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Abstract. Multistage stochastic programs, which involve sequences of decisions over time, are
usually hard to solve in realistically sized problems. In the two-stage case, several approaches
based on different levels of available information has been adopted in literature such as the
Expected Value Problem, EV , the Sum of Pairs Expected Values, SPEV , the Expectation of
Pairs Expected Value, EPEV , solving series of sub-problems more computationally tractable
than the initial one, or the Expected Skeleton Solution Value, ESSV and the Expected Input
Value, EIV which evaluate the quality of the deterministic solution in term of its structure
and upgradability.

In this paper we generalize the definition of the above quantities to the multistage stochas-
tic framework introducing the Multistage Expected Value of the Reference Scenario, MEV RS,
the Multistage Sum of Pairs Expected Values, MSPEV and the Multistage Expectation of
Pairs Expected Value, MEPEV by means of the new concept of auxiliary scenario and redef-
inition of pairs subproblems probability. Measures of quality of the average solution such as
the Multistage Loss Using Skeleton Solution, MLUSSt and the Multistage Loss of Upgrading
the Deterministic Solution, MLUDSt are introduced too and related to the standard Value
of Stochastic Solution, V SSt at stage t.
Chains of inequalities among the new quantities are proved to evaluate if it is worth the ad-
ditional computations for the stochastic program versus the simplified approaches proposed.
Numerical results on a simple transportation problem are shown.
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1 Introduction

Stochastic programs, especially multistage programs, which involve sequences of decisions over
time, are usually hard to solve in realistically sized problems. In the simpler two-stage case,
several approaches and measures of levels of available information on a future realization has
been adopted in literature (see for instance [1], [2], [4], [7], [8], [9], [10], [11], [14], [15], [17], [18]
or [19]). The standard method is to compare, by means of the Value of the Stochastic Solution
– VSS – [2] the expected gain from solving a stochastic model rather than its deterministic
counterpart, in which random parameters are replaced by their expected values. A large
VSS means that uncertainty is important for the optimal solution, and the deterministic
solution is “bad”. Bounds on V SS were introduced in [2] by means of the Sum of Pairs
Expected Values Solutions SPEV and Expectation of Pairs Expected Value EPEV by solving
pairs subproblems much less complex than the general recourse problem; these bounds may
be valuable in determining whether the additional computations for the stochastic program
are warranted.

Even when V SS is high, and hence stochastic program is appropriate, in real case problem
can happen that all we may have access is the deterministic solution. A qualitative under-
standing of the deterministic solution is then important because it could actually carries out
a lot of information: in [12] the structure and upgradability of the deterministic solution has
been analyzed for the two-stage case by means of the Loss Using the Skeleton Solution LUSS
and the Loss of Upgrading the Deterministic Solution LUDS in relation to the standard VSS.
LUSS and LUDS give deeper information than VSS on the structure of the problem and
could be useful to take a fast “good” decision instead of using expensive direct techniques.

The aim of this paper is to extend to the multistage case the measures of information
already adopted for the two-stage case in [3] and [12], inspired by [4], [5] and also by [16].

Because of the computational intractability of most of multistage problems, we believe it
is very useful to consider especially in the multistage case, different approximations of the
recourse problem and evaluations at different levels of information, of how the deterministic
solution performs in the stochastic framework. This applies to algorithmic developments as
well as practical use of models in management for industry and government.

An extension to multistage case of the classical V SS defined for the two-stage one, has
been already introduced in [5] through a chain of values V SSt which takes into account the
information until stage t of the associated deterministic model.

In this paper approximations of the optimal stochastic solution such as the Multistage
Expected Value of the Reference Scenario, MEV RS, the Multistage Sum of Pairs Expected
Values, MSPEV , and the Multistage Expectation of Pairs Expected Value, MEPEV are in-
troduced by means of the new concept of auxiliary scenario and redefinition of pairs subprob-
lem probability. The proposed approaches allow to bound the optimal stochastic objective
function by solving less complex pairs subproblems and help to quantify if it is worth the
additional computation of the former problem.

Beside the standard Value of Stochastic Solution, V SSt at stage t, measures of quality of
the average solution such as the Multistage Loss Using Skeleton Solution, MLUSSt and the
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Multistage Loss of Upgrading the Deterministic Solution, MLUDSt are introduced.
The above measures could be useful because help to qualitatively understand the behavior of
the deterministic solution relative to the stochastic one and reveal some general properties of
the underlying problem and how the stochastic model performs when the problem is not even
solvable.

As pointed out in [5] the generalization of such a measures entails several issues: first of
all the decision of the variables to be fixed from the deterministic solution. The trivial case
would be to fix just the first stage variables and leaving the other ones free to adapt to the
particular scenario. This procedure, nevertheless, can become a paradox in some cases since
it could be that the first stage deterministic solution perform better than the stochastic one
since the nonanticipativity constraints are relaxed in later stages.
In order to update the estimation at each stage and add more information, the above classes
of measures are also defined with a rolling horizon approach already considered in [4] and [16]:
the Rolling Horizon Value of Stochastic Solution, RHV SS, the Rolling Horizon Loss Using
Skeleton Solution, RHLUSS and the Rolling Horizon Loss of Upgrading the Deterministic
Solution, RHLUDS are presented.

Chains of inequalities among the new quantities are proved to evaluate if it is worth the
additional computations for the stochastic program versus the simplified approaches.

We finally remark that all this class of measures is often used to describe problem classes,
even though, they are instance dependent. As in the two-stage case [12], we assume that if
a particular performance measure is high (or low) for a given selection of instances, then it
will also be high (or low) for other instances that have similar characteristics, such as larger
instances of the same problem.

The paper is organized as follow: basic definitions and notations are introduced in Section
2. Section 3 contains the generalization to the multistage case of the performance measure
whereas in Section 5 the measures are computed and compared on a simple logistic problem
already analyzed in [13]. Section 6 concludes the paper.

2 Notations and basic definitions

We introduce the notation that we are going to use.
The following mathematical model represents a general formulation of a multistage linear

stochastic program in which a decision maker has to take a sequence of decisions x1, x2, . . . , xH ,
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in order to minimize (expected) costs:

RP = min
x

E
ξ

H−1z(x, ξH−1)

= min
x1

c1x1 + Eξ1

[
min
x2

c2x2
(
ξ1

)
+ Eξ2

[
· · · + EξH−1

[
min
xH

cHxH
(
ξH−1

)]]]

s.t. Ax1 = h1 , (1)

T 1(ξ1)x1 + W 2(ξ1)x2(ξ1) = h2(ξ1) ,

...

TH−1(ξH−1)xH−1(ξH−1) + WH(ξH−1)xH(ξH−1) = hH(ξH−1) ,

x1 ≥ 0 ; xt(ξt−1) ≥ 0 , t = 2, . . . , H;

with c1 ∈ ℜn1 , h1 ∈ ℜm1 , A ∈ ℜm1×n1 , t = 2, . . . , H. Eξt denotes the expectation with respect
to a random vector ξt, defined on a probability space (Ξt,A t, p) with support Ξt ∈ ℜnt and
given probability distribution p on the σ−algebra A t (with A t ⊆ A t+1).
We denote

• ht ∈ ℜmt , ct ∈ ℜnt , T t−1 ∈ ℜmt−1×nt−1 , W t ∈ ℜmt×nt , t = 2, . . . , H;

• ξt = (ξ1, . . . , ξt), t = 1, . . . , H − 1;

• x = (x1, x2, . . . , xH) with xt ∈ ℜnt , t = 1, . . . , H and xtj the j-th component of xt.

