Rapporto n .
 dmsia (unibg.it

E. Allevi, A. Gnudi, I.V.Konnov and S. Schaible Gauss-Seidel Method for Multi-Valued Inclusions with Z Mappings

Serie Ricerca

Dipartimento
di Matematica, Statistica,
Informatica e Applicazioni
"Lorenzo Mascheroni"

Gauss-Seidel Method for Multi-Valued Inclusions with Z Mappings ${ }^{1}$

E. Allevi ${ }^{2}$, A. Gnudi ${ }^{3}$, I.V.Konnov ${ }^{4}$, and S. Schaible ${ }^{5}$

Abstract

We consider a problem of solution of a multi-valued inclusion on a cone segment. In the case where the underlying mapping possesses Z type properties we suggest an extension of Gauss-Seidel algorithms from nonlinear equations. We prove convergence of a modified double iteration process under rather mild additional assumptions. Some results of numerical experiments are also presented.

Key words: Multi-valued inclusions, weak Z-mappings, Gauss-Seidel algorithm.

[^0]
1 Introduction

The problem of solving a system of nonlinear equations is one of the basic and most investigated problems considered in Nonlinear Analysis; see e.g. [1] and references therein. It is also closely related to fixed point, complementarity and variational inequality problems; see e.g. [2]-[5] and references therein. However, many applications arising e.g. in Mathematical Physics and Economics require utilization of more general multi-valued mappings. Then one has to replace nonlinear equations with multi-valued inclusions; see e.g. [6, 2, 7].

Recently, in [8], Jacobi type algorithms for solving multi-valued inclusions on cone segments whose cost mappings are compositions of multi-valued Z mappings and diagonal monotone mappings were proposed. Also, in [9], a Gauss-Seidel type algorithm for complementarity problems under similar assumptions was proposed.

In this paper, we intend to develop a Gauss-Seidel type algorithm for multi-valued inclusions on cone segments, thus extending the usual GaussSeidel algorithm from the single-valued case; see e.g. [1].

2 Classes of order monotone mappings

We start our considerations from recalling several order monotonicity properties of single-valued mappings. In what follows, all the inequalities for vectors are coordinate-wise; i.e. $x \geq y$ means that $x_{i} \geq y_{i}$ for every i, etc.

Definition 1 Let D be a rectangle set in \mathbb{R}^{n}. A mapping $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is said to be
(a) isotone on D if for each pair of points $x^{\prime}, x^{\prime \prime} \in D$ such that $x^{\prime} \geq x^{\prime \prime}$, it holds that $F\left(x^{\prime}\right) \geq F\left(x^{\prime \prime}\right)$;
(b) antitone on D if the mapping $-F$ is isotone on D;
(c) a Z-mapping on D if for each pair of points $x^{\prime}, x^{\prime \prime} \in D$ such that $x^{\prime} \geq x^{\prime \prime}$, it holds that $F_{k}\left(x^{\prime}\right) \leq F_{k}\left(x^{\prime \prime}\right)$ for each index k with $x_{k}^{\prime}=x_{k}^{\prime \prime}$.

These properties have been investigated rather well, especially, in the affine case, then they are strongly related with the corresponding classes of matrices; see e.g. [10].

We present some extensions of the concept of the Z-mapping for the multi-valued case. In what follows, $\Pi(S)$ denotes the family of all subsets of a set S.

Definition 2 Let D be a rectangle set in \mathbb{R}^{n}. A multi-valued mapping $G: \mathbb{R}^{n} \rightarrow \Pi\left(\mathbb{R}^{n}\right)$ is said to be
(a) a Z-mapping on D if for each pair of points $x^{\prime}, x^{\prime \prime} \in D$ such that $x^{\prime} \geq x^{\prime \prime}, x^{\prime} \neq x^{\prime \prime}$, it holds that $g_{k}^{\prime} \leq g_{k}^{\prime \prime}$ for all $g^{\prime} \in G\left(x^{\prime}\right), g^{\prime \prime} \in G\left(x^{\prime \prime}\right)$ and for each index k such that $x_{k}^{\prime}=x_{k}^{\prime \prime}$;
(b) an upper (a lower) Z-mapping on D if for each pair of points $x^{\prime}, x^{\prime \prime} \in D$ such that $x^{\prime} \geq x^{\prime \prime}$ and for each $g^{\prime} \in G\left(x^{\prime}\right)$ there exists $g^{\prime \prime} \in G\left(x^{\prime \prime}\right)$ (respectively, for each $g^{\prime \prime} \in G\left(x^{\prime \prime}\right)$ there exists $\left.g^{\prime} \in G\left(x^{\prime}\right)\right)$ such that $g_{k}^{\prime} \leq g_{k}^{\prime \prime}$ for every index k such that $x_{k}^{\prime}=x_{k}^{\prime \prime}$;
(c) a weak Z-mapping on D if it is both an upper and a lower Z-mapping.

