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Abstract—We propose an automatic optimization process for
adaptation space explorationof service-oriented applications
based on trade-offs between functional and extra-functional
requirements. The optimization method combines bothmeta-
heuristic search techniquesand functional/extra-functional pat-
terns (i.e., architectural design patterns and tactics). Moreover,
the proposed methodology relies also on the standardService-
oriented Component Architecture(SCA) for heterogeneous ser-
vice assembly and related tools/running infrastructures in
order to process architectural models (of the application to
adapt) that are directly tight to the real assembled components
implementations and their deployment.

As a proof-of-concepts, this report provides an example
of instantiation of the proposed process together with an
experimentation on a stock trading application.

Keywords-Service-oriented applications; software adaptation
and evolution; functional/extra-functional requirements; meta-
heuristic search; architectural patterns and tactics

I. I NTRODUCTION

Service-oriented applications may require adaptation both
at re-design time (evolution) and at run time (self-adaptation)
to changing user needs, system intrusions or faults, chang-
ing operational environment, and resource variability. The
adaptation decisions, required by the user or triggered when-
ever unsatisfactory behaviors and/or values are reported by
monitoring modules, should involve the evaluation of new
alternatives to the current design (e.g., by changing the
selection of components, the configuration of components,
the sizing, etc.) in order to achieve the right trade off
among the functional requirements, software qualities (such
as performance and reliability) and the adaptation cost
itself. However, the generation and evaluation of design
alternatives is often time-consuming, can be error-prone and
lead to suboptimal designs, specially if carried out manually
by system maintainers.

We propose an optimization process foradaptation space
explorationof service-oriented applications based on trade-
offs between functional and extra-functional requirements.
The optimization method combinesmeta-heuristic search
techniques[1] with architectural design patternsandtactics
as concrete examples of functional/extra-functional adapta-
tion patterns. Moreover, the proposed methodology relies

also on the standardService-oriented Component Architec-
ture (SCA) [2] for heterogeneous service assembly and re-
lated tools/running infrastructures in order to process archi-
tectural models (of the application to adapt) that are directly
tight to the real assembled components implementations and
their deployment.

As a proof-of-concepts, this report illustrates the adapta-
tion of a sample application from the Stock Trading System
(STS) case study in [3] by exploiting theTabu searchmeta-
heuristic technique [1] and some functional/extra-functional
adaptation patterns. Specifically, starting with a given ini-
tial architectural model of the considered system we first
describe the application of the metaheuristic search tech-
nique to systematically explore the design space spanned
by different adaptation actions (adaptation options). We also
confirm the importance of having such an automated support
by reporting some experimental results that clearly show that
values obtained by our approach exceed the one produced
with other methods such as thelexicographic method[4] and
the manual work of expert/non expert system maintainers.
Then, we show the combined use of some architectural
patterns and tactics to improve the system availability and
performance thus generating new input architecture candi-
dates to re-iterate the metaheuristic search again till stop
criteria are satisfied.

A. Model parameters of the STS case study

Fig. 1 shows the initial architecture of the considered
application of the STS in terms of an SCA assembly. Briefly,
an STS user, through theOrderWebComponent interact-
ing with theOrderDeliveryComponent, can check the
current price of stocks, placing buy or sell orders and review-
ing traded stock volume. Moreover, he/she can know stock
quote information through theStockQuoteComponent.
STS interacts also with the external Stock Exchange system,
which we do not model.

This section reports the values of the parameters for the
STS example. In order to derive these system parameters,
we took inspired from the WEB-based data retrieval system
adopted as case study in [5]. In such a system clients
are equipped with the local processing capability and local



database. A WEB connection is provided to execute data
search and data updates in a distributed system, through the
network. We have assumed, though not shown in Figure 1,
that our STS application also instantiates an agent on the
server side of the WEB-based data retrieval system.

The estimation of non-functional/functional parameters is
a well-know problem. It has been discussed, for example
in [6], where the state of existing approaches is identified.
Possible solutions are proposed manly based on the usage
of historical data (if available) or derived from similar
situations.

As done in [5], the estimation of the parameters entering
our system has been partly based on the monitoring of
an existing data retrieval system at University of L’Aquila,
partly extracted from software artifacts of the same system.
However, incomplete documentation forced to adopt extrap-
olation techniques for providing certain values. For example,
the number of invocations has been obtained by analyzing
partial scenario descriptions and validating the analysis
results with monitored average number of interactions.

Table I shows the initial values of COTS parameters that
we have considered. Similarly, Table II shows the initial
parameters that we have considered for in-house instances.

We assume that several instances of an existing compo-
nent may be available as COTS, allequivalentfrom the func-
tional viewpoint. Basically, the instances differ each other
for costs and non-functional properties such as reliability,
response time or security level.

We have associated the IDs to the components as follows:
C1 to Order Web Component, C2 to Stock Quote Component
andC3 to Order Delivery Component.

The second column of Table I lists, for each component,
the set of instance alternatives available. For each alternative:
the adaptation costcij (in KiloEuros, KE) is given in the
third column, the average delivery timedij (in days) is given
in the fourth column, the average number of invocations of
the component in the systemsi is given in the fifth column,
finally the probability of failure on demandµij is given in
the sixth column.

Figure 1. Stock Trading System

For each component in Table II: the estimated develop-
ment timeti0 (in days) is given in the third column and the
average time required to perform a test caseτi0 (in days)
is given in the fourth column, the unitary development cost
c̄i0 (in KE per day) is given in the fifth column, the average
number of invocationssi is given in the sixth column, and
finally the component testabilityπi0 is given in the last
column. The definition of testabilityπi that we adopt is the
one given in [7], that is the probability that a single execution
of a software fails on a test case chosen from a certain input
distribution. The input distribution represents the operational
profile that we assume for the component, as obtained from
the operational profile of the whole application [8].

In [5] suggestions for parameters estimation can be found.
Note that we have defined the parameters of components

as average values of the values of their provided services.
The parameters could be refined with respect to the services
without essentially changing the overall model structure.

II. M ETAHEURISTIC SEARCH

Our approach takes advantage of the use of metaheuris-
tic techniques. Their effectiveness and efficiency has been
already demonstrated for supporting the service selection
activity at run-time (e.g., see [9]). As remarked in [9],
the global optimization, typically used by the approaches
supporting such an activity driven by system quality, is def-
initely useful for small composition, but a significant perfor-
mance penalty incurs for large-scale optimization problems,
especially for runtime optimization.

Several metaheuristics [1] with different characteristics
could be adopted depending on the problem: for example,
considering the system reliability, a possible heuristic is to
regard as increasing the whole reliability of the system when
the reliability of the most used components increases. As re-
marked in [10], there exist design options for which we have
no prior knowledge on how they affect the extra-functional
property of a particular system. To this extent, undirected
operations could be performed (e.g., random choices or
exhaustive evaluation of all neighboring candidates).