In general ct = ct(ξt−1) for t = 2, . . . , H. The decision xt at stage t = 1, . . . , H depends from
the history up to time t, more precisely from x1, ξ1, x2, ξ2, . . . , xt−1, ξt−1.
The solution x∗ obtained by solving problem (1), is called the here and now solution.

We introduce, for later us, the form of feasible region at the stage t of problem (1).

Kt :=





T t−1(ξt−1)xt−1(ξt−1) + W t(ξt−1)xt(ξt−1) = ht(ξt−1)
xt

Eξt+1 [Qt+1(xt, ξt+1)] < +∞





with t = 1 . . . , H − 1, T 0 = [0] is the zero-matrix and the recourse problem at stage t

Qt+1(xt, ξt+1) = min
xt+1

ct+1xt+1(ξt) + Eξt+2

[
Qt+2(xt+1, ξt+2)

]

s.t. T t(ξt)xt(ξt) + W t+1(ξt)xt+1(ξt) = ht+1(ξt) ,

xt+1(ξt) ≥ 0 t = 1, . . . , H − 2 ;

in the last stage

QH(xH−1, ξH) = min
xH

cHxH(ξH−1)

s.t. T t(ξH−1)xH−1(ξH−1) + WH(ξH−1)xH(ξH−1) = hH(ξH−1) ,

xH(ξH−1) ≥ 0 .
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If we consider the case where ξt is a random variable from a discrete distribution, then
at each stage t it has a discrete number of atoms (nodes) nt. In this case the probabilistic
structure of the random data can be described in the form of a scenario tree T . Generally,
nodes at level t correspond to possible values of ξt that may occur. Each of them is connected
to a unique node at stage t − 1 called the ancestor node and to nodes at stage t + 1 called
the successors nodes. For each node j at stage t , we denote its ancestor with a(j) and with
πa(j),j the conditional probability of the random process being in node j given its history
up to the ancestor node a(j). We indicate with πs the probability of scenario s passing
through nodes j1, j2, . . . , jH (where jt, t = 1, . . . , H is the generic node at stage t) given by
πs = πj1,j2 · πj2,j3 · . . . · πjH−1,jH

. We also indicate with pt
j the probability of node j at stage

t: if node j at stage t is reachable through nodes j1 at stage 1, node j2 at stage 2, . . ., node
jt−1 at stage t− 1, that is given by pt

j = πj1,j2 · πj2,j3 · . . . · πjt−1,jt
. We indicate xt

j the decision

in the node j at stage t. Let ξ1, . . . , ξS index the possible realizations (or scenarios) of ξH−1

and Ξ the support of possible scenarios and ξ
(1,j)
i = (ξ1

i , ξ
2
i , . . . , ξ

j
i ), i = 1, . . . , S, j = 1, . . . , H

with ξk
i is the k-stage of the i-realization, k = 1, . . . , j.

The multistage wait-and-see problem, where the decision maker knows at the first stage the
realizations of all the random variables takes the following form:

WS =Eξi
min x1(ξi),...,xH(ξi)c

1x1(ξi) +. . .+ cHxH(ξi)

s.t. Ax1(ξi) = h1 , (2)

T 1(ξ
(1,1)
i )x1(ξi) + W 2(ξ

(1,1)
i )x2(ξi) = h2(ξ

(1,1)
i ) ,

...

TH−1(ξ
(1,H−1)
i )xH−1(ξi) + WH(ξ

(1,H−1)
i )xH(ξi)=hH(ξ

(1,H−1)
i ) ,

x1(ξi) ≥ 0 ; xt(ξi) ≥ 0 , t = 2, . . . , H , i = 1, . . . , S ;

notice that this decision process is anticipative, since all the decisions x1, x2, . . . , xH depend
on all the realization of ξH−1.
The Expected Value problem EV is obtained by replacing all random variables by their ex-
pected values and solving a deterministic program, with ξ̄=E(ξ̄1, ξ̄2, . . . , ξ̄H−1)=(Eξ1, Eξ2, . . . , EξH−1):

EV = min
x

z(x, ξ̄)

= min
x1,...,xH

c1x1 + · · · + cHxH(ξ̄H−1)

s.t. Ax1 = h1 , (3)

T 1(ξ̄1)x1 + W 2(ξ̄1)x2(ξ̄1) = h2(ξ̄1) ,

...

TH−1(ξ̄H−1)xH−1(ξ̄H−1) + WH(ξ̄H−1)xH(ξ̄H−1) = hH(ξ̄H−1) ,

x1 ≥ 0 ; xt(ξ̄t−1) ≥ 0 , t = 2, . . . , H;
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Theorem 1 (see Čı́̌zková [4]) For a H−stage problem (1) the following inequalities hold true:

WS ≤ RP ≤ EEV , (4)

where EEV denotes the optimal value of the RP model where all the decision variables
until stage H are fixed at the optimal values obtained by using the average scenario. Notice
that the inequality EV ≤ WS also holds true here when the only random elements are
h2(ξ1) . . . hH(ξH−1).

We introduce the Expected result at stage t of using the Expected Value solution EEV t,
(t = 1, . . . , H − 1) given by the optimal value of the RP model where the decision variables
until stage t, x(1,t) = (x1, x2, . . . , xt), t = 1, . . . , H − 1 are fixed at the optimal values obtained
by the average scenario x̄(1,t) = (x̄1, x̄2, . . . , x̄t) t = 1, . . . , H − 1. This is an alternative
definition with respect with the one introduced in [5]. The Value of the Stochastic Solution
at stage t, V SSt is then defined as:

V SSt = EEV t − RP, t = 1, . . . , H − 1 . (5)

Theorem 2 (See Escudero et al. [5] (2007)) For multistage stochastic linear programs with
deterministic constraint matrices and deterministic objective coefficients, the following in-
equalities are satisfied:

V SSt ≤ EV − EEV t, t = 1, . . . , H − 1 . (6)

Proof
See [5].

As in [5], we notice that the problems EEV t, t = 1, . . . , H − 1 could be infeasible because too
many variables are fixed from the deterministic problem.

Another reduced formulation of problem (1) is given by the so-called two-stage relaxation
where the nonanticipativity constraints in the second and other stages are relaxed.
We define a new scenario tree where all random elements of stages 2, . . . , H − 1 are estimated
by their expected values and solve the obtained model. We denote this new scenario tree as
ξ̄

t
− = (ξ1, ξ̄2, . . . , ξ̄t), t = 2, . . . , H − 1. We can also define another scenario tree where all

random elements of stages t, . . . , H−1, t = 2, . . . , H−1 are estimated by their expected values.
We denote this second scenario tree as ξ̄

t+ = (ξ1, ξ2, . . . , ξ̄t, . . . , ξ̄H−1), t = 2, . . . , H − 1.
The following new problem is given by a two-stage model with H time periods and evalu-
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ated on scenario tree just defined ξ̄
t
− :

TP = min
x1

c1x1+E¯ξ
H−1

−

[
min

x2,...,xH
c2x2

(
ξ1

)
+ c3x3(ξ̄

2
−) + . . . + cHxH(ξ̄

H−1
−)

]

s.t. Ax1 = h1 , (7)

T 1(ξ1)x1+W 2(ξ1)x2(ξ1) = h2(ξ1) ,

...

TH−1(ξ̄)H−1
−xH−1(ξ̄

H−1
−)+WH(ξ̄)H−1

−xH(ξ̄
H−1

−)=hH(ξ̄
H−1

−) ,

x1 ≥ 0 ; xt(ξ̄
t−1

−) ≥ 0 , t = 2, . . . , H .

3 Performance measures in multistage problems

In this section we propose performance measures for multistage stochastic linear problems.
They are divided in measures of information, where the same problem is solved and compared
with and without a piece of available information on the future, measures of the quality of the
deterministic solution which can be identified in the class o measures of different approaches
with the same level of information (see [4]), and rolling horizon measures which update the
estimation and add more information at each stage.

