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Abstract: The purpose of this study is to measure the student’s ability and the 

course’s difficulty of a sample of students of the Faculty of Economics, University of 

Bergamo, using a Rasch measurement model. The problems of the linkage structure and of 

the choice of optimal categorization are discussed too. 
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Introduction 

 

In many disciplines, as psychology, medicine, sociology, sport and education 

sciences, it is very important to have un instrument for measuring some individual’s 

characteristics: performance, ability, attitude, opinion, or problems and difficulties to make 

some exercises. It is important to asses and evaluate the tests and items proposed to 

subjects.  

More specifically (Zhu, Timm, and Ainswoth, 2001), after developing a number of 

items with the predetermined response categories (e.g., Likert scale), a set of items or 

exercises is administered to the target sample. Based on subjects’ responses to the items, 

item statistics (e.g., means and standard deviations) and personal measures (e.g., total 

score) were computed, and some sort of  psychometric analysis was conducted to further 

evaluate the psychometric quality of the instrument. Several known psychometric 

problems, however, are related to this commonly used practice. Among others: 

◦ The calibrations under the conventional procedure are often sample-dependent 

and item-dependent. Sample-dependent, in the context of the measurement, means that 

characteristics of an item, or instrument, are determined and based on the sample used in 

the study. By the same token, the characteristics of subjects are also determined by the type 

and the number of items included in a particular instrument. 

◦ Items and subjects are calibrated on different scales. While the former are usually 

summarized based on means and standard deviations of the responses to individual items, 

the letter are often represented by total scores. As a result, it is difficult to judge whether a 

subject with a certain score will have a problem on a particular item. 

◦ It is often incorrectly assumed in these studies that items with Likert scale are 

already set on a interval scale and that item responses are additive. Generally in these cases 

the items are based on the ordinal scale. 

◦ When instrument developers choose a response category, they often assume that 

the category selected was already the most appropriate one. The number of categories and 

type of anchors, are known to have an effect on the categorization of a scale. 

◦ It should be pointed out that the description of the attribute or trait being 

measured, as well as the characteristics of items, in previous studies assessment have been 

somewhat confusing. 
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The problems above described can be solved using the Rasch calibration. The 

Rasch calibration belongs to the response-centered calibration method, in which both 

examinees and testing items are located on a common continuum based on the amount of 

the trait possessed by each other. Theoretically, the Rasch calibration lies on the 

foundation of the item response theory, an advanced testing theory developed during the 

past five decades. 

Rasch models are probabilistic mathematical models. Under Rasch models 

expectations (Conrad, and Smith, 2004), a person with higher ability always has a higher 

probability of endorsement or success on any item than a person with lower ability. 

Likewise, a more difficult item always has a lower probability of endorsement or success 

than a less difficult item, regardless of person ability. 

◦ Rasch models require unidimensionality and result in additivity. 

Unidimensionality means that a single constuct is being measured. If the assessment 

contains multiple subscale, unidimensionality refers to the set of items for each subscale. 

Additivity refers to the properties of the measurement units, which are the same size (i.e., 

interval) over the entire continuum if the data fit the model. These units are called logits 

(logarithm of odds units) and are a linear function of the probability of obtaining a certain 

score or rating for a person of a given ability. These interval measures may be used in 

subsequent parametric statistical analysis that assume an interval level scale. 

◦ The placement of items according to their difficulty or endorsability and persons 

according to their ability on the common logit scale is displayed in figure 1.  

 

Figure 1: Example of persons’ ability 

and items’ difficulty on the same axis. 
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In this figure the students’ ability and the exams’ difficulty are represented on the 

same axis. The logit scale (from “- 4” to “+ 4”)  is on the middle of the figure, on the left 

there are the students, classified in frequencies, and on the right the exams. At the bottom 

in figure 1 there are the students with less ability and the less difficult exams, on the top 

the students with more ability and the more difficult exams. It is possible to see that the 

less difficult exam is Company Administration (Az) and the more difficult exams are 

Computing Science (Inf) and Accounting and Auditing (Rag), at the same level there are 

Political Economics I (Pol I), Financial Mathematics (Fin), Mathematical Methods (Mat) 

and Statistics (Stat). 

