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Abstract. The paper deals with a new stochastic optimization model, named OMoGaS-
SV (Optimization Modelling for Gas Seller-Stochastic Version), to assist companies
dealing with gas retail commercialization. Stochasticity is due to the dependence of
consumptions on temperature uncertainty. Two different models for modelling temper-
ature scenarios are compared. Due to nonlinearities present in the objective function,
the model can be classified as an NLP mixed integer model, with the profit function
depending on the number of contracts with the final consumers, the typology of such
consumers and the cost supported to meet the final demand. Constraints related to a
maximum daily gas consumption, to yearly maximum and minimum consumption in
order to avoid penalties and to consumption profiles are included. The results obtained
by the stochastic version give clear indication of the amount of losses that may appear
in the gas seller’s budget.

Key Words. Gas sale company, tariff components, mean reverting process, stochastic
programming.

1 Introduction

Starting in 1999 the Italian Natural Gas market has been undergoing a liberalization
process aiming at promoting competition and efficiency, while ensuring adequate ser-
vice quality standards. Timings and methods for the internal gas market liberalization
have been introduced following the European Gas Directive; the roles of different seg-
ments of the natural gas “chain ” have been identified and defined, such as import,
production, export, transportation and dispatching, storage, distribution and sale. In
particular, the principle has been introduced of unbundling among supply and trans-
port/storage and among distribution and selling. Before liberalization there was a
national monopolistic operator, for all activities related to supply, transport, storage
and wholesale commercialization, and local monopolistic operators, for distributing
and selling to final consumers. After liberalization the following operators run differ-
ent activities:
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• shippers: production/import, re-gasification and wholesale commercialization;

• national distributor: transport on national network and storage;

• local distributors: transport on local network;

• selling companies: purchase gas from shippers and sell to final consumers.

In 2003 the Italian Regulatory Authority for Electricity and Gas, see [9], defined con-
sumption classes, on the basis of gas consumption in the thermal year, and introduced
a new gas tariff, in order to guarantee small consumers’ protection by applying the
transparency principle in the pricing mechanism. The new tariff is based on a detailed
splitting in different components, whose values are periodically revised, and represents
a maximum price to be applied to small consumers.

In a previous paper, see Allevi et al., (2006) [2], a deterministic optimization model
has been developed to assist companies dealing with retail commercialization. For each
citygate, the gas seller has to decide the customer portfolio, i.e. the number of final
customers to supply in each consumption class, and the sell prices to apply to each
consumption class. Indeed, different customer portfolios determine different citygate
consumption patterns, which shippers refer to when setting the gas price to be paid by
the gas seller for the citygate supply. For each thermal year and each citygate there is
a contract between shipper and gas seller setting:

• the gas volume required by gas seller for next thermal year;

• the gas volume required in particular in winter months;

• the maximum daily consumption (capacity) requested by gas seller;

• the purchase price fixed by the shipper.

In the contract it is also specified how to compute penalties, due by gas seller if daily
consumption exceeds daily capacity.

In this paper we introduce stochasticity in the model due to the influence of tem-
perature on consumptions. For domestic customers, using gas either only for cooking
or for cooking and heating, and for commercial activities and small industries, gas
consumption in winter months strongly depends on the weather conditions: this fact
is taken into account in the model, by including a mean reverting process modeling
temperature, which gas consumption depends on. This model is presented in section
2. In section 3 the stochastic model, named OMoGaS-SV, is presented and in section
4 numerical results related to a case study are reported and discussed.

2 The stochastic temperature model

In this section we introduce a stochastic model describing the temperature variations
along the months in a year time. We start with some definitions about temperature:
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Definition 1 Given a weather station, let Tmax
µ and Tmin

µ denote the maximum and
the minimum temperatures (in Celsius degrees) measured in day µ, respectively. We
define the mean temperature of day µ as

Tµ =
Tmax

µ + Tmin
µ

2
. (1)

Definition 2 Let Tµ denote the mean temperature of day µ. We define Heating De-

gree Days (HDDµ: measure of cold in winter) and Cooling Degree Days (CDDµ:
measure of heat in summer) respectively as

HDDµ = max {18 − Tµ, 0} , (2)

CDDµ = max {Tµ − 18, 0} . (3)

For a given day HDD and CDD are the numbers of degrees of deviation from a reference
temperature level in Bergamo (18◦ C). The name “heating degree days” refers to the
fact that if temperature is below 18◦ C people tend to use more energy to heat their
homes; the name “cooling degree days” refers to the fact that if temperature is above
18◦ people start turning their air conditioners on. Typically the HDD season is from
November to March, whereas the CDD season is from May to September. April and
October are often referred to as “shoulder months”.

