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1 Introduction

In comparison with the classical perfectly (Walrasian) and imperfectly (Cour-
not - Bertrand) competitive models, auction market models are paid consid-
erably less attention and usually restricted with several game-theoretic prob-
lems which evaluate strategies of players for capturing the desired lot for
different kinds of auction; see e.g. Moulin (1981), Weber (1985) and refer-
ences therein. This situation is due to the very popular opinion that just the
above classical models give the most adequate description of behavior of the
existing economic systems and that the decisions relying upon the classical
principles provide both the stability and efficiency of an economy. However,
the recent history of economic development shows clearly the necessity of
certain control of economic processes. For instance, together with the priva-
tization of great parts of the state property, say, in energy sector, the state
usually keeps real tools for influence on these parts. Of course, these control
mechanisms should be rather subtle and transparent, but they are behind the
classical Walrasian or Bertrand-Cournot type models. The auction market
principles may represent one of the possible ways in resolving this problem.

In this paper, following the approach from Konnov (2006b, 2007b, 2007c),
we describe several auction based equilibrium models which admit equiva-
lent variational inequality formulations. This property enables us to obtain
rather easily existence and uniqueness properties and computational meth-
ods by utilizing directly the results from the theory of variational inequalities,
which is now developed rather well. Therefore, the models can be applied
for investigation and solution of problems in real economic systems.

2 Single auctions of a homogeneous commod-

ity with fixed prices

We start our considerations from the simplest auction market models where
sellers and bidders announce their fixed prices and maximal offer/bid vol-
umes.

A: Auction of sellers
Consider first the auction market where m sellers announce their fixed

prices gi and maximal offer volumes ai for covering the prescribed bid volume
b of a homogeneous commodity. Since the prices are fixed, the problem can
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Figure 1: Auction of sellers
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be solved very easily. Namely, without loss of generality, we suppose that
i < j implies gi ≤ gj and find the index k such that

∑

i<k

ai < b and
∑

i≤k

ai ≥ b.

It follows that the optimal offers are the following: xi = ai if i < k and
xk = min{ak, b−

∑
i<k

ai} and that the auction price is defined by p∗ = gk; see

Figure 1.

B: Auction of buyers
Similarly, we can consider the auction market where l buyers announce

their fixed prices hj and maximal bid volumes bj for covering the prescribed
offer volume a of a homogeneous commodity. Then, without loss of generality,
we suppose that i < j implies hi ≥ hj and find the index k such that

∑

j<k

bj < a and
∑

j≤k

bj ≤ a.
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Figure 2: Auction of buyers
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It follows that the optimal bids are the following: yj = bj if j < k and
yk = min{bk, a−

∑
j<k

bj} and that the auction price is defined by p∗ = hk; see

Figure 2.

C: Auction of sellers and buyers
Moreover, we can consider the general auction market problem where m

sellers announce their fixed prices gi and maximal offer volumes ai and l
buyers announce their fixed prices hj and maximal bid volumes bj.

In order to find a solution, we should rearrange the sellers indices such
that i < j implies gi ≤ gj and rearrange the buyers indices such that i < j
implies hi ≥ hj. Then we find any intersection point for S(p) and D(p),
which gives the desired auction price; see Figure 3, where p∗ ∈ [g3, h3].
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Figure 3: Auction of sellers and buyers
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3 Single auctions of a homogeneous commod-

ity with price functions

We are interested in investigation of more complicated behavior of partici-
pants, when the announced prices depend on offer/bid values. Let us now
consider the auction market which involves m sellers and l buyers of a homo-
geneous commodity, the i-th seller announcing his minimal α′i and maximal
β′i offer values and his price (inverse supply) function gi : Rm+l → R, the
j-th buyer announcing his minimal α′′j and maximal β′′j bid values and his
price (inverse demand) function hj : Rm+l → R, i.e. their prices depend
on offer/bid values (x, y) where x = (x1, . . . , xm) and y = (y1, . . . , yl). The
standard situation corresponds to the case when α′i = 0 and α′′j = 0 for all i
and j. Additionally, we can take into account the “passive” economic agents
who do not participate explicitly in the auction process but agree beforehand
with its price. We suppose that their total excess demand is fixed and equal
to b, i.e. in case b = 0 we have the usual auction market. The value of b
may be positive or negative and may in principle determine the prescribed
dis-balance value. The usual choice b = 0 leads to the precise balance and
forces the auction market to be a closed system. However, if b is an arbitrary
parameter, we can place the model in more general settings and take into
account the reaction of some other economic agents. The solution of the
problem is constituted by a volumes vector (x∗, y∗) and a price p∗ such that

gi(x
∗, y∗)




≥ p∗ if x∗i = α′i,
= p∗ if x∗i ∈ (α′i, β

′
i),

≤ p∗ if x∗i = β′i,
for i = 1, . . . , m; (1)

and

hj(x
∗, y∗)




≤ p∗ if y∗j = α′′j ,
= p∗ if y∗j ∈ (α′′j , β

′′
j ),

≥ p∗ if y∗j = β′′j ,
for j = 1, . . . , l; (2)

and also
(x∗, y∗) ∈ Z, (3)

where

Z =





(x, y) ∈ Rm+l

m∑
i=1

xi −
l∑

j=1

yj = b,

α′i ≤ xi ≤ β′i, i = 1, . . . ,m,
α′′j ≤ yj ≤ β′′j , j = 1, . . . , l.





