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Abstract

This dissertation studies option pricing, portfolio selection, and risk management as-

suming exponential-Lévy models in financial markets. Option pricing of European,

American, and path-dependent derivatives is dealt with the markovian approach. Marko-

vian approach has been introduced by Duan and Simonato [26] to price American

options under Wiener and GARCH processes, and then Duan et al. [27] has shown

how to price barrier options. This dissertation proposes to extend the markovian ap-

proach to Lévy processes and shows numerical results where the price convergence is

observed. European, American, and barrier options are priced using the same pro-

cedure of Duan et al., while for compound and lookback options we propose a new

pricing method. Specifically, we explain how to price compound and lookback options

assuming a Markov chain evolutions of the asset price. Portfolio selection is studied

assuming financial markets where asset log returns follow subordinated Lévy processes.

Firstly, we propose a Mean-Value at Risk analysis under two financial markets, one

without transaction costs, and the other one with proportional and constant transac-

tion costs. Secondly, we study a multi-period model with unlimited short sales where

investors look only at the mean and variance of the final wealth. Finally, we propose a

Mean-Variance-Skewness analysis assuming a financial market with no short sales and

without transaction costs. Our numerical results confirm the better performance of the

studied subordinated Lévy processes with respect the Normal model. Risk manage-

ment is studied proposing two conditional heteroscedastic models of portfolio returns.

The first one is an extension of the EWMA RiskMetrics model and assumes Lévy dis-

tributed returns. The second one is a more sophisticated analysis and consists in a

generalization of the GHICA model of Chen et al. [17].
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a Lévy process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Option pricing under the markovian approach . . . . . . . . . . . 50

3.3.1 European options . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.2 American options . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.3 Exotic options . . . . . . . . . . . . . . . . . . . . . . . . . 55

Compound options . . . . . . . . . . . . . . . . . . . . . . 56

i



Financial models with Lévy processes ii
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Chapter 1

Introduction

In this dissertation we discuss financial models of option pricing, portfolio selec-

tions, and risk management when asset log prices follow Lévy processes. Precisely,

we assume the exponential-Lévy model

St = S0e
Xt , t ≥ 0,

where St is the price at time t of a financial asset and {Xt : t ≥ 0} is a stochastic

process with some remarkable properties, such as independent and stationary

increments. The first exponential-Lévy model proposed in literature to price

contingent claims is the Black and Scholes one [11], where the dynamics of the

asset price follows the geometric Brownian motion

St = S0e
(µ− 1

2
σ2)t+σWt ,

where µ ∈ R and σ > 0 are called respectively drift term and volatility, and

{Wt : t ≥ 0} is a standard Brownian motion. Then, under the Black and Scholes

model, asset log returns on time intervals [t, t + s] are normally distributed with

mean (µ − 1
2
σ2)s and variance σ2s. But, several empirical investigations, see

Fama [30], Kraus and Litzenberg [46], and Mandelbrot [53], reject the Brownian

evolution of asset log returns and stress the necessity to find better distributional

assumptions. In particular, Mandelbrot and Fama observe empirical distributions

1
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with peaks higher and tails fatter than the Normal distribution and propose

stable Paretian distributions as possible models for asset returns. Stable Paretian

distributions constitute a subclass of Lévy processes characterized by the so-called

stability property: if X has stable distribution and X1, . . . , Xn are independent

copies of X, then there exist an > 0 and bn ∈ R such that for any n

an(X1 + · · ·+ Xn) + bn
d
= X1.

After the proposal of Mandelbrot and Fama to look at stable Lévy processes as

possible distributional assumptions, other financial researchers have confirmed

the reliability of this hypothesis and designed models for option pricing, port-

folio selections, and risk management (see, among others, Mittnik and Rachev

[59],[60], and Chobanov et al. [19]). However, stable Lévy processes are not the

unique ones to have fat-tails distributions, but others can be considered as possible

choices to model asset log prices. A remarkable result due to Monroe [62] shows

that every semimartingales can be written as a Brownian motion evaluated at a

random time. Thus, we can always assume that a Lévy process is a subordinated

process. In subordinated Lévy processes the concept of intrinsic or business time

is invoked. The idea to consider a time scale different from the calendar one was

due to Mandelbrot and Taylor [54]. Even Clark [20] has defined a model with an

intrinsic time to describe arrival rates of new information. Specifically, he justi-

fies the time change according to the principle that, when no information arrives,

trading is slow and the price process evolves slowly, while, when new information

arrives, trading is brisk and the prices process evolves more quickly. The existence

of a business time is also studied by Geman, Madan, and Yor [34], which relate

the time change to the information provided by demand and supply shocks in

the market. Their analysis proposes infinite activity processes as possible models

for asset log returns and shows the link between these stochastic processes and

time-changed Brownian motions. In particular, Geman, Madan, and Yor observe

that continuous stochastic processes can accurately describe market prices only in
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economies that instantaneously and continuously equilibrate to information flows

driven by diffusion or Ito processes. Thus, they study the validity of diffusion

processes as appropriate models for the underlying uncertainties and represent

price processes as instantaneously and continuously adjustments to exogenous

demand and supply shocks. In their economic model, the underlying uncertain-

ties are increasing stochastic processes and consequently price processes result

to be differences of two increasing random processes, representing respectively

the up and down moves of the market. Therefore, in contrast with the Black

and Scholes model, their economy implies price processes of finite variation and

with jumps. The possibility of asset prices with discontinuities or jumps is also

considered into the models of Merton [57] and more recently of Kou [45], where

a diffusion component is added to a low or finite activity jump part. In partic-

ular, the diffusion components describes the high activity in price fluctuations

while the jump component describes rare and extreme movements. However, the

economy proposed by Geman, Madan, and Yor identifies pure jump processes as

unique models able to represent asset prices. Thus, in these models “the high

activity in price fluctuations is accounted for by a large (in fact infinite) number

of small jumps and the activity at various jump sizes is analytically connected

by the requirement that small jumps occur at higher rates than large jumps”

(Geman, Madan, and Yor [34], page 3 lines 19-21). Moreover, Geman, Madan,

and Yor remark the consistency of pure jump processes with the assumption of

no arbitrage opportunities and show as the continuity of price processes can be

recovered by measuring of time in units of business time. Specifically, since pure

jump processes are of finite variation, then they are semimartingales consistent

with the theory of no arbitrages. Indeed, the studies carry out on the conse-

quence of no arbitrages (see Harrison and Kreps [40], Harrison and Pliska [41],

and Delbaen and Schachermayer [25]) has concluded that price processes have to

be semimartingales. However, time-changed Brownian motions can have infinite

variation too, but the economic model proposed by Geman, Madan, and Yor
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views only pure jump processes of bounded variation as realist model to describe

asset prices, since they can be decomposed into the difference of two increasing

processes. Two important subordinated Lévy processes which can be assumed

into the economic model of Geman, Madan, and Yor are the Variance Gamma

and CGMY processes. The Variance Gamma (VG) process was introduced by

Madan and Seneta [51] as a model for stock returns. They studied the symmetric

case and, then, Madan et al. [52] defined the general case with skewness. The VG

process can be used into the economy of Geman, Madan, and Yor because it can

be built as the difference of two independent Gamma processes, and, moreover, it

can also be obtained as a time-change Brownian motion with a Gamma process

as subordinator. In order to have a more flexible process, Carr, Geman, Madan,

and Yor [15] introduced the CGMY process. In particular, they modified with an

additional parameter the Lévy measure of the VG process and obtained a process

which could be, for different values of this parameter, finite or infinite active and,

in the case of infinite activity, of finite or infinite variation. Obviously, the case

of infinite variation does not adapt to the economic model of Geman, Madan,

and Yor. Now, if we do not consider more the economy of Geman, Madan, and

Yor as unique realistic representation of asset markets, other subordinated Lévy

processes can be studied in order to model the random evolutions of asset prices.

In particular, we can consider subordinated Lévy processes of infinite variation

which, however, are supported by the result of Monroe to be consistent with the

absence of arbitrages. Three important subordinated Lévy processes for financial

applications are the Normal Inverse Gaussian (NIG), Hyperbolic, and General-

ized Hyperbolic (GH) processes. Actually, the NIG and Hyperbolic processes are

special cases of the GH one. The GH distributions were introduced by Barndorff-

Nielsen [5] as a model for the grain-size distribution of wind-blown sand. Then, in

the year 1995, two subclasses, the Hyperbolic and NIG distributions, was respec-

tively studied by Eberlein and Keller [28] and Barndorff-Nielsen [6] as financial

models for asset prices. Finally, Eberlein and Prause [29] and Prause [68] studied
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−0.05 0 0.05
0

5

10

15

20

25

30

35

40

45

50
Empirical and Normal densities of the Down Jones index

Empirical
Normal

−0.1 −0.05 0 0.05 0.1
0

5

10

15

20

25
Empirical and Normal densities of the General Motors asset

Empirical
Normal

Figure 1.1: Normal and empirical densities of the daily log returns of the Down

Jones Index and General Motors stock.

the whole family of GH distributions in order to describe random evolutions of

asset prices.

In order to identify the distributional assumptions which better describe the

random behaviour of asset log returns, let us carry out a little empirical investiga-

tion. In Figure 1.1 we display empirical densities of daily log returns from Down

Jones index and General Motors stock observed from 13/09/1995 to 12/09/2007

and compare these densities with the Normal one. Given n independent obser-

vations xi, . . . , xn, the empirical densities f(x) can be estimated using the kernel

density estimator

f̂h(x) =
1

nh

n∑
i=1

K

(
xi − x

h

)
,

where K(x) = exp(−x2/2)/
√

2π is the Gaussian kernel and h is the bandwidth.

Under the Gaussian kernel, an optimal choice of h is 1.06σn−1/5, where σ is an

estimate of the standard deviation, see Silverman [79]. In Figure 1.1 we can

see how the empirical densities exhibit a peak higher and tails fatter than the

Normal one, that is the empirical distributions are leptokurtic. In order to have

information about the tails of the empirical distributions, a better analysis is to

plot the log densities. In Figure 1.2 we display the empirical log densities log f̂h(x)

and the corresponding log of the Normal density. The log Normal density has a
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Figure 1.2: Normal and empirical log densities of the daily log returns of the

Down Jones Index and General Motors stock.

quadratic bahaviour when it tends towards extreme values, while the empirical log

densities seem to behave in linear way. This trend of the empirical distributions

is generally called semi-heaviness of the tails, and we say that a density function

f(x) has semi-heavy tails if it satisfies

f(x) ∼




C−|x|ρ− exp(−η−|x|) as x → −∞
C+|x|ρ+ exp(−η+|x|) as x → +∞,

for some ρ−, ρ+ ∈ R and C−, C+, η−, η+ ≥ 0. In conclusion, this simple empiri-

cal analysis suggests to turn the interest towards those probability distributions

which are leptokurtic and with semi-heavy tails. Lévy models provide a large class

of distributions, including those with semi-heavy tails and skewness. Clearly, the

complexity increases very much with respect to the Black and Scholes model.

Not always there exists a closed formula for European contingent claims and

pricing of exotic derivatives can be extremely hard by a computational point of

view. In particular, Carr and Madan [14] derived the analytic expression of the

Fourier transform of European call prices and proposed the Fast Fourier Trans-

form as pricing procedure, and Boyarchenko and Levendorskǐi [13] priced barrier

options using the Wiener-Hopf decomposition and analytic techniques. But, the

application of these methodologies is not straightforward and thus the option

pricing under Lévy-exponential models is often based on simulation techniques
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and Monte Carlo methods. Another remarkable problem afflicting option pric-

ing in an exponential-Lévy framework is the incompleteness of the market, i.e.,

there are more equivalent martingale measures. However, real asset markets are

incomplete, since it is impossible to replicate any derivative instrument with a

self-financing strategy. Thus, the incompleteness of the market does not repre-

sent a lack of the model but instead a better description of the real world. But,

under an exponential-Lévy model, it remains the problem to find the equivalent

martingale measure that better summarizes the investor’s choices.

In this dissertation we discretize the Lévy process distributions using a multi-

nomial model. This discretization process simplifies the computation of Euro-

pean, American, and Exotic options. In this contest, Amin [3] has been among

the first researchers to propose a multinomial model. Differently by Amin, we

adopt the analysis developed by Duan and Simonato [26] to describe the marko-

vianity of contingent claims. Precisely, we propose to extent the Duan and Si-

monato methodology even when the underlying asset follows a Lévy process. This

multinomial model simplifies greatly the option pricing under an exponential-

Lévy model. Indeed now the price of any contingent claim (even path-dependent

derivatives) can be studied under a Markov chain framework. Duan et al. [27]

show how to price European, American, and barrier options through a Makov

chain, and thus we can use the same technique in order to price these instru-

ments under exponential-Lévy models. Furthermore, we are able to give a certain

originality to our applications, explaining how to price compound and lookback

options under a Markov chain framework and thus pricing these instruments in

an exponential-Lévy context.

Another purpose of this dissertation is to select portfolios of financial assets

assuming multi-dimensional subordinated Lévy models. According to the port-

folio theory, investors allocate their wealth among available assets so that the

expected value of their utility function is maximized. Markowitz [55], De Finetti

[69], and Tobin [83], [84] were among the first researchers to face the problem
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of portfolio selections, and they established the basis of the mean-variance ap-

proach. According to this approach investors allocate their wealth looking only

at two parameters of the distributions of portfolio returns, the mean and vari-

ance. Later, the mean-variance model was extended to the capital asset pricing

model (CAPM) (see Sharpe [78], Lintner [49], and Mossin [63]). With the CAPM

we have an equilibrium theory based just on the first two moments of portfolio

distributions. In the successive years the CAPM was justified and extended

by the arbitrage pricing theory (APT) and the stochastic dominance analysis.

In particular, APT and fund separation theorems justify and extend CAPM to

multi-parameter linear models (see Ross [71], [72]). While the stochastic domi-

nance analysis justifies the partial consistency of the mean-variance model with

the expected utility maximization when portfolios are elliptically distributed (see

Bawa [7], Chamberlein [16], Owen and Rabinovitch [66]). Elliptical distributions

are particular symmetric distributions that generalize the Gaussian one. How-

ever, sample data often display a certain level of skewness and tails fatter than

the Gaussian one. Since subordinated Brownian motions have distributions with

skewness different from zero and kurtosis greater than three, in this dissertation

we propose a mean-risk measure analysis where asset log returns follow multi-

dimensional Lévy processes. In particular, we present a model where each asset

follows a subordinated Lévy process with the same subordinator and consider

two possible distributional assumptions, the Normal Inverse Gaussian and Vari-

ance Gamma distributions. Moreover, we carry out empirical comparisons among

these two distributional assumptions and the multi-Normal one.

A last analysis developed in this dissertation concerns risk management. In

particular, we study two Lévy models. The first one extends the EWMA Risk-

Metrics model (see Longerstaey and Zangari [50]) in order to describe conditional

heteroscedastic portfolio returns with Lévy distributions. As in the RiskMetrics

model, the time-dependent portfolio volatility is described by the exponential

weighted moving average (EWMA) model. This EWMA-Lévy model keeps the
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same computational complexity of the RiskMetrics model and the risk measures

VaR and CVaR can be computed with very simple formulas. The second studied

risk management model is a generalization of the GHICA model of Chen et al.

[17]. Their model uses Independent Component Analysis (ICA) to define condi-

tional heteroscedastic portfolio returns with independent innovations. Thus, they

suggest to model these independent variables as Normal Inverse Gaussian distri-

butions. Our generalization consists in to assume each innovation distributed as

the Lévy law which better describes it. This ICA-Lévy model finds the character-

istic function of portfolio return, and thus the Fast Fourier Transformation (FFT)

algorithm can be implemented to compute the portfolio density function. Given

the density function, the risk measures VaR and CVaR can be easily computed.

The other chapters of the dissertation are organized as follows. Chapter 2 is

an introduction to Lévy processes where we report definitions and main results.

In particular, we study subordinated Lévy processes and present the exponential-

Lévy model as mathematical model to describe the random evolution of finan-

cial assets. Chapter 3 faces option pricing under Lévy processes. Specifically,

we explain some methodologies to price European options and then introduce a

markovian approach to price European, American, and Exotic options. Chapter

4 studies portfolio selection and risk management under Lévy processes. In the

portfolio selection part we present a model to describe asset log returns and com-

pare this model with the Normal one, in the risk management part we describe

two Lévy models without numerical results. Finally, in chapter 5 we conclude the

dissertation summarizing the results obtained in the other chapters and proposing

new future researches.



Chapter 2

Lévy processes and

exponential-Lévy models

Stochastic processes are mathematical models describing the time evolutions of

random phenomena, for example the daily price of a risky asset or the payments

made in one year by an insurance company. Lévy processes constitute a large

class of stochastic processes with some remarkable properties, such as the inde-

pendence and stationarity of the increments. Since Lévy processes are able to

capture the skewness and kurtosis of the observed asset log returns, their use in

finance is becoming very widespread. Indeed, there are several empirical inves-

tigations, for example Fama [30], Mandelbrot [53], and Kraus and Lintzenberg

[46], which show how the behavior of the log returns is more skew and with tails

fatter than the Normal distribution. The chapter is organized as follows. First,

Section 2.1 presents Lévy processes, defining them and stating their character-

ization by infinitely divisible distributions. Moreover, we give the concept of

Lévy measure and recall the Lévy-Ito decomposition, where any Lévy process is

just a combination of a Gaussian term with drift and a possible infinite sum of

compound Poisson processes. Second, Section 2.2 shows how any Lévy process

satisfies Markov property, simplifying its tractability. Third, Section 2.3 focus on

10
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the construction of Lévy processes and, in particular, we explain how to define a

Lévy process by a subordinator. Examples are the Variance Gamma (VG) and

Normal Inverse Gaussian (NIG) processes. Fourth, section 2.4 generalizes the VG

and NIG processes by the CGMY and Generalized Hyperbolic processes. Fifth,

Section 2.5 describes briefly the Meixner process which is a good Lévy process to

model asset log returns. Finally, Section 2.6 describes the market model generally

assumed in order to price contingent claims, for example American options. We

highlight the incompleteness of the market when the underlying asset follows a

stochastic process with jumps and discuss several ways to define an equivalent

martingale measure.

2.1 Definitions

In this section we present a class of stochastic processes, called Lévy processes,

whose use in financial problems is becoming more and more widespread.

Definition 2.1. A stochastic process {Xt : t ≥ 0} on Rd is a Lévy process if the

following conditions are satisfied:

(1) For any choice of n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn, random variables

Xt0 , Xt1 −Xt0 , Xt2 −Xt1 , . . . , Xtn −Xtn−1 are independent.

(2) X0 = 0 a.s.

(3) The distribution of Xs+t −Xs does not depend on s.

(4) It is stochastically continuous.

(5) There is Ω0 ∈ = with P[Ω0] = 1 such that, for every ω ∈ Ω0, Xt(ω) is

right-continuous in t ≥ 0 and has left limits in t > 0.

Let us use the notation {Xt}. The properties (1), (2), and (3) are generally

recalled saying that the stochastic process {Xt} has independent and stationary
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increments, while the fourth property means

lim
s→t

P[|Xs −Xt| > ε] = 0, (2.1)

for every t ≥ 0 and ε > 0. Equation (2.1) does not imply that the stochas-

tic process {Xt} is continuous, but only that a discontinuity at a fixed time t

has probability zero, in other words {Xt} is discontinuous at random times. A

stochastic process satisfying only the first four conditions is called Lévy processes

in law. Finally, the fifth property is usually recalled saying that the stochastic

process {Xt} is cadlag.

An important role into the theory of Lévy processes is that one of the infinitely

divisible distributions. A distribution µ is said infinitely divisible if, for any

positive integer n, there exists a distribution µn such that µ is equal to the

n-th convolution of µn with itself. Remembering that the convolution of two

probability measure µ1 and µ2, denoted as µ1 ? µ2, is the distribution of the sum

of two independent random variables with distributions µ1 and µ2, respectively,

then the infinite divisibility of µ implies that, for each n, there are n independent

and identically distributed random variables Y1, . . . , Yn such that Y1 + · · · + Yn

has distribution µ. We have the following proposition.

Proposition 2.1. Let {Xt : t ≥ 0} be a Lévy process. Then, for every t, Xt

has an infinitely divisible distribution. Conversely, if µ is an infinitely divisible

distribution, then there exists a Lévy process {Xt} such that the distribution of

X1 is µ.

Proof. See Cont and Tankov [21], Proposition 3.1.

Given an infinitely divisible distribution µ on Rd, it is possible to prove (see Sato

[73], Lemma 7.6) the existence of an unique continuous function ψ(z) from Rd

into C such that ψ(0) = 0 and

φµ(z) =

∫

Rd

ei〈z,x〉µ(dx) = eψ(z), z ∈ Rd,
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where φµ(z) is the characteristic function of µ. Moreover, (see Sato [73], Lemma

7.9) for every t ∈ [0,∞) there exists the infinitely divisible distribution µt with

characteristic function φµt(z) = exp(tψ(z)). Now, if {Xt : t ≥ 0} is a Lévy

process and PX1 = µ, then it is possible to prove that PXt = µt (see Sato [73],

Theorem 7.10), and thus

φXt(z) = E[exp(i〈z,Xt〉)] = exp(tψ(z)), z ∈ Rd, (2.2)

where φXt(z) is the characteristic function of Xt and ψ(z) is called the charac-

teristic exponent of {Xt}. From equation (2.2) we obtain that the knowledge of

the law of Xt is determined by the knowledge of the law of X1.

Let us introduce the Lévy measure of Lévy processes starting by a compound

Poisson process.

Definition 2.2. A compound Poisson process with intensity λ > 0 and jump size

distribution F is a stochastic process {Xt : t ≥ 0} defined as

Xt =
Nt∑
j=1

Yj,

where jump sizes Yj are independent and identically distributed with distribution

F and {Nt : t ≥ 0} is a Poisson process with intensity λ and independent from

{Yj : j = 1, 2, . . .}.

Let φF (z) be the characteristic function of F :

φX1(z) = E[ei〈z,X1〉] = E
[
E

[
ei〈z,X1〉 |N1]

]

= E

[
E

[
exp

(
i

N1∑
j=1

〈z, Yj〉
)∣∣∣∣∣ N1

]]
,

= E
[
φF (z)N1

]
=

∞∑
n=0

φF (z)n λne−λ

n!

= exp (λ(φF (z)− 1)) = exp

(
λ

∫

Rd

(ei〈z,x〉 − 1)F (dx)

)
, z ∈ Rd.

Thus, φX1(z) is the characteristic function of an infinitely divisible distribution,

exactly, the compound Poisson distribution (see Sato [73], Definition 4.1), and
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then {Xt} is a Lévy process with characteristic exponent

ψ(z) = λ

∫

Rd

(ei〈z,x〉 − 1)F (dx), z ∈ Rd.

The compound Poisson process is showed to be the unique Lévy process whose

sample paths are piecewise constant functions (see Cont and Tankov [21], Propo-

sition 3.3). By equation (2.2), the distribution of Xt has characteristic function

φXt(z) = exp

(
tλ

∫

Rd

(ei〈z,x〉 − 1)F (dx)

)
, z ∈ Rd,

and, introducing a new measure ν(A) = λF (A), we have

φXt(z) = exp

{
t

∫

Rd

(ei〈z,x〉 − 1)ν(dx)

}
, z ∈ Rd.

The measure ν, called Lévy measure, is positive on Rd but it is not a probability

measure, because
∫

ν(dx) = λ 6= 1.

To every compound Poisson process {Xt} on Rd we can assign a random

measure on [0,∞)× Rd defined by

JX(B) = #{(t,Xt −Xt−) ∈ B},

where B is a measurable subset of [0,∞) × Rd. Thus, for every measurable set

A ⊂ Rd, JX([t1, t2]×A) counts the number of times between t1 and t2 such that

the size of the jumps of {Xt} belongs to A. The measure JX is exactly a Poisson

random measure on Rd × [0,∞) with intensity measure µ(dx× dt) = ν(dx)dt =

λF (dx)dt (see Cont and Tankov [21], Definition 2.18 and Proposition 3.5), that

is for every measurable set B ⊂ Rd × [0,∞),

P[JX(B) = k] = e−µ(B)µ(B)k

k!
, ∀k ∈ N. (2.3)

Equation (2.3) suggests the interpretation of the Lévy measure of a compound

Poisson process as the average number of jumps per unit of time:

ν(A) = E[#{t ∈ [0, 1] : ∆Xt 6= 0, ∆Xt ∈ A}], A ∈ B(Rd),
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where ∆Xt = Xt−Xt−. Every compound Poisson process can be represented by

Xt =
∑

s∈[o,t]

∆Xs =

∫

[o,t]×Rd

xJX(ds× dx),

where JX is a Poisson random measure with intensity measure ν(dx)dt.

Consider a Lévy process {X0
t } with piecewise constant paths, that is a com-

pound Poisson process. Then, X0
t can be represented by

X0
t =

∫

[o,t]×Rd

xJX(ds× dx),

where JX is a Poisson random measure with intensity measure ν(dx)dt and ν is

a finite measure defined by

ν(A) = E[#{t ∈ [0, 1] : ∆X0
t 6= 0, ∆X0

t ∈ A}], A ∈ B(Rd).

Moreover, consider a Brownian motion with drift γt + Wt independent of X0.

Then, the sum Xt = γt+Wt+X0
t is another Lévy process which can be expressed

as

Xt = γt + Wt +
∑

s∈[0,t]

∆X0
s = γt + Wt +

∫

[o,t]×Rd

xJX(ds× dx). (2.4)

An expression as (2.4) can be proved for every Lévy process. Indeed, given a

Lévy process {Xt}, we can define its Lévy measure as we have only just done for

a compound Poisson process, that is

ν(A) = E[#{t ∈ [0, 1] : ∆Xt 6= 0, ∆Xt ∈ A}], A ∈ B(Rd).

Then, the measure ν should satisfy ν(A) < ∞ for any compact set A ⊂ Rd \ {0},
otherwise the process, contradicting the cadlag property, would have an infinite

number of jumps with size in A on [0, T ]. However, the measure ν could not be

finite (i.e. ν(Rd \ 0) = ∞), indeed the process X could have an infinite number

of small jumps on [0, T ].

Proposition 2.2 (Lévy-Ito decomposition). Let {Xt} be a Lévy process on Rd

and ν its Lévy measure. Then
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• ν is a measure on Rd \ {0} and verifies

∫

|x|≤1

|x|2ν(dx) < ∞
∫

|x|≥1

ν(dx) < ∞.

• The jump measure of X, denoted by JX , is a Poisson random measure on

[0,∞)× Rd with intensity measure ν(dx)dt.

• There exist a vector γ and a d-dimensional Brownian motion {Wt} with

covariance matrix A such that

Xt = γt + Wt + X l
t + lim

ε↓0
X̃ε

t , (2.5)

where

X l
t =

∫

|x|≥1,s∈[0,t]

xJX(ds× dx),

X̃ε
t =

∫

ε≤|x|<1,s∈[0,t]

x{JX(ds× dx)− ν(dx)ds}

≡
∫

ε≤|x|<1,s∈[0,t]

xJ̃X(ds× dx).

The terms in (2.5) are independent and the convergence in the last term is almost

sure and uniform in t on [0, T ].

Proof. See Cont and Tankov [21], Proposition 3.7.