Note that the additional condition $x^{\prime} \neq x^{\prime \prime}$ can not be dropped in (a) since otherwise the Z-mapping becomes single-valued.

Definition 3 A mapping $G: \mathbb{R}^{n} \rightarrow \Pi\left(\mathbb{R}^{n}\right)$ is said to be
(a) diagonal if $G(x)=\prod_{i=1}^{n} G_{i}\left(x_{i}\right)$;
(b) quasi-diagonal [11] if $G(x)=\prod_{i=1}^{n} G_{i}(x)$.

Clearly, $(\mathrm{a}) \Longrightarrow(\mathrm{b})$. Moreover, each single-valued mapping is quasi - diagonal. Next, observe that each diagonal single-valued mapping is Z, but this is not the case if it is multi-valued. Hence, various compositions of multivalued diagonal and Z-mappings may not possess the Z property as well. Hence, the streamlined extension of the Z-mapping given in Definition 2 (a) may appear too restrictive. For this reason, it seems more suitable to utilize weaker concepts of multi-valued Z-mappings given in Definition 2, (b)-(c), which contain arbitrary diagonal multi-valued mappings. More detailed discussions of order monotonicity properties for multi-valued mappings can be found in $[12,8]$.

We recall also the known continuity and monotonicity type properties for multi-valued mappings.

Definition 4 A mapping $G: \mathbb{R}^{n} \rightarrow \Pi\left(\mathbb{R}^{n}\right)$ is said to be
(a) monotone on $D \subseteq \mathbb{R}^{n}$, if for each pair of points $x^{\prime}, x^{\prime \prime} \in D$ and for all $g^{\prime} \in G\left(x^{\prime}\right), g^{\prime \prime} \in G\left(x^{\prime \prime}\right)$, it holds that

$$
\left\langle g^{\prime}-g^{\prime \prime}, x^{\prime}-x^{\prime \prime}\right\rangle \geq 0 ;
$$

(b) a Kakutani-mapping (K-mapping) on $D \subseteq \mathbb{R}^{n}$ if it is upper semicontinuons and has nonempty, convex, and compact image sets on D.

3 Statement of the problem and the GaussSeidel algorithm

Let us consider the problem of finding a point $x^{*} \in \mathbb{R}^{n}$ such that

$$
\begin{equation*}
0 \in G\left(x^{*}\right) \tag{1}
\end{equation*}
$$

under the following standing assumptions.
(A1) The mapping $G: \mathbb{R}^{n} \rightarrow \Pi\left(\mathbb{R}^{n}\right)$ is of the form

$$
\begin{equation*}
G(x)=\sum_{s=1}^{l} F^{(s)} \circ H^{(s)}(x), \tag{2}
\end{equation*}
$$

where $F^{(s)}: \mathbb{R}^{n} \rightarrow \Pi\left(\mathbb{R}^{n}\right)$ is a quasi-diagonal, weak Z-, and K-mapping on some rectangle containing $H^{(s)}(D), H^{(s)}: \mathbb{R}^{n} \rightarrow \Pi\left(\mathbb{R}^{n}\right)$ is a diagonal monotone K-mapping on D for each $s=1, \ldots, l, D$ is a rectangle set in \mathbb{R}^{n}.
(A2) There exist points $x^{0}, y^{0} \in D, x^{0}<y^{0}$, such that

$$
\begin{equation*}
g^{\prime} \leq 0 \leq g^{\prime \prime} \text { for some } g^{\prime} \in G\left(x^{0}\right) \text { and } g^{\prime \prime} \in G\left(y^{0}\right) \tag{3}
\end{equation*}
$$

We now describe a double iteration Gauss-Seidel algorithm for the above problem.

Algorithm (DGS). Starting from the points $x^{0}, y^{0} \in D, x^{0}<y^{0}$, construct sequences $\left\{x^{k}\right\}$ and $\left\{y^{k}\right\}$ in conformity with the following rules.

