


Iterative algorithm for finding equilibrium prices

in a spatial electricity market
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Abstract. We consider a restructured electricity market divided in zones, where sell bids and pur-
chase bids are presented by generating companies and customers respectively. The Market Operator
has to fix the zonal prices as well as to decide the energy quantity to be accepted for each bid,
in order to maximize the social surplus, while taking into account transmission constraints among
zones. The market equilibrium is the result of the interactions among power producers, consumers
and the Market Operator: this process generates a list of accepted purchase and sell quantities,
clearing zonal prices and power flows among zones.

In the auction scheme introduced in [1] for the Italian market (see also [2]), if the price declared
in a sell bid in zone k is higher than the price fixed by the Market Operator in that zone, then the
offered energy is not accepted, while the whole offered volume is accepted if the bid price is lower
than the zonal price. Purchase bids are treated analogously. If the bid price is exactly equal to
the zonal price, then any energy volume between zero and the maximum offered quantity can be
accepted by the Market Operator.

In this paper we consider a modified auction scheme where all bids participate to the auction,
with the exception of sell bids with price greater than the zonal price and purchase bids with price
less than the zonal price: for all other bids, any energy volume between zero and the maximum
offered quantity can be accepted by the Market Operator.

With this modified auction, an algorithm is proposed, based on the Nelder and Mead simplex
method, in order to find the global maximum of the social surplus function.

1 Introduction

In the new scenario introduced by the deregulation process, generating companies sell their own
production by presenting bids on the day-ahead market for each hour of the following day. The
Market Operator has to satisfy the hourly energy demand by choosing the cheapest suppliers, taking
into account, at the same time, constraints on power flow exchanges among the master areas in which
the network is divided (security network constraints).

Therefore in the recently restructured electricity markets, power generation is ensured on a com-
petitive basis rather than being a privilege of a monopolistic utility. Independent power producers
offer their production by presenting bids on the day-ahead market, aiming at maximizing their own
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profits and taking into account the rules set by the Market Operator. The Market Operator aims
at maximizing the social benefit, while taking into account transmission constraints. The market
equilibrium is the result of the interactions among power producers and the Market Operator. In
paper [1], the authors proposed a model of the spatial electricity market which is reduced to a mixed
integer optimization problem and the corresponding solution method. In this paper we consider a
modification of this model formulated as a global continuous optimization problem and propose the
simplex based search method to find its solutions.

An electricity market involves K zones; i.e. they are denoted by the index k, with k = 1,. . . , K.
The different markets are interconnected by H links, where link h represents a single transmission
line between two zones. We denote the customers and the generating units by indices i and j,
respectively, where, for zone k, i takes values in set Ik and j takes values in set Jk. Moreover, we
introduce the following parameters:

• QA
k
i is the maximal quantity of energy, declared by customer i in zone k;

• QV
k
j is the maximal quantity of energy declared by supplier j in zone k;

• PAk
i and PV k

j are the purchasing and selling prices associated with customer i and supplier j

in zone k;

• TRh and TRh are the lower and upper bounds on power flow on link h;

• sk
h is the contribution of zone k to the power flow on link h. The values of this parameter

depend on the network topology. They are limited to be either 0 or 1.

Purchase and sell bids are presented to the Market Operator, who establishes clearing energy
prices in each zone. Pk is the clearing price for the electric power in zone k and P = (P1, P2, . . . , PK)
is the vector of clearing prices.

In [1] the model MOD-ZON-STD has been introduced, in order to determine the market equilib-
rium. Such model is as follows:

max
QAk

i ,QV k
j

K∑
k=1

⎛
⎝∑

i∈Ik

PAk
i QAk

i −
∑
j∈Jk

PV k
j QV k

j

⎞
⎠ (1)

0 ≤ QAk
i ≤ QAk

i , for all i, k (2)

0 ≤ QV k
j ≤ QV k

j , for all j, k (3)

Ek =
∑
j∈Jk

QV k
j −

∑
i∈Ik

QAk
i , for all k (4)

K∑
k=1

Ek = 0 (5)

TRh =
K∑

k=1

sk
hEk, for all h (6)
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TRh ≤ TRh ≤ TRh, for all h (7)