◦ The use of Rasch models enables predictions of how persons at each level of 

ability are expected to do on each item. This capability of having estimates for the item 

hierarchy and person ability levels enables us to detect anomalies, such as someone failing 

to endorse the 5 least severe (or easiest) items while endorsing the 5 most severe (hardest) 

items. 

◦ To deal with these issues of unusual patterns or “misfitting” cases, once the 

parameters of the Rasch models are estimated, they are used to compute expected 

(predicted) response patterns for each person on each item. “Fit statistics” are then derived 

from a comparison of the expected patterns and the observed patterns. These “fit statistics” 

are used as a measure of the validity of the data-model fit. 

◦ “Person fit” statistics measure the extent to which a person’s pattern of responses 

to the items corresponds to that predicted by the model. A valid response requires that a 

person of a given ability have a greater probability of providing a higher rating on easier 

items than on more difficult items. Depending on the degree to which misfitting persons 

degrade the measurement system, one may elect to remove the misfitting from the 

calibration process, edit the misfitting response string, or choose to leave the misfitting 

persons in the data set. 

◦ “Item fit” statistics are used to identify items that may not be contributing to a 

unitary scale or whose response depends on response to other items (i.e., a violation of 

local independence). The model require that an item have a greater probability of yielding 

a higher rating for persons with higher ability than for persons with lower ability. Those 

items identified as not fitting the Rasch model need to be examined and revised, 

eliminated, or possibly calibrated with other misfitting items to determine if a second 

coherent dimension may exist. There are many potential reasons an item may misfit. For 
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example, an item may not be related to the rest of  the scale or may simply be statistically 

redundant with the information provided by other items. 

In summary, some advantages of Rasch models include the characteristic to equate 

responses from different sets of items intended to measure the same construct; to develop 

equal interval units of measurement if the data fit the model; to incorporate missing data by 

using estimation methods which rely on sufficient statistics and estimation methods that 

simply summarize the non-missing observations that are relevant to each parameter and 

compare them with their expectations; conducting validity and reliability assessments in 

one analysis for both item calibration and person measures; estimate person ability freed 

from the sampling distribution of the items attempted; estimating item difficulty freed from 

the sampling distribution of the sample employed; to express item calibrations and person 

measures on a common linear scale. 

What every scientist and layman means by a “measure” (Wright, and Linacre, 

1989; Kornetti et al., 2004) is a number with which arithmetic (and linear statistic) can be 

done, a number which can be added and subtracted, even multiplied and divided, and yet 

with results that maintain their numerical meaning. The original observations in any 

science are not yet measured in this sense. They cannot be measured because a measure 

implies the previous construction and maintenance of a calibrated measuring system with a 

well-defined origin and unit which has been shown to work well enough to be useful. The 

linear scales are an essential prerequisite to unequivocal statistical analysis. Something 

must be done with counts of observed events to build them into measures. A measurement 

system must be constructed from a related set of relevant counts and its coherence and 

utility established. 

The valuation obtained by a judge is by construction an ordinal scale. The mark of 

an university exam is measured by a number (to “18” from “30 e lode” = “31”), but this is 

a judge, and then it is not measured by an interval or ratio scale, but by an ordinal scale. 

The mark is not obtained by a count or a measure’s instrument. Although ordinal scales are 

often used for statistical analysis, equal interval data are fundamental for even basic 

mathematical operations; it is impossible to assert that the university marks are equal 

interval data. 

In this study I considered a sample of students at the end of the first academy year 

and the judge (mark) obtained in eight exams. The latent variable I want to study, the 

student ability, cannot be measured by the marks obtained in the exams, because these are 
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not determined on an interval scale. In particularly this scale is not additive; therefore the 

procedure leading to a total score as a sum of the partial scores (a final mark obtained as a 

sum of the individual marks, like in the “laurea” mark) is not a good procedure. 

As described earlier, the Rasch analysis is a set of techniques and models for 

measuring a latent variable on an interval scale and to place on the same axe the subject’s 

(student) ability and the item’s (exam) difficulty (Waugh, 2003). 

Therefore the most important purpose of this study is to obtain a meaningful 

valuation of the measure of the students ability and the exams difficulty by the Rasch 

analysis.  

In this context it is important that the data fit the chosen model. For this purpose it 

is important to recategorize the marks in a little number of categories and determine the 

optimal categorization. 