.
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Thus, the choice of bid/offer volumes must be feasible in the sense of restric-
tions for volumes of economic agents and equilibrate the supply and demand,
furthermore, each trader sells the minimal (respectively, maximal) value if its
price is greater (less) than the (unknown) auction price p∗, and each buyer
purchases the maximal (respectively, minimal) value if its price is greater
(less) than the (unknown) auction price p∗, which conforms to the auction
principle.

The main difficulty of the formulation (1)–(3) is in the fact that it involves
the superfluous unknown auction price. We propose an equivalent variational
inequality (VI) formulation of the problem for excluding the unknown price
p∗.

Theorem 1 (i) If (x∗, y∗, p∗) is a solution of problem (1)–(3), then (x∗, y∗)
solves the problem:

m∑
i=1

gi(x
∗, y∗)(xi − x∗i )−

l∑
j=1

hj(x
∗, y∗)(yj − y∗j ) ≥ 0

∀(x, y) ∈ Z.

(4)

(ii) Conversely, if (x∗, y∗) ∈ Z satisfies (4), then there exists a number p∗

such that (x∗, y∗, p∗) is a solution of problem ((1)–(3).

Proof. (i) Let (1)–(2) hold and (x∗, y∗) ∈ Z. For brevity, set ci = gi(x
∗, y∗),

dj = hj(x
∗, y∗). Then we can define the Lagrangian

L(x, y, p) =
m∑

i=1

cixi −
l∑

j=1

djyj − p

(
m∑

i=1

xi −
l∑

j=1

yj − b

)
(5)

and rewrite conditions (1)–(2) as follows:

∂L(x∗, y∗, p∗)
∂xi

(xi − x∗i ) ≥ 0 ∀xi ∈ [α′i, β
′
i], i = 1, . . . , m;

∂L(x∗, y∗, p∗)
∂yj

(yj − y∗j ) ≥ 0 ∀yj ∈ [α′′j , β
′′
j ], j = 1, . . . , l.

(6)

By using the suitable Karush-Kuhn-Tucker theorem (see e.g. Sukharev et al
(1986), Chapter 4, Theorem 2.4 or Facchinei and Pang (2003), Proposition
1.3.4), we see that (x∗, y∗) must solve the problem

minimize
m∑

i=1

cixi −
l∑

j=1

djyj,

(x, y) ∈ Z

(7)
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i.e. (x∗, y∗) solves problem (4).
(ii) If (x∗, y∗) solves problem (4), it solves (7). By using the other part of

the same Karush-Kuhn-Tucker theorem, we obtain that there exists p∗ such
that (6) holds, i.e. the Lagrangian defined in (5) has the saddle point. But
(6) implies (1)–(2) and the result follows. 2

From the proof it follows that the auction price p∗ coincides with the

Lagrange multiplier for the balance constraint
m∑

i=1

xi −
l∑

j=1

yj = b. After

solving VI (4) we can find the auction price easily from (1)–(2).
Observe that each participant, unlike the perfect competition conditions,

may utilize additional information about the other agents, however, the auc-
tioneer rule equilibrating consumers and producers differs from those in im-
perfect competition models; see e.g. Arrow and Hahn (1971), Okuguchi
and Szidarovszky (1990). However, we have the clear principle for setting
the price. Next, we can utilize the well-developed techniques from the theory
and solution methods of VIs for investigation and solution of the initial prob-
lem. For instance, we apply the known result that any VI with continuous
mapping and convex and compact feasible set is solvable; see e.g. Facchinei
and Pang (2003), Corollary 2.2.5.

Corollary 3.1 If the set Z is nonempty and bounded, and the functions
gi : Rm+l → R, i = 1, . . . , m and hj : Rm+l → R, j = 1, . . . , l are continuous,
then problem (4) is solvable.

Obviously, solvability of VI (4) implies the solvability of the auction equi-
librium problem (1)–(3) with the corresponding feasible set. The unique-
ness may be derived under the strict monotonicity of the mapping (x, y) 7→
(g,−h). There are many other existence and uniqueness theorems for VIs,
including the unbounded case (see e.g. Facchinei and Pang (2003) and ref-
erences therein), which can be also applied to the above problems.

4 Iterative solution methods for single auc-

tion market problems

The results of the previous section also enable us to find a solution of auc-
tion market problems. In particular, using numerous iterative algorithms
for VIs (see Patriksson (1999), Konnov (2001a, 2007b), Facchinei and Pang
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(2003)) we can model various dynamic auction market processes and inves-
tigate their stability (convergence). Of course, these algorithms can be used
for computation of a solution of auction market problems.

The simplest of such methods is the well-known projection method, which
consists in generating the iteration sequence {(xk, yk)} in conformity with the
formula: Find (xk+1, yk+1) ∈ Z such that

m∑
i=1

(gi(x
k, yk) + θ−1

k (xk+1
i − xk

i ))(xi − xk+1
i )

−
l∑

j=1

(hj(x
k, yk)− θ−1

k (yk+1
j − yk

j ))(yj − yk+1
j ) ≥ 0

∀(x, y) ∈ Z,

(8)

where θk > 0 is the stepsize parameter. The preference of this method is
that it always gives a convex quadratic programming subproblem, which has
a unique solution if the set Z is nonempty, i.e. under very mild assumptions.
The convergence of the projection algorithm may require certain additional
strengthened monotonicity or integrability assumptions; see e.g. Patriksson
(1999), Konnov (2007b), Facchinei and Pang (2003).

