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Abstract

We consider the application of the ABS procedure to the linear system arising

in the primal-dual interior point method where Newton method is used to compute

the path to the solution. When approaching the solution the linear system becomes

more and more ill conditioned. We show how the use of the Huang algorithm in the

ABS class can reduce the ill conditioning. Preliminary numerical experiments show

that the proposed approach can provide a residual in the computed solution up to

sixteen orders lower.
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1. Introduction

ABS algorithms have been introduced in 1984 by Abaffy, Broyden and Spedicato [1]

to solve determined or underdetermined linear systems and have been later extended

to linear least squares, nonlinear equations, optimization problems and integer (Dio-

phantine) equations and LP problems. The ABS literature consists presently of

over 400 papers, see Abaffy and Spedicato’s monograph [2] for a presentation of

such techniques as available at the beginning of 1989 and Spedicato et al [3] for a

review dealing with later results. The class of ABS methods unifies most of exist-

ing methods for solving linear systems and provides a variety of alternative ways of

implementing a specific algorithm. Extensive computational experience has shown

that ABS methods are implementable in a stable way, being often more accurate

than the corresponding traditional algorithms, and that on vector/parallel machines

they often perform faster, see for example Bodon [4,5].

The linear programming problem is one of the most important problems in op-

timization, both in the continuous and discrete form. The classical algorithm is the

simplex method, developed by Dantzig following a suggestion by Von Neumann,

which approaches the solution by moving over the vertices of the polytope defining
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the feasible region. This algorithm, while usually performing efficiently, may in the

worst case require an exponentially high cost, since all vertices have to be reached.

About a quarter of century ago a new class of methods, called the interior point

methods, has been developed where the iterates are generated along a path which

lies inside the boundary of the polytope, with possible computational advantages.

The problem has been widely investigated in close to five thousand papers. The

most efficient implementation appears to be the one based upon the primal-dual ap-

proach, leading to solving a sequence of structured nonlinear equations, containing

partly linear and partly nonlinear equations in a diagonal form. The linear system

to be solved at each iteration of Newton’s method has the form

AATx = b

where x ∈ Rn, b ∈ Rm, m < n, and the matrix A has the form

A = BD−1

where B is m by n and D is the diagonal matrix whose i− th element in approching

the solution tends either to zero or to infinity, resulting in a very ill conditioned

matrix A and an even more ill conditioned matrix AAT .

The system to be solved has the form of the normal equations of the second

type, which arise when one is looking for the unique solution of least Euclidean

norm of an underdetermined system. In the context of ABS methods such equation

can be solved in a way similar to that proposed for the normal equations of the

first kind, see [2], without the need of forming the product AAT , thereby reducing

the condition number essentially to the square root. Moreover the diagonal matrix

responsible for the ill conditioning can be removed to some extent from the matrix

to be applied to the right hand side. This will be discussed in the next section. The

last section presents preliminary results of the proposed approach, which show that

extremely better accuracy in the residual error can be obtained than by working on

the system in the original form.

For convenience of the reader, we recall the basic steps of the (unscaled) ABS

class for solving the linear system Ax = b, x ∈ Rn, b ∈ Rm, m ≤ n, A =

(a1, · · · , am)T .

(A) Set x1 ∈ Rn arbitrary, H1 ∈ Rn,n arbitrary nonsingular, i = 1.

(B) Compute the vector s1 = Hiai and the scalar τi = aT
i xi − bi. If si �= 0 go to (C),

the i−th equation is linearly independent from the previous equations. Otherwise if

τi �= 0 stop, the system has no solution, while if τi = 0 the i−th equation is removed,
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being a linear combination of the previous ones, so set xi+1 = xi, Hi+1 = Hi and go

to (F).

(C) Compute the search direction pi = HT
i zi, zi ∈ Rn arbitrary save that zT

i Hiai �=
0.

(D) Update the estimate of the solution by xi+1 = xi − αipi, with αi = (ai
T xi −

bi)/a
T
i pi.

(E) Update the (Abaffian) matrix Hi by Hi+1 = Hi − Hiaiw
T
i Hi/w

T
i Hiai, where

wi ∈ Rn is arbitrary save that wT
i Hiai �= 0.

(F) Stop if i = m, xm+1 solves the system, otherwise increment i by one and go to

(B).