This model determines the power quantities that have to be accepted by the Market Operator
in order to obtain market equilibrium. It can be shown that the equilibrium prices, potentially
different in market zones, are functions of the Lagrange multipliers λak

i of constraints (2) and λvk
j

of constraints (3). Indeed let us consider the case where all purchase bids in zone k are either
totally accepted or totally rejected, while there exists a sell bid which is partially accepted: the price
declared in this bid is the clearing price Pk of zone k and the generator which presented this bid is
called marginal generator. Consider now a generator whose bid has been completely accepted (that
is whose bid price is PV k

j < Pk). If this generator offers one more energy unit at price PV k
j , this

unit will be accepted and will substitute one unit offered by the marginal generator. The effect of
this substitution on the objective function is λvk

j = −(PV k
j − Pk). The same analysis can be made

on the purchase side, obtaining λak
i = PAk

i − Pk.
In the following section we consider an extension of the model in [1].

2 Description of the model

Now we consider two schemes of this auction, which establish sale volumes QV k
j , k = 1, . . . , K, and

purchase volumes QAk
i , k = 1, . . . , K. The first scheme determines the following rules for the first

stage of the auction: ⎧⎪⎨
⎪⎩

QAk
i = QA

k
i if Pk < PAk

i

0 ≤ QAk
i ≤ QA

k
i if Pk = PAk

i

QAk
i = 0 if Pk > PAk

i

(8)

⎧⎪⎨
⎪⎩

QV k
j = 0 if Pk < PV k

j

0 ≤ QV k
j ≤ QV

k
i if Pk = PV k

j

QV k
j = QV

k
i if Pk > PV k

j

(9)

If the supplier’s declared price is higher than the established one, he wouldn’t take place in auction
while if the declared price is lower than the established one, he would sell the whole volume of the
electric power as an encouragement. The same situation is with the customer. If the customer’s
declared electric power price is lower than the established one of this region, then this customer
wouldn’t take place in auction, but if the declared price is higher than the established one, then
customer’s purchase request would be completely satisfied.

It means that sale and purchase volumes are fixed for the participants whose prices are not equal
to the zonal prices. Volumes for other participants of the auction are established at the second stage,
which consists in solving the following optimization problem:

B(P ) = max
QAk

i ,QV k
j

K∑
k=1

⎛
⎝∑

i∈Ik

PAk
i QAk

i −
∑
j∈Jk

PV k
j QV k

j

⎞
⎠ (10)
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Ek =
∑
j∈Jk

QV k
j −

∑
i∈Ik

QAk
i (11)

K∑
k=1

Ek = 0 (12)

K∑
k=1

PkEk = 0 (13)

TRh =
K∑

k=1

sk
hEk (14)

TRh ≤ TRh ≤ TRh (15)

Constraint (11) defines Ek, the excess supply in zone k; constraint (12) reflects the equality
of volumes of the energy sold and bought. Constraint (13) results from conservation of monetary
balance in the system. Constraint (15) reflects the actual limitations for the volumes of transmitted
energy in every power link. The purpose of this paper is to develop an iterative solution algorithm
for finding equilibrium prices in the spatial electricity market, which involves problem (10) subject
to (8), (9) and (11)–(15).

In the presence of the small number of regions and participants, such problem may be solved by
enumerating all the variants, but it is impossible if the number of zones is more than ten, and the
number customers and suppliers in each regions is, for example, more than one hundred. Let us now
consider the function of social surplus; its value B(P ) can be calculated algorithmically. At first, we
can define the sets I ′k and J ′

k, k = 1, . . . , K, which denote, respectively, purchase bids and sell bids,
whose declared prices are not equal to the zonal prices fixed by the Market Operator, i.e. PAk

i �= Pk,
PV k

j �= Pk. For each purchase bid i ∈ I ′k and each sell bid j ∈ J ′
k we can define sale and purchase

volumes using conditions (8) and (9). Afterwards, we solve the following linear programming problem:
we need to maximize the social benefit function subject to the above constraints for the variables
QAk

i ≤ QA
k
i , i ∈ Ik \ I ′k and QV k

j ≤ QV
k
j , j ∈ Jk \ J ′

k, k = 1, . . . , K, and conditions (11)-(15). If the
linear programming problem is inconsistent, the value of the social surplus function is supposed to
be equal to −∞.

