2.7, if α ∈ (1, 2), then
E[X] <∞. Furthermore, if α ∈ (0, 1) we have

∫

‖x‖>1
‖x‖γR(dx) <∞

where γ > α and, by Proposition 2.7, it follows that E[X] < ∞ for each α ∈ (0, 2).
By Theorem 2.4, ν can be written in the form (2.46).

In next Proposition, we show that, unlike stable distributions, KR ones have all
moments finite, including exponential moments of some order. This result follows
by properties of the Rosińsky measure R. To find properties of KR distributions, we
prefer to analyze Rosińsky measure R instead of the Lévy measure ν. Fundamental
properties of TS distributions can be expressed directly in term of the Rosińsky
measure.

Proposition 2.23 (Exponential Moments). Let X be a random variable with the
proper TS distribution corresponding to the Rosińsky measure R defined in (2.45).
Then E[eθX ] <∞ if and only if −r−1

− ≤ θ ≤ r−1
+ .

Proof. To prove this property, we consider result (d) of Proposition 2.7. Let us
suppose that θ−1 ≥ r+, by (2.45), we have

R({|x| > r+}) = 0

and {|x| > r+} ⊇ {|x| > θ−1}, therefore

R({|x| > θ−1}) = 0.

Conversely, let us suppose that θ−1 < r+, then it exists an ε > 0, such that θ−1 =
r+ − ε, therefore, by (2.45)

R({|x| > θ−1}) = R({r+ − ε < |x| < r+}) 6= 0.

By Proposition 2.7, we obtain that
∫

R

eθ|x|µ(dx) <∞

if and only if θ ≤ r−1
+ .

The support of the Rosińsky measure R is bounded, therefore we have some
exponential moment. Now, we obtain a close form for the characteristic function of
KR distributions. For convenience we exclude cases p = 0 and p = −1.
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Lemma 2.24. Let α ∈ (0, 2), p ∈ (−α,∞) \ {−1, 0}, h > 0, and u ∈ R. Then we
have , if α 6= 1,

∫ h

0
xp−1(1 − iux)αdx =

hp

p
2F1(p,−α; 1 + p; iuh) (2.47)

and , if α = 1,

∫ h

0
((1 − iux) log(1 − iux) + iux)xp−1dx

= hp
(
ihu

1 + p
+

hu

2 + 3p+ p2

(

hu2F1(2 + p, 1; 3 + p; ihu)

− i(2 + p) log(1 − ihu)
)

+
(ihu)−p

p

(

(p− ihu)3F2(1, 1, 1 − p; 2, 2; 1 − ihu)

− (1 − (ihu)p) log(1 − ihu)
))

,

(2.48)

where the hypergeometric function 2F1(a, b; c;x) and the generalized hypergeometric
function Fp,q(a1, · · · , ap; b1, · · · , bq;x).

Proof. We refer to [1] for definitions of hypergeometric function and generalized
hypergeometric function.

Using results of Lemma 2.24, we can prove the following result.

Theorem 2.25. Let X be a random variable with the proper TS distribution cor-
responding to the spectral measure R defined in (2.45) with conditions p 6= 0 and
p 6= −1, and let m = E[X]. Then the characteristic function is given as follows:

(a) if α 6= 1,

E[eiuX ] = exp

[

Hα(u; k+, r+, p+) +Hα(−u; k−, r−, p−)

+ iu

(

m+ αΓ(−α)

(
k+r+
p+ + 1

− k−r−
p− + 1

))]

,

(2.49)

where

Hα(u; a, h, p) =
aΓ(−α)

p
(2F1(p,−α; 1 + p; ihu) − 1) ,

(b) if α = 1,

E[eiuX ] = exp

[

Gα(u; k+, r+, p+) +Gα(−u; k−, r−, p−)

+ iu

(

m+

(
k+r+
p+ + 1

− k−r−
p− + 1

))]

,

(2.50)
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where

Gα(u; a, h, p) =
ahu

2 + 3p+ p2

(

hu2F1(2 + p, 1; 3 + p; ihu)

− i(2 + p) log(1 − ihu)
)

+
a(ihu)−p

p

(

(p− ihu)3F2(1, 1, 1 − p; 2, 2; 1 − ihu)

− (1 − (ihu)p) log(1 − ihu)
)

.

Proof. By Proposition 2.22, E[X] <∞. By Definition 2.13, we have

logE[eiuX ] =







∫

R

Γ(−α)((1 − iux)α − 1 + iαux)R(dx) + imu if α 6= 1
∫

R

((1 − iux) log(1 − iux) + iux)R(dx) + imu if α = 1

In case α 6= 1, we have
∫

R

Γ(−α)((1 − iux)α − 1 + iαux)R(dx) + imu

= k+r
−p+
+ Γ(−α)

∫ r+

0
((1 − iux)α − 1 − iαux)xp+−1dx

+ k−r
−p−
− Γ(−α)

∫ r−

0
((1 + iux)α − 1 + iαux)xp−−1dx+ imu.

By (2.47), (2.49) is obtained. Similarly, In case α = 1, we have

∫

R

((1 − iux) log(1 − iux) + iux)R(dx) + imu

= k+r
−p+
+

∫ r+

0
((1 − iux) log(1 − iux) + iux)xp+−1dx

+ k−r
−p−
−

∫ r−

0
((1 + iux) log(1 + iux) − iux)xp−−1dx+ imu,

and by (2.48), (2.50) is obtained.

Now, we consider Proposition 2.16 in order to find characteristics of the KR
distribution.

Proposition 2.26. Let X ∼ KR(α, k+, k−, r+, r−, p+, p−,m) with α 6= 1. Then the
cumulants ck(X) are given by c1(X) = m and

ck(X) = Γ(k − α)

(

k+r
k
+

p+ + k
+ (−1)k

k−rk−
p− + k

)

(2.51)

where k ≥ 2.
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Proof. By the form of the characteristic function (2.13), we obtain the mean m. By
Proposition 2.16 and Definition 2.21, we have to calculate the following integral

ck(X) = Γ(m− α)

∫

R0

xkR(dx)

in order to find (2.51).

Remark 2.27. Let X ∼ KR(α, k+, k−, r+, r−, p+, p−,m) with α 6= 1. By Proposi-
tion 2.26, we obtain the mean, variance, skewness and excess kurtosis of X which
are given as follows:

(a) E[X] = c1(X) = m,

(b) Var(X) = c2(X) = Γ(2 − α)

(
k+r

2
+

p+ + 2
+

k−r2−
p− + 2

)

,

(c) s(X) =
c3(X)

c2(X)3/2
=

Γ(3 − α)
(
k+r3+
p++3 − k−r3−

p−+3

)

Γ(2 − α)3/2
(
k+r2+
p++2 +

k−r2−
p−+2

)3/2
,

(d) k(X) =
c4(X)

c2(X)2
=

Γ(4 − α)
(
k+r4+
p++4 +

k−r4−
p−+4

)

Γ(2 − α)2
(
k+r2+
p++2 +

k−r2−
p−+2

)2 .

The CGMY distribution is a particular case of the KR distribution.

Proposition 2.28. The KR distribution with parameters (α, k+, k−, r+, r−, p+,
p−, m) converges weakly to the CGMY distribution as p± → ∞ provided that α 6= 1
and k± = c(α+ p±)r−α± for c > 0.

Proof. By the Lévy theorem, see Theorem 15.4 in [76], it suffices to prove the point-
wise convergence of the characteristic function. We have

lim
p+→∞

k+Γ(−α)

p+
(2F1(p+,−α; 1 + p+; ir+u) − 1)

= cΓ(−α)r−α+ lim
p+→∞

α+ p+

p+

∞∑

n=1

(p+)n(−α)n
(1 + p+)n

(iur+)n

n!

= cΓ(−α)r−α+ lim
p+→∞

∞∑

n=1

(α+ p+)(−α)n
p+ + n

(iur+)n

n!

= cΓ(−α)r−α+

∞∑

n=1

(−α)n
(iur+)n

n!

= cΓ(−α)r−α+

∞∑

n=1

(
α
n

)

(−iur+)n

= cΓ(−α)r−α+ ((1 − iur+)α − 1)

= cΓ(−α)
(
(r−1

+ − iu)α − r−α+

)
.
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Figure 2.1: Probability density of the CGMY distribution with parameters C = 0.01, G = 2,
M = 10, Y = 1.25, and the KR distributions with α = Y , k± = C(Y + p)r−α

± , r+ = 1/M ,
r− = 1/G, where p = p+ = p− ∈ { −0.25, 1, 10 }.

Similarly, we have

lim
p−→∞

k−Γ(−α)

p−
(2F1(p−,−α; 1 + p−;−ir−u) − 1) = cΓ(−α)

(
(r−1
− + iu)α − r−α−

)
.

Moreover, we have

µ ≡ m+ lim
p+→∞

αΓ(−α)
k+r+
p+ + 1

− lim
p−→∞

αΓ(−α)
k−r−
p− + 1

= m+ lim
p+→∞

αΓ(−α)
c(α+ p+)r1−α+

p+ + 1
− lim
p−→∞

αΓ(−α)
c(α+ p−)r1−α−

p− + 1

= m+ cαΓ(−α)(r1−α+ − r1−α− ).

In all, we have

lim
p+,p−→∞

E[eiuX ]

= exp
(
iµu+ cΓ(−α)

((
(r−1

+ − iu)α − r−α+

)
+
(
(r−1
− + iu)α − r−α−

)))
.

where X ∼ KR(α, k+, k−, r+, r−, p+, p−,m). That completes the proof.

Figure 2.1 shows that the KR distributions converge to the CGMY distribution
when parameter p = p+ = p− increases.

Tail Behavior

In this section, we will discuss the probability tails of the KR distribution. Although
the exact asymptotic behavior of its tails is difficult to obtain unlike those of the
stable distribution, it is possible to calculate the upper and lower bounds.
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In the following, we provide an upper bound for the probability tails by mean of
the well-known Chebyshev’s Inequality.

Proposition 2.29. Let be X a random variable with KR TS distribution, X ∼
KR(α, k+, k−, r+, r−, p+, p−,m) with α 6= 1. Then the following inequality is fulfilled

P(|X −m| ≥ λ) ≤ C

λ2

where C does not depend on λ.

Proof. By Remark 2.27, X has mean and variance, therefore we consider the Cheby-
shev’s Inequality

P(|X −m| ≥ λ) ≤ 1

λ2
Var(X).

We obtain

P(|X −m| ≥ λ) ≤ 1

λ2
Γ(2 − α)

(
k+r

2
+

p+ + 2
+

k−r2−
p− + 2

)

and the result is proved.

A natural further interest is in a lower bound of the probability tails. By following
the approach of [64], below we will give a lower bound. We consider the following
result:

Proposition 2.30. Let X be an infinitely divisible random variable in R, with Lévy
triplet (b, 0,M(dx)). Then we have

P(|X −m| ≥ λ) ≥ 1

4
(1 − exp(−M(u ∈ R : |u| ≥ 2λ))), λ > 0. (2.52)

for all m ∈ R.

Proof. See Lemma 5.4 of [20].

For further analysis, we need an auxiliary result.

Lemma 2.31. For a ∈ R+, the following equality holds
∫ ∞

β
s−a−1e−sds = β−a−1e−β + o(β−a−1e−λ)

as β → ∞.

Proof. By integration by parts, if β > 0, we obtain
∫ ∞

β
s−a−1e−sds = β−a−1e−β − (a+ 1)

∫ ∞

β
s−a−2e−sds ≤ β−a−1e−β

and
∫ ∞

β
s−a−1e−sds = β−a−1e−β − (a+ 1)β−a−2e−β + (a+ 1)(a+ 2)

∫ ∞

β
s−a−3e−sds

≥ β−a−1e−β − (a+ 1)β−a−2e−β ,

when β → ∞, the result is proved.
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Taking into account Proposition 2.30 and Lemma 2.31, we can prove the following
result.

Proposition 2.32. Let be X a random variable with KR distribution,

X ∼ KR(α, k+, k−, r+, r−, p+, p−,m)

with α 6= 1. Then the following inequality is fulfilled

P(|X −m| ≥ λ) ≥ C
e−

2λ
r̄

λα+2

as λ→ ∞, where C does not depend on λ and r̄ = max(r+, r−).

Proof. Applying the following elementary fact

1 − exp(−z) ∼ z, z → 0

and according to (2.52) and Lemma 2.31, we obtain

P(|X −m| ≥ λ) ≥ 1

4

(

1 − exp

[

−
∫

R0

∫ ∞

2λ
|x|

s−α−1e−sdsR(dx)

])

(2.53)

∼ λ−α−1

2α+3

∫

R0

|x|α+1e
− 2λ
|x|R(dx), (2.54)

as λ→ ∞. By using equality (2.45) and Lemma 2.31, the integral can be written as
∫

R0

|x|α+1e
− 2λ
|x|R(dx) = k+r

−p+
+

∫ r+

0
xα+p+e−

2λ
x dx+ k−r

−p−
−

∫ r−

0
xα+p−e−

2λ
x dx

= (2λ)α+p++1k+r
−p+
+

∫ ∞

2λ
r+

t−α−p+−2e−tdt

+ (2λ)α+p−+1k−r
−p−
−

∫ ∞

2λ
r−

t−α−p−−2e−tdt

∼ (2λ)−1 k+

r
α+2p++2
+

e
− 2λ

r+ + (2λ)−1 k−

r
α+2p−+2
−

e
− 2λ

r−

∼ C̄(2λ)−1e−
2λ
r̄

as λ→ ∞, where r̄ = max(r+, r−). Combining this with (2.53), we get

P(|X −m| ≥ λ) ≥ C
e−

2λ
r̄

λα+2
.

2.4 Power tails TS distribution

In this section, we will show another possible choice for the measure R. Let us define
the measure R as

R(x) = c−(1 − x)−(α+γ+)Ix<0 + c+(1 + x)−(α+γ−)Ix>0 (2.55)
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where γ+, γ− > 2 and c+, c− ≥ 0. LetX be a TS distribution with Rosińsky measure
defined as in (2.55), then by Proposition 2.7, the following moment condition holds,

E[Xp] <∞ 0 < p < α+ min(γ+, γ−).

By the inequality above, we have not exponential moments, therefore this is not a
useful distribution to develop an option pricing theory.

2.5 Some TS processes

In this section, we resume some properties of TS processes. By Definition 2.1, if µ
is a TS distribution, it is infinitely divisible, therefore, there exists a Lévy process
(Xt)t≥0 such that µ is the distribution of X1, therefore in general a Lévy processes
can be define. Now, we briefly recall some properties.

As in Proposition (1.44), we want to find which conditions have to be satisfied in
order to obtain a process of finite variation. By Definition 2.1, a TS distribution is
infinitely divisible without Gaussian part, therefore, we can consider a Lévy process
associated to a TS distribution. We recall the following result of [107].

Proposition 2.33. Let ν and R be related by (2.8), where R satisfies (2.9). Then

∫

‖x‖≤1
‖x‖ν(dx) <∞ ⇐⇒ α ∈ (0, 1) and

∫

‖x‖≤1
‖x‖R(dx) <∞.

If we consider a Lévy process associated with a TS distribution, in order to obtain
a finite variation process, it is sufficient to analyze only the Rosińsky measure. To
the purpose to analyze pathwise properties of such process, we prove the following
additional result.

Proposition 2.34. Let ν and R be related by (2.8), where R satisfies (2.9). Then

∫

‖x‖≤1
ν(dx) = ∞.

Proof. Let ν and R two measure as in (2.8). The following equality is verified

∫

‖x‖≤1
ν(dx) =

∫

‖x‖≤1

∫ ‖x‖−1

0
t−α−1e−tdtR(dx).

For each choice of the measure R, this integral diverges.

By Definition 1.40, a TS process has always infinite activity and, according to
Definition 1.39, it cannot be of type A.

2.5.1 KoBoL process

The TS process is obtained by taking a one-dimensional stable process and multi-
plying the Lévy measure with a decreasing exponential on each half of the real axis.
After this exponential softening, the small jumps keep their initial stable-like behav-
ior whereas the large jumps become much less violent. A TS process is thus a Lévy
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process on R with no Gaussian component and a Lévy density of the form (2.30).
Excluding negative α is not too strict, since we exclude only process of compound
Poisson type, and by Definition 2.1, we have to exclude also the case α+ 6= α−, in
order to define a TS process.

By Proposition 2.33 and the Rosinńsky measure (2.35), the process has trajec-
tories of finite variation if and only if α < 1. The limiting case α = 0 corresponds
to an infinite activity process. If in addition we have also the condition c+ = c−,
we obtain the variance gamma process. Of practical interest will be the CGMY
process

Definition 2.35. A Lévy process X = (Xt)t≥0 is said to be a CGMY TS process
(or shortly, a CGMY process) with parameters (C, G, M, Y, m) if

X1 ∼ CGMY(C,G,M, Y,m).

2.5.2 KR process

Starting from the definition of KR distribution, we can define a Lévy process.

Definition 2.36. A Lévy process X = (Xt)t≥0 is said to be a KR TS process
(or shortly, a KR process) with parameters (α, k+, k−, r+, r−, p+, p−, m) if
X1 ∼ KR(α, k+, k−, r+, r−, p+, p−,m).

In order to analyze the path properties of the KR process, we focus our attention
on the Rosińsky measure.

Proposition 2.37. The process (Xt)t≥0 ∼ KR(α, k+, k−, r+, r−, p+, p−,m) has fi-
nite variation if α ∈ (0, 1) and infinite variation if α ∈ [1, 2).

Proof. By Proposition 1.44, to prove that a Lévy process without gaussian part has
finite variation, it is sufficient to verify that the inequality (1.11) is fulfilled. By
Proposition 2.33, if α ∈ (0, 1), the process has finite variation if the integral

∫

|x|<1
|x|R(dx) (2.56)

converges. It is straightforward to verify the convergence of 2.56, by Definition
(2.45) and inequalities p+, p− > −1. Furthermore, by Proposition 2.33, if α ∈ [1, 2)
it follows that the process has infinite variation. Thus

∫

|x|<1
|x|ν(dx) <∞

if and only if α ∈ (0, 1).



Chapter 3

Tempered infinitely divisible

distributions and processes

The formal and elegant definition of tempered stable distributions and processes has
been proposed in the work of Rosiński [107] where a completely monotone function
is chosen to transform the Lévy measure of a stable distribution. Tempered stable
distributions may have all moments finite and exponential moments of some order.
The idea of selecting a different tempering function has been already considered
in the literature, see [53]. In this chapter, by following the approach of Rosiński
[107] and considering a particular family of tempering functions, a new class of
distributions is introduced with the same suitable properties of the tempered stable
class, but with the advantage that it may admit exponential moments of any order.
By multiplying the Lévy measure of a stable distribution with a positive definite
radial function, see [110], instead of with a completely monotone function as in
[107], we obtain the class of tempered infinitely divisible (TID) [14] distributions.
In some cases, the characteristic function of a TID random variable is extendible to
an entire function on C, that is, it admits any exponential moment.

Some practical problems in the field of mathematical finance have motivated
our studies. Furthermore, we want to fill a gap in the literature. The modified
tempered stable (MTS) distribution is not a TS distribution of the Rosiński type
[71] even though its properties are very close to that class. We will prove that the
MTS distribution is in the TID class.

Although this distributional family is constructed by tempering the Lévy mea-
sure of a stable distribution, any stability property is lost. We will proceed as
following. In Section 3.1, basic definitions and distributional properties are given.
Working with the Lévy measure may be a difficult task, therefore a spectral measure
R is needed to figure out all characteristics of this class. This measure describes all
distributional properties and allows one to obtain a close formula for the charac-
teristic function. Since TID distributions are by construction infinitely divisible, a
TID Lévy process can be considered. In Section 3.2, TID processes are analyzed. If
the time scale increases, the TID process looks like a Gaussian process; conversely,
if the time scale decreases, it looks like a stable process. Furthermore, under some
condition on the tempering function, the change of measure problem between sta-
ble and TID processes can be solved. In Section 6.1.10, a view toward simulation
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is given. Taking into consideration [105, 107], a series representation is derived in
terms of a measure Q, as already proved for the TS class.

Similar to the TS framework, this class of distribution has an infinite dimensional
parametrization by a family of measures [115], making it difficult to use. For this
reason, in Section 3.3 some parametric examples in one dimension are proposed, and
characteristic functions are derived.

3.1 Tempered infinitely divisible distribution

It is well known that the Lévy measure ν0 of an α-stable distribution on R
d can be

written in polar coordinates in the form

ν0(dr, du) = r−α−1dr σ(du), (3.1)

where α ∈ (0, 2) and σ is a finite measure on the unit sphere Sd−1.

Theorem 3.1. If µ0 is an α-stable distribution, then its characteristic function has
the form

µ̂0(y) =

{
exp

{
−cα

∫

Sd−1 |〈y, u〉|α(1 − i tan πα
2 sgn〈y, u〉)σ(du) + i〈y, a〉

}
, α 6= 1,

exp
{
−c1

∫

Sd−1(|〈y, u〉| + i 2
π 〈y, u〉 log |〈y, u〉|)σ(du) + i〈y, a〉

}
, α = 1,

(3.2)
where a ∈ R

d and

cα =

{
|Γ(−α) cos(πα2 )|, α 6= 1,
π
2 , α = 1.

Proof. See [109, Theorem 14.10].

Definition 3.2. If Y is an α-stable random vector with characteristic function (3.2),
we will write Y ∼ Sα(σ, a).

Taking into account the approach of [107], we want to modify the radial compo-
nent of ν0 and obtain a probability distribution with lighter tails than stable ones.
A TID distribution is defined by tempering the radial term of ν0 as follows.

Definition 3.3. Let µ be a infinitely divisible probability measure on R
d without

gaussian part. We call µ tempered infinitely divisible (TID) if its Lévy measure ν
can be written in polar coordinates as

ν(dr, du) = r−α−1q(r, u)dr σ(du) (3.3)

where α is a real number α ∈ [0, 2), σ a finite measure on the unit sphere Sd−1 and
q : (0,∞) × Sd−1 7→ (0,∞) is a Borel function defined by

q(r, u) :=

∫ ∞

0
e−r

2s2/2Q(ds|u), (3.4)

with {Q(·|u)}u∈Sd−1 a measurable family of Borel measure on (0,∞). If q(0+, u) = 1
for each u ∈ Sd−1, µ is referred to as a proper TID. The function q is called a
tempering function.
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In the case where {Q(·|u)}u∈Sd−1 are finite non-negative Borel measures on
(0,∞), q(·, u) are positive definite radial functions on R

d. By [110], the following
results holds.

Theorem 3.4. A continuous function ϕ : (0,∞) → R is positive definite and radial
on R

d for all d if and only if it is of the form

ϕ(r) =

∫ ∞

0
e−r

2s2µ(ds),

where µ is a finite non-negative Borel measure on (0,∞).

Define a measure Q on R
d by

Q(A) :=

∫

Sd−1

∫ ∞

0
IA(ru)Q(dr|u)σ(du), A ∈ B(Rd). (3.5)

It is easy to check that Q({0}) = 0. We also define a measure R on R
d by

R(A) :=

∫

Rd

IA(
x

‖x‖2
)‖x‖αQ(dx), A ∈ B(Rd). (3.6)

The measure R is equivalent to the measure Q and clearly R({0}) = 0. By definition
of R, for each Borel function F , the following equality is satisfied

∫

Rd

F (x)R(dx) =

∫

Rd

F (
x

‖x‖2
)‖x‖αQ(dx), (3.7)

in the sense that when one sides exists then the other exists and are equal. By
choosing

F (x) = IA(
x

‖x‖2
)‖x‖α,

then Q can be written as

Q(A) :=

∫

Rd

IA(
x

‖x‖2
)‖x‖αR(dx), A ∈ B(Rd). (3.8)

Sometimes the only knowledge of the Lévy measure cannot be enough to obtain
analytical properties of tempered infinitely divisible distributions. Therefore, the
definitions of measures Q and R allow one to overcome this problem and to obtain
explicit analytic formulas and more explicit calculations. The following result allows
one to figure out relations between the Lévy measure ν and the measure R above
defined.

Proposition 3.5. Let µ be a TID distribution, the corresponding Lévy measure ν
be defined as in (3.3) and R as in (3.6). Then ν can be written in the form

ν(A) =

∫

Rd

∫ ∞

0
IA(tx)t−α−1e−t

2/2dtR(dx), A ∈ B(Rd), (3.9)

if and only if the measure R on R
d satisfies the following conditions, R({0}) = 0

and { ∫

Rd(‖x‖2 ∧ ‖x‖α)R(dx) <∞, 0 < α < 2,
∫

Rd(log(1 + ‖x‖) + 1)R(dx) <∞, α = 0.
(3.10)
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Proof. Let µ be a TID distribution with Lévy measure ν. First we will prove that
there exists at least one measure R, defined in (3.6), such that ν, defined in (3.3),
can be written in the form (3.9). To show this result, we take the measure R as in
(3.6) and for each A ∈ B(Rd), by considering (3.4), (3.5), (3.6), (3.7) and Fubini
theorem, we have

ν(A) =

∫

Sd−1

∫ ∞

0
IA(ru)r−α−1q(r, u)drσ(du)

=

∫

Sd−1

∫ ∞

0

∫ ∞

0
IA(ru)r−α−1e−r

2s2/2Q(ds|u)drσ(du)

=

∫

Sd−1

∫ ∞

0

(∫ ∞

0
IA(ru)r−α−1e−r

2s2/2dr

)

Q(ds|u)σ(du)

=

∫

Sd−1

∫ ∞

0

(∫ ∞

0
IA(

t

s
u)t−α−1e−t

2/2dt

)

sαQ(ds|u)σ(du)

=

∫ ∞

0

(∫

Sd−1

∫ ∞

0
IA(t

u

s
)sαQ(ds|u)σ(du)

)

t−α−1e−t
2/2dt

=

∫ ∞

0

(∫

Rd

IA(t
x

‖x‖2
)‖x‖αQ(dx)

)

t−α−1e−t
2/2dt

=

∫ ∞

0

(∫

Rd

IA(ty)R(dy)

)

t−α−1e−t
2/2dt

=

∫

Rd

∫ ∞

0
IA(ty)t−α−1e−t

2/2dtR(dy)

(3.11)

Conversely, given a measure R, let Q be the measure defined by (3.8) and let us
consider the decomposition Q(dr, du) = Q(dr|u)σ(du), where σ is a finite measure
on Sd−1. Thus, we can define q(r, u) by (3.4) and the computation (3.11) proves
that ν can be written in the form (3.3).

Now we want to prove that ν is a Lévy measure if and only if (3.10) holds.
Suppose ν a Lévy measure, then we have

∫

‖x‖≤1
‖x‖2ν(dx) <∞

and by considering (3.9) and α 6= 0, we obtain

∞ >

∫

‖x‖≤1
‖x‖2ν(dx) =

∫

Rd

‖x‖2

∫ 1/‖x‖

0
t1−αe−t

2/2dtR(dx)

≥
∫

‖x‖≤1
‖x‖2

∫ 1

0
t1−αe−t

2/2dtR(dx) +

∫

‖x‖>1
‖x‖2

∫ 1/‖x‖

0
t1−αe−t

2/2dtR(dx)

≥ e−1/2(2 − α)−1

∫

‖x‖≤1
‖x‖2R(dx) + e−1/2(2 − α)−1

∫

‖x‖>1
‖x‖αR(dx)

thus, we obtain the desired inequality
∫

Rd

(‖x‖2 ∧ ‖x‖α)R(dx) <∞.



3.1 Tempered infinitely divisible distribution 61

Now, let us consider the case α = 0. By definition of the Lévy measure we have
∫

‖x‖≥1
ν(dx) <∞

and by considering (3.9) with α = 0, the following inequalities are satisfied

∞ >

∫

‖x‖>1
ν(dx) =

∫

Rd

∫ ∞

1
‖x‖

t−1e−t
2/2dtR(dx)

=

∫

‖x‖≤1

∫ ∞

1
‖x‖

t−1e−t
2/2dtR(dx) +

∫

‖x‖>1

∫ ∞

1
‖x‖

t−1e−t
2/2dtR(dx)

≥
∫

‖x‖≤1
KR(dx) + e−1/2

∫

‖x‖>1
log(‖x‖)R(dx)

where K is a finite constant. Then, also when α = 0, condition (3.10) is a necessary
condition. Conversely, now we prove that (3.10) is also sufficient. Suppose that
there is a measure R satisfying (3.10). Then the measure ν can be written in the
form (3.9). If α 6= 0, we can write

∫

‖x‖≤1
‖x‖2ν(dx) =

=

∫

Rd

‖x‖2

∫ 1
‖x‖

0
t1−αe−t

2/2dtR(dx)

≤
∫

‖x‖≤1
‖x‖2

∫ ∞

0
t1−αe−t

2/2dtR(dx) +
1

2 − α

∫

‖x‖>1
‖x‖αR(dx)

= 2−
α
2 Γ(1 − α

2
)

∫

‖x‖≤1
‖x‖2R(dx) +

1

2 − α

∫

‖x‖>1
‖x‖αR(dx) <∞

and
∫

‖x‖>1
ν(dx) =

∫

Rd

∫ ∞

1
‖x‖

t−1−αe−t
2/2dtR(dx)

≤ C

∫

‖x‖≤1

∫ ∞

1
‖x‖

t−3dtR(dx) +

∫

‖x‖>1

∫ ∞

1
‖x‖

t−α−1dtR(dx)

=
C

2

∫

‖x‖≤1
‖x‖2R(dx) +

1

α

∫

‖x‖>1
‖x‖αR(dx),

where C := supt≥1 t
2−αe−t

2/2. Thus ν is a Lévy measure.
Considering the case where α = 0, we obtain

∫

‖x‖≤1
‖x‖2ν(dx) =

∫

Rd

‖x‖2

∫ 1
‖x‖

0
te−t

2/2dtR(dx)

≤
∫

Rd

‖x‖2(1 − e
− 1

2‖x‖2 )R(dx)

≤
∫

‖x‖≤1
‖x‖2R(dx) +

∫

‖x‖>1
R(dx)
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and
∫

‖x‖>1
ν(dx) =

=

∫

Rd

∫ ∞

1
‖x‖

t−1e−t
2/2dtR(dx)

≤
∫

‖x‖≤1

∫ ∞

1
‖x‖

1

t(1 + t2/2)
dtR(dx) +

∫

‖x‖>1

∫ ∞

1
‖x‖

t−1e−t
2/2dtR(dx)

≤
∫

‖x‖≤1
‖x‖2R(dx) +

∫

‖x‖>1
(log(‖x‖) + e−1/2)R(dx).

Thus, ν is a Lévy measure.
Now, in order to show that (3.9) is well defined, we want to show that R is

uniquely determined. We will prove it by contradiction. Let R1 and R2 be two
measures on R

d satisfying (3.9). Then, by previous argument, (3.10) has to be
satisified also. By contradiction, we suppose that there exists a Borel set A such
that R1(A) 6= R2(A). By equation (3.8), we can define Q1 and Q2 from R1 and R2

and consider the polar representation

Qi(dr, du) = Qi(dr|u)σ(du)

where σ is a probability measure on Sd−1 and {Qi(·|u)}u∈Sd−1 are measurable fam-
ilies of Borel measure on (0,∞). Without any loss of generality, we assume that σ
is not the null measure on Sd−1. If α 6= 0, by definition (3.8) and conditions (3.10),
the inequality

∞ >

∫

Rd

(‖x‖2 ∧ ‖x‖α)Ri(dx) =

∫

Rd

(‖x‖−2 ∧ ‖x‖−α)‖x‖αQi(dx)

=

∫

Sd−1

∫ ∞

0
(sα−2 ∧ 1)Qi(ds|u).

holds. Therefore, the tempering function

qi(r, u) =

∫ ∞

0
e−r

2s2/2Qi(ds|u)

is well defined. Since R1(A) 6= R2(A) also Q1(A) 6= Q2(A). By assumption, Ri
verifies (3.10). Then, by using the same calculus done to obtain (3.11), we can find
ν(A) and write

∫

Sd−1

∫ ∞

0
IA(ru)r−α−1(q1(r, u) − q2(r, u))drσ(du) = 0

and we find the contradiction. A similar argument shows the uniqueness of the
measure R also in the case α = 0.

Remark 3.6. The case α = 0 is consider only for completeness and the theory will
be not completely extended to this limiting case. It may be an interesting case in
some applications.
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Remark 3.7. If alpha ∈ (0, 2) and R satisfies the following additional inequality
∫

Rd

‖x‖αR(dx) <∞, 0 < α < 2, (3.12)

we will call µ a proper TID distribution. The measure Q has the form

Q(Rd) =

∫

Rd

‖x‖αR(dx), 0 < α < 2, (3.13)

In this case Q is a finite measure and it can be represented in polar coordinates
as Q(dr, du) = Q(dr|u)σ(du), where Q(·|u) are finite measures and σ is a finite
measure on Sd−1.