Another basic procedure is the Frank-Wolfe or conditional gradient me-
thod, which represents the sequential solution of auction problems for each
commodity with the corresponding sequence of fixed prices for arbitrary vol-
umes. More precisely, we can find components of the next iterate (xk+1, yk+1)
as solutions of series of linear programming problems

minimize
m∑

i=1

gi(x
k, yk)xi −

l∑
j=1

hj(x
k, yk)yj.

(x, y) ∈ Z

(9)

The implementation of this procedure is also very simple, but it requires
additionally the boundedness of the set Z. Moreover, the convergence of the
“pure” Frank-Wolfe algorithm require certainly integrability assumptions;
see e.g. Dem’yanov and Rubinov (1968) and Patriksson (1999).

If we are interested in creation of iterative methods which do not require
a priori information about the problem and ensure stability (convergence)
under rather mild conditions, we can incorporate the above iterations within
the combined relaxation process; see Konnov (2001a).

For the sake of convenience, we set

z = (x, y) ∈ Rm+l, F (z) = (g(z),−h(z));
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then we can rewrite problem (4) in the general VI format: Find z∗ ∈ Z such
that

〈F (z∗), z − z∗〉 ≥ 0 ∀z ∈ Z. (10)

We denote by Z∗ its solution set and introduce the following basic assump-
tions:

(A1) Problem (10) is solvable;
(A2) G : Z → Rm+l is a continuous monotone mapping.
The above assumptions seem rather natural. Following Konnov (1993,

2001a), we apply the projection-based combined relaxation method, which is
convergent under the above assumptions and describe the dynamic process
where the participants utilize the extrapolated offer/bid values for their de-
cisions.

Method (CRM). Choose a point z0 ∈ Z and numbers α ∈ (0, 1),
β ∈ (0, 1), γ ∈ (0, 2), η > 0. At the k-th iteration, k = 0, 1, . . ., we have a
point zk ∈ Z, find uk ∈ Z such that

〈F (zk) + η−1(uk − zk), z − uk〉 ≥ 0 ∀y ∈ X, (11)

and set pk = uk − zk. If pk = 0, stop. Otherwise, choose θk ≥ 0, set
vk = zk + θkp

k and stop if F (vk) = 0. Otherwise, set

fk = F (vk), ωk = 〈fk, zk − vk〉,
zk+1 = πZ

[
zk − γ(ωk/‖fk‖2)fk

]
,

and k = k + 1. Here πZ [·] denotes the projection mapping onto Z. The k-th
iteration is complete.

Since the termination of (CRM) yields a solution, we shall consider only
the case when it generates an infinite iteration sequence. Note that

uk = πZ

[
zk − ηF (zk)

]
,

i.e., (11) represents the projection iteration and can be implemented with
finite algorithms. Convergence of (CRM) with linesearch was investigated in
Konnov (1993, 2001a) under the additional Lipschitz continuity assumption.
Applying Theorem 1.3.1 from Konnov (2001a), we obtain the convergence
property for the case of a fixed stepsize.
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Proposition 1 Suppose that (A1) and (A2) are fulfilled and G : Z → Rm+l

is Lipschitz continuous. Then there exists θ′ > 0 such that Method (CRM)
with θk = θ ∈ (0, θ′) generates a sequence {zk} such that

lim
k→∞

zk = z∗ ∈ Z∗. (12)

Furthermore, we are able to ensure convergence under only continuity of
G. Let us consider the following linesearch procedure.

(Rule L) Find s as the smallest non-negative integer such that

〈F (zk + βspk), pk〉 ≤ α〈F (zk), pk〉,

and set θk = βs.

Convergence of the method with linesearch was established in Konnov
(2007a).

Proposition 2 Suppose that (A1) and (A2) are fulfilled. If a sequence {zk}
is generated by Method (CRM) with Rule L, then (12) holds.

The similar combined relaxation method with the Frank-Wolfe iteration
was substantiated in Konnov (2007c).

If we are interested in simultaneous finding offer/bid values and auction
market prices, we can apply one of the multiplier methods, which also require
only monotonicity of the mapping (g,−h); see Konnov (2001b, 2002b). We
describe such a method for problem (1)–(3). For brevity, set

X = [α′1, β
′
1]× . . .× [α′m, β′m]

and
Y = [α′′1, β

′′
1 ]× . . .× [α′′l , β

′′
l ].

Method (ML). Choose a point p0 ∈ R and a number η > 0. At the
k-th iteration, k = 0, 1, . . ., we have a point pk and find the next point in
conformity with the rule:

pk+1 = pk + η

(
b−

m∑
i=1

xk
i −

l∑
j=1

yk
j

)
,
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where the pair (xk, yk) ∈ X × Y solves the problem

m∑
i=1

gi(x
k, yk)(xi − xk

i )−
l∑

j=1

hj(x
k, yk)(yj − yk

j )

−
[
pk + η

(
b−

m∑
i=1

xk
i +

l∑
j=1

yk
j

)]

×
[(

m∑
i=1

xi −
l∑

j=1

yj

)
−

(
m∑

i=1

xk
i −

l∑
j=1

yk
j

)]
≥ 0

∀(x, y) ∈ X × Y.

In this process, the participants also take into account extrapolated values
of the auction price, but it is sufficient for convergence under the above
assumptions.