3.1 Measures of information in multistage problems

First, we intend to generalize measures introduced in [6] for the deterministic solution of the
modified wait and see approach and in [3] for the stochastic two-stage (T = 2) case. We
consider a simplified version of the stochastic program, where only the right hand side is
stochastic (h = h(ξ)).
Instead of using a scenario given by the expected variable values, one may choose a specific
realization ξr (the scenario r = 1, . . . , S) of the random variable ξH−1, called the reference
scenario, and solve problem (1) along that one.
Let the PAIRS subproblem of scenarios ξr and ξk (k = 1, . . . , S) be defined as follows:

min zP (x, ξr, ξk) = c1x1 + c2πrx
2(ξr) + (1 − πr)c

2x2(ξk)

s.t. Ax1 = h1 ,

Trx
1 + Wrx

2(ξr) = ξr , (8)

Tkx
1 + Wkx

2(ξk) = ξk ,

x1 ≥ 0 ; x2(ξr) ≥ 0; x2(ξk) ≥ 0 .

In [3] the Sum of Pairs Expected Values, denoted by SPEV , is then defined as:

SPEV =
1

1 − πr

S∑

k=1,k 6=r

πk min zP (x, ξr, ξk) . (9)
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We generalize now the definition of SPEV for multistage stochastic programs. We fix an
auxiliary scenario a with the following characteristics:

1. ξa = ξr i.e. the values of the random parameters are the same along the nodes of this
scenario;

2. If Ĥ is the first stage where scenarios r and k branch we define:

pt
a =

{
1 if t = 1 . . . , Ĥ − 1

πr if t = Ĥ, . . . , H
πjt,jt̂+1

=

{
πr if t = Ĥ

1 if t 6= Ĥ

3. πa = πr .

Figure 1 shows an example of probabilities computation on the pair subproblem made by
scenarios a = 1 and k = 2 of the four stage scenario tree of Figure 3.

Figure 1: Pair subtree (ξa, ξk) = (ξ1, ξ2) of scenario tree represented in Figure 3.

We then solve the following pair subproblems defined as:

min zP (x, ξa, ξk) = c1x1 +
Ĥ−1∑

t=2

ctxt
a(ξa) +

H∑

t=Ĥ

[
πac

txt
a(ξa) + (1 − πa)c

txt
k(ξk)

]

s.t. Ax1 = h1 ,

T t−1
a xt−1

a + W t
ax

t
a = ht

a , (10)

T t−1
k xt−1

k + W t
kx

t
k = ht

k ,

x1 ≥ 0 ; xt
a ≥ 0 , xt

k ≥ 0 , t = 2, . . . , H;

where x
(2,H)
k = (x2

k, x
3
k, . . . , x

H
k ). Let x̂a,k = (x̂1

k, x̂
(2,H)
a , x̂

(2,H)
k ) denote an optimal solution to

the pair subproblem and zP (x̂a,k, ξa, ξk) the optimal value of this problem.
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Eventually, the reference scenario may not correspond to any of the given scenarios.
We define the Multistage Sum of Pairs Expected Values denoted by MSPEV as follows:

MSPEV =
1

1 − πa

nH∑

k=1
k 6=r

πk min zP (x, ξa, ξk) . (11)

Proposition 1 If the scenario ξr is not in Ξ, then MSPEV = WS.

Proof
If the scenario ξr is not in Ξ, then πr = 0, consequently πa = 0 and the pair subproblems
zP (x, ξa, ξk) reduce to z(x, ξk). Hence

MSPEV =

nH∑

k=1
k 6=r

πk

[
c1x1

k +
H∑

t=2

[
πac

txt
a(ξa) + (1 − πa)c

txt
k(ξk)

]
]

=

nH∑

k=1
k 6=r

πk min z (x, ξk) = WS. (12)

In the following ξr ∈ Ξ.

Proposition 2 WS ≤ MSPEV.

Proof
Let x̂a,k = (x̂1

k, x̂
(2,H)
a , x̂

(2,H)
k ) be an optimal solution to the pair subproblem of scenarios ξa

and ξk, by definition (11) we have:

MSPEV =

∑nH

k=1
k 6=r

πk min zP (x, ξa, ξk)

1 − πa

=

∑nH

k=1
k 6=r

πk

[
c1x̂1

k +
∑Ĥ−1

t=2 ctx̂t
a(ξa) +

∑H

t=Ĥ
[πac

tx̂t
a(ξa) + (1 − πa)c

tx̂t
k(ξk)]

]

1 − πa

=

∑nH

k=1
k 6=r

πk

[
πa

[
c1x̂1

k+
∑Ĥ−1

t=2 ctx̂t
a(ξa)+

∑H

t=Ĥ
ctx̂t

a(ξa)
]]

1 − πa

+

+

nH∑

k=1
k 6=r

πk


c1x̂1

k+
Ĥ−1∑

t=2

ctx̂t
a(ξa)+

H∑

t=Ĥ

ctx̂t
k(ξk)



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≥

∑nH

k=1
k 6=r

πkπaz
∗
a

1 − πa

+
∑

k=1
k 6=r

πk


c1x̂1

k+
Ĥ−1∑

t=2

ctx̂t
a(ξa)+

H∑

t=Ĥ

ctx̂t
k(ξk)




=

∑nH

k=1
k 6=r

πkπaz
∗
a

1 − πa

+

+

nH∑

k=1
k 6=r

πk


c1x̂1

k+
Ĥ−1∑

t=2

ctx̂t
a(ξa)+

Ĥ−1∑

t=2

ctx̂t
k(ξk) +

H∑

t=Ĥ

ctx̂t
k(ξk) −

Ĥ−1∑

t=2

ctx̂t
k(ξk)




≥ WS +

nH∑

k=1
k 6=r

πk




Ĥ−1∑

t=2

ct
(
x̂t

a(ξa) − x̂t
k(ξk)

)

 . (13)

The sum in (13):
nH∑

k=1
k 6=r

πk




Ĥ−1∑

t=2

ct
(
x̂t

a(ξa) − x̂t
k(ξk)

)

 = 0 , (14)

if scenarios k and a branch at stage Ĥ = 2, (14) is not defined, if 2 < Ĥ ≤ H, (14) reduces
to zero because k and a are defined on the same nodes until stage Ĥ − 1, consequently the
optimal solutions verify x̂t

a(ξa) = x̂t
k(ξk) and the thesis MSPEV ≥ WS is proved.

Proposition 3 RP ≥ MSPEV + δ where δ =
∑nH

k=1
k 6=r

πk

∑Ĥ−1
t=2 ctxt

k

∗
(ξk).

Proof
Let (x1∗,x

(2,H)∗
k ), be an optimal solution to the recourse problem.

Then (x1∗,x
(2,H)∗
a ,x

(2,H)∗
k ) is feasible for the Pairs subproblem of ξa, ξk, where this implies:

c1x̂1 +
Ĥ−1∑

t=2

ctx̂t
a(ξa) +

H∑

t=Ĥ

[
πac

tx̂t
a(ξa) + (1 − πa)c

tx̂t
k(ξk)

]

≤ c1x1∗ +
Ĥ−1∑

t=2

ctxt
a

∗
(ξa) +

H∑

t=Ĥ

[
πac

txt
a

∗
(ξa) + (1 − πa)c

txt
k

∗
(ξk)

]
.

Now, we obtain

nH∑

k=1
k 6=r

πk


c1x̂1

k +
Ĥ−1∑

t=2

ctx̂t
a(ξa) +

H∑

t=Ĥ

[
πac

tx̂t
a(ξa) + (1 − πa)c

tx̂t
k(ξk)

]



= (1 − πa)MSPEV .