Definition 3.8. The unique measure R in (3.9) is called a spectral measure of the
corresponding TID distribution. We will call R the Rosiński measure [115].

We focus on the following result.

Remark 3.9. If µ is a proper TID distribution, then Q is a finite measure and
{Q(·|u)}u∈Sd−1 is a measurable family of finite Borel measures on (0,∞). Since the
equation q(0+, u) = 1 holds, they are probability measures. Furthermore, for any
fixed u ∈ Sd−1, function q(·, u) are positive definite radial functions.

Taking into consideration Lemma 2.14 of [107], we want to figure out the relation
between parameters of the proper TID distribution and stable ones.

Proposition 3.10. Let ν be a Lévy measure of a proper TID distribution, as in
(3.3), with corresponding spectral measure R. Then, the Lévy measure ν0 of an
α-stable distribution, given in (3.1), can be written in the following form

ν0(A) =

∫

Rd

∫ ∞

0
IA(tx)t−α−1dtR(dx), A ∈ B(Rd) (3.14)

and additionally

σ(B) =

∫

Rd

IB

(
x

‖x‖

)

‖x‖αR(dx), B ∈ B(Sd−1). (3.15)

Proof. By definitions (3.6) and (3.5) we obtain for A ∈ B(Rd)
∫

Rd

∫ ∞

0
IA(tx)t−α−1dtR(dx) =

∫

Rd

∫ ∞

0
IA(t

x

‖x‖2
)t−α−1‖x‖αdtQ(dx)

=

∫

Rd

∫ ∞

0
IA(s

x

‖x‖2
)s−α−1‖x‖αdsQ(dx)

=

∫

Sd−1

∫ ∞

0
IA(su)s−α−1dsσ(du)

= ν0(A).

Since we are considering a proper TID distribution, then, by remark 3.9, Q(·|u) are
finite measures on (0,∞). Therefore we can write

∫

Rd

IB

(
x

‖x‖

)

‖x‖αR(dx) =

∫

Rd

IB

(
x

‖x‖

)

Q(dx)

=

∫

B

∫ ∞

0
Q(ds|u)σ(du) = cσ(B).

Since Q(ds|u) are probability measures, then c = 1 and (3.15) holds.
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3.1.1 Distributional properties

A TID distribution may have moments and also exponential moments of any order.
The behavior of the tails depends on the measure R.

Proposition 3.11. Let µ be a TID distribution with Lévy measure ν given by (3.9)
and α ∈ (0, 2). Then

(a) For p ∈ (0, α)
∫

Rd

‖x‖pµ(dx) <∞;

(b)
∫

Rd ‖x‖αµ(dx) <∞ ⇐⇒
∫

‖x‖>1 ‖x‖α log(‖x‖)R(dx) <∞;

(c) If p > α, then

∫

Rd

‖x‖pµ(dx) <∞ ⇐⇒
∫

‖x‖>1
‖x‖pR(dx) <∞;

(d) For each θ > 0, we have

∫

Rd

eθ‖x‖µ(dx) <∞ ⇐⇒
∫

‖x‖>1
‖x‖−(α+1)e

θ2‖x‖2

2 R(dx) <∞.

(e) If α = 0 and p > 0, then

∫

Rd

‖x‖pµ(dx) <∞ ⇐⇒
∫

‖x‖>1
‖x‖pR(dx) <∞;

Proof. It is well known that moments conditions for µ are related to the correspond-
ing conditions for ν|{‖x‖>1}, see [109].

Let we consider p > 0. Then we obtain
∫

‖x‖>1
‖x‖pν(dx) =

∫

‖x‖≤1
‖x‖p

∫ ∞

1
‖x‖

tp−α−1e−t
2/2dtR(dx)

+

∫

‖x‖>1
‖x‖p

∫ ∞

1
‖x‖

tp−α−1e−t
2/2dtR(dx)

= I(1)(x) + I(2)(x).

By (3.10), the following inequality holds

I(1)(x) ≤ C

∫

‖x‖≤1

∫ ∞

1
‖x‖

t−3dtR(dx) ≤ C

2

∫

‖x‖≤1
‖x‖2R(dx) <∞ (3.16)

where C := supt≥1 t
p+2−αe−t

2/2. The inequality (3.16) shows that the integral
I(1)(x) is always finite.

If p < α, then

I(2)(x) ≤
∫

‖x‖>1
‖x‖p

∫ ∞

1
‖x‖

tp−α−1dtR(dx) =
1

α− p

∫

‖x‖>1
‖x‖αR(dx) <∞,
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by inequality (3.10), condition (a) is fulfilled. If p = α, we have

I(2)(x) ≤
∫

‖x‖>1
‖x‖α

∫ 1

1
‖x‖

t−1dtR(dx) +

∫

‖x‖>1
‖x‖α

∫ ∞

1
e−t

2/2dtR(dx)

=

∫

‖x‖>1
‖x‖α(log(‖x‖) + C1)R(dx)

where C1 is a finite constant, and from the other side,

I(2)(x) ≥ e−1/2

∫

‖x‖>1
‖x‖α log(‖x‖)R(dx).

Therefore condition (b) is satisfied. Now, we suppose p > α. Let us define

C̄ =

∫ ∞

1
tp−α−1e−t

2/2dt.

Then, the following inequality holds

I(2)(x) ≥ C̄

∫

‖x‖>1
‖x‖pR(dx)

and furthermore,

I(2)(x) ≤
∫

‖x‖>1
‖x‖p

∫ ∞

0
tp−α−1e−t

2/2dtR(dx).

By changing variables in the integral, we have
∫ ∞

0
tp−α−1e−t

2/2dt = 2(p−α)/2−1

∫ ∞

0
z(p−α)/2−1e−zdz = 2(p−α)/2−1Γ

(p− α

2

)

,

thus

I(2)(x) ≤ 2(p−α)/2−1Γ
(p− α

2

)∫

‖x‖>1
‖x‖pR(dx).

This proves (c).
In order to prove (d), we consider the integral

∫

‖x‖>1
eθ‖x‖ν(dx) =

∫

Rd

∫ ∞

1
‖x‖

eθt‖x‖t−(α+1)e−t
2/2dtR(dx)

and we define

Iθ(x) :=

∫ ∞

1
‖x‖

eθt‖x‖t−(α+1)e−t
2/2dt.

It is easy to check that as ‖x‖ → 0, then Iθ(x) goes to 0 exponentially fast. Now,
let us consider the case ‖x‖ → ∞. We have

Iθ(x) = eθ
2‖x‖2/2

∫ ∞

1
‖x‖

t−(α+1)e−(t−θ‖x‖)2/2dt.
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Define Kθ(x) by

Kθ(x) :=

∫ ∞

1
‖x‖

t−(α+1)e−(t−θ‖x‖)2/2dt,

by changing variables in the integral we obtain

Kθ(x) =

∫ ∞

1
‖x‖
−θ‖x‖

(t+ θ‖x‖)−(α+1)e−t
2/2dt

=

∫ − θ‖x‖
2

1
‖x‖
−θ‖x‖

(t+ θ‖x‖)−(α+1)e−t
2/2dt+

∫ ∞

− θ‖x‖
2

(t+ θ‖x‖)−(α+1)e−t
2/2dt

= K
(1)
θ (x) +K

(2)
θ (x).

Furthermore, the following inequality is satisfied

K
(1)
θ (x) ≤ e−θ

2‖x‖2/8
∫ − θ‖x‖

2

1
‖x‖
−θ‖x‖

(t+ θ‖x‖)−(α+1)dt

≤ C‖x‖α+2e−θ
2‖x‖2/8.

and for ‖x‖ → ∞,

K
(2)
θ (x) ≤

∫ ∞

− θ‖x‖
2

(t+ θ‖x‖)−(α+1)e−t
2/2dt

∼ (θ‖x‖)−(α+1)

∫ ∞

−∞
e−t

2/2dt =
√

2π(θ‖x‖)−(α+1),

It follows that, for ‖x‖ → ∞,

Kθ(x) ∼
√

2π(θ‖x‖)−(α+1),

and
Iθ(x) ∼

√
2π(θ‖x‖)−(α+1)eθ

2‖x‖2/2,

therefore condition (d) holds. Part (e) can be proved with a similar argument to
(c).

Remark 3.12. If the measure R has a bounded support, then E(eθ‖X‖) <∞ for all
θ > 0. We have exponential moments of any order.

As we said before, sometimes it is more convenient to work with the measure
R; in order to find some distributional property of a TID distribution. Taking into
account Proposition 2.8 of [107], we will show a result about finite variation.

Proposition 3.13. Let ν be the Lévy measure of a TID distribution, and R a
measure as in (3.9) and (3.6). These conditions are equivalent

(i)
∫

‖x‖≤1 ‖x‖ν(dx) <∞

(ii)
∫

‖x‖≤1 ‖x‖R(dx) <∞ and α ∈ (0, 1)
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Proof. Suppose condition (i) is fulfilled. Choose r ≥ 1 such that R({‖x‖ ≤ r}) 6= 0.
We can write the following relations

∫

‖x‖≤1
‖x‖ν(dx) =

∫

Rd

‖x‖
∫ 1/‖x‖

0
t−αe−t

2/2dtR(dx)

≥
∫

‖x‖≤r
‖x‖

∫ 1/‖x‖

0
t−αe−t

2/2dtR(dx)

= 2−
1
2
(α+1)

∫

‖x‖≤r
‖x‖

∫ 1/(2‖x‖2)

0
z−

1
2
(α+1)e−zdzR(dx)

≥ 2−
1
2
(α+1)

∫

‖x‖≤r
‖x‖R(dx)

∫ 1/(2r2)

0
z−

1
2
(α+1)e−zdz.

By condition (i), we obtain α < 1 and
∫

‖x‖≤1
‖x‖R(dx) <∞.

Conversely, if (ii) holds, then
∫

‖x‖≤1
‖x‖ν(dx) =

=

∫

‖x‖≤1
‖x‖

∫ 1/‖x‖

0
t−αe−t

2/2dtR(dx) +

∫

‖x‖>1
‖x‖

∫ 1/‖x‖

0
t−αe−t

2/2dtR(dx)

≤
∫

‖x‖≤1
‖x‖

∫ ∞

0
t−αe−t

2/2dtR(dx) +
1

1 − α

∫

‖x‖>1
‖x‖αR(dx)

= 2−
α
2
− 1

2 Γ(
1

2
− α

2
)

∫

‖x‖≤1
‖x‖R(dx) +

1

1 − α

∫

‖x‖>1
‖x‖αR(dx) <∞,

which proves the converse.

3.1.2 Characteristic function of a TID distribution

It is well known that given a Lévy measure of a infinitely divisible distribution,
we have an explicit formula for the characteristic function, see [109]. Sometimes,
working with a Lévy measure of the form (3.3) may be difficult and, as a consequence,
we will provide an expression for the characteristic function of a TID distribution
with respect to the measure R. The measure R allows one to obtain explicit analytic
formulas and more explicit calculations. Let us now define functions

ψα(s) =

∫ ∞

0
(eist − 1 − ist)t−α−1e−t

2/2dt, (3.17)

and
ψ0
α(s) =

∫ ∞

0
(eist − 1)t−α−1e−t

2/2dt. (3.18)

In order to find a more useful form for the characteristic function of a TID
distribution, we will need the following results.
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Lemma 3.14. The following limits are verified

lims→0 s
−2ψα(s) = −2−

α
2
−1Γ(1 − α

2 ), α ∈ (0, 2)
lims→∞ s−1ψ0(s) = −i

√
π
2 , α = 0

lims→∞ s−1ψα(s) = −2−
α
2
− 1

2 Γ(1
2 − α

2 )i, α ∈ (0, 1)
lims→∞(s−1ψ1(s) + i log s) = −π

2 + i, α = 1

lims→∞ s−αψα(s) = Γ(−α)e−iα
π
2 , α ∈ (1, 2)

(3.19)

Furthermore, if α ∈ (0, 1) we have

lims→∞ s−1ψ0
α(s) = 2−

α
2
− 1

2 Γ(1
2 − α

2 )i,

lims→∞ s−αψ0
α(s) = Γ(−α)e−iα

π
2 ,

(3.20)

Then, there exists for each α a finite positive constant Cα such that for all s ∈ R

the following inequalities are fulfilled

C−1
α (s2 ∧ |s|α∨1) ≤ |ψα(s)| ≤ Cα(s2 ∧ |s|α∨0,1), α 6= 1,

C−1
1 [s2 ∧ |s|(1 + log+ |s|)] ≤ |ψ1(s)| ≤ C1[s

2 ∧ |s|(1 + log+ |s|)], α = 1,
C−1
α (s2 ∧ |s|α) ≤ |ψ0

α(s)| ≤ Cα(s2 ∧ |s|α), α ∈ (0, 1).

C−1
0 [1 + log(1 + s)] ≤ |ψ0(s)| ≤ C0[1 + log(1 + s)], α = 0.

(3.21)

Proof. By solving the limit and using [109, Lemma 14.11], (3.19) and (3.20) are
verified.

Lemma 3.15. Let us consider the confluent equation

x
d2y

dx2
+ (c− x)

dy

dx
− ax = 0. (3.22)

Then the solution of this differential equation is

y = AM(a, c; z) +BU(a, c; z)

where A and B are constant and M(a, c; z) is the Kummer’s or confluent hypergeo-
metric function of first kind [1, 13.1.2] and U(a, c; z) is the confluent hypergeometric
function of second kind [1, 13.1.3].

Proof. For a complete overview on confluent hypergeometric function see [116] or
[1].

Lemma 3.16. Let α ∈ (0, 2), α 6= 1. Then we have

∞∑

n=0

zn

n!
Γ

(
1

2
(n− α)

)

= Γ

(

− α

2

)

M

(

−α
2
,
1

2
;
(z

2

)2
)

+ zΓ

(
1 − α

2

)

M

(
1

2
− α

2
,
3

2
;
(z

2

)2
) (3.23)
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Proof. Since the series converges, we can split it in two parts

∞∑

n=0

zn

n!
Γ

(
1

2
(n− α)

)

=
∞∑

n=0

z2n

(2n)!
Γ
(

n− α

2

)

+
∞∑

n=0

z2n+1

(2n+ 1)!
Γ

(

n+
1 − α

2

)

.

By the Legendre duplication formula [1, 6.1.18], we obtain the following equalities

(2n)! = n!22n

(
1

2

)

n

,

(2n+ 1)! = n!22n

(
3

2

)

n

,

and we define the Pochhammer’s symbols as (a)n = Γ(n+ a)/Γ(a) [1, 6.1.22]. Thus,
we obtain

∞∑

n=0

zn

n!
Γ

(
n− α

2

)

=

= Γ
(

−α
2

) ∞∑

n=0

z2n

n!22n

(
−α

2

)

n
(

1
2

)

n

+ zΓ

(
1 − α

2

) ∞∑

n=0

z2n

n!22n

(
1−α

2

)

n
(

3
2

)

n

= Γ
(

−α
2

)

M

(

−α
2
,
1

2
;
(z

2

)2
)

+ zΓ

(
1 − α

2

)

M

(
1 − α

2
,
3

2
;
(z

2

)2
)

.

Theorem 3.17. (Characteristic function) Let µ be a TID distribution with Lévy
measure given by (3.9), α ∈ [0, 2) and α 6= 1. If the distribution has finite mean,
i.e.

∫

Rd ‖x‖µ(dx) <∞, then

µ̂(y) = exp
{∫

Rd

ψα(〈y, x〉)R(dx) + i〈y,m〉
}

(3.24)

where

ψα(s) = 2−
α
2
−1

(

Γ

(

− α

2

)

M

(

− α

2
,
1

2
;
( i

√
2s

2

)2
)

+ i
√

2sΓ

(
1 − α

2

)

M

(
1

2
− α

2
,
3

2
;
( i

√
2s

2

)2
)

− i
√

2sΓ

(
1

2
− α

2

)

− Γ

(

− α

2

))

.

(3.25)

and m =
∫

Rd xµ(dx). Furthermore, if 0 < α < 1, the characteristic function can be
written in an alternative form

µ̂(y) = exp
{∫

Rd

ψ0
α(〈y, x〉)R(dx) + i〈y,m0〉

}

(3.26)



70 3. Tempered infinitely divisible distributions and processes

where

ψα(s) = 2−
α
2
−1

(

Γ

(

− α

2

)

M

(

− α

2
,
1

2
;
( i

√
2s

2

)2
)

+ i
√

2sΓ

(
1 − α

2

)

M

(
1

2
− α

2
,
3

2
;
( i

√
2s

2

)2
)

− Γ

(

− α

2

))

.

(3.27)

Proof. First, integrals (3.24) and (3.26) are well defined due to conditions (3.10) and
(3.21) of Lemma 3.14. It is well known that if the mean is finite, that is if the first
absolute moment exists, i.e.

∫

Rd ‖x‖µ(dx) <∞, then µ̂ can be written as

µ̂ = exp

(∫

Rd

(ei〈y,x〉 − 1 − i〈y, x〉)ν(dx) + i〈y,m〉
)

where m =
∫

Rd xµ(dx). By (3.9), we obtain the equality (3.24), where, if α ∈ [0, 2)

ψα(s) =

∫ ∞

0
(eist − 1 − ist)t−α−1e−t

2/2dt, (3.28)

If α ∈ [0, 1) and
∫

‖x‖≤1 ‖x‖R(dx) < ∞, by Proposition 3.13
∫

‖x‖≤1 ‖x‖ν(dx) < ∞,
in which case µ̂ can be written as

exp

(∫

Rd

(ei〈y,x〉 − 1)ν(dx) + i〈y,m0〉
)

,

where m0 is the drift as defined in [109]. By (3.9), we obtain the equality (3.26),
where

ψ0
α(s) =

∫ ∞

0
(eist − 1)t−α−1e−t

2/2dt, (3.29)

and, furthermore, the equality

ψα(s) = ψ0
α(s) − is

∫ ∞

0
t−αe−t

2/2dt (3.30)

holds. Now we will prove (3.25) and (3.27). If α ∈ (0, 1), we obtain by equality
(3.23)

∫ ∞

0
(eist − 1)t−α−1e−t

2/2dt =

=
∞∑

n=1

(is)n

n!

∫ ∞

0
tn−α−1e−t

2/2dt

=

∞∑

n=1

(is)n

n!
2

1
2
(n−α−2)Γ

(
1

2
(n− α)

)

= 2−
α
2
−1
∞∑

n=1

(i
√

2s)n

n!
Γ

(
1

2
(n− α)

)

= 2−
α
2
−1

(

Γ

(

− α

2

)

M

(

− α

2
,
1

2
;
( i

√
2s

2

)2
)

+ i
√

2sΓ

(
1 − α

2

)

M

(
1

2
− α

2
,
3

2
;
( i

√
2s

2

)2
)

− Γ

(

− α

2

))

.
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With a similar calculus, if α ∈ (0, 2) and α 6= 1, we obtain
∫ ∞

0
(eist − 1 − ist)t−α−1e−t

2/2dt =

=
∞∑

n=2

(is)n

n!

∫ ∞

0
tn−α−1e−t

2/2dt

=
∞∑

n=2

(is)n

n!
2

1
2
(n−α−2)Γ

(
1

2
(n− α)

)

= 2−
α
2
−1
∞∑

n=2

(i
√

2s)n

n!
Γ

(
1

2
(n− α)

)

= 2−
α
2
−1

(

Γ

(

− α

2

)

M

(

− α

2
,
1

2
;
( i

√
2s

2

)2
)

+ i
√

2sΓ

(
1 − α

2

)

M

(
1

2
− α

2
,
3

2
;
( i

√
2s

2

)2
)

−
√

2isΓ

(
1

2
− α

2

)

− Γ

(

− α

2

)))

Remark 3.18. With a similar technique, the characteristic exponent also can be
calculated also for both cases α = 0 and α = 1.

Definition 3.19. We will write X ∼ TIDα(R,m) to indicate that X is a TID ran-
dom variable with characteristic function (3.24) and X ∼ TID0

α(R,m0) to indicate
that X is a TID random variable with characteristic function (3.26). The constant
m is exactly the mean m = E[X].

3.2 TID processes

In this section, we will introduce TID processes. By Definition 3.3, if µ is a TID
distribution, it is infinitely divisible and therefore there exists a Lévy process {X(t) :
t ≥ 0} such that µ is the distribution of X(1).

3.2.1 Short and long time behavior

The following theorems will show the different behavior of a TID process for different
time scale. If one decreases the time scale, a TID process looks like a stable process;
otherwise, if one increases the time scale, it looks like a Brownian motion. To figure
out this different time behavior, we consider the time rescaled process

{Xh(t) : t ≥ 0} = {X(ht) : t ≥ 0}, (3.31)

where h > 0.

Theorem 3.20. (Short time behavior) Let {X(t) : t ≥ 0} be a TID Lévy process in
R
d such that the distribution of X(1) has spectral measure R.
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(a) Let us consider a TID process with X(1) ∼ TID0
α(R, 0), if α ∈ (0, 1) and with

X(1) ∼ TIDα(R, 0), if α ∈ (1, 2). Assume that

∫

Rd

‖x‖αR(dx) <∞ (3.32)

and let σ be the finite measure on Sd−1 defined in (3.15). Then

h−1/αXh
d→ Y, (3.33)

as h→ 0, where {Y (t) : t ≥ 0} is a strictly α-stable Lévy process with Y (1) =
Sα(σ, 0).

(b) Let us consider a TID process with X(1) ∼ TIDα(R, 0), if α = 1. Assume that

∫

Rd

‖x‖ |log ‖x‖|R(dx) <∞. (3.34)

Then

h−1/αXh − ah
d→ Y,

where

ah(t) = t log h

∫

Rd

xR(dx),

and {Y (t) : t ≥ 0} is an α-stable Lévy process with Y (1) ∼ S1(σ, b) with

b =

∫

Rd

x(1 − log ‖x‖)R(dx).

Proof. Since {h−1/αXh(t) : t ≥ 0} is a Lévy process, by [62, Theorem 13.17], it
is enough to show the convergence in distribution of h−1/αXh(1) to Y (1). By a
Paul Lévy theorem (also called the continuity theorem) [43, Theorem 2, p.508], the
convergence in distribution can be proved by considering the pointwise convergence
of the respective characteristic functions.

First, we want to prove (a). If α(0, 1), we obtain

E[ei〈y,h
−1/αXh(1)] = E[ei〈h

−1/αy,X(h)]

= exp

{∫

Rd

hψ0
α(h−1/α〈y, x〉)R(dx)

}

,
(3.35)

The upper bounds (3.21) of Lemma 3.14 and condition (3.32) allow one to apply
the dominated convergence theorem to the above integral. By definitions (3.25) and
(3.27) it easy to check that ψ0

α(−s) = ψ0
α(s) and ψα(−s) = ψα(s). Now, by (3.20)

and [109, Theorem 14.10], we calculate the limit h→ 0 under the integral (3.35)

lim
h→0

hψ0
α(h−1/α〈y, x〉) = Γ(−α)|〈y, x〉|α exp

{

−iαπ
2
sgn〈y, x〉

}

= Γ(−α) cos
απ

2
|〈y, x〉|α

(

1 − i tan
απ

2
sgn〈y, x〉

)

.
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Therefore, under the assumption α ∈ (0, 1), (3.33) holds. A similar argument proves
(a) also in the case α ∈ (1, 2). Let us consider the case α = 1. By definition of ah,
the equality

E[exp{i〈y, h−1Xh(1) − ah(1)〉}] = exp

{∫

Rd

(hψ1(h
−1〈y, x〉) − i〈y, x〉 log h)R(dx)

}

.

(3.36)
is fulfilled, then, by assumption (3.34) and [107, Theorem 3.1], (b) holds.

Now, we will prove that if one increases the time scale, a TID process looks like
a Brownian motion.

Theorem 3.21. (Long time behavior) Let {X(t) : t ≥ 0} be a TID Lévy process in
R
d such that the distribution of X(1) ∼ TIDα(R, 0) and α ∈ (0, 2). Assume that

∫

Rd

‖x‖2R(dx) <∞. (3.37)

Then
h−

1
2Xh

d→ B,

as h→ ∞, where {B(t) : t ≥ 0} is a Brownian motion with characteristic function

E[ei〈y,B(t)〉] = exp

{

−t2−α
2
−1Γ(1 − α

2
)

∫

Rd

〈y, x〉2R(dx)

}

. (3.38)

Proof. Since {h− 1
2Xh(t) : t ≥ 0} is a Lévy process, by [62, Theorem 13.17], it is

enough to show the convergence in distribution of h−
1
2Xh(1) to B(1). By the conti-

nuity theorem [43, Theorem 2, p.508], the convergence in distribution can be proved
by considering the pointwise convergence of the respective characteristic functions.
By considering equality (3.24), we can write

E[ei〈y,h
− 1

2Xh(1)] = E[ei〈h
− 1

2 y,X(h)]

= exp

{∫

Rd

hψ(h−
1
2 〈y, x〉)R(dx)

}

.

The upper bounds (3.21) and condition (3.37) allow one to apply the dominated
convergence theorem to the above integral and by considering (3.19) we obtain

lim
h→∞

hψ(h−
1
2 〈y, x〉) = −2−

α
2
−1Γ(1 − α

2
)〈y, x〉2,

which verifies (3.38).

3.3 Examples

A real TID law can be defined by fixing a positive definite radial function q with a
measure σ on S1 or alternatively by defining its spectral measure R. We are going
to show in the following three parametric examples of TID laws in one dimension.
In the first example, the measure R is the sum of two Dirac measures multiplied



74 3. Tempered infinitely divisible distributions and processes

for opportune constants. The spectral measure R of the second example has a non-
trivial bounded support and the derived TID distribution has exponential moments
of any order. In the last example, the MTS distribution is considered, see [71, 67],
the spectral measure is defined on an unbounded support and there exist exponential
moments of some order.

3.3.1 Example 1: RDTS

The Lévy measure of the rapidly decreasing tempered stable (RDTS) distribution
has the form

ν(dx) = (c+e
−λ2

+x
2/21x>0 + c−e

−λ2
−|x|2/21x<0)

dx

|x|α+1
, (3.39)

and can be written in polar coordinates as

ν(dr, du) = r−α−1q(r, u)dr σ(du)

where
q(r, 1) = e−λ

2
+r

2/2, q(r,−1) = e−λ
2
−r

2/2, (3.40)

and
σ(1) = c+, σ(−1) = c−. (3.41)

The positive definite radial function q, by Theorem 3.4, has the form

q(r, u) =

∫ ∞

0
e−r

2s2/2Q(ds|u)

where
Q(ds|1) = δλ+(s)ds,

and we have
Q(A) = c+

∫

A
δλ+(x)dx+ c−

∫

A
δ−λ−(x)dx, (3.42)

and hence the spectral measure R can be defined

R(A) = c+

∫

A
λα+δ1/λ+

(x)dx+ c−

∫

A
λα−δ−1/λ−(x)dx. (3.43)

Definition 3.22. Let c+, c−, λ+, λ− strictly positive constants, α ∈ (0, 2), α 6= 1
and µ ∈ R. An infinitely divisible distribution is called the simple TID distribution
with parameter (α, c+, c−, λ+, λ−) and mean µ, if its Lévy triplet is given by (0,
µ, ν) where

ν(dx) = (c+e
−λ2

+x
2/21x>0 + c−e

−λ2
−|x|2/21x<0)

dx

|x|α+1
.

Proposition 3.23. The characteristic function of the simple TID distribution with
parameter (α, c+, c−, λ+, λ−, µ) becomes

φ(u) = exp (iuµ+G(iu;α, c+, λ+) +G(−iu;α, c−, λ−)) (3.44)



3.3.2 Example 2: non trivial spectral measure 75

where

G(x;α,C, λ) = 2−α/2−1Cλα

(

Γ

(

− α

2

)

M

(

− α

2
,
1

2
;
(
√

2x

2λ

)2
)

+

√
2x

λ
Γ

(
1 − α

2

)

M

(
1

2
− α

2
,
3

2
;
(
√

2x

2λ

)2
)

−
√

2x

λ
Γ

(
1

2
− α

2

)

− Γ

(

− α

2

))

.

(3.45)

Proof. It follows by Theorem 3.17.

Remark 3.24. Let X ∼ RDTS(c+, c−, λ+, λ−, α,m) with α 6= 1. The mean, vari-
ance, skewness, and excess kurtosis can be easily calculated using the cumulants [69],
and are given as follows:

(a) E[X] = c1(X) = m,

(b) Var(X) = c2(X) = 2−
α
2 Γ
(

1 − α

2

)(
c+λ

α−2
+ + c−λ

α−2
−
)
,

(c) s(X) =
c3(X)

c2(X)3/2
= 2

1
2
+α

4
Γ(3−α

2 )
(
c+λ

α−3
+ − c−λ

α−3
−
)

(
Γ(1 − α

2 )(c+λ
α−2
+ + c−λ

α−2
− )

)3/2
,

(d) k(X) =
c4(X)

c2(X)2
= 2

α
2
+1 Γ(4−α

2 )
(
c+λ

α−4
+ + c−λ

α−4
−
)

(
Γ(1 − α

2 )(c+λ
α−2
+ + c−λ

α−2
− )

)2 .

Definition 3.25. A Lévy process X = (Xt)t≥0 is said to be a RDTS TID process
(or shortly, a CGMY process) with parameters (c+, c−, λ+, λ−, α, m) if

X1 ∼ RDTS(c+, c−, λ+, λ−, α,m).

3.3.2 Example 2: non trivial spectral measure

In the first example, the spectral measure R has no zero mass only at two points.
Now we will consider a spectral measure with power decay defined on a bounded
support of R. By taking into consideration the construction of the KR tempered
stable distribution in [68], we can consider the same spectral measure R. Indeed we
have

R(dx) = (c+r
−p+
+ I(0,r+)(x)|x|p+−1 + c−r

−p−
− I(−r−,0)(x)|x|p−−1) dx. (3.46)

By Theorem 3.17, the characteristic function of this distribution can be written
in close form.
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Lemma 3.26. Let α ∈ (0, 2) and α 6= 1. Then, the following equality holds

∫ (

Γ
(

− α

2

)

M
(

− α

2
,
1

2
;
( i

√
2ux

2

)2)

+ i
√

2uxΓ
(1 − α

2

)

M
(1

2
− α

2
,
3

2
;
( i

√
2ux

2

)2)
)

xp−1dx

=
xp

p
Γ
(

− α

2

)

2F2

(p

2
,−α

2
; 1 +

p

2
,
1

2
;
( i

√
2ux

2

)2)

+ i
√

2u
xp+1

p+ 1
Γ
(1 − α

2

)

2F2

(1

2
+
p

2
,
1

2
− α

2
;
3

2
+
p

2
,
3

2
;
( i

√
2ux

2

)2)

(3.47)

Proof. By equation (3.23), we can write
∫ (

Γ
(

− α

2

)

M
(

− α

2
,
1

2
;
( i

√
2ux

2

)2)

+ i
√

2uxΓ
(1 − α

2

)

M
(1

2
− α

2
,
3

2
;
( i

√
2ux

2

)2)
)

xp−1dx

=

∫ ∞∑

n=0

(i
√

2u)nxn+p−1

n!
Γ

(
1

2
(n− α)

)

dx

(3.48)

Since the series converges on each bounded interval on R, we obtain
∫ ∞∑

n=0

(i
√

2u)nxn+p−1

n!
Γ

(
1

2
(n− α)

)

dx = xp
∞∑

n=0

(i
√

2ux)n

n!(n+ p)
Γ

(
1

2
(n− α)

)

.

Furthermore, the following equalities are fulfilled

p

2n+ p
=

(p
2

)

n(
1 + p

2

)

n

p+ 1

2n+ 1 + p
=

(
1
2 + p

2

)

n
(

3
2 + p

2

)

n

and by a similar argument of Lemma 3.16, equation (3.47) is verified.

Proposition 3.27. The characteristic function of the TID distribution with param-
eter (α, c+, c−, λ+, λ−, p+, p−), mean m and with spectral measure (3.46) is

φ(u) = exp (ium+ c+B(iu;α, r+, p+) + c−B(−iu;α, r−, p−)) (3.49)

where

B(iu;α, r, p) =

= 2−α/2−1 1

p
Γ
(

− α

2

)(

2F2

(p

2
,−α

2
; 1 +

p

2
,
1

2
;
( i

√
2ur

2

)2)

− 1

)

+ 2−α/2−1 i
√

2ur

p+ 1
Γ
(1 − α

2

)(

2F2

(1

2
+
p

2
,
1

2
− α

2
;
3

2
+
p

2
,
3

2
;
( i

√
2ur

2

)2)

− 1

)
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Proof. Since the support of the measure R is bounded, by Proposition 3.11 the
distribution has exponential moments of any order and in particular finite mean.
By Theorem 3.17, we can consider the representation (3.25) and by Lemma 3.26 the
characteristic exponent can be computed.

