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Abstract—We propose an automatic optimization process for
adaptation space exploratiorof service-oriented applications
based on trade-offs between functional and extra-functioal
requirements. The optimization method combines bothmeta-
heuristic search techniqueand functional/extra-functional pat-
terns (i.e., architectural design patterns and tactics). Moreogr,
the proposed methodology relies also on the standar8ervice-
oriented Component Architectuf&CA) for heterogeneous ser-
vice assembly and related tools/running infrastructures m
order to process architectural models (of the application ®
adapt) that are directly tight to the real assembled componsts
implementations and their deployment.

As a proof-of-concepts, this report provides an example
of instantiation of the proposed process together with an
experimentation on a stock trading application.

KeywordsService-oriented applications; software adaptation
and evolution; functional/extra-functional requirements; meta-
heuristic search; architectural patterns and tactics
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also on the standar8ervice-oriented Component Architec-
ture (SCA) [2] for heterogeneous service assembly and re-
lated tools/running infrastructures in order to proceshiar
tectural models (of the application to adapt) that are tiyec
tight to the real assembled components implementations and
their deployment.

As a proof-of-concepts, this report illustrates the adapta
tion of a sample application from the Stock Trading System
(STS) case study in [3] by exploiting thieabu searchmeta-
heuristic technique [1] and some functional/extra-fuoril
adaptation patterns. Specifically, starting with a givenr in
tial architectural model of the considered system we first
describe the application of the metaheuristic search tech-
nique to systematically explore the design space spanned
by different adaptation actions (adaptation options). e a
confirm the importance of having such an automated support
by reporting some experimental results that clearly shaw th
values obtained by our approach exceed the one produced

Service-oriented applications may require adaptatioh botwith other methods such as thexicographic methof#] and
at re-design time (evolution) and at run time (self-adaptdt the manual work of expert/non expert system maintainers.
to changing user needs, system intrusions or faults, changten, we show the combined use of some architectural
ing operational environment, and resource variabilitye Th patterns and tactics to improve the system availability and
adaptation decisions, required by the user or triggeredchwhe performance thus generating new input architecture candi-
ever unsatisfactory behaviors and/or values are reposted Idates to re-iterate the metaheuristic search again tip sto
monitoring modules, should involve the evaluation of newcriteria are satisfied.
alternatives to the current design (e.g., by changing the
selection of components, the configuration of componentd: Model parameters of the STS case study
the sizing, etc.) in order to achieve the right trade off Fig. 1 shows the initial architecture of the considered
among the functional requirements, software qualitiesi{su application of the STS in terms of an SCA assembly. Briefly,
as performance and reliability) and the adaptation cosan STS user, through th@ der WebConponent interact-
itself. However, the generation and evaluation of desigring with theOr der Del i ver yConponent , can check the
alternatives is often time-consuming, can be error-prante a current price of stocks, placing buy or sell orders and revie
lead to suboptimal designs, specially if carried out magual ing traded stock volume. Moreover, he/she can know stock
by system maintainers. quote information through th&t ockQuot eConponent .

We propose an optimization process &afaptation space STS interacts also with the external Stock Exchange system,
explorationof service-oriented applications based on trade-which we do not model.
offs between functional and extra-functional requirersent  This section reports the values of the parameters for the
The optimization method combinaseta-heuristic search STS example. In order to derive these system parameters,
techniquegl] with architectural design patternandtactics  we took inspired from the WEB-based data retrieval system
as concrete examples of functional/extra-functional talap adopted as case study in [5]. In such a system clients
tion patterns. Moreover, the proposed methodology reliesre equipped with the local processing capability and local



database. A WEB connection is provided to execute data For each component in Table II: the estimated develop-

search and data updates in a distributed system, through tineent timet;, (in days) is given in the third column and the

network. We have assumed, though not shown in Figure laverage time required to perform a test cage(in days)

that our STS application also instantiates an agent on this given in the fourth column, the unitary development cost

server side of the WEB-based data retrieval system. ¢;o (in KE per day) is given in the fifth column, the average
The estimation of non-functional/functional parameters i number of invocations; is given in the sixth column, and

a well-know problem. It has been discussed, for exampldinally the component testabilityr;o is given in the last

in [6], where the state of existing approaches is identifiedcolumn. The definition of testability; that we adopt is the

Possible solutions are proposed manly based on the usagae givenin [7], that is the probability that a single exémuit

of historical data (if available) or derived from similar of a software fails on a test case chosen from a certain input

situations. distribution. The input distribution represents the ofieral

As done in [5], the estimation of the parameters entering)rofile that we assume for the component, as obtained from
our system has been partly based on the monitoring ofh€ operational profile of the whole application [8].
an existing data retrieval system at University of L'Aquila  In [5] suggestions for parameters estimation can be found.
partly extracted from software artifacts of the same system Note that we have defined the parameters of components
However, incomplete documentation forced to adopt extrapas average values of the values of their provided services.
olation techniques for providing certain values. For exmamp The parameters could be refined with respect to the services
the number of invocations has been obtained by analyzing/ithout essentially changing the overall model structure.
partial scenario descriptions and validating the analysis
results with monitored average number of interactions. [I. METAHEURISTIC SEARCH

Table | shows the initial values of COTS parameters that o, approach takes advantage of the use of metaheuris-
we have considered. Similarly, Table Il shows the initial tic techniques. Their effectiveness and efficiency has been
parameters that we have considered for in-house |nstance§|ready demonstrated for supporting the service selection

We assume that several instances of an existing COMPQyctivity at run-time (e.g., see [9]). As remarked in [9],
nent may be available as COTS, efjuivalenfrom the func-  the global optimization, typically used by the approaches
tional viewpoint. Basically, the instances differ eachesth sypporting such an activity driven by system quality, is-def
for costs and non-functional properties such as relighilit jnitely useful for small composition, but a significant pf
response time or security level. mance penalty incurs for large-scale optimization prolslem

We have associated the IDs to the components as followssspecially for runtime optimization.

C1 to Order Web Component’; to Stock Quote Component  Several metaheuristics [1] with different characteristic
and Cs to Order Delivery Component could be adopted depending on the problem: for example,

The second column of Table | lists, for each componentconsidering the system reliability, a possible heuristitd
the set of instance alternatives available. For each altesn  regard as increasing the whole reliability of the systemnwhe
the adaptation cost;; (in KiloEuros, KE) is given in the the reliability of the most used components increases. As re
third column, the average delivery tindg; (in days) is given  marked in [10], there exist design options for which we have
in the fourth column, the average number of invocations ofo prior knowledge on how they affect the extra-functional
the component in the systes is given in the fifth column,  property of a particular system. To this extent, undirected
finally the probability of failure on demangd;; is given in  operations could be performed (e.g., random choices or
the sixth column. exhaustive evaluation of all neighboring candidates).