We have a database of temperatures measured in Bergamo in the last 12 years
(1/01/1994-30/11/2005). The database consists of daily minimum and maximum tem-
peratures, from which average daily temperatures are computed using (1). Due to the
cyclical nature of the temperature process we find that historical data give a reason-
able idea of the temperature level in the future. In Figure 1 we have plotted the daily
mean temperatures at Bergamo for the 12 years; from the picture is clear that the
temperature process should be a mean reverting process, reverting to some cyclical
function.

The histogram of the daily temperature differences in Bergamo (1994 − 2005) is
given by Figure 2. Clearly, the daily differences approximate a normal distribution.
Hence, the temperature process can be modelled as a Brownian Motion.

In order to model the temperature behavior, we first consider a Vasicek process
with mean reversion through the following stochastic differential equation:

dTt = a (ϑ− Tt) dt+ σdWt , (4)

where Tt is the process to be modelled, a ∈ R is the speed of mean reversion, ϑ the mean
to which the process reverts to (constant), σ the volatility of the process (constant)
and Wt is the Wiener process.
For the temperature process we need a ϑ = ϑ (t) = ϑt computed according to (8),
a = a (i) = ai and σ = σ (i) = σi as functions changing over the months but constant
in each month i.
Then our process becomes

dTt = ai (ϑt − Tt) dt+ σidWt . (5)
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Figure 1: Daily mean temperatures at Bergamo during 1994-2005.
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Figure 2: Daily temperature difference at Bergamo during 1994 − 2005.
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Thus, we need to determine a functional form for ϑt and estimates for ai and σi from
historical data. In Dornier and Queruel, (2000) [10], it is shown that the process found
in (5) is not reverting to ϑt; to obtain a process that really reverts to the mean we have
to add the term ϑ

′

t to the drift term in (5) so that the equation becomes

dTt =

[

ai (ϑt − Tt) +
dϑt

dt

]

dt+ σidWt . (6)

The proof of reversion to the mean can be found in Appendix.

2.1 The mean temperature ϑt

By observing the plot of the temperature data measured in Bergamo in the last 12
years, see Figure 1, we note a strong seasonal variation, which can be modelled by the
function

sin (ωt+ ϕ) , (7)

where t is the time measured in days, ω = 2π/365 is the period of oscillation and
ϕ is a phase angle due to the fact that the yearly minimum and maximum mean
temperatures do not necessarily occur at January 1 and July 1 respectively. Moreover,
the mean temperature actually increases each year (the positive trend in the data is
weak but it does exist): therefore we assume a linear warming trend. A deterministic
model ϑt for the mean temperature at time t, is assumed to be given by

ϑt = A+Bt+ C sin (ωt+ ϕ) , (8)

or equivalently by

ϑt = A+Bt+ C [cos (ϕ) sin (ωt) + sin (ϕ) cos (ωt)] , (9)

where we estimate the unknown parameters A, B, C, ω and ϕ so that the curve given
by (9) fits the data.
In order to estimate the parameters in (9), a change of variables is operated and the
constants are renamed as follows















A = a1

B = a2

C cos (ϕ) = a3

C sin (ϕ) = a4

(10)

or equivalently



















A = a1

B = a2

C =
√

a2
3 + a2

4

ϕ = arctan
(

a4

a3

)

− π

(11)
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Figure 3: Comparison between measured temperatures and estimated mean ϑ (t) at
Bergamo in the years 1994 − 2005.

and we obtain
ϑt = a1 + a2t+ a3 sin (ωt) + a4 cos (ωt) . (12)

The numerical values of the parameters in (12) are computed by the least squares
method, i.e. the parameter vector ξ = (a1, a2, a3, a4) is computed that solves

minξ ‖ϑ− X‖2 , (13)

where ϑ is the vector whose elements are given by (12) and X is the data vector. By
using the series of 4323 observations of the historical daily temperatures we get















A = 13.33
B = 6.8891 · 10−5

C = 10.366
ϕ = −1.7302

(14)