In the above class (that can be generalized to the scaled ABS class by introducing

an extra parameter, obtaining a complete realization of any Krylov-type process

computing the solution in no more than m steps) algorithms are defined by specific

choices of the parameters I, zi, wi. For the present problem we use the so called

Huang or implicit Gram-Schmidt algorithm, defined by the choices

H1 = I, zi = wi = ai

where we denote by ai the i − th row of A. This algorithm has the remarkable

property that it determines the unique solution of least Euclidean norm of an un-

derdetermined system, if it is started with an arbitrary vector x1 proportional to

a1, usually the zero vector. The solution is moreover approached, if x1 = 0, mono-

tonically from below. Additionally, the search directions pi are orthogonal among

themselves. The algorithm’s stability can be improved in several ways, usually one

does a reprojection on the search direction, i.e.

pi = Hi(Hiai)

and one defines the update e.g. as

Hi+1 = Hi − pip
T
i /pT

i pi

The above modification of the Huang algorithm is called the modified Huang

algorithm.

For the use of the ABS algorithm in the normal equation of the second type

step (B) plays an important role, since it allows the elimination of the redundant

equations and in practice often the equations that are almost linearly dependent.
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Notice that the norms of si, τi in practice are not tested against zero, due to the

effects of roundoff, but against some positive small ε. The best determination of ε is

still an open problem, but in practice we have found in all our extensive testing of

ABS algorithm that ε can be taken rather safely as the product of the zero machine

by the norm of the tested quantity.

2. ABS solution of the normal equations of the second kind

It is immediate to see that the normal equations of the second kind are equivalent

to the following extended system, where only A appears

AT x = y

Ay = b

The first of the above equations is an overdetermined linear system that must

be solvable. Hence y must lie in the column space of the coefficient matrix AT , i.e.

in the row space of the matrix of the second system, which is an underdetermined

system. Now an underdetermined system has one and only one solution in the

row space, which is the solution of smallest Euclidean norm. Such a solution is

computed by the Huang algorithm started with the zero vector. Therefore we are

led to the following procedure, apparently never considered before, for solving the

given normal equations of the second kind.

AA - Solve by Huang algorithm, started with the zero vector, system Ay = b

BB - Solve by any ABS algorithm the overdetermined system ATx = y, where

the n − m linearly dependent equations are identified and removed at step (B).

By the above procedure we deal with systems having only matrix A, not the

”squared” matrix AAT , which reduces the condition number number. We also notice

that if A is not full rank, then the Huang algorithm will still compute the solution

of Ay = b of smallest Euclidean norm, while use of the Huang algorithm in the

overdetermined system, which is in such a case compatible but with infinite solutions,

would compute the solution of smallest Euclidean norm. With such a solution

Newton method would be well defined and convergent under mild conditions. Not

many years ago exactly this property of Huang algorithm allowed us to eliminate

occasional nonconvergence of Newton method used to solve the equations arising in

the simulation of a large plant system defined by algebraic and differential equations.

Our contractor, ENEL, was able to solve the stabilized code to its French counterpart
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for a substantial amount.

Now we pay more attention to the case arising in the primal-dual interior point

method, where A has the form A = BD−1. The extended system is written now as

D−1BT x = y

BD−1y = b

In the primal-dual method the matrix B is fixed, D changes at every iteration.

Since D−1 scales the columns of the underdetermined system, the solution will re-

quire different search vectors at every Newton iteration. Once y is computed, we

notice that the overdetermined system can be written in the form

BTx = Dy

Since the coefficient matrix B is unchanged in the course of Newton’s iterations,

hence the following can be done only once at the first iteration:

AAA - computation of the search vectors

BBB - identification of the redundant equations, which are exactly those equa-

tions associated with dependent rows in BT , since A and B have exactly the same

set of dependent/independent equations. Therefore only the diagonal components

of D associated with the selected independent rows of B are used in the computation

of the solution (all of them enter in the underdetermined system)

Hence it is enough to determine independent equations and the associated search

vectors (which do not depend on D) only at the first Newton iteration. This ap-

proach in other term is equivalent to essentially deal with the linear part of the

primal-dual equations only once at the beginning. The number of operations to

solve the overdetermined system after the first step is order(m2). The number of

operations to solve the underdetermined system by Huang algorithm is order (mn2).

These estimates can be certainly reduced when A is sparse, albeit a full study of

the best implementation of a sparse Huang algorithm (possibly via the vector-wise

formulation that applies to all ABS algorithms) is yet to be presented.