A. Search Problem Formulation

OrderWetsonvie Tratie i stockExchange g Different adaptation actions are executed by modifying/-
C— ‘ managing the SCA assembly (and related metadata) of the
OrderDeliveryService i . .
----- . - . system. An SCA application can be adapted through the
StockQuoteService R e Delivery following actions:a. adding/removing a new component;

Component Component

b. changing a component implementation: the new com-
ponent implementation maintains same component shape:
same component type with the same services, same ref-

o ‘fsmsvmms?— erences, same properties; substitute a component: note

T W] that adding/removing services or references or propeidies
. I T TRewe W an existing component is to be intended as a component

substituition; d. adding/removing reference-service wires

Figure 1. Stock Trading System and promotion wires (component interactions)changing




Instance | Cost Average Average no. Prob. of falil.
alternatives | c¢;; delivery timed;; | of invocationss; | on demandu;;
Ch1 1 4 180 0.0002
C1 Ci2 2.5 4 180 0.0002
Ci3 2 4 180 0.0004
Ca1 2 4 20 0.0002
Co Cao 3 4 20 0.0002
Cas 6 15 20 0.0004
C31 10 4 60 0.0002
Cs3 C32 14 10 60 0.0004
Cs3 10 10 60 0.0004

Table |
PARAMETERS OF INSTANCE AVAILABLE FOR EXISTING COMPONENTS

Development| Testing Unitary Average no. of| Testability
Time t;0 Time ;0 | development cost;y | invocationss; T30
C1 1 0.05 1 180 0.002
Co 3 0.05 1 20 0.002
C3 5 0.05 1 60 0.002
Table Il

PARAMETERS FOR INHOUSE DEVELOPED INSTANCES

component’properties values;f. changing SCA domains Obviously, constraints on the system-specific adaptation
(components re-deployment). actions may be required (e.g., the STS compoidgninust

It is also possible changing the component interactiorPe replaced byCi:). With these definitions, the problem
style in synchronous/asynchronous, stateful or not, unidiis suited for metaeuristic techniques. In fact, this type of
rectional or bidirectional, and this fact is reflected in SCA problem is NP-difficult because it can suffer of large elabse
by changing the shape, at interface level, of the componentéme when the search space size increases (e.g., whilegaddin
involved in the interaction and the wire type. new COTS instances).

These changes are reflected at SCA level by changing thg - \,iti_objective Optimization and Pareto solutions.
shape, at interface level, of the components involved in the

interaction and the wire type (communication binding) used OUr Optimization process implements the multi-objective
to interconnect the components. See [2] for more detailsPPtimization [11]. As claimed by theeighted sum methéd
Moreover, with respect to changes in the system behavidi'® function objectivef(s) can be formulated as follows:
(that is formally specified in terms of ASMs for functional n

analysis purposes), an adaptation action may imply also f(s) = Zo‘q ~fq(8)

changes in the services interaction(s) and orchestration p g=1

cess. These are reflected also at ASM level, as refinementh , 2 .
of the ASM transition rules specifying the components’W erecy’s are real numbe_ sand_fq(s) denotes the_ql_Jallty
services behavior and their orchestration. property of s for the quality criteriong to be minimized

F i ¢ f opti b abl e.g., adaptation cost or probability of failure).
f or a;]sp()jeutmtlsys ertr) a r':;lnge 0 Opl 'O?S fﬁn S_(?Saval? nce fixed the values of the weights, a metaheuristic
tﬁr esacc::Aa apta |orr1(§\c |on.b or eﬁam%e,_tﬁr € fit ‘:’%’S ®Method can be applied (see the second phase ofitlte
instancesczgz]%?cjen%[ ?r%% ?hreepf)uarlwccetioxvalll v(i)gvf/}p(z)irlwts) h\r/:lie Phase Local Searcfalgorithm [12]) for finding the set
able on the market and the componéhtmay be removed of Pareto solutiong(i.e., an approximation of the Optimal

) L Pareto set).
by introducing into the system two new components. In our context, we can state that a candidate SCA-ASM
The adaptation spacésS, that is the search space of our

e . X -~ assembly is Pareto-optimal, if it is superior to any cantdisa
optimization process (i.e., the set of all possible cantdida o\q1uated so far in at least one quality criterion.
solutions), is the Cartesian product of the option sets of 5. formally: Lets be a candidate solution, I6t C AS

all system-specific adaptation actions. Each candid@@n o 5 set of candidate solutions evaluated so far, angddeta

be expressed as a vector of chosen adaptations optior&uamy criterion with a domairD,, and an order, on D,
such as the vectdiCi1, Ca1, Cs2], where the element;; -

denotes either the COTS instance chosen foi-teexisting Uit is the most common approach for multi-objective optirtizra
component of the STS system. 2It holds: 2221 ag=1.



1. s «— GeneratelnitialSolution() At each iteration step, the neighborhood of the current

TabuList«— © _ solutiorf is restricted to the solutions that do not belong to
II's” memorizes the best solution of the tabu list (i.e., definition olVeighborsOkSet in Figure
/// the tabu search 2). Such a set of new candidates is obtained making changes
3. s s - to the current solution (these changes are also catlede}
4. while termination conditions not meto by applying user adaptation plans, service selection and
5. NeighboursOkSet— ExploreNeighbourhood(s) service re-deployment.
6. s +— ChooseBestof(NeighboursOkSet) Choose the best candidat&he best candidate is then
7. Update(TabulList) selected as the one minimizing the objective function (un-
8. if (/f(sl) > f(s)) then der possible constraints). This step is performed through
9. § s the functionC'hoose Besto f (N eighboursOkSet) in Figure
end if 2). The candidate becomes the basis for next candidates
end while generation and the current best solution of all tabu search
Figure 2. Algorithm: Tabu Search. interactions. Additionally, such a solution is added to the

tabu list and one of the solutions that were already in the
tabu list is removed (usually in a FIFO order). The length
of the tabu list is given as value of input to the tabu search
Stopping criterionThe process proceeds iteratively till stop
criteria are satisfied by returning the best solution of all
interactions. The algorithm can stop if the predefined numbe
Vs' € CHq: fu(s) <q4 fq(s) of iterations has elapsed in total. More sophisticated stop
criteria could use convergence detection and stop when the
If a candidate solution is not Pareto-optimal, then it isglobal optimum is probably reached.
Pareto-dominated by at least one other candidate solutioni This simple TS could be specialized and enhanced de-
C that is better or equal in all quality criteria. Analogoysly pending on the problem, e.g., varying the tabu list length
a candidate is globally Pareto-optimal, if it is Paretoimt ~ or leveraging on long-term memory (see [1] for details).

so thats; <, s, means thas; is better than or equal te,
with respect to quality criterion. Then, candidate solution

is Pareto-optimal with respect to a set of evaluated camelida
solutionsC, iff

with respect to the set of all possible candidates Furthermore, heuristics operations could be used for impro
ing its performance. For example, considering the system
C. Tabu Search reliability, a possible heuristic is to regard as incregdime

whole reliability of the system when the reliability of the

The Tabu Search (TS) is among the most cited and usechost used components increases. As far as the performance
metaheuristics for solving optimization models. It entenc domain knowledge, it could be exploit the fact that if the
the performance of a local search method by using memorprocessing speed of a highly utilised resource increases, t
structures describing the visited solutions. Once a smiuti the response time of a system will likely decrease (although
is visited, it is marked as “taboo” so that the TS does nothere are exception$)
visit that possibility repeatedly. TS explicitly uses thstary
of the search, both to escape from local minima and to
implement an explorative strategy. ) ) o

The pseudo-code of the simple TS algorithm is shown in In this section we show an application of the tabu search
Figure 2. A description of its main steps follows. (see Section II) to the STS case study. _

Begin with a starting current solutionThe initial can- This TS appllca'u_on IS de_5|g_ned for replacing the STS
didate s, representing a SCA-ASM assembly and fulfilling components by buying or building components on the base

the existing/new functional and non-functional requiretse of CO_St and non-functional fa_ctors (ie., reliability anelid- .
is generated ery time). The TS also provides the best amount of testing

Create new candidate$he tabu search is based orslzort to be .performed on each !n-hogge .d.eveloped comppnent
o . . to fulfill the constraints while minimizing the adaptation
term memory, which is implemented astabu list This

latter keeps track of the most recently visited solutiond an costs. The TS solves the r_10_n-I|nea_r cost/q_ual_lty thlnomt
. model [5] based on decision variables indicating the set
forbids moves toward them.