Categorization has always considered an important element in constructing an 

ordered-response scale (Zhu, Updyke, and Lewandowski, 1997). Ordered-response scales 

include scales having ordinal response categories. Categorization of an ordered-response 

scale has two very important characteristics. First, while all categories of a scale should 

measure a common trait or property (e.g., attitude, opinion, or ability), each of them must 

also have its own well-defined boundaries, and the elements in a category should also 

share certain exclusively specific properties. Second, categories must be in an order and 

numerical values generated from the categories which must reflect the degrees or 

magnitudes of the trait. An optimal categorization is the one that best exhibits these 

characteristics. 

Moreover, once the optimal categorization was determined, it is possible to 

compare the studied situation with some similar situations, with those of later years (e.g, 

one or two years after) or with those in different towns or regions. In this way it is possible 

to observe if the optimal categorization is the same or not. 
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Methods 

 

Georg Rasch (Rasch, 1961) developed a mathematical model for constructing 

measures based on probabilistic relation between any item’s difficulty and any person’s 

ability. Rasch argued that the difference between these two measures should govern the 

probability of any person being successful on any particular item. The basic logic is 

simple: all persons have a higher probability of correctly answering easier items (e.g., to 

endorse the easier exam) and a lower probability of correctly answering more difficult 

items (e.g., to endorse the more difficult exam). 

The simplest Rasch model, the dichotomous model, predicts the conditional 

probability of a binary outcome, given the person’s ability and the item’s difficulty. If 

correct answers are coded as 1 and the incorrect answers are coded as 0, the model 

expresses the probability of obtaining a correct answer as a function of the size of the 

difference between the ability of the subject Sv (v = 1, 2, …, n) and the difficulty of item Ii 

(i = 1, 2, …, k). 

This probability is given by: 
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where θv (v = 1, 2, …, n) is  an  uni-dimensional  person  parameter (person ability),  and βi 

(i = 1, 2, …, k) is an uni-dimensional item parameter (item difficulty). 
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and then its natural logarithm has the simple linear form: 
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ivODDSLnLogit βθ −== )( . 

The characteristics of the Rasch model to compare persons and items directly 

means that we have created person-free measures and item item-free calibration; abstract 

measures that transcend specific persons’ responses to specific item at a specific time. This 

characteristic is called parameter separation. Thus, Rasch measures represent a person’s 

ability as independent of the specific test item, and item difficulty as independent of 

specific sample. 

Let us consider, now, the responses of n persons, S1, S2, …, Sn to a sequence of k 

items, I1, I2, …, Ik, in which each subject may respond to item Ii in mi+1 (mi ≥ 1) ordered 

categories, C0, C1, …, Cmi ; for each item, the subject chooses one and only one of the mi+1 

categories. The categories’ number can be different in the items. 

The probability function is given by, following the partial credit model (PCM) 

(Master, 1982): 
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where  θv (v = 1, 2, …, n) is an uni-dimensional person parameter, and  βih  (i = 1, 2, …, k  

and h = 0, 1, …, mi) is an uni-dimensional item parameter. 

Formula (2) gives the probability - for a subject Sv, with person parameter θv - of 

scoring h on item Ii . By considering the couple of adjacent categories Ch-1 and Ch, the logit 
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where  
1-vihvih

vih
ππ

π
+

  is the probability that the subject Sv for the item Ii chooses the 

category Ch rather than Ch-1, given that the response is only one between Ch and Ch-1, and 

where 1−−= ihihih ββδ  ,  h = 1, …, mi  and  00 =iδ . 

To make the model identifiable, the constraints 
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By virtue (3), the formula (2) becomes 
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where δil is referred to as uncentralized threshold parameter (Andrich’s thresholds), and 

represents the magnitude of the supplementary difficulty from category Ch-1 to category Ch 

for item i. 

In both the dichotomous and the polytomous models the data matrix is a matrix 

with n (n subjects) raws and k (k items) columns. The raw score totals are ordinal-level, yet 

they are both necessary and sufficient for estimating person ability and item difficulty. 

It is worth noting that to estimate the parameters with the maximum likelihood 

method the data matrix must not to be ill-conditioned. The data matrix is said to be ill-

conditioned (Bertoli-Barsotti; Fischer, 1981) if there exists a partition (that may not be 

unique) of the set of the respondents into two non-empty subsets G1 and G2 such that if a 



 10

subject belongs to G2, his response score on Ii (i = 1, 2, …,k) is not better than the response 

score on Ii of any other subject in G1. 