10

Quaderni MSIA - Ricerca 01(2011)



On the other hand:

nH∑

k=1
k 6=r

πk


c1x1∗ +

Ĥ−1∑

t=2

ctxt
a

∗
(ξa) +

H∑

t=Ĥ

[
πac

txt
a

∗
(ξa) + (1 − πa)c

txt
k

∗
(ξk)

]



= (1 − πa)


c1x1∗ +

Ĥ−1∑

t=2

ctxt
a

∗
(ξa)


 +

+

nH∑

k=1
k 6=r

πk




H∑

t=Ĥ

[
πac

txt
a

∗
(ξa) + (1 − πa)c

txt
k

∗
(ξk)

]



= (1 − πa)


c1x1∗ +

Ĥ−1∑

t=2

ctxt
a

∗
(ξa) +

H∑

t=Ĥ

πac
txt

a

∗
(ξa) +

nH∑

k=1
k 6=r

πk




H∑

t=Ĥ

ctxt
k

∗
(ξk)







= (1 − πa)(RP − δ)

and this proves the inequality RP − δ ≥ MSPEV where

δ =

nH∑

k=1
k 6=r

πk

Ĥ−1∑

t=2

ctxt
k

∗
(ξk) .

The magnitude of δ influences the distance between RP and MSPEV and it is zero in the
two-stage case or in multi-stage problems with Ĥ = 2.

Following [3], we introduce some upper bounds on RP for multistage problems, such as
the Multistage Expected Value of the Reference Scenario:

MEV RS = E
ξ

H−1 min
xH

z(x̄(1,H−1)
r , xH , ξH−1) , (15)

where x̄
(1,H−1)
r = (x̄1

r, x̄
2
r, . . . , x̄

H−1
r ) is the optimal solution until stage H−1 of the deterministic

problem min
x
z(x, ξr) under scenario r. The Multistage Value of Stochastic Solution MV SS

is defined as:
MV SS = MEV RS − RP . (16)

Notice that MV SS ≥ 0 because there are two alternatives:

1. x̄
(1,H−1)
r is a feasible solution to the recourse problem;

2. x̄
(1,H−1)
r is an infeasible and in this case MEV RS = +∞.
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The definition of MEV RS can be generalized in a sequence of Multistage Expected Value
of the Reference Scenario, MEV RS1, MEV RS2, . . . ,MEV RSt such as

MEV RSt = E
ξ

H−1 min
x

(t+1,H)
z(x̄(1,t)

r ,x(t+1,H), ξH−1), t = 1, . . . , H − 1 , (17)

where x̄
(1,t)
r = (x̄1

r, x̄
2
r, . . . , x̄

t
r) is the optimal solution until stage t of the deterministic problem

min
x
(x, ξr) under scenario r (according to this definition MEV RS = MEV RSH−1) and

MV SSt = MEV RSt − RP, t = 1, . . . H − 1 . (18)

The following relation holds true:

Proposition 4
MEV RSt+1 ≥ MEV RSt , t = 1, . . . , H − 2 . (19)

Proof
Any feasible solution of MEV RSt+1 problem is also a solution of MEV RSt because the fea-
sible region of MEV RSt+1 has a set of constraints (at stage t+1), more than MEV RSt to be
satisfied and the relation (19) holds true. If MEV RSt = +∞ the inequality is automatically
satisfied.

As before let x̂a,k = (x̂1
k, x̂

(2,H)
a , x̂

(2,H)
k ) be optimal solutions to the pair subproblems of ξa

and ξk, k = 1, . . . , nH , k 6= r. The Multistage Expectation of Pairs Expected Value is defined
as:

MEPEV = min
k=1,...,nH∪{r}

(E
ξ

H−1 min
x

(2,H)
z(x̂1

k,x
(2,H), ξH−1)) . (20)

Proposition 5
RP ≤ MEPEV ≤ MEV RS1 , (21)

Proof
We denote by K = {x|xt ∈ Kt t = 1, . . . , H − 1} the feasibility set of RP ,
K ∩ {x̂1

k, k = 1, . . . , nH ∪ {r}} the feasibility set of MEPEV and K ∩ x̄1
r = x̂1

r the one of
MEV RS1, which are obviously smaller and smaller and the thesis is proved.

As a consequence of Proposition (4) it follows

RP ≤ MEPEV ≤ MEV RS1 ≤ · · · ≤ MEV RSH−1 . (22)

Putting the previous relations together it holds:

Theorem 3

0 ≤ MEV RSt − MEPEV ≤ MV SSt ≤ (23)

≤ MEV RSt − MSPEV + δ ≤ MEV RSt − WS + δ, t = 1, . . . , H − 1 .
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3.2 Measures of the quality of deterministic solution in multistage
problems

Measures of the structure and upgradeability of the deterministic solution for the two-stage
case, such as the Loss Using the Skeleton Solution LUSS and the Loss of Upgrading the
Deterministic Solution LUDS has been introduced in [12], in relation to the standard V SS.
The aim of the measures is to find out, even when V SS is large, if the deterministic solution
carries useful information for the stochastic case.

We recall the definition of LUSS and LUDS for the two-stage case. Let J be the set of
indices for which the components of the expected value solution x̄(ξ̄) are at zero or at their
lower bound. Then let x̂ be the solution of:

minx∈X Eξz (x, ξ)

s.t. xj = x̄j(ξ̄), j ∈ J . (24)

We then compute the Expected Skeleton Solution Value

ESSV = Eξ (z (x̂, ξ)) , (25)

and we compare it with RP by means of the Loss Using the Skeleton Solution

LUSS = ESSV − RP. (26)

Consider the expected value solution x̄(ξ̄) as a starting point (input) to the stochastic
two-stage model and compare it, in terms of objective functions, without such input. So we
test if the expected value solution can improve (if not optimal) in the stochastic setting. This
is equivalent to adding in the former problem the constraint x ≥ x̄(ξ̄) and hence solve the
following problem with solution x̃:

minx∈X Eξz (x, ξ)

s.t. x ≥ x̄(ξ̄). (27)

We then compute the Expected Input Value

EIV = Eξ (z (x̃, ξ)) (28)

and we compare it with RP , by means of the Loss of Upgrading the Deterministic Solution:

LUDS = EIV − RP. (29)

We extend the above definitions to the multistage-case by considering the Multistage Loss
Using the Skeleton Solution until stage t MLUSSt and the Multistage Loss of Upgrading the
Deterministic Solution until stage t MLUDSt in relation to V SSt, t = 1, . . . H defined by (5).
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The computation of MLUSSt is based on the following procedure: we fix at zero (or at
the lower bound) all the variables which are at zero (or at the lower bound) in the expected
value solution until stage t, and then solve the stochastic program.

Let J t, t = 1, . . . , H − 1 be the set of indices for which the components of the expected
value solution x̄

(1,t)
r are at zero or at their lower bound. Then let x̃(1,t) be the solution of:

min
x

E
ξ

H−1 z
(
x, ξH−1

)

s.t. xtj = x̄tj(ξ̄
t
), j ∈ J t. (30)

We then compute the Multistage Expected Skeleton Solution Value at stage t

MESSV t =E
ξ

H−1 min
x

(t+1,H−1)
z
(
x̃(1,t), x(t+1,H−1), ξH−1

)
, t = 1,. . . ,H − 1 , (31)

and we compare it with RP by means of Multstistage Loss Using Skeleton Solution until stage
t

MLUSSt = MESSV t − RP , t = 1, . . . , H − 1 . (32)

Notice that MLUSSt ≥ 0, t = 1, . . . , H − 1 because x̃(1,t) is a feasible solution to the recourse
problem or infeasible such that MLUSSt = +∞. The case MLUSSt close to zero means that
the variables chosen by the deterministic solution until stage t are good but their values may
be off. We have:

Proposition 6
MLUSSt+1 ≥ MLUSSt, t = 1, . . . , H − 2 . (33)

Proof
Any feasible solution of MLUSSt+1 problem is also a solution of MLUSSt because the feasible
region of MLUSSt+1 has a set of constraints x(t+1)j = x̄(t+1)j(ξ̄

t+1
) with j ∈ J t+1, larger than

MLUSSt to be satisfied and the relation (33) holds true. If MLUSSt = +∞ the inequality
is automatically satisfied.