At the k-th iteration, $k=0,1, \ldots$, we have points $x^{k}, y^{k} \in D$ such that $x^{0} \leq x^{k} \leq y^{k} \leq y^{0}$ and that there exist $g^{k} \in \sum_{s=1}^{l} F^{(s)}\left(h^{(s, k, x)}\right)$ and
$q^{k} \in \sum_{s=1}^{l} F^{(s)}\left(h^{(s, k, y)}\right)$ for some $h^{(s, k, x)} \in H^{(s)}\left(x^{k}\right), h^{(s, k, y)} \in H^{(s)}\left(y^{k}\right)$, satisfying the conditions:

$$
\begin{equation*}
g^{k} \leq 0 \leq q^{k} \text { and } h^{(s, 0, x)} \leq h^{(s, k, x)} \leq h^{(s, k, y)} \leq h^{(s, 0, y)}, s=1, \ldots, l \tag{4}
\end{equation*}
$$

where $h^{(s, 0, x)} \in H^{(s)}\left(x^{0}\right)$ and $h^{(s, 0, y)} \in H^{(s)}\left(y^{0}\right)$.
In the sequel we will use the notation:

$$
\left(h_{-i}^{(s, k+1, k, x)}, p_{i}^{(s)}\right)=\left(h_{1}^{(s, k+1, x)}, \ldots, h_{i-1}^{(s, k+1, x)}, p_{i}^{(s)}, h_{i+1}^{(s, k, x)}, \ldots, h_{n}^{(s, k, x)}\right)
$$

with $p_{i}^{(s)} \in \mathbb{R}$.
Now, for each separate index $i=1, \ldots, n$, we determine numbers x_{i}^{k+1}, $p_{i}^{(1)}, \ldots, p_{i}^{(l)}$ such that

$$
\begin{align*}
x_{i}^{k} & \leq x_{i}^{k+1} \leq y_{i}^{k}, p_{i}^{(s)} \in H_{i}^{(s)}\left(x_{i}^{k+1}\right), \\
h_{i}^{(s, k, x)} & \leq p_{i}^{(s)} \leq h_{i}^{(s, k, y)} \quad \text { for } \quad s=1, \ldots, l, \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
\exists \tilde{g}_{i}^{k} \in \sum_{s=1}^{l} F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, x)}, p_{i}^{(s)}\right), \quad \tilde{g}_{i}^{k}=0 \tag{6}
\end{equation*}
$$

with the help of the bisection type Procedure A below. Afterwards, set $h_{i}^{(s, k+1, x)}=p_{i}^{(s)}$ for $s=1, \ldots, l$.

Next, for each separate index $i=1, \ldots, n$, we determine numbers y_{i}^{k+1}, $t_{i}^{(1)}, \ldots, t_{i}^{(l)}$ such that

$$
\begin{align*}
x_{i}^{k+1} & \leq y_{i}^{k+1} \leq y_{i}^{k}, t_{i}^{(s)} \in H_{i}^{(s)}\left(y_{i}^{k+1}\right) \tag{7}\\
h_{i}^{(s, k+1, x)} & \leq t_{i}^{(s)} \leq h_{i}^{(s, k, y)} \quad \text { for } \quad s=1, \ldots, l
\end{align*}
$$

and

$$
\begin{equation*}
\exists \tilde{q}_{i}^{k} \in \sum_{s=1}^{l} F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, y)}, t_{i}^{(s)}\right), \quad \tilde{q}_{i}^{k}=0 \tag{8}
\end{equation*}
$$

with the help of the bisection type Procedure B below. Afterwards, set $h_{i}^{(s, k+1, y)}=t_{i}^{(s)}$ for $s=1, \ldots, l$. If $i=n$, go to the $(k+1)$-th iteration.

Procedure A. It is applied when the indices k and i are fixed and consists of the following sequence of steps.

Step 1: Choose $p_{i}^{(s)}=h_{i}^{(s, k, x)} \in H_{i}^{(s)}\left(x_{i}^{k}\right)$ for $s=1, \ldots, l$ and $\bar{g}_{i}^{k} \in$ $\sum_{s=1}^{l} F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, x)}, p_{i}^{(s)}\right)$. If $\bar{g}_{i}^{k} \geq 0$, then set $x_{i}^{k+1}=x_{i}^{k}$ and stop. Otherwise set $x_{i}^{\prime}=x_{i}^{k}, \alpha_{i}^{(s)}=h_{i}^{(s, k, x)}, x_{i}^{\prime \prime}=y_{i}^{k}, \beta_{i}^{(s)}=h_{i}^{(s, k, y)}$ for $s=1, \ldots, l$.

Step 2: Generate a sequence of inscribed segments $\left[x_{i}^{\prime}, x_{i}^{\prime \prime}\right]$ contracting to a point z_{i} by choosing $u_{i}=\frac{1}{2}\left(x_{i}^{\prime}+x_{i}^{\prime \prime}\right), \gamma_{i}^{(s)} \in H_{i}^{(s)}\left(u_{i}\right)$ and setting $x_{i}^{\prime}=u_{i}$, $\alpha_{i}^{(s)}=\gamma_{i}^{(s)}$ if $\tilde{g}_{i}^{k} \leq 0$ for some $\tilde{g}_{i} \in \sum_{s=1}^{l} F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, x)}, \gamma_{i}^{(s)}\right)$ or $x_{i}^{\prime \prime}=u_{i}$, $\beta_{i}^{(s)}=\gamma_{i}^{(s)}$ otherwise, i.e. when $\tilde{g}_{i}>0$.