The Lévy-Ito decomposition says that a Lévy process is uniquely determined by

a vector γ, a positive definite matrix A and a positive measure ν. The triplet

(A, ν, γ) is said characteristic triplet or Lévy triplet of the process {Xt}. The

two terms {X l
t} and {X̃ε

t } represent the jumps of {Xt} and are described by the

Lévy measure ν. {X l
t} is a compound Poisson process, while {X̃ε

t } a compensated

compound Poisson process whose characteristic function at time t is

φX̃ε
t
(z) = exp

{
t

∫

ε≤|x|<1

(ei〈z,x〉 − 1− i〈z, x〉)ν(dx)

}
, z ∈ Rd.
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From Lévy-Ito decomposition, we can deduce several other properties. First,

when a Lévy process is continuous then, by (2.5), we see that it must be a

Brownian motion with drift. Second, the condition
∫
|x|≥1

ν(dx) < ∞ says that a

Lévy process must have a finite number of jumps with absolute value larger than

1. Third, every Lévy process is a combination of a Brownian motion with drift

and a possibly infinite sum of independent compound Poisson processes. Finally,

using the Lévy-Ito decomposition, we can express the characteristic function of a

Lévy process in terms of its characteristic triplet (A, ν, γ).

Theorem 2.1 (Lévy-Khintchine representation). Let {Xt} be a Lévy process on

Rd with characteristic triplet (A, ν, γ). Then

E
[
ei〈z,Xt〉] = etψ(z), z ∈ Rd,

with

ψ(z) = −1

2
〈z, Az〉+ i〈γ, z〉+

∫

Rd

(
ei〈z,x〉 − 1− i〈z, x〉1|x|≤1

)
ν(dx).

Proof. See Cont and Tankov [21], Theorem 3.1.

Since any infinitely divisible distribution is the distribution of a Lévy process at

time t = 1, then the Lévy-Khintchine representation characterizes the character-

istic function of any infinitely divisible distribution as well.

Some path properties of a Lévy process can be deduced by the characteristic

triplet. The next result gives the conditions which characterize Lévy processes

of finite variation, that is whose trajectories are functions of finite variation with

probability 1.

Proposition 2.3. A Lévy process is of finite variation if and only if its charac-

teristic triplet (A, ν, γ) satisfies:

A = 0 and
∫
|x|≤1

|x|ν(dx) < ∞.
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Proof. See Cont and Tankov [21], Proposition 3.9.

In the case of a Lévy process with finite variation, the Lévy-Ito decomposition

and Lévy-Khintchine representation can be simplified.

Corollary 2.1. Let {Xt : t ≥ 0} be a Lévy process of finite variation with Lévy

triplet given (0, ν, γ). Then {Xt} can be expressed as the sum of its jumps between

0 and t and a linear drift term:

Xt = bt +

∫

[0,t]×Rd

xJX(ds× dx) = bt +

∆Xs 6=0∑

s∈[0,t]

∆Xs,

and its characteristic function can be expressed as

E[ei〈x,Xt〉] = exp

(
t

(
i〈z, b〉+

∫

Rd

(ei〈z,x〉 − 1)ν(dx)

))
, z ∈ Rd,

where b = γ − ∫
|x|≤1

xν(dx).

Proof. See Cont and Tankov [21], Corollary 3.1.

Given a pure jump Lévy process, that is one with no Brownian component (σ2 =

0), it is usual to distinguish between finite or infinite activity. When
∫ 1

−1
ν(dx) <

∞ the Lévy process is said of finite activity and thus there are finitely many

jumps in any finite interval. Instead, when
∫ 1

−1
ν(dx) = ∞ the Lévy process is

called of infinite activity and in this case there are infinitely many jumps in any

finite interval.

Let us conclude the section reporting the notion of completely monotone Lévy

density. Given a Lévy measure with density, i.e. ν(dx) = k(x)dx, the Lévy

density k(x) is called completely monotone if it can be written in the form

k(x) =

∫ ∞

0

e−axζ(da),

for some positive measure ζ. Thus, a completely monotone Lévy density relates

arrival rates of large jump sizes to smaller jump sizes in such a way that large

jumps arrive less frequently than small jumps.
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2.2 Markov property

Lévy processes are also Markov processes and thus satisfy the so-called Markov

property. In this section we define temporally homogeneous Markov processes

through temporally homogeneous transition functions, then recall a theorem

which characterize Lévy processes as temporally homogeneous Markov processes

with spatially homogeneous transition functions, finally introduce the concept of

Markov property.

Definition 2.3. A mapping Ps,t(x,B) of x ∈ Rd and B ∈ B(Rd) with 0 ≤ s ≤
t < ∞ is called a transition function on Rd if

(1) it is a probability measure as a mapping of B for any fixed x;

(2) it is measurable in x for any fixed B;

(3) Ps,s(x,B) = δx(B) for s ≥ 0;

(4) it satisfies

∫

Rd

Ps,t(x, dy)Pt,u(y, B) = Ps,u(x,B) for 0 ≤ s ≤ t ≤ u.

If, in addition,

(5) Ps+h,t+h(x,B) does not depend on h,

then it is called a temporally homogeneous transition function and it is given by

Pt(x,B) such that

Pt(x,B) = Ps,s+t(x, B) s ≥ 0.

The property (4) is called the Chapman-Kolmogorov identity, and, when the

transition function is also temporally homogeneous, we have

∫

Rd

Ps(x, dy)Pt(y,B) = Ps+t(x, B) for s ≥ 0 and t ≥ 0. (2.6)
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Before to define Markov processes, we recall a theorem which is fundamental

for the theory of stochastic processes, the celebrated Kolmogorov’s extension

theorem. Let Ω = (Rd)[0,∞), the collection of all functions ω = (ω(t))t∈[0,∞) from

[0,∞) into Rd and define Xt(ω) = ω(t). A set

C = {ω : Xt1(ω) ∈ B1, . . . , Xtn(ω) ∈ Bn}

for 0 ≤ t1 < · · · < tn and B1, . . . , Bn ∈ B(Rd) is called a cylinder set. Let = be

the σ-algebra generated by the cylinder sets.

Theorem 2.2 (Kolmogorov’s extension theorem). Suppose that, for any choice of

n and 0 ≤ t1 < · · · < tn, a distribution µt1,...,tn is given and that, if B1, . . . , Bn ∈
B(Rd) and Bk = Rd, then

µt1,...,tn(B1 × · · · ×Bn) (2.7)

= µt1,...,tk−1,tk+1,...,tn
(B1 × · · · ×Bk−1 ×Bk+1 × · · · ×Bn).

Then, there exists an unique probability measure P on = such that

P[B1 × · · · ×Bn] = µt1,...,tn(B1 × · · · ×Bn),

for any choice of n, 0 ≤ t0 < · · · < tn, and B1, . . . , Bn ∈ B(Rd).

Proof. See Billingsley [10], Theorem 36.1.

Assume that a temporally homogeneous transition function Pt(x,B) on Rd is

given. Then, for any a ∈ Rd, we can construct a stochastic process {Yt : t ≥ 0} as

follows. Let Ω0 = (Rd)[0,∞), the collection of all functions ω from [0,∞) into Rd,

Yt(ω) = ω(t) for t ≥ 0, and =0 be the σ-algebra generated by Yt, t ≥ 0. Define,

for any 0 ≤ t0 < · · · < tn and B0, . . . , Bn,

µa
t0,...,tn(B0, . . . , Bn)

=

∫
Pt0(a, dx0)1B0(x0)

∫
Pt1−t0(x0, dx1)1B1(x1)

∫
Pt2−t1(x1, dx2)1B2(x2) · · ·

∫
Ptn−tn−1(xn−1, dxn)1Bn(xn)
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The function µa
t0,...,tn can be uniquely extended to a probability measure on

(Rd)n+1 and, moreover, the family {µa
t0,...,tn} satisfies the condition (2.7) by equa-

tion (2.6). Therefore, by Theorem 2.2, there exists an unique probability mea-

sure Pa extending this family. Thus we can define univocally a probability space

(Ω0,=0, Pa). The next definition is that one of temporally homogeneous Markov

process and it is mentioned the notion of stochastic processes identical in law.

Two stochastic processes {Xt} and {Yt} are called identical in law if, for any

choice of n, 0 ≤ t1 < · · · < tn, and B1, . . . , Bn ∈ B(Rd),

P[Xt1 ∈ B1, . . . , Xtn ∈ Bn] = P[Yt1 ∈ B1, . . . , Ytn ∈ Bn].

Definition 2.4. A stochastic process {Xt : t ≥ 0} defined on a probability space

(Ω,=, P) is called a temporally homogeneous Markov process with temporally ho-

mogeneous transition function {Pt(x,B)} and starting point a, if it is identical in

law with the process {Yt : t ≥ 0} define above on (Ω0,=0, Pa). The process {Yt}
is the path space representation of the process {Xt}.

Temporally homogeneous transition functions can satisfy a further property,

the homogeneous spatiality.

Definition 2.5. A transition function Ps,t on Rd is said to be spatially homoge-

neous if

Ps,t(x, B) = Ps,t(0, B − x)

for any s, t ,x and B, where B − x = {y − x : y ∈ B}.

The next theorem gives the characterization of Lévy processes as temporally

homogeneous Markov processes with spatially homogeneous transition functions.

Theorem 2.3. (i) Let µ be an infinitely divisible distribution on Rd and let {Xt}
be the Lévy process corresponding to µ. Define Pt(x,B) by

Pt(x,B) = µt(B − x).
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Then Pt(x,B) is a temporally and spatially homogeneous transition function

and {Xt} is a Markov process with this transition function and starting point

0.

(ii) Conversely, any stochastically continuous, temporally homogeneous Markov

process on Rd with spatially homogeneous transition function and starting

point 0 is a Lévy process.

Proof. See Sato [73], Theorem 10.5.

Markov processes satisfy an important property, called just Markov property,

which simplifies their tractability. We introduce Markov property with the next

proposition.

Proposition 2.4. Consider {Yt : t ≥ 0}, the path space representation of a

temporally homogeneous Markov process with a transition function Pt(x,B). Let

0 ≤ t0 < · · · < tn and let f(x0, . . . , xn) be a bounded measurable function. Then

Ea[f(Yt0 , . . . , Ytn)] is measurable in a and

Ea[f(Yt0 , . . . , Ytn)] =

∫
Pt0(a, dx0)

∫
Pt1−t0(x0, dx1)

∫
Pt2−t1(x1, dx2) · · ·

∫
Ptn−1−tn(xn−1, dxn)f(x0, . . . , xn).

Moreover, for any 0 ≤ s0 < · · · < sm ≤ s and for any bounded measurable

function g(x0, . . . , xm), we have

Ea[g(Ys0 , . . . , Ysm)f(Ys+t0 , . . . , Ys+tn)] (2.8)

= Ea[g(Ys0 , . . . , Ysm)EYs [f(Ys+t0 , . . . , Ys+tn)]].

Proof. See Sato [73], Proposition 10.6.

Equation (2.8) is the Markov property and is generally expressed by the filtration

of a stochastic process {Yt}. A filtration is a set of σ-algebras {=t} such that
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=s ⊆ =t, for s ≤ t, and Yt is measurable with respect to =t. Let =t the σ-algebra

generated by the random variables Ys such that s ≤ t, then the family {=t} is

the smallest filtration associated to {Yt}. Equation (2.8) says that if we consider

the conditional expectation of f(Ys+t0 , . . . , Ys+tn) with respect to =s, then it is

equal to the conditional expectation of f(Ys+t0 , . . . , Ys+tn) with respect to Ys:

E[f(Ys+t0 , . . . , Ys+tn)|=s] = E[f(Ys+t0 , . . . , Ys+tn)|Ys].

More in general, Lévy processes satisfy the strong Markov property, where it is

present the notion of stopping time. A stopping time T is a mapping from Ω into

[0,∞] such that {T ≤ t} ∈ =t for every t ∈ [0,∞). From a stopping time T , we

could define a σ-algebra =T and a random variable YT , and further prove

E[f(YT+t0 , . . . , YT+tn)|=T ] = E[f(YT+t0 , . . . , YT+tn)|YT ]. (2.9)

Equation (2.9) is called the strong Markov property, and we have the Markov

property when T is equal to a constant time t.

2.3 Subordinators and subordinated Lévy pro-

cesses: VG and NIG processes

A subordinator is a Lévy process whose paths are nondecreasing almost surely,

thus it is a Lévy process of finite variation and satisfies Corollary 2.1. Subordi-

nators are often applied in financial models, because they can be used as time

changes for other Lévy processes.

Proposition 2.5. Let {Xt : t ≥ 0} be a Lévy process on R. The following

conditions are equivalent:

(i) Xt ≥ 0 almost surely for some t > 0.

(ii) Xt ≥ 0 for every t > 0.
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(iii) Sample paths of {Xt} are almost surely nondecreasing: t ≥ s ⇒ Xt ≥ Xs

almost surely.

(iv) The characteristic triplet of {Xt} satisfies A = 0, ν((−∞, 0]) = 0,
∫∞

0
(x ∧

1)ν(dx) < ∞ and b ≥ 0, that is, has no diffusion components, only positive

jumps of finite variation and positive drift.

Proof. See Cont and Tankov [21], Proposition 3.10.

Let {St : t ≥ 0} be a subordinator on R with Lévy measure ρ and drift b. For

any time t, St is a positive random variable and thus we can describe it by its

Laplace transform:

LSt(u) = E[euSt ] = etl(u), u ≤ 0,

where

l(u) = bu +

∫ ∞

0

(eux − 1)ρ(dx). (2.10)

The function l(u) is called Laplace exponent of {St}. The next theorem justifies

the use of a subordinator {St} as time change of another Lévy process.

Theorem 2.4. Fixed a probability space (Ω,=, P). Let {St : t ≥ 0} a subordinator

with Lévy measure ρ, drift b, and Laplace exponent l(u), and let {Xt : t ≥ 0} be

a Lévy process on Rd with Lévy triplet (A, ν, γ) and characteristic exponent ψ(z).

Then the process {Yt : t ≥ 0} defined for each ω ∈ Ω by Yt(ω) = XSt(ω)(ω) is a

Lévy process and its characteristic function is

φYt(z) = E[ei〈z,Yt〉] = etl(ψ(z)), z ∈ Rd. (2.11)

The Lévy triplet (A#, ν#, γ#) of {Yt} is given by

A# = bA,

ν#(B) = bν(B) +

∫ ∞

0

PXs(B)ρ(ds), ∀B ∈ B(Rd),

γ# = bγ +

∫ ∞

0

ρ(ds)

∫

|x|≤1

xPXs(dx),

where PXt is the distribution of Xt.
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Proof. See Cont and Tankov [21], Theorem 4.2.

A way to find a subordinator is to define a Lévy triplet which satisfies the

condition (iv) of Proposition 2.5. The tempered stable subordinator is defined

assuming that its drift b is zero and its Lévy measure is

ρ(dx) =
ce−λx

xα+1
1x>0dx,

where c and λ are positive and 0 ≤ α < 1. By equation (2.10) the Laplace

exponent of the tempered stable subordinator is given by (see appendix B.1 for

the case α 6= 0)




l(u) = cΓ(−α){(λ− u)α − λα} if α 6= 0

l(u) = −c log(1− u/λ) if α = 0.
(2.12)

For financial applications two important subordinators are the Gamma process,

α = 0, and the Inverse Gaussian process, α = 1/2, which have probability density

function in explicit form. If α = 0 in (2.12), then we have the Gamma (G) process

{X(G)
t : t ≥ 0} with parameters a > 0 and b > 0, where a = c and b = λ. The

Laplace transform and probability density function of XG
t are, respectively,

L
X

(G)
t

(u) = (1− u/b)−at, u ≤ 0.

f
X

(G)
t

(x; a, b) =
ba

Γ(a)
xa−1 exp(−xb)1x>0.

The Lévy triplet of the Gamma process {X(G)
t } is

[
a(1− exp(−b))

b
, 0,

a exp(−bx)

x
1x>0dx

]
.

Instead, if α = 1/2 in (2.12), then we have the Inverse Gaussian (IG) process

{X(IG)
t : t ≥ 0} with parameters a > 0 and b > 0, where a = c

√
2π and b =

√
2λ.

The Laplace transform and probability density function of X
(IG)
t are, respectively,

L
X

(IG)
t

(u) = exp
(
−at

(√
b2 − 2u− b

))
, u ≤ 0,

f
X

(IG)
t

(x; a, b) =
ta

x3/2
√

2π
exp(tab) exp

(
−1

2

(
(ta)2x−1 + b2x

))
1x>0.
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The Lévy triplet of the Inverse Gamma process {X(IG)
t } is

[
a

b
(2N(b)− 1), 0,

a

x3/2
√

2π
exp

(
−b2

2
x

)
1x>0dx

]
.

The celebrated Black & Scholes model [11] assumes that the underlying asset

follows a geometric Brownian motion, that is

St = S0e
Xt ,

where Xt = (µ− 1
2
σ2)t+σWt is a Brownian motion with drift. Thus, the volatility

σ, that is the standard deviation of the log return over a time unit, is constant.

But, the volatility should depend on the number of transactions occurred during

a time unit, that is it should be stochastic. A way to include this other element

of randomness is just to model the asset log-return as a subordinated Brownian

motion with drift:

Xt = µZt + σWZt ,

where {Zt} is a subordinator. In this way we obtain the stochastic volatility

σ
√

Z1. Two important subordinated Lévy processes in finance are the Variance

Gamma and Normal Inverse Gaussian processes. The Variance Gamma (VG)

process can be defined subordinating a Brownian motion with drift {Xt = θt +

σWt} by a gamma process {Z(G)
t } with parameters a = 1/ν > 0 and b = 1/ν > 0,

where θ ∈ R and σ > 0, and adding a drift term µ ∈ R:

X
(V G)
t = µt + θZ

(G)
t + σW

Z
(G)
t

.

By equation (2.11), the characteristic function of X
(V G)
t is

φ
X

(V G)
t

(z; σ
√

t, ν/t, θt, µt) =

(
1− izθν +

1

2
σ2νz2

)−t/ν

eizµt, z ∈ R.

The probability density function of X
(V G)
t is known in explicit form and is given

by

f
X

(V G)
t

(x; σ
√

t, ν/t, θt, µt) =
2e

θ(x−µt)

σ2

(
(x−µt)2

2σ2/ν+θ2

) t
2ν
− 1

4

νt/ν
√

2πσΓ(t/ν)
×

×K t
ν
− 1

2

(
1

σ2

√
(x− µt)2(2σ2/ν + θ2)

)
,
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where K t
ν
− 1

2
(x) is the modified Bessel function of the third kind with index t

ν
− 1

2

(see appendix B.2 for the definition of Bessel functions). It is possible to show

that this density function is leptokurtic and with semi-heavy tails. In particular,

at time t = 1 we have the following characteristics:

mean θ + µ

variance σ2 + νθ2

skewness θν(3σ2 + 2νθ2)/(σ2 + νθ2)3/2

kurtosis 3(1 + 2ν − νσ4(σ2 + νθ2)−2).

In order to determine the Lévy triplet of the Variance Gamma process {X(V G)
t }

is preferable to consider a different definition. Indeed, we can show (see Madan

et al. [52]) that the Variance Gamma process is also equal to the difference of

two independent Gamma process:

X
(V G)
t = µt + X

(G1)
t −X

(G2)
t ,

where {X(G1)
t } is a Gamma process with parameters a = C and b = M , and

{X(G2)
t } is an independent Gamma process with parameters a = C and b = G.

This new parametrization is related to that one above by




C = 1/ν > 0,

G =
(√

1
4
θ2ν2 + 1

2
σ2ν − 1

2
θν

)−1

> 0,

M =
(√

1
4
θ2ν2 + 1

2
σ2ν + 1

2
θν

)−1

> 0.

With this second definition the Lévy triplet is immediately given by [γ, 0, νV G(dx)],

where

νV G(dx) =





C exp(Gx)|x|−1dx, x < 0,

C exp(−Mx)x−1dx, x > 0,
(2.13)

γ = µ +
−C(G(exp(−M)− 1)−M(exp(−G)− 1))

MG
.

The Normal Inverse Gaussian (NIG) process is defined subordinating the Brown-

ian motion with drift {Xt = βδ2t + δWt} by an Inverse Gaussian process {Z(IG)
t }
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with parameters a = 1 and b = δ
√

α2 − β2, where α > 0, −α < β < α and δ > 0,

and adding a drift term µ ∈ R:

X
(NIG)
t = µt + βδ2Z

(IG)
t + δW

Z
(IG)
t

.

By equation (2.11), the characteristic function of X
(NIG)
t is

φ
X

(NIG)
t

(z; α, β, tδ, µt) = exp
(
−tδ

(√
α2 − (β + iz)2 −

√
α2 − β2

))
eizµt.

The Lévy triplet [γ, 0, νNIG] is computed using Theorem 2.4, and we have

γ = µ +
2δα

π

∫ 1

0

sinh(βx)K1(αx)dx,

νNIG(dx) =
δα

π

exp(βx)K1(α|x|)
|x| dx,

where K1(x) is the modified Bessel function of the third kind with index 1. Then,

the probability density function of X
(NIG)
t is known in explicit form and is given

by

f
X

(NIG)
t

(x; α, β, tδ, µt) =
αtδ

π
exp

(
tδ

√
α2 − β2 + β(x− µt)

)
×

×
K1

(
α
√

(tδ)2 + (x− µt)2
)

√
(tδ)2 + (x− µt)2

.

Thus, We have a leptokurtic density function with semi-heavy tails, since

f
X

(NIG)
t

(x; α, β, tδ, µt) ∼ |x|−3/2 exp((∓α + β)x) as x → ±∞,

up to a multiplicative constant, and at time t = 1

mean δβ/
√

α2 − β2 + µ

variance α2δ(α2 − β2)−3/2

skewness 3βα−1δ−1/2(α2 − β2)−1/4

kurtosis 3

(
1 + α2+4β2

δα2
√

α2−β2

)
.

The Variance Gamma process was introduced by Madan and Seneta [51] which

considered the symmetric case θ = 0, then Madan et al. [52] studied the general

case with skewness. Instead, the Normal Inverse Gaussian process was introduced

by Barndorff-Nielsen [6] as model of asset log returns.
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2.4 Generalization of the VG and NIG processes:

CGMY and GH processes

In this section we present other two Lévy processes which generalize the VG and

NIG processes. The first one is the CGMY process introduced by Carr, Geman,

Madan, and Yor [15], and the second one is the Generalized Hyperbolic (GH)

process introduced by Bandorff-Nielsen [5] and then studied by Eberlein and

Prause [29] and Prause [68] as model to describe asset log returns.

The VG Lévy density in (2.13) can be generalize to the CGMY Lévy density

as follows

kCGMY (x) =





C exp(Gx)(−x)−1−Y x < 0

C exp(−Mx)x−1−Y x > 0,

where C, G, M > 0 and Y < 2. The condition Y < 2 allows to integrate x2

in the neighborhood of 0. Thus, the CGMY process reduces to a VG process

when Y = 0. Denoting by {X(CGMY )
t : t ≥ 0} the CGMY process, then the

characteristic function at time t is given by

φ
X

(CGMY )
t

(z; tC,G, M, Y ) = exp
{
tCΓ(−Y )[(M − iz)Y −MY + (G + iz)Y −GY ]

}
,

and the first term of the Lévy triplet is

γ = C

(∫ 1

0

exp(−Mx)x−Y dx−
∫ 0

−1

exp(Gx)|x|−Y dx

)
. (2.14)

Considering that for a general Lévy density k(x), the random variable X repre-

senting the level of a Lévy process at time t = 1 satisfies

E[X] =

∫ ∞

−∞
xk(x)dx

E[(X − E[X])2] =

∫ ∞

−∞
x2k(x)dx

E[(X − E[X])3] =

∫ ∞

−∞
x3k(x)dx

E[(X − E[X])4] = 3
(
E[(X − E[X])2]

)2
+

∫ ∞

−∞
x4k(x)dx,
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then the following characteristic of the CGMY process at time t = 1 can be easily

computed

mean C(MY−1 −GY−1)Γ(1− Y )

variance C(MY−2 + GY−2)Γ(2− Y )

skewness C(MY−3−GY−3)Γ(3−Y )

(C(MY−2+GY−2)Γ(2−Y ))3/2

kurtosis 3 + C(MY−4+GY−4)Γ(4−Y )
(C(MY−2+GY−2)Γ(2−Y ))2

.

The next result highlights the important role of the parameter Y which controls

the path behaviour.

Theorem 2.5. The CGMY process

1. has completely monotone Lévy density for Y > −1;

2. is a process of infinite activity for Y > 0;

3. is a process of infinite variation for Y > 1.

Proof. See Carr et al. [15], Theorem 2.

The Inverse Gaussian process {X(IG)
t : t ≥ 0} can be generalized to the

Generalized Inverse Gaussian (GIG) process {X(GIG)
t : t ≥ 0} adding a parameter

λ ∈ R and defining the density function at time t = 1 as

f
X

(GIG)
1

(x; λ, a, b) =
(b/a)λ

2Kλ(ab)
xλ−1 exp

(
−1

2
(a2x−1 + b2x)

)
1x>0,

where a, b ≥ 0 and not simultaneously 0, λ ∈ R, and Kλ(x) is the modified

Bessel function of the third kind with index λ. Considering that K−1/2(x) =
√

π/2x−1/2 exp(−x), the GIG process reduces to the IG process for λ = −1/2

and a, b > 0. The characteristic function is

φ
X

(GIG)
1

(z; λ, a, b) =
1

Kλ(ab)
(1− 2iz/b2)λ/2Kλ(ab

√
1− 2izb−2).

Subordinating the Brownian motion with drift {Xt = βt + Wt} by a GIG pro-

cess {Z(GIG)
t } with parameters λ = υ, a = δ, and b =

√
α2 − β2 we have the
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Generalized Hyperbolic (GH) process {X(GH)
t : t ≥ 0}:

X
(GH)
t = βZ

(GIG)
t + W

Z
(GIG)
t

.

The characteristic function and density function at time t = 1 are, respectively,

φXGH
1

(z; α, β, δ, υ) =

(
α2 − β2

α2 − (β + iz)2

)υ/2
Kυδ

√
α2 − (β + iz)2

Kυ(δ
√

α2 − β2)
,

f
X

(GH)
1

(x; α, β, δ, υ) = a(α, β, δ, υ)(δ2 + x2)(υ−1/2)/2Kυ−1/2(α
√

δ2 + x2) exp(βx),

a(α, β, δ, υ) =
(α2 − β2)υ/2

√
2παυ−1/2δυKυ(δ

√
α2 − β2)

,

where

δ ≥ 0 |β| < α if υ > 0,

δ > 0 |β| < α if υ = 0,

δ > 0 |β| ≤ α if υ < 0.

The Normal Inverse Gaussian process is a special case of the GH process for

υ = −1/2.

2.5 Meixner process

In this section we briefly describe the Meixner process which will be used in our

applications together with the NIG and VG processes.

The density function of the Meixner distribution, Meixner(µ, α, β, δ), is de-

fined as

fMeixner(x; α, β, δ, µ) =
(2 cos(β/2))2δ

2απΓ(2δ)
exp

(
β(x− µ)

α

) ∣∣∣∣Γ
(

δ +
i(x− µ)

α

)∣∣∣∣
2

,

where µ ∈ R, α > 0, −π < β < π, and δ > 0. This is a leptokurtic density

function with semi-heavy tails, given that

fMeixner(x; α, β, δ, µ) ∼




C−|x|ρ− exp(−η−|x|) as x → −∞
C+|x|ρ+ exp(−η+|x|) as x → +∞.
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where

ρ− = ρ+ = 2δ − 1, η− = (pi− β)/α η+ = (π + β)/α,

and for some C−, C+ ≥ 0, and that

mean αδ tan(β/2) + µ

variance 1
2
α2δ(cos−2(β/2))

skewness sin(β/2)
√

2/δ

kurtosis 3 + (2− cos(β))/δ.