The domain of the social benefit function B(P ) is contained in the non-negative orthant, i.e.
P = (P1, P2, ..., PK) ∈ �K

+ . The so defined function is discontinuous and usually does not possess
monotonicity properties. Therefore the gradient of this function cannot be calculated.

That is why gradient methods are not applicable for solving the maximization problem. In this
case it is better to use methods of discrete optimization. For this reason, we decide to modify the
condition of the auction. We replace conditions (8)–(9) with the following:

{
0 ≤ QAk

i ≤ QA
k
i if Pk ≤ PAk

i

QAk
i = 0 if Pk > PAk

i

(16)

{
QV k

j = 0 if Pk < PV k
j

0 ≤ QV k
j ≤ QV

k
j if Pk ≥ PV k

j

(17)
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This small change appears to expand significantly the domain of continuity of the social cost
surplus function, and allows us to apply iterative methods of continuous optimization for solving the
modified maximization problem.

3 A mixed integer program for the modified auction

In this section we consider the mixed integer program which models the problem described in the
previous section.

If Pk < minj(PV k
j ), the total production in zone k is 0, also if Pk > maxi(PAk

i ) the total demand
in zone k is 0. Therefore we only have to consider values of Pk in the following interval

min
j

(PV k
j ) ≤ Pk ≤ max

i
(PAk

i ).

The price PAk
i , declared in purchase bid i presented in zone k, represents an upper bound on the

zonal price Pk at which the customer is willing to buy energy: if δak
i is a binary variable such that

δak
i =

{
0 do not buy energy
1 buy energy

then constraints (
PAk

i + ε
) (

1− δak
i

)
≤ Pk ≤ PAk

i + M
(
1− δak

i

)
imply that δak

i = 1 if and only if Pk ≤ PAk
i (therefore δak

i = 0 if and only if Pk > PAk
i ), with

M = maxi,j,k(PAk
i , PV k

j ) and ε a small positive number. As a consequence, by adding the constraint

0 ≤ QAk
i ≤ δak

i QA
k
i , i ∈ Ik, k = 1, . . . , K

we include in the model conditions (16).
Analogously, the price PV k

j , declared in sell bid j presented in zone k, represents a lower bound
of the zonal price Pk at which the producer is willing to sell energy: if δvk

j is a binary variable such
that

δvk
j =

{
0 do not sell energy
1 sell energy

then constraints

PV k
j · δvk

j ≤ Pk ≤ PV k
j − ε + (M + ε) · δvk

j

imply that δvk
j = 1 if and only if Pk ≥ PV k

j (therefore δvk
j = 0 if and only if Pk < PV k

j ). By adding
the constraint

0 ≤ QV k
j ≤ δvk

j QV
k
j , j ∈ Jk, k = 1, . . . , K

we include conditions (17) in the model.
Therefore the model is the following:

B(P ) = max
QAk

i ,QV k
j

K∑
k=1

⎛
⎝∑

i∈Ik

PAk
i QAk

i −
∑
j∈Jk

PV k
j QV k

j

⎞
⎠ (18)
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(
PAk

i + ε
) (

1 − δak
i

)
≤ Pk ≤ PAk

i + M
(
1 − δak

i

)
, i ∈ Ik, k = 1, . . . , K (19)

PV k
j · δvk

j ≤ Pk ≤ PV k
j − ε + (M + ε) · δvk

j , j ∈ Jk, k = 1, . . . , K (20)

0 ≤ QAk
i ≤ δak

i QA
k
i , i ∈ Ik, k = 1, . . . , K (21)

0 ≤ QV k
j ≤ δvk

j QV
k
j , j ∈ Jk, k = 1, . . . , K (22)

Ek =
∑
j∈Jk

QV k
j −

∑
i∈Ik

QAk
i (23)

K∑
k=1

Ek = 0 (24)

K∑
k=1

PkEk = 0 (25)

TRh =
K∑

k=1

sk
hEk (26)

TRh ≤ TRh ≤ TRh (27)

δak
i ∈ {0, 1}, i ∈ Ik, k = 1, . . . , K (28)