Proposition 3 Suppose that (A1) and (A2) are fulfilled and that the set
Z is bounded. Then the sequence {pk} converges to the equilibrium auction
price p∗, and the sequence {(xk, yk)} has limit points such that each limit
point (x∗, y∗), together with p∗, constitutes a solution of problem (1)–(3).

The proof can be obtained by the modification of the corresponding proofs
from Konnov (2001b, 2002b) and is omitted. Observe that the method with
approximate solutions of subproblems possesses similar convergence proper-
ties.

5 A mixed multi-commodity equilibrium

model

The auction market models described in the previous sections admit various
modifications and extensions. We now present two extensions which reflect
different roles of auction markets in economic systems. In this section, we
describe a mixed type equilibrium model where auction markets subordinate
other subsystems in the sense that the agents of these subsystems accept the
price decisions of auction markets.
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The model consists of n auction markets for n different commodities
and of some other economic agents (consumers and producers) whose joint
behavior is described by the excess demand mapping p 7→ E(p), where
p = (p1, . . . , pn) is a given price vector. We denote by Ik and Jk, respec-
tively, the index sets of sellers and buyers of the k-th local market associated
to the k-th commodity. It is supposed that the i-th seller chooses his offer
value xi within the segment [α′i, β

′
i] with α′i ≥ 0 for i ∈ Ik and the j-th

buyer chooses his bid value yj within the segment [α′′j , β
′′
j ] with α′′j ≥ 0 for

j ∈ Jk, however, their prices can also depend on the offer/bid volumes at
this auction, i.e. given the volume vectors x(k) = (xi)i∈Ik

and y(k) = (yj)j∈Jk
,

the i-th seller (j-th buyer) determines his price gi = gi(x(k), y(k)) (respec-
tively, hj = hj(x(k), y(k))). We define the sets of offer/bid bounds for the k-th
auction

X(k) =
∏
i∈Ik

[α′i, β
′
i], Y(k) =

∏
j∈Jk

[α′′j , β
′′
j ].

We say that vectors (x∗(k), y
∗
(k)) ∈ X(k) × Y(k) for k = 1, . . . , n and p∗ ∈ P

constitute the equilibrium if

gi(x
∗
(k), y

∗
(k))




≥ p∗k if x∗i = α′i,
= p∗k if x∗i ∈ (α′i, β

′
i),

≤ p∗k if x∗i = β′i,
for i ∈ Ik; (13)

hj(x
∗
(k), y

∗
(k))




≤ p∗k if y∗j = α′′j ,
= p∗k if y∗j ∈ (α′′j , β

′′
j ),

≥ p∗k if y∗j = β′′j ,
for j ∈ Jk; (14)

k = 1, . . . , n; and

n∑

k=1

[∑
i∈Ik

x∗i −
∑
j∈Jk

y∗j − Ek(p
∗)

]
(pk − p∗k) ≥ 0 ∀p ∈ P, (15)

where P denotes the set of feasible prices, which is supposed to be a non-
empty and convex subset in Rn. Obviously, (13) and (14) represent the
auction price decisions whereas (15) is the usual market price equilibrium
condition. In fact, if P is the non-negative orthant

Rn
+ = {z ∈ Rn | zi ≥ 0 i = 1, . . . , n} ,
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it yields the complementarity conditions

p∗k ≥ 0,
∑
i∈Ik

x∗i −
∑
j∈Jk

y∗j − Ek(p
∗) ≥ 0, p∗k

[∑
i∈Ik

x∗i −
∑
j∈Jk

y∗j − Ek(p
∗)

]
= 0

for k = 1, . . . , n, whereas P = Rn gives the balance condition (cf. (3)):

∑
i∈Ik

x∗i −
∑
j∈Jk

y∗j − Ek(p
∗) = 0 for k = 1, . . . , n.

However, conditions (13) and (14) are equivalent to the system of variational
inequalities

∑
i∈Ik

gi(x
∗
(k), y

∗
(k))(xi − x∗i )−

∑
j∈Jk

hjk(x
∗
(k), y

∗
(k))(yj − y∗j )

−p∗k

[(
∑
i∈Ik

xi −
∑

j∈Jk

yj

)
−

(
∑
i∈Ik

x∗i −
∑

j∈Jk

y∗j

)]
≥ 0

∀(x(k), y(k)) ∈ X(k) × Y(k)

(16)

for k = 1, . . . , n. Thus, the equilibrium problem is formulated as a primal-
dual system of variational inequalities; see e.g. Konnov (2002a), (2003)–
(2006a) and references therein. Observe that we can utilize the well-known
approaches to model behavior of consumers and producers out of auction
markets, which are accepted in the Walrasian equilibrium models; see Nikaido
(1968), Arrow and Hahn (1971), Scarf and Hansen (1973). Therefore, in such
a way we can obtain a mixed type economic system subordinated to auction
markets. Again, we can deduce the existence and uniqueness results for this
model by using the theory of variational inequalities; see Konnov (2001a),
Facchinei and Pang (2003). For instance, we give the existence results for
compact feasible sets.

Proposition 4 Suppose that the sets X(k) and Y(k), k = 1, . . . , n are non-
empty and bounded, the set P is nonempty, convex and compact, the func-
tions gi, i ∈ Ik and hj, j ∈ Jk are continuous on X(k)×Y(k) for all i, j, k, and
the mapping E is continuous on P . Then problem (15)–(16) has a solution.

In the unbounded case, similar results are usually based upon a suitable
coercivity condition.