The Meixner(µ, α, β, δ) distribution has characteristic function given by

φMeixner(z; α, β, δ, µ) =

(
cos(β/2)

cosh((αz − iβ)/2)

)2δ

eizµ. (2.15)

The characteristic function (2.15) is infinitely divisible and thus we can define

the Meixner process {X(Meixner)
t : t ≥ 0} as the stochastic process which starts

at zero, that is X
(Meixner)
0 = 0 a.s., has independent and stationary increments,

and so that X
(Meixner)
t has Meixner(α, β, δt, µt) distribution. The Lévy triplet is

[γ, 0, νMeiner(dx)] where

νMeixner(dx) = δ
exp(βx/α)

x sinh(πx/α)
dx,

γ = µ + αδ tan(β/2)− 2δ

∫ ∞

1

sinh(βx/α)

sinh(πx/α)
dx.

The Meixner process was introduced by Schoutens and Teugels [77], and then

Schoutens [74], [75] applied this stochastic process to describe the random be-

haviour of asset prices.

2.6 Market model and

equivalent martingale measure

Given a probability space (Ω,=, P), consider a market where a risky asset with

price process {St : t ≥ 0} and a bank account dB(t) = rB(t)dt, with r > 0,
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are defined. Let {=t : t ≥ 0} be the filtration generated by {St}, that is =t

represents the information obtained observing the risky asset from 0 to t. Any

contingent claim with maturity T defined on this market can be represented by

its terminal payoff H : Ω → R, which, depending on the price process {St} up

to T , has to be =T -measurable. In order to determine the arbitrage-free price

process {Πt(H) : 0 ≤ t ≤ T} of the contingent claim H, we recall the risk-neutral

pricing (see Cont and Tankov [21], Proposition 9.1):

Πt(H) = e−r(T−t)EP̃[H|=t], (2.16)

where P̃ is an equivalent martingale measure. Therefore, the measure P̃ has to

guarantee the equivalence with respect to P, that is P̃(A) = 0 if and only if

P(A) = 0 for each A ∈ =, and to imply

Ŝt = EP̃[ŜT |=t],

where {Ŝt = e−rtSt : t ≥ 0} is the discounted price process of the risky asset. If

we are able to find a measure P̃ on = with these properties, then we are sure that

the formula (2.16) returns prices which do not generate arbitrage, that is there

does not exist a self-financing strategy Θ with no intermediate losses and positive

terminal gain:

P[Vt(Θ) ≥ 0,∀t ∈ [0, T ]] = 1, P[VT (Θ) > V0(Θ)] 6= 0.

A strategy is a portfolio represented by a predictable (that is left continuous and

with right limits) process Θ = (ΘS
t , ΘB

t ), where ΘS
t and ΘB

t are the hold quantities

of the risky and risk-less assets, respectively, at time t. Moreover, the strategy Θ

is called self-financing if it does admit the possibility to add or withdraw money.

The value at time T of the strategy Θ is given by the stochastic integral

Vt(Θ) = V0(Θ) +

∫ t

0

ΘB
u dB(u) +

∫ t

0

ΘS
udSu,

where V0(Θ) = ΘB
0 + ΘS

0 S0. The market that we have only just described can be

either complete or incomplete. It is called complete if for any contingent claim H
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with maturity T there exists a self-financing strategy Θ such that VT (Θ) = H P-

a.s., incomplete otherwise. The completeness would be an important property of

the market because it would imply the existence of an unique equivalent martin-

gale measure, however, there are only a few mathematical models satisfying this

condition, for example the Black & Scholes model. In particular, the complete-

ness of the market is related to the ability of the mathematical model to imply

the predictable representation property (see Cont and Tankov [21], Remark 9.1,

or Schoutens [76], Section 2.5), and it is showed that for all non-Gaussian Lévy

processes, except the compensated Poisson process, this property fails.

In our applications the price process {St} of the risk asset is an exponential-

Lévy model, that is

St = S0e
Xt ,

where {Xt} is a Lévy process with Lévy triplet (γX , σ2
X , νX). Now, the Lévy

process {Xt} can be seen as a random variable on the scenario space (Ω,=) whose

distribution defines a probability measure PX on (Ω,=). So, the real world has

the representation (Ω,=, {=t}, PX), where {=t} is the history of the assets up

to t. Given a contingent claim H, we know that a way to determine its price

process {Πt(H)} is to define an equivalent martingale measure on (Ω,=). Under

this measure, the asset {St} will be driven by a Lévy process {Yt}, different from

{Xt}, with characteristic triplet (γY , σ2
Y , νY ). Therefore, we obtain an equivalent

martingale measure if we are able to define a Lévy process Yt on (Ω,=) so that

its distribution PY is equivalent to PX and the process {Ŝt = St/Bt}, where now

St = S0e
Yt , is a martingale under PY . The next proposition gives the conditions

which assure the equivalence between PX and PY .

Proposition 2.6. Let ({Xt}, P) and ({Xt}, P′) be two Lévy processes on R with

characteristic triplets (γ, σ2, ν) and (γ′, σ′2, ν ′). Then P|=t and P′|=t are equiva-

lent for all t if and only if the following conditions are satisfied:

1. σ = σ′.
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2. The Lévy measures are equivalent with

∫ ∞

−∞
(eφ(x)/2 − 1)2ν(dx) < ∞,

where φ(x) = ln
(

dν′
dν

)
.

3. If σ = 0 then we must in addition have

γ − γ′ =
∫ 1

−1

x(ν − ν ′)(dx).

When P and P′ are equivalent, the Radon-Nykodim derivative is

dP′|=t

dP|=t

= eUt

with

Ut = ηXc
t −

η2σ2t

2
− ηγt (2.17)

+ lim
ε↓0


 ∑

s≤t,|∆Xs|>ε

φ(∆Xs)− t

∫

|x|>ε

(eφ(x) − 1)ν(dx)


 .

Here {Xc
t } is the continuous part of {Xt} and η is such that

γ′ − γ −
∫ 1

−1

x(ν ′ − ν)(dx) = σ2η

if σ > 0 and zero if σ = 0.

Ut is a Lévy process with characteristic triplet (γU , σ2
U , νU) given by

σ2
U = σ2η2,

νU = νφ−1,

γU = −1
2
σ2η2 − ∫∞

−∞(ey − 1− y1|y|≤1)(νφ−1)(dy).

Proof. See Sato [73], Theorem 33.1.

When the Lévy process {Xt}, specified in our model, has the diffusion com-

ponent σ2
X , then a way to find a Lévy process {Yt}, whose distribution PY is
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equivalent to PX and guarantees the martingale property of {Ŝt}, is to change

the drift component to {Xt}. Indeed, if E[e−rt+Xt ] = 1 ∀t ≥ 0 then the pro-

cess {Ŝt} is a martingale, because, from the independence and stationarity of the

increments,

E[Ŝt|=s] = S0E[e−rt+Xt|=s]

= S0E
[
e−rs−r(t−s)+Xs+(Xt−Xs)|=s

]

= S0e
−rs+XsE

[
e−r(t−s)+(Xt−Xs)

]

= S0e
−rs+Xs .

Now, by the Lévy-Khintchine representation of the characteristic function, the

condition E[e−rt+Xt ] = 1 ∀t ≥ 0 is satisfied if ψ(−i) = 0, where ψ(z) is given by

ψ(z) = −1

2
σ2

Xz2 + i(γX − r)z +

∫ ∞

−∞
(eizx − 1− izx1|x|≤1)νX(dx).

Then we construct a Lévy process {Yt} which implies the martingale property

of {Ŝt = S0e
−rt+Yt}, if we define {Yt} by the Lévy triplet (γY , σ2

Y , νY ), where

σ2
Y = σ2

X , νY = νX and

γY = r − 1

2
σ2

X −
∫ ∞

−∞
(ex − 1− x1|x|≤1)νX(dx).

When we use a stochastic process {X(I)
t }, I = V G, NIG, CGMY, GH, Meixner,

to model asset log returns, then the process {Yt}, obtained by drift change, is

still a stochastic process of the same type of I and with the same parameters of

{X(I)
t }, but the drift parameter µ which becomes





µ = r + 1
ν log

(
1− θν − 1

2σ2ν
)

if I = V G,

µ = r + δ
(√

α2 − (β + 1)2 −
√

α2 − β2
)

if I = NIG,

µ = r − CΓ(−Y )((M − 1)Y −MY + (G + 1)Y −GY ) if I = CGMY,

µ = r − log
((

α2−β2

α2−(β+1)2

)υ/2 Kυ(δ
√

α2−(β+1)2)

Kυ(δ
√

α2−β2)

)
if I = GH,

µ = r − 2δ(log(cos(β/2))− log(cos((α + β)/2))) if I = Meixner.

(2.18)

Observe that when the Lévy measure νX is zero, thus our Lévy process is simply

a Brownian motion with drift, we find the drift change usually applied in the
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Black & Scholes model. The probability measure obtained by a drift change is

generally said mean-correcting martingale measure.

Another way to find an equivalent martingale measure is to use the Esscher

transform (see Gerber and Shiu [35], [36]). If ft(x) is the density function of Xt

and
∫∞
−∞ eθyft(y)dy < ∞ for some real number θ we can define a new density as

f
(θ)
t (x) =

exp(θx)ft(x)∫∞
−∞ exp(θy)ft(y)dy

.

The Esscher transform consists into select θ such that the discounted price process

{Ŝt = Ste
−rt} is a martingale, that is

S0 = e−rtE(θ)[St], ∀t ≥ 0, (2.19)

where the expectation is taken with respect to the law with density f
(θ)
t (x). Al-

ways from the Lévy-Khintchine representation, the condition (2.19) is satisfied

if

r = ψ(−i(θ + 1))− ψ(−iθ), (2.20)

where ψ(z) is given by

ψ(z) = −1

2
σ2

Xz2 + iγXz +

∫ ∞

−∞
(eizx − 1− izx1|x|≤1)νX(dx).

The solution θ to the equation (2.20) gives the Esscher transform martingale

measure by the density function f
(θ)
t (x). If φ(z) is the characteristic function of

X1 then φ(θ)(z) = φ(z − iθ)/φ(−iθ) is the characteristic function of the Esscher

transform and is infinitely divisible. Thus, there is a Lévy process Yt under which

the process {Ŝt = S0e
−rt+Yt} is a martingale and whose Lévy triplet (σ2

Y , νY , γY )

is given by

σ2
Y = σ2

X ,

νY (dx) = eθxνX(dx),

γY = γX + σ2
Xθ +

∫ 1

−1

x(eθx − 1)νX(dx).
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The Lévy process {Yt} and its distribution PY satisfy the conditions of Proposi-

tion 2.6, in particular we see that, when the diffusion component σX equals zero,

the condition 3 is guaranteed. In the Black & Scholes model we have νX(dx) = 0

and θ = (r − 1
2
σ2

X − γX)/σ2
X , so we have the new drift γY = r − 1

2
σ2

X and the

process {Yt} is the same given by the mean-correcting martingale measure. This

equality was expected, because the completeness of the Black & Scholes model

implies the existence of an unique equivalent martingale measure.

Another possible way to choose an equivalent martingale measure is to find

that one which minimizes the relative entropy. Indeed, the relative entropy repre-

sents a measure of the distance between two equivalent probability measure, and

thus a selection criteria could be to choose the equivalent martingale measure

P̃ nearer to P. Important studies on this methodology are due to Csiszar [24],

Stutzer [81], Miyahara [61], and Frittelli [32], in particular Frittelli gives sufficient

conditions for the existence of a unique equivalent martingale measure minimiz-

ing the relative entropy and shows the equivalence between the maximization of

expected exponential utility and the minimization of the relative entropy. Let

(Ω,=) be the space of real-valued cadlag functions defined on [0, T ], =t the his-

tory of paths up to t, and P and P̃ two equivalent probability measures. The

relative entropy between P and P̃ is defined as

I(P̃, P) = EP̃

[
ln

dP̃

dP

]
= EP

[
dP̃

dP
ln

dP̃

dP

]

and, introducing the strictly convex function f(x) = x ln(x),

I(P̃, P) = EP

[
f

(
dP̃

dP

)]
.

It is possible to observe that the functional P̃ → I(P̃, P) is strictly convex and

that, for any P̃, I(P̃, P) ≥ 0 and I(P̃, P) = 0 if and only if P̃ = P. Given a

stochastic model {St : t ∈ [0, T ]}, the minimal entropy martingale model is de-

fined as the martingale {S∗t : t ∈ [0, T ]} whose law P∗ minimizes the relative

entropy with respect to the law P of {St}. Under an exponential-Lévy model,
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there exists an analytic criterion for the existence of the minimal entropy martin-

gale measure and it is possible to compute it explicitly. Furthermore, the minimal

entropy martingale is still an exponential-Lévy model.

Proposition 2.7. if St = S0 exp(rt+Xt) where {Xt : t ∈ [0, T ]} is a Lévy process

with Lévy triplet (σ2, ν, b). If there exists a solution β ∈ R to the equation:

b + (β + 1
2
)σ2 +

∫ 1

−1
ν(dx)[(ex − 1)eβ(ex−1) − x]

+
∫
|x|>1

(ex − 1)eβ(ex−1)ν(dx) = 0.

Then, the minimal entropy martingale S∗t is also an exponential-Lévy process S∗t =

S0 exp(rt + X∗
t ) where {X∗

t :∈ R} is a Lévy process with Lévy triplet (σ2, ν∗, b∗)

given by:

b∗ = b + βσ2 +

∫ 1

−1

ν(dx)[xeβ(ex−1) − x],

ν∗(dx) = exp[β(ex − 1)]ν(dx).

Proof. See Fujiwara and Miyahara [33], Theorem 3.1.



Chapter 3

Option pricing under Lévy

processes

Option pricing under Lévy processes is a task very difficult, above all when the

payoff of the option depends on the path of the price process of the underly-

ing asset. Examples are lookback and barrier options which were studied (see

Boyarchenko and Levendorskǐi [13]) using the Wiener-Hopf decomposition and

analytic techniques. In the case of European path dependent options we can

easily determine the price simulating the exponential Lévy process. Appendix A

gives a description of some techniques of simulation. Instead, when the option is

American, then the simulation is not so straightforward because it is necessary

to compute a conditional expectation and thus to use the least squares Monte

Carlo method. In this chapter we propose a simple method to price American,

compound, barrier, and lookback options assuming exponential-Lévy models for

the underlying. The method is based on the idea that, given a Markov process,

we can construct a sequence of Markov chains converging weakly to the Markov

process. This idea was applied by Duan and Simonato [26] and Duan et al. [27]

to approximate Wiener processes and GARCH processes with Gaussian residu-

als in order to price American and barrier options. While, Amin [3] used this

40
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idea to approximate jump-diffusion processes and price European and American

options. Our method is equal to that one developed by Duan and Simonato

[26] and Duan et al. [27], we just propose a method to compute the transition

probabilities of the Markov chain. This discretization process presents the same

advantages of the binomial model since permits us to price path dependent con-

tingent claims. Thus, we first observe the convergence of compound option prices

in the case analyzed by Geske [37] for the Brownian motion and then we extend

the same analysis to the other three Lévy processes. While for American and bar-

rier options we just apply Duan et al.’s method to Lévy processes, for lookback

options we explain a method which allows to price these options in a Markov

chain framework. Recall that in the Black and Scholes framework there is an

analytical pricing formula for lookback options derived by Goldman et al. [38]

and extended by Conze and Viswanathan [22]. However, in lookback contracts

the maximum and/or the minimum of the underlying asset price are computed

over some prespecified dates only, such as daily, weekly or monthly. In this sense

the analytical continuous time models fail to predict the right price that in many

cases is completely different (see Cheuk and Vorst [18]).

The chapter is organized as follows. Section 1 is an overview of the main

methods used to price European options under Lévy processes. European options

can be computed easily when the density function of the underlying asset is known

in explicit form, but, for many Lévy processes, only the characteristic function

is known and, thus, an alternative method could be one based on the Fourier

transform. Moreover, when the Lévy triplet satisfies some conditions, we could

apply the stochastic calculus to determine a partial integro-differential equation

and thus to use a finite difference method. In Section 2 we explain how to build

a sequence of Markov chains converging weakly to a Lévy process. In particular,

we consider the Lévy process {Xt} at discrete times {n∆t : n = 0, 1, . . .} and

define a sequence {Y (m)
n∆t : n = 0, 1, . . .} of Markov chains so that Y

(m)
n∆t converges

in distribution to Xn∆t as m tends to ∞. In section 3 we introduce the markovian
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approach to price options when the underlying asset follows a Lévy process. In

particular, we show how to use the markovian approach to price European and

American options, and then to price three type of exotic options: compound,

barrier, and lookback options.

3.1 Review of European option pricing methods

A European call option with maturity T , strike price K, and written on an asset

with price process {St} gives the holder the right to buy the asset at date T

for the fixed price K. Since the holder at the date T can immediately sell the

asset at its price ST , the option can be seen as a contingent claim with payoff

H(ST ) = (ST −K)+ at date T . Instead, a European option is called put when

the holder can sell the asset at date T for the fixed price K, and in this case the

terminal payoff is H(ST ) = (K − ST )+. The price at time t of a European call

option with maturity T and strike price K is denoted by Ct(T, K) and, using

arbitrage arguments, we can show the so-called call-put parity:

Ct(T, K)− Pt(T, K) = St −Ke−r(T−t),

where Pt(T,K) is the price at time t of a European put on the same asset and

with the same maturity and strike price.

In this section we explain three possible methods in order to price European

options under Lévy processes. The first one is based on the density function at

time T of the Lévy process and, thus, it can be applied only when we know in

explicit form the density function. The second one is more general and uses the

characteristic function of the Lévy process, which is known in explicit form for

any Lévy process. Finally, the last one can be used only when the price process of

the underlying asset admits second moment and consists in to solve numerically

a partial integro-differential equation.
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Density function method

Under an exponential-Lévy model, the risk-neutral dynamics of the asset satisfies

St = S0e
Xt ,

where {Xt} is a Lévy process with triplet (γ, σ2, ν). Suppose that, under the

risk-neutral probability P̃, the density function of Xt is known in explicit form

and given by fP̃(x, t), and consider a European call option with maturity T and

strike price K. Then, its price C0(T, K) at time t = 0 is given by

C0(T, K) = EP̃[e−rT (ST −K)+]

= e−rT

∫ ∞

−∞
(S0e

x −K)+fP̃(x, T )dx

= e−rT

∫ ∞

log(S0/K)

(S0e
x −K)fP̃(x, T )dx

= e−rT S0

∫ ∞

log(S0/K)

exfP̃(x, T )dx− e−rT KP̃[ST > K]. (3.1)

Formula (3.1) can be applied when we model the asset log-return by one of the

NIG, VG, and Meixner processes.

Characteristic function method (Carr and Madan (1998))

This method was developed by Carr and Madan [14], which were able to determine

an analytic expression of the Fourier transform of the option price and, thus, to

propose the Fast Fourier Transform as procedure to establish the option price.

Consider a European call with maturity T and strike price K = ek and written

on asset with price process {St}. Let the risk-neutral density of the log price

sT = log(ST ) be qT (s), then the characteristic function of sT is given by

φT (u) =

∫ ∞

∞
eiusqT (u).

In this setting, the price C0(T, K), denoted by CT (k), of the European call at

time t = 0 is given by

CT (k) =

∫ ∞

k

e−rT (es − ek)qT (s)ds.
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Since the function CT (k) tends to S0 as k tends to −∞, then it is not square

integrable, and thus, in order to obtain a square integrable function, we define

the modified call price

cT (k) ≡ exp(αk)CT (k),

for α > 0. The Fourier transform of cT (k) is given by

ψT (υ) =

∫ ∞

∞
eiυkcT (k)dk.

If we find an analytic expression for ψT (υ) in terms of φT (u), then we can price

the European option using the inverse transform

CT (k) =
exp(−αk)

2π

∫ ∞

−∞
e−iυkψT (υ)dυ =

exp(−αk)

π

∫ ∞

0

e−iυkψT (υ)dυ, (3.2)

where the second equality holds because CT (k) is real and thus ψT (υ) is odd in

its imaginary part and even in its real part. We have

ψT (υ) =

∫ ∞

−∞
eiυk

∫ ∞

k

eαke−rT (es − ek)qT (s)dsdk

=

∫ ∞

−∞
e−rT qT (s)

∫ s

−∞
(es+αk − e(1+α)k)eiυkdkds

=

∫ ∞

−∞
e−rT qT (s)

[
e(α+1+iυ)s

α + iυ
− e(α+1+iυ)s

α + 1 + iυ

]
ds

=
e−rT φT (υ − (α + 1)i)

α2 + α− υ2 + i(2α + 1)υ
. (3.3)

Thus, substituting (3.3) into (3.2), the price at t = 0 of the European call is given

by

CT (k) =
exp(−αk)

π

∫ ∞

0

e−iυk e−rT φT (υ − (α + 1)i)

α2 + α− υ2 + i(2α + 1)υ
dυ. (3.4)

Consider now the right choice of the coefficient α. Indeed, a positive α guarantees

the integrability of cT (k) on the negative log strike axis, but worsens the same

condition on the positive axis. A sufficient condition for the integrability of cT (k)

on the positive log strike axis, and thus for its square integrability, is ψT (0) < ∞.

From equation (3.3), we have ψT (0) < ∞ if φT (−(α + 1)i) < ∞, and thus a

sufficient condition is

EP̃[Sα+1
T ] < ∞,
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where P̃ is the risk-neutral probability. Finally, we could use the Fast Fourier

Transform in order to solve numerically the expression (3.4). In particular, Carr

and Madan [14] show that the option price can be written as

CT (ku) ≈ exp(−αku)

π

N∑
j=1

e−i 2π
N

(j−1)(u−1)eibυjψ(υj)
η

3
(3 + (−1)j − δj−1),

where b = Nλ/2, λη = 2π/N , ku = −b + λ(u − 1), u = 1, . . . , N , υj = (j − 1)η,

and η small.

Partial integro-differential equation (PIDE) method

Consider a market where the risk-neutral dynamics of the asset satisfies the

exponential-Lévy model

St = S0e
Xt ,

where {Xt} is a Lévy process with characteristic triplet (γ, σ2, ν). Assume that

the price process {St} has finite second moment, which is equivalent to assume

∫

|y|≥1

e2yν(dy) < ∞.

Then, we can write the risk-neutral dynamics of St as

St = S0 +

∫ t

0

rSu−du +

∫ t

0

Su−σdWu +

∫ t

0

∫ ∞

−∞
(ex − 1)Su−J̃X(dudx), (3.5)

where J̃X is the compensated jump process of {Xt} and {Wt} its Brownian com-

ponent (see Cont and Tankov [21], Proposition 8.20). Given a European call on

this asset with maturity T and strike price K, we have that its price at time t is

Ct(T, K) = e−r(T−t)EP̃[(ST −K)+|=t],

where P̃ is the risk-neutral probability. The Markov property of the Lévy process

{Xt} implies that we can consider the option price Ct(T,K) as a function C(t, St)

of the time t and asset price St. Let us assume that C(t, St) ∈ C1,2. Applying the
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Ito formula for Lévy processes (see Cont and Tankov [21], Proposition 8.15) to

the discounted option price Ĉt = e−rtC(t, St) and using equation (3.5), we have

dĈt = e−rt

[
−rCt +

∂C

∂t
(t, St−) +

σ2S2
t−

2

∂2C

∂S2
(t, St−)

]
dt + e−rt ∂C

∂S
(t, St−)dSt

+e−rt

[
C(t, St−e∆Xt)− C(t, St−)− St−(e∆Xt − 1)

∂C

∂S
(t, St−)

]

= a(t)dt + dMt,

where

a(t) = e−rt

[
−rCt +

∂C

∂t
+

σ2S2
t−

2

∂2C

∂S2
+ rSt−

∂C

∂S

]
(t, St−)

+

∫ ∞

−∞
ν(dx)e−rt

[
C(t, St−ex)− C(t, St)− St−(ex − 1)

∂C

∂S
(t, St−)

]
,

dMt = ert

{
∂C

∂S
(t, St−)σSt−dWt +

∫

R
[C(t, St−ex)− C(t, St−)] J̃X(dtdx)

}
.

The next step is to show that the stochastic process {Mt} is a martingale. We

have

C(t, x)− C(t, y) = e−r(T−t)
{
E[(xeXT−t −K)+]− E[(yeXT−t −K)+]

}

≤ e−r(T−t)|x− y|E[eXT−t ]

≤ |x− y|, (3.6)

because {e−rt+Xt} is a martingale. Thus, the predictable random function ψ(t, x) =

C(t, St−ex)− C(t, St−) satisfies

E

[∫ T

0

dt

∫

R
ν(dx)|ψ(t, x)|2

]
= E

[∫ T

0

dt

∫

R
ν(dx)|C(t, St−ex)− C(t, St−)|2

]

≤ E

[∫ T

0

dt

∫

R
(e2x + 1)S2

t−ν(dx)

]

≤
∫

R
(e2x + 1)ν(dx)E

[
S2

t−dt
]

< ∞,

and, then, the compensated Poisson integral (see Cont and Tankov [21], Propo-

sition 8.8) ∫ t

0

∫ ∞

−∞
e−rt[C(t, St−ex)− C(t, St−)]J̃X(dtdx)
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is a square-integrable martingale. Moreover, by inequality (3.6), we have

‖∂C

∂S
(t, .)‖L∞ ≤ 1

and thus

E

[∫ T

0

S2
t−

∣∣∣∣
∂C

∂S
(t, St−)

∣∣∣∣ dt

]
≤ E

[∫ T

0

S2
t−dt

]
< ∞

and
∫ t

0
σSt− ∂C

∂S
(t, St−)dWt is a square-integrable martingale as well (see Cont and

Tankov [21], Proposition 8.6). Therefore, {Mt} is a square-integrable martingale,

and, since {Ĉt} is a martingale by construction, {Ĉt − Mt} is a martingale as

well. But Ĉt −Mt =
∫ t

0
a(s)ds and thus {Ĉt −Mt} is also a continuous process

with finite variation. Then, the stochastic process a(t) has to be equal to zero

P̃-almost surely (see Cont and Tankov [21], Proposition 8.9), and so the option

price C(t, S) has to satisfy the partial integro-differential equation

∂C

∂t
(t, S) + rS

∂C

∂S
(t, S) +

σ2S2

2

∂2C

∂S2
(t, S)− rC(t, S)

+

∫
ν(dy)

[
C(t, Sey)− C(t, S)− S(ey − 1)

∂C

∂S
(t, S)

]
= 0 (3.7)

on [0, T )× (0,∞) with terminal condition:

C(T, S) = (S −K)+, ∀S > 0.

The PIDE (3.7) can be solved applying a finite difference method which takes

into account the integral term. Section 12.4 of Cont and Tankov [21] is devoted

to the study of this type of numerical algorithms.

3.2 Construction of a sequence of Markov chains

converging weakly to a Lévy process

In this section we explain the Duan et al.’s procedure in order to construct a

sequence of Markov chains converging weakly to a Lévy process on a discrete

set of times. Considering the maturity T of the contingent claim, our task
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is to approximate, under the risk neutral probability P̃, the log price process

{ln(St)}0≤t≤T at times {0, ∆t, 2∆t, . . . , s∆t = T} by a sequence of Markov chains

{Y (m)
n∆t , n = 0, 1, 2, . . . , s}m=2i+1,i∈N with state space {p1, p2, . . . , pm} and tran-

sition probability matrix Q(m) = [qij]i,j=1,...,m, where m is an odd integer and

p(m+1)/2 = ln(S0). In order to fix the ideas, we adopt the mean correcting mar-

tingale measure and observe that under this measure the asset price follows

St = S0e
µt+Xt ,

where µ is given by formula (2.18) and {Xt} is one of the NIG, VG, and Meixner

processes with drift term zero. Thus, we build a sequence of Markov chains

{Y (m)
n∆t , n = 0, 1, 2, . . . , s}m=2i+1,i∈N with state space {p1, p2, . . . , pm}, converging

weakly to the risk neutral Lévy process {ln(S0)+µt+Xt : t = 0, ∆t, 2∆t, . . . , T}
as the state number m tends to infinite. Given the current price S0, we define an

interval [ln(S0)− I(m), ln(S0) + I(m)] such that

P̃ [ln(ST ) ∈ [ln(S0)− I(m), ln(S0) + I(m)]] ≈ 1.