Step 3: Set $x_{i}^{k+1}=z_{i}$ and compute numbers $p_{i}^{(s)} \in H_{i}^{(s)}\left(z_{i}\right)$ for $s=$ $1, \ldots, l$, such that conditions (5), (6) are satisfied.

Procedure B. It is applied when the indices k and i are fixed and consists of the following sequence of steps.

Step 1: Choose $t_{i}^{(s)}=h_{i}^{(s, k, y)} \in H_{i}^{(s)}\left(y_{i}^{k}\right)$ for $s=1, \ldots, l$ and $\bar{q}_{i}^{k} \in$ $\sum_{s=1}^{l} F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, y)}, t_{i}^{(s)}\right)$. If $\bar{q}_{i}^{k} \leq 0$, then set $y_{i}^{k+1}=y_{i}^{k}$ and stop. Otherwise set $y_{i}^{\prime}=x_{i}^{k+1}, \alpha_{i}^{(s)}=h_{i}^{(s, k+1, x)}, y_{i}^{\prime \prime}=y_{i}^{k}, \beta_{i}^{(s)}=h_{i}^{(s, k, y)}$ for $s=1, \ldots, l$.

Step 2: Generate a sequence of inscribed segments $\left[y_{i}^{\prime}, y_{i}^{\prime \prime}\right]$ contracting to a point \tilde{z}_{i} by choosing $v_{i}=\frac{1}{2}\left(y_{i}^{\prime}+y_{i}^{\prime \prime}\right), \gamma_{i}^{(s)} \in H_{i}^{(s)}\left(v_{i}\right)$ and setting $y_{i}^{\prime}=v_{i}$, $\alpha_{i}^{(s)}=\gamma_{i}^{(s)}$ if $\tilde{q}_{i}^{k} \leq 0$ for some $\tilde{q}_{i} \in \sum_{s=1}^{l} F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, y)}, \gamma_{i}^{(s)}\right)$ or $y_{i}^{\prime \prime}=v_{i}$, $\beta_{i}^{(s)}=\gamma_{i}^{(s)}$ otherwise, i.e. when $\tilde{q}_{i}>0$.

Step 3: Set $y_{i}^{k+1}=\tilde{z}_{i}$ and compute numbers $p_{i}^{(s)} \in H_{i}^{(s)}\left(\tilde{z}_{i}\right)$ for $s=1, \ldots, l$, such that conditions (7), (8) are satisfied.

4 Convergence

We are now in a position to establish a convergence result for the GaussSeidel algorithm described.

Theorem 1 Let assumptions (A1) and (A2) be fulfilled. Then the GaussSeidel algorithm with the bisection procedures A and B is well defined and generates the sequences $\left\{x^{k}\right\}$ and $\left\{y^{k}\right\}$ converging to the solutions x^{*} and y^{*} of problem (1) such that $x^{0} \leq x^{*} \leq y^{*} \leq y^{0}$.

Proof. First we note that (4) holds for $k=0$ due to (A2) and to the monotonicity of $H^{(s)}$.

Next, we show that Procedure A is well defined. Suppose that (5)-(6) are true for each index $1, \ldots, i-1$. Then termination at Step 1 gives $x_{i}^{k+1}=x_{i}^{k}$ and $p_{i}^{(s)}=h_{i}^{(s, k, x)} \in H_{i}^{(s)}\left(x_{i}^{k}\right)$ for $s=1, \ldots, l$, i.e. (5) holds. By definition, $g_{i}^{k} \leq 0$ for some $g_{i}^{k} \in \sum_{s=1}^{l} F_{i}^{(s)}\left(h^{(s, k, x)}\right)$ but

$$
h^{(s, k, x)}=\left(h_{-i}^{(s, k, x)}, p_{i}^{(s)}\right) \leq\left(h_{-i}^{(s, k+1, k, x)}, p_{i}^{(s)}\right)
$$

and by the weak Z property of $F^{(s)}$ there exists $g_{i} \in \sum_{s=1}^{l} F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, x)}, p_{i}^{(s)}\right)$ such that $g_{i} \leq g_{i}^{k} \leq 0$. Since $\bar{g}_{i}^{k} \geq 0$ where $\bar{g}_{i}^{k} \in \sum_{s=1}^{l} F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, x)}, p_{i}^{(s)}\right)$ there exists $\tilde{g}_{i}^{k} \in \sum_{s=1}^{l} F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, x)}, p_{i}^{(s)}\right)$ such that $\tilde{g}_{i}^{k}=0$ and (6) holds.