IIl. APPLICATION OF THETABU SEARCH TO THESTS
CASE STUDY

4“A neighborhood structure is a functiotv ] S — 25 that ‘assigns to
3Depending on several factors (e.g., search technique wliidjent ~ €verys € Sasetof neighbordV(s) C S. N(s) is called the neighborhood
strategies could be adopted [1], such as an algorithm congbhreuristics, ~ Of s."[1]

local search, user adaptation plans, service selectionresployment 5The tabu length can be varied during the search, leading te nobust
actions for finding a set of admissible (functional) solatioln Section 1l algorithms[1].
we will provide an implementation of an algorithm for gertérg initial 6ln [10] an example of application of such performance héigsscan

solutions. be found.



of architectural components to buy and to build in orderremoved as the list becomes full following a FIFO order.

to minimize the software cost under the delivery time and Stopping criterionThe TS stops if the predefined number

reliability constraint (i.e., the system reliability andlivery  of iterations has elapsed in total. At each iteration, upon

time are required within a thresholl andT’, respectively). examining the neighborhood, if no feasible solution is fihun

Such a model belongs to the class of mixed integer nonlineahen the initial solution of the next interaction is genecht

programming models can suffer of large elapsed time whemsing theTS Initial Solution Generatiomethod.

its size increases (e.qg., it grows exponentially in the neimb  To optimize the search we also exploit the heuristic to

of components). We have implementedGrand optimized regard as increasing the whole reliability of the system

for fast execution the TS algorithm. The entire set ofwhen the reliability of the most used components increases.

experiments, which we have performed, took practically noTo this purpose, we order the components usingQiogck

noticeable time (order of seconds) on standard computingort algorithm [13] with growing probability of failure on

equipment. demand. Furthermore the components that do not satisfy the
In this section we describe the main features and stepdelivery time constraint are removed from the search space

of the TS application. The TS is relies on: (i) theitial are removed from the search space.

Solution Generationalgorithm for the generation of the

starting solution of the first interaction of TS; and (ii) the A. TS Initial Solution Generation algorithm

Testing Generatiorlgorithm to find the amount of testing  pepending on several factors (e.g., search technique used)
for the in-house instances of a candidateSection Ill-A  gitterent strategies could be adopted [1] for finding a set of
presents theénitial Solution Generatioralgorithm, whereas  faasiple solutions, such as an algorithm combining heuris-

Section 1lI-B details theTesting Generatiomlgorithm. tics, local search, user adaptation plans, service seteatid
Multi-objective function The function objectivef(s) is re-deployment actions.

the weighted sum of the adaptation cost and the system rq this step, we draw inspiration from the solution con-

probability of failure. Note that, to sum such objectives we g1 ction phase of the Greedy Randomized Adaptive Search

apply to the system probability of failure on demand thep ocequre (GRASP) [1]. We generate a list of feasible

logarithm function. In fact, since the probability of fai@i  4|,tions that fulfill the quality constraints (i.e., thestgm

on demand is a number that falls within the rangé®fl]  rgjiapility and delivery time are assured within the reguir

its logarithm is a negative number. _ o thresholds). A solution is the vect{f;;] where an element
Begin with a starting current solution The initial ¢ genotes either a COTS instance or an in-house instance.

candidates, which fulfills the reliability and delivery time  girst the COTS componerdt; ; is chosen by picking it uni-

constraints is the vectofC;], made of three elements, ¢y at random from the set of COTS instances available

where an element;; denotes either a COTS instance o ¢ then the set of solutions is generated by replacing,

or an in-house instance. The in-house instance of thg,q 4t 4 time, another existing component with one available
componenti is named C;,. Besides, the name of the on the market instance.

instance is paired with the number of test to perform on th%uch a search is optimized by the reliability heuristic

instance. Cy indicates the Order WebConponent, described above. If no solutions are returned, the process
Cp the StockQuoteConponent and C3 the g aneated by choosing another componépy using the

Orl_deb_rI_DeI |hver yOorrpdor:je?t . The refsur:tmg I System jiapility heuristic, and a solution is randomly genedaby
reliabilty, the cost and delivery time of the solution are ¢oncidering also the in-house instances.

predicted using the reliability, cost and delivery time rabd
used in [5]. The candidate is generated by using thES B Testing Generation algorithm

Initial Solution Generationmethod described in Section ) ) . .
NI-A. The Testing Generation(TG) algorithm estimates the

Create new candidateghe set of new candidates is amount of testing of they,,s. in-house developed instances
IQ{ the candidats. In the following we discuss the main steps

enerated by replacing, one at a time, an existing compone .
\?vith either ):)nepavailgble on the market or a% in-r?ouseand featured of TG, which implements another tabu search

instance. The amount of testing of the in-house developealgor't_hm' ) ) ) o
instances is found by using tfilesting Generatioalgorithm _Begm with a s_tartlng curre_nt SOM'OH_The _|n|t|al can-
described in Section I1I-B. didate ¢, that fulfills the quality constraints is the vector

Choose the best candidafehe best candidate is selected [tn], mad_e Ofhouse ElEments, yvhere an elemenptdenotes
as the one minimizing the objective function under religpil (e Maximum amount of unit teshaxt, that could be
and delivery time constraints. Additionally, the p&irj) is  Performed on the in-house componént
stored into the tabu list, whergis the index of component _ _ ,

Since we assume that that manpower is available to indepénde

changed aan represents the new SOluu(_)n chosen f_or thedevelop in-house component instances, the delivery timeash COTS
component, and the oldest components in the tabu list argin-house) component have to be within the required thiesiio(see [5]).



t, is estimated as a function of the thresh@ldequired for  criteria was satisfied For the experimentation we have used

the system delivery tinfe the LINGO tool [14], which is a non-linear model solver, to
Create new candidateAt each iteration step, the neigh- produce the results.

borhood of the current solutiohis generated by varying, The group of maintainers was made of expert/non-expert

one at a time, the testing of an in-house instahaen the  people. The choices of non-expert ones were random. On the

range[0, maxty). opposite, expert persons were guided by their knowledge of
Choose the best candidaféhe best candidate is selected the system and execution environment. Therefore, they were
as the one minimizing the objective functigfis) under reli-  driven by heuristics (e.g., the reliability of the most used

ability and delivery time constraints. The candidate beesm components can more likely increase the system reliapility
the basis for next candidates generation and eventually th®8imilarly to the lexicographic method, while making their
current best solution of all TG interactions. Additionallye  decisions they have collected the Pareto solutions till the
pair (h,t;) is added to the tabu list, whereis the index stop criteria was satisfied.