As described earlier, the Rasch analysis was not originally developed for 

determining the optimal categorization, but rather as a measurement model. Only recently 

(Zhu, Updyke, and Lewandowski, 1997; Zhu, 2003) this model was proposed for 

identifying optimal categorization; information provided by the Rasch rating scale 

analysis, especially those on categories by the Rasch rating scale model, make it very 

useful for such a purpose. 

Conceptually, the Rasch analysis belongs to a post-hoc approach in which the 

categories in the collected data can be recombined and the optimal categorization is 

determined and based upon a set of statistics provided by the Rasch analysis. Technically, 

the Rasch analysis starts by combining adjacent categories in a “collapsing” process, in 

which new categories are constructed. By comparing related statistical indexes, the optimal 

categorization can be determined. Three sets of statistics or parameter estimates are 

provided by the Rasch analysis, including model-data fit statistics, category statistics and 

parameter estimates and separation statistics. An optimal categorization, according to the 

Rasch analysis, should be the one that fits the Rasch model, has ordered categories 

(numerical values generated from the categories must reflect the increasing or decreasing 

trait to be measured), and leads to a greater discrimination among items and subjects (Zhu, 

Updyke, and Lewandowski, 1997; Linacre, 2003). 

The procedure has been demonstrated as a useful means in determining the optimal 

categorization of an ordered-response scale (Zhu, Updyke, and Lewandowski, 1997).  

The identified categorization based on the procedure, however, is merely the result 

of a post-hoc analysis. It is unknown if a modified categorization based on a Rasch post-

hoc analysis could maintain its psychometric characteristics in the later measurement 

practice (Zhu, Updyke, and Lewandowski, 1997). More specifically, if, based on the 

categorization information provided by the Rasch analysis, a scale’s optimal categorization 

was identified, could the revised scale maintain the psychometric characteristics of the 

original optimal categorization when it is applied to the same population? 

The model-data fit statistics included two indexes: Infit and Outfit. The Infit 

statistic denotes the information-weighted mean-squares residual difference between 

observed and expected responses. The Outfit statistic, which is more sensitive to outliers 

and is used as an additional reference, denotes the usual unweighted mean-squares 
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residual. Infit and Outfit, with a value of 1, are considered satisfactory model-data fit, and 

a greater value (e.g., > 1.3) or a smaller value (e.g. < 0.7) are considered a misfit. A greater 

value often indicates inconsistent performance, while a smaller value reflects too little 

variation. 

The category statistics also included two indexes: average measure and Andrich’s 

threshold. The average measures estimate approximatively the average ability of the 

respondents observed in a particular category, average across all occurrences of the 

category. The threshold, as described earlier, is the location parameter of the boundary on 

the continuum between category k and category k-1 of a scale. A categorization, according 

to the categories statistics and parameter estimates, should be ordered, the basic property of 

the categorization in any ordered-response scale. If the thresholds are ordered, the 

categories used by survey participants were congruent with the intention of the scale 

designer (Piquero, MacIntosh, and Hickman, 2001). 

The separation statistics, again, included two indexes: item and person separation 

(Zhu, Updyke, and Lewandowski, 1997; Zhu, Timm, and Ainsworth, 2001).  

The item separation (GI) is a measure used to describe how well the scale separates 

testing items: 

I

I
I

SE
SAG =  

where SAI is the item standard deviation and SEI is the root mean square calibration error 

of item.  

The person separation (GP), on the other hand, is a measure used to describe how 

well the scale identifies individual differences: 

P

P
P

SE
SAG =  

where SAP is the respondent standard deviation and SEP is the root mean square calibration 

error of respondents. The greater separation, the better the categorization, since the items 

will be better separated and the respondent’s differences will be better distinguished. 

Among commonly used conventional statistics, it is important to remember the 

coefficient Cronbach’s Alpha. That is, perhaps, the most popular one at the scale level. 

Cronbach’s Alpha is a measure of the internal consistency of a scale, and is a direct 

function of both the number of items in the scale and their magnitude of intercorrelation. 
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Therefore, either increasing the number of items or raising their intercorrelation can 

increase Cronbach’s Alpha. Further, it is generally believed that increasing the number of 

categories will increase Cronbach’s Alpha, but maximum gains will be reached with five 

or seven scale-points, after which Cronbach’s Alpha values will level off. 