In Figure 3 we can see a comparison between the observed temperatures and those
estimated by using the deterministic approach given by ϑt in the years 1994 − 2005.
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2.2 Estimation of σi

For the estimation of the volatility σi we follow the same approach as in Alaton et al.,
(2002) [1], where the quadratic variation σ2

i of temperature is assumed to be different
along the months in the year, but nearly constant within each month. As only the
temperature mean value in each month is needed, it is not necessary to use a more
elaborate model. For this reason σi is assumed to be a piece-wise constant function,
with a constant value during each month. One possibility is to use an estimator based
on the quadratic variation of Tt (see Basawa and Prasaka Rao, (1980) [4])

σ̂2
i =

1

Ni

Ni−1
∑

t=0

(Tt+1 − Tt)
2 , (15)

where Ni denotes the number of days of month i and t = 0 refers to the last day of the
previous month.
Another estimator is derived by discretizing (6) and using the discretized equation as
a regression equation. During a given month i, the discretized equation is

Tt = ϑt − ϑt−1 + aiϑt−1 + (1 − ai)Tt−1 + σiǫt−1 t = 1 . . . Ni , (16)

where {ǫt}
Ni−1

t=1
are independent standard normally distributed random variables. Thus

an efficient estimator of σi is (see Brockwell and Davis, (1990) [6]),

σ̂2
i =

1

Ni−2

Ni
∑

t=1

(Tt − (ϑt − ϑt−1) − âiϑt−1 − (1 − âi)Tt−1)
2 , (17)

where âi is estimated in the following section. In Table 1 for each month i the estimator
of σi based on the quadratic variation, the one based on the regression approach and
their mean value are reported.

2.3 Estimation of Speed of reversion

According to Bibby and Sorensen, (1995) [5], based on observations collected during
Ni days of month i, an efficient estimator âi of ai is the zero of the martingale function
given by

G (ai) =

Ni
∑

t=1

ḃ (Tt−1; ai)

σ2
i,t−1

{Tt − E [Tt|Tt−1]} , (18)

where ḃ (Tt−1; ai) denotes the derivative with respect to ai of the drift term

b (Tt, ai) =
dϑt

dt
+ ai (ϑt − Tt) . (19)

In order to obtain the solution of (18), we have to determine each of the terms
E [Tt|Tt−1]; thus, if we take again the process developed in (6) for a given month i
and integrate between day (t− 1) and day t in month i, we find

Tt = ϑt + e−ai (Tt−1 − ϑt−1) + e−ait

∫ t

t−1

σse
aisdWs , (20)
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Month Estimator 1 Estimator 2 Mean Value

January 1.6508 1.6196 1.6352
February 1.5415 1.5515 1.5465
March 1.7455 1.7209 1.7332
April 1.8480 1.8305 1.8393
May 1.8142 1.8013 1.8078
June 1.9871 1.9765 1.9818
July 1.7605 1.7298 1.7452

August 1.6305 1.6402 1.6354
September 1.4805 1.4674 1.4739
October 1.3831 1.3905 1.3868

November 1.5062 1.4933 1.4998
December 1.4912 1.4899 1.4906

Table 1: The estimators of σi based on the quadratic variation and the regression
approach and their mean value.

which yields
E [Tt|Tt−1] = e−ai (Tt−1 − ϑt−1) + ϑt , (21)

because the expected value of an Itô integral is zero.
By substituting (21) in (18) we find

Gn (ai) =
n
∑

t=1

ḃ (Tt−1; ai)

σ2
t−1

[

Tt − ϑt − e−ai (Tt−1 − ϑt−1)
]

, (22)

from which we obtain

âi = − log





∑n

t=1

ϑt−1−Tt−1

σ2

t−1

(Tt − ϑt)
∑n

t=1

ϑt−1−Tt−1

σ2

t−1

(Tt−1 − ϑt−1)



 . (23)

Inserting the data of temperatures and the estimator σ̂ given by (15), we find the
estimator âi. In Table 2 the values of the estimator âi in the twelve months are
reported.

2.4 Generation of temperature scenarios

In this section we consider the problem of generating temperature scenarios. Using
Euler approximation scheme, we discretize equation (6) obtaining

Tt = ϑt − ϑt−1 + aiϑt−1 + (1 − ai)Tt−1 + σiǫt−1 , (24)

where {ǫt}
364

t=1
are independent standard normally distributed random variables. Figure

4 shows both the evolution of a simulated trajectory of the estimated temperature and
its mean ϑt, while Figure 5 gives the evolution of 10 scenarios of temperatures.