13



Various algorithms for the primal-dual systems of variational inequalities
from Konnov (2002a), (2003)–(2006a) can be adjusted both for computation
of equilibrium points and for modelling the dynamic processes in this system.
We now give an illustration of one of dual Uzawa type methods (see Konnov
(2002a)) applied to system (15)–(16).

Dual algorithm. Choose an initial price vector p0 ∈ P . At the s-
th iteration, s = 0, 1, . . ., we have a price vector ps ∈ P . For each k =
1, . . . , n, we find xs+1

(k) and ys+1
(k) by solving problem (16) with setting p∗k = ps

k.
Afterwards we find the next price vector by the formula

ps+1 = πP [ps − λsF (ps)], λs > 0, (17)

where Fk(p
s) =

∑
i∈Ik

xs+1
i − ∑

j∈Jk

ys+1
j − Ek(p

∗), k = 1, . . . , n.

Note that problem (16) reflects the decisions of sellers and buyers within
the k-th auction market and can be solved easily by using the equivalent
formulations (13) and (14), whereas (17) may be treated as a “tâtonnement”
process governed by auctioneers with taking into account the total excess de-
mand other economic agents. Convergence of this process requires strength-
ened monotonicity properties of the mappings g,−h, and −E. At the same
time, there exist many other algorithms converging to a solution under rather
general conditions.

6 Constrained spatial auction models

There are many kinds of spatial economic equilibrium models which take into
account locations of economic agents involved in the system; see e.g. Nagur-
ney (1999). These models are very popular in investigation both perfectly
and imperfectly competitive distributed economic systems; various examples
of applications are described e.g. in Facchinei and Pang (2003), Konnov
(2007b). We now describe a spatial equilibrium model of distributed auction
markets of a homogeneous commodity, which is based on the model presented
in Section 3. In this model, unlike the previous section, the auction markets
do not manage the whole system and their reactions are used for obtaining
the general equilibrium.

The model involves n markets of a homogeneous commodity, which are
joined by links (roads) in a network. We denote by Ik and Jk, respectively,
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the index sets of sellers and buyers of the k-th local market associated with
the k-th node. It is supposed that the i-th seller chooses his offer value xi

within the segment [α′i, β
′
i] with α′i ≥ 0 for i ∈ Ik and the j-th buyer chooses

his bid value yj within the segment [α′′j , β
′′
j ] with α′′j ≥ 0 for j ∈ Jk, moreover,

their prices can depend on the offer/bid volumes at this auction, i.e. given the
volume vectors x(k) = (xi)i∈Ik

and y(k) = (yj)j∈Jk
, the i-th seller (j-th buyer)

determines his price gi = gi(x(k), y(k)) (respectively, hj = hj(x(k), y(k))). We
define the sets of offer/bid bounds for the k-th auction

X(k) =
∏
i∈Ik

[α′i, β
′
i], Y(k) =

∏
j∈Jk

[α′′j , β
′′
j ].

Due to the auction principle, the solutions (x∗(k), y
∗
(k)) ∈ X(k) × Y(k) must

satisfy the auction market conditions:

gi(x
∗
(k), y

∗
(k))




≥ p∗k if x∗i = α′i,
= p∗k if x∗i ∈ (α′i, β

′
i),

≤ p∗k if x∗i = β′i,
i ∈ Ik; (18)

and

hj(x
∗
(k), y

∗
(k))




≤ p∗k if y∗j = α′′j ,
= p∗k if y∗j ∈ (α′′j , β

′′
j ),

≥ p∗k if y∗j = β′′j ,
j ∈ Jk; (19)

where p∗k is the (unknown) auction clearing price of the k-th market; i.e they
coincide with (13) and (14). Next, the solutions must satisfy the market
balance equation: ∑

i∈Ik

x∗i −
∑

j∈Jk

y∗j − u∗k = 0, (20)

where u∗k is the (unknown) value of external demand and these values give
the total balance equation for the system:

n∑

k=1

u∗k = 0. (21)

However, we have also to take into account the conditions on the graph
associated with the system of distributed markets. We denote by A the set
of all the arcs joining the nodes attributed to markets. Let fa denote the
commodity flow for arc a = (k, l) and let [b′a, b

′′
a] be the segment of feasible

upper capacity bounds for this arc. The formulation admits negative values

15



both for the flow and for some bounds, which correspond to the reverse
direction of the flow. Observe that bounds can be non-symmetric, i.e. b′a 6=
−b′′a in general. Given the flow vector f = (fa)a∈A we can define the cost
ca = ca(f) of shipment of one unit of the commodity along arc a ∈ A.
Next, for a given node k, we denote by A+

k and A−
k the sets of incoming and

outgoing arcs at k. Note that Ik and Jk can be empty for some k and this
case corresponds to an intermediate node.

If f ∗ is the optimal flow distribution corresponding to x∗(k), y
∗
(k), u

∗
k in (18)–

(21), then we have the node balance equation
∑

a∈A−k
f ∗a −

∑
a∈A+

k

f ∗a − u∗k = 0, k = 1, . . . , n
(22)

and the flow capacity constraints

f ∗a ∈ [b′a, b
′′
a], a ∈ A. (23)

Thus, the constrained spatial market equilibrium problem consists in finding
(x∗, y∗, u∗, f ∗) satisfying (18)–(20) for k = 1, . . . , n and (21)–(23), where
x∗ = (x∗(k))k=1,...,n, y∗ = (y∗(k))k=1,...,n, u∗ = (u∗1, . . . , u

∗
n).