A. Search Problem Formulation

Different adaptation actions are executed by modifying/-
managing the SCA assembly (and related metadata) of the
system. An SCA application can be adapted through the
following actions: a. adding/removing a new component;
b. changing a component implementation: the new com-
ponent implementation maintains same component shape:
same component type with the same services, same ref-
erences, same properties;c. substitute a component: note
that adding/removing services or references or propertiesto
an existing component is to be intended as a component
substituition; d. adding/removing reference-service wires
and promotion wires (component interactions);e. changing



Instance Cost Average Average no. Prob. of fail.
alternatives cij delivery timedij of invocationssi on demandµij

C11 1 4 180 0.0002
C1 C12 2.5 4 180 0.0002

C13 2 4 180 0.0004
C21 2 4 20 0.0002

C2 C22 3 4 20 0.0002
C23 6 15 20 0.0004
C31 10 4 60 0.0002

C3 C32 14 10 60 0.0004
C33 10 10 60 0.0004

Table I
PARAMETERS OF INSTANCE AVAILABLE FOR EXISTING COMPONENTS

Development Testing Unitary Average no. of Testability
Time ti0 Time τi0 development cost̄ci0 invocationssi πi0

C1 1 0.05 1 180 0.002
C2 3 0.05 1 20 0.002
C3 5 0.05 1 60 0.002

Table II
PARAMETERS FOR IN-HOUSE DEVELOPED INSTANCES

component’properties values;f. changing SCA domains
(components re-deployment).

It is also possible changing the component interaction
style in synchronous/asynchronous, stateful or not, unidi-
rectional or bidirectional, and this fact is reflected in SCA
by changing the shape, at interface level, of the components
involved in the interaction and the wire type.

These changes are reflected at SCA level by changing the
shape, at interface level, of the components involved in the
interaction and the wire type (communication binding) used
to interconnect the components. See [2] for more details.
Moreover, with respect to changes in the system behavior
(that is formally specified in terms of ASMs for functional
analysis purposes), an adaptation action may imply also
changes in the services interaction(s) and orchestration pro-
cess. These are reflected also at ASM level, as refinement
of the ASM transition rules specifying the components’
services behavior and their orchestration.

For a specific system a range of options can be available
for each adaptation action. For example, for the STS system,
the SCA componentC1 can be replaced with one of its three
instances (equivalent from the functional viewpoint) avail-
able on the market and the componentC2 may be removed
by introducing into the system two new components.

The adaptation spaceAS, that is the search space of our
optimization process (i.e., the set of all possible candidate
solutions), is the Cartesian product of the option sets of
all system-specific adaptation actions. Each candidates can
be expressed as a vector of chosen adaptations options,
such as the vector[C11, C21, C32], where the elementCij

denotes either the COTS instance chosen for thei-th existing
component of the STS system.

Obviously, constraints on the system-specific adaptation
actions may be required (e.g., the STS componentC1 must
be replaced byC11). With these definitions, the problem
is suited for metaeuristic techniques. In fact, this type of
problem is NP-difficult because it can suffer of large elapsed
time when the search space size increases (e.g., while adding
new COTS instances).

B. Multi-objective Optimization and Pareto solutions.

Our optimization process implements the multi-objective
optimization [11]. As claimed by theweighted sum method1

the function objectivef(s) can be formulated as follows:

f(s) =

n∑

q=1

αq · fq(s)

whereαi’s are real numbers2 andfq(s) denotes the quality
property of s for the quality criterionq to be minimized
(e.g., adaptation cost or probability of failure).
Once fixed the values of the weightsαi, a metaheuristic
method can be applied (see the second phase of theTwo-
Phase Local Searchalgorithm [12]) for finding the set
of Pareto solutions(i.e., an approximation of the Optimal
Pareto set).
In our context, we can state that a candidate SCA-ASM
assembly is Pareto-optimal, if it is superior to any candidates
evaluated so far in at least one quality criterion.

More formally: Lets be a candidate solution, letC ⊆ AS

be a set of candidate solutions evaluated so far, and letq be a
quality criterion with a domainDq, and an order≤q on Dq

1It is the most common approach for multi-objective optimization.
2It holds:

∑n

q=1
αq = 1.



1. s ←− GenerateInitialSolution()
2. TabuList←− �

// s’ memorizes the best solution of
// the tabu search

3. s′ ←− s

4. while termination conditions not metdo
5. NeighboursOkSet←− ExploreNeighbourhood(s)
6. s ←− ChooseBestof(NeighboursOkSet)
7. Update(TabuList)
8. if (f(s′) > f(s)) then
9. s′ ←− s

end if
end while

Figure 2. Algorithm: Tabu Search.

so thats1 ≤q s2 means thats1 is better than or equal tos2
with respect to quality criterionq. Then, candidate solutions
is Pareto-optimal with respect to a set of evaluated candidate
solutionsC, iff

∀s′ ∈ C∃q : fq(s) ≤q fq(s
′)

If a candidate solution is not Pareto-optimal, then it is
Pareto-dominated by at least one other candidate solution in
C that is better or equal in all quality criteria. Analogously,
a candidate is globally Pareto-optimal, if it is Pareto-optimal
with respect to the set of all possible candidatesAS.

C. Tabu Search

The Tabu Search (TS) is among the most cited and used
metaheuristics for solving optimization models. It enhances
the performance of a local search method by using memory
structures describing the visited solutions. Once a solution
is visited, it is marked as “taboo” so that the TS does not
visit that possibility repeatedly. TS explicitly uses the history
of the search, both to escape from local minima and to
implement an explorative strategy.

The pseudo-code of the simple TS algorithm is shown in
Figure 2. A description of its main steps follows.

Begin with a starting current solutionThe initial can-
didates, representing a SCA-ASM assembly and fulfilling
the existing/new functional and non-functional requirements
is generated.3.
Create new candidatesThe tabu search is based on ashort
term memory, which is implemented as atabu list. This
latter keeps track of the most recently visited solutions and
forbids moves toward them.

3Depending on several factors (e.g., search technique used)different
strategies could be adopted [1], such as an algorithm combining heuristics,
local search, user adaptation plans, service selection andre-deployment
actions for finding a set of admissible (functional) solutions. In Section III
we will provide an implementation of an algorithm for generating initial
solutions.

At each iteration step, the neighborhood of the current
solution4 is restricted to the solutions that do not belong to
the tabu list (i.e., definition ofNeighborsOkSet in Figure
2). Such a set of new candidates is obtained making changes
to the current solution (these changes are also calledmoves)
by applying user adaptation plans, service selection and
service re-deployment.
Choose the best candidateThe best candidate is then
selected as the one minimizing the objective function (un-
der possible constraints). This step is performed through
the functionChooseBestof(NeighboursOkSet) in Figure
2). The candidate becomes the basis for next candidates
generation and the current best solution of all tabu search
interactions. Additionally, such a solution is added to the
tabu list and one of the solutions that were already in the
tabu list is removed (usually in a FIFO order). The length
of the tabu list is given as value of input to the tabu search5.
Stopping criterionThe process proceeds iteratively till stop
criteria are satisfied by returning the best solution of all
interactions. The algorithm can stop if the predefined number
of iterations has elapsed in total. More sophisticated stop
criteria could use convergence detection and stop when the
global optimum is probably reached.

This simple TS could be specialized and enhanced de-
pending on the problem, e.g., varying the tabu list length
or leveraging on long-term memory (see [1] for details).
Furthermore, heuristics operations could be used for improv-
ing its performance. For example, considering the system
reliability, a possible heuristic is to regard as increasing the
whole reliability of the system when the reliability of the
most used components increases. As far as the performance
domain knowledge, it could be exploit the fact that if the
processing speed of a highly utilised resource increases, then
the response time of a system will likely decrease (although
there are exceptions)6.