We have:
RP ≤ MESSV t ≤ EEV t , (34)

and consequently,
V SSt ≥ MLUSSt ≥ 0 . (35)

For multistage stochastic linear programs with deterministic constraint matrices and deter-
ministic objective coefficients, the following inequalities are satisfied (see Escudero et al. [5]
(2007)):

EEV t − EV ≥ V SSt . (36)

Notice that the case MLUSSt = 0 (i.e. MESSV t = RP ) corresponds to the perfect skeleton

solution until stage t in which the condition xtj = x̄tj(ξ̄
t
), j ∈ J t is satisfied by the stochastic

solution even without being enforced by the set of constraints.
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MLUDSt, t = 1, . . . , H − 1 measures if the expected value solution x̄t = (x̄1, x̄2, . . . , x̄t)
until stage t can be considered as a starting point (if not optimal) in the stochastic setting.

This is equivalent to adding in problem (1) the constraint xt ≥ x̄t(ξ̄
t
) and hence solve the

following problem obtaining the solution ¯̄xt:

min
x

E
ξ

H−1 z
(
x, ξH−1

)

s.t. xt ≥ x̄t(ξ̄
t
) . (37)

We then compute the Multistage Expected Input Value until stage t

MEIV t = E
ξ

H−1 min
x(t+1,H−1)

z
(
¯̄xt, ξH−1

)
(38)

and we compare it with RP , by means of the Multistage Loss of Upgrading the Deterministic
Solution until stage t:

MLUDSt = MEIV t − RP . (39)

As in the case of MLUSSt the following inequalities hold true:

Proposition 7

MLUDSt+1 ≥ MLUDSt, t = 1, . . . , H − 2 , (40)

EEV t ≥ MEIV t ≥ RP, t = 1, . . . , H − 1 , (41)

EEV t − EV ≥ V SSt ≥ MLUDSt ≥ 0, t = 1, . . . , H − 1 . (42)

Proof
See the proof of Proposition 6.

Notice that the case MLUDSt = 0 (i.e. MEIV t = RP ) corresponds to the case where

the conditions xt ≥ x̄t(ξ̄
t
) are satisfied by the stochastic solution even without being enforced

by these constraints (under the assumption that the stochastic first-stage decision is unique).

3.3 Rolling horizon measures in multistage problems

Multistage problems such as MEV RSt, MESSV t and MEIV t (t = 1, . . . , H − 1) are often
infeasible because they require to fix too many variables from the mean or reference scenario.

An alternative approach is to consider a rolling of time horizon procedure (see [4] and [16])
in order to update the estimations and add more information to the model. We propose the
following methodology for the evaluation of the reference scenario; in [13] it has been adopted
for the deterministic solution.

1. Solve the reference scenario r and store the first stage decision variables x̄1
r;
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2. Define a new scenario tree T 2,ev where all random elements of stages 2, . . . , H − 1 are
estimated by their expected values ξ̄

2+ = (ξ1, ξ̄2, . . . , ξ̄H−1) and solve the obtained
model with x1 = x̄1

r. Store all the second stage variables x̄2
r,ev.

3. At stage t (t = 2, . . . , H−1) define a new scenario tree T t+1,ev with all random elements

of stages t+1, . . . , H−1 estimated by their expected value ξ̄
t+1+ = (ξ1, ξ2, . . . , ξ̄t+1, . . . , ξ̄H−1),

t = 2, . . . , H − 1 and solve the associated model with

x(1,t) = (x1, x2, . . . , xt) = (x̄1
r, x̄

2
r,ev, . . . , x̄

t
r,ev) = x̄(1,t)

r,ev .

Store all the t + 1 stage variables x̄t+1
r,ev.

4. Finally, solve the model on the initial scenario tree T with all the tth variables (t =

1, 2, . . . , H − 1) fixed to the stored values x(1,H−1) = x̄
(1,H−1)
r,ev .

We denote the Rolling Horizon Value of the Reference Scenario:

RHV RS = E
ξ

H−1 min
xH

z(x̄(1,H−1)
r,ev , xH , ξH−1) , (43)

and Rolling Horizon Value of Stochastic Solution by:

RHV SS = RHV RS − RP . (44)

In a similar way, the Rolling Horizon Expected Skeleton Solution Value RHESSV can be
obtained as follows:

1. Solve the expected value problem and store the first stage decision variables x̄1j , j ∈ J 1

which are at zero or at their lower bound;

2. Define a new scenario tree T 2,ev where all random elements of stages 2, . . . , H − 1 are
estimated by their expected values and solve the obtained model with x1j = x̄1j , j ∈ J 1.
Store all the second stage variables which are at zero or at their lower bound x̄2j , j ∈ J 2.

3. At stage t (t = 2, . . . , H−1) define a new scenario tree T t+1,ev with all random elements
of stages t + 1, . . . , H − 1 estimated by their expected value and solve the associated
model with x(1,t)j = (x1j , x2j , . . . , xtj) = (x̄1j , x̄2j , . . . , x̄tj) = x̄(1,t)j , j ∈ J t. Store all the
t + 1 stage variables which are at zero or at their lower bound x̄(t+1)j , j ∈ J t+1.

4. Finally solve the model on the initial scenario tree T with all the j−components, j ∈ J t

at stage t (t = 1, 2, . . . , H − 1) fixed to zero or at their lower bound: x(1,H−1)j =
(x1j , x2j , . . . , x(H−1)j) = (x̄1j , x̄2j , . . . , x̄(H−1)j) = x̄(1,H−1)j , j ∈ J t, (t = 1, 2, . . . , H − 1).
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We denote the Rolling Horizon Expected Skeleton Solution Value:

RHESSV =E
ξ

H−1min
xH

z(x̄(1,H−1)j, xH, ξH−1), j∈ J t, t = 1, . . . , H − 1 , (45)

and Rolling Horizon Loss Using Skeleton Solution by:

RHLUSS = RHESSV − RP . (46)

Starting from the definition of MEIV t, we can analogously define the Rolling Horizon Expected
Input Value RHEIV and Rolling Horizon Loss of Upgrading the Deterministic Solution:

RHLUDS = RHEIV − RP . (47)

4 Case study: a multistage stochastic optimization model

for a single-sink transportation problem

We consider a real case of clinker replenishment in Sicily, provided by the primary italian
cement producer. The problem has been already analyzed in detail in [13]. The logistics
system is organized as follows: in Catania there is a warehouse to be replenished by clinker
produced by four plants located in Palermo (PA), Agrigento (AG), Cosenza (CS) and Vibo
Valentia (VV). The demand of the single customer at Catania as well as the production
capacities of the four plants are stochastic.