The m states of the Markov chain are defined as pi = ln(S0) + 2i−m−1
m−1

I(m),

i = 1, . . . , m. Note that p1 = ln(S0)− I(m), pm = ln(S0) + I(m) and p(m+1)/2 =

ln(S0). In order to get the convergence, we have to guarantee that I(m) →
∞ and I(m)/m → 0 as the number of the states converges to infinity (m →
∞). For example, when the Markov process {ln(St)}0≤t≤T admits finite mean

(i.e., EP̃ (|ln(S∆t)|) < ∞), we can use I(m) = max(|z1/m|, |z1−1/m|), where zk is

the k% quantile (under the risk-neutral probability) of ln(ST ). Since I(m) →
∞ and I(m)/m → 0, we can guarantee the convergence of the Markov chain

sequence. However, the speed of convergence is strictly linked to the choice of

I(m). Thus, we have to choose opportunely I(m). Duan et al. suggest to use

I(m) = (2 + ln(ln(m))) σ
√

T for the Brownian Motion. When we assume the

mean correcting risk neutral valuation for the NIG, VG, and Meixner processes,

we observe an higher speed of convergence using I(m) = z + log(log(m))
2

, where
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with log we mean logarithm with base 10, z = max(|z0.05|, |z0.95|), and z0.05 and

z0.95 are respectively the 5% and 95% quantiles of the distribution µT + XT . In

order to construct the Markov chain, we define the cells (cj, cj+1], j = 1, . . . , m,

where c1 = −∞, cj = (pj + pj−1)/2, j = 2, . . . ,m, and cm+1 = ∞, and observe

that c2 → −∞, cm →∞, and

cj+1 − cj = 2

(
I(m)

m− 1

)
→ 0, j = 2, . . . ,m− 1,

as m →∞. The transition probability between the i-th state and the j-th state

is given by

qij = P̃[pi + µ∆t + X∆t ∈ (cj, cj+1]],

and by the convergence to zero of the cell width we can deduce the weak conver-

gence of the sequence of Markov chains {Y (m)
n∆t , n = 0, 1, 2, . . . , s}m=2i+1,i∈N to the

Lévy process {ln(S0) + µt + Xt : t = 0, ∆t, 2∆t, . . . , T} as m → ∞. Indeed, we

have

P̃[Y
(m)
n∆ ≤ y|Y (m)

(n−1)∆t = pi] =
∑

j:pj≤y

qij

=
∑
j≤j∗

P̃[pi + µ∆t + X∆t ∈ (cj, cj+1]],

where j∗ = max{j : pj ≤ y}, and, by the convergence to zero of the cell width,

P̃[Y
(m)
n∆t ≤ y|Y (m)

(n−1)∆t = pi] → P̃[pi + µ∆t + X∆t ≤ y]

as m →∞. Therefore, as a consequence of Theorem 2.3, the sequence of Markov

chains {Y (m)
n∆t , n = 0, 1, 2, . . . , s} converges weakly to the Lévy process {ln(S0) +

µt + Xt} at times {0, ∆t, 2∆t, . . . , s∆t}.
Fixed the m values pi, we can always determine other m values starting form

any other state by pi
k = pi + 2k−m−1

m−1
I(m). In particular, pi

k = pj if and only if

k = j − i + m+1
2

, that is

pi
k = pi +

2k −m− 1

m− 1
I(m) = ln(S0) +

2(i + k − m+1
2

)−m− 1

m− 1
I(m).
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Then, we can determine for any state pi the cells (ci
k, c

i
k+1], k = 1, . . . , m, where

ci
1 = pi

1 − log(log(m))
2

, ci
k = (pi

k + pi
k−1)/2, k = 2, . . . , m, ci

m+1 = pi
m + log(log(m))

2
,

and, defining k(j) = j− i+ m+1
2

, j = 1, . . . , m, we can compute the entries of the

transition matrix Q(m) by:

i < m+1
2

qij =





1+m+1
2
−i∑

k=1

∫ ci
k+1−pi−µ∆t

ci
k−pi−µ∆t

fX∆t
(x)dx if j = 1

∫ ci
k(j)+1

−pi−µ∆t

ci
k(j)

−pi−µ∆t
fX∆t

(x)dx if j = 2, . . . , i + m−1
2

0 if j = i +
m + 1

2
, . . . , m,

if i > m+1
2

qij =





0 if j = 1, . . . , i− m+1
2∫ ci

k(j)+1
−pi−µ∆t

ci
k(j)

−pi−µ∆t
fX∆t

(x)dx if j = i− m−1
2

, . . . ,m− 1
m∑

k=m−i+m+1
2

∫ ci
k+1−pi−µ∆t

ci
k−pi−µ∆t

fX∆t
(x)dx if j = m,

if i = m+1
2

:

qij =

∫ ci
j+1−pi−µ∆t

ci
j−pi−µ∆t

fX∆t
(x)dx, j = 1, . . . , m,

where fX∆t
(·) is the density function of X∆t. When m increases the intervals

(ci
k, c

i
k+1] become so small that we can well approximate any integral with the

area of only one rectangle, i.e.,

∫ ci
k+1−pi−µ∆t

ci
k−pi−µ∆t

fX∆t
(x)dx ≈ fX∆t

(
ci
k + ci

k+1

2
− pi − µ∆t

)
(ci

k+1 − ci
k).

3.3 Option pricing under the markovian approach

In this section we show how to use a sequence of Markov chains {Y (m)
n∆t : n =

0, 1, . . . , s}m=2i+1,i∈N converging weakly to {ln(Sn∆t) : n = 0, 1, . . . , s}, where

s∆t = T , to price European, American, compound, barrier, and lookback options.

This method possesses the same ductility of the binomial model and thus it can be
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NIG α = 153.866 β = 7.603 δ = 1.562 µ = −0.00029 D = 0.0653

VG θ = 0.0756 σ = 0.0984 ν = 0.0024 µ = 0.00055 D = 0.0667

Meixner α = 0.0146 β = 0.1116 δ = 94.676 µ = −0.00026 D = 0.0661

Table 3.1: MLE of parameters and Kolmogorov-Smirnoff test of daily S&P500 log-

returns assuming or a Normal Inverse Gaussian process, or a Variance-Gamma

process, or a Meixner process.

used to determine the price of almost every path dependent contingent claim. In

this section we also exhibit some numerical results, where it is possible to observe

the price convergence. These results concern the market Index S&P500 observing

its daily prices from January 2006 to March 2007. In Table 3.1 we display the

maximum likelihood estimates of parameters on annual basis of the NIG, VG, and

Meixner processes. In the last column we show Kolmogorv-Smirnoff distances

D = sup
x∈R

|F (x)− FE(x)|,

where FE is the empirical cumulative distribution and F the assumed distribution.

Considering that the Brownian Motion hypothesis gives a value of the distance

D = 0.0766, then the other three distributional hypotheses present a better

approximation. This empirical result is confirmed by the QQ-plot analysis of

Figure 3.1. Thus we can see how the empirical and theoretical distributions are

closer on the whole real line when we use the NIG or VG distributions to model

the log-returns.

3.3.1 European options

When the maturity of a European option is T and we consider s steps (i.e.,

s∆t = T ), then the price of the European option is given by the ((m + 1)/2)-th

component of the price vector

V (p, 0) = e−rT Qs
(m)Z,
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Figure 3.1: QQ-plots among the sample and the Gaussian, NIG, and VG distri-

butions.

NIG process VG process Meixner process

States weekly daily weekly daily weekly daily

m=101 1.7428 1.7984 1.6795 1.7489 1.7343 1.8022

m=501 1.7442 1.7442 1.6809 1.6852 1.7357 1.7357

m=1001 1.7442 1.7442 1.6810 1.6840 1.7358 1.7358

m=1501 1.7442 1.7442 1.6810 1.6810 1.7358 1.7358

m=2001 1.7442 1.7442 1.6810 1.6810 1.7358 1.7358

df method 1.7442 1.6810 1.7358

Table 3.2: European put option prices under NIG, VG, and Meixner processes.

where Z is the m-dimensional vector of payoff at the maturity correspondent to

the vector of log prices p = [p1, p2, . . . , pm]. So, we assume that the payoff vector

is given by Z = [gw,1, . . . , gw,m]′, where gw,i = max{w[exp(pi)−K], 0}, w is equal

to 1 for a call and −1 for a put, and K is the strike price.

Analogously to the example reported by Duan and Simonato [26] with the

Black and Scholes model, in Table 3.2 we show the convergence of this method-

ology under the three different distributional assumptions. In order to determine

some prices which refer to the same underlying stock process, for this table and

all the following ones we use the mean correcting risk neutral measure applied to

the parameters estimated in Table 3.1. Table 3.2 reports European put option
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prices at the money under NIG, VG, and Meixner processes on a stock price with

current value S0 = 100 euro, maturity T = 0.5 years, and short interest rate

r = 5% a.r.. Moreover, we consider that the temporal horizon is shared either in

24 periods or in 126 periods (i.e. ∆t is equal respectively either to one week or

to one day). In both cases we observe the convergence of the option prices with

respect to the number of the states m. The last row reports put option prices

computed by the density function (df) method described in Section 3.1.

3.3.2 American options

An option is called American if its holder can choose to exercise it before the

maturity. Consider an American option with maturity T and strike price K,

and assume that the contract may be exercised at times {0, ∆t, 2∆t, . . . , s∆t},
where T = s∆t. Fixed the number of states m we build the vector of the

state values p = [p1, p2, . . . , pm] of an approximating Markov chain {Y (m)
n∆t : n =

0, 1, . . . , s}m=2i+1,i∈N, with risk-neutral transition matrix Q(m). Since the states

remain the same for all the time steps, then at each time {0, ∆t, 2∆t, . . . , s∆t}
there is an unique payoff vector

gw(p,K) = [gw,1, ..., gw,m]′,

where gw,i = max{w[exp(pi) −K], 0}, and w is equal to 1 for a call and −1 for

a put. For every couple of vectors a = [a1, ..., am]′, b = [b1, ..., bm]′ we assume the

vectorial notation max[a, b] := [max(a1, b1), max(a2, b2), ..., max(am, bm)]′. There-

fore, the price of the American option can be computed using the recursive vec-

torial formula:

Vw(p, T ) = gw(p, K),

Vw(p, ti) = max[gw(p,K), e−r∆tQ(m)Vw(p, ti+1)],

i = 0, . . . , s− 1, ti = 0, ∆t, 2∆t, ..., s∆t = T.

The option price at time 0 is given by the ((m + 1)/2)-th element of V (p, 0).
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NIG process VG process Meixner process

K=98 K=102 K=98 K=102 K=98 K=102

m=501 1.2419 3.0101 1.2067 2.9527 1.2349 3.0025

delta -0.2919 -0.5686 -0.2914 -0.5739 -0.2914 -0.5692

gamma 0.0560 0.0816 0.0572 0.0829 0.0561 0.0820

m=1001 1.2419 3.0101 1.1882 2.9529 1.2349 3.0025

delta -0.2919 -0.5686 -0.2881 -0.5732 -0.2914 -0.5692

gamma 0.0560 0.0816 0.0571 0.0847 0.0561 0.0820

m=1501 1.2419 3.0101 1.1869 2.9509 1.2349 3.0025

delta -0.2919 -0.5686 -0.2879 -0.5732 -0.2914 -0.5692

gamma 0.0560 0.0816 0.0571 0.0848 0.0561 0.0820

m=2001 1.2419 3.0101 1.1868 2.9507 1.2349 3.0025

delta -0.2919 -0.5686 -0.2879 -0.5732 -0.2914 -0.5692

gamma 0.0560 0.0816 0.0571 0.0848 0.0561 0.0820

m=2501 1.2419 3.0101 1.1868 2.9508 1.2349 3.0025

delta -0.2919 -0.5686 -0.2879 -0.5732 -0.2914 -0.5692

gamma 0.0560 0.0816 0.0571 0.0848 0.0561 0.0820

Table 3.3: Delta, Gamma, and American put option prices under NIG, VG, and

Meixner processes.

When we price a contingent claim with the markovian approach we get the

vector Vw(p, 0) whose elements are option prices corresponding to discrete values

of the stock price. Thus we can compute the Greeks in a way very similar to the

finite-difference approach using the option prices adjacent to the (m + 1)/2)-th

element of V (p, 0). However, as suggested by Duan et al., in order to obtain

higher quality Greeks it is advisable to have adjacent prices very close to the

initial stock price. This approximation problem can be easily solved considering

the states pm+1
2

+ ε, and pm+1
2
− ε in the Markov chain with ε opportunely small.
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In this way we can use the following approximation of delta and gamma values:

∆ =
∂V

∂ ln S0

1

S0

≈
V

(
pm+1

2
+ ε, 0

)
− V

(
pm+1

2
− ε, 0

)

2ε

1

S0

,

Γ =
∂

∂S0

(
∂V

∂ ln S0

1

S0

)
≈


V

(
pm+1

2
− ε, 0

)
− V

(
pm+1

2
+ ε, 0

)

2ε
+

+
V

(
pm+1

2
+ ε, 0

)
+ V

(
pm+1

2
− ε, 0

)
− 2V

(
pm+1

2
, 0

)

ε2


 1

S2
0

.

Consider American put options with exercise prices K=98 euro or K=102 euro

under the assumption the log returns follow either a NIG, or a VG, or a Meixner

process. We use the mean correcting risk neutral measure applied to the param-

eters estimated in Table 3.1 for puts on a stock price with current value S0 = 100

euro, maturity T = 0.5 years, short interest rate r = 5% a.r.. In Table 3.3 we

report the option prices and the values of delta and gamma when we assume

ε = 10−6. Even in this case we observe the convergence of these values for a

number of states m greater than 500.

3.3.3 Exotic options

A European or American option is called exotic if its payoff at time t depends on

the path up to t of the underlying asset. In this section we study three particular

exotic options, compound, barrier, and lookback options, and describe how to

price these options with the markovian approach. Therefore, we assume that there

is a sequence of Markov chains {Y (m)
n∆t : n = 0, 1, 2, . . . , s} converging weakly under

the risk-neutral measure to the log return process at times {0, ∆t, 2∆t, . . . , s∆t =

T}. In particular, the proposed methodology is innovative for compound, and

lookback options that have not been dealt by Duan and Simonato [26] and Duan

et al. [27].
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Compound options

Compound options are options written on options and may be of four types: a

call on call, a put on call, a call on put, and a put on put. Consider a call on

call. At the first maturity T1 the compound option holder has the right to pay

the first exercise price K1 and get a call. Then, the call gives to the compound

option holder the right to buy the underlying asset at the second maturity T2

paying the second exercise price K2.

The markovian approach allows to price easily compound options. Using the

recursive system to price an option with maturity T2 − T1 and exercise price K2,

we find a vector which represents the possible prices at time T1 of the American

(or European) option on which the first option is written. Denote this vector as

Ṽw1(p, T1) = [Ṽw1,1, ..., Ṽw1,m]′ (3.8)

where w1 is equal to 1 for a call and −1 for a put. The payoff at time T1 of the

compound option is given by the vector

Vw2(p, T1) = max{w2[Ṽw1(p, T1)−K11], 0}, (3.9)

where 1 and 0 are respectively vectors of ones and zeros, and w2 is equal to 1

for a call and −1 for a put. Thus, using again the recursive system with s steps

(i.e., s∆t = T1), the price at time 0 of an European option on an American (or

European) option is given by the ((m+1)/2)-th element of the vector Vw2(p, 0) =

e−rT1Qs
(m)Vw2(p, T1).

Table 2.4 exhibits the prices of compound options obtained under Brownian

motion, NIG, VG, and Meixner processes (considering different number of states

m). In particular, we compare the results obtained under the Brownian Motion

and those given by the Geske’s closed formula (see Geske (1979)). These prices

concern European calls on European calls, where the current asset price is S0 =

100, the first call has strike price K1 and maturity T1 = 0.25 years, and the

second call has strike price K2 and maturity T2 = 0.25 years. We consider
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Brownian motion Brownian motion

K1 = 2 K2 = 98 K2 = 100 K2 = 102 K1 = 1.5 K2 = 98 K2 = 100 K2 = 102

m=101 3.7530 2.5803 1.6764 m=101 4.1629 2.9332 1.9609

m=501 3.7540 2.5851 1.6747 m=501 4.1637 2.9381 1.9598

m=1001 3.7542 2.5851 1.6747 m=1001 4.1637 2.9385 1.9598

m=1501 3.7542 2.5852 1.6746 m=1501 4.1637 2.9386 1.9598

m=2001 3.7542 2.5852 1.6747 m=2001 4.1637 2.9386 1.9597

Geske 3.7542 2.5852 1.6747 Geske 4.1637 2.9386 1.9597

NIG process NIG process

K1 = 2 K2 = 98 K2 = 100 K2 = 102 K1 = 1.5 K2 = 98 K2 = 100 K2 = 102

m=101 3.7380 2.5584 1.6607 m=101 4.1479 2.9127 1.9438

m=501 3.7360 2.5655 1.6577 m=501 4.1459 2.9189 1.9415

m=1001 3.7359 2.5660 1.6574 m=1001 4.1459 2.9190 1.9413

m=1501 3.7359 2.5660 1.6575 m=1501 4.1459 2.9191 1.9414

m=2001 3.7359 2.5660 1.6575 m=2001 4.1458 2.9191 1.9414

Meixner process Meixner process

K1 = 2 K2 = 98 K2 = 100 K2 = 102 K1 = 1.5 K2 = 98 K2 = 100 K2 = 102

m=101 3.7304 2.5519 1.6552 m=101 4.1394 2.9065 1.9365

m=501 3.7289 2.5578 1.6494 m=501 4.1389 2.9107 1.9330

m=1001 3.7288 2.5580 1.6496 m=1001 4.1388 2.9108 1.9329

m=1501 3.7287 2.5580 1.6495 m=1501 4.1388 2.9110 1.9329

m=2001 3.7287 2.5580 1.6495 m=2001 4.1387 2.9110 1.9330

VG process VG process

K1 = 2 K2 = 98 K2 = 100 K2 = 102 K1 = 1.5 K2 = 98 K2 = 100 K2 = 102

m=101 3.6634 2.4874 1.5795 m=101 4.0738 2.8397 1.8610

m=501 3.6800 2.5043 1.5965 m=501 4.0904 2.8564 1.8776

m=1001 3.6805 2.5048 1.5971 m=1001 4.0909 2.8570 1.8781

m=1501 3.6806 2.5049 1.5971 m=1501 4.0910 2.8571 1.8782

m=2001 3.6807 2.5050 1.5972 m=2001 4.0911 2.8571 1.8783

Table 3.4: Compound option prices under Brownian motion, NIG, VG, and

Meixner processes.
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two possible strike prices K1 (K1 = 1.5, 2) and three possible strike prices K2

(K2 = 98, 100, 102). Moreover, the short interest rate is r = 5%, the annual

volatility of the Brownian motion is σ = 10.14%, and the parameters of the NIG,

Meixner and VG processes are always those ones of Table 3.1.

Barrier options

Barrier options may be of two types, knock-out and knock-in. We proceed ex-

plaining how to use the markovian approach to price knock-out options and refer

to Duan et al. for knock-in options. An option is said knock-out when it becomes

worthless if the underlying asset touches or crosses a constant barrier H at any

monitoring time. The barrier H may be lower or upper. A barrier option is dou-

ble when there are two barriers and the underlying asset must remain between

these two barriers at the monitoring days. Following Duan et al., we introduce an

auxiliary variable at which takes the value 1 if the barrier condition is triggered

before or at time t and the value 0 otherwise. If we denote with v(pi, t; at) the

option price at t when the asset log return equals pi, then for a knock-out option

we have:

1. for every time

vw(pi, tk; atk = 1) = 0,

2. for ts = s∆t = T

vw(pi, T ; aT = 0) = max{w[exp(pi)−K], 0},

3. tk = k∆t, k = 0, 1, . . . , s− 1,

vw(pi, tk; atk = 0) = max{gw(pi, K, atk = 0), e−r∆t×
×∑m

j=1 P̃[Y
(m)
tk+1

= pj, atk+1
= 0|Y (m)

tk
= pi, atk = 0]v(pj, tk+1; atk+1

= 0)},
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where w is equal to 1 for a call and −1 for a put, K is the strike price, {Y (m)
tk

:

tk = 0, ∆t, 2∆t, . . . , s∆t} is the Markov chain with states number m, and

gw(pi, K, atk = 0) =





max{w[exp(pi)−K], 0} if American

0 if European.

To compute the transition probability, we define the set of the states for which

the option is knocked out and becomes worthless:

Λ =





{i ∈ {1, . . . , m} : exp(pi) ≤ H} down− and− out option

{i ∈ {1, . . . , m} : exp(pi) ≥ H∗} up− and− out option

{i ∈ {1, . . . , m} : exp(pi) ≤ H or exp(pi) ≥ H∗} double option

When the states pi and pj do not belong to Λ, the conditional probabilities are

the same of the matrix Q(m) = [qij] as described in Section 3.2, otherwise they

are equal to zero. Therefore, the probability to transit from state pi to state pj

is given by:

πij = P̃[Y
(m)
tk+1

= pj, atk+1
= 0|Y (m)

tk
= pi, atk = 0]

=





qij if i ∈ Λc and j ∈ Λc

0 otherwise

where Λc is the complement of Λ. Therefore the matrixes that define the condi-

tional probabilities (that we call quasi-transition probabilities matrices) for the

down-and-out, up-and-out, and double barrier-out options are respectively given

by:

ΠDO =


 0k−1,k−1 0k−1,m−k+1

0m−k+1,k−1 Q(k, m; k, m)




ΠUO =


 Q(1, l; 1, l) 0l,m−l

0m−l,l 0m−l,m−l




ΠDBO =




0k−1,k−1 0k−1,l−k+1 0k−1,m−l

0l−k+1,k−1 Q(k, l; k, l) 0l−k+1,m−l

0m−l,k−1 0m−l,l−k+1 0m−l,m−l



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where k is the index number of the log price located immediately above the lower

barrier H, l is the index number of the price located immediately below the upper

barrier H∗, 0i,j is an i × j matrix of zeros, and Q(i, j; k, l) is the sub-matrix of

Q(m) taken from rows i to j and from columns k to l inclusively. Thus the knock-

out option price with maturity T and strike price K can be computed using the

recursive vectorial formula:

Vw(p, T ; aT = 0) = [vw(p1, T ; aT = 0), . . . , vw(pm, T ; aT = 0)]′

and for tk = k∆t, k = 0, . . . , s− 1

Vw(p, tk; atk = 0) = [vw(p1, tk; atk = 0), . . . , vw(pm, tk; atk = 0)]′

= max[gw(p,K, atk = 0), e−r∆tΠVw(p, tk+1; atk+1
= 0)],

where

gw(p,K, atk = 0) = [gw(p1, K, atk = 0), ..., gw(pm, K, atk = 0)]′,

and Π is either ΠDO, or ΠUO, or ΠDBO, depending on the nature of the knock-

out option. The knock-out option price at time 0 is given by the ((m + 1)/2)-th

element of Vw(p, 0; a0 = 0). Barrier option prices are very sensitive to the position

between discrete asset prices and barrier value, thus to reduce this effect it is

important to define the cells of the markovian approach so that the barrier value

correspond exactly to the border of a cell (ci
k, c

i
k+1].

Table 3.5 exhibits European barrier option prices. We consider two possible

strike prices K=100 and K=90 for different fixed barriers and different distri-

butional assumptions (NIG, VG, and Meixner). Even for this table we assume

that the temporal horizon is shared either in 24 periods or in 126 periods (i.e.,

∆t is equal respectively either to one week or to one day). These prices refer to

European down-out and up-out call options on a stock price with current value

S0 = 100 euro, maturity T = 0.5 years, short interest rate r = 5% a.r.. Similarly,

Table 3.6 displays American barrier option prices on a stock with the same current
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European down-out call options Eurpean up-out call options

under NIG process under NIG process

Strike price Weekly Daily Strike price Weekly Daily

K=100 H=94 H=98 H=94 H=98 K=90 H∗ = 102 H∗ = 106 H∗ = 102 H∗ = 106

m=501 4.1358 3.1026 4.1059 2.8162 m=501 1.1594 4.1648 0.9289 3.8133

m=1001 4.1359 3.1033 4.1059 2.8183 m=1001 1.1563 4.1616 0.9203 3.8025

m=1501 4.1359 3.1031 4.1058 2.8177 m=1501 1.1568 4.1607 0.9217 3.7997

m=2001 4.1359 3.1029 4.1059 2.8171 m=2001 1.1565 4.1607 0.9206 3.7996

m=2501 4.1359 3.1028 4.1059 2.8168 m=2501 1.1564 4.1604 0.9204 3.7995

European down-out call options Eurpean up-out call options

under VG process under VG process

Strike price Weekly Daily Strike price Weekly Daily

K=100 H=94 H=98 H=94 H=98 K=90 H∗ = 102 H∗ = 106 H∗ = 102 H∗ = 106

m=501 4.0826 3.0813 4.0536 2.7955 m=501 1.1844 4.2817 0.9680 4.0230

m=1001 4.0825 3.0820 4.0625 2.8071 m=1001 1.1847 4.2820 0.9439 3.9200

m=1501 4.0825 3.0812 4.0553 2.7991 m=1501 1.1847 4.2818 0.9420 3.9126

m=2001 4.0825 3.0815 4.0544 2.7996 m=2001 1.1849 4.2820 0.9425 3.9123

m=2501 4.0825 3.0813 4.0546 2.7991 m=2501 1.1847 4.2818 0.9420 3.9119

European down-out call options Eurpean up-out call options

under Meixner process under Meixner process

Strike price Weekly Daily Strike price Weekly Daily

K=100 H=94 H=98 H=94 H=98 K=90 H∗ = 102 H∗ = 106 H∗ = 102 H∗ = 106

m=501 4.1288 3.0986 4.0893 2.8123 m=501 1.1610 4.1780 0.9301 3.8265

m=1001 4.1288 3.0993 4.0993 2.8145 m=1001 1.1579 4.1730 0.9210 3.8096

m=1501 4.1288 3.0991 4.0991 2.8139 m=1501 1.1579 4.1735 0.9210 3.8115

m=2001 4.1288 3.0989 4.0990 2.8132 m=2001 1.1580 4.1730 0.9214 3.8099

m=2501 4.1288 3.0988 4.0991 2.8129 m=2501 1.1579 4.1732 0.9211 3.8103

Table 3.5: European barrier option prices under NIG, VG, and Meixner processes.

asset price, short interest rate and maturity. In particular, we consider American

down-out and up-out put option prices assuming a strike price K = 101 and that

the early exercise and the monitoring are on daily basis. As for American and

European vanilla options Tables 3.5 and 3.6 show a good tendency towards a

specific price when we increase the number of states of the Markov chain.