δvk
j ∈ {0, 1}, j ∈ Jk, k = 1, . . . , K (29)

4 A new algorithm and numerical results

We have chosen the simplex search method by Nelder and Mead as a basis (see [3]). To implement
the method, we need to choose the initial simplex thoughtfully. For example, when all the vertices
of the initial simplex lie in the domain of uncertainty of the cost function (where it equals to −∞)
and if the first step gives us the vertex P for which F (P ) = −∞, the algorithm fails. That is why we
must choose the initial approximation P (m) = (P 1(m)

, . . . , PK(m)
) carefully by using the condition

PAk
i ≤ P k(m) ≤ PV k

j , k = 1, . . . , K, m = 1, . . . , K + 1.

In addition, the distance between two neighboring vertices of an initial simplex should be fitted in
such a way that the next vertex would not lie in the domain of uncertainty of the social benefit
function.

For the analysis of the developed algorithm, two kinds of tests have been carried out. The first
testing aimed at revealing features of the solution of the problem using the constructed algorithm.
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For the pictorial presentation of results and for the simplicity of calculation, the following problem
of dimensionality K = 2 was solved with one transmission line:

|I1| = 3; |I2| = 3; |J1| = 3; |J2| = 3; the matrices

PAk
i =

[
10 8 6
12 9 6

]
, PV k

j =

[
10 9 8
11 9 7

]
,

QA
k
i =

[
10 5 10
5 15 5

]
, QV

k
j =

[
2 10 5
12 6 14

]
,

represent declared prices and volumes;
S1

1 = 1, S2
1 = 1;

TR1 = −100 and TR1 = 100.
For this function, values at the points of a grid of size 20× 20 have been calculated with Step 1.

The results obtained are given in Table A.1 and in Figure B.1. Using the selected points, we present
the graph of the social benefit function B(P ). (See Figures B.2 and B.3). These plots confirm the
assumption that the domain of the social benefit function is a discrete set of local areas where the
function is continuous. The solution of the test problem, found by using the developed algorithm,
is now presented in Table A.2. The problem was solved several times for different initial simplexes.
Finally, two local maximum different points of the social benefit function were obtained as solutions
of a test problem.

Also, several series of tests were carried out in order to analyze the dependence of the algo-
rithm convergence rates from various parameters of the problem (e.g. number of regions K or of
transmission lines H) and from the choice of the initial point P (0).

A sequence of test problems was solved with increasing dimensionality K = 2, . . . , 99 keeping the
number of sell and purchase bids in each zone constant. The declared prices were in the interval [1,
30], the declared volumes were in the interval [1, 20]. The results of the tests are presented in Table
A.3, from which we conclude that the algorithm convergence rate depends at a greater extent on
input data than on dimensionality.

Next, the same sequence of test problems with increasing dimensionality K = 2, . . . , 12 and the
same numbers of bids (3 suppliers and 3 customers) in each region was also solved. The declared
prices were in the interval [1, 30], the declared volumes were in the interval [1, 20]. Here in two cases
the parameter H was constant and equal to 1, but the point of the initial approximation varied.
Also, in the third case the parameter H varied: when the number of regions increased, the number
of electricity transmission lines H = K − 1 increased, too. Results of testing are presented in Table
A.4. Comparing the results of the first and third test, we found, that the growth of the number of
transmission lines has not lead to essential growth if the number of iterations of Nelder - Mead’s
method. But in spite of such preservation of the number of steps, time expenses for the solution of
the problem with big values of the parameter H were rather considerable. It is explained by the
growth of the dimensionality of the linear programming problem (3) - (6).

We carried out additional series of experiments in order to investigate the influence of constraint
(13). The first example involved three zones (K=3), the other data are given in Table A.5. First we
solved the general problem, i.e. the value B(P) was calculated as a solution of problem (10) subject
to (8), (9), (11)–(15). The results of computations with Nelder-Mead’s Method and the Coordinate
Descent Method are presented in Table A.6.
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Next, we solved the relaxed problem, where the value B(P) was calculated as a solution of
problem (10) subject to (8), (9), (11),(12),(14),(15), i.e. we removed constraint (13). The results
of computations with Nelder-Mead’s Method and the Coordinate Descent Method are presented in
Table A.7. They showed essential influence of constraint (13) on convergence of both the methods.