All the vehicles must be booked in advance from an external transportation company,
before the demand and production capacities are revealed. We assume that the transportation
company has an unlimited fleet and that only full load shipments are allowed. When the
demand and the production capacity are revealed, there is an option to cancel some of the
reservations against a cancellation fee. If the quantity delivered from the four suppliers is not
enough to satisfy the demand, the residual quantity is purchased from an external company
at a higher price b. The problem is to determine, for each supplier, the number of vehicles
to book in order to minimize the total costs, given by the sum of the transportation costs
(including the cancellation fee for vehicles booked but not used) and the costs of the product
purchased from the external company.
The notation adopted is the following:

Sets:

I = {i : i = 1, . . . , I} : set of suppliers (AG, CS, PA, VV);

J t = {j : j = 1, . . . , nt} : set of ordered nodes of the tree at stage t = 1 . . . , H;

and nt is the number of nodes at stage t.
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Parameters:

ti : unit transportation costs of supplier i ∈ I ;

b : buying cost from an external source;

q : vehicle capacity;

g : unloading capacity at the customer;

l0 : initial inventory level at the customer;

lmax : storage capacity at the customer;

pj : probability of node j ∈ J t, t = 1 . . . , H;

vi,j : production capacity of supplier i ∈ I in node j ∈ J t, t = 2, . . . , H;

dj : customer demand at node j ∈ J t, t = 2, . . . , H;

α : cancellation fee;

J 1 = {0} : root of the tree;

a(j) : ancestor of the node j ∈ J t, t = 2, . . . , H in the scenario tree.

Notice that b is fixed on the basis of the known production and transportation costs of each
producers. In our case we suppose b > maxi(ti + ci)) where ci is the unit production costs of
supplier i ∈ I .

Variables:

xi,j ∈ N : number of vehicles booked from supplier i ∈ I , j ∈ J t, t = 1,. . . ,H − 1;

zi,j ∈ N : number of vehicles actually used from i ∈ I , j ∈ J t, t = 2,. . . ,H;

yj ∈ R : product to purchase from an external source in j ∈ J t, t = 2,. . . ,H;

lj ∈ R : inventory level of the customer at node j :

lj = la(j) + q

I∑

i=1

zi,j + yj − dj , j ∈ J t, t = 2, . . . , H ; (48)

The multistage model can be then formulated as follows:

min
H−1∑

t=1

nt∑

j=1

pj

[
q

I∑

i=1

tixi,j

]
+

H∑

t=2

nt∑

j=1

pj

[
b yj − (1 − α)q

I∑

i=1

ti
(
xi,a(j) − zi,j

)
]

(49)
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subject to

q

I∑

i=1

xi,j ≤ g , j ∈ J t, t = 1,. . .,H − 1 (50)

la(j) + q

I∑

i=1

zi,j + yj − dj ≥ 0 , j ∈ J t, t = 2,. . .,H (51)

la(j) + q

I∑

i=1

zi,j + yj − dj ≤ lmax , j ∈ J t, t = 2,. . .,H (52)

zi,j ≤ xi,a(j) , i ∈ I , j ∈ J t, t = 2,. . .,H (53)

qzi,j ≤ vi,j , i ∈ I , j ∈ J t, t = 2,. . .,H (54)

xi,j ∈ N , i ∈ I , j ∈ J t, t = 1,. . .,H − 1 (55)

yj ≥ 0 , j ∈ J t, t = 2,. . .,H (56)

zi,j ∈ N , i ∈ I , j ∈ J t, t = 2,. . .,H . (57)

The first sum in the objective function (49) is the booking costs of the vehicles, while the second
sum represents the recourse actions, consisting of buying extra clinker (yt

j) and canceling
unwanted vehicles. Constraint (50) guarantees that the total quantity delivered from the
suppliers to the customer is not greater than the customer’s unloading capacity g, inducing
thus an upper bound on the total number of vehicles. Constraints (51) and (52) ensure that
the storage levels are between zero and lmax. Constraint (53) guarantees that the number
of vehicles servicing supplier i is at most equal to the number booked in advance and (54)
controls that the quantity of clinker delivered from supplier i does not exceed its production
capacity at

i,j. Finally, (55)–(57) define the decision variables of the problem.

5 Comparison measures for “a single sink transporta-

tion problem”

We compute the performance measures described in Sections 2 and 3 on the single sink
transportation problem described in Section 4. For simplicity we analyze first the two-stage
case and then the multi-stage stochastic one. We refer to [13] for the data used in the
simulation.

5.1 Two-stage case

Tables 1 shows the optimal number of booked vehicles for each supplier, the total optimal
costs and the values (see Table 2) assumed by the performance measures in the two-stage
case.

We first observe that both the deterministic cases, using the mean (EV ) and the worst
scenario, underestimate the stochastic optimal cost and the model will always book the exact
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number of vehicles needed in the next time period (see [13]). The deterministic model sorts
the suppliers according to the transportation costs and books much less vehicles than the
stochastic one with a resulting cost lower than RP solution. However, EEV is much higher
that the deterministic cost (e 495 788 instead of the predicted cost of e 294 898) resulting in

VSS = 495 788 − 438 304 = 57 384 ,

which shows that we can save about 12% of the cost by using the stochastic model, compared
to the deterministic one. EVRS is still higher (e 522 877 instead of the predicted cost of
e 427 374). Notice also that the inequalities of Theorem 1

WS = 319 100 ≤ RP = 438 304 ≤ EEV = 495 788 ,

are satisfied.
Fixing as auxiliary scenario the average scenario we get a value for SPEV equal to 319 100

which is exactly the wait and see solution (WS) (see Proposition 1), while choosing as auxiliary
scenario the worst one ξ10 we get a worst value for SPEV of 343 626. The series of inequalities
(see Proposition 7 in [3]):

WS = 319 100 ≤ SPEV = 343 626 ≤ RP = 438 304 ,

are satisfied and shows the advantage of a deeper information on the future. For details on
the optimal values of the pair subproblems ξ10 and ξk, k = 1, . . . , 14 with respect to the worst
scenario ξ10 see Table 3. The value of EPEV is determined by the optimal first stage solution
of the pair subproblem ξ10 and ξ14 performed into the stochastic model and it satisfies the
inequality in Proposition 5:

RP = 438 304 ≤ EPEV = 485 875 ≤ EV RS = 522 877 .

In order to understand the reason of the badness of the deterministic solution quantified
by the high value of V SS = 57 384, we compute now the Expected Skeleton Solution Value
ESSV , following the skeleton from the deterministic model, not allowing to book vehicles
from CS and VV. ESSV is e 462 214, still higher than RP with a consequent Loss Using the
Skeleton Solution of

LUSS = 462 214 − 438 304 = 23 910 ,

which measures the loss by booking vehicles coming only from suppliers AG and PA as sug-
gested by the deterministic model. We can conclude that the deterministic solution is bad
because it books the wrong number of vehicles from the wrong suppliers.

The Expected Input Value is computed by taking the number of vehicles booked in the
deterministic solution as input in the stochastic model and checking if the solution can be
upgraded in a second run. Notice that for all the four suppliers the stochastic solution is
higher than in the deterministic one (see Table 2) with LUDS = 0.

The measures defined in [12] allow us to conclude that the deterministic solution does not
perform well in a stochastic environment because of the too low number of vehicles booked at
the fist stage (736 instead of 1080) just considering AG and PA as possible suppliers. However,
the deterministic solution should be considered as a lower bound for the stochastic case.
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Table 1: Optimal solutions and comparison measures for the two-stage case of the “single-
sink transportation problem” . The table shows optimal number of booked vehicles for each
supplier and total optimal costs.

AG CS PA VV Objective value (e)

deterministic (mean scenario = ξ̄) 206 0 530 0 294 898 = EV
deterministic (worst scenario = ξ10) 433 33 366 0 427 374
stochastic 400 0 563 117 438 304 = RP

206 0 530 0 495 788 = EEV
433 33 366 0 522 877 = EVRS (w.r.t. ξ10)
400 0 637 0 462 214 = ESSV
400 0 563 117 438 304 = EIV

319 100 = WS
343 626 = SPEV (w.r.t. ξ10)
319 100 = SPEV (w.r.t. ξ̄)

pair subproblem (ξ10, ξ14) 300 0 370 110 485 875 = EPEV (w.r.t. ξ10)

Table 2: Performance measures for the two-stage case of the “single-sink transportation prob-
lem”.