Another commonly used conventional statistical index is the item point-biserial 

correlation coefficient (Zhu, Updyke, and Lewandowski, 1997), which reflects the 

correlation between responses and respondents’ total scores. The point serial correlation 

coefficient is a discrimination index at the item level. Generally, the higher the point-

biserial coefficient, the better the discrimination of an item, and a negative value often 

reveals a problematic item. While both coefficient Alpha and point-biserial coefficient may 

used to examine the quality of a scale or an item, neither provides any information on the 

quality of the categories. 

Finally, the Rasch analysis, technically, starts by combining adjacent categories in a 

“collapsing” process, in which new categories are constructed. 

Utilizing the collapsing process, parameter estimates and above mentioned 

goodness of fit, a new and useful post-hoc procedure based upon the Rasch analysis can be 

proposed to determine the optimal categorization empirically: 

◦ Combine adjacent categories in a “collapsing” process, in which new 

categorizations are constructed; 

◦ Select an appropriate Rasch model, applying the Rasch calibration, and 

examine the model-data fit; 

◦ If the model-data fit is satisfactory, identifying the “candidates” of the 

optimal categorization whose categories are ordered; 

◦ Determine the optimal categorization by selecting it from the “candidate” 

categorization exhibiting the greatest separation. 

 The purpose of this study was to find the optimal categorization for the marks 

(from “18” to “31”) of a group of eight university exams. 
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Data 

 

The data matrix 

For this study I considered the students of the Faculty of Economics, University of 

Bergamo, (enrolled in the academy year 2003/04) at the end of first academy year. This 

first year concerns the passing of 10 exams: Company Administration, Computing Science, 

Political Economics I, Political Economics II, Statistics, Financial Mathematics, 

Mathematical Methods, Accounting and Auditing, Private Law and  Business English. 

These two last exams have not been considered for a lot of reasons: 

◦ Less of 100 students have not passed the exam of Private Law and so this exam 

couldn’t be considered as a meaningful item. 

◦ The Business English exam too, passed by few students, didn’t give marks higher 

than “28”. A null category (here “29”, “30” and “31”) poses some problems to the 

estimation of the parameters (see Bertoli-Barsotti, Fischer, 1981).  

However, these two exams can be considered less important than others for an 

Economics University. 

Afterwards I have chosen the 300 students who, at the moment of the analysis 

(October 2004), had passed at least four exams, the half of those concerned. The data 

matrix was formed by n = 300 students and k = 8 items. The frequencies for both each 

mark and exam are reported in table 1 (with “0” I have outlined the not passed exam). 

Observing this table it is possible to note that Company Administration and 

Accounting and Auditing not have the maximum mark (31), Company Administration has 

overall high marks (“28”, “29” and “30”) and Accounting and Auditing the low marks. 

Several exams have not many students with mark “29” or “19”, “20” and “21”. 

To have a clearer representation of the frequencies’ distributions it is interesting to 

see the distribution functions, reported together in figure 2. 
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 Company 
Administration 

Computing 
Science 

Political 
Economics 

II 

 
Statistics 

Political 
Economics 

I 

Financial 
Mathematics 

Mathematical 
Methods 

Accounting 
and 

Auditing 
0 3 26 33 41 57 65 68 73 
18 10 6 7 24 13 12 14 46 
19 4 9 1 19 8 6 10 6 
20 8 22 3 16 14 18 13 18 
21 8 14 3 5 12 17 7 7 
22 7 27 16 16 16 18 9 19 
23 15 32 8 24 15 14 12 9 
24 10 36 30 25 15 23 17 16 
25 14 28 23 14 18 13 19 13 
26 17 24 37 22 22 18 24 8 
27 28 31 41 30 17 12 18 30 
28 41 18 13 25 25 35 26 4 
29 45 7 19 8 21 2 6 5 
30 90 16 51 21 35 36 38 46 
31 0 4 15 10 12 11 19 0 
Table 1: Frequency distribution of marks for each exam. 
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Figure 2: Comparison the exams’ distribution function. 

 

The missing data 

In some data matrix it is possible to have the problem of missing data, because 

some cells of the matrix can be empty. 

