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1 Introduction

The problem of solving a system of nonlinear equations is one of the basic
and most investigated problems considered in Nonlinear Analysis; see e.g.
[1] and references therein. It is also closely related to fixed point, comple-
mentarity and variational inequality problems; see e.g. [2]–[5] and references
therein. However, many applications arising e.g. in Mathematical Physics
and Economics require utilization of more general multi-valued mappings.
Then one has to replace nonlinear equations with multi-valued inclusions;
see e.g. [6, 2, 7].

Recently, in [8], Jacobi type algorithms for solving multi-valued inclusions
on cone segments whose cost mappings are compositions of multi-valued Z-
mappings and diagonal monotone mappings were proposed. Also, in [9],
a Gauss-Seidel type algorithm for complementarity problems under similar
assumptions was proposed.

In this paper, we intend to develop a Gauss-Seidel type algorithm for
multi-valued inclusions on cone segments, thus extending the usual Gauss-
Seidel algorithm from the single-valued case; see e.g. [1].

2 Classes of order monotone mappings

We start our considerations from recalling several order monotonicity prop-
erties of single-valued mappings. In what follows, all the inequalities for
vectors are coordinate-wise; i.e. x ≥ y means that xi ≥ yi for every i, etc.

Definition 1 Let D be a rectangle set in Rn. A mapping F : Rn → Rn is
said to be

(a) isotone on D if for each pair of points x′, x′′ ∈ D such that x′ ≥ x′′,
it holds that F (x′) ≥ F (x′′);

(b) antitone on D if the mapping −F is isotone on D;
(c) a Z-mapping on D if for each pair of points x′, x′′ ∈ D such that

x′ ≥ x′′, it holds that Fk(x
′) ≤ Fk(x

′′) for each index k with x′k = x′′k.

These properties have been investigated rather well, especially, in the
affine case, then they are strongly related with the corresponding classes of
matrices; see e.g. [10].
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We present some extensions of the concept of the Z-mapping for the
multi-valued case. In what follows, Π(S) denotes the family of all subsets of
a set S.

Definition 2 Let D be a rectangle set in Rn. A multi-valued mapping
G : Rn → Π(Rn) is said to be

(a) a Z-mapping on D if for each pair of points x′, x′′ ∈ D such that
x′ ≥ x′′, x′ 6= x′′, it holds that g′k ≤ g′′k for all g′ ∈ G(x′), g′′ ∈ G(x′′) and for
each index k such that x′k = x′′k;

(b) an upper (a lower) Z-mapping on D if for each pair of points x′, x′′ ∈ D
such that x′ ≥ x′′ and for each g′ ∈ G(x′) there exists g′′ ∈ G(x′′) (respec-
tively, for each g′′ ∈ G(x′′) there exists g′ ∈ G(x′)) such that g′k ≤ g′′k for
every index k such that x′k = x′′k;

(c) a weak Z-mapping on D if it is both an upper and a lower Z-mapping.

Note that the additional condition x′ 6= x′′ can not be dropped in (a)
since otherwise the Z-mapping becomes single-valued.

Definition 3 A mapping G : Rn → Π(Rn) is said to be

(a) diagonal if G(x) =
n∏

i=1

Gi(xi);

(b) quasi-diagonal [11] if G(x) =
n∏

i=1

Gi(x).

Clearly, (a)=⇒(b). Moreover, each single-valued mapping is quasi - diag-
onal. Next, observe that each diagonal single-valued mapping is Z, but this
is not the case if it is multi-valued. Hence, various compositions of multi-
valued diagonal and Z-mappings may not possess the Z property as well.
Hence, the streamlined extension of the Z-mapping given in Definition 2 (a)
may appear too restrictive. For this reason, it seems more suitable to utilize
weaker concepts of multi-valued Z-mappings given in Definition 2, (b)–(c),
which contain arbitrary diagonal multi-valued mappings. More detailed dis-
cussions of order monotonicity properties for multi-valued mappings can be
found in [12, 8].

We recall also the known continuity and monotonicity type properties for
multi-valued mappings.