Performance measures Value (e)

VSS 57 384
EVRS − RP 84 573
LUSS 23 910
LUDS 0

5.2 Multi-stage case

In this section we compute the performance measures described in Sections 2 and 3 on the
four-stage case of single sink transportation problem (see Section 4). For this purpose, we
consider the scenario tree from Figure 3: this is a four-stage tree with 5 branches from the
root, 5 from each of the second-stage nodes, and three from each of the third-stage nodes,
resulting in S = 5 × 5 × 3 = 75 scenarios and 106 nodes. We declare it as a benchmark to
evaluate the cost of optimal solutions obtained using the other reduced scenario trees (see
Figures 2). The results are presented in Table 5 and Figure 4 and performance measures in
Table 6. From Table 5 we see that a better description of the stochasticity leads to larger
bookings in the first stage. Actually, in the four-stage scenario tree, the total number of
booked vehicles is equal to 1260, that is the customer’s unloading capacity. This is due to the
low initial inventory level l0 = 2000 at the customer (the actual case from real data).

Anyway the total costs from the two deterministic models, mean scenario (EV ) (see Table
4) and worst scenario ξ44, the recourse problem (RP ) and the two-stage relaxation (TP ) (see
Table 5) are not directly comparable. The optimal solutions are then compared on the scenario
tree of Figure 3 used as a benchmark. First of all we evaluate the optimal solutions of the
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Table 3: Pair subproblems first stage solutions and total costs with respect to the worst case
scenario ξ10.

pair subproblem AG CS PA VV Objective value (e)

(ξ10, ξ1) 303 0 297 0 258 185
(ξ10, ξ2) 0 0 757 0 365 796
(ξ10, ξ3) 0 97 533 116 427 930
(ξ10, ξ4) 56 0 638 0 331 009
(ξ10, ξ5) 433 0 334 0 302 193
(ξ10, ξ6) 133 0 577 0 325 037
(ξ10, ξ7) 136 0 333 281 379 316
(ξ10, ξ8) 303 0 126 298 361 825
(ξ10, ξ9) 316 0 438 0 313 279
(ξ10, ξ10) 433 33 366 0 522 877
(ξ10, ξ11) 433 0 237 0 270 515
(ξ10, ξ12) 0 170 563 0 447 357
(ξ10, ξ13) 40 0 680 0 344 212
(ξ10, ξ14) 300 0 370 110 340 483

Figure 2: Reduced scenario trees respectively considered for the mean scenario model (EV ),
for the two-stage relaxation (TP ) and the computations of the rolling horizon values reported
in Tables 4 and 5 for the single-sink transportation problem.

Figure 3: Four-stages scenario tree considered for the single-sink transportation problem.
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average scenario model by fixing just the number xi,j of vehicles booked from supplier i ∈ I
in nodes j ∈ J t until stage t (t = 1, 2, 3) in the stochastic framework by means of EEV t:

EEV 1 = 1364343.58 < EEV 2 = 1431896.24 < EEV 3 = 1579825.92 .

The associated chain

V SS1 = 91 267.32 < V SS2 = 185 002.22 < V SS3 = 299 449.62 ,

show the losses by booking the number of vehicles suggested by the deterministic solution (see
Table 4). The low first stage deterministic booking is compensated at each of second stage
nodes of the stochastic framework, by a reservation almost equal to the customer’s unloading
capacity and by buying extra clinker at a higher price.

The evaluation of the deterministic solution on a rolling-horizon basis (see Figure 2), allows
to update the estimations and add more information step by step as measured by:

RHEEV = 1 540 248.22 < EEV 3 = 1 579 825.92 .

Notice that by fixing all the decision variables xi,j, yj and zi,j from the average scenario model
until the second stage, we get EEV 2 = ∞ and consequently EEV 3 = ∞ (EEV 2 ≤ EEV 3)
concluding a badness of the deterministic solution. We will try to understand later by means
of MLUSSt and MLUDSt the reason of its infeasibility.

The same considerations can be applied by evaluating the worst scenario model ξ44 in the
stochastic framework by means of MEV RSt. In particular by fixing just the number xi,j of
vehicles booked from supplier i ∈ I in nodes j ∈ J t until stage t, we get

MEV RS1 =1 372 285.48<MEV RS2 =1 433 501.32<MEV RS3 =1 436 997.78 .

The evaluation of the worst case solution on a rolling-horizon basis is measured by RHV RS =
1 535 476.52 .

MESSV t allows the evaluation of the structure of the deterministic solution until stage
t. We do not allow to book vehicles from CS in all the three stages and from VV in the root
and at stage t = 3 (see Table 4) and we get:

MESSV 1 =1 299 327.68≤MESSV 2 =1 301 017.28≤MESSV 3 =1 404 215.16 ,

with a consequent chain of measures:

MLUSS1 = 26 282.62 ≤ MLUSS2 = 27 863.9 ≤ MLUSS3 = 131 140.86 ,

which measure the loss by booking vehicles coming only from the suppliers as suggested by
the deterministic model. We can conclude that the deterministic solution xi,j is bad because
it books the wrong number of vehicles from the wrong suppliers already from the first stage.

The evaluation of the deterministic skeleton solution on a rolling-horizon basis, allows to
update the estimations as suggested by:

RHESSV = 1 302 705.36 ≤ MESSV 3 = 1 404 215.16 .
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As before, by fixing at zero also the clinker purchased yj and the vehicles actually used zi,j

we get an infeasibility already at the second stage (MESSV 2 = MESSV 3 = ∞) concluding
a badness of the structure of the full deterministic solution.

We then consider the vehicles booked in the average scenario model as an input in the
stochastic setting and we check if the solution can be upgraded. Notice that in the root for
all the four suppliers the booked number of vehicles in the stochastic solution is higher than
in the deterministic one with MLUDS1 = 0. The condition is no longer satisfied at stage 2
for suppliers PA and VV with MLUDS2 = 2707.4 and at stage 3 for suppliers AG and PA
with MLUDS3 = 27552.22. Notice that the chain (41) in Proposition 7:

MLUDS1 = 0 ≤ MLUDS2 = 2707.4 ≤ MLUDS3 = 27552.22 ,

holds true. We can conclude that the deterministic solution can be taken as input in the
stochastic model only in the first stage.

An alternative approach to the deterministic solution is to solve pairs subproblems of the
initial stochastic program with respect to the worst scenario ξ44.

The best pair subproblem is given by the couple (ξ44, ξ2) with MEPEV = 1 313 983.3
which satisfies the chain of inequalities (22):

RP = 1 273 074.3 < MEPEV = 1 313 983.3 < MEV RS1 = 1 372 285.48 <

< MEV RS2 = 1 433 501.32 <

< MEV RS3 = 1 436 997.78 .

This means that the optimal first stage solution of the pair subproblem (ξ44, ξ2) performs
better than the deterministic one (mean or worst scenario), and it should be chosen for large
scale problems instead of solving them, in case we have more information on the future.
When the auxiliary scenario does not belong to the scenario tree, MSPEV = WS = 1037820
as proved in Proposition 1.
If the auxiliary scenario (the worst one) belongs to the scenario tree, then WS = 1037820 <

1041627.34 = MSPEV (see Proposition 2). Notice that the sum (14) is zero: if k = 1, . . . , 30
or k = 46, . . . , 75, scenarios k and the auxiliary a, branch at stage Ĥ = 2 and (14) is not
defined, if k = 31 . . . , 43 scenarios k and a branch at Ĥ = 3 and at stage 2 are both defined
on node 3 with x̂2

44(ξ44) = x̂2
k(ξk). The same arguments can be applied for scenarios 43 and

46 which branch with scenario 44 at Ĥ = 4 and are defined on the same node 20 at stage 3.
If we choose as auxiliary scenario the best one ξ1 (the one that gives the minimum cost

over all the scenarios in the tree) WS = 1037820 < MSPEV = 1039068.91 .
Finally, the value of δ = 154147.7 measures the distance between MSPEV and the value of
the stochastic model RP = 1273074.3 (see Proposition 3). Notice that in our example the
value of δ is 66% of the real distance between RP and MSPEV . Theorem 3 is verified.