The following notation is used:
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Month Estimator âi

January 0.2707
February 0.2055
March 0.2017
April 0.1755
May 0.3079
June 0.2364
July 0.3051

August 0.2559
September 0.2666
October 0.1594

November 0.183
December 0.1969

Table 2: The estimator âi based on the formula 23.
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Figure 4: Simulation of sample paths of temperature and the mean estimated by Monte
Carlo method.
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Figure 5: 10 scenarios of temperature estimated by Monte Carlo simulation.

• Ts ∈ R
365 is the vector of random variables along scenario s, s = 1, . . . , N which

we have obtained using a mean reverting process; the component T s
t represents

the daily average heating degree days for day t, t = 1, . . . 365 along scenario s;

• Due to the fact that the consumption data are monthly data, we generate monthly
temperature scenarios from the vector Ts by averaging. Tms represents the
monthly temperature scenario s, whose component Tms

i represents the monthly
heating degree days for month i, i = 1, . . . 12 along scenario s.

• T̄mi =

∑N

s=1
Tms

i

N
for i = 1, . . . , 12, is the expected value over all scenarios of

the random variable Tms
i ;

• ∆s ∈ R
12 is the vector of distances of monthly heating degree days from its

expected value along scenario s, s = 1, . . . , N , i.e. ∆s
i := Tms

i − T̄mi i =
1, . . . , 12, s = 1, . . . , N.

• ps is the probability related to each scenario s, s = 1, . . . , N ; we assume equal

probability, i.e. ps =
1

N
, s = 1, . . . , N ;
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3 The stochastic OMoGaS-SV model

In the literature (see Brooks, (1981) [7], Eydeland and Wolyniec, (2003) [11], Ermoliev
and Wets, (1988) [12] and Ruszczynski and Shapiro, (2003) [13]) stochastic approaches
in the gas market deal mainly with the scheduling of development of gas fields, the use
of gas storage and the gas delivery problem.

The stochastic version of our model, which can be classified as a two-stage stochas-
tic program with recourse, uses the temperature ∆ as source of uncertainty. The
consumptions of the first six classes of consumers are considered as dependent on tem-
perature variations along the months.

The following notations are used:

• I = {i = 1, . . . , 12} is the set of month indices, with i = 1 corresponding to July
and i = 12 corresponding to the following June;

• J = {j = 1, . . . , 10} is the set of consumer class indices;

• Ψ = {ψ = 1, . . . , 17} is the set of energetic indices formulas;

• S = {s = 1, . . . , N} is the set of scenario indices;

• csij is the consumption of consumer j, j = 1, . . . , 6, in month i ∈ I along scenario
s ∈ S

csij = C̄ij + Cij∆
s
i , j = 1, . . . , 6, i ∈ I, s ∈ S , (25)

where C̄ij is the average consumption of consumer j in month i ∈ I; for j =
7, . . . , 10 the consumption does not depend on temperature and therefore

cij = C̄ij, j = 7, . . . , 10, i ∈ I ; (26)

• vas
j is the annual volume of gas for consumer j, j = 1, . . . , 6, along scenario s ∈ S

vas
j =

12
∑

i=1

csij, j = 1, . . . , 6, s ∈ S , (27)

for j = 7, . . . , 10 the annual volume of gas is

vaj =
12
∑

i=1

C̄ij, j = 7, . . . , 10 ; (28)

• vws
j is the winter volume of gas for consumer j, j = 1, . . . , 6, along scenario s ∈ S

vws
j =

9
∑

i=5

csij, j = 1, . . . , 6, s ∈ S , (29)
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for j = 7, . . . , 10 the winter volume of gas is

vwj =
9
∑

i=5

C̄ij, j = 7, . . . , 10 ; (30)

• rs
j is the ratio of winter gas consumption with respect to the total annual con-

sumption of consumer j, j = 1, . . . , 6, along scenario s ∈ S

rs
j =

vws
j

vas
j

, j = 1, . . . , 6, s ∈ S , (31)

for j = 7, . . . , 10 the ratio of winter gas consumption with respect to the total
annual consumption is

rj =
vwj

vaj

, j = 7, . . . , 10 ; (32)