3.3.3 Example 3 : MTS distribution

A parametric example of TID distributions has been already considered in the litera-
ture, the MTS distribution, see [71, 70, 67]. The Lévy measure of a MTS distribution
is defined as

M(dx) =



C+

λ+
α+1

2 Kα+1
2

(λ+x)

x
α+1

2

1x>0 + C−
λ−

α+1
2 Kα+1

2
(λ−|x|)

|x|α+1
2

1x<0



 dx,

where λ+, λ−, C+, C− > 0, α ∈ (0, 2), and α 6= 1. The tempering function q is of
the form

q(r, u) =







(λ+r)
α+1

2 Kα+1
2

(λ+r), u = 1

(λ−r)
α+1

2 Kα+1
2

(λ−r), u = −1,
(3.50)

and the measure σ is
σ(1) = C+, σ(−1) = C−.

Lemma 3.28. Let z > 0 and Kν(x) the modified Bessel function of second kind,
then the equality

2z
ν
2Kν(2

√
z) =

∫ ∞

0
e−zt−

1
t t−ν−1dt (3.51)

is satisfied.

Proof. By equality [50, 8.432(7)], we have

Kν(xp) =
pν

2

∫ ∞

0
e−

xt
2
−xp2

2t t−ν−1dt. (3.52)

By setting x = 2z and p = 1/
√
z, then we can write

Kν(2
√
z) =

z−
ν
2

2

∫ ∞

0
e−zt−

1
t t−ν−1dt

hence the equality (3.51) holds.

Lemma 3.29. Let µ be a MTS distribution, then

Q(ds| ± 1) = e−λ
2
±/2s

2
s−α−2λα+1

± ds, (3.53)

and

R(dx) =
(

C+λ
α+1
+ e−

λ2
+x2

2 Ix>0 + C−λ
α+1
− e−

λ2
−x2

2 Ix<0

)

dx. (3.54)
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Proof. By setting ν = α+1
2 and z = (λr)2/4 into (3.51) and changing variable

t = 2s2/λ2, we have

(λr)
α+1

2 Kα+1
2

(λr) = 2
α
2
− 1

2

∫ ∞

0
e−

r2s2

2 e−
λ2

2s2

(2s2

λ2

)−α+3
2

4sλ−2ds

= 2
α
2
− 1

2

∫ ∞

0
e−

r2s2

2 e−
λ2

2s2 s−α−2λα+12−
α
2
+ 1

2ds

=

∫ ∞

0
e−

r2s2

2 e−
λ2

2s2 s−α−2λα+1ds

By applying this result into (3.50), we have

q(r,±1) =

∫ ∞

0
e−

r2s2

2

(

e−
λ2

2s2 s−α−2λα+1
)

ds.

and obtain the equation (3.53) by the definition of Q(ds|u). Moreover, for A ∈ B(R),
we have

Q(A) =

∫

S0

∫ ∞

0
IA(ru)Q(dr|u)σ(du)

=

∫ ∞

0
IA(r)Q(dr|1)σ(1) +

∫ ∞

0
IA(−r)Q(dr| − 1)σ(−1)

= C+λ
α+1
+

∫ ∞

0
IA(r)e−λ

2
+/2r

2
r−α−2dr

+ C−λ
α+1
−

∫ ∞

0
IA(−r)e−λ2

−/2r
2
r−α−2dr.

Hence,

R(A) =

∫

R

IA

( x

|x|2
)

|x|αQ(dx)

=

∫

S0

∫ ∞

0
IA

(ru

r2

)

rαQ(dr|u)σ(du)

= C+λ
α+1
+

∫ ∞

0
IA

(1

r

)

rαe−λ
2
+/2r

2
r−α−2dr

+ C−λ
α+1
−

∫ ∞

0
IA

(

− 1

r

)

rαe−λ
2
−/2r

2
r−α−2dr

= C+λ
α+1
+

∫ ∞

0
IA(x)e−

λ2
+x2

2 dx

+ C−λ
α+1
−

∫ ∞

0
IA(−x)e−

λ2
−x2

2 dx

=

∫

A

(

C+λ
α+1
+ e−

λ2
+x2

2 Ix>0 + C−λ
α+1
− e−

λ2
−x2

2 Ix<0

)

dx.
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Lemma 3.30. Let α ∈ (0, 2) and α 6= 1. Then, the following equality holds
∫ ∞

0
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− α
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(3.55)

Proof. By equation (3.23), we can write
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(3.56)

Since the series converges on each bounded interval on R, by a similar argument of
Lemma 3.16, we can write
∫ ∞
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.

Proposition 3.31. The characteristic function of the MTS distribution with pa-
rameter (α, C+, C−, λ+, λ−), mean m and with spectral measure (3.54) is

φ(u) = exp (ium+ C+H(iu;α, λ+) + C−H(−iu;α, λ−)) (3.57)



80 3. Tempered infinitely divisible distributions and processes

where

H(iu;α, λ) =
λα

√
π

2
α
2
+ 3

2

Γ
(

− α

2

)((

1 +
u2

λ2

)α
2 − 1

)

+
iλα−1u

2
α
2
+ 1

2

Γ
(1

2
− α

2

)(

2F1

(

1,
1

2
− α

2
;
3

2
;−u

2

λ2

)

− 1

)

.

(3.58)

Proof. By definition of the measure R, by Proposition 3.11, the distribution has
finite mean. By Theorem 3.17, we can consider the representation (3.25) and by
Lemma 3.30 the characteristic exponent can be computed.



Chapter 4

The change of measure problem

A basic result in mathematical finance, sometimes called the fundamen-
tal theorem of asset pricing (see [40]), is that for a stochastic process
(S̃t)t≥0, the existence of an equivalent martingale measure is essentially
equivalent to the absence of arbitrage opportunities. In finance the pro-
cess (S̃t)t≥0 describes the random evolution of the discounted price of one
or several financial assets. The equivalence of no-arbitrage with the ex-
istence of an equivalent probability martingale measure is at the basis of
the entire theory of pricing by arbitrage. Starting from the economically
meaningful assumption that S̃ does not allow arbitrage profits, the theo-
rem allows the probability P on the underlying probability space (Ω,F , P )
to be replaced by an equivalent measure Q such that the process S̃ becomes
a martingale under the new measure. This makes it possible to use the
rich machinery of martingale theory. In particular the problem of fair
pricing of contingent claims is reduced to taking expected values with re-
spect to the measure Q. This method of pricing contingent claims is
known to actuaries since the introduction of actuarial skills, centuries
ago and known by the name of equivalence principle.

The above paragraph is the initial part of the seminal work [32] one of the most
important paper in mathematical finance, see also [33, 34] for further details. Now,
the problem is how to find an EMM in our framework. In the exponential Lévy
model, the equivalent martingale measure (EMM) of a given market measure is not
unique in general. For this reason, we have to find a method to select one of them.

One classical method to choose an EMM is the Esscher transform; another rea-
sonable method is finding the minimal entropy martingale measure, as presented by
[44]. However, while these methods are mathematically elegant and have a finan-
cial meaning in a utility maximization problem, the model prices obtained from the
EMM did not match the market prices observed for options.

Now, we want to find conditions under which the Lévy process (Xt)t≥0 under
the measure P is still a Lévy process under a new measure Q. In order to find
an equivalent measure, we will consider the general result of density transformation
between Lévy processes in [109]. Even if we restrict our attention to structure
preserving measures, the class of probabilities equivalent to a given one is surprisingly
large. A construction of the Radon-Nikodim derivative is also given and it will be
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used in the following also for simulation algorithms.
Let D = ([0,∞),Rd) be the space of mappings ω from [0,∞) into R

d right
continuous with left limits and define the process Xt(ω) = x(t, ω) = ω(t). Consider
the σ-algebra Ft generated from the process xt and FD the σ-algebra that makes xt
measurable. Any Lévy process ((xt)t≥t, P 0) induces a probability measure PD on
(D,FD) such that ((Xt)t≥t, PD) is a Lévy process identical in law with ((xt)t≥t, P 0).
Processes we will be going to consider are of the form ((Xt)t≥t, P ) and ((Xt)t≥t, P̃ )
where P and P̃ are a probability measure on (D,FD). Now we will show the
condition for the mutual absolutely continuity of P|Ft

and P̃|Ft
for every t and for

one dimensional processes.

Theorem 4.1. Let ((Xt)t≥0, P ) and ((Xt)t≥0, P̃ ) be Lévy processes on R with gen-
erating triplets (a, σ, ν) and (ã, σ̃, ν̃), respectively. Then the following two statements
are equivalent.

(1) P|Ft
≈ P̃|Ft

(2) The generating triplets satisfy

σ = σ̃

ν ≈ ν̃

with the function ϕ(x) defined by

dν̃

dν
= eϕ(x)

and satisfying ∫

Rd

(eϕ(x)/2 − 1)2ν(dx) <∞,

and

ã− a−
∫

|x|≤1
x(ν̃ − ν)(dx) ∈ R(σ) ∈ R

d.

where with R(L) we indicate the range of a linear operator L on R
d.

Proof. See [109, Theorem 33.1].

Another important result allow us to construct a process Ut, such that

Ut =
dP̃|Ft

dP|Ft

,

and
A ∈ Ft P̃ = EP [ZtIA].

This result will be very important also for some simulation techniques.

Theorem 4.2. Let ((Xt)t≥0, P ) and ((Xt)t≥0, P̃ ) be Lévy processes on R with gen-
erating triplets (a, σ, ν) and (ã, σ̃, ν̃), respectively. Suppose that the equivalent con-
ditions (1) and (2) in the Theorem 4.1 are satisfied. Choose η ∈ R

d such that

ã− a−
∫

‖x‖≤1
x(ν̃ − ν)(dx) = ση.
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Then we can define P -a.s.,

Ut = 〈η, (Xt −Xν
t )〉 − t

2
〈η, ση〉 − t〈γ, η〉

+ lim
ε↓0




∑

(s,∆Xs)∈(0,t]×{|x|>ε}
ϕ(∆Xs) − t

∫

|x|>ε
(eϕ(x)−1)ν(dx)



 ,
(4.1)

where ϕ is the function in (2) of Theorem 4.1 and (Xt −Xν
t )t≥0 is the continuous

part of the process (Xt)t≥0 under the measure P . The convergence in the right hand
side of (4.1) is uniform in t on any bounded interval, P -a.s..We have for every
t ∈ [0,∞),

EP [eUt ] = EP̃ [e−Ut ] = 1

and
dP̃|Ft

dP|Ft

= Ut P − a.s.

The process (Ut)t≥0 under the measure P is a Lévy process on R with generating
triplet (aU , σU , νU ) expressed by

σU = 〈η, ση〉,
νU = (νϕ−1)R\{0},

aU = −1

2
〈η, ση〉 −

∫

Rd

(ey − 1 − yI0<|y|≤1(y))(νϕ
−1)(dy).

(4.2)

An application of the above result, can be find in [107], where the author prove,
under some conditions, the absolutely continuity of TS processes with respect to
α-stable processes. By applying the result of [107] we can also obtain an alternative
proof of the change of measure result of [95], where a particular TS distribution is
chosen.

Theorem 4.3. In the above setting consider two probability measures P and P̃ on
(Ω,F) such that the process (Xt)t≥0 under P is a Lévy α-stable process while under
P̃ it is a proper TS process. Let us assume that under P , X1 ∼ Sα(σ, a) where
σ is related to R by (2.29) and α ∈ (0, 2), while under P̃ , X1 ∼ TS0(R, b) when
α ∈ (0, 1) and X(1) ∼ TS when α ∈ [1, 2). Let ν, the Lévy measure corresponding
to R, be as in 2.3, where q(0+, u) = 1 for all u ∈ Sd−1. Then

(i) P|Ft
and P̃|Ft

are mutually absolutely continuous for every t > 0 if and only if

∫

Sd

∫ 1

0
(1 − q(r, u))2r−1−αdrσ(du) <∞ (4.3)

and

b− a =







0, 0 < α < 1
∫

Rd x(log ‖x‖ − 1)R(dx), α = 1
Γ(1 − α)

∫

Rd xR(dx), 1 < α < 2.
(4.4)

Condition (4.3) implies that the integrals in (4.4) exist. Furthermore, if either
(4.3) and (4.4) fails, then P|Ft

and P̃|Ft
are singular for all t > 0.
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(ii) If (4.3) and (4.4) hold, then for each t > 0

dP̃

dP |Ft

= eUt , (4.5)

where (Ut)t≥0 is a Lévy process on (Ω,F , P ) given by

Ut = lim
δ↓0

{
∑

{s≤t:‖∆Xs‖>δ}
log q

(

‖∆Xs‖,
∆Xs

‖∆Xs‖

)

+ t

∫

Sd−1

∫ ∞

δ
(1 − q(r, u))r−α−1drσ(du)

}

.

(4.6)

The convergence is uniform in t on any bounded interval, P0-a.s.. Further-
more, the Lévy measure νU of U1 is concentrated on (−∞, 0) and determined
by

∫ 0

−∞
F (s)νU (ds) =

∫

Sd−1

∫ ∞

0
F (log(q(r, u)))r−α−1drσ(du)

for every Borel function F . The characteristic function of U1 if of the form

EP [eiθU1 ] = exp

{

iθa0 +

∫ 0

−∞
(eiθv − 1 − iθvI[−1,0)(v))νU (dv)

}

, (4.7)

where

a0 = −
∫ 0

−∞
(eiθv − 1 − iθvI[−1,0))νU (dv).

Proof. See [107, Theorem 4.1].

We will show now an application of above results. Even if the following result
has been already proved in [95] we will like to show it as an consequence of the
Theorem 4.3.

Proposition 4.4. Let (Xt)t≥0 a tempered stable process on the probability space
(Ω,F , P ) with characteristic triplet (0, a, ν), where the Lévy density is of the form

ν(x) =
c+e
−λ+x

x1+α+
I{x>0}

Then there exists an equivalent measure Q such that the process (Xt)t≥0 is stable
with Lévy triplet (0, ã, ν̃) where

ν̃(x) =
c+

x1+α+
I{x>0},

and

ã− a =







0, 0 < α < 1

c+λ
α−1
+ (log 1

λ+
− 1), α = 1

c+λ
α−1
+ Γ(1 − α), 1 < α < 2.

(4.8)

Furthermore, the change of measure is defined as

dQ

dP
= eZt .
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where the process Zt is of the form

Zt = λXt + ct,

with

c =







−λ+a0 + c+λ
α
+Γ(−α), 0 < α < 1

−λ+a1 + c+λ
α
+, α = 1

−λ+a1 + c+λ
α
+(1 − α)Γ(−α), 1 < α < 2.

Proof. By equations (2.35) and (2.32), under the measure P , the Rosińsky measure
is defined as

R = c+λ
α
+δ 1

λ+

and the function q is
q(r, 1) = e−λ+r, λ+ > 0,

then the condition
∫ 1

0
(1 − e−λ+r)2r−1−α <∞

is satisfied, since α > 0. Taking into account equation (2.28) with σ(du) = δ1(u),
we have

∫

Rd

∫ ∞

0
IA(tx)t−α−1dtR(dx) = c+λ

α
+

∫ ∞

0
IA(

t

λ+
)t−α−1dt

= c+

∫ ∞

0
IA(s)s−α−1dt = ν̃(A).

If we set the measure R in equation (4.4), then (4.8) is fulfilled.
Now, we will prove the second statement. Under the above assumptions, we have

q(r, 1) = e−λ+r, λ+ > 0

and by equation (4.6) with Ut = −Zt, we can write

Zt = lim
δ↓0

{

λ+

∑

{s≤t:|∆Xs|>δ}
|∆Xs| − tc+

∫ ∞

δ
(1 − e−λ+r)r−α−1dr

}

= lim
δ↓0

{

λ+




∑

{s≤t:|∆Xs|>1}
|∆Xs| +

∑

{s≤t:δ<|∆Xs|≤1}
|∆Xs|





− tc+

∫ ∞

δ
(1 − e−λ+r)r−α−1dr

}

Now, by the Lévy-Itô decomposition (Theorem 1.38), for a general Lévy process
having a generating triplet (0, a, ν), the process is equal to the sum of the jumps
of magnitude greater than 1, plus the sum of the jumps of magnitude less than 1
compensated by its mean plus a drift term. This result allows us to calculate the
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limit above. Indeed, we can write

Zt = lim
δ↓0

{

λ+

(
∑

{s≤t:|∆Xs|>1}
|∆Xs| +

∑

{s≤t:δ<|∆Xs|≤1}
|∆Xs|

− t

∫ ∞

δ
r(c(r) + I{|r|≤1})ν(dr)

)

+ λ+t

∫ ∞

δ
r(c(r) + I{|r|≤1})ν(dr)

− tc+

∫ ∞

δ
(1 − e−λ+r)r−α−1dr

}

.

(4.9)

Taking into account equality (1.8), the equality

a0 = a−
∫

R

rI{|r|≤1}(r)ν(dr)

holds and if 0 < α < 1, the last integral in (4.9) converges, therefore by setting c ≡ 0
we obtain

Zt = λ+Xt + t(−λ+a0 + c+λ
α
+Γ(−α)).

By integrating by parts and elementary properties of the gamma function, we can
see that the equality

∫ ∞

0
(1 − e−λ+r − λ+re

−λ+r)r−1−αdr = (α− 1)λα+Γ(−α) (4.10)

holds. Taking into account equality (1.8), the equality

a1 = a+

∫

R

r(c(r) − I{|r|≤1}(r))ν(dr)

holds and if 1 < α < 2, the last integral in (4.9) does not converge and we have to
compensate small jumps, therefore by setting c ≡ 1 and by using (4.10) we obtain

Zt = λ+Xt + t(−λ+a1 + c+λ
α
+(1 − α)Γ(−α)).

Finally, let us consider the limiting case α ց 1 and set c ≡ 1 as in the previous
case. By a similar argument, we obtain

Zt = λ+Xt + t(−λ+a+ c+λ
α
+).

Hence (4.8) is fulfilled.

Remark 4.5. If we consider the process Xt = X+
t +X−t where X+

t has Lévy measure

ν(x) =
c+e
−λ+x

x1+α+
I{x>0}

and X−t has Lévy measure

ν(x) =
c−e−λ−x

x1+α−
I{x<0}

we obtain the result of [95, Theorem 3.1].
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4.1 Change of measure between TS processes

In this section, we are going to talk about the change of measure problem between
two tempered stable processes. Roughly speaking, taking into consideration Theo-
rem 4.3, we will consider two probability measures P1 and P2 on (Ω,F) such that
the processes (X1

t )t≥0 under P1 (X2
t )t≥0 under P2 are proper tempered stable pro-

cesses with the same tail index α and a probability measure P̃ on (Ω,F) such that
the process (Xt)t≥0 under P is a Lévy α-stable process. Furthermore, if we suppose
that P is mutually absolutely continuous respect to P1 and P2, then under some
additional assumptions, also P1 and P2 are mutually absolutely continuous.

Proposition 4.6. Let us suppose the setting of the Theorem 4.3 and consider two
probability measures P1 and P2 on (Ω,F) such that the processes (X1

t )t≥0 under P1

and (X2
t )t≥0 under P2 are proper tempered stable processes with the same tail index

α and a probability measure P on (Ω,F) such that the process (Xt)t≥0 under P is a
Lévy α-stable process.

Let us assume that under P , X1 ∼ Sα(σ, a) where σ is related to R by (2.29) and
α ∈ (0, 2), while under Pi, X1 ∼ TS0(Ri, bi) when α ∈ (0, 1) and X(1) ∼ TS(Ri, bi)
when α ∈ [1, 2), for i = 1, 2. Let ν, the Lévy measure corresponding to R, be as in
2.3, where q(0+, u) = 1 for all u ∈ Sd−1. Furthermore, let us assume that P|Ft

and
P1|Ft

(respectively P2|Ft
) are mutually absolutely continuous for every t > 0. Then,

P1|Ft
and P2|Ft

are mutually absolutely continuous for every t > 0 if and only if

∫

Sd

∫ 1

0
(1 − qi(r, u))

2r−1−αdrσ(du) <∞ (4.11)

for i = 1, 2, and

b1 − b2 =







0, 0 < α < 1
∫

Rd x(log ‖x‖ − 1)R1(dx) −
∫

Rd x(log ‖x‖ − 1)R2(dx), α = 0
Γ(1 − α){

∫

Rd xR1(dx) −
∫

Rd xR2(dx)}, 1 < α < 2.
(4.12)

Conditions (4.11) implies that the integrals in (4.12) exist.

Proof. By using the transitive property of the mutually absolutely continuity and
Theorem 4.3, we obtain (4.11) and (4.12).

The advantage of the above theorem is that we can find conditions for the equiv-
alence of probability measures in a easier way than directly applying the Theorem
4.1. As already noted in [107, Example 4], if we take

q(r, u) = e−r
β
,

where 0 < β ≤ α
2 , then condition (4.3) fails.

The direct application of the Theorem 4.1 gives us another possible density
transformation in the tempered stable Lévy processes framework, see also [64].

Proposition 4.7. Let us suppose the setting of the Theorem 4.3 and consider two
probability measures P1 and P2 on (Ω,F) such that the processes (X1

t )t≥0 under
P1 and (X2

t )t≥0 under P2 are proper tempered stable processes with the same tail
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index α. Let us assume that under Pi, X1 ∼ TS0(Ri, bi) when α ∈ (0, 1) and
X(1) ∼ TS(Ri, bi) when α ∈ [1, 2), for i = 1, 2. Then, P1|Ft

and P2|Ft
are mutually

absolutely continuous for every t > 0 if and only if

∫

Sd

∫ 1

0
(
√

q2(r, u) −
√

q1(r, u))
2r−1−αdrσ(du) <∞ (4.13)

and

b1 − b2
?
=







0, 0 < α < 1
∫

Rd x(log ‖x‖ − 1)R1(dx) −
∫

Rd x(log ‖x‖ − 1)R2(dx), α = 1
Γ(1 − α){

∫

Rd xR1(dx) −
∫

Rd xR2(dx)}, 1 < α < 2.
(4.14)

Conditions (4.11) implies that the integrals in (4.12) exist.

As far as we know, it is not yet clear if there exists not trivial examples of com-
pletely monotone functions q1 and q2 such that conditions (4.11) fail but condition
(4.13) is fulfilled.

4.1.1 Change of measure for KR processes

A flexible distribution is needed in order to find an equivalent change of measure
and, at the same time, take into account the historical estimates. To this end,
we focus our attention on the KR tempered stable distribution. The risk-neutral
process can be fitted by matching model prices to market prices of options using
nonlinear least squares. The easy form of the characteristic function of the KR
distribution allows one to obtain a suitable solution to the calibration problem. To
demonstrate the advantages of the exponential KR model, we will present some
empirical results. First, we have to show a result about the change of measure
problem for KR tempered stable distribution.

Theorem 4.8. Consider two probability measures P1, P2 and the canonical process
(Xt)t≥0 on (Ω,F , (Ft)t≥0) given above. Let us suppose (Xt)t≥0 is the KR tempered
stable process under Pi with parameters (αi, ki+, ki−, ri+, ri−, pi+, pi−, mi) with
i = 1, 2 and

{
pi± > 1

2 − αi, αi ∈ (0, 1)
pi± > 1 − αi, αi ∈ [1, 2)

. (4.15)

Then P1|Ft and P2|Ft are equivalent for every t > 0 if and only if

α := α1 = α2, (4.16)

k1+r
α
1+

α+ p1+
=

k2+r
α
2+

α+ p2+
,

k1−rα1−
α+ p1−

=
k2−rα2−
α+ p2−

, (4.17)

if α 6= 1 then

m2 −m1 = Γ(1 − α)

((
k2+r2+
p2+ + 1

− k2−r2−
p2− + 1

)

−
(
k1+r1+
p1+ + 1

− k1−r1−
p1− + 1

))

(4.18)
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and if α = 1 then

m2 −m1 =
ki+ri+
pi+ + 1

(

log ri+ − pi+ + 2

pi+ + 1

)

− ki−ri−
pi− + 1

(

log ri− − pi− + 2

pi− + 1

)

− ki+ri+
pi+ + 1

(

log ri+ − pi+ + 2

pi+ + 1

)

− ki−ri−
pi− + 1

(

log ri− − pi− + 2

pi− + 1

)

(4.19)

Proof. By equation (2.45), the spectral measure Ri of a distribution

KR(αi, ki,+, ki,−, ri,+, ri,−, pi,+, pi,−,mi),

the is equal to

Ri(dx) = (ki+r
−pi+

i+ Ix∈(0,ri+)|x|pi+−1 + ki−r
−pi−

i− Ix∈(−ri−,0)|x|pi−−1)dx (4.20)

and by equation (2.40) we have

σi(A) =
ki,+r

αi
i,+

αi + pi,+
IA(1) +

ki,−r
αi
i,−

αi + pi,−
IA(−1), A ⊂ S0

and

qi(r,±1) = (α+ pi±)r
−αi−pi±

i±

∫ +∞

0
e−rtI{t> 1

ri±
}t
−αi−pi±−1dt.

First, we will show that condition (4.15) implies the finiteness of integrals (4.11).
To prove this fact, let us consider αi ∈ (0, 1) and if pi,± > 1

2 − αi then we have

d

dr
qi(r,±1) = −(αi + pi±)r

−αi−pi±

i±

∫ ∞

1/ri±

e−rtt−αi−pi±dt

≥ −(αi + pi±)r
−αi−pi±

i±

∫ ∞

1/ri±

1√
rt
t−αi−pi±dt

= − αi + pi±√
ri±(αi + pi± − 1

2)
r−

1
2 .

If we consider α ∈ [1, 2) and if pi,± > 1 − αi, then we have

d

dr
qi(r,±1) = −(αi + pi±)r

−αi−pi±

i±

∫ ri±

0
e−r/ssαi+pi±−2ds

≥= −(αi + pi±)r
−αi−pi±

i±

∫ ri±

0
sαi+pi±−2ds

= − αi + pi±
ri,±(αi + pi± − 1)

.

Let

Ki =







min
{

− αi+pi+√
ri+(αi+pi+−1/2) ,−

αi+pi−√
ri−(αi+pi−−1/2)

}

, αi ∈ (0, 1)

min
{

− αi+pi+

ri+(αi+pi+−1) ,−
αi+pi−

ri−(αi+pi−−1)

}

, αi ∈ [1, 2)

then

0 >
d

dr
qi(r,±1) ≥

{
Kir

−1/2, αi ∈ (0, 1)
Ki, αi ∈ [1, 2)

.



90 4. The change of measure problem

By the integration of the last inequality on the interval (0, r), we obtain

0 ≥ qi(r,±1) − 1 = qi(r,±1) − qi(0,±1) ≥
{

2Kir
1/2, αi ∈ (0, 1)

Kir, αi ∈ [1, 2)
.

Hence,
∫

S0

∫ 1

0
(1 − qi(r, u))

2r−αi−1dv σ(du)

≤
{ ∫

S0

∫ 1
0 4K2

i r
−αidr σ(du), αi ∈ (0, 1)

∫

S0

∫ 1
0 K

2
i r
−αi+1dv σ(du), αi ∈ [1, 2)

=

{
4K2

i
1−αi

∫

S0 σ(du), αi ∈ (0, 1)
K2

i
2−αi

∫

S0 σ(du), αi ∈ [1, 2)

<∞,

therefore (4.11) holds. Since
∫

R

|x|Ri(dx) <∞

the mean of the random variable X1 under the measure Pi is finite. By Remark
2.11, if α ∈ (0, 1) we can write

mi = bi0 + Γ(1 − α)

∫

R

xRi(dx).

where mi is the mean of the random variable X1 that is

mi =

∫

R

xµi(dx).

The finiteness of the mean allows us to consider only the representation (2.13) for
all α ∈ (0, 2). By condition (4.4), we obtain

m2 −m1 =

{ ∫

Rd x(log ‖x‖ − 1)R2(dx) −
∫

Rd x(log ‖x‖ − 1)R1(dx), α = 1
Γ(1 − α){

∫

Rd xR2(dx) −
∫

Rd xR1(dx)}, α 6= 1.

To complete the proof, we will calculate integrals above. If α = 1, then pj± > 0 and
integrating by parts we have

∫

R

x(log |x| − 1)Ri(dx)

= ki+r
−pi+

i+

∫ ri+

0
(log x− 1)xpi+dx− ki−r

−pi−

i−

∫ ri−

0
(log x− 1)xpi−dx

=

(
ki+ri+
pi+ + 1

(

log ri+ − pi+ + 2

pi+ + 1

)

− ki−ri−
pi− + 1

(

log ri− − pi− + 2

pi− + 1

))

,

and if α 6= 1, then
∫

R

xRi(dx) = ki+r
−pi+

i+

∫ ri+

0
xpi+dx− ki−r

−pi−

i−

∫ ri−

0
xpi−dx

=

(
ki+ri+
pi− + 1

− ki−ri−
pi− + 1

)
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By Theorem 4.6, P1|Ft
and P2|Ft

are equivalent for every t > 0 if and only if
(4.11) and (4.12) are verified, then we obtain the result that P1|Ft

and P1|Ft
are

equivalent for every t > 0 if and only if the parameters satisfy (4.16), (4.17) and
condition (4.18), if α 6=, 1 or condition (4.19), if α = 1.

The family of tempered stable process is flexible under change of measure and
we can also prove absolutely continuity between a KoBoL process and a KR process.
The idea comes from the fact that we can easily find estimates based on historical
data by using a KoBoL process in the real world and then, under some conditions
on parameters, the risk-neutral process can be fitted by matching model prices to
market prices of options using nonlinear least squares and a KR dynamic.

Proposition 4.9. Consider two probability measures P1, P2 and the canonical pro-
cess (Xt)t≥0 on (Ω,F , (Ft)t≥0) given above. Let us suppose (Xt)t≥0 is a KoBoL
process under P1 with parameters (α1, c+, c−, λ+, λ−, m1) and a KR tempered
stable process under P2 with parameters (α2, k+, k−, r+, r−, p+, p−, m2)

{
p± > 1

2 − α, α ∈ (0, 1)
p± > 1 − α, α ∈ [1, 2).

(4.21)

Then P1|Ft and P2|Ft are equivalent for every t > 0 if and only if

α := α1 = α2, (4.22)

c+ =
k+r

α
+

α+ p+
, c− =

k−rα−
α+ p−

, (4.23)

if α 6= 1 then

m2 −m1 = Γ(1 − α)

((
k+r+
p+ + 1

− k−r2−
p− + 1

)

− (c+λ
α−1
+ − c−λ

α−1
− )

)

(4.24)

and if α = 1 then

m2 −m1 =
ki+ri+
pi+ + 1

(

log ri+ − pi+ + 2

pi+ + 1

)

− ki−ri−
pi− + 1

(

log ri− − pi− + 2

pi− + 1

)

−
(
c+
λ+

(

log
1

λ+
− 1

)

− c−
λ−

(

log
1

λ−
− 1

)) (4.25)

Proof. See the proof of Theorem 4.8.

Now, it is well understood how we can find a density transformation in the
tempered stable processes framework. Furthermore, by using Theorem 4.6 where
measure change between two CGMY processes is considered, we obtain the same
result of [66].

4.1.2 Change of measure for GTS processes

If we consider a GTS distribution with parameters α+ 6= α−, it is not a tempered
stable distribution in the Rosiński sense, anyway, the change of measure problem
can be solved, by using similar arguments of previous sections.
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Proposition 4.10. Consider two probability measures P , P̃ and the canonical pro-
cess (Xt)t≥0 on (Ω,F , (Ft)t≥0) given above. Let us suppose (Xt)t≥0 is a GTS process
under P with parameters (α+, α− c+, c−, λ+, λ−, m) and a GTS tempered stable
process under P̃ with parameters (α̃+, α̃−, c̃+, c̃−, λ̃+, λ̃−, m̃). Then P |Ft and
P̃ |Ft are equivalent for every t > 0 if and only if

α+ = α̃+ α− = α̃−, (4.26)

c+ = c̃+, c− = c̃−, (4.27)

if α+, α− 6= 1 then

m̃−m = Γ(1 − α+)c+(λ̃
α+−1
+ − λ

α+−1
+ ) − Γ(1 − α−)c−(λ̃

α−−1
− − λ

α−−1
− ) (4.28)

and if α+ = α− = 1 then

m̃−m =

(
c+

λ̃+

(

log
1

λ̃+

− 1

)

− c−
λ̃−

(

log
1

λ̃−
− 1

))

−
(
c+
λ+

(

log
1

λ+
− 1

)

− c−
λ−

(

log
1

λ−
− 1

)) (4.29)

4.2 The Esscher transform

The procedure of tilting to obtain a density transformation is also related to the
Esscher transform. Having in mind the definition of TS distributions, let ν be a
Lévy measure of a TS distribution X such that

∫

|x|≥1
eθxν(dx) <∞,

that is X has exponential moment of order θ, then the measure ν̃(dx) = eθxν(dx)
is also a Lévy measure. Of course this measure change is only a particular case of
Theorem 4.1, but it is widely used in financial as well as in insurance mathematics
[47]. Due to the structure of the Lévy measure, in some case, if the initial random
variable is TS, also the transformed one is TS. To prove this fact, we will be going
to consider the IG and the BΓ distribution.