Definition 4 A mapping G : Rn → Π(Rn) is said to be
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(a) monotone on D ⊆ Rn, if for each pair of points x′, x′′ ∈ D and for all
g′ ∈ G(x′), g′′ ∈ G(x′′), it holds that

〈g′ − g′′, x′ − x′′〉 ≥ 0;

(b) a Kakutani-mapping (K-mapping) on D ⊆ Rn if it is upper semicon-
tinuons and has nonempty, convex, and compact image sets on D.

3 Statement of the problem and the Gauss-

Seidel algorithm

Let us consider the problem of finding a point x∗ ∈ Rn such that

0 ∈ G(x∗) (1)

under the following standing assumptions.
(A1) The mapping G : Rn → Π(Rn) is of the form

G(x) =
l∑

s=1

F (s) ◦H(s)(x), (2)

where F (s) : Rn → Π(Rn) is a quasi-diagonal, weak Z-, and K-mapping
on some rectangle containing H(s)(D), H(s) : Rn → Π(Rn) is a diagonal
monotone K-mapping on D for each s = 1, . . . , l, D is a rectangle set in Rn.

(A2) There exist points x0, y0 ∈ D, x0 < y0, such that

g′ ≤ 0 ≤ g′′ for some g′ ∈ G(x0) and g′′ ∈ G(y0). (3)

We now describe a double iteration Gauss-Seidel algorithm for the above
problem.

Algorithm (DGS). Starting from the points x0, y0 ∈ D, x0 < y0, construct
sequences {xk} and {yk} in conformity with the following rules.

At the k-th iteration, k = 0, 1, . . ., we have points xk, yk ∈ D such

that x0 ≤ xk ≤ yk ≤ y0 and that there exist gk ∈
l∑

s=1

F (s)(h(s,k,x)) and
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qk ∈
l∑

s=1

F (s)(h(s,k,y)) for some h(s,k,x) ∈ H(s)(xk), h(s,k,y) ∈ H(s)(yk), satisfying

the conditions:

gk ≤ 0 ≤ qk and h(s,0,x) ≤ h(s,k,x) ≤ h(s,k,y) ≤ h(s,0,y), s = 1, . . . , l; (4)

where h(s,0,x) ∈ H(s)(x0) and h(s,0,y) ∈ H(s)(y0).
In the sequel we will use the notation:
(
h

(s,k+1,k,x)
−i , p

(s)
i

)
=

(
h

(s,k+1,x)
1 , . . . , h

(s,k+1,x)
i−1 , p

(s)
i , h

(s,k,x)
i+1 , . . . , h(s,k,x)

n

)
,

with p
(s)
i ∈ R.

Now, for each separate index i = 1, . . . , n, we determine numbers xk+1
i ,

p
(1)
i , . . . , p

(l)
i such that

xk
i ≤ xk+1

i ≤ yk
i , p

(s)
i ∈ H

(s)
i (xk+1

i ),

h
(s,k,x)
i ≤ p

(s)
i ≤ h

(s,k,y)
i for s = 1, . . . , l,

(5)

and

∃g̃k
i ∈

l∑
s=1

F
(s)
i (h

(s,k+1,k,x)
−i , p

(s)
i ), g̃k

i = 0; (6)

with the help of the bisection type Procedure A below. Afterwards, set
h

(s,k+1,x)
i = p

(s)
i for s = 1, . . . , l.

Next, for each separate index i = 1, . . . , n, we determine numbers yk+1
i ,

t
(1)
i , . . . , t

(l)
i such that

xk+1
i ≤ yk+1

i ≤ yk
i , t

(s)
i ∈ H

(s)
i (yk+1

i ),

h
(s,k+1,x)
i ≤ t

(s)
i ≤ h

(s,k,y)
i for s = 1, . . . , l,

(7)

and

∃q̃k
i ∈

l∑
s=1

F
(s)
i (h

(s,k+1,k,y)
−i , t

(s)
i ), q̃k

i = 0; (8)

with the help of the bisection type Procedure B below. Afterwards, set
h

(s,k+1,y)
i = t

(s)
i for s = 1, . . . , l. If i = n, go to the (k + 1)-th iteration.