In Step 2, by construction, we have $\alpha_{i}^{(s)} \leq \beta_{i}^{(s)}$ for $s=1, \ldots, l$ and $\bar{g}_{i}^{k} \leq 0$ where $\bar{g}_{i}^{k} \in \sum_{s=1}^{l} F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, x)}, \alpha_{i}^{(s)}\right)$. Note that $\beta_{i}^{(s)}=h_{i}^{(s, k, y)}$ implies

$$
\left(h_{-i}^{(s, k+1, k, x)}, \beta_{i}^{(s)}\right)=\left(h_{-i}^{(s, k+1, k, x)}, h_{i}^{(s, k, y)}\right) \leq h^{(s, k, y)}
$$

and by the weak Z property of $F^{(s)}$ there exists $g_{i} \in \sum_{s=1}^{l} F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, x)}, \beta_{i}^{(s)}\right)$ such that $g_{i} \geq q_{i}^{k} \geq 0$.

At the point z_{i}, we define a multi-valued mapping $\Phi: \mathbb{R}^{l} \rightarrow \Pi(\mathbb{R})$ on the rectangle $\left[\alpha_{i}^{(1)}, \beta_{i}^{(1)}\right] \times \cdots \times\left[\alpha_{i}^{(l)}, \beta_{i}^{(l)}\right]$ as follows

$$
\Phi\left(p_{i}\right)=\sum_{s=1}^{l} F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, x)}, p_{i}^{(s)}\right) \quad \text { with } \quad p_{i}=\left(p_{i}^{(1)}, \ldots, p_{i}^{(l)}\right) \in \mathbb{R}^{l} .
$$

Since $F^{(s)}$ are K-mappings, so is Φ. Then, by construction, $-\Phi\left(\alpha_{i}\right) \bigcap \mathbb{R}_{+} \neq \emptyset$ and $\Phi\left(\beta_{i}\right) \bigcap \mathbb{R}_{+} \neq \emptyset$ for $\alpha_{i}=\left(\alpha_{i}^{(1)}, \ldots, \alpha_{i}^{(l)}\right)$ and $\beta_{i}=\left(\beta_{i}^{(1)}, \ldots, \beta_{i}^{(l)}\right)$. Hence, there exists a number $\lambda \in[0,1]$ such that $0 \in \Phi\left(p_{i}^{(s)}\right)$ for the point $p_{i}^{(s)}=$ $\lambda \alpha_{i}+(1-\lambda) \beta_{i} \in \mathbb{R}^{l}$. Since $\alpha_{i}^{(s)}, \beta_{i}^{(s)} \in H_{i}^{(s)}\left(z_{i}\right)$ and each $H_{i}^{(s)}$ has convex images, it follows that $p_{i}^{(s)} \in H_{i}^{(s)}\left(z_{i}\right)$ for $s=1, \ldots, l$. Then all the relations in (5), (6) are satisfied and Procedure A is well defined.

Next, since

$$
\left(h_{-i}^{(s, k+1, k, x)}, h_{i}^{(s, k+1, x)}\right) \leq h^{(s, k+1, x)}
$$

by the weak Z property of $F^{(s)}$ for each $\tilde{f}_{i}^{(s)} \in F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, x)}, h_{i}^{(s, k+1, x)}\right)$, there exists $f_{i}^{(s)} \in F_{i}^{(s)}\left(h^{(s, k+1, x)}\right)$ such that $\tilde{f}_{i}^{(s)} \geq f_{i}^{(s)}$ for $i=1, \ldots, n$. We now conclude that

$$
0=\tilde{g}_{i}^{k}=\sum_{s=1}^{l} \tilde{f}_{i}^{(s)} \geq \sum_{s=1}^{l} f_{i}^{(s)}=g_{i}^{k+1}
$$

for $i=1, \ldots, n$, hence the ascent process is well defined.
Similarly, we can prove that Procedure B is well defined. Suppose that (7)-(8) are true for each index $1, \ldots, i-1$. Then termination at Step 1 gives $y_{i}^{k+1}=y_{i}^{k}$ and $p_{i}^{(s)}=h_{i}^{(s, k, y)} \in H_{i}^{(s)}\left(y_{i}^{k}\right)$ for $s=1, \ldots, l$, i.e. (7) holds. By definition, $q_{i}^{k} \geq 0$ for some $q_{i}^{k} \in \sum_{s=1}^{l} F_{i}^{(s)}\left(h^{(s, k, y)}\right)$ but

$$
h^{(s, k, y)}=\left(h_{-i}^{(s, k, y)}, t_{i}^{(s)}\right) \geq\left(h_{-i}^{(s, k+1, k, y)}, t_{i}^{(s)}\right)
$$

and by the weak Z property of $F^{(s)}$ there exists $q_{i} \in \sum_{s=1}^{l} F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, y)}, t_{i}^{(s)}\right)$ such that $q_{i} \geq q_{i}^{k} \geq 0$. Since $\bar{q}_{i}^{k} \leq 0$ where $\bar{q}_{i}^{k} \in \sum_{s=1}^{l} F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, y)}, t_{i}^{(s)}\right)$ there exists $\tilde{q}_{i}^{k} \in \sum_{s=1}^{l} F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, y)}, t_{i}^{(s)}\right)$ such that $\tilde{q}_{i}^{k}=0$ and (8) holds.