Proposition 4.11. Let φ(u) and φ̃(u) be the characteristic functions for the in-
finitely divisible distributions with Lévy triples (a, 0, ν) and (ã, 0, ν̃) respectively,
where ν̃(dx) = eθxν(dx) and condition

∫

|x|≥1
eθxν(dx) <∞,

then, assuming a truncation function h(x) = x in the Lévy-Khinchin representation,
the following relation holds

log φ̃(u) = log φ(u− iθ) − log φ(−iθ) + iu
(

ã− a−
∫

R

x(eθx − 1)ν(dx)
)

(4.30)

Proof. By Theorem 4.1, the result is proved.



4.2 The Esscher transform 93

The result above gives a easy procedure to find the characteristic function of
the transformed random variable, having the characteristic function of the initial
random variable.

Proposition 4.12. Let X a random variable with distribution X ∼ IG(a, b,m) and
X̃ the random variable obtained by the Esscher transform of X. Then X̃ is a random
variable with distribution X ∼ IG(a,

√
b2 − 2θ,m).

Proof. A X ∼ IG(a, b,m) random variable has Lévy measure

ν(dx) =
a√
2π
x−

3
2 e−

b2

2
xI{x>0}dx

and characteristic function

φ(u) = exp(−a(
√

b2 − 2iu− b) − iu
a

b
+ ium).

First, we evaluate the integral of the last term of equation 4.30, that is
∫

R

x(eθx − 1)ν(dx) =

∫

R

a√
2π
x−

3
2 e−

b2

2
xx(eθx − 1)I{x>0}dx

=
a√
2π

∫ ∞

0

∞∑

1

x−
1
2 e−

b2

2
x (θx)n

n!
dx

=
a√
2π

∞∑

1

θn

n!

∫ ∞

0
xn−

1
2 e−

b2

2
xdx

=
a√
2π

∞∑

1

θn

n!

(
b2

2

)−(n+ 1
2
)

Γ
(

n+
1

2

)

=
a√
2π

(
b2

2

)− 1
2
∞∑

1

1

n!

(
2θ

b2

)n

Γ
(

n+
1

2

)

=
a√
2π

(
b2

2

)− 1
2√

π

((

1 − 2θ

b2

)− 1
2

− 1

)

=
a√

b2 − 2θ
− a

b
.

(4.31)

Therefore we have

log φ̃(u) = −a(
√

b2 − 2i(u− iθ) − b) − i(u− iθ)
a

b
+ i(u− iθ)m

+ a(
√

b2 − 2θ − b) + θ
a

b
− θm− iu

( a√
b2 − 2θ

− a

b

)

= −a(
√

b2 − 2θ − 2iu−
√

b2 − 2θ) − iu
a√

b2 − 2θ
+ ium,

which proves the result.

Proposition 4.13. Let X a random variable X ∼ BΓ(a+, b+, a−, b−,m) and X̃ the
random variable obtained by the Esscher transform of X. If θ < b+, then X̃ is a
random variable X ∼ BΓ(a+, b+ − θ, a−, b− + θ,m).
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Proof. A X ∼ BΓ(a+, b+, a−, b−,m) random variable has Lévy measure

ν(dx) = a+x
−1e−b+xI{x>0} + a−|x|−1e−b−|x|I{x<0}dx

and the characteristic exponent is given by

ψ(u) = ium+ a+

(

log
( b+
b+ − iu

)

− iu

b+

)

+ a−

(

log
( b−
b− + iu

)

+
iu

b−

)

We evaluate the integral of the last term of equation 4.30,
∫

R

x(eθx − 1)ν(dx) = a+

∫ +∞

0
(e(θ−b+)x − e−b+x)dx− a−

∫ 0

−∞
eθx−b−|x| − e−b−|x|)dx

= a+

∫ +∞

0
(e(θ−b+)x − e−b+x)dx− a−

∫ 0

−∞
eθx−b−|x| − e−b−|x|)dx

= a+

∫ +∞

0
(e(θ−b+)x − e−b+x)dx− a−

∫ +∞

0
(e−(θ+b−)x − e−b−x)dx

=
a+

b+ − θ
− a+

b+
− a−
b− + θ

+
a−
b−
,

Therefore by considering the integral above, the evaluation of (4.30) gives the desired
result.

4.3 Change of measure for TID processes

In this section, a result on density transformations between stable and TID processes
is considered.

Theorem 4.14. Let P0 and P be probability measures on (Ω,F) such that the
canonical process {X(t) : t ≥ 0} is a Lévy α-stable process Sα(σ, a) under P0, while
it is a proper TID process TIDα(R, b) under P , where σ is given by equation (3.15).
Then

(i) P0|Ft
and P|Ft

are mutually absolutely continuous for every t > 0 if and only if

∫

Sd−1

∫ 1

0

(

1 − q(r, u)
)2
r−α−1drσ(du) <∞, (4.32)

and

b− a =







0, 0 < α < 1
∫

Rd x(log ‖x‖ + log 2
2 − 1 + γ

2 )R(dx), α = 1

2−
1
2
−a

2 Γ(1
2 − α

2 )
∫

Rd xR(dx), 1 < α < 2

(4.33)

Condition (4.32) implies that the integral exist. Furthermore, if either (4.32)
or (4.33) fails, then P0|Ft

and P|Ft
are singular for all t > 0.

(ii) If (4.32) and (4.33) hold, then for each t > 0

dP

dP0 |Ft

= eZt , (4.34)
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where {Zt : t ≥ 0} is a Lévy process on (Ω,F , P0) given by

Zt = lim
δ↓0

{
∑

{s≤t:‖∆Xs‖>δ}
log q

(

‖∆Xs‖,
∆Xs

‖∆Xs‖

)

+ t

∫

Sd−1

∫ ∞

δ
(1 − q(r, u))r−α−1drσ(du)

}

.

The convergence is uniform in t on any bounded interval, P0-a.s..

Proof. First, we will prove part (i). By equalities (3.1) and (3.3), we have

dν

dν0
(x) = q

(

‖x‖, x

‖x‖
)

, x ∈ R
d \ {0}. (4.35)

and for each A ∈ B(Rd)

∫

A
q
(

‖x‖, x

‖x‖
)

ν0(dx) =

∫

Sd−1

∫ ∞

0
IA(ru)q(r, u)r−α−1drσ(du) = ν(A).

By Theorem 33.1 in [109], define the function φ(x) by

dν

dν0
(x) = eφ(x).

Thus, we have
φ(x) = log q

(

‖x‖, x

‖x‖
)

,

and P0|Ft
and PFt are mutually absolutely continuous for every t > 0 if and only if

∫

Rd

(

e
φ(x)

2
−1 − 1

)2
ν0(dx) <∞ (4.36)

and
Bα = 0, (4.37)

where Bα is defined by

Bα =







b+
∫

‖x‖≤1 xν(dx) − (a+
∫

‖x‖≤1 xν0(dx)) −
∫

‖x‖≤1 x(ν − ν0)(dx), 0 < α < 1,

b−
∫

‖x‖>1 xν(dx) − (a− c
∫

Sd−1 uσ(du)) −
∫

‖x‖≤1 x(ν − ν0)(dx), α = 1,

b−
∫

‖x‖>1 xν(dx) − (a−
∫

‖x‖>1 xν0(dx)) −
∫

‖x‖≤1 x(ν − ν0)(dx), 1 < α < 2.

In the case α = 1, c = 1 − γ, where γ is the Euler constant. The inequality (4.36)
can be written as

∫

Rd

(

1 − q1/2
(

‖x‖, x

‖x‖
))2

ν0(dx) <∞ (4.38)

Since the integrand is bounded and ν0 is a Lévy measure, we may focus our
attention only on integration over {‖x‖ ≤ 1}. Applying elementary inequalities

1

4
(1 − y)2 ≤ (1 −√

y)2 ≤ (1 − y)2
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for y ∈ [0, 1], inequality (4.38) becomes

∫

{‖x‖≤1}

(

1 − q
(

‖x‖, x

‖x‖
))2

ν0(dx),

and writing the above integral in polar coordinates, we obtain (4.32). Now, we will
prove the equivalence between conditions (4.33) and (4.37). By finiteness of the
integral above and Hölder inequality, we have
∫

‖x‖≤1
‖x‖(ν0 − ν)(dx) =

∫

‖x‖≤1
‖x‖
(

1 − q
(

‖x‖, x

‖x‖
))

ν0(dx)

≤
(∫

‖x‖≤1
‖x‖2ν0(dx)

)1/2(∫

‖x‖≤1

(

1 − q
(

‖x‖, x

‖x‖
))2

ν0(dx)

)1/2

<∞
(4.39)

If 0 < α < 1, then Bα = b− a = 0 by (4.33). Suppose 1 < α < 2, then we have
∫

‖x‖>1
‖x‖ν(dx) =

∫

‖x‖>1
‖x‖q

(

‖x‖, x

‖x‖
)

ν0(dx).

and, since we are considering a proper TID process

q
(

‖x‖, x

‖x‖
)

≤ 1,

and ν0 is the Lévy measure of an α-stable distribution with 1 < α < 2, we obtain
∫

‖x‖>1
‖x‖ν(dx) ≤

∫

‖x‖>1
‖x‖ν0(dx) <∞.

Furthermore, by (4.39)
∫

Rd

‖x‖(ν0 − ν)(dx) <∞.

By using (3.9) and (3.14) and integrating by parts, the following result is obtained
∫

Rd

‖x‖(ν0 − ν)(dx) =

∫

Rd

∫ ∞

0
‖x‖t−α(1 − e−t

2/2)dtR(dx)

= −2−(1+α)/2Γ
(1

2
− α

2

)∫

Rd

‖x‖R(dx) <∞.

With a similar calculus, we can write

Bα =

∫

Rd

x(ν0 − ν)(dx) + b− a = −2−(1+α)/2Γ(
1

2
− α

2
)

∫

Rd

xR(dx) + b− a = 0,

where the last equality follows by (4.33), proving (4.37). It remains to verify (4.37)
in the case α = 1. By taking into account (4.39),

∞ >

∫

‖x‖≤1
‖x‖(ν0 − ν)(dx) =

∫

Rd

‖x‖
∫ 1/‖x‖

0
t−1(1 − e−t

2/2)dtR(dx)

≥ 1

4

∫

‖x‖≤1
‖x‖

∫ 1
‖x‖

1
t−1dtR(dx) =

1

4

∫

‖x‖≤1
‖x‖| log ‖x‖R(dx).
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Since the last integral is finite, the integral in (4.33) is well defined and we can
calculate

∫

‖x‖≤1
x(ν0 − ν)(dx) =

∫

Rd

x

∫ 1/‖x‖

0
t−1(1 − e−t

2/2)dtR(dx)

=
1

2

∫

Rd

x
(

E1

( 1

2‖x‖2

)

− 2 log ‖x‖ − log 2 + γ
)

R(dx)

by changing variable and equation 5.1.39 in [1], where the function E1(x) is the
exponential integral function defines by

E1(x) =

∫ ∞

x
t−1e−t.

By part (b) of Proposition 3.11, the first moment is finite, thus
∫

‖x‖>1
xν(dx) <∞

and
∫

‖x‖>1
xν(dx) =

∫

Rd

x

∫ ∞

1/‖x‖
t−1e−t

2/2dtR(dx)

=
1

2

∫

Rd

xE1

( 1

2‖x‖2

)

R(dx).

Adding together the above results, we have

B1 = b− 1

2

∫

Rd

xE1

( 1

2‖x‖2

)

R(dx) − a+ (1 − γ)

∫

Sd−1

uσ(du)

+
1

2

∫

Rd

x
(

E1

( 1

2‖x‖2

)

− 2 log ‖x‖ − log 2 + γ
)

R(dx)

= b− a+ (1 − γ)

∫

Rd

xR(dx) −
∫

Rd

x
(

log ‖x‖ +
log 2

2

)

R(dx) +
γ

2

∫

Rd

xR(dx) = 0

By considering the remark in [109, Notes page 236], we can complete the proof of
part (i). Indeed, since ν and ν0 are mutually absolutely continuous by (4.35), P0|Ft

and P|Ft
are mutually absolutely continuous or singular for all t > 0.

Part (ii) is an application of Theorem 33.2 of [109], where the form of Radon-
Nikodym derivative is specified for two mutually absolutely continuous Lévy pro-
cesses.

4.3.1 Change of measure for RDTS processes

If we consider a RDTS distribution as defined by Equation (3.44) with parameters
the change of measure problem can be solved, by using similar arguments of previous
sections.

Proposition 4.15. Consider two probability measures P , P̃ and the canonical pro-
cess (Xt)t≥0 on (Ω,F , (Ft)t≥0) given above. Let us suppose (Xt)t≥0 is a RDTS



98 4. The change of measure problem

process under P with parameters (α, c+, c−, λ+, λ−, m) and a RDTS process un-
der P̃ with parameters (α̃, c̃+, c̃−, λ̃+, λ̃−, m̃). Then P |Ft and P̃ |Ft are equivalent
for every t > 0 if and only if

α = α̃, (4.40)

c+ = c̃+, c− = c̃−, (4.41)

if α 6= 1 then

m̃−m = 2−
1+α

2 Γ

(
1 − α

2

)(

c+(λ̃α−1
+ − λα−1

+ ) − c−(λ̃α−1
− − λα−1

− )
)

. (4.42)

Proof. By Theorem 4.14 and by considering a similar argument of Theorem 4.6, the
result follows.



Chapter 5

TS exponential Lévy processes in

stock price modeling

Most of the concepts in theoretical and quantitative finance that have been de-
veloped over the past decades rest upon the assumption that asset returns follow a
normal distribution. By now, there is, however, ample empirical evidence that many
financial return series are heavy tailed and skewed. Since Mandelbrot introduced
the α-stable distribution to model the empirical distribution of asset prices in [81],
the α-stable distribution became the most popular alternative to the normal dis-
tribution. While the empirical evidence does not support the normal distribution,
it is also not consistent with an α-stable distribution. The distribution of returns
for assets has heavier tails relative to the normal distribution and thinner tails than
the α-stable distribution. Therefore TS distributions can partially help us to model
financial return series.

In this chapter, we will discuss a parametric approach to risk-neutral density
extraction from option prices based on the knowledge of the estimated historical
density. A continuous time model will be considered.

There is enough empirical evidence that many financial return series are heavy-
tailed and exhibit variances that change through time, indeed gaussian hypothesis
as well as exponential Lévy model does not describe the statistical properties of
financial time series very well. In this chapter we do not consider time dependent
variance, it will be done in Chapter 7.

It has been observed, [45] and [111], that while price processes for financial assets
must have a jump component they need not have a diffusion component. Jumps
are necessary in order to capture the large moves that occasionally occur. The
explanation usually given for the use of a diffusion component is that it captures the
small moves which occur much more frequently. However, TS processes have infinite
activity, i.e. with

∫

|x|<1 ν(dx) = ∞, and they are able to capture both rare large
moves and frequent small moves. High activity is accounted for by a large (in most
cases infinite) number of small jumps. It is well know that if we consider pure jump
Lévy processes models, the empirical performance of these models is typically not
improved by adding a diffusion component. Thus, it is not a restrictive hypothesis
if we consider only pure jump processes, i.e. with no Brownian component (σ = 0).
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5.1 A model for the stock price process

Let (Xt)t≥0 be a canonical process, that is the process of the form Xt(ω) = w(t)
with t ≥ 0 and w ∈ Ω1, where Ω = D([0,∞),Rd. Furthermore let Ω be equipped
with the σ-field F = σ{Xs : s ≥ 0} and the right-continuous natural filtration
Ft =

⋂

s≥t σ{Xu : u ≥ s} with t ≥ 0. The canonical process is completely described
by a probability measure P on the measurable space (Ω,F).

The exponential Lévy model assumes that the logarithmic returns of the stock
price process are given by a Lévy process. Hence, the stock price dynamic (St)t≥0

under the a market measure P is assumed to be given by

St = S0e
(µ+ω)t+Xt (5.1)

where µ is the mean rate of return on the stock and ω is a convexity correction,
defined by Equation (1.15)

ω = −ψ(−i) (5.2)

where ψ is the characteristic exponent of a given distribution as defined in (1.6).
By the Fundamental Theorem of Asset Pricing, we have to find an equivalent

measure Q such that the discounted stock price

S̃t = e−rtSt

is a martingale. Q is commonly called equivalent martingale measure (EMM). Recall
that a contingent claim is a non-negative F-measurable random variable C, C ∈
L+

0 (FT , P ) representing a contract that pays out Π(T,C(w)) dollars at time T if
w ∈ Ω occurs. At the time 0 its value or current price Π(0, C) is then the value that
the parties to the contract would deem a fair price for entering into this contract.
It is well know, that the price Π(t, C) ad time t of an European contingent claim
can be calculated as the expected value of the discounted value of its payout, that
is

Π(t, C) = EQ[e−r(T−t)Π(T,C)|Ft]
where r is the risk free rate, for more details see [41, 13]. Under this setting, if
we find an equivalent martingale measure, we are able to find a fair price for our
contingent claims, indeed we can calculate option prices. By our construction, it is
easy to see that under a risk neutral measure the process (St)t≥0 is

St = S0e
(r+ω)t+Xt . (5.3)

Under the assumption of Proposition 1.48,
∫

|x|≥1
exν(dx) <∞,

we obtain that the discounted stock price process

S̃t = S0e
ωt+Xt

1In the literature ω is used instead of w, but ω has been already used in the previous sections
for the convexity correction. We use w to avoid confusion.
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is a martingale. In order to find an EMM we have to find a density transforma-
tion such that the dynamic of the stock price process is of the form (5.3). We will
discuss a parametric approach to risk-neutral density extraction from option prices
based on the knowledge of the estimated historical density. In order to reach this
goal, we need do find relations between market and risk neutral parameters. The
purpose of this section is to bridge two strands of the literature, one pertaining to
the objective or physical measure used to model the underlying asset and the other
to the risk-neutral measure used to price derivatives. Numerous papers have con-
fronted empirical evidence obtained from derivative security markets with results
from the underlying and vice versa. In particular, issues related to the informa-
tional content of option prices have been examined extensively in the literature [25].
Indeed the common procedure is to estimate all parameters from the cross-section of
observed option prices [11, 7, 80], without considering a direct connection between
historical information and information coming from option prices. The choice of a
model implies also an out-of-the-sample performance analysis, which tests predictive
capabilities of the model. This latter point will be analyzed as well.

5.2 Estimation

The stock price model previously defined becomes the classical Black-Scholes model
if the driving process is a Brownian motion. In this particular well known case, the
market and the risk-neutral distributions are both lognormal with the same shape
parameter and different location parameter. In the general case, if the driving pro-
cess Xt is a Lévy process, the market is incomplete and the transformation between
market and risk neutral distribution is nontrivial. There are various techniques for
performing such a transformation, including the PDE approach, the general equi-
librium approach and the changing measure approach [61].

In the Chapter 4, the change of measure problem for TS processes has been
widely analyzed. The goal of this section is to apply the theory explained so far.

By applying this method, we do not need to assume any economical motivation
for our model. The risk aversion of investor is not necessary and, furthermore, no
assumption on the pricing kernel is made. Working with the TS distribution allow us
to estimate objective and risk neutral measures together. First, market parameters
are estimated by fitting the exponential TS Lévy model for the stock price, then, by
considering market parameters, option prices are fitted by using a suitable change
of measure.

5.2.1 TS model

In section 5.1, we have introduced a model for the stock price by considering a given
processes Xt. Since TS distributions are infinitely divisible, then TS processes can
be considered as driving processes for the stock price.

By Proposition 4.6, one can consider a TS driving process to model the stock
price under the statistical measure and then, by the change of measure properties,
find a suitable risk neutral measure such that conditions 4.11 and 4.12 are satisfied.

Proposition 5.1. Under the above notation, assume that (St)t∈[0,T ] has a TS driv-
ing process (X1

t )t∈[0,T ] ∼ TS(R1, b1) with a given set of parameters θ under the
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market measure P, and a driving process (X2
t )t∈[0,T ] ∼ TS(R2, b2) with a given set

of parameters θ̃ under a measure Q. Furthermore, assume that (4.11) is fulfilled.
Then Q is an EMM of P if and only if

α = α̃, (5.4)

σθ(A) = σθ̃(A), ∀A ∈ S0 (5.5)

and

µ− ψ1(−i; θ) − (r − d) + ψ2(−i; θ̃) = Γ(1 − α)

(∫

R

xR1(dx) −
∫

R

xR2(dx)

)

(5.6)

Proof. The proof follow by definition (5.1) and Proposition 4.6.

Now, we intend to define the KR model. For convenience, we exclude the case
α = 1 and define a function

ψKR(u; k+, k−, r+, r−, p+, p−, α,m) = Hα(u; k+, r+, p+) +Hα(−u; k−, r−, p−)

+ iu

(

m+ αΓ(−α)

(
k+r+
p+ + 1

− k−r−
p− + 1

))

,

(5.7)

on u ∈ {z ∈ C | − Im(z) ∈ (−r−1
− , r−1

+ )}, which is same as the exponent of (2.49).

Definition 5.2. In the above setting, if (Xt)t∈[0,T ] is the KR process with parameters
(α, k+, k−, r+, r−, p+, p−, m) where

α ∈ (0, 1) ∪ (1, 2),

k+, k−, r− ∈ (0,∞),

r+ ∈ (0, 1),

p+, p− ∈ (1/2 − α,∞) \ {0}, if α ∈ (0, 1),

p+, p− ∈ (1 − α,∞) \ {0}, if α ∈ (1, 2),

and m = µ − ψα(−i; k+, k−, r+, r−, p+, p−, 0) for some µ ∈ R, then the process
(St)t∈[0,T ] is called the KR price process with parameters (α, k+, k−, r+, r−, p+,
p−, µ) and we say that the stock price process follows the exponential KR model.

Remark 5.3.

1. We have the condition r+ ∈ (0, 1) for ψKR(−i; k+, k−, r+, r−p+, p−, α, 0) and
E[eXt ] to be well defined.

2. By the condition

{
p+, p− ∈ (1/2 − α,∞) \ {0}, if α ∈ (0, 1)
p+, p− ∈ (1 − α,∞) \ {0}, if α ∈ (1, 2)

, we are able

to use Theorem 4.8 for finding an equivalent measure.

3. Since m = µ− ψα(−i; k+, k−, r+, r−, p+, p−, 0), we have

E[St] = S0E[eXt ] = S0e
µt.
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Corollary 5.4. Assume that (St)t∈[0,T ] is the the KR price process with parame-
ters (α, k+, k−, r+, r−, p+, p−, µ) under the market measure P, and with parameters
(α̃, ã+, ã−, r̃+, r̃−, p̃+, p̃−, r−d) under a measure Q. Then Q is an EMM of P if and
only if

α = α̃, (5.8)

k+r
α
+

α+ p+
=

k̃+r̃
α
+

α+ p̃+
,

k−rα−
α+ p−

=
k̃−r̃α−
α+ p̃−

(5.9)

and

µ− (r − d) = Hα(−i; k+, r+, p+) +Hα(i; k−, r−, p−)

−Hα(−i; k̃+, r̃+, p̃+) −Hα(i; k̃−, r̃−, p̃−).
(5.10)

Proof. By Proposition 5.1, the result holds.

In the same way we can define the KoBoL model. Without losing generality, also
in this case we exclude the case α = 1 and define a function
ψKoBoL(u; c+, c−, λ+, λ−, α,m) = iub+ Γ(−α)c−((λ− + iu)α − λα− − iuλα−1

− α)

+ Γ(−α)c+((λ+ − iu)α − λα+ + iuλα−1
+ α),

(5.11)

on u ∈ {z ∈ C | − Im(z) ∈ (−λ−, λ+)}, which is same as the exponent of (2.36).

Definition 5.5. In the above setting, if (Xt)t∈[0,T ] is the KoBoL process with pa-
rameters (c+, c−, λ+, λ−, α, m) where

α ∈ (0, 1) ∪ (1, 2),

c+, c−, λ−, λ− ∈ (0,∞),

r+ ∈ (0, 1),

and b = µ − ψKoBoL(−i; c+, c−, λ+, λ−, α, 0) for some µ ∈ R, then the process
(St)t∈[0,T ] is called the KoBoL price process with parameters (α, c+, c−, λ+, λ−, µ)
and we say that the stock price process follows the exponential KoBoL model.

Corollary 5.6. Assume that (St)t∈[0,T ] is the KoBoL price process with parameters
(α, c+, c−, λ+, λ−, µ) under the market measure P, and with parameters (α̃, c̃+,
c̃−, λ̃+, λ̃−, r − d) under a measure Q. Then Q is an EMM of P if and only if

α = α̃, (5.12)

c+ = c̃+ c− = c̃− (5.13)

and

µ− (r − d) = Γ(−α)[c−((λ− + iu)α − λα−) + c+((λ+ − iu)α − λα+]

− Γ(−α)[c̃−((λ̃− + iu)α − λ̃α−) + c̃+((λ̃+ − iu)α − λ̃α+]
(5.14)

Proof. By Proposition 5.1, the result holds.

If we set Y = α, C = c+ = c−, λ+ = M and λ− = G, we obtain the well known
CGMY model [21]. By Proposition 4.9, we can also construct a model such that,
first we consider the KoBoL model to estimate market parameters and then by using
the market estimation we can estimate parameters under the risk neutral measure.
Relations between parameters follows by Proposition 5.1.
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5.2.2 Evaluating the density function

In order to calibrate asset returns models through exponential Lévy process or TS
GARCH model [68, 67], one needs a correct evaluation of both the pdf and cdf
functions. With the pdf function it is possible to construct a maximum likelihood
estimator (MLE), while the cdf function allows one to assess the goodness of fit.
Even if the MLE method may lead to local maximum rather than to a global one
due to the multi dimensionality of the optimization problem, the results obtained
seem to be satisfactory from the point of view of goodness of fit tests. Actually, an
analysis on estimation methods for this kind of distributions would be interesting,
but it is far from the purposes of this work.

Numerical methods are needed to evaluate the pdf function. By the definition
of the characteristic function as the Fourier transform of the density function [43],
we consider the inverse Fourier transform that is

f(x) =
1

2π

∫

R

e−iuxE[eiuX ]du (5.15)

where f(x) is the density function. If the density function has to be calculated
for a large number of x values, the fast Fourier Transform (FFT) algorithm can
be employed as described in [113]. The use of the FFT algorithm largely improves
the speed of the numerical integration above and the function f is evaluated on a
discrete and finite grid, consequently a numerical interpolation is necessary for x
values out of the grid. Since a personal computer cannot deal with infinite numbers,
the integral bounds (−∞,∞) in equation (5.15) are replaced with [−M,M ], where
M is large value. We take M ∼ 216 or 215 in our study and we have also noted that
smaller values of M generate large errors in the density evaluation given by a wave
effect in both density tails. We have to point out that the numerical integration as
well as the interpolation may causes some numerical errors. The method above is a
general method that can be used if the density function is not known in closed form.

While the calculus of the characteristic function in the CGMY case involves only
elementary functions, more interesting is the evaluation of the characteristic func-
tion in the KR case that is connected with the Gaussian hypergeometric function.
Equation (2.49) implies the evaluation of the hypergeometric 2F1(a, b; c; z) function
only on the straight line represented by the subset I = {iy | y ∈ R} of the com-
plex plane C. We do not need a general algorithm to evaluate the function on the
entire complex plane C, but just on a subset of it. This can be done by means of
the analytic continuation, without having recourse neither to numerical integration
nor to numerical solution of a differential equation [96] (for a complete table of the
analytic continuation formulas for arbitrary values of z ∈ C and of the parameters
a, b, c, see [12] or [49]). The hypergeometric function belongs to the special function
class and often occurs in many practical computational problems. It is defined by
the power series

2F1(a, b, c; z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
, |z| < 1. (5.16)

where (a)n := Γ(a + n)/Γ(n) is the Ponchhammer symbol. By [1] the following
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relations are fulfilled2

2F1(a, b, c; z) = (1 − z)−b2F1

(

b, c− a, c,
z

z − 1

)

if
∣
∣
∣
∣

z

z − 1

∣
∣
∣
∣
< 1

2F1(a, b, c; z) = (−z)−aΓ(c)Γ(b− a)

Γ(c− a)Γ(b)
2F1

(

a, a− c+ 1, a− b+ 1,
1

z

)

+ (−z)−bΓ(c)Γ(a− b)

Γ(c− b)Γ(a)
2F1

(

b, b− c+ 1, b− a+ 1,
1

z

)

if
∣
∣
∣
∣

1

z

∣
∣
∣
∣
< 1

2F1(a, b, c;−iy) = 2F1(a, b, c; iy) if y ∈ R.

(5.17)

First by the last equality of (5.17), one can determine the values of 2F1(a, b, c; z)
only for the subset I+ = {iy | y ∈ R+} and then simply consider the conjugate for
the set I− = {iy | y ∈ R−}, remembering that 2F1(a, b, c; 0) = 1. Second, we split
the positive real line R+ in three subsets without intersection,

I1
+ = {iy | 0 < y ≤ 0.5}
I2
+ = {iy | 0.5 < y ≤ 1.5}
I3
+ = {iy | y > 1.5},

then we use (5.16) to evaluate 2F1(a, b, c; z) in I1
+. Then, the first and the second

equalities of (5.17) together with (5.16) are enough to evaluate 2F1(a, b, c; z) in
I2
+ and I3

+ respectively. This subdivision allows one to truncate the series (5.16)
to the integer N = 500 and obtain the same results as Mathematica. We point
out that the value of y ranges in the interval [−M,M ] previously defined. This
method together with the Matlab vector calculus increase considerably the speed
with respect to algorithms based on the numerical solution of differential equation
[96]. Our method is grounded only on basic summations and multiplication. As a
result the computational effort in the KR density evaluation is comparable to that
of CGMY one. The KR characteristic function is necessary also to price options,
not only for MLE estimation. Indeed, by using the approach of Carr and Madan
[23] and the same analytic continuation as above, risk-neutral parameters may be
directly estimated from option prices, without calibrate the underlining.

5.2.3 Estimation of market parameters

We will test these continuous time models on the S&P 500 index. We will consider
adjusted closing prices of the S&P 500 index from Monday 12 April 1996 to Wednes-
day 12 April 2006 provided by Datastream for a total of 2501 observations. The
size of this data set, 2501 observations, is large enough for standard model fitting.
The dividend yield will be not used, since adjusted closing pricing are taken into
account, that is dt = 0, for each t in our sample. For the daily interest rate process
we take the time series of the above time window of the 3-months Treasury rate and
the 1-year zero rate is calculated by using the bootstrap method [55].

2See [1] or [12] for a complete overview on the analytic continuation of the Gaussian hypergeo-
metric function.
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Figure 5.1: S&P 500 market parameters estimated by MLE approach on Wednesday 12 April
2006.

We first estimate the market parameters of each model from 10 years of time-
series data. Our estimation procedure follows the classical maximum likelihood
estimation (MLE) method. The discrete Fourier transform (DFT) is used to invert
the characteristic function and evaluate the likelihood function in the all cases.

Let (Ω,A,P) be a probability space and {Xi}1≤i≤n a given set of independent
and identically distributed real random variables. In the following, let us consider
Xi(ω) = xi, for each i = 1, . . . , n. Let F be the distribution of Xi, and x1 ≤ x2 ≤
. . . ≤ xn. The empirical cumulative distribution function F̂n(x) is defined by

F̂n(x) =
no. observations ≤ x

n
=







0, x < x1
i
n , xi ≤ x ≤ xi+1, i = 1, . . . , n− 1
1, xn ≤ x.

Table 5.1: S&P 500 market parameters estimated by MLE approach on Wednesday 12 April
2006.

σ µ
Normal 0.1824 0.0871

C G M Y m
CGMY 0.8613 60.0000 67.7897 1.0457 0.0841

C+ C− G M Y+ Y− m
GTS 0.7119 0.5412 59.9427 59.9427 1.0457 1.1521 0.0805

k+ k− r+ r− p+ = p− α m
KR 960.7840 1.9115e+3 0.0158 0.0125 13.4336 0.9000 0.0873
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Table 5.2: Historical estimation results from 12 April 1996 to 12 April 2006.

KS AD AD2 AD2
up χ2(p-value)

Normal 0.0519 37.9525 13.4591 2.2580e+03 2.5659e+02(1.065e-14)
CGMY 0.0151 0.0389 3.1659 10.1990 98.9847(0.5936)
GTS 0.0157 0.0409 3.2428 10.4760 97.2380(0.6148)
KR 0.0138 0.0683 3.1370 9.5037 96.7591(0.5731)

A statistic measuring the difference between F̂n(x) and F (x) is called the empirical
distribution function (EDF) statistic [30]. These statistics include the Kolmogorov-
Smirnov (KS) statistic [30, 86, 112]. Our goal is to test if the empirical distribution
function of an observed data sample belongs to a family of hypothesized distribu-
tions, i.e.