We investigated properties of both the methods on an example with real data. It involved 19
regional markets and 18 transmission links; see Figure B.4. The auction involved 72 participants. The
problem was solved with both Nelder-Mead’s Method and the Coordinate Descent Method. Usually,
their separate work yielded points of local maximum of function B (P). However, the combined using
of these methods gave the precise solution.

5 Conclusion

The results of the testing show that 1) problem 3 is a problem of global optimization; 2) the given
algorithm in most cases finds a local maximum which is close enough to global; 3) the obtained value
has significant improvement in comparison with initial points. Hence, the given approach is useful
for solving the task under consideration. However, to obtain more exact results it is necessary to
consider an opportunity of using other methods of solving the problem. This is planned to be carried
out in the future work.
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Part A 
 
Table A1. Values of the social surplus function. 
 

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

3 0 0 0 0 25 25 15 15 25 25 0 0 0 0 0 0 0 0 
4 0 0 0 0 25 25 15 15 25 25 0 0 0 0 0 0 0 0 
5 0 0 0 0 25 25 15 15 25 25 0 0 0 0 0 0 0 0 
6 0 0 0 0 25 25 15 15 25 25 0 0 0 0 0 0 0 0 
7 0 0 0 0 52 25 15 15 25 25 0 0 0 0 0 0 0 0 
8 10 10 10 10 25 58 15 15 25 25 10 10 10 10 10 10 10 10 
9 10 10 10 10 25 25 58 15 25 25 10 10 10 10 10 10 10 10 
10 10 10 10 10 25 25 25 54 25 25 10 10 10 10 10 10 10 10 
11 0 0 0 0 25 25 25 25 25 25 0 0 0 0 0 0 0 0 
12 0 0 0 0 25 25 25 25 25 25 0 0 0 0 0 0 0 0 
13 0 0 0 0 25 25 25 25 25 25 0 0 0 0 0 0 0 0 
14 0 0 0 0 25 25 25 25 25 25 0 0 0 0 0 0 0 0 
15 0 0 0 0 25 25 25 25 25 25 0 0 0 0 0 0 0 0 
16 0 0 0 0 25 25 25 25 25 25 0 0 0 0 0 0 0 0 
17 0 0 0 0 25 25 25 25 25 25 0 0 0 0 0 0 0 0 
18 0 0 0 0 25 25 25 25 25 25 0 0 0 0 0 0 0 0 
19 0 0 0 0 25 25 25 25 25 25 0 0 0 0 0 0 0 0 
20 0 0 0 0 25 25 25 25 25 25 0 0 0 0 0 0 0 0 
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Table A2. (W0 is the initial point) 
 

W0=(10,10) W0=(1,1) Step 
number Top number (w) P1 P2 F(w) P1 P2 F(w) 

0 10 10 54 1 1 0 
1 19.659 12.588 0 10.659 3.588 0 0 
2 12.588 19.659 0 3.588 10.659 15 
0 10 10 54 2.294 5.83 0 
1 14.83 11.294 25 7.124 7.124 52 1 
2 11.294 14.83 0 3.588 10.659 15 
0 10 10 54 8.418 11.953 25 
1 14.83 11.294 25 7.124 7.124 52 2 
2 12.975 8.556 25 3.588 10.659 15 
0 10 10 54 8.418 11.953 25 
1 14.83 11.294 25 7.124 7.124 52 3 
2 12.135 11.693 25 5.679 10.099 15 
0 10 10 54 7.771 9.539 15 
1 12.415 10.647 25 7.124 7.124 52 4 
2 11.067 10.846 25 6.402 8.611 25 
0 10 10 54 7.447 8.331 25 
1 11.207 10.324 25 7.124 7.124 52 5 
2 10.534 10.423 25 6.763 7.868 25 
0 10 10 54 7.285 7.727 25 
1 10.604 10.162 25 7.124 7.124 52 6 
2 10.267 10.212 25 6.943 7.496 25 
0 10 10 54 7.205 7.426 25 
1 10.302 10.081 25 7.124 7.124 52 7 
2 10.133 10.106 25 7.033 7.31 25 
0 10 10 54 7.164 7.275 25 
1 10.151 10.04 25 7.124 7.124 52 8 
2 10.067 10.053 25 7.079 7.217 25 
0 10 10 54 7.144 7.199 25 
1 10.075 10.02 25 7.124 7.124 52 9 
2 10.033 10.026 25 7.101 7.17 25 
0 10 10 54 7.134 7.161 25 
1 10.038 10.01 25 7.124 7.124 52 10 
2 10.017 10.013 25 7.112 7.147 25 
0 10 10 54 7.129 7.143 25 
1 10.019 10.005 25 7.124 7.124 52 11 
2 10.008 10.007 25 7.118 7.135 25 
0 10 10 54 7.126 7.133 52 
1 10.009 10.003 25 7.124 7.124 52 12 
2 10.004 10.003 25 7.121 7.13 52 
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Table A3. (d is the distance between the points of the initial simplex, h – is           
 the number of transmission lines) 
 