In Step 2, by construction, we have $\alpha_{i}^{(s)} \leq \beta_{i}^{(s)}$ for $s=1, \ldots, l$ and $\bar{q}_{i}^{k} \geq 0$ where $\bar{q}_{i}^{k} \in \sum_{s=1}^{l} F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, y)}, \beta_{i}^{(s)}\right)$. Note that $\alpha_{i}^{(s)}=h_{i}^{(s, k+1, x)}$ implies

$$
\left(h_{-i}^{(s, k+1, k, y)}, \alpha_{i}^{(s)}\right)=\left(h_{-i}^{(s, k+1, k, y)}, h_{i}^{(s, k+1, x)}\right) \geq h^{(s, k+1, x)}
$$

and by the weak Z property of $F^{(s)}$ there exists $q_{i} \in \sum_{s=1}^{l} F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, y)}, \alpha_{i}^{(s)}\right)$ such that $q_{i} \leq q_{i}^{k+1} \leq 0$.

At the point \tilde{z}_{i}, we define a multi-valued mapping $\Phi: \mathbb{R}^{l} \rightarrow \Pi(\mathbb{R})$ on the rectangle $\left[\alpha_{i}^{(1)}, \beta_{i}^{(1)}\right] \times \cdots \times\left[\alpha_{i}^{(l)}, \beta_{i}^{(l)}\right]$ as follows

$$
\Phi\left(t_{i}\right)=\sum_{s=1}^{l} F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, y)}, t_{i}^{(s)}\right) \quad \text { with } \quad t_{i}=\left(t_{i}^{(1)}, \ldots, t_{i}^{(l)}\right) \in \mathbb{R}^{l}
$$

Since $F^{(s)}$ are K-mappings, so is Φ. Then, by construction, $-\Phi\left(\alpha_{i}\right) \bigcap \mathbb{R}_{+} \neq \emptyset$ and $\Phi\left(\beta_{i}\right) \bigcap \mathbb{R}_{+} \neq \emptyset$ for $\alpha_{i}=\left(\alpha_{i}^{(1)}, \ldots, \alpha_{i}^{(l)}\right)$ and $\beta_{i}=\left(\beta_{i}^{(1)}, \ldots, \beta_{i}^{(l)}\right)$. Hence, there exists a number $\lambda \in[0,1]$ such that $0 \in \Phi\left(t_{i}^{(s)}\right)$ for the point $t_{i}^{(s)}=$ $\lambda \alpha_{i}+(1-\lambda) \beta_{i} \in \mathbb{R}^{l}$. Since $\alpha_{i}^{(s)}, \beta_{i}^{(s)} \in H_{i}^{(s)}\left(\tilde{z}_{i}\right)$ and each $H_{i}^{(s)}$ has convex images, it follows that $t_{i}^{(s)} \in H_{i}^{(s)}\left(\tilde{z}_{i}\right)$ for $s=1, \ldots, l$. Then all the relations in (7), (8) are satisfied and Procedure B is well defined.

Next, since

$$
\left(h_{-i}^{(s, k+1, k, y)}, h_{i}^{(s, k+1, y)}\right) \geq h^{(s, k+1, y)}
$$

by the weak Z property of $F^{(s)}$ for each $\tilde{f}_{i}^{(s)} \in F_{i}^{(s)}\left(h_{-i}^{(s, k+1, k, y)}, h_{i}^{(s, k+1, y)}\right)$, there exists $f_{i}^{(s)} \in F_{i}^{(s)}\left(h^{(s, k+1, y)}\right)$ such that $\tilde{f}_{i}^{(s)} \leq f_{i}^{(s)}$ for $i=1, \ldots, n$. We now conclude that

$$
0=\tilde{q}_{i}^{k}=\sum_{s=1}^{l} \tilde{f}_{i}^{(s)} \leq \sum_{s=1}^{l} f_{i}^{(s)}=q_{i}^{k+1}
$$