III. A PPLICATION OF THETABU SEARCH TO THESTS
CASE STUDY

In this section we show an application of the tabu search
(see Section II) to the STS case study.

This TS application is designed for replacing the STS
components by buying or building components on the base
of cost and non-functional factors (i.e., reliability and deliv-
ery time). The TS also provides the best amount of testing
to be performed on each in-house developed component
to fulfill the constraints while minimizing the adaptation
costs. The TS solves the non-linear cost/quality optimization
model [5] based on decision variables indicating the set

4“A neighborhood structure is a functionN : S → 2S that assigns to
everys ∈ S a set of neighborsN(s) ⊆ S. N(s) is called the neighborhood
of s.”[1]

5The tabu length can be varied during the search, leading to more robust
algorithms[1].

6In [10] an example of application of such performance heuristics can
be found.



of architectural components to buy and to build in order
to minimize the software cost under the delivery time and
reliability constraint (i.e., the system reliability and delivery
time are required within a thresholdR andT , respectively).
Such a model belongs to the class of mixed integer nonlinear
programming models can suffer of large elapsed time when
its size increases (e.g., it grows exponentially in the number
of components). We have implemented inC and optimized
for fast execution the TS algorithm. The entire set of
experiments, which we have performed, took practically no
noticeable time (order of seconds) on standard computing
equipment.

In this section we describe the main features and steps
of the TS application. The TS is relies on: (i) theInitial
Solution Generationalgorithm for the generation of the
starting solution of the first interaction of TS; and (ii) the
Testing Generationalgorithm to find the amount of testing
for the in-house instances of a candidates. Section III-A
presents theInitial Solution Generationalgorithm, whereas
Section III-B details theTesting Generationalgorithm.

Multi-objective function The function objectivef(s) is
the weighted sum of the adaptation cost and the system
probability of failure. Note that, to sum such objectives we
apply to the system probability of failure on demand the
logarithm function. In fact, since the probability of failure
on demand is a number that falls within the range of[0, 1]
its logarithm is a negative number.

Begin with a starting current solution The initial
candidates, which fulfills the reliability and delivery time
constraints is the vector[Cij ], made of three elements,
where an elementCij denotes either a COTS instance
or an in-house instance. The in-house instance of the
componenti is namedCi0. Besides, the name of the
instance is paired with the number of test to perform on the
instance. C1 indicates the OrderWebComponent,
C2 the StockQuoteComponent and C3 the
OrderDeliveryComponent. The resulting system
reliability, the cost and delivery time of the solution are
predicted using the reliability, cost and delivery time model
used in [5]. The candidates is generated by using theTS
Initial Solution Generationmethod described in Section
III-A.

Create new candidatesThe set of new candidates is
generated by replacing, one at a time, an existing component
with either one available on the market or an in-house
instance. The amount of testing of the in-house developed
instances is found by using theTesting Generationalgorithm
described in Section III-B.

Choose the best candidateThe best candidate is selected
as the one minimizing the objective function under reliability
and delivery time constraints. Additionally, the pair(i, j) is
stored into the tabu list, wherei is the index of component
changed andj represents the new solution chosen for the
componenti, and the oldest components in the tabu list are

removed as the list becomes full following a FIFO order.
Stopping criterionThe TS stops if the predefined number

of iterations has elapsed in total. At each iteration, upon
examining the neighborhood, if no feasible solution is found,
then the initial solution of the next interaction is generated
using theTS Initial Solution Generationmethod.

To optimize the search we also exploit the heuristic to
regard as increasing the whole reliability of the system
when the reliability of the most used components increases.
To this purpose, we order the components using theQuick
Sort algorithm [13] with growing probability of failure on
demand. Furthermore the components that do not satisfy the
delivery time constraint are removed from the search space7

are removed from the search space.

A. TS Initial Solution Generation algorithm

Depending on several factors (e.g., search technique used)
different strategies could be adopted [1] for finding a set of
feasible solutions, such as an algorithm combining heuris-
tics, local search, user adaptation plans, service selection and
re-deployment actions.

For this step, we draw inspiration from the solution con-
struction phase of the Greedy Randomized Adaptive Search
Procedure (GRASP) [1]. We generate a list of feasible
solutions that fulfill the quality constraints (i.e., the system
reliability and delivery time are assured within the required
thresholds). A solution is the vector[Cij ] where an element
Cij denotes either a COTS instance or an in-house instance.
First the COTS componentC1j is chosen by picking it uni-
formly at random from the set of COTS instances available
for C1, then the set of solutions is generated by replacing,
one at a time, another existing component with one available
on the market instance.
Such a search is optimized by the reliability heuristic
described above. If no solutions are returned, the process
is repeated by choosing another componentC1j̄ using the
reliability heuristic, and a solution is randomly generated by
considering also the in-house instances.

B. Testing Generation algorithm

The Testing Generation(TG) algorithm estimates the
amount of testing of thenhouse in-house developed instances
of the candidates. In the following we discuss the main steps
and featured of TG, which implements another tabu search
algorithm.

Begin with a starting current solutionThe initial can-
didate t, that fulfills the quality constraints is the vector
[th], made ofnhouse elements, where an elementth denotes
the maximum amount of unit testmaxth that could be
performed on the in-house componenth.

7Since we assume that that manpower is available to independently
develop in-house component instances, the delivery time ofeach COTS
(in-house) component have to be within the required threshold T (see [5]).



th is estimated as a function of the thresholdT required for
the system delivery time8.

Create new candidatesAt each iteration step, the neigh-
borhood of the current solutiont is generated by varying,
one at a time, the testing of an in-house instanceh on the
range[0,maxth].

Choose the best candidateThe best candidate is selected
as the one minimizing the objective functionf(s) under reli-
ability and delivery time constraints. The candidate becomes
the basis for next candidates generation and eventually the
current best solution of all TG interactions. Additionally, the
pair (h, th) is added to the tabu list, whereh is the index
of in-house changed (with respect to the initial candidatet

of the current TG interaction) andth represents the amount
of unit test for the in-househ, and the oldest solution that
were already in the tabu list are removed whether the list is
full using a FIFO discipline. The length of the tabu list is
given as value of input to the tabu search.

Stopping criterionThe TG iteratively stops if the prede-
fined number of iterations has elapsed in total by returning
the best solution of all interactions. At each interaction,upon
examining the neighborhood, if no feasible solution is found,
then the initial solution for the next interaction is generated
as follows.

A starting solutiont = [th] is generated with an algo-
rithm similar to theInitial Solution Generationalgorithm
described above. Firstt1 is chosen by picking it uniformly
at random on the range[0,maxt1], then the other testing
amounts are generated by varying the one of an in-house
instanceh (h 6= 1) on the range[0,maxth]. Such a search
is optimized by using the reliability heuristic to regard as
increasing the reliability of a component when its amount
of testing increases. Note that such an algorithm could be
also used for generating the initial candidate for the first
interaction of TG.

IV. OTHER METHODS

For comparison purposes, in our experimentation we con-
sidered two other methods to generate alternative adaptation
solutions: thelexicographic method[4], and the judgment of
a group of (human) maintainers formed by expert/non expert
with respect to the system and execution environment.