of in-house changed (with respect to the initial candidate

of the current TG interaction) ang represents the amount V. ADAPTATION SPACE EXPLORATION OF THESTSCASE

of unit test for the in-housé, and the oldest solution that STUDY

were already in the tabu list are removed whether the list is gejow, we apply to the STS case study the adaptation
full using a FIFO discipline. The length of the tabu list is strategies adopted by our methodology. Specifically, intart
given as value of input to the tabu search. from an initial system configuration, first we describe the
Stopping criterionThe TG iteratively stops if the prede- gpplication of the tabu search metaheuristic technique and
fined number of iterations has elapsed in total by returningf the other two methods described in the previous sections,
the best solution of all interactions. At each interactigmon  gnd then we show the use of some tactics and an archi-
examining the neighborhood, if no feasible solution is fdun tectural design pattern as examples of extra-functiond! an
then the initial solution for the next interaction is gerteta  fynctional, respectively, adaptation patterns.
as follows. We have applied the approaches on three different config-
A starting solutiont = [t;] is generated with an algo- yrations of the STS system (characterized by the parameters
rithm similar to thelnitial Solution Generationalgorithm  discussed in Section I-A). In order to keep our model as
described above. Firg{ is chosen by picking it uniformly  simple as possible, in all configurations we assume that only
at random on the rang®, maxty], then the other testing gne in-house instance for each component can be developed.
amounts are generated by varying the one of an in-housgne number of COTS instances does not change across
instanceh (h # 1) on the rangg0, maxty]. Such a search  configurations, but each configuration is based on a diferen
is optimized by using the reliability heuristic to regard asget of component parameters. The configurations differ also
increasing the reliability of a component when its amountfor the values of reliability? and delivery timeT” bounds.
of testing increases. Note that such an algorithm could be The configuration parameters have been set for showing
also used for generating the initial candidate for the firsthe pehavior of three approaches while increasing the Isearc
interaction of TG. space complexity. The configurations differ for the probabi
ity to find a pareto solution: the first configuration, charac-
terized by a lower threshol®, has an higher probability
For comparison purposes, in our experimentation we conwith respect to the other ones, characterized by a higher
sidered two other methods to generate alternative adaptati thresholdR and a set of selected components more complex
solutions: thdexicographic metho], and the judgment of  to be analyzed.
a group of (human) maintainers formed by expert/non expert  System configurations The first configuration has the
with respect to the system and execution environment.  threshold on the delivery time and reliability © = 7 and
We have implemented thiexicographic methodas fol- R — (.5, respectively. In addition, the costs 6f; andCy,;
lows. First we have solved the optmization model mini-js increased to 5 units (i.e3;; andCs; = 5). The reliability
mizing the adaptation cost under reliability and deliverythreshold (that may be unrealistic) has been set to show the
time constraint (i.e., the model presented in [5]), then wepehavior of three approaches in the case of a not complex
have formulated the optimization model that minimizes thesearch space.
probability of failure under the cost constraint expresaed  The second configuration has the threshold on the delivery
fi(z) < fi(zx) + ¢, wheree is a positive tolerance (real time and reliability to7' = 15 and R = 0.8, respectively.
number). Finally, we have found the set of Pareto optimain addition, the costs of;;, Cy; and Css is increased to

solutions by varying (i.e., we have applied theconstraint 5 ynits (i.e.,Cy; = Co1 = Cso = 5), and the probability of
approach [4]). We have proceeded the process till the stop

9We have used the satisfaction of reliability constraint éedmine the
8A budget constraint could be also used. end of the search and a predefined number of interactions.

IV. OTHER METHODS



20

17.5 KE) while raising the system probability of failure (up

i . to 0.050671).
" s By looking at the details of the solution, for example,
“ we observe that for the tabu search point (0.405479, 9 KE)

the solution pointis: [(10,0), (C20,0), (C30,0)]. This means
sicod. that, in order to achieve the optimal cost of adaptation all
PPN mrbusearss COMpPONeNts have to be in-house built without suggesting an
wantainers AMOUNt Of testing. As done in [5], we express the possibility
6 of reducing the probability that an in-house componensfail
by means of a certain amount of test cases. We define its
probability of failure on demand under the assumption that
the on-field users’ operational profile is the same as the one
0 adopted for testing [15].
S S In Table Il we report the detailed results of Figure 3.
The table is organized as follows: the first, second and
Figure 3. Comparison of the three approaches with respetietdirst third columns repre§en_t the .tabu search, the !eXICOQraphIC
configuration method and the maintainers judgment, respectively. In each
entry (row, column) we represent the choice of components
(i.e., a Pareto solution). The choice is represented as a
failure on demand of COTS instances available €r is vector, where each element can be either a COTS instance
increased to 0.003 (i.eVyj p1; = 0.003). or an in-house instance. In the latter case, the name of
Finally, the third configuration has the threshold on thethe instance is paired with the number of successful (i.e.,
delivery time and reliability to7 = 15 and R = 0.8, failure-free) test to perform on the instaf%eThe in-house
respectively. In addition, the costs @f;, Co; and Css instance of componentis hamedC;,. Beside the vector
is increased to 5 units (i.e(11 = Co; = Cas = 5), and  of instance components, the resulting system probabifity o
the probability of failure on demand of COTS instancesfailure and the cost of the solution are reported in each
available for all components is increased to 0.003 (V&.j entry. Furthermore, specific parameters (icg., ¢, and the
ti; = 0.003). tabu search execution tim&ime) of the approaches are
The experiments were run on a Windows workstationalso reported. The working time of the maintainers can not
equipped with a Intel Centrino Processor 1.3 GHz CPU andbe quantified with a number because they have taken their
a 512 MB RAM. The tabu search algorithm was compileddecisions during different meetings. However, they used
using lcc-win32 3.3. We imposed a number of interactionsa short computation time (order of minutes) by making
of 50, and the tabu list length limit of 45 to each experiment.their decisions randomly or analyzing simple search space
Finally, the optimization model for the lexicographic meth  (e.g., the one of the first configuration). On the other hand,
was solved using LINGO 11.0. by leveraging on their personal expertise and experience
. . _.they have sometimes found good solutions, but they have
A. A comparison among the tabu search, the lexicographigsant time for discussions (order of hour, e.g., one hour

method, and the work of system maintainers and half for reaching good solutions in the third system
In Figure 3 we report the approximate Pareto curvesonfiguration).

obtained from solving the optimization problem of the first  The results highlight, in general, that the solutions of the

system configuration using the three approaches. In thighree approaches do not show discrepancies: the prolyabilit

configuration a maximum threshold = 7 has given on the  of failure and the cost of their Pareto solutions are slightl

delivery time of the whole system, and a minimum thresholdjifferent.

R =0.5is given on the reliability of the whole system. The  on the other hand, increasing the reliability threshold

reliability threshold (that may be unrealistic) has beertse g such as in second and third system configuration the
show the behavior of three approaches in the case of a nefiscrepancies become more evident.

complex search space. In Figure 4 we report the approximate Pareto curves

Each Pareto solution represents a configuration of comgptained from solving the optimization problem the three
ponents that minimizes both the system adaptation cost anghroaches with respect to the second system configuration,
its probability of failure on demand. For example, the tabuyhere it is required” = 15 andR = 0.8. Similarly to Figure

search results claim that if the probability of failure isuell 3 and 4, in Figure 5 we report the approximate Pareto curves
to 0.405479 (represented on the x-axis), then the minimum

cost to adapt the SySte_m is 9 KE' The ta_bu search resultsiorpe total number of tests performed on the instance can tanebt
also show that the optimal solution cost increases (up t@s a function of its testability (see [5] for detalils).
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Lexicographic Tabu Search Maintainers

[(C10. 1), (C20:1), (C30.1)] [(€10.0). (C20.0). (C30.0)] (C10.0). C22, (C30.0)]
FRsys = 0.405479, Cost=9 KE,

Time=13.06 seax = 1

FRsys = 0.404862, Cost = 9.150301 KE FRsys = 0.383686, Cost = 9 KE

[(C10:3), C22.(C30,0] [(C10,0). C22, (C30.0)] [(C10.0). (C20.0), (C30,0)