Generally there are multiple reasons for a non-response to an item. The non-

responses can arise from a priori decision to not administer certain items or when 

respondents are directed to answer only relevant items represent conditions in which the 

missingness process may be ignored for purpose of estimating the person’s location on the 

latent continuum of interest. In contrast, non-responses for “not-reached” items occur 
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because a respondent has insufficient time to even consider responding to the items. 

Another source of missing data occurs because respondents have the capability of choosing 

not to respond to certain items. These intentionally omitted responses represent non 

ignorable missing data. This latter condition is referred to as missing not at random. 

Different strategies have been developed for handling missing data (De Ayala, 

2003) and were investigated for their capability to mitigate against the effect of omitted 

responses on person location estimation: ignoring the omitted response, selecting the 

“midpoint” response category, hot-decking, and a likelihood- based approach. 

◦ Ignoring the omitted response had effect of reducing the number of items used for 

estimating the person’s location and thereby affecting the respondent’s sufficient statistics 

for location estimation. This strategy assumes that the omissions do not contain any useful 

information for estimating the respondent’s location. 

◦ Replacing the omitted response with the “midpoint” response category (in effect, 

assuming the response is neutral like) does not reduce the number of items used in 

calculating the sufficient statistics. However, to the extent that this “neutral” response is 

not reflective of the respondent’s true response, so this approach may introduce additional 

measurement error. 

◦ The hot-decking strategy selects a respondent (B) who is most similar to the 

respondent with missing response (A) in terms of the respondent’s string, but who has also 

answered the item that respondent A did not response to. Respondent B’s response to the 

item in question is used for respondent A’s omitted response to the item. If there are 

multiple matching candidates, then an individual was selected at random from the multiple 

matching candidates. 

◦ In the likelihood approach the various possible responses are substituted for each 

omitted response and the likelihood of that response pattern is calculated conditional on the 

location estimate, ϑ̂ , corresponding to the response vector’s sufficient statistic. For 

instance, let us say that the respondent has omitted one item and there are four possible 

response options (1, 2, 3, 4). In this approach the omitted response would be replaced a 

response of 1 and the likelihood based the corresponding sufficient statistic’s ϑ̂  calculated. 

Then the omitted response would be replaced by a response of 2 and likelihood 

recalculated and so forth for responses of 3 and 4. The ϑ  associated with the largest of the 
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four likelihoods was taken as the ϑ̂ . Obviously, as the number of omissions increases the 

number of combinations of potential responses  also increases. 

Now it is clear that it is not informative to compare the responses on two items A 

and B if these items have been administered to different groups (Van Buuren, and 

Hopman-Rock, 2001). Differences in the score distribution of A and B may be due to 

either differences between studies or to differences between items, or to a combination of 

both. However, if a third item C, that assesses the same trait, is measured in both studies, 

then the distribution of A and B can be compared through this common item.  

Therefore, (Lee, 2003) to solve this problem there are two possible linkage 

structure: in figure 3.a is represented the linkage structure in which only some subjects 

responded to all items (horizontal linkage) and in figure 3.b is represented the linkage 

structure in which some items are administrated to all subjects (vertical linkage). 

 
Figure 3.a: Horizontal linkage                                          Figure 3.b: Vertical linkage 

  

In this study there is the problem of “missing” data, because not all the 300 students 

passed the 8 exams, but only 118 students. For a number of reasons a student didn’t passed 

an exams: exam tried but failed, or unshown student, or others more. In any case in this 

study the missing response may be considered as a “wrong” response and then the 

respondent’s response vector doesn’t contain responses to each item.  

In this data matrix there is not an exam passed by all students (see frequencies 

distribution in which all the exams have some “non passed”, minimum 3 cases in Company 
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Administration), but there are 118 students who passed all the eight exams; therefore it is 

possible to use the horizontal linkage. 

 

The categorization 

As the numerous individual categories (14 marks + not passed exam), I couldn’t 

follow the “collapsing” process of adjacent categories, described by (Zhu, Updyke, and 

Lewandowski, 1997; Zhu, 2003), and so I tried to highlight some basic characteristics 

analysing the above table to determine the optimal categorization. 

The non passed exam doesn’t have to be considered like a missing data, because 

this data is not a very “missing”, but not yet available information, due to a student’s 

choice or an item too difficult for this student. In this context a not passed exam is a 

penalty, like a minimum mark, therefore the first category, coded by 0. This category can 

not be “collapsed” with the adjacent categories (marks “18”, “19”, …). 