 the number of regions, 
N 

the number of 
steps result, F(w*) 

2 14 54 
7 17 952 

12 14 1790 
17 32 2822 
22 21 3906 
27 47 4963 
32 44 5937 
37 16 7641 
42 24 8413 
47 16 9125 
50 13 9303 

w0=(10,10) 
d=10 
h=1 

99 24 18720 
 
 
Table A4.  
 

the number of steps result, F(w*) 
the number of 

regions, N 
w0=(10,10) 

d=10 
h=1 

w0=(0,0) 
d=10 
h=1 

w0=(10,10)
d=10 

h=N-1 

w0=(10,10)
d=10 
h=1 

w0=(0,0) 
d=10 
h=1 

w0=(10,10) 
d=10 

h=N-1 
2 14 13 14 54 54 54 
4 10 23 10 430 373 430 
6 12 39 12 623 578 623 
8 16 19 16 1172 1172 1172 
10 15 23 17 1423 1423 1423 
12 14 20 14 1790 1557 1790 
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 Table A5.  
 

Transmission links: 
Link number Zone Min flow Max flow 

1 1-2 -100 100 
2 1-3 -100 100 

Sell bids:    
Sell bid number Zone Price (€/MWh) Quantity (MWh) 

1 1 10 7 
2 1 17 8 
3 2 15 9 
4 3 12 3 
5 3 16 3 

Purchase bids: 
Purchase bid number Zone Price (€/MWh) Quantity (MWh) 

1 1 16 10 
2 1 17 8 
3 2 17 9 
4 2 15 7 
5 3 10 6 
6 3 12 1 
7 3 15 1 

 
 
 Table A6. 
 
Coordinate Descent Method  Nelder-Meed’s Method 

Link number Flows Link number Flows 
1 -3 1 -3 
2 0 2 0 

Sell bids: 
P Q P Q 
17 7 16 7 
17 0 16 0 
15 0 15.22 0 
15 3 15.22 3 
15 0 15.22 0 

Purchase bids: 
P Q P Q 
17 0 16 0 
17 7 16 7 
15 3 15.22 3 
15 0 15.22 0 
15 0 15.22 0 
15 0 15.22 0 
15 0 15.22 0 

B(P)=64 B(P)=64 
P=(17;15;15) P=(16;15.22;15.22) 
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 Table A.7. 
Coordinate Descent Method  Nelder-Meed’s Method 

Link number Flows Link number Flows 
1 -3 1 -6 
2 6 2 3 

Sell bids: 
P Q P Q 
10 7 15.39 7 
10 0 15.39 0 
15 0 1.25 0 
15 3 26.99 3 
15 0 26.99 3 

Purchase bids: 
P Q P Q 
10 0 15.39 0 
10 1 15.39 4 
15 9 1.25 9 
15 0 1.25 0 
15 0 26.99 0 
15 0 26.99 0 
15 0 26.99 0 

B(P)=64 B(P)=67 
P=(10;15;15) P=(15.39;1.25;;26.99) 
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Part B 
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Figure B1. 

 
 

 
 

Figure B2. 
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Figure B3. 

 
 
 
 

 
Figure B4. 
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