• cds
ij is the peak consumption per day of customer j ∈ J in month i ∈ I for s ∈ S

cds
ij = csij

γ

ti
, j ∈ J, i ∈ I, s ∈ S , (33)

where ti is the number of days of the month i ∈ I and γ is a parameter given by
the Authority;

• ncj are the first stage decision variables representing the number of consumers
of class j ∈ J , restricted to be nonnegative integers, subject to upper bounds,
ncj ,

0 ≤ ncj ≤ ncj, j ∈ J ; (34)

• cms
i is the citygate consumption of month i ∈ I along scenario s ∈ S

cms
i =

6
∑

j=1

csij · ncj +
10
∑

j=7

cij · ncj, i ∈ I, s ∈ S ; (35)

• cas is the gas volume to be purchased for supplying the citygate consumers along
scenario s ∈ S

cas =
12
∑

i=1

cms
i , s ∈ S ; (36)

• xs is the citygate loading factor along scenario s ∈ S and g is the first stage

decision variable representing the maximum consumption per day above which
the gas seller has to pay a penalty

xs =
cas

365 · g
, s ∈ S ; (37)
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• lj is the loading factor of consumer class j, j = 7, . . . , 10;

• s+ s
ki , k = 0, 1, 2 are second stage decision variables along scenario s ∈ S

that represent the surplus of consumption in the peak day of winter month i
(i = 5, . . . , 9) with respect to gas availability given by the decision variable g.
These variables are used in computing the penalties by

∑9

i=5

∑2

k=1
µkis

+ s
ki where

µki is the unitary penalty in month i to be paid on the amount s+ s
ki . The unitary

penalty µ0i is zero and the surplus variables s+ s
ki must satisfy the relations

0 ≤ s+s

0i ≤ π0i · g , i = 5, . . . , 9, s ∈ S, (38)

π0i · g ≤ s+s

1i ≤ π1i · g , i = 5, . . . , 9, s ∈ S, (39)

π2i · g ≤ s+s

2i , i = 5, . . . , 9, s ∈ S, (40)

where πki represents the width of penalizations classes k = 0, 1 (no upper bound
for class k = 2);

• cws is the citygate consumption in winter months along scenario s ∈ S

cws =
9
∑

i=5

cms
i , s ∈ S ; (41)

• hs is the ratio of winter gas consumption with respect to total annual consumption
along scenario s ∈ S

hs =
cws

cas
, s ∈ S ; (42)

• P s is the purchase price to be paid by the gas seller to the shipper along scenario
s ∈ S: it is expressed as a linear function of xs, and is defined as

P s = QT +QS + q +m · xs, s ∈ S ; (43)

where q is the intercept and m is the slope; QT and QS are fixed by the Italian
Regulatory Authority;

• P
′

j is the price to be paid by the first 6 classes of consumers and is defined as

P
′

j = (CMP +QVD) · (1 − αj) , (44)

where the values of CMP and QVD are fixed by the Italian Regulatory Au-
thority and cover raw material costs (production, importation and transport)
and retail commercialization costs respectively; αj is a parameter representing
possible discount fixed by the gas seller to be applied to consumer j;
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• P
′′ s

j is the price applied by the gas seller to consumer class j, j = 7, . . . , 10 along
scenario s ∈ S

P
′′ s

j = P s − βj · (1 −
xs

lj
) + δj · (rj − hs) + λj . (45)

where βj and δj are constant values and λj is a possible recharge which can be
applied to the industrial consumer class j;

We choose as objective function the expected value of the gas seller profit:

w = E[
6
∑

j=1

(P
′

j · va
s
j · ncj) +

10
∑

j=7

(P
′′ s

j · vaj · ncj)+

−P s · cas −

9
∑

i=5

2
∑

k=1

µkis
+ s
ki ] . (46)

Notice that

• the expected value of revenues from the first six consumer classes is

E[
6
∑

j=1

(P
′

j · va
s
j · ncj) =

6
∑

j=1

(P
′

j ·
12
∑

i=1

C̄ij · ncj) ; (47)

• the expected value of revenues from the last four consumer classes is

E[
10
∑

j=7

(P
′′ s

j · vaj · ncj)] =
10
∑

j=7

(ncjE[P
′′ s

j ] ·
12
∑

i=1

cij) , (48)

being the industrial consumptions independent of temperature. Notice that

E
(

P
′′ s

j

)

= E (P s) − βj ·

(

1 − E

(

xs

lj

))

+ δj · (rj − E (hs)) + λj = (49)

= QT +QS + q − βj + δjrj + λj +

(

m+
βj

lj

) N
∑

s=1

xsps − δj

N
∑

s=1

hsps .