We have implemented thelexicographic methodas fol-
lows. First we have solved the optmization model mini-
mizing the adaptation cost under reliability and delivery
time constraint (i.e., the model presented in [5]), then we
have formulated the optimization model that minimizes the
probability of failure under the cost constraint expressedas
f1(x) ≤ f1(x∗) + ε, whereε is a positive tolerance (real
number). Finally, we have found the set of Pareto optimal
solutions by varyingε (i.e., we have applied theε-constraint
approach [4]). We have proceeded the process till the stop

8A budget constraint could be also used.

criteria was satisfied9. For the experimentation we have used
the LINGO tool [14], which is a non-linear model solver, to
produce the results.

The group of maintainers was made of expert/non-expert
people. The choices of non-expert ones were random. On the
opposite, expert persons were guided by their knowledge of
the system and execution environment. Therefore, they were
driven by heuristics (e.g., the reliability of the most used
components can more likely increase the system reliability).
Similarly to the lexicographic method, while making their
decisions they have collected the Pareto solutions till the
stop criteria was satisfied.

V. A DAPTATION SPACE EXPLORATION OF THESTSCASE

STUDY

Below, we apply to the STS case study the adaptation
strategies adopted by our methodology. Specifically, starting
from an initial system configuration, first we describe the
application of the tabu search metaheuristic technique and
of the other two methods described in the previous sections,
and then we show the use of some tactics and an archi-
tectural design pattern as examples of extra-functional and
functional, respectively, adaptation patterns.

We have applied the approaches on three different config-
urations of the STS system (characterized by the parameters
discussed in Section I-A). In order to keep our model as
simple as possible, in all configurations we assume that only
one in-house instance for each component can be developed.
The number of COTS instances does not change across
configurations, but each configuration is based on a different
set of component parameters. The configurations differ also
for the values of reliabilityR and delivery timeT bounds.

The configuration parameters have been set for showing
the behavior of three approaches while increasing the search
space complexity. The configurations differ for the probabil-
ity to find a pareto solution: the first configuration, charac-
terized by a lower thresholdR, has an higher probability
with respect to the other ones, characterized by a higher
thresholdR and a set of selected components more complex
to be analyzed.

System configurations: The first configuration has the
threshold on the delivery time and reliability toT = 7 and
R = 0.5, respectively. In addition, the costs ofC11 andC21

is increased to 5 units (i.e.,C11 andC21 = 5). The reliability
threshold (that may be unrealistic) has been set to show the
behavior of three approaches in the case of a not complex
search space.

The second configuration has the threshold on the delivery
time and reliability toT = 15 andR = 0.8, respectively.
In addition, the costs ofC11, C21 andC22 is increased to
5 units (i.e.,C11 = C21 = C22 = 5), and the probability of

9We have used the satisfaction of reliability constraint to determine the
end of the search and a predefined number of interactions.



Figure 3. Comparison of the three approaches with respect tothe first
configuration

failure on demand of COTS instances available forC1 is
increased to 0.003 (i.e.,∀j µ1j = 0.003).

Finally, the third configuration has the threshold on the
delivery time and reliability toT = 15 and R = 0.8,
respectively. In addition, the costs ofC11, C21 and C22

is increased to 5 units (i.e.,C11 = C21 = C22 = 5), and
the probability of failure on demand of COTS instances
available for all components is increased to 0.003 (i.e.,∀i, j

µij = 0.003).
The experiments were run on a Windows workstation

equipped with a Intel Centrino Processor 1.3 GHz CPU and
a 512 MB RAM. The tabu search algorithm was compiled
using lcc-win32 3.3. We imposed a number of interactions
of 50, and the tabu list length limit of 45 to each experiment.
Finally, the optimization model for the lexicographic method
was solved using LINGO 11.0.

A. A comparison among the tabu search, the lexicographic
method, and the work of system maintainers

In Figure 3 we report the approximate Pareto curves
obtained from solving the optimization problem of the first
system configuration using the three approaches. In this
configuration a maximum thresholdT = 7 has given on the
delivery time of the whole system, and a minimum threshold
R = 0.5 is given on the reliability of the whole system. The
reliability threshold (that may be unrealistic) has been set to
show the behavior of three approaches in the case of a not
complex search space.

Each Pareto solution represents a configuration of com-
ponents that minimizes both the system adaptation cost and
its probability of failure on demand. For example, the tabu
search results claim that if the probability of failure is equal
to 0.405479 (represented on the x-axis), then the minimum
cost to adapt the system is 9 KE. The tabu search results
also show that the optimal solution cost increases (up to

17.5 KE) while raising the system probability of failure (up
to 0.050671).

By looking at the details of the solution, for example,
we observe that for the tabu search point (0.405479, 9 KE)
the solution point is: [(C10,0), (C20,0), (C30,0)]. This means
that, in order to achieve the optimal cost of adaptation all
components have to be in-house built without suggesting an
amount of testing. As done in [5], we express the possibility
of reducing the probability that an in-house component fails
by means of a certain amount of test cases. We define its
probability of failure on demand under the assumption that
the on-field users’ operational profile is the same as the one
adopted for testing [15].

In Table III we report the detailed results of Figure 3.
The table is organized as follows: the first, second and
third columns represent the tabu search, the lexicographic
method and the maintainers judgment, respectively. In each
entry (row, column) we represent the choice of components
(i.e., a Pareto solution). The choice is represented as a
vector, where each element can be either a COTS instance
or an in-house instance. In the latter case, the name of
the instance is paired with the number of successful (i.e.,
failure-free) test to perform on the instance10. The in-house
instance of componenti is namedCi0. Beside the vector
of instance components, the resulting system probability of
failure and the cost of the solution are reported in each
entry. Furthermore, specific parameters (i.e.,αi, ε, and the
tabu search execution timeT ime) of the approaches are
also reported. The working time of the maintainers can not
be quantified with a number because they have taken their
decisions during different meetings. However, they used
a short computation time (order of minutes) by making
their decisions randomly or analyzing simple search space
(e.g., the one of the first configuration). On the other hand,
by leveraging on their personal expertise and experience
they have sometimes found good solutions, but they have
spent time for discussions (order of hour, e.g., one hour
and half for reaching good solutions in the third system
configuration).

The results highlight, in general, that the solutions of the
three approaches do not show discrepancies: the probability
of failure and the cost of their Pareto solutions are slightly
different.

On the other hand, increasing the reliability threshold
R, such as in second and third system configuration the
discrepancies become more evident.

In Figure 4 we report the approximate Pareto curves
obtained from solving the optimization problem the three
approaches with respect to the second system configuration,
where it is requiredT = 15 andR = 0.8. Similarly to Figure
3 and 4, in Figure 5 we report the approximate Pareto curves

10The total number of tests performed on the instance can be obtained
as a function of its testability (see [5] for details).