We now present a variational inequality problem, whose solutions satisfy
the above conditions. Set

X =
n∏

k=1

X(k), Y =
n∏

k=1

X(k), F =
∏
a∈A

[b′a, b
′′
a]

and define the set

W =





(x, y, f)
∈ X × Y × F

(
∑

a∈A−k
fa −

∑
a∈A+

k

fa

)

−
(

∑
i∈Ik

xi −
∑

j∈Jk

yj

)
= 0 k = 1, . . . , n





. (24)

The problem is to find (x∗, y∗, f ∗) ∈ W such that

n∑

k=1

[∑
i∈Ik

gi(x
∗
(k), y

∗
(k))(xi − x∗i )

− ∑
j∈Jk

hj(x
∗
(k), y

∗
(k))(yj − y∗j )

]

+
∑
a∈A

ca(f
∗)(fa − f ∗a ) ≥ 0 ∀(x, y, f) ∈ W.

(25)
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Theorem 2 If (x∗, y∗, f ∗) is a solution to VI (24)–(25), then there exist
numbers p∗k and u∗k, k = 1, . . . , n such that (18)–(20) for k = 1, . . . , n and
(21)–(23) hold true.

Proof. Let (x∗, y∗, f ∗) be a solution to (24)–(25), then (x∗, y∗, f ∗) ∈ X×Y ×
F and (23) holds. Next, from the Karush-Kuhn-Tucker theorem for problem
(24)–(25); see e.g. Konnov (2007b), Proposition 11.7, it follows that there
exist numbers p∗k, k = 1, . . . , n such that

n∑

k=1

[∑
i∈Ik

gi(x
∗
(k), y

∗
(k))(xi − x∗i )−

∑
j∈Jk

hj(x
∗
(k), y

∗
(k))(yj − y∗j )

]

+
∑
a∈A

ca(f
∗)(fa − f ∗a )−

n∑
k=1

p∗k

[
∑
i∈Ik

(xi − x∗i )−
∑

j∈Jk

(yj − y∗j )

− ∑
a∈A−k

(fa − f ∗a ) +
∑

a∈A+
k

(fa − f ∗a )

]
≥ 0 ∀(x, y, f) ∈ X × Y × F

(26)

and 
 ∑

a∈A−k

f ∗a −
∑

a∈A+
k

f ∗a


−

(∑
i∈Ik

x∗i −
∑
j∈Jk

y∗j

)
= 0 k = 1, . . . , n. (27)

i.e., p∗ = (p∗1, . . . , p
∗
n) is the vector of Lagrange multipliers for the node bal-

ance equation (27). If we determine the numbers u∗k, k = 1, . . . , n from (22),
then (27) gives (20). Moreover, summing (22) over k = 1, . . . , n gives

n∑

k=1

u∗k =
n∑

k=1


 ∑

a∈A−k

f ∗a −
∑

a∈A+
k

f ∗a


 = 0

since the right-hand side expression involves twice the flow value for each
arc a with opposite signs. Hence, (21) also holds. Next, we see that (26) is
equivalent to the following set of partial variational inequalities:

(gi(x
∗
(k), y

∗
(k))− p∗k)(xi − x∗i ) ≥ 0 ∀xi ∈ [α′i, β

′
i],

i ∈ Ik, k = 1, . . . , n;
(p∗k − hj(x

∗
(k), y

∗
(k)))(yj − y∗j ) ≥ 0 ∀yj ∈ [α′′j , β

′′
j ],

j ∈ Jk, k = 1, . . . , n;
(ca(f

∗) + p∗k − p∗l )(fa − f ∗a ) ≥ 0 ∀fa ∈ [b′a, b
′′
a],

∀a = (k, l) ∈ A.

(28)
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The first two series of inequalities in (28) are equivalent to (18) and (19),
respectively. The proof is complete. 2

Observe that for any solution of problem (18)–(23) obtained from VI (24)–
(25) the auction clearing prices p∗k, k = 1, . . . , n are Lagrange multipliers for
the node balance constraints. At the same time, the reverse assertion is not
true in general, i.e. for any solution (18)–(23) the auction clearing prices p∗k
need not be the Lagrange multipliers.

Example 6.1 Consider the simplest model of two auction markets joined
by one costless two-directional link, i.e. c12 = 0. Each market involves one
seller and one buyer whose prices are fixed, i.e. I1 = {1}, J1 = {1}, I2 =
{2}, J2 = {2}; α′1 = α′′1 = α′2 = α′′2 = 0;
market 1: g1 = 2, h1 = 4, β′1 = 2, β′′1 = 1;
market 2: g2 = 1, h2 = 3, β′2 = 1, β′′2 = 3;
also, b′12 = −2, b′′12 = 2.
Then problem (11) has the following solution:
market 1: x∗1 = 2, y∗1 = 1;
market 2: x∗2 = 1, y∗2 = 2;
flow: f ∗12 = 1; prices: p∗1 = p∗2 = 3; see Figure 4.

In fact, g1 < p∗1, h1 > p∗1, g2 < p∗2, h2 ≥ p∗2, and p∗1 = p∗2; i.e. all
the optimality conditions hold true. At the same time we can choose the
following auction prices: p∗1 ∈ (2, 3)

⋃
(3, 4) and p∗2 = 3, which yield the same

optimal volumes, but these prices are not the Lagrange multipliers.