• the expected value of the costs is

E [P s · cas] (QT +QS + q)
12
∑

i=1

E [cms
i ] +

14



+
m

365 · g















E

[

12
∑

i=1

(cms
i )

2

]

+ 2E















12
∑

i,k=1

k>i

(cms
i ) (cms

k)





























, (50)

where

E
[

(cms
i )

2
]

=
N
∑

s=1

(cms
i )

2 ps ,

and

E















12
∑

i,k=1

k>i

(cms
i ) (cms

k)















=
N
∑

s=1















12
∑

i,k=1

k>i

(cms
i ) (cms

k)















ps ;

• the expected value of the penalties is

E

[

9
∑

i=5

2
∑

k=1

µkis
+ s
ki

]

=
N
∑

s=1

(

9
∑

i=5

2
∑

k=0

µkis
+ s
ki

)

ps . (51)

The constraints of our stochastic problem are the following:

0 ≤ ncj ≤ ncj , j ∈ J , (52)

6
∑

j=1

cds
ij · ncj +

10
∑

j=7

cdij · ncj − g ≤

2
∑

k=0

s+s

ki , i = 5, . . . , 9, s ∈ S , (53)

0 ≤ s+s

0i ≤ π0i · g , i = 5, . . . , 9, s ∈ S , (54)

π0i · g ≤ s+s

1i ≤ π1i · g , i = 5, . . . , 9, s ∈ S , (55)

π2i · g ≤ s+s

2i , i = 5, . . . , 9, s ∈ S , (56)

Notice that the problem may also be formulated as a 2-stage stochastic model with
recourse as follow:

max Eξ [f (x, y(∆))] , (57)

Ax = b , (58)

T (∆)x+Wy(∆) = h(∆) , (59)

x ≥ 0, y(∆) ≥ 0 , (60)

where ξ = (h (∆) , T (∆)) is a random vector influenced by random temperature data.
In our problem the first stage decision variables x involves:
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• the number of customers ncj of class j ∈ J ;

• the daily capacity g above which the gas seller has to pay a penalty;

whereas the second stage decision variable y(∆) involves the surplus in consumption
in the peak day s+s

ki in winter month i. Furthermore the first stage constraint (58) is
represented by equation (52) and the second stage constraint (59) by equations (53),
(54), (55) and (56).

4 Results and model validations

In this section, we show the results of our stochastic model for a local gas seller
who has to decide the customer portfolio structure in a village in Northern Italy (Sotto
il Monte). The simulation is based on the data of thermal year 2004-2005 (for these
data see Allevi et al., (2005) [3]). We have developed a simulation framework based on
ACCESS 97, for database management, on MATLAB release 12, for data visualization,
and on GAMS release 21.5, for optimization. In the GAMS framework the DICOPT
solver has been used for the nonlinear mixed integer optimization problem. DICOPT
solves a series of NLP subproblems by CONOPT2 and MIP subproblems by CPLEX.
The relation between the purchase price P s and xs is estimated by the gas seller through
a linear regression using the data related to year 2004-2005 for all citygates managed
by the gas seller. The regression of P s values has also been tried on the annual volume
cas, hs and g but it has been found not significant. Indeed, the value of R2-test (see
e.g. Davidson, (2000) [8]) with the regression on xs is 0.603, therefore not highly
significant. However, the introduction of non parametric regression, would introduce
a more complicated function in the model. On the other side, linear regression is
currently used by the gas seller in their simulations. In our case we use:

P s(xs) = QT +QS + 18.348 − 3.866 · xs , (61)

where the intercept value 18.348 and the slope value −3.866; the values QT and QS
are given by the Italian Regulatory Authority: in our numerical experiments QT =
2.4953171 Eurocent/Stm3 and QS = 0.63882 Eurocent/Stm3.

The relation between the consumption of consumer j, j = 1, . . . , 6, in month i ∈ I
along scenario s ∈ S, csij and the deviation from mean value over scenarios, ∆s

i , is
supposed to be linear with intercept equal to C̄ij and the other coefficient computed
via a linear regression. The regression results to be significative for all the consumers.