H0 : F = F0 vs H1 : F 6= F0 (5.18)

Suppose a test statistic D takes the value d, the p-value of the statistic will then
be the value

p-value = P (D ≥ d).

We reject the hypothesis H0 if the p-value is less than a given level of significance,
which we take to be equal to 0.05. Let us consider a test for hypotheses of the
type (5.18) concerning continuous cumulative distribution function, the Kolmogorov-
Smirnov test. The KS statistic Dn measures the absolute value of the maximum
distance between the empirical distribution function F̂ and the theoretical distribu-
tion function F , putting equal weight on each observation,

Dn = sup
xi

|F (xi) − F̂n(xi)| (5.19)

where {xi}1≤i≤n is a given set of observations. Using the procedure of [86], we can
easily evaluate the distribution of Dn and find the p-value for our test.

Furthermore, to assess the goodness of fit, we consider some other classical sta-
tistical tests. It might be of interest to test the ability to model to forecast extreme
events. To this end, we also provide the AD statistics. We consider different versions
of the AD statistic. In its simplest version, it is a variance-weighted KS statistic

ADn = sup
xi

|F (xi) − F̂ (xi)|
√

F (xi)(1 − F (xi))
. (5.20)

A more generally used version of this statistic belongs to the quadratic class defined
by the Cramér-von Mises family [30], i.e.

AD2
n = n

∫ ∞

−∞

(F̂n(x) − F (x))2

F (x)(1 − F (x))
dF (x) (5.21)

and by the Probability Integral Transformation (PIT) formula [30], we obtain the
computing formula for the AD2

n statistic

AD2
n = −n+

1

n

n∑

i=1

(1 − 2i) log(zi) −
1

n

n∑

i=1

(1 + 2(n− i)) log(1 − zi)
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where zi is zi = F (xi), with i = 1, . . . , n. To evaluate the distribution of the AD2
n

statistic, we use the procedure described in [84]. The AD2
up statistic is also provided,

see [30]. Furthermore we follow the parametric procedure for testing the goodness
of fit given in [111], that is the χ2-test. In this first part, we analyze the goodness
of fit of our time series model respect to historical data.

5.2.4 Estimation of risk neutral parameters

In this section, we will discuss a parametric approach to risk-neutral density ex-
traction from option prices based on knowledge of the estimated historical density.
Therefore, taking into account the estimation results of Section 5.2.3 under the
market probability measure, we want to estimate parameters under a risk-neutral
measure. Data were supplied by Option Metrics’s IvyDB in the Wharton Research
Data Services. The market option prices are computed by using the Black-Scholes
formula with the implied volatilities and dividends given by IvyDB. Option prices of
European call option on Wednesday 12 April 2006 with different maturities (9, 37,
65, 156 and 247 days) will be considered in the optimization procedure. Option with
time to maturity more than 100 days, implied volatility more than 0.7, price less
than $0.05 and such that |S0/K − 1| > 0.10, where S0 is the initial underlying price
and K is the strike price, are discarded. The change of measure relations of Chapter
4 together with the market estimation of the previous section allow one to obtain a
risk neutral estimation flexible enough to fit both underling stock and option prices.
Furthermore, in order to test the forecasting performance of our continuous time
models, estimated risk neutral parameters are used to calculate European call op-
tions prices one week ahead (with maturities 2, 30, 58, 149 and 240 days), by using
asset prices, time to maturities and interest rate on Wednesday 19 April 2006.

Let us consider a given market model and observed prices Ĉi of call options with
maturities Ti and strikes Ki, i ∈ {1, . . . , N}, where N is the number of options
on a fixed day. The risk-neutral process is fitted by matching model prices to
market prices using nonlinear least squares. Hence, to obtain a practical solution
to the calibration problem, our purpose is to find a parameter set θ̃, such that the
optimization problem

min
θ̃

N∑

i=1

(Ĉi − C θ̃(Ti,Ki))
2 (5.22)

is solved, where by Ĉi we denote the price of an option as observed in the market
and by C θ̃i the price computed according to a pricing formula in a chosen model
with a parameter set θ̃.

The class of TS distribution is flexible enough to allow a joint market and risk
neutral estimation. By using market estimation, we can find risk neutral parameters
which verify conditions of Proposition 5.1.

If we consider the CGMY model, by Corollary 5.6, we can consider the historical
estimation for parameters Ỹ and C̃ and find a solution to the minimization problem
(5.22) which satisfies condition (5.12), (5.13) and (5.14). Therefore, we can estimate
parameters M̃ and G̃ under a risk-neutral measure. The optimization procedure
involves 4 parameters except r and 3 equality constraints. Consequently we have
only one free parameter to solve (5.22). A similar argument holds in the GTS case
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as well.

Table 5.3: Risk neutral parameters calibrated by cross sectional S&P 500 European call option
data on Wednesday 12 April 2006. The annual risk free interest rate is r = 0.0455

σ
Normal 0.1824

C G M Y
CGMY 0.8613 183.1590 210.7473 1.0457

C+ C− G M Y+ Y−
GTS 0.7119 0.5412 188.9524 287.1487 1.0457 1.1521

k+ k− r+ r− p+ p− α
KR 1.3833e+4 85.7494 0.0026 0.0145 40 -0.1650 0.9000

Table 5.4: Option pricing errors results on Wednesday 12 April 2006 for different Lévy models.

APE AAE RMSE ARPE

Normal 0.2553 10.1630 13.3233 1.9704
CGMY 0.0187 0.7450 0.9026 0.1600
GTS 0.0234 0.9327 1.2219 0.1495
KR 0.0158 0.6288 0.7624 0.1566

If we consider the KR exponential model, according to Definition 5.2 and Corol-
lary 5.6, we can find parameters k̃+, k̃−, r̃+ and r̃−, such that conditions (5.8), (5.9),
and (5.10) are satisfied and (5.22) is solved. We have 7 parameters except r and 4
equality constraints, namely 3 free parameters to minimize (5.22), i.e.

α = α̃,

p̃+ =
k̃+r̃

α
+

k+rα+
(α+ p+) − α,

p̃− =
k̃−r̃α−
k−rα−

(α+ p−) − α

and

µ− (r − d) = Hα(−i; k+, r+, p+) +Hα(i; k−, r−, p−)

−Hα(−i; k̃+, r̃+, p̃+) −Hα(i; k̃−, r̃−, p̃−).

By following Proposition 4.9 and Proposition 5.1, if we consider in the market
the GTS distribution and the KR distribution in the risk neutral world, conditions
on parameters becomes

α = α̃,
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Figure 5.2: S&P 500 European Call Option prices on Wednesday 12 April 2006 and related
implied volatility surface. CGMY, GTS and KR model fitting and related implied volatility surface.
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Table 5.5: Out-of-sample option pricing errors results on Wednesday 19 April 2006 for different
Lévy models. Estimated parameters on Wednesday 12 March 2006 are used to evaluate European
call options prices one week ahead, by using asset prices, time to maturities and interest rate on
Wednesday 19 March 2006.

APE AAE RMSE ARPE

Normal 0.3484 12.5187 15.8007 2.6869
CGMY 0.0519 1.8644 2.1568 0.4260
GTS 0.0352 1.2658 1.4979 0.32955
KR 0.0530 1.9026 2.1800 0.3659

p̃+ =
k̃+r̃

α
+

c+
− α,

p̃− =
k̃−r̃α−
c−

− α

and

µ− (r − d) = Γ(−α)c−((λ− + 1)α − λα−) + Γ(−α)c+((λ+ − 1)α − λα+)

−Hα(−i; k̃+, r̃+, p̃+) −Hα(i; k̃−, r̃−, p̃−)

+ αΓ(−α)

(

(λα−1
+ − λα−1

− ) −
(
k+r+
p+ + 1

− k−r−
p− + 1

))

.

Anyway, we do not test this approach empirically.
In the CGMY and GTS case we have only one free parameter but in the KR

case we have 3 free parameters to fit model prices to market prices; therefore, we
can obtain a better solution to the optimization problem. The KR distribution is
more flexible in order to find an equivalent change of measure and, at the same time,
takes into account the historical estimates.

Contrary to the classical Black-Scholes case, in the exponential Lévy models
there is no explicit formula for call option prices, since the probability density of a
Lev́y process is typically not known in closed form. Due to the easy form of the
characteristic functions of the CGMY, GTS and KR distributions, we follow the
generally used pricing method for standard vanilla options, which can be applied
in general when the characteristic function of the risk-neutral stock-price process is
known [23, 111]. Let ρ be a positive constant such that the ρ-th moment of the price
exists and φ the characteristic function of the random variable logST . A value of ρ
= 0.75 will typically do fine [111]. In [23, 111] is showed that

C(K,T ) =
exp (−ρ logK)

π

∫ ∞

0
exp(−iv logK)̺(v)dv,

where

̺(v) =
exp(−rT )φ(v − (ρ+ 1)i)

ρ2 + ρ− v2 + i(2ρ+ 1)v
.
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Furthermore, we need to guarantee the analyticity of the integrand function in the
horizontal strip of the complex plane, on which the line Lρ = {x+iρ ∈ C|−∞ < x <
∞} lies [77, 78]. If we consider the exponential KR model, we obtain the following
additional inequality constraint,

r−1
+ ≥ 1 + ρ,

by Proposition 2.23. Since α is less than 1 in the estimated market parameter for
the given time-series data, we have to consider an additional condition

p+, p− ∈ (1/2 − α,∞),

by Equation 4.15.
The optimization procedure is run by considering five different maturities. Even

if, due to the independence and stationarity of their increments, exponential Lévy
models perform poorly when calibrating several maturities at the same time [29],
the flexibility of the model allow one to obtain satisfactory results. In Table 5.5, we
resume the error estimator of our option price fits. The classical Brownian motion
case is considered for completeness, where the constant market volatility σ, estimated
in the previous section, is used to price option. The risk-neutral parameters for
different models are given in Table 5.3. To measure the performance of the option
pricing model, we consider four statistics, by following the approach of [111]. Let
C̄i be the mean of options prices Ci, we evaluate the average absolute error as a
percentage of the mean price

APE =
1

C̄i

N∑

i=1

|Ci − Cθ(τi,Ki)|
N

,

the average absolute error

AAE =
N∑

i=1

|Ci − Cθ(τi,Ki)|
N

,

the root mean square error

RMSE =

√
√
√
√

N∑

i=1

(Ci − Cθ(τi,Ki))2

N
,

and the average relative percentage error

ARPE =
1

N

N∑

i=1

|Ci − Cθ(τi,Ki)|
Ci

× 100.

If we consider the exponential TS models, we can estimate simultaneously market
and risk-neutral parameters using historical prices and observed option prices. The
flexibility of the KR distribution allows one to obtain a suitable solution to the
calibration problem (see Table 5.5).
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The CGMY model has four risk-neutral parameters to be estimated and three
restrictions in their EMM conditions, the GTS model has six risk-neutral parameters
to be estimated and five restrictions in their EMM conditions, while the exponential
KR model has seven risk-neutral parameters and four restrictions. Hence the CGMY
and the GTS models have only one free parameter, while the KR model has three
free parameters for the estimation.

The error estimators of the KR distributed EMM are less than those of the
CGMY and GTS parameter fits. The relatively flexible change of measure for the
KR distribution seems to generate the better performance, at least for this data set
taken into consideration.





Chapter 6

Simulation

In this chapter we analyze some methods to simulate Lévy processes and infinitely
divisible (ID) distributions. In particular, algorithms to generate random numbers
from an infinitely divisible random variable, can be easily modified to obtain the
corresponding Lévy process, and the converse is true as well. First, we study a
general framework to obtain random paths of Lévy processes, and then we apply it
to some particular cases.

6.1 Simulation techniques for ID random variables and

Lévy processes

Computer methods for construction of stochastic processes involve at least two kinds
of discretization techniques. First, we have to consider the discretization of the time
parameter and then an approximate representation of random variates with the aid
of artificially produced finite time series data sets [59]. A Lévy process has stationary
and independent increments, therefore the easiest idea, we have in mind to solve the
problem of simulating them only for a discrete time set, is equivalent to the problem
of generating random numbers from an infinitely divisible distribution.

Let us consider a Lévy process (Xt)t≥0. If the density ft has a simple form, then
the random numbers generation can be implemented in a rather easy way and if the
evaluation of the function ft involves special functions, then the algorithm imple-
menting the simulation becomes slow but yet easy to implement. In the literature
we have many cases in which the density function ft is not known in closed formula
and we have to work with the characteristic function. In some bad cases, in which
we are interested, we have a closed form for the characteristic function, but the Lévy
measure ν has not a closed form or it is not simple. By inverting the distribution
function, we can obtain random variates, but this method involve three numerical
procedures, first we have to invert the characteristic function to obtain the density
function, then we have to integrate the density function and finally we have to find
the solution of a nonlinear equation: this seems not to be a fast way to proceed.
In general also other methods, involving the inversion of the Lévy measure, do not
seem to be easily implementable, thus we need to recall a general framework for
simulating Lévy processes. Anyway, exact simulation of such processes is obviously
impossible. A process that is close to the original one is generated instead [106]. We
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will recall some general results from [105].
The following methods will be considered

(a) random walk approximation,

(b) shot noise representation.

6.1.1 Taking care of small jumps

Series representation of Lévy processes involve at least one discretization error, due
to the impossibility to deal with infinite summations. Furthermore, we have also to
take into account the approximation of small jumps. In the infinite activity case, this
truncation of small jumps involves an approximation error, since for a non compound
Lévy process (Xt)t≥0 with non zero Lévy measure the set of jumps is dense in [0,∞).
Without loss of generality, we can consider a Lévy process without drift and gaussian
part. Contents, we will be going to discuss, are based on [5, 3, 106]. Suppose we
want to simulate a Lévy process with Lévy measure ν without gaussian part neither
drift. Let us define the process (Xε

t )t≥0 as a compound Poisson process with a drift
and the distribution of jumps proportional to νε = ν|{|x|>ε} and the process (Rεt )t≥0

with no gaussian part, zero mean and Lévy measure νε = ν|{|x|≤ε}, then we have

Xt = Xε
t +Rεt

In the sequel we will consider an approximation of Xt. First, in the compensated
case, ∫

|x|<1
|x|ν(dx) = ∞,

we consider a compound Poisson process with a drift, the approximation is obtained
by removing small jumps

Xt ≈
∑

s≤t
∆XsI|∆Xs|≥1 +




∑

s≤t
∆XsIε≤|∆Xs|<1 − tµε





where we set
µε :=

∫

ε≤|x|≤1
xν(dx).

If we do not consider small jumps and set only the compound Poisson process with
drift we obtain a poor approximation. In the finite variation case,

∫

|x|<1
|x|ν(dx) <∞,

one can use zero truncation function in the Lévy-Khinchin representation and it is
possible to discard small jumps and replace them by their mean value, then, also in
this case, the resulting process is a compound Poisson process with a drift. In both
methods we have a Poisson approximation of a Lévy process and large jumps are
precisely simulated. In this case we put

Xt ≈ bt+
∑

s≤t
∆XsI|∆Xs|≥ε + taε
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where we define
aε :=

∫

|x|≤ε
xν(dx)

that is, rather then just removing small jumps, we replace them by their expected
value. However, when the intensity of small jumps is high, discarding them may
produce a substantial error. In such case, instead of discarding a small jump part
of a Lévy process, one can often approximate it by a Brownian motion with small
variance. This approximation is applicable when the series converges slowly and in
this case

Xt ≈ Xε
t +At (6.1)

where the process At is defined as

AWt = aεt+ σεWt

where we define
σ2
ε :=

∫

|x|<ε
x2ν(dx).

and

aε =

{

0,
∫

|x|<1 |x|ν(dx) = ∞,
∫

|x|≤ε xν(dx),
∫

|x|<1 |x|ν(dx) <∞,

and Wt is a standard Brownian motion. Also if a series representation is available,
under some additional conditions, we can apply the method above. To be more
precisely, we will show under which conditions the Brownian approximation of small
jumps can be used. Let Rεt be a Lévy process with characteristic function

E[eiuR
ε
t ] = exp

{

t

∫

|x|<ε
(eiux − 1 − iux)ν(dx)

}

,

then the following result is verified

Theorem 6.1. We have Rε/σε
d→W as ε→ 0 if and only if for each k > 0

σkσε∧ε ∼ σε. (6.2)

Proof. See [5, Theorem 2.1].

Error bound conditions can be found in [29, 6]. We want to recall an equivalent
formulation to cover most of practical interest cases.

Proposition 6.2. Assume that ν has a density of the form L(x)/|x|α+1 for all small
x, where L(x) is slowly varying as x→ 0 and 0 < α < 2. Then

Rεt − aεt

σε

d→Wt

Sometimes it seems to be easy to check an alternative condition.

Proposition 6.3. Condition (6.2) is implied by

lim
ε→0

σε
ε

= +∞. (6.3)
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Figure 6.1: Simulation of a CGMY process with C = 2, G = 3, M = 10 and Y = 1.5 with and
without Brownian approximation of small jumps, ǫ = 1e − 5.

Proof. See [5, Proposition 2.1].

We will obtain an useful result for TS processes.

Proposition 6.4. In the TS case we can always consider the Brownian approxima-
tion of small jumps.

Proof. To prove this, we will show that in TS case, condition (6.3) is always fulfilled.
By Theorem 2.4 and equation 2.8 we can write

∫

|x|≤ε
|x|2ν(dx) =

∫

R

|x|2
∫ ε
|x|

0
t1−αe−tR(dx)

≥
∫

|x|≤1
|x|2

∫ ε

0
t1−αe−tR(dx) +

∫

|x|>1
|x|2

∫ ε
|x|

0
t1−αe−εR(dx)

≥ e−εε2−α(2 − α)−1

∫

|x|≤1
|x|2R(dx) + e−εε2−α(2 − α)−1

∫

|x|>1
|x|αR(dx)

By conditions (2.9), we can write

lim
ε→0

σ2
ε

ε2
≥ lim

ε→0

Ke−εε2−α

ε2
= +∞,

with K finite constant and 0 < α < 2. Thus (6.3) holds.
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6.1.2 Series representation: a general framework

Series representation plays an important rule also in the construction of stochastic
integral of a deterministic function respect to a random measure, i.e. the integral

I(f) =

∫

E
f(x)M(dx)

where (E, E ,m) is a finite measure space and M is a random measure with finite
control measure m, see [108, 59] and references therein.

Now, we recall a general result form [105]. As said before, a classical method
to simulate infinite activity Lévy process is find a compound Poisson process which
approximates the initial process. The basic idea is to consider a Lévy process with
zero Lévy measure in a neighborhood (−ε, ε), with ε > 0. If possible, jumps less
than ε can be approximated by a Brownian approximation 6.1, otherwise by their
mean. Let {X(t), t ≥ 0} a Lévy process, we can remove small jumps of magnitude
less than εn and write

Xεn(t) = ta+

∫

εn≤x≤1
x(N∗([0, t], dx)) − tν(dx)) +

∫

|x|>1
(N∗([0, t], dx)),

then by (6.4) we obtain

Xεn(t) =
∑

{i≥1:|Ji(ω)|≥εn}
JiI{Ui≤t} − tbn,

where
bn =

∫

εn≤x≤1
xν(dx) − a

The process of jumps N∗

N∗ =
∞∑

i=0

δ(Ui,Ji), (6.4)

where {Ji} is a sequence of random variables in R independent of the sequence {Ui}
of i.i.d. uniform on (0, t) random variables, can be represented in different ways,
depending on the choice of {Ji}. By the Lévy-Itô decomposition, Theorem 1.38, we
have the following convergence result

∑

{i≥1:|Ji(ω)|≥εn}
JiI{Ui≤t} − tbn → X(t) a.s.

Therefore, we get a series representation of the following form

X(t) =
∞∑

i=0

(JiI{Ui≤t} − tci) a.s.

where ci depends on the choice on Ji. In order to simulate a Lévy processes, we
need to find suitable representation on Ji and calculate the value of ci. In computer
simulation we cannot deal with infinite summation, therefore we have to truncate
the series and calculate the summation only for a finite number of addends, some
small jumps are inevitably truncated.
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Let us now consider a measurable function

H : (0,∞) × S → R

where S is a measurable space and H is non increasing respect to the first variable.
For most of the cases Ji is defined as

Ji = H(Γi, Vi)

for some i.i.d. sequence {Vi}, where {Γi} are arrival times of a unit rate Poisson
process on [0,∞), {Ui} are uniform independent random variable in R. Let {Ui} be
independent of {Vi} and {Γi}. The Lévy measure can be written as

ν(A) =

∫ ∞

0
P (H(r, Vi) ∈ A)dr A ∈ B(R).

By Corollary 1.36, indeed if we consider the Poisson point process

N =

∞∑

i=1

δ(Ui,Γi,Vi),

then by taking a function h so defined

h(u, γ, v) = (u,H(γ, v))

we obtain

Ñ =
∞∑

i=1

δ(Ui,H(Γi,Vi))

where the sequences {Ui,Γi, Vi} can be defined on the same probability space as
Ñ . The different choice of the function H gives us different algorithms to simulate
infinitely divisible distributions and Lévy processes as well, see [105] for all details.
We now recall the converge result of the above construction proved in [105]. First
define measures on R by

σ(r; ·) = P (H(r, Vi) ∈ ·), r > 0

and

ν(·) =

∫ ∞

0
σ(r; ·)dr.

Put

A(s) =

∫ s

0

∫

|x|≤1
xσ(r; dx)dr s ≥ 0.

Theorem 6.5. ([105, Theorem 4.1])

(A) The series X =
∑∞

i=1H(Γi, Vi) converges a.s. if and only if

(i) ν is a Lévy measure on R0.

(ii) a := lims→∞A(s) exists in R.
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If (i) and (ii) are satisfied, then X is infinitely divisible with characteristic
triplet (a, 0, ν).

(B) If only (i) holds, then X =
∑∞

i=1 |H(Γi, Vi)− ci| converges a.s. for ci = A(i)−
A(i− 1). In this case the characteristic triplet is (0, 0, ν).

Furthermore if we want to simulate a Lévy process, by Theorem 5.1 of [105] the
following convergence result follows

X(t) = at+
∞∑

i=1

(H(Γi, Vi)I{Ui≤t} − tci) a.s.

for each t ∈ [0, 1]. The speed of convergence is determined by the choice of the
function H.

If the Lévy measure is written in spherical coordinates

ν(A) =

∫

S0

∫ ∞

0
I{rs∈B}ρ(dr, s)σ(ds)

where ρ(·, s) is a family of Lévy measures on (0,∞) and σ a measure on S0, then a
function

ρ←(u, v) := inf{x > 0 : ρ([x,∞), v) < u} r > 0

can be defined. By changing variable, the Lévy measure ν can be written as

ν(A) =

∫ ∞

0
P (H(r, V ) ∈ A)dr

=

∫ ∞

0

∫

S0

I{H(r,V )∈A}σ(ds)dr

=

∫

S0

m(ds)

∫ ∞

0
I{sρ←(r,s)∈A}σ(ds)dr

If we set H as
H(γ, v) = ρ←(γ, v)v,

then we can apply the construction above and obtain the so called LePage’s series
representation [75]. In the α-stable case this series converges awfully slowly, as noted
in [59].

6.1.3 Rosińsky rejection method

In this section we will introduce the rejection method of [105]. Let (Xt)t≥0 be the
Lévy process, we want to simulate, and (X0

t )t≥0 another Lévy process. If we can
find an easy way to generate (X0

t )t≥0 and if the ratio

dν

dν0
≤ 1,

then we can construct the following algorithm, where J0
i is an approximation of the

i-th jump of X0
i which can be easily generate. Additionally, let {Wi} be a i.i.d.

sequence of uniform random variables on (0,1) independent of {Ui, J0
i }.

Algorithm 10
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1. Generate a uniform variable Wi on (0,1).

2. Generate a variable J0
i independent from Wi.

3. Define

Ji =

{
J0
i ,

dν
dν0 (J0

i ) ≥Wi,
0, otherwise.

4. Take Ji as an approximation of the i-th jump of Xi.

The key to this method is to find an easy way to generate the Lévy process X0

from which only a small finite number of jumps must be removed to get the jumps
of X. In practical applications of this method one only needs to consider nonzero
jumps. The proof of this result is a direct consequence by Corollary 1.36, indeed if
we consider the Poisson point process

N =

∞∑

i=1

δ(Ui,Wi,J0
i ),

then by taking a function h so defined

h(u,w, j) = (u, jI{ ν
ν0

(j)≥w})

we obtain

Ñ =
∞∑

i=1

δ(Ui,Ji)

where the sequences {Ui,Wi, J
0
i } can be defined on the same probability space as

Ñ .

6.1.4 Time-changed Brownian motion

The construction will be using throughout is well known from the theory of stochas-
tic processes under the name of Skorokhod embedding problem, for a review of this
problem, readers are referred to [94] and references therein. A process can be em-
bedded in a Brownian motion if and only if it is a local semimartingale [92]. In
particular every semimartingale can be written as a time-changed Brownian mo-
tion, where the random time Gt is a subordinator. As consequence of Theorem 1.38,
every Lévy process Yt is a semimartingale, thus there exists a subordinator Gt such
that Yt and XGt coincide.

A large part of modern finance has been concerned with modelling the evolution
of return process over time [56, 83, 45, 46, 24]. By subordination, it is possible to
capture empirically observed anomalies that contradict the classical log-normality
assumption for asset prices [56, 57, 31]. In periods of high volatility, time runs faster
than in periods of low volatility. The subordinator models operational time and
provides distribution tail effects often observed in the market [31]. The Skorokhod
embedding problem is also related to the subordination of Lévy processes. In order
to obtain the generating triplet of the subordinated process, we recall a general
result of [109, Theorem 30.1].
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Theorem 6.6. Let (Gt)t≥0 be a subordinator with Lévy triplet (b0, 0, ρ), character-
istic exponent ψ and PG1 = λ. Let (Xt)t≥0 be a Lévy process on Rd with generating
triplet (a, σ, ν) and let µ = PX1 . Suppose that (Gt)t≥0 and (Xt)t≥0 are independent.
Define

Yt(ω) = XGt(ω)(ω), t ≥ 0.

Then (Yt)t≥0 is a Lévy process on R
d which satisfies

P{Yt ∈ B} =

∫ ∞

0
µs(B)λt(ds)

with characteristic function

E[ei〈z,Yt〉] = etψ(log µ̂(z)), z ∈ R
d (6.5)

and generating triplet (a♯, σ♯, ν♯) of the form

ν♯(B) = b0ν(B) +

∫ ∞

0
µs(B)ρ(ds), B ∈ B(Rd\{0}),

σ♯ = b0σ,

a♯ = b0a+

∫ ∞

0
ρ(ds)

∫

|x|≥1
xµs(dx).

(6.6)

Remark 6.7. If the subordinated Lévy process is of the form

Yt = θGt +W (Gt) (6.7)

then the Lévy measure of the process Yt is given by

ν♯(dx) =

∫ ∞

0

e
− (x−θy)2

2y

√
2πy

ρ(ds). (6.8)

The knowledge of the business time is very convenient for the simulation. First
we can can generate the subordinator and then the Brownian motion. Since normal
random variables are the building blocks of many simulation algorithms, it is then
clear that all the difficulty comes from the generation of increments of the new time
scale, represented by the subordinator.

Another problem comes from the theory of stochastic processes. Although the
representation via Brownian subordination is a nice properties, we do not know in
a general constructive method to find the process (Gt)t≥0 such that Yt = XGt(ω),
thus this algorithm can be applied only for some particular Lévy processes, see for
example [31, 29, 79]. If one knows how to simulate the increments of the subordina-
tor, the increments of (Gt)t≥0 can be simulated using a random walk approximation
with a fixed time grid and a Brownian motion with volatility σ and mean µ.

Algorithm 11

1. Fix a time grid t1, . . . , tn and G0 = 0.

2. Simulate increments of the subordinator ∆Gi = Gti −Gti−1.

3. Simulate n independent standard normal random variables N1, . . . , Nn.

4. Calculate increments ∆Yi = σNi

√
∆Gi − µ∆Gi

5. Set Yti =
∑i

k=1 ∆Yi
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6.1.5 Alpha stable processes

We can consider a random walk approximation of a stable process, by using the
Algorithm 9. Another approach is a shot noise representation, by following the
general result of section 6.1.2. The stochastic integral of a deterministic function,
measurable in the sense of [101], respect to an α-stable random measure, i.e. the
integral

I(f) =

∫

E
f(x)M(dx)

where (E, E ,m) is a finite measure space and M is a random measure with finite
control measure m, can be defined also by the series representation described in
[108]. A α-stable Lévy motion Sα(1, β, 0) can be viewed as

Xt
d
=

∫ T

0
I[0,t]M(dx) 0 ≤ t ≤ T

where M is an α-stable random measure on ([0, T ],B([0, T ])) with Lebesgue control
measure m and skewness intensity β(x) ≡ β. Therefore by Theorem 3.10.1 in [108],
we have that if 0 < α < 1, then

Xt = C1/α
α T 1/α

∞∑

i=1

ViΓ
−1/αI{Ui≤t} 0 ≤ t ≤ T, (6.9)

for α = 1

Xt =
2

π
T 1/α

∞∑

i=1

(ViΓ
−1/αI{Ui≤t} − β

t

T
b
(1)
i ) + βt

2

π
log

2

π
0 ≤ t ≤ T (6.10)

and 1 < α < 2

Xt = C1/α
α T 1/α

∞∑

i=1

(ViΓ
−1/αI{Ui≤t} − β

t

T
b
(α)
i ) 0 ≤ t ≤ T, (6.11)

where we define three independent sequences, {Vi} a sequence of i.i.d. random
variables satisfying

P (Vi = 1) = 1 − P (Vi = −1) =
1 + β

2
,

{Γi} a sequence of a Poisson point process with unit arrival rate, that is arrival
times of a standard Poisson process, and {Ui} a sequence of i.i.d. random variables
uniformly distributed in [0, T ]. Furthermore b(α)

i is given by

b
(α)
i =







0, 0 < α < 1
∫ 1/(i−1)
1/i x−2 sinxdx, α = 1
α
α−1(i

α−1
α − (i− 1)

α−1
α ), 1 < α < 2

(6.12)
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6.1.6 CGMY processes

A CGMY process can be described as time changed Brownian motion, the explicit
time change is known [79] and a procedure bases on this result can be developed.
The time changed Brownian motion framework and the Rosińsky rejection method
can be combined to obtain CGMY random numbers. The subordinator (Gt)t≥0 is
absolutely continuous respect to one side stable Y/2 subordinator with Lévy measure

ν0(dx) =
K

x
Y
2

+1
.

The Lévy measure of the subordinator (Gt)t≥0 is

ν(dx) = s(x)ν0(dx)

where the function s is defined as

s(x) =
2

Y
2 Γ
(
Y
2 + 1

2

)
e

x
2
A2− y

4
B2

√
π

D−Y (B
√
x)

where C, G, M and Y are parameters of the process and

A =
G−M

2
B =

G+M

2

and Dα(x) is a parabolic cylinder function of parameter α, see [1, 116]. Since stable
distributions and processes are relatively easy to simulate, in this case the Rosińsky
rejection method 6.1.3 can be applied in order to obtain a feasible simulation of the
subordinator process. Indeed, we can take

dν

dν0
= f(x),

which can be proved to be strictly less that one, see [95] for details.
Another way to approximate jumps of a CGMY process is by applying the fea-

sible density transformation in Proposition 4.4, see also [95], where an absolutely
continuity result respect to a stable process is given. By a suitable change of mea-
sure, a CGMY process becomes an α-stable process, which can be easily simulated.
This approach seems to be particulary useful for Monte Carlo methods.

The theory of TS processes allow us to consider CGMY processes as an exam-
ple of the more general class of proper TS processes. Furthermore, the particular
structure of this process provides a easy implementable shot noise representation as
already noted in [3, 65]. We will see such representation in the following section,
from a more general point of view.

6.1.7 Proper TS processes

In this section we will see a method for simulating TS distributions, as well as
TS processes. There are different methods to simulate Lévy processes, but most
of these methods are not suitable for the simulation of TS processes, due to the
complicated structure of their Lévy measure. As already underlined in [107], the
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Figure 6.2: Simulation of a CGMY process with C = 0.5, G = 2, M = 3 and Y = 0.5 by time
changing Brownian motion [95] and by series representation. Simulations are not comparable, due
to differences of the generating algorithms.

usual method of the inverse of Lévy measure is hard to implement, even if the
spectral measure R has a simple form. To overcome this problem, we will find
a shot noise representation for proper TS distributions, and consequently also TS
processes, without constructing any inverse. This representation holds for every TS
process, therefore we obtain another procedure for simulating CGMY process, see
[3, Example 4.5]. The representation, we will show, is based on results in [105] and
[107]. Let ν be the Lévy measure of a proper TS distribution on R, given by (2.3),
and Q and R corresponding measures defined in (2.5) and (2.6). Let us define ‖σ‖
as

‖σ‖ := σ(S0), (6.13)

and by equality (2.29) and

Q(R) =

∫

R

|x|αR(dx),

we obtain
‖σ‖ = Q(R) =

∫

R

|x|αR(dx) <∞.