The sense of problem (24)–(25) is also clear: Find the feasible triplet
(x∗, y∗, f ∗) ∈ W such that it minimizes the total diseconomies in the system
for the corresponding offer/bid prices g = g(x∗, y∗) and h = h(x∗, y∗) and for
the corresponding shipment costs c = c(f ∗). Observe that we do not impose
any conditions on the functions g, h, and c, but it would be reasonable to
suppose that they are continuous and have non-negative values and that
the function c is symmetric, i.e. ca(f) = ca(−f). For instance if c ≡ 0,
then problem (24)–(25) reflects the maximization of pure auction markets
profit. We can derive existence and uniqueness results for the auction market
problem from the theory of VIs.

Proposition 5 Suppose that the set W is nonempty and bounded, and that
the mapping (x, y, f) 7→ (g(x, y), h(x, y), c(f)) is continuous. Then problem
(24)–(25) has a solution.
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Figure 4: Two auction markets
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In fact, (24)–(25) is a VI with continuous cost mapping and nonempty,
convex, and compact feasible set. Hence, the result then follows e.g. from
Theorem 11.3 in Konnov (2007b).

Recall that a mapping T is said to be
(i) monotone if for each u′, u′′ it holds that

〈T (u′)− T (u′′), u′ − u′′〉 ≥ 0;

(ii) strictly monotone if for each u′, u′′, u′ 6= u′′, it holds that

〈T (u′)− T (u′′), u′ − u′′〉 > 0.

Combining Proposition 5 with Proposition 1.14 in Konnov (2007b), we obtain
also the uniqueness result.

Proposition 6 Suppose that the set W is nonempty and bounded and that
the mapping (x, y, f) 7→ (g(x, y),−h(x, y), c(f)) is continuous and strictly
monotone. Then problem (24)–(25) has a unique solution.

7 Iterative solution methods for spatial auc-

tion market problems

Being based on the above results, we can propose various iterative solution
methods for problem (24)–(25), which are similar to those in Section 4. For
instance, the Frank-Wolfe or conditional gradient method, which represents
the sequential solution of auction problems for each commodity with the
corresponding sequence of fixed prices for arbitrary volumes. More precisely,
we can find components of the next iterate (xs+1, ys+1, f s+1) as solutions of
series of linear programming problems

minimize
n∑

k=1

[
∑
i∈Ik

gi(x
s
(k), y

s
(k))xi −

∑
j∈Jk

hj(x
s
(k), y

s
(k))yj

]

(x, y, f) +
∑
a∈A

ca(f
s)fa

∈ W

(cf. (9)). The implementation of this procedure is very simple, but it again
requires additionally the boundedness of the set W . Moreover, the conver-
gence of the “pure” Frank-Wolfe algorithm requires certainly integrability
assumptions.
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Next, the well-known projection method now consists in generating the
iteration sequence {(xs, ys, f s)} in conformity with the formula:
Find (xs+1, ys+1, f s+1) ∈ W such that

n∑
k=1

[
∑
i∈Ik

(gi(x
s
(k), y

s
(k)) + θ−1

s (xs+1
i − xs

i ))(xi − xs+1
i )

− ∑
j∈Jk

(hj(x
s
(k), y

s
(k))− θ−1

s (ys+1
j − ys

j ))(yj − ys+1
j )

]

+
∑
a∈A

(ca(f
s) + θ−1

s (f s+1
a − f s

a))(fa − f s+1
a ) ≥ 0

∀(x, y, f) ∈ W,

(29)

where θs > 0 is the stepsize parameter (cf. (8)). Again we see that (29) is a
convex quadratic programming subproblem, which has a unique solution if
the set W is nonempty, i.e. under very mild assumptions. The convergence
of the projection algorithm may also require strengthened monotonicity or
integrability assumptions. In order to obtain a convergent process under
more general assumptions, we can construct combined relaxation methods
including iterations of the above methods as in Section 4.

Note that one can find a solution to (29) by finite algorithms. At the same
time, the dual Uzawa type methods seem also very attractive for solving this
problem. In fact, we can solve (29) via solving the dual problem

maximize ϕs(p),

p ∈ Rn (30)

where
ϕs(p) = min

(x,y,f)∈X×Y×F
Ls(x, y, f, p), (31)

Ls(x, y, f, p) =
n∑

k=1

[∑
i∈Ik

(
gi(x

s
(k), y

s
(k)) + 0.5θ−1

s xi

)
xi

−
∑
j∈Jk

(
hj(x

s
(k), y

s
(k))− 0.5θ−1

s yj

)
yj

]
+

∑
a∈A

(
ca(f

s) + 0.5θ−1
s fa

)
fa

+
n∑

k=1

pk





 ∑

a∈A−k

fa −
∑

a∈A+
k

fa


−

(∑
i∈Ik

xi −
∑
j∈Jk

yj

)
 .

21



Clearly, the computation of the values of ϕs and its gradient can be made
componentwise, i.e. (31) is decomposed into a set of separable one-dimensional
problems each of them has the explicit solution formula. In order to solve
(30) we can apply a suitable conjugate gradient method.

The projection method (29) becomes very efficient if all the prices gi and
hj are fixed and ca ≡ 0, since it then coincides with the proximal point
method and possesses the finite termination property; see e.g. Rockafellar
(1976).