FRsys = 0.382359, Cost = 9.150301 KE FRsys = 0.383687, Cost=9 KE

Time=14.482 seex = 0.6

FRsys = 0.405479, Cost=9 KE

[C13. C22.(C30.3)] [C13. C2a2, (C30.0) [C13. C22,(C30.0]

FRsys = 0.177398, Cost = 10.1503 KE, ¢ = 0.999 FRsys = 0.177988, Cost=10 KE, FRsys = 0.177987, Cost=10KE

Time=11.938 seex = 0.4

[C12, C22, (C30,13)] [C12, C22,(C30.0)] [C13. C22, C31]

FRsys = 0.145230, Cost=11.1513 KE¢ = 2 FRsys = 0.147856, Cost=10.5 KE FRsys = 0.842391FE — 01, Cost=15 KE

Time=11.998 seex = 0.2

[C12, C22.(C30.33)]

FRsys=0.141306, Cost=12.15331 KE,= 3

[C12, C21. C31]

FRsys = 0.050671, Cost=17.5KE
Time=9.855 seax = 0

[C12, C22, C31]

FRsys = 0.506711E — 01, Cost=15.5KEe = 8

Table Il
RESULTS FROMLEXICOGRAPHIC, TABU SEARCH AND MAINTAINERS FOR THE FIRST CONFIGURATION

Lexicographic Tabu Search Maintainers

[(C10:1), (C20.1). (C3p.1)] [(C10.277).C21, C31] [(C10.0). (C20.0). (C30, 0)]

FRsys = 0.404862, Cost = 9.150301 KE FRsys = 0.199833 Cost = 29.87776 FRsys = 0.405479 Cost = 9 KE

Time= 11lsecae = 1, 0.2, 0.01, O

[(C10:3), (C20.0), (C30.0)]

FRsys = 0.404199, Cost = 9.150301 KE

[(C10.27), C22. C31]

FRsys = 0.300292 Cost = 17.35271 KE

[(C10.23). (C20.0), (C30.0)

[(C10.276), C22. C31]

FRsys = 0.395788, Cost = 10.1523 KE FRsys = 0.200163 Cost = 29.82766 KE

e = 0.999

[(C10:3), C22,(C30.0)

FRsys = 0.382359, Cost = 11.1503 KE
e=2

[(C10:23), (C20.0), C31]

FRsys = 0.326879, Cost = 15.1523 KE
e=6

[(C10.63). C21, C31]

FRsys = 0.283528, Cost = 19.15631 KE
e =10

[(C10.280),C21, C31]

FRsys = 0.198841, Cost = 30.02806 KE
e = 23

Table IV
RESULTS FROMLEXICOGRAPHIC, TABU SEARCH AND MAINTAINERS FOR THE SECOND CONFIGURATION

obtained from solving the optimization problem the threeopposite, the lexicographic method has taken more time
approaches with respect to the third system configurationyhile increasing the search space. Finally, the maintainer

where it is requiredl” = 24 and R = 0.8. In the figures have also used a short computation time (usually not finding
we have circumscribed the feasible solutions. Similarly tofeasible solutions) by making their decisions randomly. On

Table 1ll, in Table IV and V we report the detailed results the other hand, by leveraging on their personal expertide an

of the experimentation for the second and third systenexperience they have sometimes found good solutions, but
configuration, respectively. they have spent time for discussions.

The tabu search, even when the search space became Discussion on the compared approache¥he com-
more complex, has returned feasible solutions in a shonparison of the results has revealed that the reasoned shoice
time: its execution time increased from few seconds (aboudf expert maintainers are convincingly better than the ran-
eleven seconds) to few minutes (about one minute). On thdom ones of non expert persons, whereas the lexicographic



Lexicographic

Tabu Search

Maintainers

[(C10:1), (C20.1), (C30.1)]

FRsys = 0.404862, Cost = 9.150301 KE

[(C10.:460), (C20,267), (C30.380)]

FRsys = 0.199966, Cost = 64.46092 KE
Time= 65 secae = 1, 0.2

(C10.0). (C20.0). (C30.0)]

FRsys = 0.405479, Cost = 9 KE

[(C10:3): (C20.0), (C30.0)]

FRsys = 0.404199, Cost = 9.150301 KE

[(C10+460), (C20,420), (C3(.380)]

FRsys = 0.195004, Cost = 72.12625 KE
Time=65.725 seax = 0

[(C10,:302), (C20.0). (C30.0)]

FRsys = 0.300117, Cost = 24.13026 KE

[(C10:23), (C20.0), (C30.0)]

FRsys = 0.395788, Cost = 10.1523 KE
e = 0.999

[(C10.460), (C20266). (C30,380)]

FRsys = 0.200004, Cost = 64.41082 KE

[(C10.:128), (C20.0). (C30.0)]

FRsys = 0.356958, Cost = 15.16232 KE
e =6

[(C10.183), C2¢. C30]

FRsys = 0.336165, Cost = 18.16834 KE
e=9

[(C10:303), (C20.0), (C30.0)]

FRsys = 0.299842, Cost = 24.18036 KE
e =15

[(€10:460), (C20.0), (C30.143)]

FRsys = 0.239423, Cost = 39.21042 KE
e = 30

[(C10460), (C20,163), (C30.380)]

FRsys = 0.204292, Cost = 59.2505 KE
e = 50

[(C10+460), (C2(0.420), (C3(.380)]

FRsys = 0.195004, Cost = 72.12625 KE
e = 100

Table V
RESULTS FROMLEXICOGRAPHIC, TABU SEARCH AND MAINTAINERS FOR THE THIRD CONFIGURATION
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Figure 4. Comparison of the three approaches with respatietsecond  Figure 5. Comparison of the three approaches with respethetdhird
configuration configuration

method convincingly outperforms the expert judgment ap-, I

roach. In fact, the lexicographic finds optimal solutiorhwi tabu search convincingly outperforms the expert/non exper
P s T grap P .judgment approaches and the lexicographic method. For
a short time while increasing the search space complexit . .

. S . xample, the tabu algorithm allows tackling well-known
with respect to the maintainéts On the opposite, the e

drawback such as the specification of preferences to arrange

the objective functions in order of importance. In fact, &yn
be difficult to specify preferences with no/limited knowtgd

1INote that in the figures of results we report Pareto solutitves have
discarded Pareto-dominated solutions.



probability that an instance is faulty is an intrinsic prage
of the instance that depends on its internal complexity.
The more complex the internal dynamics of the component

80
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) combination reliability tactics may impact differently ¢me
’ such in-house instance parameters.