Let {Vj} be an i.i.d. sequence of random variables in R with distribution Q/‖σ‖.
Let {Uj} and {Tj} 1 be an i.i.d. sequences of uniform random variables on (0, 1) and
(0, T ) respectively, and let {Ej} and {E′j} be i.i.d. sequences of exponential random
variables with parameters 1. Furthermore, we assume that {Vj}, {Uj}, {Tj}, {Ej}
and {E′j} are independent. We consider Γj = E′1 + . . . + E′j and, by definition of
{E′j}, {Γj} is a Poisson point process on (0,∞) with Lebesgue intensity measure,

1 The random sequence {Tj} is referred as {Uj} in Section 6.1.2.
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that is the distribution of Γj is Γ(j, 1), arrival times of a standard Poisson process.
First, we consider a simple case.

Theorem 6.8. Suppose that all the above assumption are fulfilled. If α ∈ (0, 1), or
if α ∈ [1, 2) and Q is symmetric, the series

Xt =
∞∑

j=1

I{Tj≤t}

((
αΓj
T‖σ‖

)−1/α

∧ EjU1/α
j |Vj |−1

)

Vj
|Vj |

(6.14)

converges a.s. and uniformly in t ∈ [0, T ] to a Lévy process such that Xt ∼
TS0

α(tR, 0) for α ∈ (0, 1) and Xt ∼ TSα(tR, 0) for α ∈ [1, 2).

Proof. See [107, Theorem 5.1]

Then we consider the general case.

Theorem 6.9. Suppose that all the above assumption are fulfilled. If α ∈ [1, 2) and
Q is a non-symmetric, assume additionally that

∫

R

|x| log |x|R(dx) <∞ (6.15)

when α = 1 and that ∫

R

|x|R(dx) <∞ (6.16)

when α ∈ (1, 2). Put

Xt =
∞∑

j=1

[

I{Tj≤t}

((
αΓj
T‖σ‖

)−1/α

∧ EjU1/α
j |Vj |−1

)

Vj
|Vj |

− t

T

(
αj

T‖σ‖

)−1/α

x0

]

+tbT ,

(6.17)
where

bT =

{
α−1/αζ

(
1
α

)
T−1(T‖σ‖)1/αx0 − Γ(1 − α)x1, 1 < α < 2

(2γ + log(T‖σ‖))x1 −
∫

R
x log |x|R(dx), α = 1.

(6.18)

ζ denotes the Riemann zeta function [1, 23.2], γ is the Euler constant [1, 6.1.3],
and

x0 = E

[
Vj
‖Vj‖

]

= ‖σ‖−1

∫

S0

uσ(du),

x1 =

∫

R

xR(dx).

(6.19)

Then the series (6.17) converges a.s. uniformly in t ∈ [0, T ] to a Lévy process
such that Xt ∼ TS0

α(tR, 0)

Proof. See [107, Theorem 5.1]

This method allows one to simulate a stable process as well, by considering all
jumps of the form

(
αΓj
T‖σ‖

)−1/α Vj
|Vj |

without tempering big jumps throughout the minimum function. This method is
equivalent to the procedure described in section 6.1.5.
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6.1.8 Series representation for KR processes

Now, we will show a method based on the previous Theorem to simulate KR pro-
cesses.

Proposition 6.10. Let {Xt}t≥0 be a KR process with parameters (α, k+, k−, r+,
r−, p+, p−, m) as in Definition 2.36. Then the i.i.d. sequence of random variables
{Vj} in R has distribution Q/‖σ‖ with density

fV (r) =
1

‖σ‖

(

k+r
−p+
+ I{r> 1

r+
}r
−α−p+−1 + k−r

−p+
− I{r<− 1

r−
}|r|−α−p−−1

)

where by equation (2.44)

‖σ‖ =
k+r

α
+

α+ p+
+

k−rα−
α+ p−

.

If α ∈ (0, 1), or if α ∈ [1, 2) with k+ = k−, r+ = r− and p+ = p−, then the series

Xt =
∞∑

j=1

I{Tj≤t}

((
αΓj
T‖σ‖

)−1/α

∧ EjU1/α
j |Vj |−1

)

Vj
|Vj |

+ tb (6.20)

converges a.s. and uniformly in t ∈ [0, T ] to a KR process with parameters (α, k+,
k−, r+, r−, p+, p−, m) with

b = −Γ(1 − α)

(
k+r+
p+ + 1

− k−r−
p− + 1

)

.

If α ∈ [1, 2) and k+ 6= k− (or r+ 6= r− or alternatively p+ 6= p−), then

Xt =
∞∑

j=1

[

I{Tj≤t}

((
αΓj
T‖σ‖

)−1/α

∧ EjU1/α
j |Vj |−1

)

Vj
|Vj |

− t

T

(
αj

T‖σ‖

)−1/α

x0

]

+tbT ,

(6.21)
converges a.s. and uniformly in t ∈ [0, T ] to a KR process with parameters (α, k+,
k−, r+, r−, p+, p−, m), where we set

bT =







α−1/αζ
(

1
α

)
T−1(T‖σ‖)1/αx0 − Γ(1 − α)x1, 1 < α < 2

(2γ + log(T‖σ‖))x1 −
(

k+r+
p++1

(

log r+ − 1
p++1

)

− k−r−
p−+1

(

log r− − 1
p−+1

))

, α = 1.

with

x0 = ‖σ‖−1

(
k+r

α
+

α+ p+
− k−rα−
α+ p−

)

,

x1 =
k+r+
p+ + 1

− k−r−
p− + 1

,

ζ denotes the Riemann zeta function [1, 23.2], γ is the Euler constant [1, 6.1.3].
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Proof. If α ∈ (0, 1), or if α ∈ [1, 2) with k+ = k−, r+ = r− and p+ = p−, we can
apply Theorem 6.5 and the series 6.14 converges a.s. and uniformly in t ∈ [0, T ] to
a KR process with parameters (α, k+, k−, r+, r−, p+, p−, m). By Remark 2.11,
we have to consider the additional term b. If α ∈ [1, 2) and k+ 6= k− (or r+ 6= r−
or alternatively p+ 6= p−), by definition of the Rosiński measure for KR processes
(2.45), then the integrals (6.15) and (6.16) are finite. Furthermore, integration by
parts allows us to find the value of the integral

∫

R

x log |x|R(dx)

and by (2.45), x0 and x1 (6.19), such as bT (6.18), can be easily computed.

Finally, we can write a procedure to simulate a KR process with parameters
(α, k+, k−, r+, r−, p+, p−, m) for discrete values of time ti, where {ti}0≤i≤K is a
partition of the interval [0, T ] with equal length subinterval and mesh

∆t =
T

K

with K ∈ N.

Algorithm 12

1. Fix a time T and consider a partition of the interval [0, T ] in K parts of same
length.

2. Fix a number C (∼ 105, 106).

3. Simulate independent sequences {Vj}, {Γj}, {Uj} and {Ej} of length C.

4. Calculate the vector {Xti} by equality (6.21) (or (6.20)).

By the algorithm above, we can simulate the entire trajectory of a TS process.
This method seems to be particulary useful for path dependent options, such as
barrier options or asian options [65].

6.1.9 Series representation for CGMY processes

By similar arguments, also a series representation of a CGMY process (Definition
2.35) can be obtained. By equalities (2.33), (2.34) and (2.35), we obtain a sequence
{Vj} of discrete random variable with distribution

P (Vj = −G) = P (Vj = M) =
1

2

and
‖σ‖ = 2C.

By recalling that 0 < Y < 2, we have

Xt
d
=
∞∑

j=1

[(
Y Γj
2C

)−1/Y

∧ EjU1/Y
j |Vj |−1

]

Vj
|Vj |

I{Tj≤t} + tbT t ∈ [0, T ], (6.22)
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Figure 6.3: Series representation of a stable process and two different TS processes with trunca-
tion of small jumps.

where

bT =







−Γ(1 − Y )C(MY−1 −GY−1), Y ∈ (0, 2)/{1}
(2γ + log(2TC))C(MY−1 −GY−1)

−C(GY−1 logG−MY−1 logM), Y = 1.
(6.23)

where γ is the Euler constant [1, 6.1.3].

6.1.10 Proper TID laws and processes

There are different methods to simulate Lévy processes, but most of these methods
are not suitable for the simulation of TID processes due to the complicated struc-
ture of their Lévy measure. The usual method of the inverse of the Lévy measure
is difficult to implement, even if the spectral measure R has a simple form, readers
are referred to [107]. To overcome this problem, we will find a shot noise represen-
tation for proper TID distributions, and consequently also TID processes, without
constructing any inverse. The representation, we will show, is based on results in
[105] and [107].

Let ν be the Lévy measure of a proper TID distribution on R
d, given by (3.3),

and Q and R corresponding measures defined in (2.5) and (2.6). Let us define ‖σ‖
as

‖σ‖ := σ(Sd−1), (6.24)

and by equalities (3.13) and (3.15), we obtain

‖σ‖ = Q(Rd) =

∫

Rd

‖x‖αR(dx) <∞.
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Let {Vj} be an i.i.d. sequence of random vector in R
d with distribution Q/‖σ‖.

Let {Uj} be an i.i.d. sequence of uniform random variables on (0, 1) and let {Ej}
and {E′j} be i.i.d. sequences of exponential random variables with parameters 1.
Furthermore, we assume that {Vj}, {Uj}, {Ej} and {E′j} are independent. We
consider Γj = E′1 + . . . + E′j and, by definition of {E′j}, {Γj} is a Poisson point
process on (0,∞) with Lebesgue intensity measure. Now, we will prove a useful
lemma.

Lemma 6.11. Under the above definitions, let us define the function

H(Γj , (Vj , Ej , Uj)) :=

((
αΓj
‖σ‖

)−1/α

∧
√

2E
1/2
j U

1/α
j ‖Vj‖−1

)
Vj
‖Vj‖

. (6.25)

Then, for every non-empty set A ∈ B(Rd), the equality
∫ ∞

0
P (H(s, (V1, E1, U1)) ∈ A)ds = ν(A)

is verified.

Proof. Let A be a set of the form

A =

{

x ∈ R
d : ‖x‖ > a,

x

‖x‖ ∈ B

}

,

where a > 0 and B ∈ B(Sd−1). Then, we can write
∫ ∞

0
P (H(s, (V1, E1, U1)) ∈ A)ds =

=

∫ ∞

0
P

(((
αs

‖σ‖

)−1/α

∧
√

2E
1/2
1 U

1/α
1 ‖V1‖−1

)
V1

‖V1‖
∈ A

)

ds,

= E

∫ ∞

0
I

((
αs

‖σ‖

)−1/α

> a,
√

2E
1/2
1 U

1/α
1 > a‖V1‖,

V1

‖V1‖
∈ B

)

ds

=
‖σ‖a−α

α
EI

(√
2E

1/2
1 U

1/α
1 > a‖V1‖,

V1

‖V1‖
∈ B

)

=
a−α

α

∫

B

∫ ∞

0
P
(√

2E
1/2
1 U

1/α
1 > as

)

Q(ds|u)σ(du).

By conditioning, the probability in the integral can be calculated

P
(√

2E
1/2
1 U

1/α
1 > as

)

=

∫ 1

0

∫ ∞

a2s2

2u2/α

e−xdxdu

=

∫ 1

0
e
− a2s2

2u2/α du

= aαα

∫ ∞

a
e−r

2s2/2r−α−1dr,

therefore we obtain
∫ ∞

0
P (H(s, (V1, E1, U1)) ∈ A)ds =

∫

B

∫ ∞

0

∫ ∞

a
e−r

2s2/2r−α−1drQ(ds|u)σ(du)

=

∫

B

∫ ∞

a
q(r, u)r−α−1drσ(du) = ν(A).
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First, we consider a simple case.

Theorem 6.12. (α ∈ (0, 1) and symmetric case) Suppose that all the above assump-
tion are fulfilled. If α ∈ (0, 1), or if α ∈ [1, 2) and Q is symmetric, the series

S0 =

∞∑

j=1

((
αΓj
‖σ‖

)−1/α

∧
√

2E
1/2
j U

1/α
j ‖Vj‖−1

)
Vj
‖Vj‖

. (6.26)

converges a.s.. Furthemore, we have that S0 ∼ TID0
α(R, 0) for α ∈ (0, 1) and

S0 ∼ TIDα(R, 0) for α ∈ [1, 2).

Proof. To prove this theorem, we are going to use [105, Theorem 4.1] and [107,
Theorem 5.1]. If H is defined as in (6.25), we can apply Lemma 6.11. Let us
consider the case α ∈ (0, 1), then by Proposition 3.13 we can write
∫ ∞

0
E(‖H(s, (V1, E1, U1))‖I(‖H(s, (V1, E1, U1))‖ ≤ 1))ds =

∫

‖x‖≤1
‖x‖ν(dx) <∞

and [105, Theorem 4.1(A)] proves the theorem in the case α ∈ (0, 1).
If α ∈ [1, 2), then by Proposition 3.11 we have

∫ ∞

0
E(‖H(s, (V1, E1, U1))‖I(‖H(s, (V1, E1, U1))‖ > 1))ds =

∫

‖x‖>1
‖x‖ν(dx) <∞

and by [105, Theorem 4.1(B)], we can consider a series

S̄0 =
∞∑

j=1

[((
αΓj
‖σ‖

)−1/α

∧
√

2E
1/2
j U

1/α
j ‖Vj‖−1

)
Vj
‖Vj‖

− cj

]

which converges a.s. and S̄0 ∼ TIDα(R, 0), where

cj =

∫ j

j−1
E

[((
αΓj
‖σ‖

)−1/α

∧
√

2E
1/2
j U

1/α
j ‖Vj‖−1

)
Vj
‖Vj‖

]

ds. (6.27)

If Q is symmetric, cj is equal to zero. It follows that S0 = S̄0. This completes the
proof.

Now we consider the non-symmetric case.

Theorem 6.13. (Non-symmetric case) Under the above notation, suppose α ∈
[1, 2), Q is non-symmetric and additionally that

∫

Rd

‖x‖| log ‖x‖|R(dx) <∞ (6.28)

when α = 1 and that ∫

Rd

‖x‖R(dx) <∞ (6.29)
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when α ∈ (1, 2). Then, the series

S1 =
∞∑

j=1

[((
αΓj
‖σ‖

)−1/α

∧
√

2E
1/2
j U

1/α
j ‖Vj‖−1

)
Vj
‖Vj‖

−
(
αj

‖σ‖

)−1/α

x0

]

+ b (6.30)

where

x0 = E
Vj
‖Vj‖

= ‖σ‖−1

∫

Sd−1

uσ(du),

x1 =

∫

Rd

xR(dx),

b =

{
ζ
(

1
α

)
α−1/α‖σ‖1/αx0 − 2−(1+α)/2Γ

(
1
2 − α

2

)
x1, 1 < α < 2,

(3
2γ − log 2

2 + log ‖σ‖)x1 −
∫

Rd x log ‖x‖R(dx), α = 1,
(6.31)

ζ denotes the Riemann zeta function and γ is the Euler constant, converges a.s..
Furthermore, we have that S1 ∼ TIDα(R, 0).

Proof. To prove this theorem, we are going to use [105, Theorem 4.1] and [107,
Theorem 5.1]. If H is defined as in (6.25), we can apply Lemma 6.11. If α ∈ [1, 2),
then by Proposition 3.11 we have
∫ ∞

0
E(‖H(s, (V1, E1, U1))‖I(‖H(s, (V1, E1, U1))‖ > 1))ds =

∫

‖x‖>1
‖x‖ν(dx) <∞

and [105, Theorem 4.1(B)], we can consider a series

S1 =
∞∑

j=1

[((
αΓj
‖σ‖

)−1/α

∧
√

2E
1/2
j U

1/α
j ‖Vj‖−1

)
Vj
‖Vj‖

− cj

]

which converges a.s. and S1 ∼ TIDα(R, 0), where

cj =

∫ j

j−1
E

[((
αΓj
‖σ‖

)−1/α

∧
√

2E
1/2
j U

1/α
j ‖Vj‖−1

)
Vj
‖Vj‖

]

ds.

We have to prove that the equality

∞∑

j=1

[(
αj

‖σ‖

)−1/α

x0 − cj

]

= b (6.32)

holds, where b is given by (6.31).
First consider the case α ∈ (1, 2). Define for j ≥ 1 [107, equation (5.8)]

c′j =

∫ j

j−1
E

[(
αs

‖σ‖

)−1/α V1

‖V1‖

]

ds =
α1−1/α‖σ‖1/α

α− 1
[j1−1/α−(j−1)1−1/α]x0. (6.33)

We have

‖c′j − cj‖ ≤
∫ j

j−1
E

{(
αs

‖σ‖

)−1/α

−
[(

αs

‖σ‖

)−1/α

∧
√

2E
1/2
1 U

1/α
1 ‖V1‖−1

]}

ds.
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Furthermore by [107, equation 5.9], for every θ > 0 the equality
∫ ∞

0

{(
αs

‖σ‖

)−1/α

−
[(

αs

‖σ‖

)−1/α

∧ θ
]}

ds =
‖σ‖

α(α− 1)
θ1−α (6.34)

holds. Using this identity for θ =
√

2E
1/2
1 U

1/α
1 ‖V1‖−1 pointwise, we obtain

∞∑

j=1

‖c′j − cj‖ = E

∫ ∞

0

{(
αs

‖σ‖

)−1/α

−
[(

αs

‖σ‖

)−1/α

∧
√

2E
1/2
1 U

1/α
1 ‖V1‖−1

]}

ds

=
‖σ‖

α(α− 1)
E
[
2

1
2
(1−α)E

1
2
(1−α)

1 U
−1+ 1

α
1 ‖V1‖α−1

]

= 2
1
2
(1−α)Γ

(
3

2
− α

2

) ‖σ‖
α− 1

E‖V1‖α−1

= −2−(1+α)/2Γ

(
1

2
− α

2

)∫

Rd

‖x‖R(dx) <∞.

(6.35)

By using (6.34) we obtain
∞∑

j=1

(c′j − cj) = E

{∫ ∞

0

((
αs

‖σ‖

)−1/α

−
[(

αs

‖σ‖

)−1/α

∧
√

2E
1/2
1 U

1/α
1 ‖V1‖−1

])

ds
V1

‖V1‖

}

= E

[ ‖σ‖
α(α− 1)

2
1
2
(1−α)E

1
2
(1−α)

1 U
−1+ 1

α
1 ‖V1‖α−1 V1

‖V1‖

]

= 2
1
2
(1−α)Γ

(
3

2
− α

2

)
1

α− 1

∫

Rd

x‖x‖α−2Q(dx)

= −2−(1+α)/2Γ

(
1

2
− α

2

)∫

Rd

xR(dx)

= −2−(1+α)/2Γ

(
1

2
− α

2

)

x1

Then we have
n∑

j=1

[(
αj

‖σ‖

)−1/α

x0 − c′j

]

=

( n∑

j=1

j−1/α − α

α− 1
n1−1/α

)

α−1/α‖σ‖1/αx0.

From a classical formula [1, 23.2.9],
n∑

j=1

j−z − n1−z

1 − z
= ζ(z) + z

∫ ∞

n

s− [s]

sz+1
ds, Re(z) > 0, Re(z) 6= 1, (6.36)

we obtain
∞∑

j=1

[(
αj

‖σ‖

)−1/α

x0 − c′j

]

= ζ

(
1

α

)

α−1/α‖σ‖1/αx0

and we can write
∞∑

j=1

[(
αj

‖σ‖

)−1/α

x0 − cj

]

=
∞∑

j=1

[(
αj

‖σ‖

)−1/α

x0 − c′j

]

+
∞∑

j=1

(c′j − cj)

= ζ

(
1

α

)

α−1/α‖σ‖1/αx0 − 2−(1+α)/2Γ

(
1

2
− α

2

)

x1 = b
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which proves (6.32). Now, we consider the case α = 1. By the same computation
above, define for j ≤ 2

c′j =

∫ j

j−1
E

[(
s

‖σ‖

)−1/α V1

‖V1‖

]

ds = (log j − log(j − 1))‖σ‖x0, (6.37)

and put c′1 = 0. For every θ > 0 [107, equation (5.14)], we have
∫ ∞

1

{(
s

‖σ‖

)−1

−
[(

s

‖σ‖

)−1

∧ θ
]}

ds

= {θ − ‖σ‖ log θ + ‖σ‖ log ‖σ‖ − ‖σ‖}I(θ ≤ ‖σ‖)

≤ ‖σ‖ log+

(‖σ‖
θ

)

.

(6.38)

By assumption (6.28), we can write

∞∑

j=1

‖c′j − cj‖ = E

∫ ∞

1

{(
s

‖σ‖

)−1

−
[(

s

‖σ‖

)−1

∧
√

2E
1/2
1 U1‖V1‖−1

]}

ds

≤ ‖σ‖E log+

(

‖σ‖‖V1‖√
2E

1/2
1 U1

)

≤ ‖σ‖(| log ‖σ‖| + E| log ‖V1‖| + E| log
√

2E
1/2
1 U1|)

= ‖σ‖| log ‖σ‖| +
∫

Rd

| log ‖x‖|‖x‖R(dx) +K‖σ‖ <∞,

(6.39)

where K = E| log
√

2E
1/2
1 U1| <∞.

Before computing the series
∑∞

j=1(c
′
j − cj), we recall some useful relations [107].

For every θ > 0

∫ 1

0

(
s

‖θ‖

)−1

∧ θds = θI(θ ≤ ‖σ‖) + {‖σ‖ − ‖σ‖ log ‖σ‖ + ‖σ‖ log θ}I(θ > ‖σ‖)

and by (6.38) we get

−
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0

(
s

‖θ‖

)−1

∧ θ ds+

∫ ∞

1

{(
s

‖θ‖

)−1

−
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s

‖θ‖

)−1

∧θ
]}

= ‖σ‖(log ‖σ‖−log θ−1).

By using this formula for θ =
√

2E
1/2
1 U1‖V1‖−1 we get

∞∑
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−
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∧
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2E
1/2
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]
V1

‖V1‖

}

= ‖σ‖E
{

(log ‖σ‖ + log ‖V1‖ − log(
√

2E
1/2
1 U1) − 1)

V1

‖V1‖

}

.

The following expectation can be calculated

E log(
√

2E
1/2
1 U1) =

log 2

2
− 1 − 1

2
γ,
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where γ = −
∫∞
0 log(x)e−xdx is the Euler constant, see [1, 6.1.3]. By equation (3.7),

the series above can be rewritten as

∞∑

j=1

(c′j − cj) = ‖σ‖E
{

V1

‖V1‖
(log ‖σ‖ + log ‖V1‖ +

1

2
γ − log 2

2

}

=

∫

Rd

x

‖x‖
(

log ‖σ‖ + log ‖x‖ +
1

2
γ − log 2

2

)

Q(dx)

=

∫
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x
(

log ‖σ‖ − log ‖x‖ +
1

2
γ − log 2

2

)

R(dx)

=
(1

2
γ − log 2

2
+ log ‖σ‖

)

x1 −
∫

Rd

x log ‖x‖R(dx).

By [107, Theorem 5.1], the equality

∞∑

j=1

[(
j

‖σ‖

)−1

x0 − c′j

]

= γx1

holds, where γ is the Euler constant, thus we obtain

∞∑

j=1

[(
j

‖σ‖

)−1

x0 − cj

]

=
∞∑

j=1

[(
j

‖σ‖

)−1

x0 − c′j

]

+
∞∑

j=1

(c′j − cj)

=
(3

2
γ − log 2

2
+ log ‖σ‖

)

x1 −
∫

Rd

x log ‖x‖R(dx) = b,

which completes the proof.

A series representation for TID processes can be obtained.

Theorem 6.14. Under the above notation and assumptions, given a fixed T > 0,
let {Tj} be a i.i.d. sequence of uniform random variables in [0, T ]. Assume {Tj}
independent of the random sequences {Vj}, {Uj}, {Ej} and {Γj}.

(i) If α ∈ (0, 1), or if α ∈ [1, 2) and Q is symmetric, set for every t ∈ [0, T ]

X0(t) =
∞∑

j=1

I{Tj≤t}

((
αΓj
T‖σ‖

)−1/α

∧
√

2E
1/2
j U

1/α
j ‖Vj‖−1

)
Vj
‖Vj‖

, (6.40)

then the series converges a.s. uniformly in t ∈ [0, T ] to a Lévy process such
that X0(t) ∼ TID0

α(tR, 0) if α ∈ (0, 1) and X0(t) ∼ TID0
α(tR, 0) if α ∈ [1, 2).

(ii) If α ∈ [1, 2), Q is non-symmetric and additionally

∫

Rd

‖x‖| log ‖x‖|R(dx) <∞

when α = 1 and that ∫

Rd

‖x‖R(dx) <∞
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when α ∈ (1, 2), then, the series

X1(t) =
∞∑

j=1

[

I{Tj≤t}

((
αΓj
T‖σ‖

)−1/α

∧
√

2E
1/2
j U

1/α
j ‖Vj‖−1

)
Vj
‖Vj‖

− t

T

(
αj

T‖σ‖

)−1/α

x0

]

+ tbT .

(6.41)

where

bT =

{
ζ
(

1
α

)
α−1/αT−1(T‖σ‖)1/αx0 − 2−(1+α)/2Γ

(
1
2 − α

2

)
x1, 1 < α < 2,

(3
2γ − log 2

2 + log T‖σ‖)x1 −
∫

Rd x log ‖x‖R(dx), α = 1,
(6.42)

the series converges a.s. uniformly in t ∈ [0, T ] to a Lévy process such that
X1(t) ∼ TIDα(tR, 0).

Proof. It is enough to show the convergence in distribution of series (6.40) and (6.41)
for a fixed t, see [105, 107]. By the same arguments of Lemma 6.11, we obtain

∫ ∞

0
P (H(s, (V1, E1, U1, T1)) ∈ A)ds = tν(A)

where we define

H(Γj , (Vj , Ej , Uj , Tj)) := I{Tj≤t}

((
αΓj
‖σ‖

)−1/α

∧
√

2E
1/2
j U

1/α
j ‖Vj‖−1

)
Vj
‖Vj‖

. (6.43)

By following the proof of Theorem 6.12, (i) is verified in the case α ∈ (0, 1). By
Proposition 3.11 if α ∈ [1, 2), then

∫

‖x‖>1 ‖x‖ν(dx) <∞. By [105, Theorem 4.1(B)]
we can consider the series

X̄1(t) =

∞∑

j=1

[

I{Tj≤t}

((
αΓj
‖σ‖

)−1/α

∧
√

2E
1/2
j U

1/α
j ‖Vj‖−1

)
Vj
‖Vj‖

− aTj

]

which converges a.s. and X̄1(t) ∼ TIDα(tR, 0), where

aTj =

∫ j
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E
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I(0,t](Tj)
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)
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]

ds.

If Q is symmetric then aTj = 0 and (i) is proved. To complete the proof, by following
[107, Theorem 5.3] and equation (6.27), cj can be viewed as a function of the measure
Q, thus we have

aTj (t) =
t

T
cj(TQ).

By Theorem 6.13, where TQ and TR have to be considered instead of Q and R, we
have
∞∑

j=1

[(
αΓj
T‖σ‖

)−1/α

x0 − cj(TQ)

]

=

{
ζ
(

1
α

)
α−1/α(T‖σ‖)1/αx0 − 2−(1+α)/2Γ

(
1
2 − α

2

)
Tx1α− 1, 1 < α < 2,

(3
2γ − log 2

2 + log T‖σ‖)Tx1 − T
∫

Rd x log ‖x‖R(dx), α = 1.
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By definition of aTj (t), we obtain

∞∑

j=1

[
t

T

(
αΓj
T‖σ‖

)−1/α

x0 − aTj (t)

]

= tbT ,

which completes the proof.

Remark 6.15. By removing the tempering part
√

2E
1/2
j U

1/α
j ‖Vj‖−1 in the shot

noise representation, a well-known result for α-stable processes can be found, see
[107, Theorem 5.4] or [108].

6.1.11 Series representation for RDTS processes

By similar arguments, also a series representation of a RDTS process can be ob-
tained. Let us suppose that c+ = c− = C. By equalities (3.41), (3.42) and (3.43),
we obtain a sequence {Vj} of discrete random variable with distribution

P (Vj = −λ−) = P (Vj = λ+) =
1

2

and
‖σ‖ = 2C.

By recalling that α ∈ (0, 2)/{1}, we have

Xt
d
=
∞∑

j=1

[(
αΓj
2C

)−1/α

∧
√

2E
1/2
j U

1/α
j |Vj |−1

]

Vj
|Vj |

I{Tj≤t} + tbT t ∈ [0, T ],

(6.44)
where

bT = −2−
1+α

2 Γ

(
1 − α

2

)

C(λα−1
+ − λα−1

− ). (6.45)

6.1.12 A Monte Carlo example

In this section, we assess the goodness of fit of random number generators proposed
in the previous section. A brief Monte Carlo study is performed and prices of
European put options with different strikes are calculated. By taking into account
equation 5.3, the stock price process under a risk neutral martingale measure Q is
of the form

St = S0e
(r+ω)t+Xt . (6.46)

where ω is the convexity correction and the price Π(t, C) ad time t of an European
call can be calculated as the expected value of the discounted value of its payout,
that is

Π(0, C) = EQ[e−r(T−t)(ST −K)+|F0]

We take into consideration a CGMY process with the same artificial parameters
of the work [95] that is C = 0.5, G = 2, M = 3.5, Y = 0.5, interest rate r =
0.04, initial stock price S0 = 100 and annualized maturity T = 0.25. Furthermore
we consider also a GTS process defined by the characteristic exponent (2.36) and
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Table 6.1: European put option prices computed using the Fourier transform method (Price) and

by Monte Carlo simulation (Monte Carlo).

CGMY
Strike Price Monte Carlo

80 1.7444 1.7472
85 2.3926 2.3955
90 3.2835 3.2844
95 4.5366 4.5383
100 6.3711 6.3724
105 9.1430 9.1532
110 12.7632 12.7737
115 16.8430 16.8551
120 21.1856 21.2064

GTS
Strike Price Monte Carlo

80 3.2170 3.2144
85 4.2132 4.2179
90 5.4653 5.4766
95 7.0318 7.0444
100 8.9827 8.9968
105 11.3984 11.4175
110 14.3580 14.3895
115 17.8952 17.9394
120 21.9109 21.9688

parameters c+ = 0.5, c− = 1, λ+ = 3.5, λ− = 2 and α = 0.5, interest rate r, initial
stock price S0 and maturity T as in the CGMY case.

The expectation above is calculate via Monte Carlo simulation, where 50,000
sample paths are generated. The Esscher transform with θ = −1.5 is considered to
reduce the variance [65]. We want to emphasize that the Esscher transform is an
exponential tilting [107], thus if applied to a CGMY or a GTS process, it modifies
only parameters but not the form of the characteristic function.

In Table 6.1 simulated prices and prices obtained by using the Fourier transform
method [23] are compared. Even if there is a competitive CGMY random number
generator, where a time changed Brownian motion is considered [95], we prefer to use
an algorithm based on series representation. Contrary to the CGMY case, in general
there is not a constructive method to find the subordinator process that changes the
time of the Brownian motion, that is we do not know the process Tt such that the
TS process Xt can be rewritten as WT (t) [29]. The shot noise representation allows
one to generate any TSα process.





Chapter 7

Non Gaussian GARCH models

7.1 Introduction

Volatility clustering is the tendency for extreme returns to be followed by
other extreme returns, although not necessarily with the same sign [88].

There is a general consensus that asset returns exhibit variances that change
through time. In the financial literature GARCH models are a popular choice to
model these changing variances [18]. However the success of GARCH in modeling
volatility clustering only partially extends to option pricing [35, 104, 54]. Within
the last 30 years a vast amount of literature on the option pricing problem has been
published. Since the seminal work of Black and Scholes [17] and Merton [91] who
derived the arbitrage free option price solely from the stochastic dynamic of the
underlying stock and the risk free rate, the research has focussed on improving the
fit of the theoretical stock price dynamics to market data. The homoskedasticity
and the lognormality postulated in the Black and Scholes framework cannot deal
effectively with the volatility clustering and the leptokurtosis observed in asset prices.
Although asset return distributions are known to be conditionally leptokurtic, only
few works consider non gaussian innovations in the recent GARCH model literature,
[67, 89, 90, 9, 27, 26].