Lookback options

An European floating strike lookback put option gives the right to sell the under-

lying asset at maturity for the maximum price monitored discretely during the
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American down-out put

with daily monitoring

Strike price NIG process VG process Meixner process

K=101 H=96 H=99 H=96 H=99 H=96 H=99

m=501 2.2453 1.1477 2.2568 1.1579 2.2496 1.1452

m=1001 2.2453 1.1462 2.2394 1.1540 2.2496 1.1438

m=1501 2.2454 1.1459 2.2382 1.1535 2.2497 1.1436

m=2001 2.2454 1.1458 2.2380 1.1534 2.2497 1.1434

m=2501 2.2454 1.1455 2.2380 1.1533 2.2498 1.1432

American up-out put

with daily monitoring

Strike price NIG process VG process Meixner process

K=101 H∗ = 101 H∗ = 104 H∗ = 101 H∗ = 104 H∗ = 101 H∗ = 104

m=501 1.1425 2.0802 1.1174 2.0635 1.1302 2.0747

m=1001 1.1334 2.0800 1.1165 2.0417 1.1308 2.0744

m=1501 1.1335 2.0793 1.1164 2.0407 1.1309 2.0736

m=2001 1.1341 2.0793 1.1164 2.0405 1.1316 2.0736

m=2501 1.1337 2.0795 1.1165 2.0404 1.1312 2.0737

Table 3.6: American down-out and up-out put option prices under NIG, VG, and

Meixner processes; both early exercise and monitoring are on daily basis.

time to maturity, while a call gives the right to buy the underlying asset for the

minimum price. The option is American if the right is extended to the whole

time to maturity. The pricing and hedging for a lookback option can be faced

under the assumption that the asset follows a Markov chain. Consider an Euro-

pean floating strike lookback put option with maturity T and monitored at times

k = iT/n, where n+1 is the number of dates of monitoring and i = 0, 1, . . . , n. In

this setting it is implicitly assumed that the asset is monitored at constant time

intervals ∆t = T/n. The payoff at maturity T is equal to

MT − ST ,



Financial models with Lévy processes 63

where

Mk = max
{

S iT
n

: i = 0, 1, . . . , nk/T
}

.

The evolution of the asset price {St} at times k = iT/n, i = 0, 1, . . . , n, is

described under the risk-neutral probability Q by the Markov chain {X̃(m)
i =

exp(Y
(m)
i ) : i = 0, 1, . . . , n} with state number m and transition matrix Q(m) =

[qij]i,j=1,...,m. The random variables X̃i, i = 1, . . . , n, can assume the ordered

values x̃(j), j = 1, . . . , m, (with x̃(j) < x̃(j + 1)). Let us define the function

Zk(h,w),

where h,w = 1, . . . , m, and k = iT/n, i = 0, 1, . . . , n. Zk(h,w) is the value at

time k of a contingent claim with final payoff MT − ST when the current asset

price is equal to x̃(w) and the maximum asset price from time 0 to time k −∆t

has been x̃(h). Therefore, at time T we consider the final payoff matrix:



0 0 · · · 0

ZT (2, 1) 0 · · · 0
...

...
. . .

...

ZT (m, 1) ZT (m, 2) · · · 0




.

According to the risk-neutral pricing, at time T −∆t we have

ZT−∆t(h,w) =
m∑

j=1

qwjZT (h, j)e−r∆t, if h > w, (3.10)

ZT−∆t(h,w) =
m∑

j=1

qwjZT (w, j)e−r∆t, if h ≤ w. (3.11)

Formulas (3.10) and (3.11) have a quite immediate explanation: qwj is just the

probability to move from the state x̃(w) to the state x̃(j); on the right of (3.10)

we have ZT (h, j) because x̃(h) > x̃(w) and thus the maximum at time T −∆t is

x̃(h), while on the right of (3.11) we have ZT (w, j) because x̃(h) ≤ x̃(w) and the

maximum is x̃(w); e−r∆t is the discount factor. Iterating the procedure, at time

k we obtain

Zk(h,w) =
m∑

j=1

qwjZk+∆t(max(h,w), j)e−r∆t. (3.12)
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After n backward steps we obtain a matrix whose element Z0(h, w) is the value at

time 0 of the contingent claim with payoff MT − ST when the current asset price

is x̃(w) and the maximum before time 0 has been x̃(h). Therefore, the price of

the contingent claim is given by any value Z0(h, m+1
2

) with h ≤ m+1
2

. American

style options can be priced using the formula for k = iT/n, i = 0, 1, . . . , n− 1,

Zk(h,w) = max

{
m∑

j=1

qwjZk+∆t(max(h,w), j)e−r∆t, x̃(h)− x̃(w)

}
,

and then taking the element Z0

(
h, m+1

2

)
with h ≤ m+1

2
.

In order to show the methodology, we consider a simple numerical example.

Let us assume that we have only three times of monitoring, t = 0, 1, 2. Thus, the

maturity of the European lookback put is T = 2. The asset price is described by

the Markov chain {X̃(5)
i , i = 0, 1, 2} with state vector

x̃ =




97

98

100

102

103




and transition matrix

Q =




2/5 3/10 1/5 1/10 0

1/5 2/5 1/5 3/20 1/20

1/10 1/5 2/5 1/5 1/10

1/20 3/20 1/5 2/5 1/5

0 1/10 1/5 3/10 2/5




.

Thus, the current asset price is S = 100 and the function Z2(h,w) is given by

Z2(h,w) =




0 0 0 0 0

1 0 0 0 0

3 2 0 0 0

5 4 2 0 0

6 5 3 1 0




,
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where Z2(h,w) = max(x̃(h) − x̃(w), 0), h,w = 1, . . . , 5, and x̃(h) and x̃(w) are

the h-th and w-th element of the state vector x̃. Now, assuming that the short

interest rate is r = 5% and using formula (3.12), we obtain

Z1(h,w) =




0 0.1902 0.6659 1.1890 1.3317

0.3805 0.1902 0.6659 1.1890 1.3317

1.7122 1.3317 0.6659 1.1890 1.3317

3.4244 2.8537 1.9976 1.1890 1.3317

4.3757 3.7574 2.8537 1.9500 1.3317




and

Z0(h,w) =




0.2941 0.5044 1.0225 1.6559 1.9635

0.4388 0.5044 1.0225 1.6559 1.9635

1.2713 1.9121 1.0225 1.6559 1.9635

2.6105 2.3503 1.9816 1.6559 1.9635

3.4655 3.1466 2.7145 2.2825 1.9635




.

Then, in this simple example, we have that the price of the lookback put is

given by Z0(h, m+1
2

) = 1.0255 for h ≤ m+1
2

(i.e., Z0(1, 3) = Z0(2, 3) = Z0(3, 3) =

1.0225).

In Table 2.7 we show the prices of European and American lookback put

options, based on daily and weekly monitoring under the Brownian Motion and

NIG, VG, and Meixner processes. The current asset price, the short interest rate

and the maturity are S0 = 100, r = 5%, and T = 0.25, respectively. We compare

the results for the European put with NIG and the VG processes with the prices

obtained with 1000000 Montecarlo simulations and we obtain that the prices are

respectively 2.6653 and 2.6025 with weekly monitoring and 3.0564 and 3.0011

with daily monitoring. Moreover we could observe that the results obtained with

Montecarlo simulations are not very stable even when we simulate ten millions of

values. While the prices obtained with the markovian approach are much more

stable even with one thousand of states. As a matter of fact, for the European put

with NIG and the VG processes we get 2.6691 and 2.6009 with weekly monitoring
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European lookback put

Brownian motion NIG process VG process Meixner process

weekly daily weekly daily weekly daily weekly daily

m=501 2.7121 3.1344 2.6680 3.0511 2.5998 3.0058 2.6605 3.0439

m=801 2.7125 3.1355 2.6683 3.0524 2.6000 2.9866 2.6609 3.0452

m=1001 2.7126 3.1358 2.6684 3.0528 2.6001 2.9843 2.6610 3.0456

m=1501 2.7127 3.1361 2.6685 3.0531 2.6002 2.9832 2.6611 3.0459

American lookback put

Brownian motion NIG process VG process Meixner process

weekly daily weekly daily weekly daily weekly daily

m=501 2.8587 3.2919 2.8176 3.2253 2.7528 3.1780 2.8113 3.2195

m=801 2.8695 3.3216 2.8180 3.2266 2.7532 3.1646 2.8117 3.2209

m=1001 2.8696 3.3218 2.8181 3.2269 2.7533 3.1630 2.8118 3.2212

m=1501 2.8697 3.3221 2.8182 3.2273 2.7534 3.1624 2.8119 3.2215

Table 3.7: European and American lookback put option prices with weekly and

daily monitoring under Brownian motion and NIG, VG, and Meixner processes.

and 3.0534 and 2.9838 with daily monitoring. Thus even if these prices are much

more near to those obtained with the Markovian approach they require much

more computational time and present an higher level of instability.



Chapter 4

Portfolio selection and risk

management models

This chapter studies portfolio selection and risk management models under the

assumption of asset returns distributed as multidimensional subordinated Lévy

processes. In particular, we suggest two distributional hypotheses, the Normal

Inverse Gaussian and Variance Gamma distribution. As explained in the previous

chapters, the sample data often display a certain level of skewness and kurtosis

greater than the Gaussian one. Thus, in order to describe better the random be-

haviour of asset returns, several alternative distributional assumptions have been

proposed in literature (see, among the others, Ortobelli et al. [65] and Rachev

and Mittnik [70]). Subordinated Brownian motions are stochastic processes whose

distributions at any fixed time can have skewness different from zero and kurtosis

greater than three. Besides, we often observe that Lévy processes present bet-

ter Kolmogorov-Smirnov and Anderson-Darling tests. Therefore, subordinated

Brownian motions can be good substitutes to the normality assumptions.

In our analysis asset log returns are modeled as multidimensional time-changed

Brownian motion where the subordinator follows either an Inverse Gaussian pro-

cess or a Gamma process. In this framework any two assets are characterized by

67
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the same subordinator, thus correlation coefficients differ from zero even when

the components of the multidimensional Brownian motion are independent (see

Cont and Tankov [21], chapter 5) and joint extremely events can be more possi-

ble. Moreover, subordinated Brownian motions take into account the jumps often

observed in the stock prices that could imply large losses for the investors. Under

these different distributional assumptions we discuss static and dynamic portfo-

lio selection models in a mean-risk framework. In particular, we compare these

models with the assumption that the log returns follow a Brownian motion and

evaluate the distributional hypotheses by the point of view of several typologies

of investors that recalibrate periodically their portfolios:

a) investors with exponential utility functions,

b) investors that maximize the mean-Value at Risk ratio.

Moreover, we present a model where portfolio choices are taken under a mean-

variance-skewness framework.

Risk management is studied describing two possible modeling under Lévy

distributions. The first one extends the EWMA RiskMetrics model and describes

conditional portfolio returns as either NIG distributions or VG distributions.

The conditional heteroscedastic volatility follows an exponential weighted moving

average model. The second modeling generalizes the GHICA model of Chen et al.

[17], and, after an Independent Component Analysis, describes each stochastic

innovation through the Lévy distribution which better describes it. In this way

we could have stochastic innovations with semi-heavy tails and others with heavy

tails.

The chapter is organized as follows. Section 4.1 shows a first empirical com-

parison, where we assume several distributions for the market portfolio. Section

4.2 presents a multi-dimensional model where portfolio log returns follow sub-

ordinated Lévy processes. Section 4.3 shows empirical comparisons between the

Lévy models of Section 4.2 and Normal one. In particular, there are two ex-post



Financial models with Lévy processes 69

comparisons, one without transaction costs and the other one with constant and

proportional transaction costs. Section 4.4 is an analysis of multi-period portfolio

selection, where we compare subordinated Lévy models with the assumption of

Normal distributed log returns. Section 4.5 shows an analysis where the skew-

ness of portfolio is taken into account, and further it displays ex-post and ex-ante

comparisons among several distributional hypotheses. Section 4.6 studies risk

management and presents a simple extension of the RiskMetrics model where

VaR and CVaR can be easily computed. Even Section 4.7 studies risk manage-

ment and presents a model where the Independent Component Analysis (ICA)

is applied and the conditional portfolio distribution is numerically computed by

the Fast Fourier Transform (FFT) algorithm. The analyses of Sections 4.6 and

4.7 are only exhibited by a theoretical point of view.

4.1 A first empirical comparison among portfo-

lio selection models based on different Lévy

processes

In this section we compare the optimal portfolio composition under different

distributional hypotheses, and, in particular, we consider Lévy processes with

semi heavy tails. Thus, this analysis differs from other studies that assume Lévy

processes with very heavy tails (see Rachev and Mittnik [70], Ortobelli et al.

[65]). In order to facilitate the reading, we recall some notations and results

discussed in chapter 2. Lévy processes are all processes with stationary and

independent increments and stochastically continuous paths. Typical examples

are the Normal Inverse Gaussian (NIG) and Variance Gamma (VG) processes.

Many Lévy processes are often seen as subordinated Brownian motions where

the subordinator is a Lévy process whose paths are almost surely non-decreasing.

The NIG and VG processes can be seen as subordinated Lévy processes where
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the subordinators are respectively the Inverse Gaussian and Gamma process.

Inverse Gaussian: An Inverse Gaussian process {X(IG)
t : t ≥ 0}, denoted as

IG(a, b), assumes that the density function of X
(IG)
t is

fIG(x; ta, b) =
ta

x3/2
√

2π
exp(tab) exp

(
−1

2

(
(ta)2x−1 + b2x

))
1x>0,

where a and b are positive.

Gamma: A Gamma process {X(G)
t : t ≥ 0}, denoted as G(a, b), assumes that

the density function of X
(G)
t is

fG(x; ta, b) =
bta

Γ(ta)
xta−1 exp(−xb)1x>0,

where a and b are positive.

Normal Inverse Gaussian: Subordinating the Brownian motion with an In-

verse Gaussian process we obtain a Normal Inverse Gaussian process NIG(µ, α, β, δ)

with parameters µ ∈ R, α > 0, β ∈ (−α, α), and δ > 0, that is

X
(NIG)
t = µt + βδ2It + δWIt ,

where {It} is an Inverse Gaussian process with parameters a = 1 and b =

δ
√

α2 − β2, and {Wt} is a standard Brownian motion. The density function

of X
(NIG)
t is given by

fNIG(x; tµ, α, β, tδ) =
αtδ

π
exp

(
tδ

√
α2 − β2 + β(x− µt)

)
×

×
K1

(
α
√

(tδ)2 + (x− µt)2
)

√
(tδ)2 + (x− µt)2

,

where K1(x) denotes the modified Bessel function of the third kind with index 1.

Variance Gamma: Subordinating the Brownian motion with a Gamma process

we obtain a Variance Gamma process V G(µ, θ, σ, ν) with parameters µ ∈ R,

θ ∈ R, σ > 0, and ν > 0, that is

X
(V G)
t = µt + θGt + σWGt ,



Financial models with Lévy processes 71

where {Gt} is a Gamma process with parameters a = 1/ν and b = 1/ν. The

Variance Gamma process can be also defined as the difference between two inde-

pendent Gamma processes. The density function of X
(V G)
t is given by

fV G(x; tµ, tθ,
√

tσ, ν/t) =
2e

θ(x−µt)

σ2

(
(x−µt)2

2σ2/ν+θ2

) t
2ν
− 1

4

νt/ν
√

2πσΓ(t/ν)
×

×K t
ν
− 1

2

(
1

σ2

√
(x− µt)2(2σ2/ν + θ2)

)
,

where K t
ν
− 1

2
(x) is the modified Bessel function of the third kind with index t

ν
− 1

2
.

In portfolio theory it has been widely used a standard Brownian motion to

model the log return distribution, that is the asset log return follows the process

{X(BM)
t : t ≥ 0} where X

(BM)
t is Normal distributed with mean tµ and standard

deviation
√

tσ. In the next subsection we compare optimal portfolio strategies

under NIG and VG processes.

4.1.1 A first empirical comparison

Consider the problem to select an optimal portfolio composed by d risky assets

with log returns X̃ = [X(1), . . . , Xd]′ and one risk-free asset with log return rf .

Let w = [w1, . . . , wd]
′ be the vector of the weights invested in the risky assets

ad assume that no short sales are allowed (i.e., wi ≥ 0). In the classical mean-

variance analysis, investors choose a portfolio that is the convex combination

between the market portfolio and risk-free asset. The weights of the market

portfolio wM are given by the solution of the following optimization problem:

max
w

E[w′µ]− rf

w′Qw
(4.1)

s.t.
d∑

i=1

wi = 1, and wi ≥ 0, i = 1, . . . , d,

where µ and Q are respectively the mean and variance-covariance matrix of the log

return vector X̃. Now, let us suppose the investors’ exponential utility function
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is:

u(x) = a

(
1− exp

(
−1

a
x

))
, (4.2)

where a is their risk tolerance parameter. In order to value the impact of different

distributional hypotheses in the portfolio composition, we compute the optimal

portfolio which maximizes investor’s expected utility when the market portfolio

follows a particular subordinated Lévy process. That is, we compute the riskless

weight λ that maximizes

E[u(λrf + (1− λ)w′
MX̃)], (4.3)

when the market portfolio w′
MX̃ follows or a Brownian motion (BM), or a Vari-

ance Gamma process (VG), or a Normal Inverse Gaussian process (NIG). Observe

that the analytical value of the expression (4.3) for the exponential utility function

can be easily found using the Laplace transform of the respective distributions

(see, among others, Cont and Tankov [21]).

In this first empirical comparison, we consider daily log returns from 04/10/1992

to 01/01/2002 on 10 US market indexes: DJTM United States Automobiles,

DJTM United States Oil & Gas, DJTM United States Basic Resource, Down

Jones Industrials, Down Jones Utilities, Nasdaq Industrials, NYSE Composite,

S&P100, S&P500, S&P900. We assume as risk-free asset the Treasury Bill 3-

month rf = 1.61% a.r. on 01/01/2002. Thus, first we determine the market

portfolio solving the optimization problem (4.1), using the empirical mean and

variance-covariance matrix as estimates of µ and Q, and then, assuming µ = 0

under NIG and VG processes, we estimate the parameters of the market portfo-

lio maximizing the log likelihood function (MLE) under the three distributional

hypotheses. In Table 4.1 we report the maximum likelihood estimates (MLE) of

the market portfolio parameters supposing that it follows or a Variance Gamma

process, or a Normal Inverse Gaussian process, or a Brownian motion. Since we

assume the investor’s temporal horizon is three months, the distributional pa-

rameters are on 3 months basis. Secondly, we maximize the expected utility of
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VG θ = 0.0196 σ = 0.0637 ν = 0.0142

NIG α = 107.2398 β = 4.7419 δ = 0.4426

BM µ = 0.0196 σ = 0.0646

Table 4.1: MLE parameter estimates of 3-months log returns of the market port-

folio under VG, NIG, and BM distribution.

a = 0.10 NIG BM VG

Riskless weight 0.5650 0.5241 0.5579

Expected utility 0.0997 0.0980 0.0997

Final wealth 0.9263 0.9178 0.9248

a = 0.15 NIG BM VG

Riskless weight 0.3475 0.2862 0.3369

Expected utility 0.1494 0.1468 0.1494

Final wealth 0.8814 0.8687 0.8792

a = 0.20 NIG BM VG

Riskless weight 0.1301 0.0483 0.1158

Expected utility 0.1982 0.1948 0.1982

Final wealth 0.8365 0.8196 0.8335

Table 4.2: Quotes invested in the risk-free asset, maximum expected utility, and

ex-post final wealth.

the final wealth assuming in the utility function (4.2) three possible risk tolerance

parameters: 0.10, 0.15, 0.20. Table 4.2 shows the quote invested in the risk-free

asset, the maximum expected utility, and the ex-post final wealth after one year

on date 01/01/2003 under the three different distributional hypotheses. From this

table we observe that the NIG and VG processes take much more into account

the possible losses. As a matter of fact, the quoted invested in the riskless is

always higher than that one computed for the Brownian motion. Moreover, even

the computed maximum expected utility is higher for the NIG and VG processes
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that implicitly underscores the better performance. These processes are more

conservative with respect to the Brownian motion as confirmed by the ex-post

final wealth of Table 4.2. As a matter of fact, during the 2002, year with very

big losses on the US market, we observe a higher final wealth under the NIG and

VG processes.

4.2 Multivariate subordinated Lévy processes and

parameter estimates

The multivariate Lévy processes distributions are obtained as a logical exten-

sion of univariate ones. So, for example, the d-dimensional Multivariate Nor-

mal Inverse Gaussian (MNIG) process with parameters δ, α > 0, µ, β ∈ Rd and

Q ∈ Rd×d valued at time t can be constructed from:

X̃t = µt + ZtQβ +
√

ZtQ
1/2Ỹ ,

where the intrinsic time Inverse Gaussian process Zt is distributed as IG(δt,
√

α2 − β′Qβ), Ỹ is a standard d-dimensional Gaussian independent of Zt and

then the conditional distribution of vector X̃t|Zt is Nd(µt+ZtQβ) (see Barndorff-

Nielsen [5]). Thus the d-dimensional vector admits density probability function:

fXt(x) =

∫
fXt|Zt(x|z)fZt(z)dz

=
δt

2
d−1
2

(
α

πq(x)

) d+1
2

K d+1
2

(αq(x) exp(p(x))),

where

q(x) =
√

(δt)2 + ((x− µt)′Q−1(x− µt))

p(x) =
(
β′(x− µt) + δt

√
α2 − β′Qβ

)
,

and K d+1
2

denotes the modified Bessel function of the third kind with index d+1
2

.

Similarly, we can define the multivariate Variance-Gamma process. However, gen-
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erally there exist many problems in the maximum likelihood estimation of mul-

tivariate Lévy process parameters, in particular when we assume a large number

of assets (see, among others, Hanssen and Øig̊ard [39], Bølviken and Benth [12]).

For this reason we estimate the parameters of marginal distributions separately

by the correlation matrix. Doing so we assume that every couple of subordinated

components follow a joint bivariate subordinated process.

Suppose that in the market the vector of risky assets has log returns X̃t =

[X
(1)
t , . . . , X

(d)
t ]′ distributed as

X̃t = µt + γZt + Q1/2W̃Zt , (4.4)

where {Zt} is the positive Lévy process, µ = [µ1, . . . , µd]
′, γ = [γ1, . . . , γd]

′,

Q = [σ2
ij]ij is a fixed definite positive variance-covariance matrix (i.e., σ2

ij =

σiiσjjρij where ρij is the correlation coefficients i-th component of X̃t|Zt and its

j-th component), and {W̃t} is a d-dimensional standard Brownian motion (i.e.,

Q1/2W̃Zt =
√

ZtQ
1/2Ỹ where Ỹ is a standard d-dimensional Gaussian independent

of Zt). Under the above distributional hypotheses we approximate the log return

of the portfolio w = [w1, . . . , wd]
′, where w′e = 1 and e = [1, . . . , 1]′, through the

portfolio of log returns, that is the convex combination of the log-returns:

X
(w)
t = w′X̃t = (w′µ)t + (w′γ)Zt +

√
w′QwWZt , (4.5)

where {Wt} is a 1-dimensional standard Brownian motion. At this point we

will assume that the subordinator {Zt} is modeled either as an Inverse Gaussian

process, Z1 ∼ IG(1, b), or a Gamma process, Z1 ∼ G( 1
ν
, 1

ν
).

Inverse Gaussian subordinator: the NIG model

When {Zt} follows an Inverse Gaussian process IG(1, b), then the i-th log return

follows a NIG process NIG(µi, αi, βi, δi), where δi = σii, βi = γi/δ
2
i , and αi =

√
(b/δi)2 + β2

i . Thus, the portfolio (4.5) follows a NIG(µw, αw, βw, δw) process
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whose parameters are:

µw = w′µ, αw =

√(
b

δw

)2

+ β2
w, βw = w′γ

δ2
w

, δw =
√

w′Qw.

Mean, variance, Fisher-Pearson skewness, and kurtosis parameters of the portfolio

X
(w)
t are, respectively,

E[X
(w)
t ] = tµw +

tδwβw√
α2

w − β2
w

,

Var[X
(w)
t ] = tα2

wδw

(
α2

w − β2
w

)−3/2
,

Sk[X
(w)
t ] =

E

[(
X

(w)
t − E[X

(w)
t ]

)3
]

E

[(
X

(w)
t − E[X

(w)
t ]

)2
]3/2

= 3βwα−1
w (tδw)−1/2(α2

w − β2
w)−1/4,

Ku[X
(w)
t ] =

E

[(
X

(w)
t − E[X

(w)
t ]

)4
]

E

[(
X

(w)
t − E[X

(w)
t ]

)2
]2 = 3

(
1 +

α2
w + 4β2

w

tδwα2
w

√
α2

w − β2
w

)
.

In order to estimate all these parameters, we estimate the parameters (µi, αi, βi, δi)

for each asset maximizing the log likelihood function

L(µi, αi, βi, δi) =
n∑

k=1

log (fNIG(yk; µi, αi, βi, δi)) , i = 1, . . . , d,

where fNIG is the density of NIG process, yk is the k-th observation of the i-th

asset, and n is the sample size. Given the set of estimates {(µ̂i, α̂i, β̂i, δ̂i)}d
i=1, we

compute the values b̂i = δ̂i

√
α̂2

i − β̂2
i and take its mean b̂ = 1

d

∑d
i=1 b̂i as esti-

mate of the parameter b. Given b̂, we again estimate (µi, αi, βi, δi) for each asset

maximizing the log likelihood function L(µi, αi, βi, δi) subject to δi

√
α2

i − β2
i = b̂.

Thus, we consider a multivariate NIG process where we have not a unique value

α for all components of the vector (in this sense we get a generalization of the

classic MNIG process). Since δi = σii, then we have to estimate the correlation

matrix of the conditional Gaussian vector Xt|Zt. Observe that the joint density

function of the i-th and j-th assets is given by

fij(y
i, yj; µi, βi, δi, µj, βj, δj, b, ρij) =

∫ ∞

0

fN2(y
i, yj; η, Σ)fIG(u; 1, b)du,
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α β δ b Dn

DJ-C65 86.4431 3.6188 0.0077 0.6650 0.0337

DJ-I 81.8854 3.3581 0.0081 0.6650 0.0325

DJ-U 80.5076 1.8582 0.0082 0.6650 0.0424

S&P500 81.2785 3.1116 0.0081 0.6650 0.0320

S&P100 77.6941 2.7709 0.0085 0.6650 0.0388

DJ-C65 DJ-I DJ-U S&P500 S&P100

DJ-C65 1 0.9416 0.6061 0.9077 0.8907

DJ-I 0.9416 1 0.4858 0.9366 0.9373

DJ-U 0.6061 0.4858 1 0.5136 0.4804

S&P500 0.9077 0.9366 0.5136 1 0.9864

S&P100 0.8907 0.9373 0.4804 0.9864 1

Table 4.3: Maximum likelihood estimates on daily basis under the NIG model.

where fIG is the density function of the Inverse Gaussian distribution with param-

eters a = 1 and b > 0, and fN2 is the joint density function of the 2-dimensional

Gaussian distribution with mean η = (µi + βiδ
2
i u, µj + βjδ

2
j u) and covariance

matrix

Σ =


 δ2

i u δiδjρiju

δiδjρij δ2
j u


 .

Therefore, for each couple (i, j) of assets we estimate ρij maximizing the log

likelihood function

L(ρij) =
n∑

k=1

log
(
fij(y

i
k, y

j
k; µ̂i, β̂i, δ̂i, µ̂j, β̂j, δ̂j, b̂, ρij)

)
.

In order to implement the estimate procedure above, we consider daily log

returns of five market indexes (Down Jones Composite 65, Down Jones Industri-

als, Down Jones Utilities, S&P 500 Composite and S&P 100), observed during

the period 04/10/1992-12/31/2005. In this empirical analysis we assume µi = 0,

i = 1, . . . , 5. Table 4.1 reports, in the lower part, the estimate of the correla-
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Figure 4.1: QQ-plots of Down Jones Composite 65 sample data versus NIG and

Normal distributions.

tion matrix of Xt|Zt, while, in the upper part, the estimates of the parameters

(αi, βi, δi) and the common parameter b. Further, In the last column we show the

Kolmogorov-Smirnov distances Dn = sup
−∞<x<∞

|FNIG(x)− Fn(x)|, where FNIG(x)

is the theoretical distribution function and Fn(x) the empirical one. Since under

the Normal distribution the Kolmogorov-Smirnov distances are approximately

0.06 for all the indexes, we have an improvement by the NIG distribution. This

result is confirmed by Figure 4.1 that displays QQplots of Down Jones Composite

65 sample data versus NIG and Normal distributions. From this analysis, it is

worth noting that the NIG distribution describes the sample data better than the

Normal distribution, in particular on the tails.