Experimental results In Tables VI and VII we report
the detailed results of the reliability tactics applicatito
the solutions provided by the tabu search (with respect to
the third system configuration). The tables are organized as
follows: each column represents a value of the probability
that the in-house instances are faulty, which we have
estimated after tactic applicatitneach entry (row, column)
represents the system reliability resulting after theidact

on the optimal objective values and, as a consequence, ti@Pplication.
Pareto-optimal solutions consistent with the given prefer By analyzing the results we can observe that while varying
ences could present the effects of wrong choices. the tactics application the solution with cost 72.12625 be-
comes Pareto-dominated by the solution with cost 64.46092
B. Application of reliability tactics to a tabu search sabrit  (j e the reliability of the solution with cost 64.46092
In order to improve the reliability quality attribute of becomes slightly different to the one of solution with cost
the current solution — indeed the one obtained by the tabid2.12625). Therefore, the application of design solutions
search (as first process iteration) from the third systemmnay decrease the cost to adapt the system. This highlights
configuration — some tactics can be taken in consideratiothe novelty and capabilities of our approach. In fact, tlifis d
and properly composed. Specifically, tirault Detection ference would have not been perceived by using approaches
Tactic can be composed to thRecovery Reintroduction that do not predict the quality attributes (and the adamtati
Tactic or Recovery-Preparation and Repair Tac{igee [3], cost) of the system resulting after the design solutions
for details). TheFault Detection Tactids for the detection application application (like, for example, the works irvJ1
and notification of a fault to a monitoring component or [18] and [19]).
to the system administrator. THeecovery Reintroduction  On the other hand, the application of more sophisticated
Tactic is for the restoring of the the state of a failed adaptation actions (e.g., the ones of tactics) may require a
component, whereas tHeecovery Preparation and Repair higher adaptation cost. This cost could be required, for ex-
Tactic is for the recovering and repairing of a componentample, to introduce new components required by the tactics
from a failure. Each kind of these tactics can be refined intde.g., theRecoveryactics application may involves concepts
other ones (e.g., th€ault Detection Tacticin Ping/Echq  of clients, a primary component, backup components and a
Heartbeatand Exceptiontactics). state resynchronization manager). These new components
The (implementation of one) combination of such relia-can likely increase the average time required to perform
bility tactics can be specified by using basic parameters of test case on an in-house instance. For example, if the
the adaptation process, e.g., the reliability of a compbneraverage time required to perform a test case of all in-
depends on the redundant components used by the tactics fapuse components increases from 0.05 to 0.1, the adaptation
it (see thevotingtactic in appendix), and be a measure of de-cost would increase to 135.2525 KE and 119.9218 KE,
veloper skills (e.g., two applications of the same tactiegym respectively, from 72.12625 KE and 64.46092 KE.
impact differently on the in-house instances parameters). Applying again the metaeuristic searchAfter the
As shown in Figure 6 for the third system configuration, tactics application, if the metaeuristic search is applied
the application of reliability tactics to the solutions pided  (as second iteration process) again then a better candidate
by the tabu search may increase the system reliability. Asolution could be found. For example, if after the tactics
done in [16], we have formulated, the probability of failure application, that involvesp;y = 0.2, py = 0.2 and
on demand of an in-house developed instance as a function

of the prObab”ity that the instance is faUIty’ the tesliabil of redundant components) likely improve the probabilitattlan instance
and the number of successful test cases performed. Thefaulty.

0 . instance is, the higher is the probability that a bug has
¢ 50 +Lex.Ord been introduced during its development. The testability
a sTaSeach — €Xpresses the conditional probability that a single exeout

E 4 ’ maraness  Of @ software fails on a test case following a certain input
s ¥ X Tactios distribution. In [16] procedures to estimate such parame-
’é 20 _ ters are suggested. Obviously, different (implementadi)n

7

Q

(V)

0 01 02 03 04 05
Probability of failure on demand

Figure 6. Comparison of the three approaches and the tagjgécation
with respect to the third configuration

12 arger or more complex implementations (e.g., with a highember



P10 = 0.5 pgg = 0.4
p3g = 0.4

P10 = 0.3 pg0 = 0.4
p3g = 0.4

P10 = 0.3 pgg = 0.3
p3g = 0.3

P10 = 0.2 pgg = 0.2
p3g = 0.2

Rsys = 0.867397

Rsys = 0.911908

Rsys = 0.922630

Rsys = 0.950988

Table VI
TACTICSAPPLICATIONRESULTS FOR THE SOLUTION OF CO0S64.46092

P10 = 0.5 pgg = 0.4
p3g = 0.4

P10 = 0.3 pg0 = 0.4
p3g = 0.4

P10 = 0.3 pgg = 0.3
p3g = 0.3

P10 = 0.2 pgg = 0.2
p3g = 0.2

Rsys = 0.869397

Rsys = 0.914010

Rsys = 0.924281

Rsys = 0.952146

Table VII
TACTICSAPPLICATIONRESULTS FOR THE SOLUTION OF COS72.12625

p3o = 0.2, we use the tabu search the following candidatesReintroduction Tactior Recovery-Preparation and Repair
are returned. Tactic

First candidate:[(C10,90), (C20,67), (C30,76)] The sys- As in [3], NFR2 can be addressed by using Maintain
tem reliability is equal to 0.913413 and the cost is equaMultiple Copies tactic(one of theResource Management
to 20.67335 KE. Note that such a solution involves a lowertactics). Such a requirement “is concerned with the perfor-
adaptation cost with respect to the one of solutions obthinemance of the STS database which may be decreased by the
only with the tactics application (see Table VI and VII).  intensive updates from the SES. The requirement states that

Second candidatd{C14,470), Ca3, (C30,500)] The sys- the STS receives about 600 items per second. In general,
tem reliability is equal to 0.902940 and the cost is equal tovhen updates are received at such a high frequency, some
60.59719 KE. Note that in this case the tabu search, othétems (e.g., stocks having less trades) may not have changes
than changing the number of test, selects the COTS instande every update. Taking into account this, many systems use
Cs3 for the second component. caches to filter out the actual items that need to be updated

o o _ by comparing the received update with the previous update.

C. Application of reliability and performance tactics To support such selective updates, tiaintain Multiple

The choice of design solutions (e.g., tactics) for a qualityCopiestactic can be used, introducing a cache, a cache
attribute is often dictated by the trade-off with other dtyal client and a cache manager. Using the tactic, we have the
attributes. We here show how to compose reliability andcache client receive the update from SES, instead of the
performance tactics to embody extra-functional requineisie database. The cache client then requests the cache manager
of the STS example into its architecture. Let us assume tht update the received update. The cache manager looks up
following non-functional requirements: the previous update in the cache and compare it with the one
- NFR1The STS reliability should be greater than 0.85. that is received and identify the items that have changes.
- NFR2The SES sends the trading information of about 600nly those items that have changes are updated in the
items every second on average to the STS. Updating suctatabase, which reduces the update load on the database”[3]
a high volume of information imposes an intensive load on The resulting SCA assembly obtained by applying
the STS'’s database, which may cause slow performance. kil the tactics mentioned above is shown in
order to minimize the impairment of performance, updatedtig. 7. The assembly contains a new composite
should be the least possibfe component Moni t ori ngConponent for the fault

In order to satisfy such new requirements different tacticgletection tactics Ping/Echo and Heartbeat The
can be applietf. Since they suggest different adaptationsOr der Del i ver yConponent is refined into a composite
actions, they may differ for adaptation cost and/or for thefor adding this monitoring functionality. Similarly, the
system quality achieved after the application of theiraxti St ockQuot eConponent is refined into a composite (see
Our optimization process allows to combine automaticallyFig. 8)'° to support selective updates through ¥aintain
the tactics by predicting the resulting system quality. Multiple Copies tactic. It contains three components

As we have remarked in Section V-B, to address NFRInamely a cacheSt ockQuot eChaceConponent, a

the Fault Detection Tactican be composed to tiRecovery cache client St ockQuot eRecei veConponent, and
a cache manageiSt ockCacheMgr Conponent. The

cache client receives the updates from the external Stock
Exchange system, and then it requests the cache manager
to update the received update. The cache manager looks

13such a requirement corresponds to the requirement NFR3eotahe
study in [3].