The importance of GARCH option pricing has recently expanded due to their
linkage with stochastic volatility models [37]. Indeed, even if GARCH models are a
bit mechanical, the methodology is useful since their diffusion limits contain many
well known stochastic volatility models. From an estimation perspective, GARCH
models may have distinct advantages over stochastic volatility models. Continuous
time stochastic volatility models are difficult to implement, because, with discrete
observations on the underlying asset price process, the volatility is not readily identi-
fiable. If the volatility level cannot be established, option prices cannot be computed.
Furthermore, time continuity models impose the possibility of continuous trading in
order to construct the hedge portfolio which is not feasible in reality. To overcome
this problem implied volatilities are often established from concurrent option prices.
Indeed, a common technique for estimating stochastic volatility models, as adopted
in [7] for example, is to use a cross section of option data to estimate all the pa-
rameters, including volatility, on a daily basis. If the parameters of the process are
required to be constant through time, then a time series of daily option records are
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used in the analysis and a daily sequence of implied volatilities has to be estimated.
Since the number of unknown volatilities increases linearly with the number of days,
the computational effort involved in the optimization problem soon becomes severe.
This approach has been used in [11] and in [51], for example.

In contrast, GARCH models have the advantage that the volatility is observable
from the history of asset prices. Consequently, it is possible to price options, solely
on the basis of observable history of the underlying asset process, without requiring
information on derivative prices. As a result, option prices can be generated in
illiquid markets where concurrent information on derivative prices may not exist.
Most of the empirical analysis on option pricing with GARCH is based on the fact
that S&P 500 index is one of the best markets for testing a European option valuation
model and it is easy to hedge since there is a very active market for futures. By
following the classical literature, we will consider this market as well, pointing out
the our approach could be adopt also for over the counter markets, since the risk
neutral dynamics is calculate with a pure mathematical argument, without assuming
any economic reason.

While the continuous time approach is an elegant way to deal with the modelling
of stocks markets, some practical problem could be difficult to solve. For example,
when hedging option positions, rebalancing decisions must be made in discrete time.
In the case of American and exotic options, early exercise decisions must be made
in discrete time as well. Moreover, as only discrete observations are available for
empirical study, discrete time models are often more econometrically tractable.

In last years a general idea has been that for the purpose of option valuation,
parameters estimated from option prices are preferable to parameters estimated from
the underlying returns (see for instance [25]). Alternatively, the most recent results
are based on a different approach. Both historical asset prices and option prices
are considered to assess the model performance. Parametric models [67, 26] and a
nonparametric one [9] have been proposed by connecting the statistical with the risk
neutral measure.

In general, the asset return model is specified under the historical measure P
and cannot be directly used to price options. One possibility is to specify a change
of measure between P and possible risk neutral measure Q. This approach is par-
ticularly attractive because the GARCH parameters can be easily estimated using
historical asset returns and used for pricing purposes. Unfortunately, the failure to
explain observed option prices only by considering time series information is well
known. This approach leads to a rather poor pricing performance and it is largely
dominated by option pricing models estimated only using option prices [25, 28, 9].

To overcome this drawback the dynamic of the logarithmic stock price will be
driven by a GARCH(1,1) process where the standardized innovations are governed
by a TS or a TID distribution with zero mean and unit variance and finite moment
generating function. Since discrete time markets with continuous return distribu-
tion fail to be complete, the problem of the appropriate choice of the equivalent
martingale respectively pricing measure for the discounted asset price process will
be solve considering the TS and the TID innovation assumption. Instead of impos-
ing unrealistic conditions on investor’s preferences or the Esscher transform [26], a
change of measure between the class of TS and TID distribution will allow us to
choice a suitable equivalent martingale measure and to perform a joint estimation
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of objective and risk neutral measures.
The change of measures between the class of Lévy processes takes its origin in

the work of Sato [109], and has been widely used in continuous time modelling. We
will see how the structure of the problem in the discrete time case is different in
comparison with the continuous one. As already figure out in [26] the risk neutral
distribution is not always the same for the entire time window, but on each time step
it is governed by different parameters. This comes from the discrete time nature of
this setting.

Unfortunately, this approach does not provide analytical solutions to price Eu-
ropean options and hence numerical procedures have to be considered. The use
of non gaussian GARCH models combined with Monte Carlo simulation methods
allows one to obtain very promising results. Technics for simulating some infinitely
divisible distribution, as described in the previous chapter, will be used to obtain
option prices.

7.2 GARCH models with infinitely divisible distributed

innovations

In this section we will present a GARCH model with the infinitely divisible dis-
tributed innovation process. The GARCH stock price model is defined over a fil-
tered probability space (Ω, F , (Ft)t∈N, P) which is constructed as follows. Con-
sider a sequence (εt)t∈N of iid real random variables on a sequence of probability
spaces (Ωt,Pt)t∈N, such that εt is an infinitely divisible distributed random variable
with zero mean and unit variance on (Ωt,Pt), and assume that E[exεt ] < ∞ where
x ∈ (−a, b) for some a, b > 0. In order to construct this model, the distribution of
the random variable εt, must have exponential moments of some or any order. A
similar condition is necessary for the construction of exponential Lévy models, see
[29]. Now we define

Ω :=
∏

t∈N

Ωt,

Ft := ⊗t
k=1σ(εk) ⊗F0 ⊗F0 · · · ,

F := σ (∪t∈NFt) ,
P := ⊗t∈NPt,

where F0 = {∅,Ω} and σ(εk) means the σ-algebra generated by εk on Ωk.
We first propose the following stock price dynamics:

log

(
St
St−1

)

= rt − dt + λtσt − gεt(σt) + σtεt, t ∈ N, (7.1)

where St is the stock price at time t, rt and dt denote the risk-free and dividend
rate for the period [t − 1, t], respectively, and λt is a Ft−1 measurable random
variable. S0 is the present observed price and Ŝt = St exp(

∑t
k=1 dk) is the stock price

considering reinvestment of the dividends. The function gεt(x) is the log-Laplace-
transform of εt, i.e, gεt(x) = log(E[exεt ]), which is defined on the interval (−a, b).
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The one period ahead conditional variance σ2
t follows a GARCH(1,1) process with

a restriction 0 < σt < b, i.e,

σ2
t = (α0 + α1σ

2
t−1ε

2
t−1 + β1σ

2
t−1) ∧ ρ, t ∈ N, ε0 = 0, (7.2)

where α0, α1 and β1 are non-negative, α1 + β1 < 1, α0 > 0, and 0 < ρ < b2.
Clearly the process (σt)t∈N is predictable. The class of the TS (respectively TID)
distributions having some exponential moments is a subclass of the infinitely divisible
distribution, and suitable for constructing the new GARCH model having infinitely
divisible distributed innovation. The stock price dynamics defined as (7.1) with the
conditional variance defined as (7.2) over the probability space (Ω, F , (Ft)t∈N, P),
where (εt)t∈N is the sequence of TS (respectively TID) distributed iid real random
variables, is called the TS-GARCH model (respectively TID-GARCH model). If εt
equals the standard normal distributed random variable for all t ∈ N then gεt(x) is
defined on the whole real line. This can be proved by considering the fact that the
characteristic function of the normal distribution in an entire function, indeed it is
analytic at all finite points of the complex plane C. Consequently, we can ignore
the restriction σt < b, since the normal distribution has exponential moments of
any order, and hence the model becomes the normal-GARCH model introduced by
Duan [35]. Furthermore by condition (d) of Proposition 3.11 and Equation (3.43),
the same consideration holds also for the RDTS-GARCH model. Additionally, the
finiteness of exponential moments of any order can be also proved by using the fact
that the Kummer’s or confluent hypergeometric function M in 3.45 is an entire
function, indeed extendible to an analytical function on the complex plane C.

7.2.1 Risk neutral dynamic

In order to price option we cannot use the physical measure P defined above. The
objective in this section is to find a measure equivalent to the physical measure P
that makes the price of the stock discounted by the riskless asset a martingale. A
proper change of measure between zero mean and unit variance TS (respectively
TID) distributions permits to derive the process dynamic of the log returns under
an equivalent measure. By construction, the new measure Q makes the discounted
stock price process a martingale. This result allows one to obtain the distribution
of the stock return under a EMM and calculate option prices.

The model (7.1) defines an incomplete market, where the set of all possible
EMM is infinite. Among the element of this set, we select those one such that the
distribution on the innovation process remains the same in both market and risk
neutral measure. Actually at least theoretically, the great flexibility given by the TS
family, consent to use a given parametric zero mean and unit variance TS noise to
model stock prices returns and a different parametric zero mean and unit variance
TS noise to model option pricing, always by considering the equivalence relation
between them. By following a similar idea of the previous chapter, in which we have
considered a GTS distribution as statistical distribution, and a KR distribution, as
risk neutral one, we may do the same for discrete time models. In the following,
we will not consider a so general measure change, but we will focus on models
considering the same distribution in the stock market and in the risk neutral ones.
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In the following, the notation stdTS (respectively stdTID) will mean that we are
considering a TS (respectively TID) distribution with zero mean and unit variance.

Proposition 7.1. Let Pt be a measure under which εt is stdTS (respectively stdTID)
distributed and Qt be a measure under which ξt = εt + kt is stdTS distributed,
satisfying the assumptions of the Proposition 4.6 for each 1 ≤ t ≤ T , where kt is
defined as

kt := λt +
1

σt
(gξt(σt) − gεt(σt))

and T ∈ N be the time horizon. Define a measure Q on FT equivalent to the measure
P, with Radon-Nikodym derivative dQ

dP = ZT where the density process (Zt)0≤t≤T is
defined according to

Z0 ≡ 1,

Zt :=
d(P1 ⊗ · · ·Pt−1 ⊗ Qt ⊗ Pt+1 ⊗ · · ·PT )

dP
Zt−1, t = 1, · · · , T,

(7.3)

then the measure Q satisfies the following properties:

(i) The stock price dynamics under Q can be written as

log

(
St
St−1

)

= rt − dt − gξt(σt) + σtξt, 1 ≤ t ≤ T

and the variance process has the form

σ2
t = (α0 + α1σ

2
t−1(ξt−1 − kt)

2 + β1σ
2
t−1) ∧ ρ1, 1 ≤ t ≤ T, ξ0 = 0.

(ii) The discount stock price process (e−rtŜt)1≤t≤T is a Q-martingale w.r.t. the
filtration F0≤t≤T , indeed the following equation holds for all

EQ

[
Ŝt|Ft−1

]
= ertŜt−1

for all 1 ≤ t ≤ T .

(iii) We have

V arQ

(

log
( St
St−1

)∣
∣
∣Ft−1

)

a.s.
= V arP

(

log
( St
St−1

)∣
∣
∣Ft−1

)

, 1 ≤ t ≤ T

Proof. To prove (i), we write the dynamic of the log returns of stock prices under
the measure Q

log

(
St
St−1

)

= rt − dt + λtσt − gεt(σt) + σtεt

= rt − dt − gξt(σt) + σt(εt + kt)

= rt − dt − gξt(σt) + σtξt.

(7.4)

1The constant ρ disappear in the RDTS-GARCH model, since the RDTS distribution has ex-
ponential moment of any order
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In the variance process, εt has to be replaced by ξt − kt in order to get the desired
result. Since we have

V arQ(εt + kt|Ft−1) = 1 = V arP(εt|Ft−1),

(ii) is verified. By the assumption (7.3), the definition of log Laplace transform and
the measurability of σt respect to Ft−1, we can write by the equation (7.4)

EQ

[
Ŝt|Ft−1

]
= EQ

[
Ŝt−1 exp(rt − gξt(σt) + σtξt)|Ft−1

]

= Ŝt−1 exp(rt − gξt(σt))EQ

[
exp(σtξt)|Ft−1

]

= Ŝt−1 exp(rt − gξt(σt))EQ

[
EQt [exp(σtξt)|σt]|Ft−1

]

= Ŝt−1 exp(rt − gξt(σt))EQ

[
exp(gξt(σt))|σt]|Ft−1

]

= Ŝt−1 exp(rt).

Now, we are in the position to find the fair price of European call options. Under
the risk neutral measure Q, we the arbitrage free price of a call option with strike
price K and maturity T is given by

Ct = exp(−
T∑

i=t+1

ri)EQ[max(ST −K, 0)|FT ]

where the stock price at maturity T can be calculate iteratively by the formula

ST = St(
T∑

i=t+1

(ri − di − gξi(σi)) + σiξi)

and on each step also the conditional variance is evaluated through the equation

σ2
i = (α0 + α1σ

2
i−1(ξi−1 − ki)

2 + β1σ
2
i−1) ∧ ρ, t+ 1 ≤ i ≤ T.

We want to point out the dependence of kt on the time t, which gives on each step a
different set of parameters for the stdTS (respectively stdTID) distribution, we are
considering. We will figure out this matter in the following parametric examples.

7.2.2 CGMY-GARCH model

Before considering the CGMY-GARCH model we are going to define the stdCGMY
distribution, that is a CGMY distribution with zero mean and unit variance.

Definition 7.2. Let X be a CGMY random variable with parameter (C, G, M , Y ,
m), where we define

C =
(MY−2 +GY−2)−1

Γ(2 − Y )

and

m = 0,
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then we call this distribution stdCGMY with parameter (G,M, Y ). In this case the
function gX(u) is of the form

gX(u) =
(M − u)Y −MY + uYMY−1 + (G+ u)Y −GY − uYMY−1

Y (Y − 1)(MY−2 +GY−2)

Consider the TS-GARCH model with the sequence (εt)t∈N of iid random variables
with εt ∼ stdCGMY(G,M, Y ) for all t ∈ N. We will call the TS-GARCH model
the CGMY-GARCH model. Since E[exεt ] < ∞ if x ∈ (−G,M), ρ has to be in the
interval (0,M2).

By Proposition 4.6, the following argument follows.

Proposition 7.3. Consider the CGMY-GARCH model. Let T ∈ N be a time hori-
zon, fix a natural number t ≤ T . Suppose G̃(t) and M̃(t) satisfy the following
conditions:









M̃2 > ρ

M̃(t)Y−2 + G̃(t)Y−2 = MY−2 +GY−2

MY−1−GY−1−M̃(t)Y−1+G̃(t)Y−1

(1−Y )(MY−2+GY−2)

= λt + 1
σt

(gξ(t)(σt; G̃(t), M̃(t), Y ) − gεt(σt;G,M, Y )).

(7.5)

Then there is a measure Qt equivalent to Pt such that

εt + kt ∼ stdCGMY(G̃(t), M̃(t), Y )

on the measure Qt where

kt = λt +
1

σt
(gξt(σt; G̃(t), M̃(t), Y ) − gεt(σt;G,M, Y )). (7.6)

Proof. This result comes form the Proposition 4.6. In the CGMY case, the temper-
ing function has the form

q(r,±1) = e−λ±r, λ± > 0,

therefore the condition (4.11) is easily verified. Some conditions on parameters are
necessary to assure the equivalence, that is Y = Ỹ , C = C̃(t) and by equation (4.12)
with b1 = 0 and b2 = −kt we have

kt = Γ(1 − Y )
(∫

Rd

xR(dx) −
∫

Rd

xR̃(dx)
)

,

where R is the Rosiński measure of εt and R̃ is the Rosiński measure of εt + kt. By
Definition 7.2, we have

(MY−2 +GY−2)−1

Γ(2 − Y )
=

(M̃(t)Y−2 + G̃(t)Y−2)−1

Γ(2 − Y )
,

hence
MY−2 +GY−2 = M̃(t)Y−2 + G̃(t)Y−2.
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The evaluation of the integrals

Γ(1 − Y )

∫

Rd

xR(dx) = CΓ(1 − Y )(MY−1 −GY−1)

=
(MY−1 −GY−1)

(1 − Y )(MY−2 +GY−2)

and

Γ(1 − Y )

∫

Rd

xR̃(dx) = C̃(t)Γ(1 − Y )(M̃(t)Y−2 + G̃(t)Y−2)

=
(M̃(t)Y−1 − G̃(t)Y−1)

(1 − Y )(M̃(t)Y−2 + G̃(t)Y−2)
,

completes the proof.

Suppose G̃(t) and M̃(t) satisfy the condition (7.5) in each time t ∈ N. We have
the stock price dynamic

log

(
St
St−1

)

= rt − dt + λtσt − gεt(σt;G,M, Y ) + σtεt

= rt − dt − gξt(σt; G̃(t), M̃(t), Y ) + σt(εt + kt)

(7.7)

where kt is given by equation (7.6). By Proposition 7.3, there is a measure Qt

equivalent to Pt such that εt + kt ∼ stdCGMY(G̃(t), M̃(t), Y ) on the measure Qt,
and hence

log

(
St
St−1

)

= rt − dt − gξt(σt; G̃(t), M̃(t), Y ) + σt(ξt) (7.8)

with the following variance process

σ2
t = (α0 + α1σ

2
t−1(ξt−1 − kt−1)

2 + β1σ
2
t−1) ∧ ρ (7.9)

The stock price dynamic is called the the CGMY-GARCH option pricing model,
where G̃(t) and M̃(t) satisfy conditions (7.5), and kt is equal to equation (7.6).
Under the CGMY-GARCH option pricing model, a risk neutral stock price dynamic
of the process St at time t > 0 is given by

St = S0 exp





t∑

j=1

(

rj − dj − gξj (σj ; G̃(t), M̃(t), Y ) + σjξj

)



 ,

We recall that the martingale condition, indeed E[St|Ft−1] = St−1e
rt−dt , follows by

Proposition 7.1. Assume that the GARCH parameters (α0, α1, and β1) the standard
CGMY parameters (G, M , and Y ) the constant market price of risk λt = λ, and
the conditional variance σ2

t0 of the initial time t0 are estimated from the historical
data. Then we can generate the risk-neutral process for the CGMY-GARCH option
pricing model by the following algorithm.

Algorithm:
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1. Initialize t := t0.

2. Find the parameters G̃(t) and M̃(t) satisfying condition (7.5).

3. Generate random number ξt ∼ stdCGMY(G̃(t), M̃(t), Y ).

4. Let log
(

St
St−1

)

be equal to equation (7.8).

5. Let kt be equal to equation (7.6).

6. Set t = t+ 1 and then substitute

σ2
t = (α0 + α1σ

2
t−1(ξt−1 − kt−1)

2 + β1σ
2
t−1) ∧ ρ.

7. Repeat 2 ∼ 6 until t > T .

7.2.3 GTS-GARCH model

Before considering the GTS-GARCH model we are going to define the stdGTS dis-
tribution, that is a GTS distribution with zero mean and unit variance.

Definition 7.4. Let X be a GTS random variable with parameter (C+, C−, G, M ,
Y+, Y−, m), where we define

C+ =
pM2−Y+

Γ(2 − Y+)
,

C− =
(1 − p)G2−Y−

Γ(2 − Y−)
,

where p ∈ (0, 1) and
m = 0,

then we call this distribution stdGTS with parameter (G, M , Y+, Y−, p). In this
case the function gX(u) is of the form

gX(u) = p
(M − u)Y+ −MY

+ + uYMY+−1

Y+(Y+ − 1)MY+−2
+ (1 − p)

(G+ u)Y− −GY− − uYMY−−1

Y−(Y− − 1)GY−−2

Consider the TS-GARCH model with the sequence (εt)t∈N of iid random variables
with εt ∼ stdGTS(G,M, Y+, Y−) for all t ∈ N. We will call the TS-GARCH model
the GTS-GARCH model. Since E[exεt ] < ∞ if x ∈ (−G,M), ρ has to be in the
interval (0,M2).

By Proposition 4.10, the following argument follows.

Proposition 7.5. Consider the GTS-GARCH model. Let T ∈ N be a time horizon,
fix a natural number t ≤ T . Suppose G̃(t), M̃(t), and p̃(t) satisfy the following
conditions:











M̃(t)2 > ρ

p̃(t)M̃(t)2−Y+ = pM2−Y+

(1 − p̃(t))G̃(t)Y−−2 = (1 − p)GY−−2

pM
Y+−1−M̃(t)Y+−1

(1−Y+)MY+−2 + (1 − p) G̃(t)Y−−1−GY−−1

(1−Y )GY−−2

= λt + 1
σt

(gξ(t)(σt; G̃(t), M̃(t), Y+, Y−, p̃(t)) − gεt(σt;G,M, Y+, Y−, p)).
(7.10)
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Then there is a measure Qt equivalent to Pt such that

εt + kt ∼ stdGTS(G̃(t), M̃(t), Y+, Y−, p̃(t))

on the measure Qt where

kt = λt +
1

σt
(gξt(σt; G̃(t), M̃(t), Y+, Y−, p̃(t)) − gεt(σt;G,M, Y+, Y−, p)). (7.11)

Proof. This result comes form the Proposition 4.10 and an argument similar to the
proof of Proposition 7.3, allows one to obtain (7.10).

Suppose G̃(t), M̃(t) and p̃(t) satisfy the condition (7.10) in each time t ∈ N. We
have the stock price dynamic

log

(
St
St−1

)

= rt − dt + λtσt − gεt(σt;G,M, Y+, Y−, p) + σtεt

= rt − dt − gξt(σt; G̃(t), M̃(t), Y+, Y−, p̃(t)) + σt(εt + kt)

(7.12)

where kt is given by equation (7.11). By Proposition 7.5, there is a measure Qt

equivalent to Pt such that εt+kt ∼ stdGTS(G̃(t), M̃(t), Y+, Y−, p̃(t)) on the measure
Qt, and hence

log

(
St
St−1

)

= rt − dt − gξt(σt; G̃(t), M̃(t), Y+, Y−, p̃(t)) + σt(ξt) (7.13)

with the following variance process

σ2
t = (α0 + α1σ

2
t−1(ξt−1 − kt−1)

2 + β1σ
2
t−1) ∧ ρ (7.14)

The stock price dynamic is called the the GTS-GARCH option pricing model, where
G̃(t), M̃(t) and p̃(t) satisfy condition (7.10), and kt is equal to equation (7.11).
Under the GTS-GARCH option pricing model, a risk neutral stock price dynamic
of the process St at time t > 0 is given by

St = S0 exp





t∑

j=1

(

rj − dj − gξj (σj ; G̃(t), M̃(t), Y+, Y−, p̃(t)) + σjξj

)



 ,

We recall that the martingale condition, indeed E[St|Ft−1] = St−1e
rt−dt , follows

by Proposition 7.1. Assume that the GARCH parameters (α0, α1, and β1) the
standard GTS parameters (G, M , Y+, Y−, and p), the constant market price of risk
λt = λ, and the conditional variance σ2

t0 of the initial time t0 are estimated from the
historical data. Then we can generate the risk-neutral process for the GTS-GARCH
option pricing model by the following algorithm.

Algorithm:

1. Initialize t := t0.

2. Find the parameters G̃(t), M̃(t) and p̃(t) satisfying condition (7.10).
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3. Generate random number ξt ∼ stdGTS(G̃(t), M̃(t), Y+, Y−, p̃(t)).

4. Let log
(

St
St−1

)

be equal to equation (7.13).

5. Let kt be equal to equation (7.11).

6. Set t = t+ 1 and then substitute

σ2
t = (α0 + α1σ

2
t−1(ξt−1 − kt−1)

2 + β1σ
2
t−1) ∧ ρ.

7. Repeat 2 ∼ 6 until t > T .

7.2.4 KR-GARCH model

This further example shows the flexibility of the KR-distribution. In the previous
examples, the parameters under the measure P together with conditions to find risk
neutral parameters under the measure Q, do not leave any degree of freedom, in
such a way the change of measure determines univocally risk neutral parameters,
if a solution of the system 7.5, in the CGMY-GARCH case, or of the system 7.10,
in the GTS-GARCH case, exists. Even though also in the KR-GARCH we have a
similar system to solve, still we have a parameter free. Theoretically, we could find
the parameter, which better fit the cross sectional option data, in order to reduce
the distance between observed prices and model ones. To figure out this point, we
will be going to go into this model.

Definition 7.6. Let X be a KR random variable with parameter (r+, r−, k+, k−,
p+, p−, α, m), where we define

c =
1

Γ(2 − α)

(
α+ p+

2 + p+
r2−α+ +

α+ p−
2 + p−

r2−α−

)−1

k+ = c
α+ p+

rα+
,

k− = c
α+ p−
rα−

,

m = 0

then we call this distribution stdKR with parameter (r+, r−, p+, p−, α). In this
case the function gX(u) is defined in u ∈ (−1/r−, 1/r+) and it is of the form

gX(u) = cΓ(−α)
α+ p+

p+rα+
(2F1(p+, α; 1 + p+; r+u) − 1)

+ cΓ(−α)
α+ p−
p−rα−

(2F1(p−, α; 1 + p−;−r−u) − 1)

− uΓ(1 − α)

(

c
α+ p+

p+ + 1
r1−α+ − c

α+ p−
p− + 1

r1−α−

)

.

Consider the TS-GARCH model with the sequence (εt)t∈N of iid random variables
with εt ∼ stdKR(r+, r−, p+, p−, α) for all t ∈ N. We will call the TS-GARCH model
the KR-GARCH model. Since E[exεt ] <∞ if x ∈ (−1/r−, 1/r+), ρ has to be in the
interval (0, 1/r2+). By Proposition 4.8, the following argument follows.
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Proposition 7.7. Consider the KR-GARCH model. Let T ∈ N be a time horizon,
fix a natural number t ≤ T . Suppose r̃+(t), r̃−(t), p̃+(t) and p̃−(t) satisfy the
following conditions:








r̃+(t)−2>ρ

α+p+
2+p+

r2−α
+ +

α+p−
2+p−

r2−α
− =

α+p̃+
2+p̃+

r̃2−α
+ +

α+p̃−
2+p̃−

r̃2−α
− ,

Γ(1−α)
(

c
(

α+p+
p++1

r1−α
+ −α+p−

p−+1
r1−α
−

)

−c̃
(

α+p̃+
p̃++1

r̃1−α
+ −α+p̃−

p̃−+1
r1−α
−

))

=λt+
1
σt

(gξ(t)(σt;r̃+(t),r̃−(t),p̃+(t),p̃−(t),α)−gεt (σt;r+(t),r−(t),p+(t),p−(t),α)).

(7.15)

Then there is a measure Qt equivalent to Pt such that

εt + kt ∼ stdKR(r̃+(t), r̃−(t), p̃+(t), p̃−(t), α)

on the measure Qt where

kt = λt +
1

σt
(gξt(σt; r̃+(t), r̃−(t), p̃+(t), p̃−(t), α)− gεt(σt; r+, r−, p+, p−, α)). (7.16)

Proof. The property of KR distribution

σ(A) =
k+r

α
+

α+ p+
IA(1) +

k−rα−
α+ p−

IA(−1), A ⊂ S0,

and Proposition 4.8 by an argument similar to the proof of Proposition 7.3, allows
one to obtain (7.15).

By arguments similar to those in the previous sections, the stock price dynamic
deduced from Proposition 7.7 is

log

(
St
St−1

)

= rt − dt − gξt(σt; r̃+(t), r̃−(t), p̃+(t), p̃−(t), α) + σtξt (7.17)

for each t ∈ N and with

ξt ∼ stdKR(r̃+(t), r̃−(t), p̃+(t), p̃−(t), α)

possessing the following variance process

σ2
t = (α0 + α1σ

2
t−1(ξt−1 − kt−1)

2 + β1σ
2
t−1) ∧ ρ

is called the KR-GARCH option pricing model, where r̃+(t), r̃−(t), p̃+(t) and p̃−(t)
satisfy the condition (7.15), and kt is equal to (7.16). Under the KR-GARCH option
pricing model, the stock price St at time t > 0 is given by

St = S0 exp





t∑

j=1

(rj − dj − gξt(σt; r̃+(t), r̃−(t), p̃+(t), p̃−(t), α) + σjξj)



 ,

and the martingale condition E[St|Ft−1] = St−1e
rt−dt holds as well.

Assume that the GARCH parameters (α0, α1, and β1), the standard KR pa-
rameters (r+, r−, p+, p− and α), the constant market price of risk λt = λ, and
the conditional variance σ2

t0 of the initial time t0 are estimated from historical data.
Then we can generate the TS-GARCH option pricing model based on the standard
KR distribution by the following algorithm.

Algorithm:
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1. Initialize t := t0.

2. Find the parameters r̃+(t), r̃−(t), p̃+(t) and p̃−(t) satisfying the conditions in
(7.15).

3. Generate random number ξt ∼ stdKR(α, r̃+(t), r̃−(t), p̃+(t), p̃−(t)).

4. Put log
(

St
St−1

)

= rt − dt − gξt(α, r̃+(t), r̃−(t), p̃+(t), p̃−(t)) + σtξt

5. Let kt = λ+ 1
σt

(gξt(α, r̃+(t), r̃−(t), p̃+(t), p̃−(t)) − gεt(α, r+, r̃−, p̃+, p̃−))

6. Set t = t+1 and then substitute σ2
t = (α0 +α1σ

2
t−1(ξt−1−kt−1)

2 +β1σ
2
t−1)∧ρ.

7. Repeat 2 ∼ 6 until t > T .

In Step 2 in this algorithm, we have to find the solution with four parameters
satisfying the condition in (7.15). The solution is not unique. There are many
way to select one of them. One way is to select one solution which minimizes the
square root error between the market option prices and the simulated option prices.
Another way is by fixing the parameter r̃+(t) = r+. Then, since ρ < r+, the first
condition in (7.15) is naturally satisfied.

7.2.5 IG-GARCH model

For sake of completeness, we will be going to recall some GARCH models with
non gaussian innovations, proposed in [27, 26]. Both these models can be viewed
as examples of TS-GARCH models, even though a more strict assumption on the
change of measure has been made. An innovation IG distributed is considered in [27],
together with a conditional variance of the Heston-Nandi type [51]. Thanks to this
special GARCH specification, the characteristic function is calculated by means of
a recursive procedure. Morover, options prices are found through the characteristic
function [8] without having recourse to Monte Carlo simulation.

Proposition 7.8. Let yt be a IG random variable with parameter (σ2
t /η

2, 1, 0),
then the random variable X ∼ ηyt has zero mean and variance σ2

t . In this case the
function gX(u) is of the form

gX(u) =

(

− u+
1 −√

1 − 2uη

η

)
σ2
t

η
.

Proof. The result comes from the properties of IG distribution, see section 5.3.4 in
[111].

Let us define the innovation εt as

εt = ηyt +
σ2
t

η
, (7.18)

then return dynamic is of the form

log

(
St
St−1

)

= rt − dt + ζσ2
t + εt (7.19)
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where the conditional variance σ2
t , recalling the work of Christoffersen et al. [26], is

of this form
σ2
t = α0 + β1σ

2
t−1 + α1yt−1 + γσ4

t−1/yt−1. (7.20)

We call the model above the IG-GARCH model. In order to obtain the return
dynamic under the risk neutral measure, the Esscher transform is considered.

Proposition 7.9. Fix t ∈ N and let

εt = ηyt +
σ2
t

η

define as above and let

ξt = ηyt +
σ2
t

η
√

1 − 2θη
+ k

be the equivalent random variable obtained by the Esscher transform of parameter θ.
Then the following equality

k = 0 (7.21)

holds.

Proof. By a slight modified version of Theorem 4.1, coming from the truncation
function h(x) = x of the Lévy-Khinchin formula, the following equation has to be
fulfilled, that is

ã− a =

∫

R

x(eθx − 1)ν(dx).

In this particular case we have

ã =
σ2
t

η
√

1 − 2θη
+ k

a =
σ2
t

η

and the last integral, evaluated in (4.31), is
∫

R

x(eθx − 1)dx =
σ2
t

η
√

1 − 2θη
− σ2

t

η
.

Hence (7.21) is satisfied.

Proposition 7.10. Consider the IG-GARCH model. Let T ∈ N be a time horizon,
fix a natural number t ≤ T . Suppose θ(t) satisfies the following conditions:






1
η − 2θ(t) > 2ρ

θ(t) < 1
2η

λtσ
2
t + gξ(t)(1;σ2

t /η
3/2,

√

1/η, σ2
t /η
√

1 − 2θ(t)η) = 0.

(7.22)

Then there is a measure Qt equivalent to Pt such that

ξt = ηyt +
σ2
t

η
√

1 − 2θ(t)η
+ kt ∼ IG(σ2

t /η
3/2,

√

1/η − 2θ(t), σ2
t /η
√

1 − 2θ(t)η)
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on the measure Qt and

kt = λtσ
2
t + gξ(t)(1;σ2

t /η
3/2,

√

1/η, σ2
t /η
√

1 − 2θ(t)η). (7.23)

Furthermore the conditional variance under the measure Qt satisfied the following
property

σ̃2
t = σ2

t /(1 − 2θν)3/2. (7.24)

Proof. By Theorem 4.1, Proposition 4.12 and equation (4.31) the result holds. The
equation (7.24) follows by the evaluation of innovation process variance under the
risk neutral measure Qt.