for $i=1, \ldots, n$, hence the descent process is well defined.
On account of (5) and (7), the sequence $\left\{x^{k}\right\}$ is non-decreasing and bounded from above and the sequence $\left\{y^{k}\right\}$ is non-increasing and bounded from below. Therefore, the sequence $\left\{x^{k}\right\}$ converges to a point x^{*} and the sequence $\left\{y^{k}\right\}$ converges to a point y^{*} such that $x^{0} \leq x^{*} \leq y^{*} \leq y^{0}$. Analogously, for each s the sequence $\left\{h^{(s, k+1, k, x)}\right\}$ is non-decreasing and bounded and $\left\{h^{(s, k+1, k, y)}\right\}$ is non-increasing and bounded, hence, by the K property,

$$
\lim _{k \rightarrow \infty} h^{(s, k+1, k, x)}=h^{(s, x)}
$$

for some $h^{(s, x)} \in H^{(s)}\left(x^{*}\right)$ and

$$
0=\lim _{k \rightarrow \infty} \tilde{g}_{i}^{k}=g_{i}^{*} \in \sum_{s=1}^{l} F_{i}^{(s)}\left(h^{(s, x)}\right),
$$

i.e. $0 \in G\left(x^{*}\right)$. Analogously it is possible to verify that $0 \in G\left(y^{*}\right)$. The proof is complete.

5 Numerical experiments

In this section we present some numerical examples tested with the help of the following computer environment OS 32 bit: Windows XP Pro; CPU:

Intel (R) Core (TM)2 Duo CPU 1.66 GHz; Memory: 2 GB ; OS Software: Matlab. For each numerical example we applied the Jacobi and Gauss-Seidel algorithms with the same input values and the same criteria. The Jacobi algorithm was constructed in conformity with [8].

As noticed in [12], the choice of the elements $p_{i}^{(s)}$ and $t_{i}^{(s)}, s=1, \ldots, l$ such that relations (5) and (7) hold, can be much easily done by taking an arbitrary value in $H_{i}^{(s)}(\cdot)$. In Step 2 of Procedures A and B, the values $\gamma_{i}^{(s)}$ were chosen as the middle point of the segment for both Jacobi and GaussSeidel algorithms.

We made all the calculations with double precision and chose the following implementation setting:

1. The zero tolerance is 10^{-10}.
2. The stopping criteria of the dichotomy procedure is $\left|x_{i}^{\prime}-x_{i}^{\prime \prime}\right|<10^{-6}$ and of the main procedure is $\left\|x^{(k+1)}-x^{(k)}\right\|<10^{-5}$ or the number of iterations are equal to MAXITER.

We considered two examples.
Example 1: We chose the mapping

$$
G(x)=x+A \circ E(x)-C(x),
$$

which is a particular case of that in (2), where $l=3, F^{(1)}=I, F^{(2)}=A$, $F^{(3)}=I, H^{(1)}=I, H^{(2)}=E, H^{(3)}=-C$.

For numerical tests we set $A(x)=M x$ where

$$
m_{i j} \begin{cases}=\operatorname{rand}(0,1) & \text { if } i=j \\ \in\left(-10^{-k} \operatorname{rand}(0,0.5),-10^{-k} \operatorname{rand}(0.5,1)\right) & \text { if } i \neq j\end{cases}
$$

with $k=0,1,2$.
$C_{i}\left(x_{i}\right)=\left[\alpha_{i} x_{i}, \beta_{i} x_{i}\right], x_{i} \in[-10,10], \alpha_{i}=((i-1) / n) 10^{-2}$ and $\beta_{i}=(i / n) 10^{-2}$, $i=1, \ldots, n$. We also set $E_{i}\left(x_{i}\right)=\left[\gamma_{i} x_{i}, \delta_{i} x_{i}\right], x_{i} \in[0,10], \gamma_{i}=((i-1) / n) 10^{-2}$ and $\delta_{i}=(i / n) 10^{-2}, i=1, \ldots, n$.

We observe that A is a quasi-diagonal, weak Z-, and K-mapping.
The initial values were generated randomly as $x_{i}^{0} \in(-10,0)$ and $y_{i}^{0} \in$ $(0,10)$ with $i=1, \ldots, n$. A comparison of the average CPU time for the Jacobi and Gauss-Seidel algorithms is shown in Table 1. From the results of numerical tests we observe that the computational precision had no essential influence on these two algorithms.

Method	$\mathrm{n}=10$	$\mathrm{n}=100$	$\mathrm{n}=150$	$\mathrm{n}=200$	$\mathrm{n}=500$
Jacobi	0.47	7.19	11.67	16.34	71.60
Gauss-Seidel	0.47	7.15	11.59	16.13	70.45

Table 1: Example 1: Average of CPU time (sec)
Example 2: We chose the mapping

$$
G(x)=M x+b+\Phi(x)+\Psi(x),
$$

where M is an $n \times n$ matrix with nonpositive off-diagonal entries, Φ is a nonsmooth and continuous mapping, and Ψ is a multi-valued K-mapping.