Lexicographic Tabu Search Maintainers

[(C10 , 1), (C20 ,1), (C30 ,1)] [(C10 ,0), (C20 ,0), (C30 ,0)] [(C10 ,0), C22 , (C30 ,0)]

FRsys = 0.404862, Cost = 9.150301 KE FRsys = 0.405479, Cost=9 KE, FRsys = 0.383686, Cost = 9 KE
Time=13.06 secα = 1

[(C10 ,3), C22 , (C30 ,0)] [(C10 ,0), C22 , (C30 ,0)] [(C10 ,0), (C20 ,0), (C30 ,0)]

FRsys = 0.382359, Cost = 9.150301 KE FRsys = 0.383687, Cost=9 KE FRsys = 0.405479, Cost=9 KE
Time=14.482 secα = 0.6

[C13 , C22 , (C30 ,3)] [C13 , C22 , (C30 ,0)] [C13 , C22 , (C30 ,0)]

FRsys = 0.177398, Cost = 10.1503 KE, ε = 0.999 FRsys = 0.177988, Cost=10 KE, FRsys = 0.177987, Cost=10KE
Time=11.938 secα = 0.4

[C12 , C22 , (C30 ,13)] [C12 , C22 , (C30 ,0)] [C13 , C22 , C31 ]

FRsys = 0.145230, Cost=11.1513 KE,ε = 2 FRsys = 0.147856, Cost=10.5 KE FRsys = 0.842391E − 01, Cost=15 KE
Time=11.998 secα = 0.2

[C12 , C22 , (C30 ,33)] [C12 , C21 , C31 ]

FRsys=0.141306, Cost=12.15331 KE,ε = 3 FRsys = 0.050671, Cost=17.5KE
Time=9.855 secα = 0

[C12 , C22 , C31 ]

FRsys = 0.506711E − 01, Cost=15.5KE,ε = 8

Table III
RESULTS FROMLEXICOGRAPHIC, TABU SEARCH AND MAINTAINERS FOR THE FIRST CONFIGURATION

Lexicographic Tabu Search Maintainers

[(C10 ,1), (C20 ,1), (C30 ,1)] [(C10 , 277),C21 , C31 ] [(C10 ,0), (C20 ,0), (C30, 0)]

FRsys = 0.404862, Cost = 9.150301 KE FRsys = 0.199833 Cost = 29.87776 FRsys = 0.405479 Cost = 9 KE
Time= 11secα = 1, 0.2, 0.01, 0

[(C10 , 3), (C20 ,0), (C30 ,0)] [(C10 ,27), C22 , C31 ]

FRsys = 0.404199, Cost = 9.150301 KE FRsys = 0.300292 Cost = 17.35271 KE

[(C10 , 23), (C20 ,0), (C30 ,0)] [(C10 ,276), C22 , C31 ]

FRsys = 0.395788, Cost = 10.1523 KE FRsys = 0.200163 Cost = 29.82766 KE
ε = 0.999

[(C10 ,3), C22 , (C30 ,0)]

FRsys = 0.382359, Cost = 11.1503 KE
ε = 2

[(C10 ,23), (C20 ,0), C31 ]

FRsys = 0.326879, Cost = 15.1523 KE
ε = 6

[(C10 , 63), C21 , C31 ]

FRsys = 0.283528, Cost = 19.15631 KE
ε = 10

[(C10 , 280),C21 , C31 ]

FRsys = 0.198841, Cost = 30.02806 KE
ε = 23

Table IV
RESULTS FROMLEXICOGRAPHIC, TABU SEARCH AND MAINTAINERS FOR THE SECOND CONFIGURATION

obtained from solving the optimization problem the three
approaches with respect to the third system configuration,
where it is requiredT = 24 and R = 0.8. In the figures
we have circumscribed the feasible solutions. Similarly to
Table III, in Table IV and V we report the detailed results
of the experimentation for the second and third system
configuration, respectively.

The tabu search, even when the search space became
more complex, has returned feasible solutions in a short
time: its execution time increased from few seconds (about
eleven seconds) to few minutes (about one minute). On the

opposite, the lexicographic method has taken more time
while increasing the search space. Finally, the maintainers
have also used a short computation time (usually not finding
feasible solutions) by making their decisions randomly. On
the other hand, by leveraging on their personal expertise and
experience they have sometimes found good solutions, but
they have spent time for discussions.

Discussion on the compared approaches: The com-
parison of the results has revealed that the reasoned choices
of expert maintainers are convincingly better than the ran-
dom ones of non expert persons, whereas the lexicographic



Lexicographic Tabu Search Maintainers

[(C10 ,1), (C20 ,1), (C30 ,1)] [(C10 ,460), (C20 ,267), (C30 ,380)] [(C10 ,0), (C20 ,0), (C30 ,0)]

FRsys = 0.404862, Cost = 9.150301 KE FRsys = 0.199966, Cost = 64.46092 KE FRsys = 0.405479, Cost = 9 KE
Time= 65 secα = 1, 0.2

[(C10 ,3), (C20 ,0), (C30 ,0)] [(C10 ,460), (C20 ,420), (C30 ,380)] [(C10 ,302), (C20 ,0), (C30 ,0)]

FRsys = 0.404199, Cost = 9.150301 KE FRsys = 0.195004, Cost = 72.12625 KE FRsys = 0.300117, Cost = 24.13026 KE
Time=65.725 secα = 0

[(C10 ,23), (C20 ,0), (C30 ,0)] [(C10 ,460), (C20 ,266), (C30 ,380)]

FRsys = 0.395788, Cost = 10.1523 KE FRsys = 0.200004, Cost = 64.41082 KE
ε = 0.999

[(C10 ,123), (C20 ,0), (C30 ,0)]

FRsys = 0.356958, Cost = 15.16232 KE
ε = 6

[(C10 ,183), C20 , C30 ]

FRsys = 0.336165, Cost = 18.16834 KE
ε = 9

[(C10 ,303), (C20 ,0), (C30 ,0)]

FRsys = 0.299842, Cost = 24.18036 KE
ε = 15

[(C10 ,460), (C20 ,0), (C30 ,143)]

FRsys = 0.239423, Cost = 39.21042 KE
ε = 30

[(C10 ,460), (C20 ,163), (C30 ,380)]

FRsys = 0.204292, Cost = 59.2505 KE
ε = 50

[(C10 ,460), (C20 ,420), (C30 ,380)]

FRsys = 0.195004, Cost = 72.12625 KE
ε = 100

Table V
RESULTS FROMLEXICOGRAPHIC, TABU SEARCH AND MAINTAINERS FOR THE THIRD CONFIGURATION

Figure 4. Comparison of the three approaches with respect tothe second
configuration

method convincingly outperforms the expert judgment ap-
proach. In fact, the lexicographic finds optimal solution with
a short time while increasing the search space complexity
with respect to the maintainers11. On the opposite, the

11Note that in the figures of results we report Pareto solutions. We have
discarded Pareto-dominated solutions.

Figure 5. Comparison of the three approaches with respect tothe third
configuration

tabu search convincingly outperforms the expert/non expert
judgment approaches and the lexicographic method. For
example, the tabu algorithm allows tackling well-known
drawback such as the specification of preferences to arrange
the objective functions in order of importance. In fact, it may
be difficult to specify preferences with no/limited knowledge



Figure 6. Comparison of the three approaches and the tacticsapplication
with respect to the third configuration

on the optimal objective values and, as a consequence, the
Pareto-optimal solutions consistent with the given prefer-
ences could present the effects of wrong choices.