Procedure A. It is applied when the indices k and i are fixed and consists
of the following sequence of steps.
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Step 1: Choose p
(s)
i = h

(s,k,x)
i ∈ H

(s)
i (xk

i ) for s = 1, . . . , l and ḡk
i ∈

l∑
s=1

F
(s)
i (h

(s,k+1,k,x)
−i , p

(s)
i ). If ḡk

i ≥ 0, then set xk+1
i = xk

i and stop. Other-

wise set x′i = xk
i , α

(s)
i = h

(s,k,x)
i , x′′i = yk

i , β
(s)
i = h

(s,k,y)
i for s = 1, . . . , l.

Step 2: Generate a sequence of inscribed segments [x′i, x
′′
i ] contracting to

a point zi by choosing ui = 1
2
(x′i + x′′i ), γ

(s)
i ∈ H

(s)
i (ui) and setting x′i = ui,

α
(s)
i = γ

(s)
i if g̃k

i ≤ 0 for some g̃i ∈
l∑

s=1

F
(s)
i (h

(s,k+1,k,x)
−i , γ

(s)
i ) or x′′i = ui,

β
(s)
i = γ

(s)
i otherwise, i.e. when g̃i > 0.

Step 3: Set xk+1
i = zi and compute numbers p

(s)
i ∈ H

(s)
i (zi) for s =

1, . . . , l, such that conditions (5), (6) are satisfied.

Procedure B. It is applied when the indices k and i are fixed and consists
of the following sequence of steps.

Step 1: Choose t
(s)
i = h

(s,k,y)
i ∈ H

(s)
i (yk

i ) for s = 1, . . . , l and q̄k
i ∈

l∑
s=1

F
(s)
i (h

(s,k+1,k,y)
−i , t

(s)
i ). If q̄k

i ≤ 0, then set yk+1
i = yk

i and stop. Otherwise

set y′i = xk+1
i , α

(s)
i = h

(s,k+1,x)
i , y′′i = yk

i , β
(s)
i = h

(s,k,y)
i for s = 1, . . . , l.

Step 2: Generate a sequence of inscribed segments [y′i, y
′′
i ] contracting to

a point z̃i by choosing vi = 1
2
(y′i + y′′i ), γ

(s)
i ∈ H

(s)
i (vi) and setting y′i = vi,

α
(s)
i = γ

(s)
i if q̃k

i ≤ 0 for some q̃i ∈
l∑

s=1

F
(s)
i (h

(s,k+1,k,y)
−i , γ

(s)
i ) or y′′i = vi,

β
(s)
i = γ

(s)
i otherwise, i.e. when q̃i > 0.

Step 3: Set yk+1
i = z̃i and compute numbers p

(s)
i ∈ H

(s)
i (z̃i) for s = 1, . . . , l,

such that conditions (7), (8) are satisfied.

4 Convergence

We are now in a position to establish a convergence result for the Gauss-
Seidel algorithm described.

Theorem 1 Let assumptions (A1) and (A2) be fulfilled. Then the Gauss-
Seidel algorithm with the bisection procedures A and B is well defined and
generates the sequences {xk} and {yk} converging to the solutions x∗ and y∗

of problem (1) such that x0 ≤ x∗ ≤ y∗ ≤ y0.
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Proof. First we note that (4) holds for k = 0 due to (A2) and to the
monotonicity of H(s).