The model has been validated by running several tests both in the deterministic (see
Allevi et al., (2006) [2]) and in the stochastic case. The deterministic results are
reported in Table 3. For the stochastic model, we report the result obtained by solving
10000 times the problem, each time with N = 50 scenarios randomly chosen with the
procedure described in Section 2.4. The optimal values both in the function and in the
decision variables are stable. We report in Table 4 their average over 10000 trials.
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Profit 154265 Euro
P 19.67 Eurocent/Stm3

ca 4484406 Stm3

g 26399 Stm3

x 0.4654

Table 3: Optimal values for citygate Sotto il Monte in the deterministic case.

Profit 152219 Euro
P 19.67 Eurocent/Stm3

ca 4484525 Stm3

g 26309 Stm3

x 0.4669

Table 4: Average optimal values over 10000 simulations for citygate Sotto il Monte in
the stochastic case with N = 50.

While in the deterministic case, the consumption surplus in January and February is
under 10% and therefore no penalization has to be paid, in the stochastic case a nonzero
penalization is applied in scenarios with high variance in consumptions. In fact the
stochastic approach gives indications to the gas seller that in scenarios with colder
temperatures he could face the possibility of a reduced profit due to penalties. This
solution, though, allows gas seller to have the same purchase price of the deterministic
case and therefore the same selling price for the industrial customer; this means that
that industrial consumer is still very important and worthwhile to belong to the retail
seller’s portfolio.
To validate the model we analyze the sensitivity of solutions to different number of
scenarios. We have run 1000 and 10000 simulations with increasing number of scenarios.
In Figures 6 and 7 we report for each number of scenario the average optimal value over
the corresponding number of simulations; we observe that the optimal profit converges
to a value between 152200 and 152210.

5 Conclusions

We have proposed a stochastic model for the management of a gas sale company where
the uncertainty is based on a mean reversion stochastic process for the evolution of
temperature; as the number of scenarios increases, the complexity of the problem
also increases: one further possibility is to devise a new algorithm that decouples
computation of g from all other decision variables so that the problem becomes linear.
Moreover, there exists a relation between purchase price p and international price
indices, since gas seller must choose the index of reference among a certain number of
admitted choices: it is possible to investigate the influence on P of future variations of
these indices to help gas seller in taking his decision.
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Figure 6: Case of 1000 simulations: optimal profit value as the number of scenarios
increases.
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Figure 7: Case of 10000 simulations: optimal profit value as the number of scenarios
increases.

Appendix

Denoting with Ni the number of days of a specific month i, in order to prove that the
process found in (6) is mean reverting we set

Yt =

[

e

“

P

i−1

k=1

R Nk

0
akds

”

+
R t−

Pi−1

k=1
Nk

0
aids

]

(ϑt − Tt) (62)
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=
[

e(
P

i−1

k=1
Nkak)+ai(t−

P

i−1

k=1)Nk

]

(ϑt − Tt) ,

then Itô’s formula implies

dYt =
[

e(
P

i−1

k=1
Nkak)+ai(t−

P

i−1

k=1)Nk

]

[

(

dϑt

dt
+ ai (ϑt − Tt)

)

dt+ (63)

−

(

ai (ϑt − Tt) +
dϑt

dt

)

dt− σtdWt] ,

hence

Yt − Y0 = −

∫ t

0

σs

[

e(
P

i−1

k=1
Nkak)+ai(s−

P

i−1

k=1)Nk

]

dWs , (64)

that is

[

e(
P

i−1

k=1
Nkak)+ai(t−

P

i−1

k=1)Nk

]

(ϑt − Tt) = ϑ0−T0−

∫ t

0

[

e(
P

i−1

k=1
Nkak)+ai(s−

P

i−1

k=1)Nk

]

σsdWs ,

(65)
but ϑ0 = T0 = C and thus

Tt = ϑt + e−[(
P

i−1

k=1
Nkak)+ai(t−

P

i−1

k=1)Nk]
∫ t

0

[

e(
P

i−1

k=1
Nkak)+ai(s−

P

i−1

k=1)Nk

]

σsdWs , (66)

from which we can see that the process reverts to its mean ϑt because the expected
value of an Itô Integral is zero.
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