This combined proximal point and dual conjugate gradient method for
subproblems was implemented for solving several spatial auction problems
arising in electricity market systems and showed rather fast convergence to a
solution. The norm of violations of conditions (26), (27) was taken as error
evaluation and its accuracy 0.1 appeared sufficient for computation.

Example 7.1 Consider the model of five auction markets with fixed prices
joined by two-directional links in a tree. Each market involves one buyer.
The numbers of sellers are the following: market 1 – 108, market 2 – 63,
market 3 – 48, market 4 – 22, market 5 – 44; see Figure 5. The problem was
solved via the combined projection and dual conjugate gradient method in
72 iterations. In the picture, ∆ denotes the excess supply at the market, p
denotes the auction price at the market.

Example 7.2 Consider the model of nineteen auction markets with fixed
prices joined by two-directional links in a tree. These markets involve 7 buy-
ers and 106 sellers. The problem is depicted at Figure 6. It was solved via the
combined projection and dual conjugate gradient method in 280 iterations.
The solution is presented at Figure 7.
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Figure 5: Five auction markets

p = 93.836
∆ = 49

f12 = 49

[40000]

½¼

¾»
1

@
@

@
@

@@R
p = 93.847
∆ = −46

f24 = 46

[40000]½¼

¾»

½¼

¾»
4 2¾

£
£

£
££°

p = 93.835
∆ = 22

f23 = 25[25,−40000]

½¼

¾» ½¼

¾»

5

3³³³³³³³)p = 107.86
∆ = −323

p = 107.86
∆ = 298f35 = 323

[40000]

23



Figure 6: Nineteen auction markets: data
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Figure 7: Nineteen auction markets: solution

(∆, p)

±°
²¯
1

@
@

@
@

@@R

2480

(2480, 48)

±°
²¯
2

0
(0, 48)

±°
²¯
3

0

(0, 48)

±°
²¯
6

?

232

(232, 48)

±°
²¯
4 ¡

¡
¡

¡
¡

¡µ

310

(310, 0)

±°
²¯
5

6

310

(310, 0)

±°
²¯
7

6

600

(290, 44)

±°
²¯
8 -

4600

(978, 48)
±°
²¯
10 -

(−4584, 57)

±°
²¯
9

0

(0, 57)

±°
²¯
11

¡
¡

¡
¡

¡
¡

0

(0, 48)

±°
²¯
12

0

(0, 43)

±°
²¯
14

16

(−2216, 57)

±°
²¯
13

0
(0, 57)

±°
²¯
18

6

@
@

@
@

@@

2200

(320, 49)

±°
²¯
17

0

(0, 49)

±°
²¯
19

0

(0, 50)

±°
²¯
15

6

1880

(1880, 49)

±°
²¯
16

0

(0, 49)

25



References

[1] K.J. Arrow and F.H. Hahn (1971), General Competitive Analysis,
Holden Day, New York.

[2] V.F. Dem’yanov and A.M. Rubinov (1968), Approximate Methods for
Solving Extremum Problems. Leningrad University Press, Leningrade
(Engl. transl. in Elsevier Science B.V., Amsterdam, 1970).

[3] F. Facchinei and J.-S. Pang (2003), Finite-Dimensional Variational In-
equalities and Complementarity Problems, Springer-Verlag, Berlin (two
volumes).

[4] I.V. Konnov (1993), Combined relaxation methods for finding equilib-
rium points and solving related problems, Russian Mathematics (Iz.
VUZ), 37 (2), 44–51.

[5] I.V. Konnov (2001a), Combined Relaxation Methods for Variational In-
equalities, Springer-Verlag, Berlin.

[6] I.V. Konnov (2001b), The Lagrange multiplier technique for variational
inequalities, Comput. Maths. Math. Phys., 41, 1279–1291.

[7] I.V. Konnov (2002a), Dual approach to one class of mixed variational
inequalities, Comput. Maths. Math. Phys., 42, 1276–1288.

[8] I.V. Konnov (2002b), The method of multipliers for nonlinearly con-
strained variational inequalities, Optimization, 51, 907–926.

[9] I.V. Konnov (2003) A system of primal-dual variational inequalities un-
der monotonicity conditions, Comput. Maths. Math. Phys., 43, 1402–
1409.

[10] I.V. Konnov (2004) Dual approach for a class of implicit convex opti-
mization problems. Math. Meth. Oper. Res. 60: 87–99

[11] I.V. Konnov (2006a) Application of the proximal point method to a sys-
tem of extended primal-dual equilibrium problems, In: (ed.) Recent Ad-
vances in Optimization, Ed. by A. Seeger, Lecture Notes in Economics
and Mathematical Systems, Vol.563. Springer, New York, 87–102.

26



[12] I.V. Konnov (2006b), On modeling of auction type markets, Issled. In-
form., 10, 73–76 (in Russian).

[13] I.V. Konnov (2007a), Combined relaxation methods for generalized
monotone variational inequalities, In: Generalized Convexity and Re-
lated Topics, Ed. by I.V. Konnov, D.T. Luc, and A.M. Rubinov, Lec-
ture Notes in Economics and Mathematical Systems, Vol.583, Springer,
Berlin, Heidelberg, New York, 3–31.

[14] I.V. Konnov (2007b), Equilibrium Models and Variational Inequalities
(Mathematics in Science and Engineering, Vol.210, Elsevier, Amster-
dam.

[15] I.V. Konnov (2007c), On variational inequalities for auction market
problems, Optimization Letters, 1, 155–162.
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