The marks “30” and “31” indicate greatest student’s performance (ability), a perfect 

test, and then these categories together couldn’t “collapse” with others indicating imperfect 

test. I think it is very important and meaningful to isolate the maximum marks. 

To indicate the “collapsing” process of adjacent categories, I used this 

formalization (Zhu, Updyke, and Lewandowski, 1997; Zhu, 2003). For example, if the data 

analysis starts by recombining the original five adjacent categories (1, 2, 3, 4, 5) into three 

new categories, it is possible to obtain six “collapsing”: 11123; 11233; 11223; 12223; 

12233; and 12333. The expression “11123” means that the original category “1” was 

retained as “1”, but the original categories “2” and “3” were collapsed into category “1”, 

category “4” into category “2” and category “5” into category “3”.  

In this study the original categories are: 

 

0 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

 

With 15 original categories, the number of new categories is explained in table 2, 

where:  

k = New categories – 1, 

r = 15 – New categories, 



 18

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
r

rk
 = number of possible combinations. 

 

New categories k r 
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⎠

⎞
⎜⎜
⎝

⎛ +
r

rk
 

2 1 13 14 
3 2 12 91 
4 3 11 364 
5 4 10 1001 
6 5 9 2002 

and so on … … … 
Table 2: Number of possible combinations. 

 

As described earlier, it is not feasible considering all the possible categorizations, 

and then, on base of the common experience,  I chosen to analyze the following ones: 

 

(1): 011111122233344 (2): 011111222333344 (3): 011111222233344 
   

(4): 011112222333344 (5): 011112222233344 (6): 011122223334455 
   

(7): 011222233344455 (8): 011111112222233 (9): 011111111222233 

 

in which all the eight exams are classified by the same categorization; and these others: 

 

(10): 011111222333344  and Accounting and Auditing:  011111112222233 
 

(11): 011112222333344  and Company Administration:   011111112222233 
 

(12): 011112222333344  and Company Administration:   011111111122233 

 

in which an exam has a different categorization’s number compared than others. 

In these analyses I couldn’t consider all the 300 students but 298, because two of 

them reported the maximum mark (“30” or “31”) in the all exams and therefore the data 

matrix was ill-conditioned. 

In the matrix the data are reported with growing column total and decreasing raw 

total, such that if the generic element of the matrix is avi (v = 1, 2, …, n; i = 1, 2, …,k), 
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To analyze the data and determine the optimal categorization I used RUMM (Rasch 

Unidimensional Measurement Models) 2020. 

RUMM 2020 is an interactive Rasch software package, which uses a variety of 

graphical and tabular displays to provide an immediate, rapid, overall appraisal of a 

analysis. This software is entirely interactive, from data entry to the various analysis, 

permitting rerunning analysis based on diagnosis of previous analysis, for example, 

rescoring items, eliminating items, carrying out test equating in both raw score and latent 

metrics.  

RUMM 2020 handles 5000 or more items with the number of persons limited by 

available memory. It allows up to 9 distractor responses for multiple-choice items, a 

maximum of 64 thresholds per polytomous item. The software employs a range of special 

Template files for allowing the user customize analysis adding convenience and speed 

repeated, related and future analyses. 

RUMM 2020 implements the Rasch models for dichotomous and polytomous data 

using a conditional estimation procedure that generalizes the equation for one pair of items 

in which the person parameter is eliminated to all pairs of items taken simultaneously. This 

procedure is conditional estimation in the sense that the person parameters are eliminated 

while the item parameters are estimated. The procedure generalizes naturally to handing 

missing data. 

To estimate parameters RUMM 2020 uses a procedure based on the successive 

iterations until the convergence. The iteration is said to converge when the maximum 

difference in item and person value during successive iterations meets a preset 

convergence value. 
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RESULTS OF THE OPTIMAL CATEGORIZATION 

 

Implementing RUMM 2020 on the described categorizations (from 1 to 12) in all 

the cases, excepted one, the thresholds are disordered, for example as in figure 4. 

 
Figure 4: An example of disordered thresholds. 

 

in which the categories 1 and 3 are never more probable than the categories 0, 2 and 4. 

Therefore, as written earlier, these categorizations are not optimal.  