B. Application of reliability tactics to a tabu search solution

In order to improve the reliability quality attribute of
the current solution – indeed the one obtained by the tabu
search (as first process iteration) from the third system
configuration – some tactics can be taken in consideration
and properly composed. Specifically, theFault Detection
Tactic can be composed to theRecovery Reintroduction
Tactic or Recovery-Preparation and Repair Tactic(see [3],
for details). TheFault Detection Tacticis for the detection
and notification of a fault to a monitoring component or
to the system administrator. TheRecovery Reintroduction
Tactic is for the restoring of the the state of a failed
component, whereas theRecovery Preparation and Repair
Tactic is for the recovering and repairing of a component
from a failure. Each kind of these tactics can be refined into
other ones (e.g., theFault Detection Tacticin Ping/Echo,
HeartbeatandExceptiontactics).

The (implementation of one) combination of such relia-
bility tactics can be specified by using basic parameters of
the adaptation process, e.g., the reliability of a component
depends on the redundant components used by the tactics for
it (see theVotingtactic in appendix), and be a measure of de-
veloper skills (e.g., two applications of the same tactics may
impact differently on the in-house instances parameters).

As shown in Figure 6 for the third system configuration,
the application of reliability tactics to the solutions provided
by the tabu search may increase the system reliability. As
done in [16], we have formulated, the probability of failure
on demand of an in-house developed instance as a function
of the probability that the instance is faulty, the testability
and the number of successful test cases performed. The

probability that an instance is faulty is an intrinsic property
of the instance that depends on its internal complexity.
The more complex the internal dynamics of the component
instance is, the higher is the probability that a bug has
been introduced during its development. The testability
expresses the conditional probability that a single execution
of a software fails on a test case following a certain input
distribution. In [16] procedures to estimate such parame-
ters are suggested. Obviously, different (implementationof)
combination reliability tactics may impact differently onthe
such in-house instance parameters.

Experimental results: In Tables VI and VII we report
the detailed results of the reliability tactics application to
the solutions provided by the tabu search (with respect to
the third system configuration). The tables are organized as
follows: each column represents a value of the probability
that the in-house instances are faultypi0, which we have
estimated after tactic application12, each entry (row, column)
represents the system reliability resulting after the tactics
application.

By analyzing the results we can observe that while varying
the tactics application the solution with cost 72.12625 be-
comes Pareto-dominated by the solution with cost 64.46092
(i.e., the reliability of the solution with cost 64.46092
becomes slightly different to the one of solution with cost
72.12625). Therefore, the application of design solutions
may decrease the cost to adapt the system. This highlights
the novelty and capabilities of our approach. In fact, this dif-
ference would have not been perceived by using approaches
that do not predict the quality attributes (and the adaptation
cost) of the system resulting after the design solutions
application application (like, for example, the works in [17],
[18] and [19]).

On the other hand, the application of more sophisticated
adaptation actions (e.g., the ones of tactics) may require an
higher adaptation cost. This cost could be required, for ex-
ample, to introduce new components required by the tactics
(e.g., theRecoverytactics application may involves concepts
of clients, a primary component, backup components and a
state resynchronization manager). These new components
can likely increase the average time required to perform
a test case on an in-house instance. For example, if the
average time required to perform a test case of all in-
house components increases from 0.05 to 0.1, the adaptation
cost would increase to 135.2525 KE and 119.9218 KE,
respectively, from 72.12625 KE and 64.46092 KE.

Applying again the metaeuristic search: After the
tactics application, if the metaeuristic search is applied
(as second iteration process) again then a better candidate
solution could be found. For example, if after the tactics
application, that involvesp10 = 0.2, p20 = 0.2 and

12Larger or more complex implementations (e.g., with a highernumber
of redundant components) likely improve the probability that an instance
is faulty.



p10 = 0.5 p20 = 0.4 p10 = 0.3 p20 = 0.4 p10 = 0.3 p20 = 0.3 p10 = 0.2 p20 = 0.2
p30 = 0.4 p30 = 0.4 p30 = 0.3 p30 = 0.2

Rsys = 0.867397 Rsys = 0.911908 Rsys = 0.922630 Rsys = 0.950988

Table VI
TACTICS APPLICATIONRESULTS FOR THE SOLUTION OF COST64.46092

p10 = 0.5 p20 = 0.4 p10 = 0.3 p20 = 0.4 p10 = 0.3 p20 = 0.3 p10 = 0.2 p20 = 0.2
p30 = 0.4 p30 = 0.4 p30 = 0.3 p30 = 0.2

Rsys = 0.869397 Rsys = 0.914010 Rsys = 0.924281 Rsys = 0.952146

Table VII
TACTICS APPLICATIONRESULTS FOR THE SOLUTION OF COST72.12625

p30 = 0.2, we use the tabu search the following candidates
are returned.

First candidate:[(C10,90), (C20,67), (C30,76)] The sys-
tem reliability is equal to 0.913413 and the cost is equal
to 20.67335 KE. Note that such a solution involves a lower
adaptation cost with respect to the one of solutions obtained
only with the tactics application (see Table VI and VII).

Second candidate:[(C10,470),C23, (C30,500)] The sys-
tem reliability is equal to 0.902940 and the cost is equal to
60.59719 KE. Note that in this case the tabu search, other
than changing the number of test, selects the COTS instance
C23 for the second component.

C. Application of reliability and performance tactics

The choice of design solutions (e.g., tactics) for a quality
attribute is often dictated by the trade-off with other quality
attributes. We here show how to compose reliability and
performance tactics to embody extra-functional requirements
of the STS example into its architecture. Let us assume the
following non-functional requirements:
- NFR1.The STS reliability should be greater than 0.85.
- NFR2.The SES sends the trading information of about 600
items every second on average to the STS. Updating such
a high volume of information imposes an intensive load on
the STS’s database, which may cause slow performance. In
order to minimize the impairment of performance, updates
should be the least possible13.

In order to satisfy such new requirements different tactics
can be applied14. Since they suggest different adaptations
actions, they may differ for adaptation cost and/or for the
system quality achieved after the application of their actions.
Our optimization process allows to combine automatically
the tactics by predicting the resulting system quality.

As we have remarked in Section V-B, to address NFR1
theFault Detection Tacticcan be composed to theRecovery

13Such a requirement corresponds to the requirement NFR3 of the case
study in [3].

14The formalization of tactics (for different attributes or concerning a
certain quality) composition is outside the scope of this paper. However,
to this extent, the binding roles and the composition roles defined in [3]
could be exploited.

Reintroduction Tacticor Recovery-Preparation and Repair
Tactic.

As in [3], NFR2 can be addressed by using theMaintain
Multiple Copies tactic(one of theResource Management
tactics). Such a requirement “is concerned with the perfor-
mance of the STS database which may be decreased by the
intensive updates from the SES. The requirement states that
the STS receives about 600 items per second. In general,
when updates are received at such a high frequency, some
items (e.g., stocks having less trades) may not have changes
in every update. Taking into account this, many systems use
caches to filter out the actual items that need to be updated
by comparing the received update with the previous update.
To support such selective updates, theMaintain Multiple
Copies tactic can be used, introducing a cache, a cache
client and a cache manager. Using the tactic, we have the
cache client receive the update from SES, instead of the
database. The cache client then requests the cache manager
to update the received update. The cache manager looks up
the previous update in the cache and compare it with the one
that is received and identify the items that have changes.
Only those items that have changes are updated in the
database, which reduces the update load on the database”[3].