Gamma subordinator: the VG model

When {Zt} follows a Gamma process G( 1
ν
, 1

ν
), then the i-th log return follows a

Variance Gamma process V G(µi, θi, σi, ν), where θi = γi and σi = σii. Analo-

gously, the portfolio (4.5) follows a V G(µw, θw, σw, ν) process whose parameters

are:

µw = w′µ, θw = w′γ, σw =
√

w′Qw.



Financial models with Lévy processes 79

Thus, mean, variance, skewness, and kurtosis of the portfolio X
(w)
t are given by

E[X
(w)
t ] = tµw + tθw,

Var[X
(w)
t ] = tσ2

w + tνθ2
w,

Sk[X
(w)
t ] = θwν(3σ2

w + 2νθ2
w)/(

√
t(σ2

w + νθ2
w)3/2),

Ku[X
(w)
t ] = 3

(
1 + 2ν/t− νσ4

w/
(
t(σ2

w + νθ2
w)2

))
.

As for the NIG process, in order to estimate all these parameters, we estimate

the parameters (µi, θi, σi, νi) for each asset maximizing the log likelihood function

L(µi, θi, σi, νi) =
n∑

k=1

log (fV G(yk; µi, θi, σi, νi)) , i = 1, . . . , d,

where fV G is the density function of the Variance Gamma process, yk is the

k-th observation of the i-th asset, and n is the sample size. Given the set of

estimates {µ̂i, θ̂i, σ̂i, ν̂i}, we take as estimate of ν the mean ν̂ = 1
d

∑d
i=1 ν̂i. Then,

for each asset we estimate again the parameters µi, θi, and σi, maximizing the

log likelihood function

L(µi, θi, σi) =
n∑

k=1

log (fV G(yk; µi, θi, σi, ν̂)) .

Finally, for each couple (i, j) of assets, we estimate the correlation coefficient ρij

maximizing the log likelihood function

L(ρij) =
n∑

k=1

log
(
fij(y

i
k, y

j
k; µ̂i, θ̂i, σ̂i, µ̂j, θ̂j, σ̂j, ν̂, ρij)

)
,

where

fij(y
i, yj; µi, θi, σi, µj, θj, σj, ν, ρij) =

∫ ∞

0

fN2(y
i, yj; η, Σ)fG(u; 1/ν, 1/ν)du,

fG is the density function of the Gamma distribution with parameters a = b =

1/ν, and fN2 is the density function of the 2-dimensional Normal distribution

with mean η = (µi + θiu, µj + θju) and covariance matrix

Σ =


 σ2

i u σiσjρiju

σiσjρiju σ2
j u


 .
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θ σ ν Dn

DJ-C65 0.000321 0.000926 0.9661 0.0318

DJ-I 0.000334 0.00982 0.9661 0.0308

DJ-U 0.000192 0.01005 0.9661 0.0401

S&P500 0.000314 0.00994 0.9661 0.0331

S&P100 0.000310 0.01040 0.9661 0.0320

DJ-C65 DJ-I DJ-U S&P500 S&P100

DJ-C65 1 0.9434 0.6060 0.9079 0.8911

DJ-I 0.9434 1 0.4824 0.9371 0.9374

DJ-U 0.6060 0.4824 1 0.5068 0.4725

S&P500 0.9079 0.9371 0.5068 1 0.9868

S&P100 0.8911 0.9374 0.4725 0.9868 1

Table 4.4: Maximum likelihood estimates on daily basis under the VG model.

Consider again the daily log returns of the five market indexes introduced

previously. Even under the VG model we assume µi = 0, i = 1, . . . , 5. The

upper part of Table 4.2 exhibits the estimates (on daily basis) of the param-

eters (θi, σi, ν), and the Kolmogorov-Smirnov distances which are quite similar

to those of the NIG model. The lower part displays the estimate of the corre-

lation matrix of Xt|Zt. In Figure 4.2 we report the qq-plot of the Down Jones

Composite 65 sample data versus the Variance Gamma distribution which can be

compared with the analogous Normal qq-plot of Figure 4.1. Thus, even the Vari-

ance Gamma process provides a better distributional approximation with respect

to the Brownian motion, since it takes into account heavier tails.

Remark on the estimate of the correlation matrix of Xt|Zt

Since the estimate procedure above requires very high computational times, an

alternative method is necessary in order to select portfolios with a large number

of assets. The estimate procedure can be simplified using the sample correlation
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Figure 4.2: QQ-plots of Down Jones Composite 65 sample data versus VG dis-

tribution.

as estimator of the correlation matrix of Xt|Zt. As a matter of fact, under the

model (4.4), the correlation coefficient between the i-th and j-th log return is

given by

ρ(X
(i)
t , X

(j)
t ) =

σiiσjjρijE[Zt] + γiγjVar[Zt]

(σ2
iiE[Zt] + γ2

i Var[Zt])
1/2 (

σ2
jjE[Zt] + γ2

j Var[Zt]
)1/2

,

and, assuming γi = γj = 0,

ρ(X
(i)
t , X

(j)
t ) = ρij.

Then, since on daily basis the parameters γi, i = 1, . . . , d, are very near to zero, we

can assume the sample correlation as an approximation of the moment estimate

of the correlation matrix of Xt|Zt.

4.3 Ex-post comparison among optimal portfo-

lios obtained under different Lévy processes

Consider the problem to select a portfolio among the previous five market indexes

(Down Jones Composite 65, Down Jones Industrial, Down Jones Utilities, S&P
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500 Composite, and S&P 100) assuming that the investor has a temporal horizon

equal to one month. Then, suppose the investor decides to invest his money (1000

USD - his initial wealth) in the portfolio that maximizes the mean-Value at Risk

ratio (see Favre and Galeano [31], Biglova et al. [9]):

E[X
(w)
21 − rf ]

VaR1%(X
(w)
21 − rf )

,

where rf = 0.3884% is the 1-month log return of LIBOR on 12/31/2005, X
(w)
21

is the portfolio of monthly log returns (i.e., X
(w)
t valued at time t = 21 days),

and the Value at Risk VaR1% of the continuous random variable X
(w)
21 − rf is the

opposite of the 1% quantile. Then, we assume no short sales are allowed, that

is wi ≥ 0, i = 1, . . . , 5, and
∑5

i=1 wi = 1. Thus, we remark that the problem

is well posed, since VaR1% of every portfolio is positive. In order to take into

account skewness (generally different from zero) and kurtosis we approximate

VaR1%(X
(w)
21 − rf ) with the Iaquinta et al.’s approximation (see Iaquinta et al.

[44]). Therefore,

VaR1%(X
(w)
21 − rf ) = −

(
E[X

(w)
21 ] + hw

√
Var[X

(w)
21 ]− rf

)
, (4.6)

where

hw =

(
Ku[X

(w)
21 ]− 1

2Sk[X
(w)
21 ]

)
− f(X

(w)
21 )

1

2




(
Ku[X

(w)
21 ]− 1

Sk[X
(w)
21 ]

)2

+ 4

+f(X
(w)
21 )

4p99%

√(
Ku[X

(w)
21 ]− 1− (Sk[X

(w)
21 ])2

)
(Ku[X

(w)
21 ]− 1)

|Sk[X
(w)
21 ]|




1/2

,

f(X
(w)
21 ) =




−1 if Sk[X

(w)
21 ] < 0 and d(X

(w)
21 ) ≥ 0

1 otherwise,

d(X
(w)
21 ) =

(
Ku[X

(w)
21 ]− 1

Sk[X
(w)
21 ]

)2

+ 4

−
4p99%

√(
Ku[X

(w)
21 ]− 1− (Sk[X

(w)
21 ])2

)
(Ku[X

(w)
21 ]− 1)

|Sk[X
(w)
21 ]|

,
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and p99% is the 99% quantile of the standard Normal distribution. We add in

passing that one could estimate VaR1% using the Cornish-Fisher expansion (as

suggested by Favre and Galeano [31]), in this case hw is given by:

hw = p1% +
1

6

(
p2

1% − 1
)
Sk[X

(w)
21 ] +

1

24

(
p3

1% − 3p1%

)
(Ku[X

(w)
21 ]− 3),

and p1% is the 1% quantile of the standard Normal distribution. Taking this into

account, we solve the optimization problem





max
w

E
[
X

(w)
21 −rf

]

VaR1%

(
X

(w)
21 −rf

)

s.t.
∑5

i=1 wi = 1, wi ≥ 0, i = 1, . . . , 5,

(4.7)

under the three possible distributional assumptions:

1. Normal Inverse Gaussian, X
(w)
21 ∼ NIG(αw, βw, 21δw);

2. Variance Gamma, X
(w)
21 ∼ V G(21θw,

√
21σw, ν/21);

3. Brownian motion, X
(w)
21 ∼ N(21µw, 21σw).

Under the NIG and VG model the parameter estimates are those of Tables 4.3

and 4.4, respectively, and under the BM model µw = w′µ and σw =
√

w′Qw where

µ and Q are the empirical mean and variance-covariance matrix. As solution of

the problem (4.7) we obtain the optimal portfolio weights of Table 4.5. The three

DJ-C65 DJ-I DJ-U S&P500 S&P100

w(NIG) 0.3265 0.6735 0 0 0

w(V G) 0.2307 0.7693 0 0 0

w(BM) 0.3189 0.6811 0 0 0

Table 4.5: Market portfolio WM under the three distributional assumptions.

optimal portfolios are composed by the same assets. In particular, under the BM

and NIG distributional assumptions the portfolio composition is almost the same.
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While, the VG model presents a significant difference in the portfolio compositions

with respect to the other two processes. In order to value the impact of these

choices we consider an investor who recalibrates the portfolio every month during

the year 2006 such that the percentages in the portfolio composition remain

the same under each distributional assumptions. Table 4.6 reports the ex-post

NIG VG BM

01/01/06 1000 1000 1000

01/02/06 1022.98 1022.71 1022.95

01/03/06 1035.14 1034.03 1035.06

01/04/06 1041.41 1040.97 1041.38

01/05/06 1058.52 1058.49 1058.52

01/06/06 1056.93 1055.09 1056.79

01/07/06 1061.37 1057.33 1061.05

01/08/06 1040.21 1039.61 1040.16

01/09/06 1067.30 1068.02 1067.36

01/10/06 1084.39 1085.74 1084.50

01/11/06 1121.98 1122.18 1122.00

01/12/06 1136.25 1136.73 1136.29

01/01/07 1153.31 1156.15 1153.54

Table 4.6: Monthly evolutions of w(NIG), w(V G), and w(BM).

monthly evolutions of w(NIG), w(V G), and w(BM), supposing the investor’s initial

wealth is 1000 USD. Observe that there are not significant differences among

the final wealths obtained under the NIG, VG processes and Brownian motion.

However, both alternative processes (NIG, VG) present a better performance in

different periods of the year, even if during the 2006 the market was growing and

the asset prices did not show big jumps.
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4.3.1 Ex-post comparison among optimal portfolio strate-

gies with transaction costs and no short sales: dy-

namic selection

Let us compare dynamic strategies with constant and proportional transaction

costs of K = 0.05% when short sales are not permitted. Assume an investor

which has an initial wealth of 1000 USD and decides to invest this money in the

portfolio that maximizes the mean-VaR ratio recalibrating it every month. As

for the previous empirical analysis we consider five indexes (Down Jones Com-

posite 65, Down Jones Industrials, Down Jones Utilities, S&P 500 composite,

and S&P100) and a monthly riskless asset with log return rf = 0.3884%. Since

we want to compare the ex-post sample paths of the investor’s wealth under dif-

ferent distributional assumptions, then we follow the same algorithm proposed

by Biglova et al. [9], Ortobelli et al. [65], and Leccadito et al. [47]. That is,

we first consider an initial wealth W0 and in the ex-post analysis we calibrate

the portfolio 12 times. Once we have chosen a distributional assumption, after

k periods, the main steps to compute the ex-post final wealth in the mean-VaR

context are the following:

Step 1. At the k-th period, k = 0, 1, . . . , 11, we determine the market portfolio

w(k) that maximizes the mean-VaR ratio, i.e., we solve the optimization problem:




max
w(k)

E

[
X

(w(k))
21 −rf−t.c.(k)

]

VaR1%

(
X

(w(k))
21 −rf

)
+t.c.(k)

,

s.t.
∑5

i=1 w
(k)
i = 1, w

(k)
i ≥ 0, i = 1, . . . , 5,

where VaR1%

(
X

(w(k))
21 − rf

)
is given by equation (4.6), the transaction costs are

t.c.(k) =





K
∑5

i=1

∣∣∣∣w
(k)
i − w

(k−1)
i (1+r(k−1))

∑5
i=1 w

(k−1)
i (1+r

(k−1)
i )

∣∣∣∣ if k > 1

K = 0.05% if k = 0,

and r
(k−1)
i is the observed i-th monthly return valued on the period [tk−1, tk].
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DJ-C65 DJ-I DJ-U S&P500 S&P100

NIG 0.1967 0.8033 0 0 0

VG 0.0673 0.9327 0 0 0

BM 0.1386 0.8614 0 0 0

Table 4.7: Portfolio w(0) under the three distributional hypotheses.

Step 2. We value the ex-post final wealth after k periods by

Wk = Wk−1

(
5∑

i=1

w
(k−1)
i (1 + r

(k−1)
i )− t.c.(k)

)
.

Step 3. We repeat steps 1 and 2 for each distributional hypotheses.

Since during the 2006 the indexes used in this analysis do not present very big

jumps with respect to their expected value, then we do not observe very big dif-

ferences among the optimal portfolios. Thus, the use of the transaction costs

has implied that the optimal portfolio weights do not change at the times of cal-

ibration. That is, the investor chooses his first portfolio w(0) and all the other

optimal portfolio w(k) are given by the evolution of w(0) up to the k-th period.

In Table 4.7 we report the weights of the portfolio w(0) under the three differ-

ent distributional assumptions (NIG, VG, BM). The assets that appear in the

optimal portfolio are the same for each distributional hypothesis and with small

differences. Table 4.8 exhibits the ex-post final wealth sample paths under the

three distributional assumptions. As for the previous comparison of Table 4.6 we

observe a better performance of the VG and NIG processes in different periods

of the year.

4.4 Multi-period portfolio selection with unlim-

ited short sales

In this section we always model the asset log returns as a multidimensional time-

changed Brownian motion where the subordinator follows or a Inverse Gaussian
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NIG VG BM

01/01/06 1000 1000 1000

01/02/06 1022.12 1021.75 1021.95

01/03/06 1033.13 1031.63 1032.46

01/04/06 1040.29 1039.69 1040.02

01/05/06 1057.94 1057.89 1057.92

01/06/06 1053.91 1051.42 1052.79

01/07/06 1055.44 1049.97 1052.98

01/08/06 1038.72 1037.97 1038.38

01/09/06 1067.57 1068.59 1068.03

01/10/06 1085.51 1087.39 1086.35

01/11/06 1121.48 1121.83 1121.64

01/12/06 1136.12 1136.84 1136.45

01/01/07 1155.82 1159.71 1157.57

Table 4.8: Evolutions of market portfolios with transaction costs under NIG, VG,

BM models.

process or a Gamma process. Under these different distributional hypotheses,

we compare the portfolio strategies with the assumption that the log returns fol-

low a Brownian motion. The literature in the multi-period portfolio selection has

been dominated by the results of maximizing expected utility function of terminal

wealth and/or multi-period consumption. Differently from classic multi-period

portfolio selection approaches, we consider mean-variance analysis alternative to

that proposed by Li and Ng’s [48] by giving a mean-dispersion formulation of

the optimal dynamic strategies. Moreover, we also discuss a mean, variance,

skewness, and kurtosis extension of the original multi-period portfolio selection

problem. In order to compare the dynamic strategies under the different dis-

tributional assumptions, we analyze two investment allocation problems. The

primary contribution of this empirical comparison is the analysis of the impact of
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distributional assumptions and different term structures on the multi-period asset

allocation decisions. Thus, we propose a performance comparison among different

Lévy processes and taking into consideration three different implicit term struc-

tures. For this purpose we discuss the optimal allocation obtained by different

risk averse investors with different risk aversion coefficients. We determine the

multi-period optimal choices given by the minimization of the variance for differ-

ent levels of final wealth average. Each investor, characterized by his/her utility

function, will prefer the mean-variance model which maximizes his/her expected

utility on the efficient frontier. Thus, the portfolio policies obtained with this

methodology represent the optimal investors’ choices of the different approaches.

According to the multivariate and subordinated Lévy model introduced in

section 4.2, given a market with d risky assets, the log return of the portfolio

with weights w = [w1, . . . , wd], where
∑d

i=1 wi = 1, is distributed at time t as

X
(w)
t = (w′µ)t + (w′γ)Zt +

√
w′QwWZt ,

where µ = [µ1, . . . , µd]
′, γ = [γ1, . . . , γd]

′, Q = [σ2
ij]ij is e fixed definitive positive

variance-covariance matrix, {Zt} is a positive Lévy subordinator, and {Wt} is a

1-dimensional Brownian motion. When {Zt} is an Inverse Gaussian process with

parameters a = 1 and b > 0, IG(1, b), then the log return process {X(w)
t } follows

a Normal Inverse Gaussian process, NIG(µw, αw, βw, δw), with parameters

µw = w′µ, αw =

√(
b

δw

)2

+ β2
w, βw = w′γ

δ2
w

, δw =
√

w′Qw.

Instead, when {Zt} is a Gamma process with parameters a = b = 1/ν, G( 1
ν
, 1

ν
),

then the log return process {X(w)
t } follows a Variance Gamma process, V G(µw, θw, σw, νw),

with parameters

µw = w′µ, θw = w′γ, σw =
√

w′Qw νw = ν.

Generally in portfolio theory the vector of the asset log returns is modeled as

a multivariate Brownian motion, and, under this hypothesis, the portfolio log
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return {X(w)
t } is distributed at time t as a normal distribution with mean (w′µ)t

and standard deviation
√

t(w′Qw).

Suppose an investor has temporal horizon tT and calibrates its portfolio T

times at some intermediate dates, say t = t0, . . . , tT−1 (where t0 = 0). Since

Lévy processes have independent and stationary increments the distribution of

the random vector of log returns on the period (tj, tj+1] (i.e., X̃tj+1
− X̃tj) is the

same of X̃tj+1−tj = [X
(1)
tj+1−tj , . . . , X

(d)
tj+1−tj ]

′. Considering that log returns represent

a good approximation of returns when tj+1 − tj is little enough, we assume that

max
j=0,...,T−1

(tj+1 − tj) is less or equal than one month and use Ỹtj ≡ X̃tj+1
− X̃tj =

[Y1,tj , . . . , Yd,tj ]
′ to estimate the vector of returns on the period (tj, tj+1]. Suppose

the deterministic variable r0,tj represents the return on the period (tj, tj+1] of the

risk-free asset, xi,tj the amount invested at time tj in the i-th risky asset, and

x0,tj the amount invested at time tj in the risk-free asset. Then, the investor’s

wealth at time tj+1 is given by

Wtj+1
=

d∑
i=0

xi,tj(1 + Yi,tj) = Wtj(1 + r0,tj) + x′tj P̃tj , (4.8)

where xtj = [x1,tj , . . . , xd,tj ]
′, P̃tj = [P1,tj , . . . , Pd,tj ]

′ is the vector of excess returns

Pi,tj = Yi,tj − r0,tj . Thus, the final wealth is given by

WtT = W0

T−1∏
j=0

(1 + r0,tj) +
T−2∑
j=0

xtj P̃tj

T−1∏

k=j+1

(1 + r0,tk) + xtT−1
P̃tT−1

, (4.9)

where the initial wealth W0 =
∑d

i=0 xi,0 is known. Assume that the amounts

xtj = [x1,tj , . . . , xd,tj ]
′ are deterministic variables, while the amount invested in

the risk-free asset is the random variable x0,tj = Wtj −x′tje, where e = [1, . . . , 1]′.

Under these assumptions the mean, variance, skewness, and kurtosis of the final

wealth are respectively

E[WtT ] = W0B0 +
T−1∑
j=0

E[x′tj P̃tj ]Bj+1,

Var[WtT ] = σ(WtT )2 =
T−1∑
j=0

(
x′tjQtjxtj

)
B2

j+1,
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Sk[WtT ] =

∑T−1
j=0 E

[(
x′tj P̃tj − E[x′tj P̃tj ]

)3
]

B3
j+1

σ(WtT )3
,

Ku[WtT ] =
1

σ(WtT )4

(
6

T−1∑
j=0

T−1∑

k=j+1

B2
j+1B

2
k+1x

′
tj
Qtjxtj(x

′
tk

Qtkxtk)

+
T−1∑
j=0

E

[(
x′tj P̃tj − E[x′tj P̃tj ]

)4
]

B4
j+1

)
,

where BT = 1, Bj =
∏T−1

k=j (1 + r0,tk), and the elements of the matrix Qtj =

[qik,tj ]ik, j = 0, 1, . . . , T − 1, are qik,tj = Cov[Pi,tj , Pk,tj ] = Cov[X
(i)
tj+1−tj , X

(k)
tj+1−tj ].

Therefore, if we want to select the optimal portfolio strategies that solve the

mean-variance problem 



min
xt0 ,...,xtT−1

Var[WtT ]

s.t. E[WtT ] = m,

we can use the closed form solutions determined by Ortobelli et al. [65]. These

solutions for Lévy subordinated processes are given by

xtj =
m−W0B0

Bj+1

∑T−1
k=0 E[P̃tk ]

′Q−1
tj E[P̃tk ]

Q−1
tj

E[P̃tj ], j = 0, 1, . . . , T − 1. (4.10)

The optimal wealth invested in the riskless asset at time t0 = 0 is the deterministic

quantity x0,t0 = W0 − x′t0e, while at time tj it is given by the random variable

x0,tj = Wtj − x′tje, where Wtj is formulated in equation (4.8). Observe that

the covariance qik,tj among components of the d-dimensional vector X̃tj+1−tj =

µ(tj+1 − tj) + γZtj+1−tj + Q1/2W̃Ztj+1−tj
is given by

qik,tj = σ2
ikE[Ztj+1−tj ] + µiµkVar[Ztj+1−tj ],

where σ2
ik are the elements of the matrix Q = [σ2

ik] (see, among others, Cont

and Tankov [21]). So, for example, in the case the vector of log returns {X̃t}
follows a NIG process we can rewrite the formulas of mean, variance, skewness,

and kurtosis of final wealth by using the following equations:

E[x′tj P̃tj ] = (tj+1 − tj)(b
−1x′tjγ + x′tjγ)− r0,tjx

′
tj
e,
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qik,tj =
δiδkρik

b
(tj+1 − tj) +

βiβkδ
2
i δ

2
k

b3
(tj+1 − tj),

Sk[WtT ] =
3
∑T−1

j=0 B3
j+1(tj+1 − tj)x

′
tj
γ(b2x′tjQtjxtj + (x′tjγ)2)

σ(WtT )3b5
,

Ku[WtT ] =
6
∑T−1

j=0

∑T−1
k=j+1 B2

j+1B
2
k+1x

′
tj
Qtjxtj(x

′
tk

Qtkxtk)

σ(WtT )4

+
3
∑T−1

j=0 B4
j+1(tj+1 − tj)

2(b2x′tjQtjxtj + (x′tjγ)2)2

σ(WtT )4b6

+
3
∑T−1

j=0 B4
j+1(tj+1 − tj)(b

2x′tjQtjxtj + 5(x′tjγ)2)(b2x′tjQtjxtj + (x′tjγ)2)

σ(WtT )4b7
.

Instead, if {X̃t} follows a Variance Gamma process these formulas become:

E[x′tj P̃tj ] = (tj+1 − tj)(x
′
tj
γ + x′tjµ)− r0,tjx

′
tj
e,

qik,tj = σiiσkkρik(tj+1 − tj) + νµiµk(tj+1 − tj),

Sk[WtT ] =

∑T−1
j=0 B3

j+1(tj+1 − tj)νx′tjγ(3x′tjQtjxtj + 2ν(x′tjγ)2)

σ(WtT )3
,

Ku[WtT ] =
6
∑T−1

j=0

∑T−1
k=j+1 B2

j+1B
2
k+1x

′
tj
Qtjxtj(x

′
tk

Qtkxtk)

σ(WtT )4

−
∑T−1

j=0 3B4
j+1(ν(x′tjQtjxtj)

2(tj+1 − tj))

σ(WtT )4

+

∑T−1
j=0 3B4

j+1((1 + 2ν/(tj+1 − tj))(x
′
tj
Qtjxtj(tj+1 − tj) + ν(x′tjγ)2(tj+1 − tj))

2)

σ(WtT )4
.

Clearly, a more realistic portfolio selection problem should consider the investor’s

preference for skewness (see, among others, Ortobelli [64]). Thus, under the above

distributional assumptions and under institutional restrictions of the market, such

as no short sales and limited liability, all risk-averse investors optimize their

portfolios choosing the solution of the following constrained optimization problem:




min
xt0 ,...,xtT−1

Var[WtT ]

s.t.

E[WtT ], Sk[WtT ] ≥ q1, Ku[WtT ] ≤ q2,

xi,tj ≥ 0, i = 1, . . . , d, j = 0, 1, . . . , T − 1,



Financial models with Lévy processes 92

t0 t1 t2 t3 t4

term1 0.3884% 0.3984% 0.4084% 0.4184% 0.4284%

term2 0.3884% 0.3884% 0.3884% 0.3884% 0.3884%

term3 0.3884% 0.3784% 0.3684% 0.3584% 0.3484%

Table 4.9: Term structures.

for some mean m, skewness q1, and kurtosis q2. This problem has not generally

closed form solution. However, using arguments similar to those proposed by

Athayde and Flôres [2] based on a tensorial notation for the higher moments we

can give an implicit analytical solution when unlimited short sales are allowed.

Let us examine the performances of Lévy approaches and compare Gaussian

and Lévy non-Gaussian dynamic portfolio choice strategies when short sales are

allowed. Since we work in a mean-variance framework, we do not value the effects

of skewness and kurtosis. First, we analyze the optimal dynamic strategies during

a period of five months among the riskless return and 5 monthly index returns

from 04/10/1992 to 12/31/2005. The market indexes used in this analysis are

always those of section 4.3, and, under NIG and VG models, the parameter

estimates are given by Tables 4.3 and 4.4, respectively, while under the Brownian

motion (BM) model the estimates of µ and Q are given by the sample mean and

covariances. We start with a monthly riskless return of 0.3884% and examine the

different allocations considering three different implicit term structures. Table

4.9 reports the implicit term structures that we will use in this comparison. In

particular, we approximate optimal solutions to the utility functional:

max
{xtj }j=0,1,...,T−1

E

[
1− exp

(
−1

a
WtT

)]
, (4.11)

where a (we use a = 0.5, 1, 1.5, 2) is an indicator of the risk tolerance and WtT is

defined by formula (4.9). Secondly, we consider the utility functional:

max
{xtj }j=0,1,...,T−1

E[u(WtT )] (4.12)
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where

u(x) =





cx− 1
c
x2 if x < c2

2

ln(x) +
(

c3

4
− ln

(
c2

2

))
if x ≥ c2

2
,

and thus for x < c2/2 we have a quadratic utility function and for x ≥ c2/2 a

logarithm utility function (we use c = 1, 2, 3, 4, 5). Clearly, we could obtain close

form solutions to optimization problems (4.11) and (4.12) using arguments on

the moments and on the Laplace transform. However, since we want to value the

impact of different distributional assumptions in a mean-variance framework we

will approximate formulas (4.11) and (4.12) using the historical observations of

the final wealth valued for the optimal mean-variance portfolios. In particular,

we use the same algorithm proposed by Ortobelli et al. [65] in order to compare

the different models. Observe that transaction costs are not modeled in formula

(4.10), but, as we have seen in section 4.3 there are not very big differences

among portfolio choices with and without constant proportional transaction costs.