14The formalization of tactics (for different attributes oorcerning a
certain quality) composition is outside the scope of thipgraHowever,
to this extent, the binding roles and the composition rolefindd in [3]

could be exploited. 15For the sake of space, we do not report all SCA diagrams.



ik hie of the Recovery Reintroductiotactics), let us apply such a

_gig_eﬂi)%wsce StockTradingSystem_refined e . . . . -
w[ , orderpeiv (R : % tactic (combined with th&ault Detection Tactirto address
e Order ; NFR1 (i.e., satisfy also the reliability requirement). let
Web orderDelivery Order y y
Companent B = consider an application of such performance and relighbilit

nent
OrderDivPingService  orderDivHeartbeat

tactics, that increases the average time required to merdor
test case for’yy, Cyo andCsg from 0.05 to 0.1, from 0.05

s By to 0.2 and from 0.05 to 0.1, respectively. In the following we
gareret Monitring -~ report examples of candidates generated for differenteglu
m ment orderDivFimg . .
y —‘ of the unitary development cost of the in-house components.

- First Candidate If the unitary development cost @',
Csyo andCsg, increases from 1 to 2, from 5 to 6 and from 5

Figure 7. Adapting the STS by applying tactics for NFR1 ancRiF to 6, respectively, as well as the probability that the ins&a

_StodkQuoteService StockQuoteComponent is faulty results equal to 0.4, 0.4 and 0.3, then the system
i . e . .
g . Np— reliability increases to 0.903389 and the cost increases to
L. W Stock s 182.6754 KE.
P codeng T oche Sy - Second Candidatéf the unitary development cost d@f;,
Eempanent fepooent Component Cs andCjyg, increases from 1 to 3, from 5to 7 and from 5

to 9, respectively, as well as the probability that the insta
is faulty results equal to 0.3, 0.2 and 0.2, then the religbil
Figure 8. The StockQuote composite for NFR1 and NFR2 tactics  increases to 0.934843 and the cost increases to 187.6754
KE.
up the previous update in the cache and compare it with Third Candidate If the unitary development cost afq,
the one that is received and identify the items that have’s,, Csy increases from 1 to 2, from 5 to 6 and do not
changes. Only those items that have changes are updateddhange, respectively, as well as, the probability that the
the database, thus reducing the database update load [3]. @&tance is faulty results equal to 0.4, 0.4 and 0.5, then
course, this adaptation implies a change of the componenthe system reliability increases to 0.887101 and the cost
shape (i.e., in the required/provided interfaces) and afso increases to 181.6754 KE.
their behavior. Applying again the metaeuristic searchAs we have
Experimental results Starting from the candidate remarked in V-B, if we would apply again the metaeuristic
[(C10,460), (C20,420), (C5,380)] (with a cost equal to technique, then better solutions might be found. For ex-
72.12625 KE and system reliability equal to 0.804996) re-ample, if we would use the tabu search by starting from
turned by the tabu search for the third system configuratiorthe third candidate then we will obtain the following
let us apply theMaintain Multiple Copies (Cachdpctic for  candidate: [(10,800), Ca3, (C30,700)]. The reliability is
addressing NFR2. Such a tactic is concerned with adaptatioequal to 0.881299 and the cost decreases from 181.6754
actions on theStock Quote Componefite., C5). KE to 163.3006 KE. Such solutions differ for the number
As we remarked in Section V-B, the (implementation of of test forCyy, andCsg, and the component selected 1Gs.
one) combination of tactic; can be specified l_Jy using_basi&_ Combining reliability, performance and security tastic
parameters of the adaptation process and different (imple- N
mentation of) combination tactics may impact differenty o~ L€t us assume that, other than requiring NFR1 and NFR2,
the in-house instances parameters. a user pf the STS system also requires NFR3 (i@nly
If to implement the tactic (i.e., a cache, a cache client an@Uthenticated users can access the system. The user cre-
a cache manager) the unitary development cost of the irgent|al§ must nqt be seen to unauthorized personnel while
house instancés, increases from 3 to 5, and its testability fransmitting the information to the systéﬁﬁsee [3]).
increases from 0.002 to 0.006, the reliability of the solnti 10 @ddress NFR3, as suggested in [3], tBéPassword
(predicted using the reliability model used in [16]) incsea andMaintain Data Confidentialityactics could be adopted.

from 0.804996 to 0.811168, and its cost increases from SUch security tactics may impact, for example, on the
72.12625 KE to 74.21093 KE. This is due to the fact that SYStem response time (e.g., the introduction of a compsnent

once fixed the number of test cases successfully performedPr User login may increase the user response time). In fact,

the probability of failure on demand of a component de-IN€ response time and the adaptation cosOaler Web

creases while increasing its testability. Componeniill likely increase. _ _
Since, as remarked in [3], the important issue (i.e., on Starting from theThird Candidate(see previous section)

maintaining the consistency of the copies and keep therft US @pply such security tactics. If to implement such

SynChronized) of thé/aintain Multiple Copiestactic can be 16sSuch a requirement corresponds to the requirement NFR4eotdke
addressed by using tHetate Resynchronizatidactic (one  study in [3].



tactics the average response timeQyfler Web Component the third system configuration (see Section 1), let us apply
increases (i.e., “the number of high-level instructiongt@f  the Pipe and Filterand the reliability tactics.

component / the number of instructions per second that the Let us consider a their implementation, where the average
host running the component can execute” increases frortime required to perform a test case 6%y, C2 and Csg,
0.03 to 0.1), then average system response time (predictédcreases from 0.05 to 0.1, from 0.05 to 0.2 and from 0.05

using [20]) increases from 11.2 sec to 23.8 sec. to 0.1, respectively, as well as the unitary developmeng tim
of the instances increases from 1 to 3, from 3 to 6 and
E. Combining tactics and architectural patterns does not change. Besides, the probability that, Cyo and

We here show how our optimization process allows tocg() are faulty results equal to 0.3, 0.2 and 0.2, respectively.
combine different desian solutions. such as tactics ané\lFRl* is not satisfied with respect to this tactics and design
architectural design pat?erns ' pattern application. In fact, the system reliability is abto
) . 0.863466, while the adaptation cost is equal to 182.6754
Le_t us assume that, other than NFR3, the foIIowmgKE_
requirement is claimed for the STS: . . .
- F1. The STS should convert the stock price in the user Applying again the metaeuristic searchif we would
preférre d currency apply again a tabu search algorithmafter the tactics
To address$-1 V\./e adopt thePipe and Filterarchitectural and design pattern application, for example, the following

. ) andidate is returned: {fi3), (C20,420), (C30,380)] with
pattern. This pattern provides a structure for systems tha;‘teliability equals to 0.954962. Note that NFR1* is satisfied

. : . : %Je'sides, the cost decreases from 182.6754 KE to 139.5832
lated in a f|_|ter component, Data is passed through PIPRE. The tabu search returns such a solution by applying a
between adjacent filters [21] user adaptation plaf suggesting to replac€; with a new

A filte_zr is added toOr_der Del i ve_ryOonpone_nt for component. Its probability of failure on demand is equal to
converting the currency into the required one, while thesise 0.00001, while its cost is equal to 6 KE

ChECk the cturrden(; ptrlcek of lstocks,s.plz.:\lcel buyf%r S?” odr((jje(rjs This highlights the novelty and capabilities of our ap-
?nstrevnl;:'w r? eOoS oc votur]:ne. |m|atr.y, athl eris adde proach. In fact, this difference would have not been per-
0 St ockQuot eConponent for converting the currency ceived by using approaches that do not combine the

into the required one when the users want to know Stoc‘ﬁﬁetaeuristic techniques and the design solutions, and do no

quote information. predict the quality attributes of the system resultingratie

As we have rlemarked in Section V-D, NFRS can beadaptation actions application (like, for example, the kgor
addressed by using thB/Passwordand theMaintain Data in [17], [18] and [19])