Next, we show that Procedure A is well defined. Suppose that (5)–(6) are
true for each index 1, . . . , i− 1. Then termination at Step 1 gives xk+1

i = xk
i

and p
(s)
i = h

(s,k,x)
i ∈ H

(s)
i (xk

i ) for s = 1, . . . , l, i.e. (5) holds. By definition,

gk
i ≤ 0 for some gk

i ∈
l∑

s=1

F
(s)
i (h(s,k,x)) but

h(s,k,x) = (h
(s,k,x)
−i , p

(s)
i ) ≤ (h

(s,k+1,k,x)
−i , p

(s)
i )

and by the weak Z property of F (s) there exists gi ∈
l∑

s=1

F
(s)
i (h

(s,k+1,k,x)
−i , p

(s)
i )

such that gi ≤ gk
i ≤ 0. Since ḡk

i ≥ 0 where ḡk
i ∈

l∑
s=1

F
(s)
i (h

(s,k+1,k,x)
−i , p

(s)
i ) there

exists g̃k
i ∈

l∑
s=1

F
(s)
i (h

(s,k+1,k,x)
−i , p

(s)
i ) such that g̃k

i = 0 and (6) holds.

In Step 2, by construction, we have α
(s)
i ≤ β

(s)
i for s = 1, . . . , l and ḡk

i ≤ 0

where ḡk
i ∈

l∑
s=1

F
(s)
i (h

(s,k+1,k,x)
−i , α

(s)
i ). Note that β

(s)
i = h

(s,k,y)
i implies

(h
(s,k+1,k,x)
−i , β

(s)
i ) = (h

(s,k+1,k,x)
−i , h

(s,k,y)
i ) ≤ h(s,k,y)

and by the weak Z property of F (s) there exists gi ∈
l∑

s=1

F
(s)
i (h

(s,k+1,k,x)
−i , β

(s)
i )

such that gi ≥ qk
i ≥ 0.

At the point zi, we define a multi-valued mapping Φ : Rl → Π(R) on the

rectangle [α
(1)
i , β

(1)
i ]× · · · × [α

(l)
i , β

(l)
i ] as follows

Φ(pi) =
l∑

s=1

F
(s)
i (h

(s,k+1,k,x)
−i , p

(s)
i ) with pi = (p

(1)
i , . . . , p

(l)
i ) ∈ Rl.

Since F (s) are K-mappings, so is Φ. Then, by construction, −Φ(αi)
⋂
R+ 6= ∅

and Φ(βi)
⋂
R+ 6= ∅ for αi = (α

(1)
i , . . . , α

(l)
i ) and βi = (β

(1)
i , . . . , β

(l)
i ). Hence,

there exists a number λ ∈ [0, 1] such that 0 ∈ Φ(p
(s)
i ) for the point p

(s)
i =

λαi + (1 − λ)βi ∈ Rl. Since α
(s)
i , β

(s)
i ∈ H

(s)
i (zi) and each H

(s)
i has convex

images, it follows that p
(s)
i ∈ H

(s)
i (zi) for s = 1, . . . , l. Then all the relations

in (5), (6) are satisfied and Procedure A is well defined.
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Next, since
(h

(s,k+1,k,x)
−i , h

(s,k+1,x)
i ) ≤ h(s,k+1,x)

by the weak Z property of F (s) for each f̃
(s)
i ∈ F

(s)
i (h

(s,k+1,k,x)
−i , h

(s,k+1,x)
i ),

there exists f
(s)
i ∈ F

(s)
i (h(s,k+1,x)) such that f̃

(s)
i ≥ f

(s)
i for i = 1, . . . , n. We

now conclude that

0 = g̃k
i =

l∑
s=1

f̃
(s)
i ≥

l∑
s=1

f
(s)
i = gk+1

i

for i = 1, . . . , n, hence the ascent process is well defined.
Similarly, we can prove that Procedure B is well defined. Suppose that

(7)–(8) are true for each index 1, . . . , i− 1. Then termination at Step 1 gives

yk+1
i = yk

i and p
(s)
i = h

(s,k,y)
i ∈ H

(s)
i (yk

i ) for s = 1, . . . , l, i.e. (7) holds. By

definition, qk
i ≥ 0 for some qk

i ∈
l∑

s=1

F
(s)
i (h(s,k,y)) but

h(s,k,y) = (h
(s,k,y)
−i , t

(s)
i ) ≥ (h

(s,k+1,k,y)
−i , t

(s)
i )

and by the weak Z property of F (s) there exists qi ∈
l∑

s=1

F
(s)
i (h

(s,k+1,k,y)
−i , t

(s)
i )

such that qi ≥ qk
i ≥ 0. Since q̄k

i ≤ 0 where q̄k
i ∈

l∑
s=1

F
(s)
i (h

(s,k+1,k,y)
−i , t

(s)
i ) there

exists q̃k
i ∈

l∑
s=1

F
(s)
i (h

(s,k+1,k,y)
−i , t

(s)
i ) such that q̃k

i = 0 and (8) holds.