3. Some numerical experiments

Here we present a few numerical experiments obtained on two types of matrices:

1 - the ill conditioned Micchelli matrix where Ai,j is the difference i−j in absolute

value. Such a matrix is symmetric nonsingular with condition number growing fast

with the dimension. It appears in radial basis function approximation.
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2 - a well conditioned Householder matrix with truncated last rows and post-

multiplied by diagonal matrix with elements tending alternatively to zero and in-

finity. This was done by multiplication by the diagonal matrix whose elements had

the form alternatively 10k, 10−k, for k = 1, 2, 3, 4, 5,. The values taken for n were

n = 10, 100, 200, for m were m = 2, n/4, n/2, 3n/4, n−2. The right hand side of the

original equation was computed assigning equal to one all components of x. Notice

that this nominal solution is the one computed by the algorithm in exact arithmetic

only for full rank problems; for rank deficient problems, or problems with deficient

numerical rank as determined in step (B) of the ABS algorithm, the Huang algo-

rithm would determine the solution of smallest Euclidean norm, generally different

from the nominal solution. The proposed algorithm via the extended system and

use of the modified Huang algorithm is compared in the following experiments with

the results of applying the modified Huang algorithm directly on the original system

AATx = b.

Now we give some results obtained in double precision, where E1, E2 are the error

in the solution respectively by using the original system and the extended system

and R1, R2 are similarly the residual errors, both computed in the Euclidean norm.

For more results see Bonomi, [6].

Table 1

Results with the Micchelli matrix

m = 2 n = 200 E1 = 4.7E − 12 E2 = 6.8E − 11 R1 = 0 R2 = 5E − 13
m = n/4 n = 200 E1 = 2.3E − 7 E2 = 7.9E − 7 R1 = 1.7E − 7 R2 =4E-11
m = n/2 n = 200 E1 = 5.7E − 7 E2 = 1.5E − 6 R1 = 4.8E − 7 R2 =6.2E-11
m = 3n/4 n = 200 E1 = 8.9E − 7 E1.6 = E − 7 R1 = 7.7E − 7 R2 =1.4E-10
m = n − 2 n = 200 E1 = 1.9E − 6 E2 = 2.1E − 6 R1 = 1.3E − 6 R2 =1E-10
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Table 2

Results with the Householder matrix, scaled by diagonal matrix with ε = 10−1

m = 2 n = 200 E1 = 0 E2 = 1E − 15 R1 = 0 R2 = 3E − 15
m = n/4 n = 200 E1 = 2.3E − 13 E2 = 5.7E − 13 R1 = 2.3E − 13 R2 =2E-14
m = n/2 n = 200 E1 = 4.2E − 12 E2 = 50E − 12 R1 = 4.8E − 13 R2 =5.3E-14
m = 3n/4 n = 200 E1 = 8.9E − 12 E1.6E − 11 R1 = 3.7E − 13 R2 =4.2E-14
m = n − 2 n = 200 E1 = 4.7E − 11 E2 = 5.4E − 11 R1 = 9.5E − 13 R2 =1E-13

Table 3

Results with the Householder matrix, scaled by diagonal matrix with ε = 10−5

m = 2 n = 200 E1 = 2E − 16 E2 = 2E − 15 R1 = 1.8E − 12 R2 = 1.4E − 11
m = n/4 n = 200 E1 = 2.4 rankdef R1 = 2.1E − 5 R2 =8E-9
m = n/2 n = 200 E1 = 6.3 rankdef R1 = 4.7E + 10 R2 =2E-6
m = 3n/4 n = 200 E1 = 9 rankdef R1 = 5.1E + 10 R2 =6.7E-4
m = n − 2 n = 200 E1 = 10 rankdef R1 = 3.8E + 10 R2 =6E-5

From an inspection of the above Tables we can take the following preliminary

considerations:

A - On the Micchelli matrix we see little difference in the solution error, while

the algorithm using the extended system is up to four orders better in the residual

error

B - There is a clear difference in performance between the two algorithms when

we consider the ill conditioned matrix obtained by scaling the Householder matrix.

The algorithm based on the extended system is up to 16 orders better in the residual

error, while no comparison can be made in the solution error since the matrices turn

out to be numerically rank deficient. There is little difference when the matrix,

scaled by ε = 1/10, is still well conditioned.

C - The accuracy obtained by solving the extended system tends to increase with

m approaching n.

Further experiments are planned on several types of matrices, providing also

estimates of the condition number and of the running time, that are not given in

this case.
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