Therefore, we do not consider transaction costs in this analysis. Thus, we select

the optimal portfolio strategies on the efficient frontiers which are solutions of

problems (4.11) and (4.12) for different coefficients a and c. Therefore, starting

by an initial wealth W0 = 1 we compute for every multi-period efficient frontier:





max
{xtj }j=0,1,...,4

1
N

∑N
i=1 u(W

(i)
5 )

s.t

{xtj}j=0,1,...,4 are optimal portfolio strategies (4.10),

where W
(i)
5 = B0 +

∑4
j=0 x′tjp

(i)
tj Bj+1 is the i-th observation of the final wealth

and p
(i)
tj = [p

(i)
1,tj

, . . . , p
(i)
d,tj

]′ is the i-th observation of the vector of excess returns

pi
k,tj

= r
(i)
k,tj

− r0,tj relative to the j-th period. Finally, we obtain Table 4.10 with

the approximated maximum expected utility considering the three implicit term

structures. In fact, we implicitly assume the approximation 1
N

∑N
i=1 u(W

(i)
5 ) ≈

E[u(W
(i)
5 )]. Table 4.10 shows a superior performance of Lévy non Gaussian mod-

els with respect to the Gaussian one by the point of view of investors that max-



Financial models with Lévy processes 94

Utility function (4.11)

Term1 Term2 Term3

BM VG NIG BM VG NIG BM VG NIG

a=0.5 0.8727 0.8731 0.8728 0.8727 0.8731 0.8728 0.8726 0.8732 0.8730

a=1 0.6468 0.6479 0.6473 0.6471 0.6485 0.6479 0.6477 0.6491 0.6484

a=1.5 0.5037 0.5053 0.5045 0.5044 0.5062 0.5053 0.5052 0.5073 0.5063

a=2 0.4117 0.4136 0.4126 0.4127 0.4148 0.4137 0.4138 0.4161 0.4150

Utility function (4.12)

Term1 Term2 Term3

BM VG NIG BM VG NIG BM VG NIG

c=1 0.9942 0.9973 0.9964 0.9983 1.0025 1.0012 1.0031 1.0083 1.0065

c=2 1.5396 1.5422 1.5407 1.5404 1.5436 1.5422 1.5419 1.5453 1.5436

c=3 2.8763 2.8994 2.8880 2.8910 2.9168 2.9043 2.9073 2.9361 2.9225

c=4 4.3106 4.3799 4.3454 4.3578 4.4359 4.3980 4.4106 4.4974 4.4565

c=5 5.9522 6.1025 6.0276 6.0572 6.2264 6.1443 6.1745 6.3623 6.2738

Table 4.10: Maximum expected utility under two utility functions, three distribu-

tional hypotheses, and three term structures.

imize expected utility (4.11) and (4.12). In particular, the Variance Gamma

model presents the best performance for different utility functions and term

structures. Thus, from an ex-ante comparison among Variance Gamma, Nor-

mal Inverse Gaussian, and Brownian motion models, investors characterized by

the utility functions (4.11) and (4.12) should select portfolios assuming a Vari-

ance Gamma distribution. The term structure determines the biggest differences

in the portfolio weights of the same strategy and different periods. When the

interest rates of the implicit term structure are growing (decreasing) we obtain

that the investors are more (less) attracted to invest in the riskless in the sequent

period. Generally it does not exist a common factor between portfolio weights of

different periods and the same strategy. However, when we consider the flat term

structure (2-nd term structure), the portfolio weights change over the time with

the same capitalization factor. Table 4.11 shows the ex-post final wealth under
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Utility function (4.11)

Term1 Term2 Term3

BM VG NIG BM VG NIG BM VG NIG

a=0.5 1.0762 1.0805 1.0711 1.0716 1.0755 1.0670 1.0672 1.0966 1.0851

a=1 1.1319 1.1404 1.1470 1.1498 1.1594 1.1381 1.1401 1.1487 1.1295

a=1.5 1.1876 1.2304 1.1976 1.2019 1.2154 1.1856 1.1888 1.2269 1.1961

a=2 1.2433 1.2903 1.2482 1.2540 1.2993 1.2568 1.2617 1.3050 1.2627

Utility function (4.12)

Term1 Term2 Term3

BM VG NIG BM VG NIG BM VG NIG

c=1 1.3269 1.3503 1.3241 1.3322 1.3553 1.3279 1.3347 1.3571 1.3294

c=2 1.1319 1.1404 1.1217 1.1237 1.1594 1.1381 1.1401 1.1487 1.1295

c=3 1.4383 1.4702 1.4252 1.4364 1.4951 1.4228 1.4320 1.4873 1.4404

c=4 1.8281 1.9198 1.8299 1.8532 1.9428 1.8261 1.8698 1.9561 1.8622

c=5 2.3573 2.5194 2.3358 2.3743 2.5583 2.3717 2.4049 2.5812 2.3951

Table 4.11: Ex-post final wealths on date 06/01/06, investing 1 USD on 01/01/06

and using the optimal strategies solutions of the problems (4.11) and (4.12) under

three distributional hypotheses and three term structures.

the three term structures for the three distributional assumptions and two utility

functions. These results confirm the better performance of the Variance Gamma

approach with respect to the Normal Inverse Gaussian and Brownian motion

ones. Moreover, in this ex-post comparison we observe a better performance of

the Brownian motion with respect to the NIG model.



Financial models with Lévy processes 96

4.5 Ex-ante and ex-post Comparisons with more

large portfolios and a proposal to take into

account the skewness

In this section we show an analysis with 20 assets of the market index Down

Jones. The previous analyses consider only a little number of assets, because

the used values of the parameters are maximum likelihood estimates and the

computational times are quite high. As observed at the end of section 4.2, we

could use an approximation of the moment estimate in order to compute the

correlation matrix of the d-dimensional Brownian motion specified into the model.

The 20 studied assets are: 1) 3M Company; 2) Alcoa Inc; 3) Altria Group Inc;

4) Boeing Co; 5) Caterpillar Inc; 6) Coca Cola Co The; 7) Du Pont E I De

Nem; 8) Exxon Mobil Cp; 9) Gen Electric Co; 10) Gen Motors; 11) Hewlett

Packard Co; 12) Honeywell Intl Inc; 13) Intl Business Mach; 14) Johnson and

Johns Dc; 15) McDonalds Cp; 16) Merck Co Inc; 17) Procter Gamble Co; 18)

United Tech; 19) Wal Mart Stores; 20) Walt Disney-Disney C. We use daily log

returns from 01/01/1985 to 30/12/2005 to estimate all the parameters, and then

we consider the year 2006 for an ex-post analysis. Furthermore, our procedure to

select portfolios allows an ex-ante comparison based on the expected utility. Let

us suppose that the asset log returns satisfy the equation (4.4). Then, assuming

that the log return of the portfolio w = [w1, . . . , wd]
′ is well approximated by the

convex combination of log returns, we have that the portfolio log return {X(w)
t }

follows the subordinated Lévy process

X
(w)
t = (w′µ)t + (w′γ)Zt +

√
w′QwWZt ,

where {Zt} is the Lévy subordinator, and {Wt} a 1-dimensional standard Brow-

nian motion. As explained in section 4.2, considering the assets one at a time, we

can compute the maximum likelihood estimates so that they are characterized by

the same subordinator, that is we have the maximum likelihood estimates of µ,
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Figure 4.3: QQplots of the portfolio with equal weights versus NIG distribution

on the left and BM distribution on the right.

γ, and parameters of {Zt}. What remains not estimated is the definite positive

matrix Q whose generic element is σ2
ij = σiσjρij, where σi and σj are already

estimated and ρij is the correlation coefficient between X
(i)
t |Zt and X

(j)
t |Zt (X

(i)
t

means the log return at time t of the portfolio with investment only in the i-th

asset). But, as we have observed at the end of section 4.2, when the vector γ is

near to zero then an approximation of the moment estimate of ρij is the sample

correlation between X
(i)
t and X

(j)
t . The possibility to estimate quickly the covari-

ance matrix Q allows to apply the NIG and VG models even though the portfolio

is composed by a large number of assets. Figure 4.3 displays qq-plots of the

empirical distribution of the portfolio composed by all assets with equal weights

(i.e., wi = 1/20) versus the NIG distribution on the left and Normal distribution

on the right. According to this graphic comparison NIG distribution describes

better than Normal distribution the sample data, and this result is confirmed by

the Kolmogorov-Smirnov distances which are 0.0307 under NIG distribution and

0.0697 under Normal distribution. Thus, it is possible to estimate all the pa-

rameters of the NIG model so that computational times are not so high, and the

description of the observed data is improved with respect to the Normal model.

Similar results can be obtained under the VG model. Now, our analysis consists

in to carry out an ex-post comparison among the NIG, VG and Normal models,
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thus we consider a risk-averse investor I that every day in the year 2006 selects

a portfolio on these 20 assets with maturity 1 day. Suppose that I chooses the

Normal model to describe the random behaviour of the market, then the vector

of log returns X̃t = [X
(1)
t , . . . , X

(20)
t ]′ follows

X̃t = µtt + Q1/2W̃t,

where µt = [µt,1, . . . , µt,20]
′, Q = [σ2

ij] is the variance-covariance matrix of X̃t at

time t = 1, and W̃t is a standard 20-dimensional Brownian motion. Starting

from 01/01/2006, the j-th day of the year, the investor I estimates µtj by the

mean of the sample data attained during the last 4 years, and Q by the sample

variance-covariance matrix on the period 01/01/1985 - 30/12/2005. Then, the

investor I solves for each m ∈ [a1, a2], where a1 is the mean of the portfolio of

minimum variance and a2 the highest value of the vector µtj , the optimization

problem 



min
w

w′Qw

w′µtj = m
∑20

i=1 wi = 1, wi ≥ 0, i = 1, . . . , 20.

Thus, the investor I calculates the portfolio w(m) which minimizes the variance

for the level of mean m, under the assumption of no short sales. Finally, assuming

that the investor’s wealth at the j-th day is Wtj , for the next day the investor

I chooses the portfolio w∗ among the efficient portfolios w(m) which maximizes

the empirical expected utility of the last 4 years, that is, he solves the problem

max
w(m)

1

N

N∑

k=1

u
(
Wtj(1 + w(m)′xtk)

)
,

where N is the number of trading days during 4 years, and xtk is the return vector

N − k days before the j-th days of the year 2006. Suppose now that the investor

I chooses a subordinated model to describe the random behaviour of the market,

then the the log return vector X̃t = [X
(1)
t , . . . , X

(20)
t ]′ follows

X̃t = µtt + γZt + Q1/2W̃Zt , (4.13)
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where µt = [µt,1, . . . , µt,20]
′, γ = [γ1, . . . , γ20]

′, Q = [σ2
ij] is a definite positive

matrix, {Zt} is a subordinator, and {W̃t} is a standard 20-dimensional Brownian

motion. If {Zt} is an Inverse Gaussian process with parameters a = 1 and

b > 0 then we have the NIG model, if {Zt} is a Gamma process with parameters

a = b = 1/ν > 0 then we have the VG model. Every day, during the year 2006,

the investor I selects a portfolio on the basis of the model (4.13). The estimates of

γ and Q are obtained by the procedure explained at the beginning of the section,

while µtj at the j-th day is determined so that the mean of X̃tj is equal to the

sample mean of the last 4 years. Let us remark an aspect of the subordinated

model. Under this model, the log return of the portfolio w follows a subordinated

process whose parameter w′γ controls the skewness, that is, w′γ > 0 implies

positive skewness and w′γ < 0 negative skewness. On the basis of this remark,

we propose to select portfolio minimizing the objective function

f(w) = w′Qw − 1

c
w′γ,

where c ∈ [1, 10]. In this way we are able to select portfolios which maximize the

skewness. As a matter of fact, Figure 4.4 plots under the NIG model the skewness

of the portfolio for different values of c ∈ [1, 10], and the maximum skewness is

obtained for a value of c near to 4. When c = 10, we tend to select the portfolio

which minimizes the risk measure w′Qw. Assuming that the investor I chooses

our objective function, then at the j-th day of the year, for each m ∈ [a1, a2],

where a1 is the mean of the portfolio of minimum variance and a2 the highest

value of E[X̃tj ], and for each c ∈ [1, 10], the investor I solves the optimization

problem 



min
w

w′Qw − 1
k
w′γ

w′E[X̃tj ] = m, k = c,
∑20

i=1 wi = 1, wi ≥ 0, i = 1, . . . , 20.

Thus, the investor I calculates the portfolio w(m, c) which minimizes the objective

function w′Qw− 1
c
w′γ for the level of mean m, under the assumption of no short
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Figure 4.4: Skewness of the portfolio as function of parameter c.

sales. Finally, assuming that the investor’s wealth at the j-th day is Wtj , for the

next day the investor I chooses the portfolio w∗ among the efficient portfolios

w(m, c) which maximizes the empirical expected utility of the last 4 years, that

is he solves the problem

max
w(m,c)

1

N

N∑

k=1

u
(
Wtj(1 + w(m, c)′xtk)

)
,

where N is the number of trading days during 4 years, and xtk is the return vector

N − k days before the j-th days of the year 2006. Figure 4.5 reports ex-post and

ex-ante comparisons between NIG and Normal models, assuming an investor with

utility function

u(x) = 1− e−
1
a
x, (4.14)

where a=0.5. In particular, on the left, day by day, we have the difference of

the wealth between the two models, that is at day tj the figure plots the value

W
(NIG)
tj −W

(N)
tj , where W

(NIG)
tj is the investor’s wealth at day tj under NIG model

assuming at the beginning of the year an initial investment of 1 USD, while W
(N)
tj

is the wealth at same day under Normal model and with initial investment of 1

USD. Though these differences are small, we can see that NIG model is able to
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Figure 4.5: Case: a=0.5 and comparison NIG and Normal models. On the left

we have an ex-post comparison based on the difference of wealth between the NIG

and Normal models, on the right an ex-ante comparison based on the difference

of expected utility between the two models.

guarantee a wealth greater than that one under Normal model, except a short

period at the beginning of the year. On the right of Figure 4.5 we have an ex-ante

comparison. In particular, day by day, it is plotted the difference of empirical

expected utility of the last 4 years between the two models, that is at day tj the

figure shows the difference U
(NIG)
tj − U

(N)
tj , where

U
(J)
tj =

1

N

N∑

k=1

u
(
Wtj(1 + w∗′xtk)

)
, J = NIG, N,

and where w∗ is the portfolio that maximizes this empirical expected utility under

the two models. Figure 4.5 shows that NIG models guarantees during the year

an empirical expected utility greater than that one under Normal model, except

a short period of the year. It is interesting to observe that the difference of

the empirical expected utility has a behaviour similar to that one of the wealth,

thus, during the year 2006, the maximization of the expected utility has really

guaranteed higher future gains. Figure 4.6 shows the same type of analysis,

but this time between the VG and Normal models and for an investor with

utility function (4.14) and a = 0.3. On the left, day by day, we have an ex-

post comparison based on the difference of wealth, that is the figure plots the
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Figure 4.6: Case: a=0.3 and comparison VG and Normal models. On the left

we have an ex-post comparison based on the difference of wealth between the VG

and Normal models, on the right an ex-ante comparison based on the difference

of expected utility between the two models.

value W
(V G)
tj −W

(N)
tj , where W

(V G)
tj is the investor’s wealth at day tj under VG

model assuming at the beginning of the year an initial investment of 1 USD, while

W
(N)
tj is the wealth at same day under Normal model and with initial investment

of 1 USD. We can see that the VG model gives a better performance during the

year, except a period which starts around the 10-th day of the year and finishes

around the 100-th day. On the right of Figure 4.6 we have an ex-ante comparison.

In particular, day by day, it is plotted the difference of empirical expected utility

of the last 4 years between the two models, that is at day tj the figure shows the

difference U
(V G)
tj − U

(N)
tj , where

U
(J)
tj =

1

N

N∑

k=1

u
(
Wtj(1 + w∗′xtk)

)
, J = V G, N,

and where w∗ is the portfolio that maximizes this empirical expected utility under

the two models. By the figure we have that the VG model gives empirical expected

utilities greater than the Normal one, except a period which starts around the

10-th day of the year and finishes around the 100-th day. As in the case of the

comparison between the NIG and Normal models, we can observe that the two

graphs in Figure 4.6 are very similar, that is when the difference of wealth is
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positive then the difference of expected utility is positive too, thus, in the year

2006, maximizing expected utilities has guaranteed higher future gains.

4.6 Risk management with EWMA-Lévy model

In this section we apply elliptical EWMA VaR and CVaR models to asset port-

folios distributed as VG and NIG laws. The Value at Risk (VaR) and Con-

ditional Value at Risk (CVaR) are risk measures which summarize in a single

value the possible losses which could occur with a given probability in a given

temporal horizon. In order to compute these risk values we have to determine

the so called profit/loss distribution. For example, the RiskMetrics model (see

Longerstaey and Zangari [50]) assumes that the profit/loss distribution, condi-

tional upon the portfolio standard deviation, is Gaussian and then computes

VaR and CVaR through the multiplication of the portfolio standard deviation by

a constant which is function of a given confidence level. Moreover, the RiskMet-

rics model computes weekly, monthly, and yearly VaR and CVaR scaling daily

Gaussian VaR and CVaR estimates with opportune factors. Two main critics

can be assigned to the RiskMetrics model, firstly many empirical studies show

the inconsistence of conditional asset returns distributed as Gaussian laws, and

secondly the time rule applied to compute VaR and CVaR on different temporal

horizon is valid only for independent returns. In order to exceed at least the

first lack of the RiskMetrics model we propose to describe asset returns as VG

and NIG distributions and thus to apply an exponential weighted moving average

(EWMA) model.

Value at Risk is the maximum loss among the best θ% cases which could

occur in a given temporal horizon. Therefore, if τ denotes the temporal horizon,

S
(w)
t+τ − S

(w)
t the profit/loss realized in the interval [t, t + τ ] by the portfolio with

weight vector w = (w1, . . . , wd)
′, and θ the level of confidence, then

VaRθ,[t,t+τ ](S
(w)
t+τ − S

(w)
t ) = inf{q|Pr(S

(w)
t+τ − S

(w)
t ≤ q) > 1− θ}.
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Thus, Value at Risk is the (1 − θ)% percentile of the profit/loss distribution in

the time interval [t, t + τ ]. But, VaR is not a coherent risk measure because it

does not satisfy the subadditivity property (see Artzner et al. [1]), and so the

recent literature (see Szegö [82]) has proposed alternative coherent measures, for

example the CVaR. The Conditional Value at Risk is the expected profit/loss

given that the Value at Risk has not been exceeded:

CVaRθ,[t,t+τ ](S
(w)
t+τ − S

(w)
t ) =

1

1− θ

∫ 1−θ

0

VaRq,[t,t+τ ](S
(w)
t+τ − S

(w)
t )dq.

For a continuous profit/loss distribution the Conditional Value at Risk is given

by

CVaRθ,[t,t+τ ](S
(w)
t+τ − S

(w)
t ) = E[S

(w)
t+τ − S

(w)
t |S(w)

t+τ − S
(w)
t ≤ VaRθ,[t,t+τ ]].

The RiskMetrics model approximates the continuously compounded return

X
(w)
t+1 of the portfolio w on the period [t, t + 1] by the convex combination

X
(w)
t+1 =

d∑
i=1

wiX
(i)
t+1,

where X
(i)
t+1 = log(S

(i)
t+1/S

(i)
t ) is the continuously compounded return of the i-

th asset on the period [t,t+1], and S
(i)
t is the price of the i-th asset at time t.

Moreover, the random vector Xt+1 = [X
(1)
t+1, . . . , X

(d)
t+1]

′ is assumed to follow a

conditional joint Gaussian distribution with null mean. Therefore,

X
(w)
t+1 = σ(w,t+1|t)Y,

where Y ∼ N(0, 1), σ2
(w,t+1|t) = w′Q(t+1|t)w is the variance of the portfolio w, and

Q(t+1|t) = [σ2
(ij,t+1|t)] is the forecasted variance-covariance matrix. The elements

of the time-dependent matrix Q(t+1|t) are estimated according to an exponentially

weighted moving average model:

σ2
(ii,t+1|t) = E[X

(i)2

t+1 ] = λσ2
(ii,t|t−1) + (1− λ)X

(i)2

t

σ2
(ij,t+1|t) = E[X

(i)
t+1X

(j)
t+1] = λσ2

(ij,t|t−1) + (1− λ)X
(i)
t X

(j)
t ,
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where λ is the optimal smoothing factor (see Longerstaey and Zangari [50]).

Under the RiskMetrics model, the Value at Risk of the portfolio w at confidence

level θ% conditional the information available at time t, denoted as VaRθ,t+1|t, is

obtained by the forecasted volatility σ(w,t+1|t) times the (1− θ)% percentile, k1−θ,

of the standard Gaussian distribution, that is

VaRθ,t+1|t(X
(w)
t+1) = k1−θσ(w,t+1|t).

A similar formula is also valid for the Conditional Value at Risk of the portfolio

w conditional the information at time t:

CVaRθ,t+1|t(X
(w)
t+1) = c1−θσ(w,t+1|t),

where c1−θ = E[Y |Y ≤ k1−θ] and Y ∼ N(0, 1).

The RiskMetrics model can be extended in order to take into account multi-

dimensional NIG and VG distributions and obtain simple formulas for conditional

VaR and CVaR. Assume that X̃t+1 = [X
(1)
t+1, . . . , X

(d)
t+1]

′, the vector of the contin-

uously compounded returns on the period [t, t + 1], satisfies the equation

X̃t+1 = Q
1/2
(t+1|t)

√
ZỸ ,

where Q(t+1|t) is a definite positive matrix, Z a positive random variable, and

Ỹ a d-dimensional standard Gaussian distribution independent of Z. Then, the

conditional distribution of the portfolio w satisfies

X
(w)
t+1 = σ(w,t+1|t)

√
ZY, (4.15)

where Y ∼ N(0, 1) and σ2
(w,t+1|t) = w′Q(t+1|t)w. The elements of the time-

dependent matrix Q(t+1|t) can be computed according to the EWMA model:

σ2
(ii,t+1|t) = λσ2

(ii,t|t−1) + (1/E[Z])(1− λ)X
(i)2

t

σ2
(ij,t+1|t) = λσ2

(ij,t|t−1) + (1/E[Z])(1− λ)X
(i)
t X

(j)
t ,

where λ is the optimal smoothing factor. From equation (4.15), we can com-

pute the Value at Risk of the portfolio w at confidence level θ% conditional the
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information at time t by the formula:

VaRθ,t+1|t(X
(w)
t+1) = k̃1−θσ(w,t+1|t),

where k̃1−θ is the (1− θ)% percentile of the distribution of
√

ZY . Then, for the

Conditional Value at Risk we have the similar formula:

CVaRθ,t+1|t(X
(w)
t+1) = c̃1−θσ(w,t+1|t),

where c̃1−θ = E[
√

ZY |√ZY ≤ k̃1−θ]. Choosing appropriately the positive ran-

dom variable Z, we can define models where asset returns follow either Variance

Gamma laws or Normal Inverse Gaussian laws. Specifically, if Z is a Gamma

distribution with parameters a = b = 1/ν, then the portfolio return X
(w)
t+1 follows

a Variance Gamma distribution with parameters θw = 0, σw = σ(w,t+1|t), and

νw = ν. While, if Z is an Inverse Gaussian distribution with parameter a = 1

and b > 0, then the portfolio return X
(w)
t+1 follows a Normal Inverse Gaussian

distribution with parameters αw = b/δw, βw = 0, and δw = σ(w,t+1|t).

4.7 Risk management with ICA-Lévy model

In this section we suggest a generalization of the GHICA model of Chen at al. [17].

Given a multidimensional time series of asset prices S(t) = (S1(t), . . . , Sd(t))
>,

we assume the conditional heteroscedastic model

X(t) = QX(t)1/2ξX(t),

where X(t) = (X1(t), . . . , Xd(t))
> is the (log) return vector, that is Xi(t) =

log(Si(t)/Si(t − 1)), and ξX(t) = (ξX,1(t), . . . , ξX,d(t))
> is the standardized in-

novation vector. The vector ξX(t) is assumed to be predictable with respect to

=t−1, the σ-algebra generates by S(0), S(1), . . . , S(t− 1). Using the Independent

Component Analysis (ICA) we can find a linear transformation Y (t) = KX(t),

where K is a time constant and singular matrix, so that

X(t) = K−1Y (t) = K−1QY (t)1/2ξY (t),
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where now QY (t)1/2 is a diagonal matrix. Thus, the stochastic innovation ξY (t) =

(ξY,1(t), . . . , ξY,d(t))
> can be individually modeled, for example as Lévy distribu-

tions.

The following algorithm summarizes the procedure that under the above

model and with Lévy innovations permits to measure risk exposures:

1. Do ICA to find the independent components;

2. Implement the local exponential smoothing to estimate the variance of each

independent component;

3. Model each independent innovation as a Lévy distribution;

4. Estimate the density of the portfolio return through the FFT technique;

5. Compute risk measures.

Independent Component Analysis

The Independent Component Analysis of a random vector X consists of estimat-

ing the following model:

X = KY, (4.16)

where the latent factors Yi in the vector Y = (Y1, . . . , Yd)
> are assumed sta-

tistically independent and nongaussian, and the matrix K is nonsingular. The

statistically independent requirement means that

fY (y1, . . . , yd) = fY1(y1) · · · fYd
(yd),

where fY is the joint density function and fYi
is the density function of Yi. Then,

the nongaussian requirement depends of the consequence that the matrix K is

not identifiable if the components are Gaussian. Another condition is on the

variance of the independent component Y :

E[Y Y >] = I,
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where I is the identity matrix, otherwise there are infinite matrixes K which

satisfy the model (4.16). The principle underlying the estimation of the matrix

K is based on the nongaussian condition. If we multiply both sides of equation

(4.16) by a matrix W we have

Θ = WX = WKY = ZY,

where Z = WK. Thus, each component of Θ is a linear sum of Y . Since, from

the Central Limit Theorem, the sum of independent random variable is more

Gaussian than the original variables, ZY is more Gaussian than Y and is least

Gaussian if it is equal to Y . Thus, we have to find the matrix W that maximizes

the nongaussian property of WX, because in this case

Θ = WX = WKY ≈ Y,

being W ≈ K−1. Therefore, we find the matrix K and the latent factor Y .

A way to measure the nongaussianity of a random vector Y is to use the

negentropy which is based on the quantity of entropy. The entropy described

how much randomness is a random variable, and it is shown that the Gaussian

variable has the largest entropy among all random variables of equal variance (see

Cover and Thomas [23]). For a continuous random variable or vector the entropy

is called differential entropy and is defined as

H(Y ) = −
∫

fY (y) log (fY (y)) dy.

Then, the negentropy is defined as

J(Y ) = H(Y0)−H(Y ),

where Y0 is standard multinormal distribution. Negentropy is always nonnegative

and is zero if and only if the random vector is Gaussian. Thus, to maximize the

nongaussianity is equivalent to maximize the negentropy. However, it is not easy
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to use the negentropy and generally the following approximation is considered

(see Hyvärinen [42]):

Jg(Y ) =
d∑

i=1

ki (E[G(Yi)]− E[G(Y0,i)])
2 ,

where ki is a positive constant, Y0,i is a standard normal distribution and G is a

nonquadratic function. Practical choices of G are:

G1(x) = 1
a
log(cosh(ax)), G2(x) = − exp(−x2/2) ,

where 1 ≤ a ≤ 2. The symmetric FastICA algorithm (see Hyvärinen, Karhunen,

and Oja [43]) can be use to maximize the approximated negentropy:

1. Choose initial vectors ŵ
(1)
i for W = (w1, . . . , wd)

′ with unit norm.