By the value of θ(t) can be explicitly calculated, indeed it is enough to find the
value of theta which satisfy the equation

λσ2
t −

σ2
t

η3/2

(√

1 − 2η(θ(t) + 1) −
√

1 − 2ηθ(t)
)

= 0,

thus, θ(t) does not depend on t and has the form

θ(t) = θ =
1

2η

(

1 − η − 1

η2λ2
− 1

4
η4λ2

)

. (7.25)

By arguments similar to those in the previous sections, the stock price dynamic
deduced from Proposition 7.10 is

log

(
St
St−1

)

= rt − dt − gξ(t)(1;σ2
t /η

3/2,
√

1/η − 2θ(t), σ2
t /η
√

1 − 2θη) + ξt (7.26)

for each t ∈ N and with

ξt ∼ IG(σ2
t /η

3/2,
√

1/η − 2θ(t), σ2
t /η
√

1 − 2θη)

possessing the following variance process

σ̃2
t =

σ2
t

(1 − 2θν)3/2
.

is called the IG-GARCH option pricing model, where θ, satisfies the condition (7.22),
and kt is equal to (7.23). Under the IG-GARCH option pricing model, the stock
price St at time t > 0 is given by

St = S0 exp





t∑

j=1

(

rj − dj − gξt(1;σ2
t /η

3/2,
√

1/η − 2θ, σ2
t /η
√

1 − 2θη) + ξj

)



 ,

and the martingale condition E[St|Ft−1] = St−1e
rt−dt holds as well.

Assume that the GARCH parameters (α0, α1, and β1), the IG parameters (η),
and the conditional variance σ2

t0 of the initial time t0 are estimated from historical
data. Then we can generate the TS-GARCH option pricing model based on the IG
distribution by the following algorithm.

Algorithm:
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1. Initialize t := t0.

2. Calculate the parameter θ by equation (7.25).

3. Generate random number ξt ∼ IG(σ2
t /η

3/2,
√

1/η − 2θ, 0).

4. Put

log

(
St
St−1

)

= rj − dj − gξt(1;σ2
t /η

3/2,
√

1/η − 2θ, σ2
t /η
√

1 − 2θη) + ξj

5. Let kt = λtσ
2
t + gξ(t)(1;σ2

t /η
3/2,

√

1/η, σ2
t /η

√
1 − 2θη).

6. Set t = t+ 1 and then substitute σ2
t by equation 7.20

7. Repeat 2 ∼ 6 until t > T .

7.2.6 SVG-GARCH model

In a further work, Christoffersen et al. [26] have developed a non gaussian GARCH
framework. The risk neutral probability is found by means of the Esscher transform.
This approach is close to that one proposed by Kim et al. [67], even if the change
of measure problem of the last is solved in a more general way. The distribution
considered to drive the stock return dynamic is the skewed Variance Gamma (SVG)
distribution, a particular case of the BΓ distribution with parameter (c+, c−, λ+,
λ−, m). Parameters of the SVG are chosen as follows. Let z1 and z2 be independent
Gamma distributions

z±,t ∼ Γ(4/τ2
±, 1),

where τ+ and τ− are defined as

τ+ =
√

2
(

s−
√

2

3
k − s2

)

and τ− = −
√

2
(

s+

√

2

3
k − s2

)

.

Let us now construct the Bilateral Gamma random variable [73] from the two
Gamma variables as

zt =
1

2
√

2

(

τ+z+,t − τ−z−,t
)

−
√

2
( 1

τ+
− 1

τ−

)

In the notation of equation 2.37, we have that zt has parameters (c+, c−, λ+, λ−,
b) so defined

c± =
4

τ2
±

λ± =
2
√

2

τ±
b = 0.

By Equation (2.9)-(2.12) in [73], zt has zero mean, unit variance, skewness and
kurtosis equal to s and k respectively. The log Laplace transform gzt is

gzt(u) = −
√

2
( 1

τ+
− 1

τ−

)

u− 4τ−2
+ log

(

1 − 1

2
√

2
τ+u

)

− 4τ−2
− log

(

1 +
1

2
√

2
τ−u

)

.

(7.27)
First let us consider a general result regarding BΓ distribution.
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Proposition 7.11. Let X a random variable X ∼ BΓ(c+, c−, λ+, λ−, 0) under a
measure P and X̃ the random variable obtained by the Esscher transform of X with
parameter θ. If θ < λ+ and the equality

k =
c+
λ+

− c−
λ−

− c+
λ+ − θ

+
c−

λ− + θ
, (7.28)

then X̃ = X + k is a random variable X̃ ∼ BΓ(c+, c−, λ+ − θ, λ− + θ, 0) under the
measure Q obtained by the Esscher transform.

Proposition 7.12. Consider the SVG-GARCH model. Let T ∈ N be a time horizon,
fix a natural number t ≤ T . Suppose θ(t) satisfies the following conditions:









λ+−θ(t)>ρ

θ(t)<λ+

c+
λ+
− c−

λ−
− c+

λ+−θ(t)
+

c−
λ−+θ(t)

= λt+
1
σt
gξ(t)(σt;c+,c−,λ+−θ(t),λ−+θ(t),0)−gεt (σt;c+,c−,λ+,λ−,0).

(7.29)

Then there is a measure Qt equivalent to Pt such that

ξt = εt + kt ∼ SVG(σt; c+, c−, λ+ − θ(t), λ− + θ(t), 0)

on the measure Qt where

kt = λt+
1

σt
gξ(t)(σt; c+, c−, λ+−θ(t), λ−+θ(t), 0)−gεt(σt; c+, c−, λ+, λ−, 0). (7.30)

Proof. The result is a consequence of the Proposition 7.11.

By arguments similar to those in the previous sections, the stock price dynamic
deduced from Proposition 7.12 is

log

(
St
St−1

)

= rt − dt − gξ(t)(σt; c+, c−, λ+ − θ(t), λ− + θ(t), 0) + σtξt (7.31)

for each t ∈ N and with

ξt ∼ SV G(c+, c−, λ+ − θ(t), λ− + θ(t), 0)

possessing the following variance process opportunely modified, is called the SVG-
GARCH option pricing model, where θ(t), satisfies the condition (7.29), and kt is
equal to (7.30). Under the SVG-GARCH option pricing model, the stock price St
at time t > 0 is given by

St = S0 exp





t∑

j=1

(rj − dj − gξt(1; c+, c−, λ+ − θ(t), λ− + θ(t), 0) + σjξj)



 ,

and the martingale condition E[St|Ft−1] = St−1e
rt−dt holds as well.

Assume that the GARCH parameters (α0, α1, and β1), the SVG parameters (c+,
c−, λ+, λ−), and the conditional variance σ2

t0 of the initial time t0 are estimated
from historical data. Then we can generate the TS-GARCH option pricing model
based on the standard SVG distribution by the following algorithm.

Algorithm:
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1. Initialize t := t0.

2. Find the parameters θ(t) satisfying the conditions in (7.29).

3. Generate random number ξt ∼ SVG(c+, c−, λ+ − θ(t), λ− + θ(t), 0).

4. Put log
(

St
St−1

)

= rj − dj − gξt(σt; c+, c−, λ+ − θ(t), λ− + θ(t), 0) + σtξj

5. Let kt = gξt(σt; c+, c−, λ+ − θ(t), λ− + θ(t), 0) − gεt(σt; c+, c−, λ+, λ−, 0).

6. Set t = t+ 1 and then substitute σ2
t depending on the chosen GARCH speci-

fication

7. Repeat 2 ∼ 6 until t > T .

7.2.7 RDTS-GARCH model

Now, it easy to understand how to construct a discrete time model with TID dis-
tributed innovation. Before considering the RDTS-GARCH model we are going to
define the stdRDTS distribution, that is a RDTS distribution with zero mean and
unit variance. We recall that, at least theoretically, the RDTS distribution has
similar statistical properties to the CGMY distribution, even if the former one has
exponential moment of any order, while the latter has not.

Definition 7.13. Let X be a RDTS random variable with parameter (C, λ−, λ+,
α, m), where we define

C =
2α/2(λα−2

+ + λα−2
− )−1

Γ(1 − α
2 )

and
m = 0,

then we call this distribution stdRDTS with parameter (λ−, λ+, α). In this case the
function gX(u) is of the form

gX(u) = CG(u;α,C, λ+) + CG(−u;α,C, λ−)

where the function G is defined by Equation (3.45)

Consider the TID-GARCH model with the sequence (εt)t∈N of iid random vari-
ables with εt ∼ stdRDTS(λ−, λ+, α) for all t ∈ N. We will call the TID-GARCH
model the RDTS-GARCH model. The inequality E[exεt ] < ∞ is satisfied for each
x ∈ R. By Proposition 4.15, the following argument follows.

Proposition 7.14. Consider the RDTS-GARCH model. Let T ∈ N be a time
horizon, fix a natural number t ≤ T . Suppose λ̃−(t) and λ̃+(t) satisfy the following
conditions:







λ̃+(t)α−2 + λ̃−(t)α−2 = λα−2
+ + λα−2

−

Γ(1−α
2 )

λα−1
+ −λα−1

− −λ̃+(t)α−1+λ̃−(t)α−1

√
2Γ(1−α

2
)(λα−2

+ +λα−2
− )

= λt + 1
σt

(gξ(t)(σt; λ̃−(t), λ̃+(t), α) − gεt(σt;λ−, λ+, α)).

(7.32)
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Then there is a measure Qt equivalent to Pt such that

εt + kt ∼ stdRDTS(λ̃−(t), λ̃+(t), α)

on the measure Qt where

kt = λt +
1

σt
(gξt(σt; λ̃−(t), λ̃+(t), α) − gεt(σt;λ−, λ+, α)). (7.33)

Proof. This result comes form the Proposition 4.15 and Definition 7.13

Suppose λ̃−(t) and λ̃+(t) satisfy the condition (7.32) in each time t ∈ N. We
have the stock price dynamic

log

(
St
St−1

)

= rt − dt + λtσt − gεt(σt;λ−, λ+, α) + σtεt

= rt − dt − gξt(σt; λ̃−(t), λ̃+(t), α) + σt(εt + kt)

(7.34)

where kt is given by equation (7.33). By Proposition 7.14, there is a measure Qt

equivalent to Pt such that εt + kt ∼ stdRDTS(λ−, λ+, α) on the measure Qt, and
hence

log

(
St
St−1

)

= rt − dt − gξt(σt; λ̃−(t), λ̃+(t), α) + σt(ξt) (7.35)

with the following variance process

σ2
t = α0 + α1σ

2
t−1(ξt−1 − kt−1)

2 + β1σ
2
t−1 (7.36)

The stock price dynamic is called the the RDTS-GARCH option pricing model,
where λ̃−(t) and λ̃+(t) satisfy condition (7.32), and kt is equal to equation (7.33).
Under the RDTS-GARCH option pricing model, a risk neutral stock price dynamic
of the process St at time t > 0 is given by

St = S0 exp





t∑

j=1

(

rj − dj − gξj (σj ; λ̃−(t), λ̃+(t), α) + σjξj

)



 ,

We recall that the martingale condition, indeed E[St|Ft−1] = St−1e
rt−dt , follows by

Proposition 7.1. Assume that the GARCH parameters (α0, α1, and β1) the standard
RDTS parameters (λ−, λ+, and α) the constant market price of risk λt = λ, and
the conditional variance σ2

t0 of the initial time t0 are estimated from the historical
data. Then we can generate the risk-neutral process for the RDTS-GARCH option
pricing model by the following algorithm.

Algorithm:

1. Initialize t := t0.

2. Find the parameters λ̃−(t) and λ̃+(t) satisfying condition (7.32).

3. Generate random number ξt ∼ stdRDTS(λ̃−(t), λ̃+(t), α).
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4. Let log
(

St
St−1

)

be equal to equation (7.35).

5. Let kt be equal to equation (7.33).

6. Set t = t+ 1 and then substitute

σ2
t = (α0 + α1σ

2
t−1(ξt−1 − kt−1)

2 + β1σ
2
t−1) ∧ ρ.

7. Repeat 2 ∼ 6 until t > T .

7.3 Benchmark models and alternative GARCH pricing

models

In order to asses the performance of our ID-GARCH models, we will be going to
consider competing approaches. According with the literature on option pricing, we
will consider the ad hoc BS model proposed by Dumas et al [39]. Although the BS
model does not perform as well as other more complicated competing models in term
of in-sample fitting and out-of-sample forecasting, its hedging performance in com-
parable to them, especially for in-the-money (ITM) calls [119] and furthermore ad
hoc BS model is widely used in the financial industry. The implied volatility relation
is smoothed across exercise prices and maturities, it is expressed by a function

σahBS = a0 + a1K + a2K
2 + a3T + a5KT (7.37)

where K is the strike price and T the time to maturity. The standard BS pricing
formula is used to find the implied volatilities of the observed option prices. The
parameters (a1, . . . , a5) are then found by fitting the implied volatility function.
To show the benefit of non gaussian innovation process, we will consider also the
classical Duan model [35] and the quite recent nonparametric FHS-GARCH model.
In a recent paper of Barone-Adesi et al. [9] has been shown that FHS-GARCH
model outperform both Heston and Nandi model [51] and IG-GARCH model [27].
This last two models are not enough flexible to explain option prices with the only
use of historical data, this is the reason why we do not test these models.

7.3.1 FHS-GARCH model

All GARCH models we have seen until now, may be evaluated my means of Monte
Carlo simulation. A possible alternative to classical Monte Carlo methods, where a
distributional assumption is always considered, can be the filtering historical proba-
bility (FHS) approach propose in [10] to compute portfolio risk measures and recently
applied to the study of option pricing in the GARCH framework [9]. Permutations
of the historical series are considered as the source of the randomness, without any
distributional assumption. The idea comes by the observation that Monte Carlo
simulations assume a particular distributional form, imposing the structure of the
risk that they were suppose to investigate. In particular with the normal hypoth-
esis we cannot incorporate excess skewness and kurtosis as well as cannot capture
extreme events. Empirical studies show that residuals are not normal distributed,
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therefore one possibility to overcome this drawback is do not impose any theoreti-
cal distributional assumption. Historical simulations are usually sampled from past
data assuming that returns are i.i.d., thus one needs to remove any serial correlation
and volatility clusters present in the historical series. Of course a standard way to
remove volatility clusters is by modeling returns with a GARCH(1,1) specification.
A modified version of the GARCH model can be considered for model returns, that
is under the historical measure P we have

rt = µ+ εt

σ2
t = α0 + α1ε

2
t−1 + γIt−1ε

2
t−1 + βσ2

t−1

(7.38)

where εt is the residual and It−1 = 1 for positive residual, otherwise is zero. This
is the asymmetric GJR-GARCH specification. The empirical innovation density
captures potential non-normalities in the true innovation density. In order to use
estimated residual for historical simulation, one needs to scale them respect to the
volatility, that is

zt =
εt
σt
.

It is clear that the first step is the estimation of parameters involved in the model
then the extraction of estimated residuals. The historical simulation is provided by
a random choice within the set of estimated residuals, after an opportune scale as
above. On each step i the value of the innovation zi is chosen and the conditional
variance is updated, until the entire path is generated. Repeating this procedure 104

times we obtain the convergence to the option price. To ensure the convergence of
the calibration algorithm, the FHS innovations used to simulate the GARCH sample
paths are kept fix across all the iterations of the algorithm [9].

We have also to point out that innovations are the same under the market mea-
sure even in the risk neutral one but the conditional variance processes are not the
same under the change of measure. The risk neutral dynamic of the FHS-GARCH
model is

rt = µ∗ + εt

σ2
t = α∗0 + α∗1ε

2
t−1 + γ∗It−1ε

2
t−1 + β∗σ2

t−1

(7.39)

Parameters of the volatility dynamics under the risk neutral measure are esti-
mated by matching market option prices to model prices. The risk neutral drift
µ∗ ensures that the expected asset return equals the risk free rate. Furthermore,
the variance of the historical simulation can be reduce by the empirical martingale
simulation method. We will analyze the pricing performance of this approach in the
following. The loss of a parametric model comes at a potential faster and easier to
implement method. Due to its structure, this model cannot be used to price OTC
options.

7.4 Empirical analysis

7.4.1 Data

On of the most used market to assess option pricing models is the S&P 500 index,
[7, 39, 51]. Even though our method is constructed to price also options OTC,
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we will consider European call written on the S&P 500 index. For the purpose of
option valuation there is a general consensus to prefer parameters estimated from
option prices respect to parameters estimated from stock returns of the underlying
asset. The heavy tailed innovations, together with the volatility clustering effect,
we are going to consider in empirical tests, will be enough to obtain good results
in both historical estimation and option valuation. It is well know that a large
sample of observations is needed to estimate a GARCH time series model. We will
consider adjusted closing prices of the S&P 500 index from Monday 12 April 1996 to
Wednesday 12 April 2006 provided by Datastream for a total of 2501 observations.
The size of this data set, 2501 observations, is large enough for GARCH model
fitting, as remarked in [9]. The dividend yield will be not used, since adjusted
closing pricing are taken into account, that is dt = 0, for each t in our sample. For
the daily interest rate process we take the time series of the above time window
of the 3-months Treasury rate and the 1-year zero rate is calculated by using the
bootstrap method [55].

European call data on Wednesday 12 April 2006 (with maturities 9, 37, 65, 156
and 247 days) and on Wednesday 19 April 2006 (with maturities 2, 30, 58, 149 and
240 days) will be considered for a total of 285 observations. European call prices are
calculated by using the implied volatility provide by Ivy DB, via the BS formula.
Option with time to maturity more than 100 days, implied volatility more than
0.7, price less than $0.05 and such that |S0/K − 1| > 0.10, where S0 is the initial
underlying price and K is the strike price, are discarded. The riskless interest rate
for each given maturity is calculated by interpolating the U.S. Treasury yield curve.

7.4.2 In-sample model comparison

Market estimation

The time window between Monday 12 April 1996 and Wednesday 12 April 2006 is
considered for the in-sample test. First we estimate the set of parameters θ of the
normal-GARCH model, by using the MLE approach,

log

(
St
St−1

)

= rt − dt + λtσt −
σ2
t

2
+ σtεt, 1 ≤ t ≤ T

where the conditional variance process has the form

σ2
t = α0 + α1σ

2
t−1ε

2 + β1σ
2
t−1, 1 ≤ t ≤ T, ε0 = 0.

Thus, the estimated innovations ε̂t as well as the GARCH parameter θ̂ are taken into
account in the QMLE estimation for the non gaussian models. This is a classical
procedure to estimate parameters when the innovation distribution is not normal.
For properties of this algorithm we refer to [100] and references therein. We want
to point out the the estimated σ̂t and ε̂t are not equal for all GARCH model we
consider, even if θ̂ is fixed. This is due to the fact that the log Laplace transform
depends on the distribution of the innovation. Numerical procedure are needed for
tempered stable and tempered infinitely divisible MLE estimation. Since the density
function is not given in close form, but only the characteristic function is known, a
discrete evaluation of the density together with an interpolation algorithm is used.
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Figure 7.1: S&P 500 prices from April 12, 1996 to April 12, 2006.
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Figure 7.2: S&P 500 index log returns April 12, 1996 to April 12, 2006.
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Figure 7.3: Estimated normal-GARCH innovations.
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Figure 7.4: Annual estimated volatility.
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Table 7.1: S&P 500 market parameters estimated by MLE approach and relative
goodness of fit statistics on the time series from 12 April 1996 to 12 April 2006. The
parameter m is always equal to zero.

β α1 α0 λ

Normal-GARCH 0.9141 0.0756 1.2842e-6 0.0566

C G M Y

stdCGMY 0.1234 0.3689 1.2978 1.7517

C+ C− G M Y+ Y−
stdGTS 0.1565 0.1026 0.3128 1.7125 1.7517 1.7517

c+ c− λ+ λ−
stdSVG 3.3058 2.6199 2.5713 2.2891

k+ k− r+ r− p+ p− α

stdKR 4.1487 0.0361 0.7839 3.6622 20.0000 1.0691 1.7517
C λ+ λ− α

stdRDTS 0.0745 1.1581 0.2863 1.8330

KS AD AD2 AD2
up χ2(p-value)

Normal-GARCH 0.0317 124.1306 3.4407 16.6561 135.1242(0.0765)
CGMY-GARCH 0.0304 0.0671 3.1712 8.3000 117.8472(0.2648)

GTS-GARCH 0.0301 0.0690 3.1269 8.0803 114.8468(0.2846)

SVG-GARCH 0.0263 0.2434 2.2150 21.4987 127.3840(0.1519)
KR-GARCH 0.0287 0.0648 2.6748 7.2551 117.3087(0.2130)

RDTS-GARCH 0.0307 0.0708 3.3837 14.0331 118.2469(0.2354)

By means of the classical FFT procedure, the characteristic function is inverted to
give the density function. The classical MLE procedure involving both GARCH
parameters and innovation parameters in one run is to time spending. The QMLE
method gives one the possibility to skip this cumbersome optimization problem. In
the first optimization step the normal- GARCH parameters (α0, α1 and β1) are
found by MLE. In the second step the innovation process and parameters of an
infinitely divisible distribution are estimated.

The KS, the AD, the AD2, the AD2
up, and the χ2 statistics are given, as described

in Section 5.2.3. Furthermore, the qq-plots for the innovation fitting are also given.
The results in Table 7.1 show that all non normal distributions present a better

fit performance. This fact is emphasized by AD statistics, which have a much less
value in non normal cases. By looking to the plot of innovations Figure 7.2, this fact
is not surprising, since we have tail events not explainable with a standard normal
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random variable.
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Figure 7.5: QQplots for different distributional assumption for the innovation on 12
April 2006.

Option pricing performances

In the second part of the in-sample analysis we evaluate option prices with different
strike prices and maturities, considering the European call prices described in the
previous section for Wednesday 12 April 2006. The Monte Carlo procedure is based
on algorithms above with empirical martingale simulation. This last simulation
technique, introduced in a work of Duan and Simonato [38], is a simple way to
reduce the variance of the simulated sample and to preserve the martingale property
of the simulated risk neutral process as well, which is in general lost with a crude
Monte Carlo method. Let us consider a given market model and observed prices
Ci of call options with maturities τi and strikes Ki, i ∈ {1, . . . , N}, where N is the
number of options on Wednesday 19 April 2006. The FHS-GARCH model is fitted
by matching model prices to market prices using nonlinear least squares. Hence,
to obtain a practical solution to the calibration problem, our purpose is to find a
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Table 7.2: Option pricing results on 12 April 2006. In the ad hoc BS model the paper
of Dumas et al.[39] is considered, the normal-GARCH model is based on Duan et
al. [35], the FHS-GARCH is a nonparametric model introduced by Barone-Adesi et
al. [9].

APE AAE RMSE ARPE

ad hoc BS 0.0811 3.2302 5.6297 0.3819
FHS-GARCH 0.0182 0.7246 1.0528 0.1332

Normal-GARCH 0.0937 3.7292 6.4963 0.3944
CGMY-GARCH 0.0221 0.8788 1.2979 0.1545

GTS-GARCH 0.0581 2.3133 4.0034 0.3447
RDTS-GARCH 0.0363 1.4440 1.8835 0.2333

parameter set θ, such that the optimization problem

min
θ

N∑

i=1

(Ci − Cθ(τi,Ki))
2

is solved, where by Ci we denote the price of an option as observed in the market
and by Cθi the price computed according to a pricing formula in the FHS-GARCH
model with a parameter set θ. To measure the performance of the option pricing
model, we consider four statistics(APE, AAE, RMSE and ARPE) as in Chapter 5.

Normal innovations are simulated with the normrnd command of Matlab, based
on the Marsaglia and Tsang Ziggurat method [85] and TS innovations are simulated
by series representation, as described in Chapter 6 with the exception of SVG innova-
tion, which can be faster simulated by the gamrnd function of Matlab. Furthermore,
in the FHS-GARCH model, the random choice is performed by the randint function
of Matlab together with the garchsim function. Due to the structure of algorithms
for non normal innovations, the risk neutral simulation is much more faster in the
normal and the FHS-GARCH. We point out that for each time step and for each
simulated path, we have to solve an optimization problem to find risk neutral pa-
rameters, that is each random number may have different parameters, which does
not occur in the normal as well as the FHS case. The running time ranges from 3
to 6 hours to simulate 20.000 paths, by using Matlab R2007b on a Xeon Precision
at 3.0 GHz with 3GB RAM.

Thus, Table 7.2 shows the performance of different option pricing models: the
normal-GARCH perform worst respect to all other competitor models and the FHS-
GARCH outperform all others. Also this result is not surprising, since this last
model uses both historical and options information, while all ID-GARCH models
take into account only historical information. To assess the benefit of our model,
we show also the implied volatility surface. Even if we take in consideration only
historical data, the model implied volatility is close to the real one.
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7.4.3 Out-of-sample model comparison

Table 7.3: Option pricing results on 12 April 2006. The ad hoc BS [39], the normal-
GARCH [35], and the FHS-GARCH model [9] are considered.

APE AAE RMSE ARPE

ad hoc BS 0.1201 4.3133 6.8064 0.9835
FHS-GARCH 0.0528 1.8965 2.3240 0.3499

Normal-GARCH 0.1613 5.7951 8.4702 0.7461
CGMY-GARCH 0.0609 2.1885 2.7170 0.4058

GTS-GARCH 0.1810 6.5035 10.0912 0.9611
RDTS-GARCH 0.0386 1.3858 2.1842 0.2162

In this section we analyze the out-of-sample performance of our models. Market
parameters are estimated from the same data set previously considered, that is from
Monday 12 April 1996 to Wednesday 12 April 2006 for a total of 2501 observations.
We adopt the approach of Dumas et al. [39], Heston and Nandi [51] and Barone
Adesi et al. [9] and estimated parameters are used to estimate European call options
prices one week ahead, by using asset prices, time to maturities and interest rate on
Wednesday 19 April 2006.

Performances are measured by the three statistics above, APE, AAE, RMSE
and ARPE. The results given in Table 7.3 show the performance of different option
pricing models: the normal-GARCH perform worst respect to all other competitor
models and the RDTS-GARCH and FHS-GARCH outperform all others. At least
for this data set the the CGMY-GARCH and RDTS-GARCH seem to be satisfactory
in both in-sample and out-of-sample analysis, in comparison with the FHS-GARCH
which is a non-parametric model and use market and cross sectional information.
Consequently, the CGMY-GARCH and RDTS-GARCH models explain both the
asset price behavior and European option prices better than the normal-GARCH
model. Thus, we can say that the skewness and fat-tail properties of the innovation
are also important for pricing of European options.
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Figure 7.6: In-sample option pricing results on 12 April 2006. The the nonparametric
FHS-GARCH [9], the normal-GARCH model [35], CGMY-GARCH, and the RDTS-
GARCH model
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Figure 7.7: Implied volatility of European call options on Wednesday 12 April 2006
written on the S&P 500 index with maturity 21 April 2006.



Conclusions

In the first part of this thesis we have reviewed the construction of the tempered
stable class, a subclass of infinitely divisible distributions, and presented some well
known one dimensional parametric examples and well as some new one. Then, by
using a similar argument we have developed the tempered infinitely divisible class
and given some examples in one dimension.

In the second part, the change of measure problem has been discussed. In partic-
ular, by using the approach of Sato [109] concerning density transformations between
infinitely divisible random variables, we have found relations between a given initial
density and the transformed one. We have looked at changes of measure such that
the initial distribution has the same parametric form of the transformed one, even
if the great flexibility of infinitely divisible random variables allow a multitude of
possibilities.

Then, we have empirically studied continuous and discrete models for financial
stock returns and in the meanwhile also some algorithms to simulate random variates
from tempered stable and tempered infinitely divisible distributions and processes.
Efficient simulation algorithms are fundamental to price options in a discrete time
setting, and they may be useful also in a continuous setting.

In the empirical study we have focused on methods to evaluate European call
options by using information given by the underling asset. The effect on option
pricing of fat tailed and skewed distributions, in continuous models, together with
the volatility clustering, in discrete models, has been analyzed.

These models can be applied also to evaluate more complicated derivatives, in
particular by using the more recent literature on these topics both continuous and
discrete time frameworks can be easily extended to American and path dependent
options. As example, we have reported market estimations and pricing errors on
April 12, 2006. Anyway, the flexibility of our models allows one to obtain very
promising results also by considering an more ample empirical study.





Acknowledgements

I would like to thank Prof. Dr. Svetlozar T. Rachev, for his support through all
my studies at the University of Karlsruhe and KIT, under whose supervision I chose
this topic and began the thesis. In addition to supporting and guiding my research,
he has also provided me with always interesting ideas, in particular the idea of this
thesis.

I am grateful to all professors of the Department of Mathematics, Statistics,
Computer Science and Applications, University of Bergamo in giving me the oppor-
tunity to attend a fruitful Ph.d. programm. In particular my advisor Prof. Rosella
Giacometti, the coordinator of the Ph.d. programm "Computational Methods for
Economic and Financial decisions and forecasting" Prof. Marida Bertocchi, and
Prof. Elisabetta Allevi, who gave me the opportunity to focus on different fields of
research.

I would like to express my sincere appreciation to Prof. Sergio Ortobelli Lozza
for his help and for several interesting and amazing discussions. I cannot finish this
thesis without mentioning my friend and colleague Dr. Young Shin Kim, for helping
me get started on Matlab and computational finance. I really appreciate working
with him.

I wish to thank Prof. Frank J. Fabozzi. His help has been fundamental in
these last two years, offering direction and penetrating criticism. Furthermore, I am
grateful to Prof. Gennady Samorodnitsky for his help in formulating the problem
in Chapter 3 and for his fruitful comments and suggestions.

I want to thank also Gianluca, Paolo and Vito, my fellow travellers, for all the
time spent together in Bergamo and Karlsruhe.

A special thought is devoted to my family for a never-ending support.

The study was funded by a Ph.D. scholarship of the University of Bergamo and
partially by a research scholarship of the Deutscher Akademischer Austauschdienst,
DAAD, during my stay in Karlsruhe.





Bibliography

[1] M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions, With
Formulas, Graphs, and Mathematical Tables. Dover Publications, 1974.

[2] P. Acquistapace. Appunti del corso di Analisi Funzionale.
http://www.dm.unipi.it/~acquistp/anafun.pdf, 2007.

[3] S. Asmussen and P.W. Glynn. Stochastic Simulation: Algorithms and Analysis.
Springer, 2007.

[4] S. Asmussen, D. Madan, and M.R. Pistorius. Pricing equity default swaps
under the CGMY Lévy model.

[5] S. Asmussen and J. Rosinski. Approximations of Small Jumps of Lévy
Processes with a View Towards Simulation. Journal of Applied Probability,
38(2):482–493, 2001.

[6] S. Asmussen and J. Rosinski. On Error Rates in Normal Approximations and
Simulation Schemes for Lévy Processes . Stochastic Models,, 19(3):287–298,
2003.

[7] G. Bakshi, C. Cao, and Z. Chen. Empirical Performance of Alternative Option
Pricing Models. The Journal of Finance, 52(5):2003–2049, 1997.

[8] G. Bakshi, C. Cao, and Z. Chen. Pricing and hedging long-term options.
Journal of Econometrics, 94(1-2):277–318, 2000.

[9] G. Barone-Adesi, R.F. Engle, and L. Mancini. A GARCH option pricing model
with filtered historical simulation. Review of Financial Studies, 21(3):1223–
1258, 2008.

[10] G. Barone-Adesi, K. Giannopoulos, and L. Vosper. VaR without correlations
for portfolios of derivative securities. Journal of Futures Markets, 19(5):583–
602, 1999.

[11] D.S. Bates. The Crash of’87: Was It Expected? The Evidence from Options
Markets. The Journal of Finance, 46(3):1009–1044, 1991.

[12] W. Becken and P. Schmelcher. The analytic continuation of the Gaussian
hypergeometric function 2F1 (a, b; c; z) for arbitrary parameters. Journal of
Computational and Applied Mathematics, 126(1-2):449–478, 2000.

http://www.dm.unipi.it/~acquistp/anafun.pdf


174 Bibliography

[13] M.L. Bianchi. Sull’uso dei processi stocas-
tici di Lévy nei modelli per i tassi d’interesse.
http://etd.adm.unipi.it/theses/available/etd-05052005-173522/,
2005.

[14] M.L. Bianchi, S.T. Rachev, Y.S. Kim, and F.J. Fabozzi. Tempered infinitely
divisible distributions and processes. Technical report, University of Karlsruhe
and KIT, 2008.

[15] M.L. Bianchi, S.T. Rachev, Y.S. Kim, and F.J. Fabozzi. Tempered stable
distributions and processes in finance: numerical analysis. Technical report,
University of Karlsruhe and KIT, 2008.

[16] P. Billingsley. Probability and Measure. Wiley, New York, 3nd edition, 1995.

[17] F. Black and M. Scholes. The Pricing of Options and Corporate Liabilities.
The Journal of Political Economy, 81(3):637–654, 1973.

[18] T. Bollerslev. Generalized Autoregressive Conditional Heteroskedasticity. In
ARCH: Selected Readings. Oxford University Press, 1995.

[19] S.I. Boyarchenko and S. Levendorskĭı. Non-Gaussian Merton-Black-Scholes
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