Confidentialitysecurity tactics (belong to thResisting At-
taCkStaCtiC). APPEND|X
Note that in this case the tactics do not impact on the ar-

chitectural pattern: they are applied on different commtse
reciira’ p y PPl ! i case study. In [3] and [23] more details can be found. The

of the system. L . o .
formalization of tactics composition is outside the scope o

On the other hand, as we show below, tactics may impacf . . S
on architectural patterns (see, for example, [17], [18] iehe tﬁms Paper. However, t.o th|§ extent, the binding r_oles and th
composition roles defined in [3] could be exploited.

a qualitative analysis of the interaction between religbil
tactics and architectural pattern is provided). A. Reliability Tactics

Let us assume that for the STS system it is required, other ) ) ) )
than F1, the requirement NFR1* (i.6The STS reliability ~ AS remarked in [23], it does not exist a universally ac-
should be greater than 0)9. cepted terminology for the various tactics of fault tolevan

To address F1 and NFR1* thipe and Filterarchitectural As shown in Figure 9, the several tactics for reliability
pattern and th&ault Detection Tactican be composed, for ¢an be categorized intéault Detection Fault Recovery
example, to tha/oting (or Active Redundangyactic. In [17] Preparation and RepajrandRecovery Reintroduction of a
the.combmed use of thElpe and !:.Ilteranq‘ theVotln% (Or 17Such algorithm enhances the tabu search, which we have used i
Active Redundan@tytactlc IS c_Iass_n‘led as GOQd Fit _(|.e., Section I, by generating new candidates also using usegtatitan plans.
the structure of the pattern is highly compatible with the 18This could require the direct interaction between our ojatation
structural needs of the tactic). In [17] can be also founcPfO?gSs and the Sﬂ?imainefs- ObViI?UdSM S[ggq]etti?es Sulﬁhtgbmefadi(t)_n

. . ou e require e.g., as remarked In , e applinaodo an anti-

Fjetalls’ Whlch we do not rep‘?” for the sa'_(e of Space, on th%attern solution may require manual interaction because,ekample,
implementation of these tactics and architectural pattern a performance model of the system usually does not contagugn

Starting from the candidate (]2(10,460), (020,420), information to d_ecide \_/vhether a cache_ is applicable). Hewe_such a

ith | d kind of manual interaction may be required only for systerol@ion (at

(030*3_8_0)] (W|t a cost equal to 72.12625 KE and system re-design time) where speedy answers are not essentiaieaghé is not
reliability equal to 0.804996) returned by the tabu seacth f required for self-adaptation (at run time).

In this appendix we describe the tactics used in the STS



Failed Componentiactics®. In figure we have circumscribed

the tactics, which we have used.
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In Section V-C we have combined tHeault Detection
Tactic and the State Resynchronizatiotactic (one of the
Recovery Reintroductiotactics).

Such a tactic restores the state of a component through
resynchronization with the state of a backup component.
It involves concepts of a state resynchronization manager,
source components and backup components. In [3] more
details and diagrams illustrating the tactic can be found.

Fault Recovery Preparation and Repair

In Section V-E we have combined tHeault Detection
Tactic and theVoting (or Active Redundangytactic. The
following description of such tactics are taken from [23].

P v P Sy | -

' N, o) - Voting Processes running on redundant processors each
([f‘““f""d“"d“"\) Passive Redundancy take equivalent input and compute a single out value that is
T~ >

sent to a voter. The voter component decides which of the
results is correct using an algorithm such as majority rules
The strongest approach is to implement each voting compo-

nent independently; otherwise you can only detect hardware
faults, and not algorithm faults. (If the voting components
are running the same software, this tactic becomes very
similar to Active Redundancy; see below.) To implement

The Fault Detection Tactids for the detection and notifi- voting, create a voter component, and either replicate or
cation of a fault to a monitoring component or to the systemyrite a new voting component.
administrator. TheRecovery Reintroduction of a Failed - Active Redundancyredundant components receive
Components for the restoring of the the state of a failed events in parallel, thus they are always in the same state.
component, whereas théault Recovery Preparation and If one component fails, the other can immediately take over.
Repairis for the recovering and repairing of a componentThis tactic that the processing component(s) to be reglitat
from a failure. Each kind of these tactics can be refined intat usually requires a central arbitrating component, altito
other ones. it is possible to make the redundant components perform the

Fault Detection Tactic arbitrating without a central component.

In the STS case study, we have refinedFaalt Detection
Tactic in Ping/Echq Heartbeattactics. The following de-
scription of such tactics are taken from [23]. In [3] diageam
better illustrating their specification can be also found.

Figure 9. Reliability architectural tactic feature model.

B. Performance Tactics

As shown in Figure 10 (taken from [3]), the several
tactics for performance can be categorized Resource
- Ping/Echo A monitoring component issues a ping mes- Arbitration and theResource Managemetsactics. The first

sage to one or more components under scrutiny, and expedfs Us€d for improving performance by scheduling requests
to receive an echo message back within a predetermind@" €XPeNsive resources (e.g., processors, networksygase
time. If a component does not respond within the time limit, e lattér improves performance by managing resources
the monitoring component considers that component to be i €CtiNg response time (see [3] for details). In figure we
failure mode, and takes corrective actions. Implemematio '@ve circumscribed the tactics, which we have used.
requires that a monitoring process be created or used, andln, Sectlon V-C we have used thaintain Mult_lple

that all components being watched must be modified td-CPies tactic(one of theResource Managemenactics).
handle the echo messages. This tactic allows to manage resources by keeping replicas

- Heartbeat A component emits a heartbeat message aff resources onbsepzratec;e!‘a_?ﬁltorles_, S0 thlat conterdion f f
regular intervals and a monitoring component listens for it "€S0Urces can be reduced. "The tactic involves concepts o

If no heartbeat message is received within a predeterminegli€Nts, @ cache, a cache manager and a data repository. The
time, the originating component is assumed to have failedCaChe maintains copies of data that are.freque.ntly requieste
and corrective actions are taken. This tactic requires a—morfOr faster access. When a data request is received, the cache

itoring component, and all components must be modified tgnanager first searches the cache. If the da_ta is not found,
send heartbeats at the proper intervals. then the cache manager looks up the repository and makes

Recovery Reintroduction of a Failed Component copies of the data into the cache."[3]
C. Security Tactics

As shown in Figure 11 (taken from [3]), the several tactics
for security can be categorized Resisting Attackand the

19The figure has been inspired by the figure in [3] for the avitgb
tactic. The figure could be refined/exploited by considenitwer reliability
tactics.
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Figure 10. Performance architectural tactic feature model

Recovering from Attackactics (see [3] for details). In figure

(3]

[4]

(5]

[6]

[7]

(8]

we have circumscribed the tactics, which we have used in

Section V-D and V-E.
We have applied théD/Passwordand theMaintain Data

Confidentialitytactics. Such tactics are used for protecting
the system from attacks. THB/Passwordtactic checks au-

thentication of the user using the users credentials (iser
IDs, passwords), whereas tMaintain Data Confidentiality

9]

(10]

allow to protect data from unauthorized modifications using

encryption and decryption.

Resisting Attacks Recovering from Attacks
0

' .
Authenticale Users D Restoration

Maintain Data
Confidentiality

7 \
4 pquined
Tequure
7 quired )
Availability:
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Figure 11. Security architectural tactic feature model.
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