The categorization chosen as “optimal categorization” is: 011111112222233, in 

which: 

Category Marks 

0 Non passed exam 

1 18, 19, 20, 21, 22, 23, 24 

2 25, 26, 27, 28, 29 

3 30, 31 

 

After this codification, the frequencies’ distribution for each category is displayed 

in table 3.  

Implementing RUMM 2020 with these data, all 24 parameters converged after 26 

iterations. 

For the chosen categorization all the thresholds (uncentralised) are ordered, see 

table 4. 
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Item Cat.  0 Cat.  1 Cat.  2 Cat.  3 

Accounting and Auditing 73 121 60 44 

Financial Mathematics 65 108 80 45 

Statistics 41 129 99 29 

Computing Science 26 146 108 18 

Mathematical Methods 68 82 93 55 

Political Economics I 57 93 103 45 

Political Economics II 33 68 133 64 

Company Administration 3 62 145 88 

Table 3: Frequency distribution for the optimal categorization. 

 

Item Location=Mean Threshold 1 Threshold 2 Threshold 3 

Accounting and Auditing (A A) 0,356 - 0,863 0,865 1,067 

Financial Mathematics (F A) 0,278 - 0,977 0,357 1,454 

Statistics (St) 0,310 - 1,616 0,307 2,240 

Computing Science (C S) 0,290 - 2,121 0,369 2,621 

Mathematical Methods (M M) 0,131 - 0,611 - 0,210 1,213 

Political Economics I (P E I) 0,172 - 0,874 - 0,207 1,597 

Political Economics II (P E II) - 0,270 - 1,134 - 0,852 1,175 

Company Administration (C A) - 1,267 -3,443 - 1,187 0,829 

Table 4: Location parameters and thresholds for each exam. 

 

and the Category Probability Curves are displayed for each item in figure 5. These eight 

figures show that all categories are more probable to emerge at different ability level. For 

example in Statistics it is possible to observe that for a logit lower than – 1,616 receiving 0 

is more probable then receiving any other category; this indicates that students of low 

ability will have the greatest probably of not passing the exam. If the logit is between – 

1,616 and 0,307, receiving a 1 is more probable than receiving any other category, and 

between 0,307 and 2,24 receiving a 2 is more probable. Only for a logit greater than 2,24 a 

student has a greatest probability to have a maximum mark. 

 In figure 6 it is possible to observe the item map with uncentralised thresholds for 

each item: on the left there are the students frequencies for each class of logit and on the 

right there are the thresholds for each item.  

 In the output of RUMM 2020 it is possible reading that: 

Cronbach Alpha = 0,784 
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Person Separation Index = 0,770 

and the power of test-of-fit = GOOD. 
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Figure 5: Category Probability Curves of the eight exams. 

 

 

 
Figure 6: The item map. 
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Conclusions 

 

In many disciplines, as psychology, medicine, sociology, sport and education 

sciences, it is very important to have un instrument for measuring some individual’s 

characteristics: performance, ability, attitude, opinion, or problems and difficulties to make 

some exercises, in any case a latent variable. It is important to asses and evaluate the tests 

and items proposed to subjects.  

The Rasch analysis is a set of  techniques and models for measuring a latent 

variable on an interval scale and to place on the same axe the subject’s ability and the 

item’s difficulty. Under Rasch models expectations, a person with higher ability always 

has a higher probability of endorsement or success on any item than a person with lower 

ability. Likewise, a more difficult item always has a lower probability of endorsement or 

success than a less difficult item, regardless of person ability. 

In this study I wanted to obtain a meaningful valuation of the measure of the 

students’ ability and of the exams’ difficulty by the Rasch analysis.  

I considered the 300 students who, at the end of the first academy year, had passed 

at least four exams among Company Administration, Computing Science, Accounting and 

Auditing, Political Economics I, Political Economics II, Financial Mathematics, 

Mathematical Methods and Statistics. 

Given that not all the 300 students passed the eight exams, I discussed the problem 

of the data matrix with some “missing “ data; in this study these “missing” responses maid 

be considered as a “wrong” response, because a not passed exam is a penalty, a 

“minimum” mark for the student. 

To analyse these data, I had to reduce the number of categories (the marks from 

“18” to “30 e lode”). By a “collapsing” process, the analysis of the thresholds and the 

calculation of some statistical index  permitted to obtain the optimal categorization, in 

which only four categories are considered. 
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