In Step 2, by construction, we have α
(s)
i ≤ β

(s)
i for s = 1, . . . , l and q̄k

i ≥ 0

where q̄k
i ∈

l∑
s=1

F
(s)
i (h

(s,k+1,k,y)
−i , β

(s)
i ). Note that α

(s)
i = h

(s,k+1,x)
i implies

(h
(s,k+1,k,y)
−i , α

(s)
i ) = (h

(s,k+1,k,y)
−i , h

(s,k+1,x)
i ) ≥ h(s,k+1,x)

and by the weak Z property of F (s) there exists qi ∈
l∑

s=1

F
(s)
i (h

(s,k+1,k,y)
−i , α

(s)
i )

such that qi ≤ qk+1
i ≤ 0.

At the point z̃i, we define a multi-valued mapping Φ : Rl → Π(R) on the

rectangle [α
(1)
i , β

(1)
i ]× · · · × [α

(l)
i , β

(l)
i ] as follows

Φ(ti) =
l∑

s=1

F
(s)
i (h

(s,k+1,k,y)
−i , t

(s)
i ) with ti = (t

(1)
i , . . . , t

(l)
i ) ∈ Rl.
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Since F (s) are K-mappings, so is Φ. Then, by construction, −Φ(αi)
⋂
R+ 6= ∅

and Φ(βi)
⋂
R+ 6= ∅ for αi = (α

(1)
i , . . . , α

(l)
i ) and βi = (β

(1)
i , . . . , β

(l)
i ). Hence,

there exists a number λ ∈ [0, 1] such that 0 ∈ Φ(t
(s)
i ) for the point t

(s)
i =

λαi + (1 − λ)βi ∈ Rl. Since α
(s)
i , β

(s)
i ∈ H

(s)
i (z̃i) and each H

(s)
i has convex

images, it follows that t
(s)
i ∈ H

(s)
i (z̃i) for s = 1, . . . , l. Then all the relations

in (7), (8) are satisfied and Procedure B is well defined.
Next, since

(h
(s,k+1,k,y)
−i , h

(s,k+1,y)
i ) ≥ h(s,k+1,y)

by the weak Z property of F (s) for each f̃
(s)
i ∈ F

(s)
i (h

(s,k+1,k,y)
−i , h

(s,k+1,y)
i ),

there exists f
(s)
i ∈ F

(s)
i (h(s,k+1,y)) such that f̃

(s)
i ≤ f

(s)
i for i = 1, . . . , n. We

now conclude that

0 = q̃k
i =

l∑
s=1

f̃
(s)
i ≤

l∑
s=1

f
(s)
i = qk+1

i

for i = 1, . . . , n, hence the descent process is well defined.
On account of (5) and (7), the sequence {xk} is non-decreasing and

bounded from above and the sequence {yk} is non-increasing and bounded
from below. Therefore, the sequence {xk} converges to a point x∗ and the
sequence {yk} converges to a point y∗ such that x0 ≤ x∗ ≤ y∗ ≤ y0. Analo-
gously, for each s the sequence {h(s,k+1,k,x)} is non-decreasing and bounded
and {h(s,k+1,k,y)} is non-increasing and bounded, hence, by the K property,

lim
k→∞

h(s,k+1,k,x) = h(s,x)

for some h(s,x) ∈ H(s)(x∗) and

0 = lim
k→∞

g̃k
i = g∗i ∈

l∑
s=1

F
(s)
i (h(s,x)),

i.e. 0 ∈ G(x∗). Analogously it is possible to verify that 0 ∈ G(y∗). The proof
is complete. ¤

5 Numerical experiments

In this section we present some numerical examples tested with the help of
the following computer environment OS 32 bit: Windows XP Pro; CPU:
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Intel (R) Core (TM)2 Duo CPU 1.66 GHz; Memory: 2 GB; OS Software:
Matlab. For each numerical example we applied the Jacobi and Gauss-Seidel
algorithms with the same input values and the same criteria. The Jacobi
algorithm was constructed in conformity with [8].