The resulting SCA assembly obtained by applying
all the tactics mentioned above is shown in
Fig. 7. The assembly contains a new composite
component MonitoringComponent for the fault
detection tactics Ping/Echo and Heartbeat. The
OrderDeliveryComponent is refined into a composite
for adding this monitoring functionality. Similarly, the
StockQuoteComponent is refined into a composite (see
Fig. 8)15 to support selective updates through theMaintain
Multiple Copies tactic. It contains three components
namely a cacheStockQuoteChaceComponent, a
cache client StockQuoteReceiveComponent, and
a cache managerStockCacheMgrComponent. The
cache client receives the updates from the external Stock
Exchange system, and then it requests the cache manager
to update the received update. The cache manager looks

15For the sake of space, we do not report all SCA diagrams.



Figure 7. Adapting the STS by applying tactics for NFR1 and NFR2

Figure 8. The StockQuote composite for NFR1 and NFR2 tactics

up the previous update in the cache and compare it with
the one that is received and identify the items that have
changes. Only those items that have changes are updated in
the database, thus reducing the database update load [3]. Of
course, this adaptation implies a change of the components
shape (i.e., in the required/provided interfaces) and alsoof
their behavior.

Experimental results: Starting from the candidate
[(C10,460), (C20,420), (C30,380)] (with a cost equal to
72.12625 KE and system reliability equal to 0.804996) re-
turned by the tabu search for the third system configuration,
let us apply theMaintain Multiple Copies (Cache)tactic for
addressing NFR2. Such a tactic is concerned with adaptation
actions on theStock Quote Component(i.e., C2).

As we remarked in Section V-B, the (implementation of
one) combination of tactics can be specified by using basic
parameters of the adaptation process and different (imple-
mentation of) combination tactics may impact differently on
the in-house instances parameters.

If to implement the tactic (i.e., a cache, a cache client and
a cache manager) the unitary development cost of the in-
house instanceC20 increases from 3 to 5, and its testability
increases from 0.002 to 0.006, the reliability of the solution
(predicted using the reliability model used in [16]) increases
from 0.804996 to 0.811168, and its cost increases from
72.12625 KE to 74.21093 KE. This is due to the fact that,
once fixed the number of test cases successfully performed,
the probability of failure on demand of a component de-
creases while increasing its testability.

Since, as remarked in [3], the important issue (i.e., on
maintaining the consistency of the copies and keep them
synchronized) of theMaintain Multiple Copiestactic can be
addressed by using theState Resynchronizationtactic (one

of the Recovery Reintroductiontactics), let us apply such a
tactic (combined with theFault Detection Tactic) to address
NFR1 (i.e., satisfy also the reliability requirement). Letus
consider an application of such performance and reliability
tactics, that increases the average time required to perform a
test case forC10, C20 andC30 from 0.05 to 0.1, from 0.05
to 0.2 and from 0.05 to 0.1, respectively. In the following we
report examples of candidates generated for different values
of the unitary development cost of the in-house components.
- First Candidate: If the unitary development cost ofC10,
C20 andC30, increases from 1 to 2, from 5 to 6 and from 5
to 6, respectively, as well as the probability that the instance
is faulty results equal to 0.4, 0.4 and 0.3, then the system
reliability increases to 0.903389 and the cost increases to
182.6754 KE.
- Second Candidate: If the unitary development cost ofC10,
C20 andC30, increases from 1 to 3, from 5 to 7 and from 5
to 9, respectively, as well as the probability that the instance
is faulty results equal to 0.3, 0.2 and 0.2, then the reliability
increases to 0.934843 and the cost increases to 187.6754
KE.
- Third Candidate: If the unitary development cost ofC10,
C20, C30 increases from 1 to 2, from 5 to 6 and do not
change, respectively, as well as, the probability that the
instance is faulty results equal to 0.4, 0.4 and 0.5, then
the system reliability increases to 0.887101 and the cost
increases to 181.6754 KE.

Applying again the metaeuristic search: As we have
remarked in V-B, if we would apply again the metaeuristic
technique, then better solutions might be found. For ex-
ample, if we would use the tabu search by starting from
the third candidate, then we will obtain the following
candidate: [(C10,800), C23, (C30,700)]. The reliability is
equal to 0.881299 and the cost decreases from 181.6754
KE to 163.3006 KE. Such solutions differ for the number
of test forC10 andC30, and the component selected forC2.

D. Combining reliability, performance and security tactics

Let us assume that, other than requiring NFR1 and NFR2,
a user of the STS system also requires NFR3 (i.e., “Only
authenticated users can access the system. The user cre-
dentials must not be seen to unauthorized personnel while
transmitting the information to the system16(see [3])).

To address NFR3, as suggested in [3], theID/Password
andMaintain Data Confidentialitytactics could be adopted.

Such security tactics may impact, for example, on the
system response time (e.g., the introduction of a components
for user login may increase the user response time). In fact,
the response time and the adaptation cost ofOrder Web
Componentwill likely increase.

Starting from theThird Candidate(see previous section)
let us apply such security tactics. If to implement such

16Such a requirement corresponds to the requirement NFR4 of the case
study in [3].



tactics the average response time ofOrder Web Component
increases (i.e., “the number of high-level instructions ofthe
component / the number of instructions per second that the
host running the component can execute” increases from
0.03 to 0.1), then average system response time (predicted
using [20]) increases from 11.2 sec to 23.8 sec.

E. Combining tactics and architectural patterns

We here show how our optimization process allows to
combine different design solutions, such as tactics and
architectural design patterns.

Let us assume that, other than NFR3, the following
requirement is claimed for the STS:
- F1. The STS should convert the stock price in the user
preferred currency.

To addressF1 we adopt thePipe and Filterarchitectural
pattern. This pattern provides a structure for systems that
process a stream of data. Each processing step is encapsu-
lated in a filter component. Data is passed through pipes
between adjacent filters [21].

A filter is added toOrderDeliveryComponent for
converting the currency into the required one, while the users
check the current price of stocks, place buy or sell orders
and review traded stock volume. Similarly, a filter is added
to StockQuoteComponent for converting the currency
into the required one when the users want to know stock
quote information.

As we have remarked in Section V-D, NFR3 can be
addressed by using theID/Passwordand theMaintain Data
Confidentialitysecurity tactics (belong to theResisting At-
tackstactic).

Note that in this case the tactics do not impact on the ar-
chitectural pattern: they are applied on different components
of the system.

On the other hand, as we show below, tactics may impact
on architectural patterns (see, for example, [17], [18] where
a qualitative analysis of the interaction between reliability
tactics and architectural pattern is provided).

Let us assume that for the STS system it is required, other
than F1, the requirement NFR1* (i.e.,The STS reliability
should be greater than 0.9.).

To address F1 and NFR1* thePipe and Filterarchitectural
pattern and theFault Detection Tacticcan be composed, for
example, to theVoting(or Active Redundancy) tactic. In [17]
the combined use of thePipe and Filterand theVoting (or
Active Redundancy) tactic is classified as “Good Fit” (i.e.,
the structure of the pattern is highly compatible with the
structural needs of the tactic). In [17] can be also found
details, which we do not report for the sake of space, on the
implementation of these tactics and architectural pattern.