By the analyzed measures we can conclude that the deterministic model performs bad
in the multistage stochastic environment because of the too low number of booked vehicles,
already from the first stage. The positive values of MLUSSt mean that the badness of the
deterministic solution is partially in its structure, booking vehicles from the wrong suppliers.
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However the determistic solution should be considered as a lower bound for the first stage
stochastic one. The rolling-horizon approach should be also considered as an useful alterna-
tive to the standard methods allowing to update the estimation at each time period. A better
option than choosing the deterministic solution is also given by the best pair subproblem solu-
tion with performance measured by MEPEV , under the assumption of a better information
about the future.

Table 4: Optimal solution for the deterministic (mean scenario) four-stage case of the “single-
sink transportation problem” . The table shows optimal number of booked vehicles (equal to
the optimal number of used vehicles at node j + 1) for each supplier, the clinker purchased yj

at each stage j = 1, 2, 3 and partial optimal costs.
node AG CS PA VV yj Costs (e)

0 158 0 647 0 - 327 717
1 264 0 416 143 0 345 621
2 315 0 518 0 0 326 844
3 - - - - 0 0

Figure 4: Comparison of objective functions of different approaches as in Table 5, reported for
increasing values. The black circle denotes the multistage stochastic recourse problem RP .

6 Conclusions

The paper extends classical measures to value different approaches and levels of information
for two-stage stochastic problems to the multistage case. We generalize bounds of Value
of Stochastic Solution V SS to the multistage case through the Multistage Sum of Pairs of
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Table 5: Optimal solutions and comparison measures for the four-stage case of the “single-
sink transportation problem” . The table shows optimal number of booked vehicles for each
supplier and total optimal costs.

AG CS PA VV Objective value (e)

EV (mean scenario = ξ̄) 158 0 647 0 1 000 182
deterministic (worst scenario = ξ44) 0 299 533 116 1 342 803
RP 389 0 755 116 1 273 074.30
TP 401 0 641 116 1 104 279.60
EEV 1 (w.r.t. ξ̄) 158 0 647 0 1 364 343.58
EEV 2 (w.r.t. ξ̄) fixing xi,j 158 0 647 0 1 431 896.24
EEV 2 fixing all 1st and 2nd stage var. 158 0 647 0 ∞
EEV 3 (w.r.t. ξ̄) fixing xi,j 158 0 647 0 1 579 825.92
EEV 3 fixing all 1st, 2nd and 3rd stage var. 158 0 647 0 ∞
MEV RS1 (w.r.t. ξ44) 0 299 533 116 1 372 285.48
MEV RS2 (w.r.t. ξ44) fixing xi,j 0 299 533 116 1 433 501.32
MEV RS2 fixing xi,j and yj 0 299 533 116 ∞
MEV RS2 fixing all 1st and 2nd stage var. 0 299 533 116 ∞
MEV RS3 (w.r.t. ξ44) fixing xi,j 0 299 533 116 1 436 997.78
MEV RS3 fixing xi,j and yj 0 299 533 116 ∞
MEV RS3 fixing all 1st, 2nd and 3rd stage var. 0 299 533 116 ∞
MESSV 1 389 0 871 0 1 299 327.68
MESSV 2 fixing xi,j 389 0 871 0 1 301 017.28
MESSV 2 ∞
MESSV 3 fixing xi,j 389 0 871 0 1 301 017.28
MESSV 3 ∞
MEIV 1 389 0 755 116 1 273 074.30
MEIV 2 lower bound on xi,j 401 0 743 116 1 278 053.08
MEIV 2 ∞
MEIV 3 lower bound on xi,j 401 0 743 116 1 299 784.80
MEIV 3 ∞
WS 1 037 820
MEPEV (pair subproblem (ξ44, ξ2)) 303 0 516 116 1 313 983.30
MSPEV (w.r.t. ξ44) 1 041 627.34
MSPEV (w.r.t. ξ1) 1 039 068.91
MSPEV (w.r.t. ξ̄) 1 037 820
RHEEV (w.r.t. ξ̄ fixing xi,j ) 158 0 647 0 1 540 248.22
RHV RS (w.r.t ξ44 fixing xi,j ) 0 299 533 116 1 531 020.74
RHESSV (fixing xi,j) 401 0 859 0 1 302 705.36
RHEIV (lower bound on xi,j) 401 0 743 116 1 290 604.32
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Table 6: Performance measures for the four-stages case of the “single-sink transportation
problem”.

Performance measures Value (e)

V SS1 91 267.32
V SS2 fixing xi,j 185 002.22
V SS2 ∞
V SS3 fixing xi,j 299 449.62
V SS3 ∞
MEV RS1 − RP = MV SS1 103 463.38
MEV RS2 − RP = MV SS2 fixing xi,j 164 122.76
MEV RS2 − RP = MV SS2 ∞
MEV RS3 − RP = MV SS fixing xi,j 168 187.02
MEV RS3 − RP = MV SS ∞
MLUSS1 26 282.62
MLUSS2 fixing xi,j 27 863.90
MLUSS2 ∞
MLUSS3 fixing xi,j 27 863.90
MLUSS3 ∞
MLUDS1 0
MLUDS2 lower bound on xi,j 2 707.40
MLUDS2 ∞
MLUDS3 lower bound on xi,j 27 552.22
MLUDS3 ∞
RHV SS (w.r.t ξ̄) 267 173.92
RHV SS (w.r.t ξ44) 262 402.22
RHLUSS 29 631.06
RHLUDS 17 530.02
δ 154 147.7

Expected Value MSPEV and Multistage Expectation of Pairs Expected Value MEPEV by
solving a series of sub-problems more computationally tractable than the initial one under
the assumption that a piece of information on the future development of a random variable is
available. This extension has been done by introducing the new concept of auxiliary scenario
and redefinition of probability of pairs subproblem. The results show that a better alterna-
tive than choosing the deterministic solution is given by the best pair subproblem solution as
measured by MEPEV in case we have more information about the future.
We also extend to the multistage case the Expected Value of the Reference Scenario MEV RS

and measures of quality of the expected value solution in terms of structure and upgradeability
such as Multistage Loss Using the Skeleton Solution MLUSSt and Multistage Loss of Upgrad-
ing the Deterministic Solution MLUDSt and related with the standard Value of Stochastic
Solution V SSt at stage t. Such measures can help to understand the behavior of the deter-
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ministic solution with respect to the stochastic and the reason of its badness/goodness. The
above measures are also defined in a rolling horizon framework by means of the Rolling Hori-
zon Value of Stochastic Solution RHV V S, the Rolling Horizon Loss Using Skeleton Solution
and Rolling Horizon Loss of Upgrading the Deterministic Solution RHLUDS. The results
show that they should be considered as an useful alternative to the standard methods allowing
to update the estimation at each time period.
Chains of inequalities among the new measures are proved and tested on a stochastic multi-
stage single-sink transportation problem. Differences among the values in the chains indicate
the distance, at stage t, of the proposed approach to the stochastic one and give insight of
what is potentially wrong with a solution coming from the deterministic or the approximated
method considered.
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