For the experiments we determined the matrix M as

$$
m_{i j}=\left\{\begin{array}{cl}
-|\sin (i) \cos (j)| & \text { if } i \neq j ; \\
1+\sum_{j \neq i}^{\left|m_{i j}\right|} & \text { if } i=j ;
\end{array} \quad i, j=1, \ldots, n ;\right.
$$

the vector b as

$$
b_{i}=\sin (i) / i, \quad i=1, \ldots, n .
$$

the mappings Φ and Ψ as

$$
\begin{aligned}
& \Phi(x)=\prod_{i=1}^{n} \Phi_{i}\left(x_{i}\right), \quad \Phi_{i}\left(x_{i}\right)=\max \left\{x_{i}^{2}-1 / \sin (i), 0\right\}, \quad i=1, \ldots, n \\
& \Psi(x)=\prod_{i=1}^{n} \Psi_{i}\left(x_{i}\right), \quad \Psi_{i}\left(x_{i}\right)=\partial \psi_{i}\left(x_{i}\right) \\
& \psi_{i}\left(x_{i}\right)=\alpha_{i}\left|x_{i}-\beta_{i}\right|, \alpha_{i}=(1+i) / i, \beta_{i}=1 / \cos (i), \quad i=1, \ldots, n
\end{aligned}
$$

Then G is a particular case of that in (2), where $l=3, F^{(1)}=M x+b$, $F^{(2)}=I, F^{(3)}=I, H^{(1)}=I, H^{(2)}=\Phi, H^{(3)}=\Psi$.

A comparison of the average CPU time for the Jacobi and Gauss-Seidel algorithms is shown in Table 2. From the results of numerical tests we observe that the performance of the Gauss-Seidel algorithm is better.

References

[1] J.M. Ortega and W.C. Rheinboldt (1970) Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York.

Method	$\mathrm{n}=10$	$\mathrm{n}=100$	$\mathrm{n}=150$	$\mathrm{n}=200$	$\mathrm{n}=500$
Jacobi	1.80	29.92	51.79	81.42	273.27
Gauss-Seidel	1.61	25.51	41.54	77.91	258.48

Table 2: Example 2: Average of CPU time (sec)
[2] C. Baiocchi and A. Capelo (1984) Variational and Quasivariational Inequalities. Applications to Free Boundary Problems, John Wiley and Sons, New York.
[3] G. Isac (1992) Complementarity Problems, Springer-Verlag, Berlin.
[4] F. Facchinei and J.-S. Pang (2003) Finite -dimensional Variational Inequalities and Complementarity Problems, Springer - Verlag, Berlin.
[5] I.V. Konnov (2007) Equilibrium Models and Variational Inequalities, Elsevier, Amsterdam.
[6] H. Nikaido (1968) Convex Structures and Economic Theory, Academic Press, New York.
[7] A.V. Lapin (2001) Domain decomposition and parallel solution of free boundary problems, Proc. Lobachevsky Mathem. Center, 13, 90-126.
[8] I.V. Konnov (2007) Iterative algorithms for multi-valued inclusions with Z mappings, Journal of Computational and Applied Mathematics, 206, 358-365.
[9] E. Allevi, A. Gnudi, and I.V. Konnov (2008) An extension of the GaussSeidel method for a class of multi-valued complementary problems, $O p$ timization Letters, 2, 543-553.
[10] R.W. Cottle, J.S. Pang, and R.E. Stone (1992) The Linear Complementarity Problem, Academic Press, Boston.
[11] I.V. Konnov and T.A. Kostenko (2004) Multivalued mixed complementarity problem, Russian Mathematics (Iz. VUZ) 48, n.12, 28-36.
[12] I.V. Konnov (2007) An extension of the Jacobi algorithm for multivalued mixed complementary problems, Optimization, 3, 399-416.

[^0]: ${ }^{1}$ In this work, the third author was supported by the joint RFBR-NNSF grant, project No. 07-01-92101.
 ${ }^{2}$ Department of Quantitative Methods, Brescia University, Contrada S.Chiara, 50, Brescia, Italy.
 ${ }^{3}$ Department of Mathematics, Statistics, Informatics and Applications, Bergamo University, Piazza Rosate, 2, Bergamo 24129, Italy.
 ${ }^{4}$ Department of System Analysis and Information Technologies, Kazan University, ul. Kremlevskaya, 18, Kazan 420008, Russia.
 ${ }^{5}$ Chair Professor, Department of Applied Mathematics, Chung Yuan Christian University, Chung-Li, 32023, Taiwan