Starting from the candidate [(C10,460), (C20,420),
(C30,380)] (with a cost equal to 72.12625 KE and system
reliability equal to 0.804996) returned by the tabu search for

the third system configuration (see Section II), let us apply
the Pipe and Filterand the reliability tactics.

Let us consider a their implementation, where the average
time required to perform a test case onC10, C20 andC30,
increases from 0.05 to 0.1, from 0.05 to 0.2 and from 0.05
to 0.1, respectively, as well as the unitary development time
of the instances increases from 1 to 3, from 3 to 6 and
does not change. Besides, the probability thatC10, C20 and
C30 are faulty results equal to 0.3, 0.2 and 0.2, respectively.
NFR1* is not satisfied with respect to this tactics and design
pattern application. In fact, the system reliability is equal to
0.863466, while the adaptation cost is equal to 182.6754
KE.

Applying again the metaeuristic search: If we would
apply again a tabu search algorithm17 after the tactics
and design pattern application, for example, the following
candidate is returned: [(C13), (C20,420), (C30,380)] with
reliability equals to 0.954962. Note that NFR1* is satisfied.
Besides, the cost decreases from 182.6754 KE to 139.5832
KE. The tabu search returns such a solution by applying a
user adaptation plan18 suggesting to replaceC1 with a new
component. Its probability of failure on demand is equal to
0.00001, while its cost is equal to 6 KE.

This highlights the novelty and capabilities of our ap-
proach. In fact, this difference would have not been per-
ceived by using approaches that do not combine the
metaeuristic techniques and the design solutions, and do not
predict the quality attributes of the system resulting after the
adaptation actions application (like, for example, the works
in [17], [18] and [19]).

APPENDIX

In this appendix we describe the tactics used in the STS
case study. In [3] and [23] more details can be found. The
formalization of tactics composition is outside the scope of
this paper. However, to this extent, the binding roles and the
composition roles defined in [3] could be exploited.

A. Reliability Tactics

As remarked in [23], it does not exist a universally ac-
cepted terminology for the various tactics of fault tolerance.

As shown in Figure 9, the several tactics for reliability
can be categorized intoFault Detection, Fault Recovery
Preparation and Repair, andRecovery Reintroduction of a

17Such algorithm enhances the tabu search, which we have used in
Section II, by generating new candidates also using user adaptation plans.

18This could require the direct interaction between our optimization
process and the maintainers. Obviously, sometimes such direct interaction
could be required (e.g., as remarked in [22], the application of an anti-
pattern solution may require manual interaction because, for example,
a performance model of the system usually does not contain enough
information to decide whether a cache is applicable). However, such a
kind of manual interaction may be required only for system evolution (at
re-design time) where speedy answers are not essential, whereas it is not
required for self-adaptation (at run time).



Failed Componenttactics19. In figure we have circumscribed
the tactics, which we have used.

Figure 9. Reliability architectural tactic feature model.

TheFault Detection Tacticis for the detection and notifi-
cation of a fault to a monitoring component or to the system
administrator. TheRecovery Reintroduction of a Failed
Componentis for the restoring of the the state of a failed
component, whereas theFault Recovery Preparation and
Repair is for the recovering and repairing of a component
from a failure. Each kind of these tactics can be refined into
other ones.

Fault Detection Tactic
In the STS case study, we have refined theFault Detection

Tactic in Ping/Echo, Heartbeat tactics. The following de-
scription of such tactics are taken from [23]. In [3] diagrams
better illustrating their specification can be also found.

- Ping/Echo: A monitoring component issues a ping mes-
sage to one or more components under scrutiny, and expects
to receive an echo message back within a predetermined
time. If a component does not respond within the time limit,
the monitoring component considers that component to be in
failure mode, and takes corrective actions. Implementation
requires that a monitoring process be created or used, and
that all components being watched must be modified to
handle the echo messages.

- Heartbeat: A component emits a heartbeat message at
regular intervals and a monitoring component listens for it.
If no heartbeat message is received within a predetermined
time, the originating component is assumed to have failed,
and corrective actions are taken. This tactic requires a mon-
itoring component, and all components must be modified to
send heartbeats at the proper intervals.

Recovery Reintroduction of a Failed Component

19The figure has been inspired by the figure in [3] for the availability
tactic. The figure could be refined/exploited by consideringother reliability
tactics.

In Section V-C we have combined theFault Detection
Tactic and theState Resynchronizationtactic (one of the
Recovery Reintroductiontactics).

Such a tactic restores the state of a component through
resynchronization with the state of a backup component.
It involves concepts of a state resynchronization manager,
source components and backup components. In [3] more
details and diagrams illustrating the tactic can be found.

Fault Recovery Preparation and Repair
In Section V-E we have combined theFault Detection

Tactic and theVoting (or Active Redundancy) tactic. The
following description of such tactics are taken from [23].

- Voting: Processes running on redundant processors each
take equivalent input and compute a single out value that is
sent to a voter. The voter component decides which of the
results is correct using an algorithm such as majority rules.
The strongest approach is to implement each voting compo-
nent independently; otherwise you can only detect hardware
faults, and not algorithm faults. (If the voting components
are running the same software, this tactic becomes very
similar to Active Redundancy; see below.) To implement
voting, create a voter component, and either replicate or
write a new voting component.

- Active Redundancy: redundant components receive
events in parallel, thus they are always in the same state.
If one component fails, the other can immediately take over.
This tactic that the processing component(s) to be replicated.
It usually requires a central arbitrating component, although
it is possible to make the redundant components perform the
arbitrating without a central component.

B. Performance Tactics

As shown in Figure 10 (taken from [3]), the several
tactics for performance can be categorized inResource
Arbitration and theResource Managementtactics. The first
is used for improving performance by scheduling requests
for expensive resources (e.g., processors, networks), whereas
the latter improves performance by managing resources
affecting response time (see [3] for details). In figure we
have circumscribed the tactics, which we have used.

In Section V-C we have used theMaintain Multiple
Copies tactic(one of theResource Managementtactics).
This tactic allows to manage resources by keeping replicas
of resources on separate repositories, so that contention for
resources can be reduced. “The tactic involves concepts of
clients, a cache, a cache manager and a data repository. The
cache maintains copies of data that are frequently requested
for faster access. When a data request is received, the cache
manager first searches the cache. If the data is not found,
then the cache manager looks up the repository and makes
copies of the data into the cache.”[3]

C. Security Tactics

As shown in Figure 11 (taken from [3]), the several tactics
for security can be categorized inResisting Attacksand the



Figure 10. Performance architectural tactic feature model.

Recovering from Attackstactics (see [3] for details). In figure
we have circumscribed the tactics, which we have used in
Section V-D and V-E.

We have applied theID/Passwordand theMaintain Data
Confidentialitytactics. Such tactics are used for protecting
the system from attacks. TheID/Passwordtactic checks au-
thentication of the user using the users credentials (i.e.,user
IDs, passwords), whereas theMaintain Data Confidentiality
allow to protect data from unauthorized modifications using
encryption and decryption.

Figure 11. Security architectural tactic feature model.
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