2. Loop:

• At step n, calculate

ŵn
i = E

[
X(t)>G′

(
ŵ

(n−1)>
i X(t)

)]
− E

[
G′′

(
ŵ

(n−1)>
i X(t)

)]
ŵ

(n−1)
i ,

where G′ is the first derivative of G, G′′ the second derivative, and E[·]
is approximated by the sample mean.

• Do a symmetric orthogonalization of the estimated matrix Ŵ (n):

Ŵ (n) =
(
Ŵ (n)Ŵ (n)>

)−1/2

Ŵ (n).

• If not converged, that is det
[
Ŵ (n) − Ŵ (n−1)

]
6= 0, go back to 2. Oth-

erwise, the algorithm stops.

3. The last estimate is the final estimate of Ŵ .
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Local exponential smoothing

Given the independent components Y and the transformation matrix W , then

the covariance matrixes of Y and X are respectively:

QY (t) = diag
(
σY1(t)

2, . . . , σYd
(t)2

)
,

QX(t) = W−1QY (t)W−1>,

where σYi
(t) is the heteroscedastic volatility of the i-th independent component.

The next step is to estimate the diagonal matrix QY (t) and generally the local

exponential smoothing procedure is adopted.

For each i = 1, . . . , d we have the univariate heteroscedastic model

Yi(t) = σYi
(t)ξYi

(t),

where

E[ξYi
(t)|=t−1] = 0, E[ξYi

(t)2|=t−1] = 1,

and σYi
(t) is predictable with respect to =t−1. Under the assumption of normal

distributed innovation and using the exponentially decreasing weights {ηt−s}s≤t,

the local maximum likelihood estimate (MLE) of σYi
(t) (see Polzehl and Spokoiny

[67]) is given by

σ̃Yi
(t) =

(
N−1

t

∑
s

Y 2
s−1η

t−s

)1/2

, (4.17)

where Nt =
∑

s ηt−s. Removing the assumption of normal innovation, if the

exponential of the squared innovation E[exp(ρξYi
(t)2)] exists, then we can still

use the estimate (4.17). In order to guarantee the existence of the exponential

moment, it is possible to apply a power transformation (see Chen et al. [17]):

Yp,i(t) = sign(Yi(t))|Yi|p,
θYi

(t) = Var[Yp,i|=t−1]

= σYi
(t)2pE[|ξ|2p|=t−1],
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where 0 ≤ p < 1/2. Observe that θYi
(t) is one-to-one correspondence to σYi

(t)

and can be estimated by

θ̃Yi
(t) = N−1

t

∑
s

|Yi(s− 1)|2pηt−s.

Suppose now that a finite set {ηk : k = 1, . . . , K} of values of smoothing param-

eter is given. Then, for each value ηk we have the local MLE

θ̃
(k)
Yi

(t) =

(
N−1

t

∑
s

|Yi(s− 1)|2pηt−s
k

)1/2

,

and the spatial stagewise aggregation (SSA) method (see Belomestny and Spokoiny

[8], and Chen et al. [17]) can be implemented to estimate θYi
(t). According to

this method we can choose an aggregation estimate θ̃Yi
(t) which summarizes all

the estimates θ̃
(k)
Yi

(t).

Independent innovations as Lévy distributions

In their model Chen et al. propose to model the independent components as

NIG distributions. Instead, we suggest to implement the methodology assuming

that every component can follow the Lévy distribution that better describes it

according to some statistics. By the independent component analysis, we have

Y (t) = KX(t),

where K = W−1, and thus we can use the observe data to conjecture the Lévy

distribution which better describes a particular component Yi. The choice could

be done taking into account semi-heavy and heavy tails distributions, for example

GH, NIG, VG, and α-stable distributions, and then selecting that one which

has the smaller values of the Kolmogorov-Smirnov statistic, or of the Anderson-

Darling statistic, or of the product of these two statistics.

In order to implement the ICA-Lévy model we have to be sure that the men-

tioned Lévy distributions satisfy the scaling property, that is if X is distributed
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according to a particular law then the law of cX has to be of the same class.

Looking at the characteristic functions of the GH, VG, and α-stable laws, we

have that if X ∼ GH(x; µ, α, β, δ, ν) then Y = cX satisfies

Y ∼ GH(y; cµ, α/|c|, β/c, |c|δ, ν),

if X ∼ VG(x; µ, σ, ν, θ) then

Y ∼ VG(y; cµ, |c|σ, ν, cθ),

if X ∼ Sα(σ, β, µ) then

Y ∼ Sα(|c|σ, sign(c)β, cµ),

and, finally, the NIG distribution satisfies the scaling property being a special

case of the GH one with ν = 0. The notation Sα(σ, β, µ) represents an α-stable

distribution with parameters α ∈ (0, 2], σ ≥ 0, β ∈ [−1,−1], and µ ∈ R.

Estimate of the density function of the portfolio return (FFT algo-

rithm)

Given an asset portfolio at time t− 1 with weight vector w(t) = (w1 . . . , wd(t))
>,

under the ICA-Lévy model the portfolio return follows

R(t) = w(t)>W−1QY (t)1/2ξY (t),

where the components of the innovation vector ξY (t) are Lévy distributed. Setting

(v1, . . . , vd) = w(t)>W−1QY (t)1/2,

then the random variable ζi = viξi follows a Lévy distribution of the same class

of ξi. Moreover, the characteristic function of the portfolio return R(t) =
∑d

i=1 ζi

is given by

φR(z) =
d∏

i=1

φζi
(z),



Financial models with Lévy processes 113

and the density function can be approximated by the Fourier transformation:

fR(r) =
1

2π

∫ ∞

−∞
exp(−izr)φR(z)dz

≈ 1

2π

∫ a

−a

exp(−izr)φR(z)dz.

The density function fR(r) can be numerically computed by the FFT algorithm

which evaluates the discrete Fourier transformation (DFT) efficiently (see, among

the others, Menn and Rachev [56], Chen et al. [17]). The DFT is a special

mapping of a vector y = (y0, . . . , yN−1) ∈ CN onto a vector s = (s0, . . . , sN−1) ∈
CN :

sl = DFT(y)l =
N−1∑
j=0

yje
−il 2πj

N , l = 0, . . . , N − 1.

The following algorithm can be implemented to approximate fR(r):

1. Let N = 2m with m ∈ N and define an equidistance grid over the integral

interval [−a, a] by setting h = 2a/N and the grid points zj = −a + jh with

j = 0, . . . , N .

2. The input of the DFT are yj = (−1)jφR(z∗j ), where z∗j = 0.5(zj + zj+1) are

the middle points.

3. We have the density fR(r) = 1
2π

CkDFT (y)k for r = −Nπ
2a

+ πk
a

, where

Ck = 2a
N

(−1)ke−i(π/N)k and k = 0, . . . , N − 1.

Risk measures

Given the density function fR(r) of the portfolio return R(t) we can compute the

risk measures VaR and CVaR at confidence level θ% according to the formulas:

VaRθ,[t−1,t](R(t)) = {q|Pr(R(t) ≤ q) = 1− θ},
CVaRθ,[t−1,t](R(t)) = E[R(t)|R(t) ≤ VaRθ,[t−1,t]].



Chapter 5

Concluding remarks

In this dissertation three main topics have been studied: option pricing, portfolio

selection, and risk management. The underlying randomness has been modeled

by Lévy processes, which are stochastic processes with some remarkable proper-

ties, such as independent and stationary increments, and right continuous paths

with left limits. For example, the same Brownian motion is an element of this

class. Chapter 1 has been an introduction to Lévy processes and exponential-Lévy

models. We have shown the deep link between infinitely divisible distributions

and Lévy processes, and further we have stated some important results, such as

the Lévy-Ito decomposition and Lévy-Khintchine representation. Since financial

applications of Lévy processes often exploit their Markov property, we have ded-

icated a section to the correspondence between Lévy and Markov processes. In

financial applications important Lévy processes are those obtained by subordi-

nation, i.e., it is defined a subordinator which represents the business time. A

subordinator is a stochastic process with positive and non-decreasing paths and,

thus, it can be used as time-change for other stochastic processes. In our in-

troduction to Lévy processes we have reported some results about the theory of

subordinated processes and shown how to construct two important subordinated

Lévy processes, the Normal Inverse Gaussian and Variance Gamma processes.

Moreover, we have studied the Generalized Hyperbolic, CGMY, and Meixner pro-
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cesses, giving their definitions and characteristics. In the last section of chapter

1 we have studied the exponential-Lévy model, which is the market model gen-

erally assumed under Lévy processes. Precisely, the log return or continuously

compound return of the risky asset is modeled by a Lévy process. The resulting

market model is not complete and thus, given a contingent claim, there is not

a unique risk-neutral probability. So, under an exponential-Lévy model there is

the problem to select the equivalent martingale measure which better summarizes

the investors’ choices. In our introduction to exponential-Lévy models we have

explained how to construct three possible equivalent martingale measures, the

mean correcting, Esscher transform, and minimal entropy martingale measures.

In chapter 3 we have studied option pricing under Lévy processes. We have

started explaining three possible ways to price European options: density func-

tion, Fourier transform, and PIDE method. Density function method is the

simpler one and consists in a closed formula. But, it can be applied only when

the Lévy process admits density function in explicit form. Fourier transform

method is more general and does not require the knowledge of the density func-

tion. Given the characteristic function of the Lévy process, it finds the Fourier

transform of the option price and proposes the Fast Fourier method as pricing

procedure. Finally, PIDE method consists in solving numerically a differential

equation with integral component. These methods can be used only when the

underlying Lévy process satisfies some specific conditions, and they can require

numerical algorithms of not simple implementation. Then, pricing under Lévy

processes becomes even more complex when the option is path-dependent, such

as barrier and lookback options. For these reasons option pricing under Lévy

processes is often based on simulation techniques and Monte Carlo methods.

In the remaining part of chapter 3 we have introduced the markovian approach

and we have shown how to price European, American, compound, barrier, and

lookback options. Markovian approach is a very simple methodology which allows

to price options without particular difficulties. It consists in to construct a se-
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quence of Markov chains converging weakly to the underlying Lévy process, thus

the problem to price options is set in a Markov chain framework. European and

American options can be priced easily and the price convergence is very fast. We

have displayed numerical results concerning these options, and, in the European

case, we have compared the results with the density function method. Compound,

barrier, and lookback options can be priced under a Markov chain framework.

We have shown numerical results, and, in the case of compound options, we

have computed some prices under Brwonian motion and compared the results

with the Geske’s formula. Original contributions of this dissertation have been

to extend the markovian approach from the Brownain motion to Lévy processes

and to explain, under a Markov chain framework, option pricing for compound

and lookback options. Our numerical applications are been performed under the

assumption of three particular Lévy processes, the NIG, VG, and Meixner pro-

cesses. Thus, possible future developments of this methodology could concern

other Lévy processes, such as CGMY, Generalized Hyperbolic, and α-stable pro-

cesses, and further it would be worth to extend the markovian approach to other

path-dependent instruments such as asian options.

In chapter 4 we have studied portfolio selection under subordinated Lévy pro-

cesses and compared these models with the Markowitz one. Our first empirical

comparison has concerned investor’s choices of portfolios composed by the market

portfolio and riskless asset. The NIG model has given the better performance in

terms of expected utility and final wealth, therefore it has been the more conser-

vative one, given that in the year of our ex-post analysis financial markets were

marked by very big losses. In the subsequent sections we have studied multidi-

mensional Lévy processes in order to model financial markets. Specifically, we

have analyzed the possibility to model asset log returns as subordinated Lévy

models characterized by the same subordinator. In this contest, we have faced

the problem of parameter estimates and suggested some maximum likelihood

procedures. Then, we have tested the validity of our distributional assumptions
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performing graphical and statistical comparisons (qq-plot, Kolmogorv-Smirnov

distance). We have obtained that subordinated Lévy models has been able to de-

scribe observed data better than Normal distribution. A first empirical analysis

under multidimensional Lévy processes has regarded five market indexes in the

year 2006. We have considered two possible markets, one without transaction

costs, and the other one with proportional and constant transaction costs. In

our results the presence of transaction costs have not determined a significant

difference, that is, in both cases there has been a first part of the year where the

NIG model has given better results with respect to the VG and Normal models

and a second part of the year where the VG model has been the better one.

A second empirical analysis has been on multi-period portfolio selection prob-

lem under subordinated Lévy processes. We have shown the formulas of mean,

variance, skewness, and kurtosis of the final wealth under different distributional

assumptions and we have performed an empirical comparison supposing three

possible evolutions of the term structure. Our results have consisted in an ex-

ante analysis based on the expected utility and one ex-post based on the final

wealth. The VG model has been able to guarantee the higher expected utilities

and final wealths for investors characterized by different utility functions and risk

aversions. In chapter 4 we have also proposed empirical comparisons under sub-

ordinated processes with time-dependent means. Furthermore, we have shown

the possibility to estimate very quickly the correlation structure of the financial

market, obtaining a description of observed data better than Normal model in

terms of qq-plot and Kolmogorov-Smirnov distance. Our analysis has been based

on a three-dimensional efficient frontier, because we have explained how to define

an objective function which took into account the skewness of portfolios. The em-

pirical comparisons have shown a better performance of the NIG and VG models

with respect to the Normal one. In particular, we have studied daily portfolios

of investors with exponential utility during the year 2006 and we have obtained

greater gains under NIG and VG distributions. Possible future researches could
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concern other multidimensional subordinated models, for example Generalized

Hyperbolic distributions. Then, it would be worth to define and solve optimiza-

tion problems where the kurtosis of portfolios is minimized. Finally, our model

considers only time-dependent means, but, applying the independent component

analysis, one could define models with time-dependent variance-covariance ma-

trixes.

In chapter 4 we have also proposed a risk management analysis with Lévy

distributions. Specifically, we have shown two possible modeling, EWMA-Lévy

and ICA-Lévy models. The first one is an extension of the EWMA RiskMet-

rics model, where the conditional asset returns are either VG distributed or NIG

distributed. An important consequence of this modeling is the same compu-

tational complexity of the RiskMetrics model, that is, VaR and CVaR can be

computed with very simple formulas. The second modeling is a generalization

of the GHICA model of Chen et al. [17]. In particular, we have shown how

to model each stochastic innovation through the Lévy distribution which better

describes it. These two proposed modeling, EWMA-Lévy and ICA-Lévy models,

have been exhibited only by a theoretical point of view, thus future researches

will be empirical analyses and comparisons with other benchmark models.



Appendix A

Simulation of Lévy processes

In this appendix we introduce some methods about the simulation of Lévy pro-

cesses. Section A.1 is just a briefly explanation of the method of exponential

spacings, which allows to simulate Poisson processes. Then, Section A.2 focuses

on the compound Poisson approximation which is a technique applicable to any

Lévy process. Finally, Section A.3 shows how to simulate Normal Inverse Gaus-

sian and Variance Gamma processes exploiting their expression as subordinated

Brownian motion with drift.

A.1 The method of exponential spacings

From the construction of the Poisson process (see Sato [73], Theorem 3.2), we

have

Nt(ω) = n iff Wn(ω) ≤ t < Wn+1(ω),

where {Wn : n = 0, 1, . . .} is a random walk, defined on a probability space

(Ω,=, P), such that Tn = Wn −Wn−1 is a exponential random variable Exp(λ)

with mean λ−1. Now, a random number en from Exp(λ) can be obtained drawing

a random number un from an uniform distribution on (0, 1) and then setting

en = − log(un)/λ.
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Thus, a simulation of the random walk {Wn} is given by

w0 = 0, wn = wn−1 + en, n ≥ 1.

and then a simulation of the Poisson process {Nt} on the time points {n∆t : n =

0, 1, . . .} is given by

N0, Nn∆t = sup{k : wk ≤ n∆t}, n ≥ 1.

Figure A.1 exhibits a sample path of a Poisson process with intensity λ = 30

obtained with this technique.
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Figure A.1: Sample path of a Poisson process with intensity λ = 30.

A.2 The compound Poisson approximation

Consider a Lévy process {Xt} with Lévy triplet [γ, σ2, ν(dx)], then, from the

Lévy-Ito decomposition, we know that

Xt = γt + σWt + X l
t + lim

ε↓0
X̃ε

t ,

where {X l
t} is a compound Poisson process with jumps greater or equal to 1, and

{X̃ε
t } is a compensated compound Poisson process with jumps between ε and 1.
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Thus, a way to simulate {Xt} is to approximate {X l
t} and {X̃ε

t } by a sum of

independent Poisson processes:

Xd
t = γt + σWt +

d∑
i=1

ci(N
(i)
t − λi1|ci|<1).

Specifically, given ε ∈ (0, 1), we partition R \ [−ε, ε] by

a0 < a1 < · · · < ak = −ε, ε = ak+1 < ak+2 < · · · < ad+1,

where, generally d = 2k and




ai−1 = −αi−1 1 ≤ i ≤ k + 1

a2k+2−i = αi−1 1 ≤ i ≤ k + 1,

with α > 0. Then, we specify d independent Poisson processes {N i
t}, i = 1, . . . , d.

In particular, {N i
t} is defined so that its intensity λi is equal to the Lévy measure

on the interval [ai−1, ai), if 1 ≤ i ≤ k, or [ai, ai+1), if k + 1 ≤ i ≤ d, that is

λi =





ν([ai−1, ai)) for 1 ≤ i ≤ k,

ν([ai, ai+1)) for k + 1 ≤ i ≤ d.
(A.1)

Further, the jump size ci of {N (i)
t } is chosen so that the variance of {N (i)

t } is

equal to the variance of {X l
t + limε↓0 X̃ε

t } on the interval [ai−1, ai), if 1 ≤ i ≤ k,

or [ai, ai+1), if k + 1 ≤ i ≤ d, that is

ci =




−

√
λ−1

∫ ai−
ai−1

x2ν(dx) for 1 ≤ i ≤ k,√
λ−1

∫ ai+1−
ai

x2ν(dx) for k + 1 ≤ i ≤ d.
(A.2)

So far, we have described how to approximate the jumps of {Xt} belonging to

R \ [−ε, ε], but an important improvement is to include even the small jumps.

The component of the small jumps can be approximated by a Brownian motion

with volatility

σ2(ε) =

∫

|x|<ε

x2ν(dx).

Thus, the process {Xt} is approximated by

Xd
t = γt + σ̃Wt +

d∑
i=1

ci(N
(i)
t − λi1|ci|<1),
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where

σ̃2 = σ2 + σ2(ε),

and λi and ci are given by (A.1) and (A.2), respectively. Asmussen and Rosińsky

[4] show that the approximation of small jumps by a Brownian component is valid

if and only if for each k > 0

lim
ε→0

σ(kσ(ε) ∧ ε)

σ(ε)
= 1. (A.3)

Observe that the condition (A.3) is implied by limε→0 σ(ε)/ε = ∞, and thus the

approximation of small jumps by a Brownian component can be used for both

the Normal Inverse Gaussian and Meixner processes, because for these processes

we have

σ(ε) ∼
√

2αδ/πε1/2.

Figure A.2 exhibits a sample path of a Meixner process obtained with this tech-

nique.
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Figure A.2: Sample path of a Meixner process with parameters µ = 0.002 α =

0.015, β = 0.12, and δ = 94.
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A.3 Simulation of NIG and VG processes

For the Variance Gamma and Normal Inverse Gaussian processes we can exploit

their expression as subordinated Lévy processes:

Xt = µt + αZt + βWZt , (A.4)

where {Zt} is a subordinator and {Wt} is a Brownian motion. Since {Zt} can

be either a Gamma process or an Inverse Gaussian process, then, first of all, we

have to explain how to generate random numbers from these two distributions.

A Gamma distribution with parameters a > 0 and b > 0, G(a, b), satisfies the

following scaling property: if X is G(a, b), then, for c > 0, cX is G(a, b/c). Thus,

it is sufficient to generate random numbers from G(a, 1). The following algorithm

is the so-called Johnk’s Gamma generator and can be used when a ≤ 1, which is

the case generally met with applications (see Schoutens [76], Section 8.4):

1. Generate two independent random numbers u1 and u2 from an uniform

distribution.

2. Set x = u
1/a
1 and y = u

1/(1−a)
2 .

3. If x + y ≤ 1 goto step 4, else goto step 1.

4. Generate a random number z from an exponential distribution with mean

1.

5. Return zx/(x + y) as a random number from a G(a, 1).

In order to sample random numbers from an Inverse Gaussian distribution

with parameters a > 0 and b > 0, IG(a, b), we can use the generator proposed by

Michael et al. [58]:

1. Generate a random number ν from a standard Normal distribution.

2. Set y = ν2.
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3. Set x = (a/b) + y/(2b2)−
√

4aby + y2/(2b2).

4. Generate a random number u from an uniform distribution.

5. If u ≤ a/(a + xb), then return x as a random number from a IG(a, b), else

return a2/(b2x) as a random number from a IG(a, b).

Now, using equation (A.4), we can simulate sample paths from VG and NIG

processes.

Let {Xt : t ≥ 0} be a VG process with parameters µ, θ, σ, and ν. A sample

path on time points {k∆t : k = 0, 1, . . . , n} can be generated with the following

procedure:

1. Generate n independent random numbers {Gk : k = 1, . . . , n} from a

G(∆t/ν, ν).

2. Generate n independent random numbers {Zk : k = 1, . . . , n} from a stan-

dard Normal distribution.

3. A sample path on time points {k∆t : k = 0, 1, . . . , n} is given by

X0 = 0, Xk∆t = X(k−1)∆t + µ∆t + θGk + σ
√

GkZk, 1 ≤ k ≤ n.

When, instead, {Xt : t ≥ 0} is a Normal Inverse Gaussian process with

parameters µ, α, β, and δ, then a sample path on time points {k∆t : k =

0, 1, . . . , n} can be generated with the following procedure:

1. Generate n independent random numbers {Ik : k = 1, . . . , n} from a

IG(∆t, b), where b = δ
√

α2 − β2.

2. Generate n independent random numbers {Zk : k = 1, . . . , n} from a stan-

dard Normal distribution.

3. A sample path on time points {k∆t : k = 0, 1, . . . , n} is given by

X0 = 0, Xk∆t = X(k−1)∆t + µ∆t + βδ2Ik + δ
√

IkZk, 1 ≤ k ≤ n.
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Figure A.3 exhibits two sample paths, on the left, of a VG process and, on the

right, of a NIG process.
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Figure A.3: Sample path of a VG process with parameters µ = 0.005, θ = 0.08,

σ = 0.1, and ν = 0.0025, and sample path of a NIG process with parameters

µ = 0.003, α = 150, β = 5, and δ = 1.



Appendix B

Special functions

In this appendix we give a brief description of special functions recalled in some

mathematical results during the dissertation. These functions are the Gamma

and Bessel functions (fundamental reference for these and many other functions

is Abramowitz and Stegun ()). The Gamma function was introduced by the Swiss

mathematician Leonard Euler (1707-1783) who generalized the factorial function

to non integer values. Later, other eminent mathematicians, such as Adrien-

Marie Legendre (1752-1833), Carl Friedrich Gauss (1777-1855), Karl Weierstrass

(1815-1897), and many others, studied this special function. The Gamma func-

tion appears in many mathematical areas, such as asymptotic series, definite

integration, number theory, and so on.

The Bessel functions was studied by the mathematicians Daniel Bernoulli

(1700-1782) and Friedrich Bessel (1784-1846). These functions are canonical so-

lutions of Bessel’s differential equation and are especially important for problems

of wave propagation, static potential, and so on.
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B.1 Gamma function

The Gamma function can be considered an extension of the factorial function to

real numbers, and for positive real numbers it can be defined as

Γ(x) =

∫ ∞

0

tx−1e−tdt, x > 0.

Let us verify that actually the function Γ(x) is an extension of the factorial one.

Using integration by parts,

Γ(x + 1) = xΓ(x), (B.1)

then Γ(1) =
∫∞

0
e−tdt = 1, and so the factorial function is a special case of the

Gamma one:

Γ(n + 1) = nΓ(n) = · · · = n!Γ(1) = n!.

Exploiting the functional equation (B.1), we can extend the Gamma function to

whole real axis except on the negative integer (0,-1,-2,. . . ). As a matter of fact,

for −1 < x < 0 we can set

Γ(x) =
Γ(x + 1)

x
,

thus reiterating this identity we have the definition

Γ(x) =
Γ(x + n)

x(x + 1) · · · (x + n− 1)
, −n < x < −n + 1.

Let us solve an integral whose solution represents the Laplace exponent of the

tempered stable subordinator and where the Gamma function on negative values

appears. Specifically, we have to solve the integral

l(u) =

∫ ∞

0

(eux − 1)
ce−λx

xα+1
dx

= c

∫ ∞

0

(
e(u−λ)x − e−λx

)
x−α−1dx,

where u ≤ 0, c, λ > 0, and 0 < α < 1. Using integration by parts, we can write

c

∫ ∞

0

(
e(u−λ)x − e−λx

)
x−α−1dx =

c

α

∫ ∞

0

(
(u− λ)e(u−λ)x + λe−λx

)
x−αdx,
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and thus

l(u) =
c

α

∫ ∞

0

(
(u− λ)e(u−λ)x + λe−λx

)
x−αdx

=
c

α

∫ ∞

0

(u− λ)e(u−λ)xx−αdx +
c

α

∫ ∞

0

λe−λxx−αdx.

Finally, using integration by substitution, we obtain

l(u) = c ((λ− u)α − λα) Γ(−α).

B.2 Bessel and modified Bessel functions

Bessel functions of the first kind J±ν(z), of the second kind Nν(z), and of the

third kind H
(1)
ν (z) and H

(2)
ν (z) are solutions to the differential equation:

z2d2w

dz2
+ z

dw

dz
+ (z2 − ν2)w = 0.

All these functions are holomorphic functions of z throughout the z-plane cut

along the negative real axis, and for fixed z 6= 0 they are entire function of ν.

Moreover, if ν = ±n then Jν(z) has no branch point and is an entire function of

z. The function Jν(z) can be written as the series

Jν(z) = (z/2)ν

∞∑

k=0

(−z2/4)k

k!Γ(ν + k + 1)
,

and there exists the relation

Nν(z) =
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)
,

where the right side is replaced by its limiting value if ν is an integer or zero.

Furthermore,

H(1)
ν (z) = Jν(z) + iNν(z),

H(2)
ν (z) = Jν(z)− iNν(z).
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Modified Bessel functions of the first kind I±ν(z) and of the third kind Kν(z) are

solutions to the differential equation:

z2d2w

dz2
+ z

dw

dz
− (z2 + ν2)w = 0.

Even these functions are holomorphic functions of z throughout the z-plane cut

along the negative real axis, and for z 6= 0 they are entire functions of z. For

ν = ±n, Iν(z) is an entire function of z. The function Iν(z) can be written as

the series

Iν(z) = (z/2)ν

∞∑

k=0

(z2/4)k

k!Γ(ν + k + 1)
,

and there exists the relation

Kν(z) =
π

2

Iν(z)− I−ν(z)

sin(νπ)
,

where the right side is replaced by its limiting value if ν is an integer or zero.

The Bessel function Kν(z) admits the integral form

Kν(z) =
1

2

(z

2

)ν
∫ ∞

0

e−t− z2

4t t−ν−1dt.

Useful properties are:

Kν(z) = K−ν(z),

Kν+1(z) =
2ν

z
Kν(z) + Kν−1(z),

K1/2(z) =
√

π/2z−1/2 exp(−z),

K ′
ν(z) = −ν

z
Kν(z)−Kν−1(z).
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