As noticed in [12], the choice of the elements p
(s)
i and t

(s)
i , s = 1, . . . , l

such that relations (5) and (7) hold, can be much easily done by taking an

arbitrary value in H
(s)
i (·). In Step 2 of Procedures A and B, the values γ

(s)
i

were chosen as the middle point of the segment for both Jacobi and Gauss-
Seidel algorithms.

We made all the calculations with double precision and chose the following
implementation setting:

1. The zero tolerance is 10−10.

2. The stopping criteria of the dichotomy procedure is |x′i − x′′i | < 10−6

and of the main procedure is ‖x(k+1) − x(k)‖ < 10−5 or the number of
iterations are equal to MAXITER.

We considered two examples.
Example 1: We chose the mapping

G(x) = x + A ◦ E(x)− C(x),

which is a particular case of that in (2), where l = 3, F (1) = I, F (2) = A,
F (3) = I, H(1) = I, H(2) = E, H(3) = −C.

For numerical tests we set A(x) = Mx where

mij

{
= rand(0, 1) if i = j,
∈ (−10−krand(0, 0.5),−10−krand(0.5, 1)) if i 6= j;

with k = 0, 1, 2.
Ci(xi) = [αixi, βixi], xi ∈ [−10, 10], αi = ((i−1)/n)10−2 and βi = (i/n)10−2,
i = 1, . . . , n. We also set Ei(xi) = [γixi, δixi], xi ∈ [0, 10], γi = ((i−1)/n)10−2

and δi = (i/n)10−2, i = 1, . . . , n.
We observe that A is a quasi-diagonal, weak Z-, and K-mapping.
The initial values were generated randomly as x0

i ∈ (−10, 0) and y0
i ∈

(0, 10) with i = 1, . . . , n. A comparison of the average CPU time for the
Jacobi and Gauss-Seidel algorithms is shown in Table 1. From the results of
numerical tests we observe that the computational precision had no essential
influence on these two algorithms.
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Method n=10 n=100 n=150 n=200 n=500
Jacobi 0.47 7.19 11.67 16.34 71.60
Gauss-Seidel 0.47 7.15 11.59 16.13 70.45

Table 1: Example 1: Average of CPU time (sec)

Example 2: We chose the mapping

G(x) = Mx + b + Φ(x) + Ψ(x),

where M is an n × n matrix with nonpositive off-diagonal entries, Φ is a
nonsmooth and continuous mapping, and Ψ is a multi-valued K-mapping.

For the experiments we determined the matrix M as

mij =

{ −| sin(i) cos(j)| if i 6= j;
1 +

∑
j 6=i

|mij| if i = j; i, j = 1, . . . , n;

the vector b as
bi = sin(i)/i, i = 1, . . . , n.

the mappings Φ and Ψ as

Φ(x) =
n∏

i=1

Φi(xi), Φi(xi) = max
{
x2

i − 1/ sin(i), 0
}

, i = 1, . . . , n;

Ψ(x) =
n∏

i=1

Ψi(xi), Ψi(xi) = ∂ψi(xi),

ψi(xi) = αi|xi − βi|, αi = (1 + i)/i, βi = 1/ cos(i), i = 1, . . . , n.

Then G is a particular case of that in (2), where l = 3, F (1) = Mx + b,
F (2) = I, F (3) = I, H(1) = I, H(2) = Φ, H(3) = Ψ.

A comparison of the average CPU time for the Jacobi and Gauss-Seidel
algorithms is shown in Table 2. From the results of numerical tests we observe
that the performance of the Gauss-Seidel algorithm is better.
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